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PREFACE

Multisensor data fusion is an emerging technology applied to Department of Defense (DoD) areas such as
automated target recognition (ATR), identification-friend-foe-neutral (IFFN) recognition systems, battle-
field surveillance, and guidance and control of autonomous vehicles. Non-DoD applications include mon-
itoring of complex machinery, environmental surveillance and monitoring systems, medical diagnosis, and
smart buildings. Techniques for data fusion are drawn from a wide variety of disciplines, including signal
processing, pattern recognition, statistical estimation, artificial intelligence, and control theory. The rapid
evolution of computers, proliferation of micro-mechanical/electrical systems (MEMS) sensors, and the
maturation of data fusion technology provide a basis for utilization of data fusion in everyday applications.

This book is intended to be a comprehensive resource for data fusion system designers and researchers,
providing information on terminology, models, algorithms, systems engineering issues, and examples of
applications. The book is divided into four main parts. Part I introduces data fusion terminology and
models. Chapter 1 provides a general introduction to data fusion and terminology. Chapter 2 introduces
the Joint Directors of Laboratories (JDL) data fusion process model, widely used to assist in understanding
DoD applications. In Chapter 3, Jeffrey Uhlmann discusses the problem of multitarget, multisensor
tracking and introduces the challenges of data association and correlation. Chapter 4, by Ed Waltz,
introduces concepts of image and spatial data fusion, and in Chapter 5 Richard Brooks and Lynne Grewe
describe issues of data registration for image fusion. Chapter 6, written by Richard Antony, discusses
issues of data fusion focused on situation assessment and database management. Finally, in Chapter 7,
Joseph Carl contrasts some approaches to combining evidence using probability and fuzzy set theory.

A perennial problem in multisensor fusion involves combining data from multiple sensors to track
moving targets. Gauss originally addressed this problem for estimating the orbits of asteroids by devel-
oping the method of least squares. In its most general form, this problem is not tractable. In general, we
do not know a priori how many targets exist or how to assign observations to potential targets. Hence,
we must simultaneously estimate the state (e.g., position and velocity) of N targets based on M sensor
reports and also determine which of the M reports belong to (or should be assigned to) each of the N
targets. This problem may be complicated by closely spaced, maneuvering targets with potential obser-
vational clutter and false alarms.

Part II of this book presents alternative views of this multisensor, multitarget tracking problem. In
Chapter 8, T. Kirubarajan and Yaakov Bar-Shalom present an overview of their approach for probabilistic
data association (PDA) and the joint PDA (JPDA) methods. These have been useful in dense target
tracking environments. In Chapter 9, Jeffrey Uhlmann describes another approach using an approximate
method for addressing the data association combination problem. A classical Bayesian approach to target
tracking and identification is described by Lawrence D. Stone in Chapter 10. This has been applied to
problems in target identification and tracking for undersea vehicles. Recent research by Aubrey B. Poore,
Suihua Lu, and Brian J. Suchomel is summarized in Chapter 11. Poore’s approach combines the problem
of estimation and data association by generalizing the optimization problem, followed by development
of efficient computational methods. In Chapter 12, Simon Julier and Jeffrey K. Uhlmann discuss issues
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related to the estimation of target error and how to treat the codependence between sensors. They extend
this work to nonlinear systems in Chapter 13. Finally, in Chapter 14, Ronald Mahler provides a very
extensive discussion of multitarget, multisensor tracking using an approach based on random set theory.

Part III of this book addresses issues of the design and development of data fusion systems. It begins
with Chapter 15 by Ed Waltz and David L. Hall, and describes a systemic approach for deriving data
fusion system requirements. Chapter 16 by Christopher Bowman and Alan Steinberg provides a general
discussion of the systems engineering process for data fusion systems including the selection of appro-
priate architectures. In Chapter 17, David L. Hall, James Llinas, Christopher L. Bowman, Lori McConnel,
and Paul Applegate provide engineering guidelines for the selection of data fusion algorithms. In Chapter
18, Richard Antony presents a discussion of database management support, with applications to tactical
data fusion. New concepts for designing human-computer interfaces (HCI) for data fusion systems are
summarized in Chapter 19 by Mary Jane Hall, Sonya Hall, and Timothy Tate. Performance assessment
issues are described by James Llinas in Chapter 20. Finally, in Chapter 21, David L. Hall and Alan N.
Steinberg present the dirty secrets of data fusion. The experience of implementing data fusion systems
described in this section was primarily gained on DoD applications; however, the lessons learned should
be of value to system designers for any application.

Part IV of this book provides a taste of the breadth of applications to which data fusion technology
can be applied. Mary L. Nichols, in Chapter 22, presents a limited survey of some DoD fusion systems.
In Chapter 23, Carl S. Byington and Amulya K. Garga describe the use of data fusion to improve the
ability to monitor complex mechanical systems. Robert J. Hansen, Daniel Cooke, Kenneth Ford, and
Steven Zornetzer provide an overview of data fusion applications at the National Aeronautics and Space
Administration (NASA) in Chapter 24. In Chapter 25, Richard R. Brooks describes an application of
data fusion funded by DARPA. Finally, in Chapter 26, Hans Keithley describes how to determine the
utility of data fusion for C4ISR. This fourth part of the book is not by any means intended to be a
comprehensive survey of data fusion applications. Instead, it is included to provide the reader with a
sense of different types of applications. Finally, Part V of this book provides a list of Internet Web sites
and news groups related to multisensor data fusion.

The editors hope that this handbook will be a valuable addition to the bookshelves of data fusion
researchers and system designers. We remind the reader that data fusion remains an evolving discipline.
Even for classic problems, such as multisensor, multitarget tracking, competing approaches exist. The book
has sought to identify and provide a representation of the leading methods in data fusion. The reader
should be advised, however, that there are disagreements in the data fusion community (especially by
some of the contributors to this book) concerning which method is best. It is interesting to read the
descriptions that the authors in this book present concerning the relationship between their own techniques
and those of the other authors. Many of this book’s contributors have written recent texts that advocate
a particular method. These authors have condensed or summarized that information as a chapter here. 

We take the view that each competing method must be considered in the context of a specific
application. We believe that there is no such thing as a generic data fusion system. Instead, there are
numerous applications to which data fusion techniques can be applied. In our view, there is no such
thing as a magic approach or technique. Even very sophisticated algorithms may be corrupted by a lack
of a priori information or incorrect information concerning sensor performance. Thus, we advise the
reader to become a knowledgeable and demanding consumer of fusion algorithms. 

We hope that this text will become a companion to other texts on data fusion methods and techniques,
and that it assists the data fusion community in its continuing maturation process.
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Integration or fusion of data from multiple sensors improves the accuracy of applications ranging from
target tracking and battlefield surveillance to nondefense applications such as industrial process moni-
toring and medical diagnosis.

1.1 Introduction

In recent years, significant attention has focused on multisensor data fusion for both military and
nonmilitary applications. Data fusion techniques combine data from multiple sensors and related infor-
mation to achieve more specific inferences than could be achieved by using a single, independent sensor.

The concept of multisensor data fusion is hardly new. As humans and animals have evolved, they have
developed the ability to use multiple senses to help them survive. For example, assessing the quality of
an edible substance may not be possible using only the sense of vision; the combination of sight, touch,
smell, and taste is far more effective. Similarly, when vision is limited by structures and vegetation, the
sense of hearing can provide advanced warning of impending dangers. Thus, multisensory data fusion
is naturally performed by animals and humans to assess more accurately the surrounding environment
and to identify threats, thereby improving their chances of survival.

While the concept of data fusion is not new, the emergence of new sensors, advanced processing
techniques, and improved processing hardware have made real-time fusion of data increasingly viable.
Just as the advent of symbolic processing computers (e.g., the SYMBOLICs computer and the Lambda
machine) in the early 1970s provided an impetus to artificial intelligence, recent advances in computing
and sensing have provided the capability to emulate, in hardware and software, the natural data fusion
capabilities of humans and animals. Currently, data fusion systems are used extensively for target tracking,
automated identification of targets, and limited automated reasoning applications. Data fusion technol-
ogy has rapidly advanced from a loose collection of related techniques to an emerging true engineering

David L. Hall
The Pennsylvania State University

James Llinas
State University of New York
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discipline with standardized terminology, collections of robust mathematical techniques, and established
system design principles.

Applications for multisensor data fusion are widespread. Military applications include automated
target recognition (e.g., for smart weapons), guidance for autonomous vehicles, remote sensing, battle-
field surveillance, and automated threat recognition systems, such as identification-friend-foe-neutral
(IFFN) systems. Nonmilitary applications include monitoring of manufacturing processes, condition-
based maintenance of complex machinery, robotics, and medical applications. 

Techniques to combine or fuse data are drawn from a diverse set of more traditional disciplines,
including digital signal processing, statistical estimation, control theory, artificial intelligence, and classic
numerical methods. Historically, data fusion methods were developed primarily for military applications.
However, in recent years, these methods have been applied to civilian applications and a bidirectional
transfer of technology has begun.

1.2 Multisensor Advantages

Fused data from multiple sensors provides several advantages over data from a single sensor. First, if
several identical sensors are used (e.g., identical radars tracking a moving object), combining the obser-
vations will result in an improved estimate of the target position and velocity. A statistical advantage is
gained by adding the N independent observations (e.g., the estimate of the target location or velocity is
improved by a factor proportional to N ), assuming the data are combined in an optimal manner. This
same result could also be obtained by combining N observations from an individual sensor.

A second advantage involves using the relative placement or motion of multiple sensors to improve
the observation process. For example, two sensors that measure angular directions to an object can be
coordinated to determine the position of an object by triangulation. This technique is used in surveying
and for commercial navigation. Similarly, the use of two sensors, one moving in a known way with
respect to another, can be used to measure instantaneously an object’s position and velocity with respect
to the observing sensors.

A third advantage gained by using multiple sensors is improved observability. Broadening the baseline
of physical observables can result in significant improvements. Figure 1.1 provides a simple example of
a moving object, such as an aircraft, that is observed by both a pulsed radar and a forward-looking
infrared (FLIR) imaging sensor. The radar can accurately determine the aircraft’s range but has a limited
ability to determine the angular direction of the aircraft. By contrast, the infrared imaging sensor can
accurately determine the aircraft’s angular direction but cannot measure range. If these two observations
are correctly associated (as shown in Figure 1.1), the combination of the two sensors provides a better

FIGURE 1.1 A moving object observed by both a pulsed radar and an infrared imaging sensor.

1
2
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determination of location than could be obtained by either of the two independent sensors. This results
in a reduced error region, as shown in the fused or combined location estimate. A similar effect may be
obtained in determining the identity of an object based on observations of an object’s attributes. For
example, there is evidence that bats identify their prey by a combination of factors, including size, texture
(based on acoustic signature), and kinematic behavior.

1.3 Military Applications

The Department of Defense (DoD) community focuses on problems involving the location, character-
ization, and identification of dynamic entities such as emitters, platforms, weapons, and military units.
These dynamic data are often termed an order-of-battle database or order-of-battle display (if superim-
posed on a map display). Beyond achieving an order-of-battle database, DoD users seek higher-level
inferences about the enemy situation (e.g., the relationships among entities and their relationships with
the environment and higher level enemy organizations). Examples of DoD-related applications include
ocean surveillance, air-to-air defense, battlefield intelligence, surveillance and target acquisition, and
strategic warning and defense. Each of these military applications involves a particular focus, a sensor
suite, a desired set of inferences, and a unique set of challenges, as shown in Table 1.1.

Ocean surveillance systems are designed to detect, track, and identify ocean-based targets and events.
Examples include antisubmarine warfare systems to support Navy tactical fleet operations and automated
systems to guide autonomous vehicles. Sensor suites can include radar, sonar, electronic intelligence
(ELINT), observation of communications traffic, infrared, and synthetic aperture radar (SAR) observa-
tions. The surveillance volume for ocean surveillance may encompass hundreds of nautical miles and
focus on air, surface, and subsurface targets. Multiple surveillance platforms can be involved and numer-
ous targets can be tracked. Challenges to ocean surveillance involve the large surveillance volume, the
combination of targets and sensors, and the complex signal propagation environment — especially for
underwater sonar sensing. An example of an ocean surveillance system is shown in Figure 1.2.

Air-to-air and surface-to-air defense systems have been developed by the military to detect, track, and
identify aircraft and anti-aircraft weapons and sensors. These defense systems use sensors such as radar,
passive electronic support measures (ESM), infrared identification-friend-foe (IFF) sensors, electro-optic

TABLE 1.1 Representative Data Fusion Applications for Defense Systems

Specific Applications
Inferences Sought by Data 

Fusion Process
Primary Observable 

Data
Surveillance 

Volume
Sensor 

Platforms

Ocean surveillance Detection, tracking, 
identification of targets 
and events

EM signals
Acoustic signals
Nuclear-related
Derived observations

Hundreds of 
nautical miles

Air/surface/sub-
surface

Ships
Aircraft
Submarines
Ground-based
Ocean-based

Air-to-air and surface-
to-air defense

Detection, tracking, 
identification of aircraft

EM radiation Hundreds of miles 
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image sensors, and visual (human) sightings. These systems support counter-air, order-of-battle aggre-
gation, assignment of aircraft to raids, target prioritization, route planning, and other activities. Chal-
lenges to these data fusion systems include enemy countermeasures, the need for rapid decision making,
and potentially large combinations of target-sensor pairings. A special challenge for IFF systems is the
need to confidently and non-cooperatively identify enemy aircraft. The proliferation of weapon systems
throughout the world has resulted in little correlation between the national origin of a weapon and the
combatants who use the weapon.

Battlefield intelligence, surveillance, and target acquisition systems attempt to detect and identify
potential ground targets. Examples include the location of land mines and automatic target recognition.
Sensors include airborne surveillance via SAR, passive electronic support measures, photo reconnaissance,
ground-based acoustic sensors, remotely piloted vehicles, electro-optic sensors, and infrared sensors. Key
inferences sought are information to support battlefield situation assessment and threat assessment.

1.4 Nonmilitary Applications

A second broad group addressing data fusion problems are the academic, commercial, and industrial
communities. They address problems such as the implementation of robotics, automated control of
industrial manufacturing systems, development of smart buildings, and medical applications. As with
military applications, each of these applications has a particular set of challenges and sensor suites, and
a specific implementation environment (see Table 1.2). 

Remote sensing systems have been developed to identify and locate entities and objects. Examples
include systems to monitor agricultural resources (e.g., to monitor the productivity and health of crops),
locate natural resources, and monitor weather and natural disasters. These systems rely primarily on
image systems using multispectral sensors. Such processing systems are dominated by automatic image
processing. Multispectral imagery — such as the Landsat satellite system and the SPOT system — is used.
A technique frequently used for multisensor image fusion involves adaptive neural networks. Multi-image
data are processed on a pixel-by-pixel basis and input to a neural network to classify automatically the
contents of the image. False colors are usually associated with types of crops, vegetation, or classes of
objects. Human analysts can readily interpret the resulting false color synthetic image. 

A key challenge in multi-image data fusion is coregistration. This problem requires the alignment of
two or more photos so that the images are overlaid in such a way that corresponding picture elements

FIGURE 1.2 An example of an ocean surveillance system.
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(pixels) on each picture represent the same location on earth (i.e., each pixel represents the same direction
from an observer’s point of view). This coregistration problem is exacerbated by the fact that image
sensors are nonlinear and perform a complex transformation between the observed three-dimensional
space and a two-dimensional image. 

A second application area, which spans both military and nonmilitary users, is the monitoring of
complex mechanical equipment such as turbo machinery, helicopter gear trains, or industrial manufac-
turing equipment. For a drivetrain application, for example, sensor data can be obtained from acceler-
ometers, temperature gauges, oil debris monitors, acoustic sensors, and infrared measurements. An online
condition-monitoring system would seek to combine these observations in order to identify precursors
to failure, such as abnormal gear wear, shaft misalignment, or bearing failure. The use of such condition-
based monitoring is expected to reduce maintenance costs and improve safety and reliability. Such systems
are beginning to be developed for helicopters and other platforms (see Figure 1.3).

1.5 Three Processing Architectures

Three basic alternatives can be used for multisensor data: (1) direct fusion of sensor data, (2) representation
of sensor data via feature vectors, with subsequent fusion of the feature vectors, or (3) processing of each
sensor to achieve high-level inferences or decisions, which are subsequently combined. Each of these
approaches utilizes different fusion techniques as described and shown in Figures 1.4a, 1.4b, and 1.4c.

If the multisensor data are commensurate (i.e., if the sensors are measuring the same physical phe-
nomena, such as two visual image sensors or two acoustic sensors), then the raw sensor data can be
directly combined. Techniques for raw data fusion typically involve classic estimation methods, such as
Kalman filtering. Conversely, if the sensor data are noncommensurate, then the data must be fused at
the feature/state vector level or decision level.

TABLE 1.2 Representative Nondefense Data Fusion Applications

Specific 
Applications

Inferences Sought by 
Data Fusion Process Primary Observable Data

Surveillance 
Volume Sensor Platforms

Condition-based 
maintenance

Detection, 
characterization of 
system faults

Recommendations for 
maintenance/
corrections

EM signals
Acoustic signals
Magnetic
Temperatures
X-rays

Microscopic to 
hundreds of feet

Ships
Aircraft
Ground-based (e.g., 

factories)

Robotics Object 
location/recognition

Guide the locomotion 
of robot (e.g., “hands” 
and “feet”)

Television
Acoustic signals
EM signals
X-rays

Microscopic to tens 
of feet about the 
robot

Robot body

Medical 
diagnoses

Location/identification 
of tumors, 
abnormalities, and 
disease

X-rays
NMR
Temperature
IR
Visual inspection
Chemical and biological 

data

Human body 
volume

Laboratory

Environmental 
monitoring

Identification/location 
of natural phenomena 
(e.g., earthquakes, 
weather)

SAR
Seismic
EM radiation
Core samples
Chemical and biological 

data

Hundreds of miles
Miles (site 

monitoring)

Satellites
Aircraft
Ground-based
Underground 

samples
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Feature-level fusion involves the extraction of representative features from sensor data. An example
of feature extraction is the cartoonist’s use of key facial characteristics to represent the human face. This
technique — which is popular among political satirists — uses key features to evoke recognition of
famous figures. Evidence confirms that humans utilize a feature-based cognitive function to recognize
objects. In the case of multisensor feature-level fusion, features are extracted from multiple sensor
observations and combined into a single concatenated feature vector that is input to pattern recognition
techniques such as neural networks, clustering algorithms, or template methods.

Decision-level fusion combines sensor information after each sensor has made a preliminary deter-
mination of an entity’s location, attributes, and identity. Examples of decision-level fusion methods
include weighted decision methods (voting techniques), classical inference, Bayesian inference, and
Dempster-Shafer’s method.

1.6 A Data Fusion Process Model

One of the historical barriers to technology transfer in data fusion has been the lack of a unifying
terminology that crosses application-specific boundaries. Even within military applications, related but
distinct applications — such as IFF, battlefield surveillance, and automatic target recognition — used
different definitions for fundamental terms, such as correlation and data fusion. To improve communi-
cations among military researchers and system developers, the Joint Directors of Laboratories (JDL) Data
Fusion Working Group, established in 1986, began an effort to codify the terminology related to data
fusion. The result of that effort was the creation of a process model for data fusion and a data fusion
lexicon, shown in Figure 1.5. The JDL process model, which is intended to be very general and useful
across multiple application areas, identifies the processes, functions, categories of techniques, and specific
techniques applicable to data fusion. The model is a two-layer hierarchy. At the top level, shown in
Figure 1.5, the data fusion process is conceptualized by sensor inputs, human-computer interaction,
database management, source preprocessing, and four key subprocesses:

FIGURE 1.3 Mechanical diagnostic testbed used by The Pennsylvania State University to perform condition-based
maintenance research.
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FIGURE 1.4 (a) Direct fusion of sensor data. (b) Representation of sensor data via feature vectors and subsequent
fusion of the feature vectors. (c) Processing of each sensor to achieve high-level inferences or decisions that are
subsequently combined.
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Level 1 processing (Object Refinement) is aimed at combining sensor data to obtain the most reliable
and accurate estimate of an entity’s position, velocity, attributes, and identity;

Level 2 processing (Situation Refinement) dynamically attempts to develop a description of current
relationships among entities and events in the context of their environment;

Level 3 processing (Threat Refinement) projects the current situation into the future to draw inferences
about enemy threats, friend and foe vulnerabilities, and opportunities for operations;

Level 4 processing (Process Refinement) is a meta-process that monitors the overall data fusion process
to assess and improve real-time system performance.

For each of these subprocesses, the hierarchical JDL model identifies specific functions and categories of
techniques (in the model’s second layer) and specific techniques (in the model’s lowest layer). Imple-
mentation of data fusion systems integrates and interleaves these functions into an overall processing flow. 

The data fusion process model is augmented by a hierarchical taxonomy that identifies categories of
techniques and algorithms for performing the identified functions. An associated lexicon has been
developed to provide a consistent definition of data fusion terminology. The JDL model is described in
more detail in Chapter 2.

1.7 Assessment of the State of the Art

The technology of multisensor data fusion is rapidly evolving. There is much concurrent ongoing research
to develop new algorithms, to improve existing algorithms, and to assemble these techniques into an
overall architecture capable of addressing diverse data fusion applications. 

The most mature area of data fusion process is Level 1 processing — using multisensor data to
determine the position, velocity, attributes, and identity of individual objects or entities. Determining
the position and velocity of an object based on multiple sensor observations is a relatively old problem.
Gauss and Legendre developed the method of least squares for determining the orbits of asteroids.1

Numerous mathematical techniques exist for performing coordinate transformations, associating obser-
vations to observations or to tracks, and estimating the position and velocity of a target. Multisensor
target tracking is dominated by sequential estimation techniques such as the Kalman filter. Challenges in
this area involve circumstances in which there is a dense target environment, rapidly maneuvering targets,
or complex signal propagation environments (e.g., involving multipath propagation, cochannel interfer-
ence, or clutter). However, single-target tracking in excellent signal-to-noise environments for dynami-
cally well-behaved (i.e., dynamically predictable) targets is a straightforward, easily resolved problem. 

FIGURE 1.5 Joint Directors of Laboratories (JDL) process model for data fusion.
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Current research focuses on solving the assignment and maneuvering target problem. Techniques such
as multiple-hypothesis tracking (MHT), probabilistic data association methods, random set theory, and
multiple criteria optimization theory are being used to resolve these issues. Some researchers are utilizing
multiple techniques simultaneously, guided by a knowledge-based system capable of selecting the appro-
priate solution based on algorithm performance.

A special problem in Level 1 processing involves the automatic identification of targets based on
observed characteristics or attributes. To date, object recognition has been dominated by feature-based
methods in which a feature vector (i.e., a representation of the sensor data) is mapped into feature space
with the hope of identifying the target based on the location of the feature vector relative to a priori
determined decision boundaries. Popular pattern recognition techniques include neural networks and
statistical classifiers. Although numerous techniques are available, the ultimate success of these methods
relies on the selection of good features. (Good features provide excellent class separability in feature space;
bad features result in greatly overlapping feature space areas for several classes of target.) More research
is needed in this area to guide the selection of features and to incorporate explicit knowledge about target
classes. For example, syntactic methods provide additional information about the makeup of a target. In
addition, some limited research is proceeding to incorporate contextual information — such as target
mobility with respect to terrain — to assist in target identification.

Level 2 and Level 3 fusion (situation refinement and threat refinement) are currently dominated by
knowledge-based methods such as rule-based blackboard systems. These areas are relatively immature
and have numerous prototypes, but few robust, operational systems. The main challenge in this area is
to establish a viable knowledge base of rules, frames, scripts, or other methods to represent knowledge
about situation assessment or threat assessment. Unfortunately, only very primitive cognitive models
exist to replicate the human performance of these functions. Much research is needed before reliable and
large-scale knowledge-based systems can be developed for automated situation assessment and threat
assessment. New approaches that offer promise are the use of fuzzy logic and hybrid architectures, which
extend the concept of blackboard systems to hierarchical and multitime scale orientations.

Finally, Level 4 processing, which assesses and improves the performance and operation of an ongoing
data fusion process, has a mixed maturity. For single sensor operations, techniques from operations
research and control theory have been applied to develop effective systems, even for complex single
sensors such as phased array radars. In contrast, situations that involve multiple sensors, external mission
constraints, dynamic observing environments, and multiple targets are more challenging. To date, con-
siderable difficulty has been encountered in attempting to model and incorporate mission objectives and
constraints to balance optimized performance with limited resources, such as computing power and
communication bandwidth (e.g., between sensors and processors), and other effects. Methods from utility
theory are being applied to develop measures of system performance and measures of effectiveness.
Knowledge-based systems are being developed for context-based approximate reasoning. Significant
improvements will result from the advent of smart, self-calibrating sensors, which can accurately and
dynamically assess their own performance.

Data fusion has suffered from a lack of rigor with regard to the test and evaluation of algorithms and
the means of transitioning research findings from theory to application. The data fusion community
must insist on high standards for algorithm development, test, and evaluation; creation of standard test
cases; and systematic evolution of the technology to meet realistic applications. On a positive note, the
introduction of the JDL process model and emerging nonmilitary applications are expected to result in
increased cross discipline communication and research. The nonmilitary research in robotics, condition-
based maintenance, industrial process control, transportation, and intelligent buildings will produce
innovations that will cross-fertilize the entire field of data fusion technology. The many challenges and
opportunities related to data fusion establish it as an exciting research field with numerous applications.
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1.8 Additional Information

Additional information about multisensor data fusion may be found in the following references: 

• D. L. Hall, Mathematical Techniques in Multisensor Data Fusion, Artech House, Inc. (1992) —
provides details on the mathematical and heuristic techniques for data fusion

• E. Waltz and J. Llinas, Multisensor Data Fusion, Artech House, Inc. (1990) — presents an excellent
overview of data fusion especially for military applications

• L. A. Klein, Sensor and Data Fusion Concepts and Applications, SPIE Optical Engineering Press,
Volume TT 14 (1993) — presents an abbreviated introduction to data fusion

• R. Antony, Principles of Data Fusion Automation, Artech House, Inc. (1995) — provides a discus-
sion of data fusion processes with special focus on database issues to achieve computational
efficiency

• A multimedia computer-based training package, “Introduction to Data Fusion, A multimedia
computer-based training package” — available from Artech House, Inc., Boston, MA, 1995.

• A  data fusion lexicon is available from TECH REACH Inc. at http://www.techreachinc.com.

Reference

1. Sorenson, H.W., Least-squares estimation: from Gauss to Kalman, IEEE SPECTRUM, July 1970,
63–68.
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2.1 Introduction

The data fusion model, developed in 1985 by the U.S. Joint Directors of Laboratories (JDL) Data Fusion
Group*, with subsequent revisions, is the most widely used system for categorizing data fusion-related
functions. The goal of the JDL Data Fusion Model is to facilitate understanding and communication
among acquisition managers, theoreticians, designers, evaluators, and users of data fusion techniques to
permit cost-effect system design, development, and operation.1,2

This chapter discusses the most recent model revision (1998): its purpose, content, application, and
relation to other models.3

2.2  What Is Data Fusion? What Isn’t?

2.2.1  The Role of Data Fusion

Often, the role of data fusion has been unduly restricted to a subset of the relevant processes. Unfortu-
nately, the universality of data fusion has engendered a profusion of overlapping research and develop-
ment in many applications. A jumble of confusing terminology (illustrated in Figure 2.1) and ad hoc
methods in a variety of scientific, engineering, management, and educational disciplines obscures the
fact that the same ground has been plowed repeatedly.

*Now recharted as the Data and Information Fusion Group within the Deputy Director for Research and Engi-
neering’s Information System Technology Panel at the U.S. Department of Defense.

Alan N. Steinberg
Utah State University 

Christopher L. Bowman
Consultant
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Often, the role of data fusion has been unduly restricted to a subset of processes and its relevancy has
been limited to particular state estimation problems. For example, in military applications, such as
targeting or tactical intelligence, the focus is on estimating and predicting the state of specific types of
entities in the external environment (e.g., targets, threats, or military formations). In this context, the
applicable sensors/sources that the system designer considers are often restricted to sensors that directly
collect data from targets of interest. 

Ultimately, however, such problems are inseparable from other aspects of the system’s assessment of
the world. In a tactical system, this will involve estimation of one’s own state in relation to the relevant
external entities: friends, foes, neutrals, and background. Estimation of the state of targets and threats
cannot be separated from the problems of estimating one’s own location and motion, of calibrating one’s
sensor performance and alignment, and of validating one’s library of target sensor and environment
models. The data fusion problem, then, becomes that of achieving a consistent, comprehensive estimate
and prediction of some relevant portion of the world state. In such a view, data fusion involves exploiting
all sources of data to solve all relevant state estimation/prediction problems, where relevance is determined
by utility in forming plans of action.

The data fusion problem, therefore, encompasses a number of interrelated problems: estimation and
prediction of states of entities both external and internal to the acting system, and the interrelations
among such entities. Evaluating the system’s models of the characteristics and behavior of all of these
external and organic entities is, likewise, a component of the overall problem of estimating the actual
world state. 

Making the nontrivial assumption that the universe of discourse for a given system can be partitioned
into an unknown but finite number of entities of interest, the problem of consistently estimating a multi-
object world state can be defined as shown in Figure 2.2.4 Here, x1…,xk are entity states, so the global
state estimation problem becomes one of finding the finite set of entity states X with maximum a posteriori
likelihood.

The complexity of the data fusion system engineering process is characterized by difficulties in

• representing the uncertainty in observations and in models of the phenomena that generate
observations;

• combining noncommensurate information (e.g., the distinctive attributes in imagery, text, and
signals);

• maintaining and manipulating the enormous number of alternative ways of associating and
interpreting large numbers of observations of multiple entities.

FIGURE 2.1 (Con)fusion of terminology.
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Deriving general principles for developing and evaluating data fusion processes — whether automatic
or manual — will help to take advantage of the similarity in the underlying problems of data association
and combination that span engineering, analysis, and cognitive situations. Furthermore, recognizing the
common elements of diverse data fusion problems can provide extensive opportunities for synergistic
development. Such synergy — enabling the development of information systems that are cost-effective
and trustworthy — requires common performance evaluation measures, system engineering methodol-
ogies, architecture paradigms, and multispectral models of targets and data collection systems.

2.2.2 Definition of Data Fusion

The initial JDL Data Fusion Lexicon defined data fusion as: 

A process dealing with the association, correlation, and combination of data and information from
single and multiple sources to achieve refined position and identity estimates, and complete and timely
assessments of situations and threats, and their significance. The process is characterized by continuous
refinements of its estimates and assessments, and the evaluation of the need for additional sources, or
modification of the process itself, to achieve improved results.1

As the above discussion suggests, this initial definition is rather too restrictive. A definition is needed
that can capture the fact that similar underlying problems of data association and combination occur in
a very wide range of engineering, analysis, and cognitive situations. In response, the initial definition
requires a number of modifications: 

1. Although the concept combination of data encompasses the broad range of problems of interest,
correlation does not. Statistical correlation is merely one method for generating and evaluating
hypothesized associations among data.

2. Association is not an essential ingredient in combining multiple pieces of data. Recent work in
random set models of data fusion provides generalizations that allow state estimation of multiple
targets without explicit report-to-target association.4-6

FIGURE 2.2 Global state estimation problem.
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3. Single or multiple sources is comprehensive; therefore, it is superfluous in a definition.
4. The reference to position and identity estimates should be broadened to cover all varieties of state

estimation.
5. Complete assessments are not required in all applications; timely, being application-relative, is

superfluous.
6. Threat assessment limits the application to situations where threat is a factor. This description

must also be broadened to include any assessment of the cost or utility implications of estimated
situations. In general, data fusion involves refining and predicting the states of entities and aggre-
gates of entities and their relation to one’s own mission plans and goals. Cost assessments can
include variables such as the probability of surviving an estimated threat situation.

7. Not every process of combining information involves collection management or process refine-
ment. Thus, the definition’s second sentence is best construed as illustrative, not definitional.

Pruning these extraneous qualifications, the model revision proposes the following concise definition
for data fusion:3

Data fusion is the process of combining data or information to estimate or predict entity states.

Data fusion involves combining data — in the broadest sense — to estimate or predict the state of
some aspect of the universe. Often the objective is to estimate or predict the physical state of entities:
their identity, attributes, activity, location, and motion over some past, current, or future time period.
If the job is to estimate the state of people (or any other sentient beings), it may be important to estimate
or predict the individuals’ and groups’ informational and perceptual states and the interaction of these
with physical states (this point is discussed in Section 2.5).

Arguments about whether data fusion or some other label best describes this very broad concept are
pointless. Some people have adopted terms such as information integration in an attempt to generalize
earlier, narrower definitions of data fusion (and, perhaps, to distance themselves from old data fusion
approaches and programs). However, relevant research should not be neglected simply because of shifting
terminological fashion. Although no body of common and accepted usage currently exists, this broad
concept is an important topic for a unified theoretical approach and, therefore, deserves its own label.

2.3  Models and Architectures

The use of the JDL Data Fusion Model in system engineering can best be explained by considering the
role of models in system architectures in general. According to the IEEE definition,7 an architecture is a
“structure of components, their relationships, and the principles and guidelines governing their design
and evolution over time.” Architectures serve to coordinate capabilities to achieve interoperability and
affordability. As such, general requirements for an architecture are that it must

1. Identify a focused purpose,
2. Facilitate user understanding/communication,
3. Permit comparison and integration,
4. Promote expandability, modularity, and reusability,
5. Promote cost-effective system development,
6. Apply to the required range of situations.

The JDL Model has been used to develop an architecture paradigm for data fusion8-10 (as discussed in
Chapter 18); however, in reality, the JDL Model is merely an element of an architecture. A model is an
abstract description of a set of functions or processes that may be components of a system of a particular
type, without indication of software or physical implementation. That being the case, the previous list
of architectural virtues applies, with the exception of item (1), which is relevant only to specific system
architectures.
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The JDL Model was designed to be a functional model — a set of definitions of the functions that
could comprise any data fusion system. Distinguishing functional models from process models and other
kinds of models is important. Process models specify the interaction among functions within a system.
Examples of process models include Boyd’s Observe, Orient, Decide and Act (OODA) loop, the Predict,
Extract, Match and Search (PEMS) loop, and the UK Intelligence cycle and waterfall process models cited
by Bedworth and O’Brien.11

Another type of model is a formal model, constituting a set of axioms and rules for manipulating
entities. Examples are probabilistic, possibilistic, and evidential reasoning frameworks.*

A model should clarify the elements of problems and solutions to facilitate recognition of common-
alities in problems and in solutions. Among questions that a model should help answer are the following:

• Has the problem been solved before?

• Has the same problem appeared in a different form and is there an existing solution?

• Is there a related problem with similar constraints?

• Is there a related problem with the same unknowns?

• Can the problem be subdivided into parts that are easier to solve?

• Can the constraints be relaxed to transform the problem into a familiar one?12

2.3.1  Data Fusion “Levels”

Of the many ways to differentiate types of data fusion functions, the JDL model has gained the widest
usage. The JDL model’s differentiation of functions into fusion levels (depicted in Figure 2.3) provides
a useful distinction among data fusion processes that relate to the refinement of “objects,” “situations,”
“threats,” and “processes.”2

FIGURE 2.3 Revised JDL data fusion model (1998).3

* This is seen as equivalent to the concept of framework as used in Reference 11.
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Nonetheless, several concerns must be raised with regard to the ways in which these JDL data fusion
levels have been used in practice:

• The JDL levels have frequently been misinterpreted as specifying a process model (i.e., as a canonical
guide for process flow within a system — “perform Level 1 fusion first, then Levels 2, 3, and 4…).

• The original JDL model names and definitions (e.g., “threat refinement”) seem to focus on tactical
military applications, so that the extension of the concepts to other applications is not obvious.

• For these and other reasons, the literature is rife with diverse interpretations of the data fusion
levels. The levels have been interpreted as distinguishing any of the following: (a) the kinds of
association and/or characterization processing involved, (b) the kinds of entities being character-
ized, and (c) the degree to which the data used in the characterization has already been processed.

The objectives in the 1998 revision of the definitions for the levels are (a) to provide a useful catego-
rization representing logically different types of problems, which are generally (though not necessarily)
solved by different techniques and (b) to maintain a degree of consistency with regard to terminology.
The former is a matter of engineering; the latter is a language issue.

Figure 2.3 shows the suggested revised model. The proposed new definitions are as follows:

• Level 0 — Sub-Object Data Assessment: estimation and prediction of signal- or object-observable
states on the basis of pixel/signal-level data association and characterization.

• Level 1 — Object Assessment: estimation and prediction of entity states on the basis of inferences
from observations.

• Level 2 — Situation Assessment: estimation and prediction of entity states on the basis of inferred
relations among entities.

• Level 3 — Impact Assessment: estimation and prediction of effects on situations of planned or
estimated/predicted actions by the participants (e.g., assessing susceptibilities and vulnerabilities
to estimated/predicted threat actions, given one’s own planned actions).

• Level 4 — Process Refinement (an element of Resource Management): adaptive data acquisition
and processing to support mission objectives.

Table 2.1 provides a general characterization of these concepts. Note that the levels are differentiated
first on the basis of types of estimation process, which roughly correspond to the types of entity for
which state is estimated. 

2.3.2  Association and Estimation

In the common cases where the fusion process involves explicit association in performing state estimates,
a corresponding distinction is made among the types of association processes. Figure 2.4 depicts assign-
ment matrices that are typically formed in each of these processing levels. The examples have the form
of two-dimensional matrices, as commonly used in associating reports to tracks.

TABLE 2.1 Characterization of the Revised Data Fusion Levels

Data Fusion Level
Association

Process
Estimation

Process
Entity

Estimated
L.0 — Sub-Object Assessment

Assignment
Detection Signal

L.1 — Object Assessment Attribution Individual Object
L.2 — Situation Assessment

Aggregation
Relation Aggregation (Situation)

L.3 — Impact Assessment Plan Interaction Effect (situation, given plans)
L.4 — Process Refinement Planning (Control) (Action)*

* Process Refinement does not involve estimation, but rather control. Therefore, its product is a
control sequence, which — by the duality of estimation and control — relates to a controlled entity’s
actions as an estimate relates to an actual state.15
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Level 0 association involves hypothesizing the presence of a signal (i.e., of a common source of sensed
energy) and estimating its state. Level 0 associations can include (a) signal detection obtained by inte-
grating a time series of data (e.g., the output of an analog-to-digital converter) and (b) feature extraction
from a region in imagery. In this case, a region could correspond to a cluster of closely spaced objects,
or to part of an object, or simply to a differentiable spatio-temporal region.

Level 1 association involves selecting observation reports (or tracks from prior fusion nodes in a
processing sequence) for inclusion in a track. Such a track is a hypothesis that a certain set of reports is
the total set of reports available to the system referencing some individual entity. Global Level 1 hypotheses
map the set of observations available to the system to tracks. For systems in which observations are
assumed to be associated with only one track, this is a set-partitioning problem; more generally, it is a
set-covering problem.

Level 2 association involves associating tracks (i.e., hypothesized entities) into aggregations. The state
of the aggregate entity is represented as a network of relations among aggregation elements. Any variety
of relations — physical, organizational, informational, and perceptual — can be considered, as appro-
priate to the given information system’s mission. As the class of estimated relationships and the numbers
of interrelated entities broaden, the term situation is used to refer to an aggregate object of estimation.
A model for such development is presented by Steinberg and Washburn.14

Level 3 association is usually implemented as a prediction, drawing particular kinds of inferences from
Level 2 associations. Level 3 fusion estimates the impact of an assessed situation (i.e., the outcome of
various plans as they interact with one another and with the environment). The impact estimate can
include likelihood and cost/utility measures associated with potential outcomes of a player’s planned
actions.

Because Level 2 has been defined so broadly, Level 3 is actually a subset of Level 2. Whereas Level 2
involves estimating or predicting all types of relational states, Level 3 involves predicting some of the
relationships between a specific player and his environment, including interaction with other players’
actions, given the player’s action plan and that of every other player. More succinctly, Level 2 concerns
relations in general: paradigmatically third-person, objective relations. Level 3 concerns first-person
relations — involving the system or its user — with an attendant sense of subjective utility.

Level 4 processing involves planning and control, not estimation. As discussed by Bowman,15 just as
a formal duality exists between estimation and control, there is a similar duality between association and
planning. Therefore, Level 4 association involves assigning resources to tasks.

FIGURE 2.4 Assignment matrices for various data fusion “levels.”
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2.3.3  Context Sensitivity and Situation Awareness

Once again, the JDL model is a functional model, not a process model. Therefore, it would be a mistake
to assume that the information flow in data fusion must proceed strictly from Level 1 to Level 2 to Level 3.
Such a mistake has, unfortunately, been common with system designers. A “bottom-up” fusion process
is justified only under the following conditions:

• Sensor observations can be partitioned into measurements, each of which originates from, at most,
one real entity.

• All information relevant to the estimation of an entity state is contained in the measurement of
the individual entity.

Neither of these conditions is necessarily true, and the second is usually false.
The value of estimating entity states on the basis of context is becoming increasingly apparent. A

system that integrates data association and estimation processes of all “levels” will permit entities to be
understood as parts of complex situations. A relational analysis, as illustrated in Figure 2.5, permits
evidence applicable to a local estimation problem to be propagated through a complex relational network.

Note that inferencing based on hypothesized relationships among entities can occur within and
between all of the data fusion levels. Figure 2.6 depicts typical information flow across the data fusion
levels. Level 0 functions combine measurements to generate estimates of signals or features. At Level 1,
signal/feature reports are combined to estimate the states of objects. These are combined, in turn, at
Level 2 to estimate situations (i.e., states of aggregate entities). Level 3, according to this logical relation-
ship, seems to be out of numerical sequence. It is a “higher” function than the planning function of
Level 4. Indeed, Process Refinement (Level 4) processes can interact with association/estimation data
fusion processes in a variety of ways, managing the operation of individual fusion nodes or that of larger
ensembles of such nodes. The figure reinforces the point that the data fusion levels are not to be
taken as a prescription for the sequencing of a system’s process flow. Processing partitioning and
flow must be designed in terms of the individual system requirements, as discussed in Chapter 16.

2.3.4 Attributive and Relational Functions

Table 2.1 shows that association within Levels 0 and 1 involves assignment, while Levels 2 and 3 association
involves aggregation. This can be modeled as the distinction between 

FIGURE 2.5 A Level 2 hypothesis with imbedded Level 1 hypotheses.

SEAD

  Targeting

Manned
Recce

Detecting
(SAR)

Unmanned
Recce

Detecting
(EO/IR)

Fighter/Attack
flight

Cueing

Processing Station

Cueing

AOC
Tac  Intel

Intel
Sources

Reporting

Mobile
Missile

Launcher

Chassis

Rail/Erector
Assembly

Launch
Rail Assy

#3
Missile

Rail

Tracks (etc.)

Maintenance
Depot

Armored Div

Defending

Cueing

AD Regt

SAM Bty

LaunchersTA radar EW radar

Cueing
©2001 CRC Press LLC



                                         
• estimation on the basis of observations: (x|Z) or (X|Z) for entity or world states, given a set of
observations, Z, and

• estimation on the basis of inferred relations among entities: (x|R) or (X|R), where R is a set of
ordered n-tuples < x1,…,xn-1,r >, the xi being entity states and r a relational state

Figure 2.5 provides an example of the relationship of Level 1 and 2 hypotheses. A Level 2 hypothesis
can be modeled as a directed graph, the nodes of which may correspond to entity tracks and, therefore,
to Level 1 hypotheses. More precisely, a node in a Level 2 hypothesis corresponds to a perceived entity.
The set of observations associated directly with that node can be considered to be a Level 1 hypothesis
imbedded in the Level 2 structure. Of course, entities can be inferred from their context alone, without
having been observed directly. For example, in the SA-6 battery of Figure 2.6, the estimation of the presence
of launchers at three corners of a diamond pattern may support the inference of a fourth launcher in the
remaining corner. The figure further illustrates the point that hypotheses regarding physical objects (e.g.,
the mobile missile launcher at the lower right of Figure 2.5) may themselves be Level 2 relational constructs.

2.3.4.1 Types of Relationships

Assembling an exhaustive list of relationships of interest is impossible, which is one reason that Level 2
fusion (Situation Assessment) is generally more difficult than Level 1 fusion. Level 2 problems are
generally more difficult than Level 1 problems. The process model for aggregate entities — particularly
those involving human activity — is often poorly understood, being less directly inferable from underlying
physics than Level 1 observable attributes. For this reason, automation of Situational Awareness has relied
on so-called cognitive techniques that are intended to copy the inference process of human analysts.
However, knowledge extraction is a notoriously difficult undertaking. Furthermore, Level 2 problems
often involve a much higher dimensionality, corresponding to the relations that may be part of an
inference. Finally, no general metric exists for assessing the relevance of data in these unspecified, high-
dimension spaces, unlike the simple distance metrics commonly used for Level 1 validation gating.
Relationships of interest to particular context exploitation or situation awareness concerns can include: 

• Spatio-temporal relationships;

• Part/whole relationships;

FIGURE 2.6 Characteristic data flow among the “levels.”
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• Organizational relationships (e.g., X is a subordinate unit to Y) and roles (e.g., X is the unit
commander, company clerk, CEO, king, or court jester of Y);

• Various causal relations, whereby X changes the state of Y :

– Physical state (damaging, destroying, moving, invading, repairing)

– Informational state (communicating, informing, revealing)

– Perceptual or other mental state (persuading, deceiving, intimidating)

– Financial or legal state (paying, fining, authorizing, forbidding, sentencing)

– Intentional relationships, whereby X wishes to change the state of Y (targeting, jamming,
cajoling, lying to);

• Semantic relationships (X is of the same type as Y);

• Similarity relationships (X is taller than Y);

• Legal relationships (X owns Y, X leases Y to Z);

• Emotional relationships (love, hate, fear);

• Biological relationships (kinship, ethnicity).

2.3.4.2 Attributive and Relational Inferencing Example

Figure 2.7 provides an example of the attributive and relational states within and among the elements
of an aggregate entity. Steinberg and Washburn14 discuss formal methods for inferring relational states
to refine entity-level and aggregate-level state estimates. A Bayesian network technique is used to combine

• the estimate of an entity state, Xi, based on a set of observations, Zi, in a Level 1 hypothesis (track)
and 

• the estimate of an entity state, Xi, based on a set of relations, Ri, among nodes (tracks) in a Level
2 hypothesis (aggregation).

The distribution of discrete states, xd, for X, given its assignment to the given node in a Level 2 hypothesis,
ζ, will be determined by this “evidence” from each of these sources:

FIGURE 2.7 Attributive and relational state example.
©2001 CRC Press LLC



                                               
(2.1)

where pL1(xd) is the probability currently assigned to discrete state, xd, by Level 1 data fusion of obser-
vations associated with node X, and Λ(xd) is the evidence communicated to X from the tracks related to
Y in a Level 2 association hypothesis.

The evidence from the nodes communicating with X will be the product of evidence from each such
node Y:

(2.2)

The factors ΛY(xd) are interpreted in terms of relational states among entities as follows. Ordered pairs
of entities are hypothesized as having relational states, ri(X,Y). A given track, Y, may be involved in several
competing relations relative to X with probability distributions p[ri (X,Y)].*

Updating a track, Y, contributes information for evaluating the probability of each state, x, of a possible
related entity, X. As with attributive states, relational states, r, can be decomposed into discrete and
continuous components, rd and rc (as exemplified in Figure 2.6). Then this contextual evidence is given by

(2.3)

Inferences can be drawn about a hypothesized entity denoted by track Xi, given the Level 2 hypothesis
that the entity corresponding to Xi stands in a particular relationship to another hypothesized entity
corresponding to a track Xj. In the example shown in Figure 2.8 (based on sets of relationships as
illustrated in Figure 2.7), it is assumed that an entity — elliptically referred to as X1 — has been estimated
to have probabilities p(x1) of being an entity of types and activity states x1 on the basis of Level 1 association
of sensor reports z1 and z2. Then, if X1 and X2 meet the criteria of particular relationships for any states
x1 and x2 of X1 and X2, respectively, inferences can be drawn regarding the probabilities as to the type
and activity of X2. 

For example, given the estimate that X1 and X2 stand in certain spatio-temporal and other relationships,
as listed in Figure 2.7, there is a mutual reinforcement of pairs of Level 1 state estimates <x1,x2> that are
consistent with this relationship (e.g., that X1 is a Straight Flush radar and X2 is an SA-6 surface-to-air
missile battery) and suppression of nonconsistent state pairs. Conditioned on this association, the esti-
mate of the likelihood of track X2 can be refined (i.e., the hypothesis that the associated observations —
z3 in Figure 2.8 — relate to the same entity). Furthermore, likelihood and state estimates to other nodes
adjoining X2 can be further propagated (e.g., to infer the battery-association and the type and activity
of a missile launcher, X3, hypothesized on the basis of observations z4 and z5). As noted above, the presence,
identity, and activity state of entities that have not been observed can be inferred (e.g., the presence of

* For simplicity, the present discussion is limited to binary relations. In cases where more complex relations are
relevant, a second order can be employed, whereby entities can have binary links to nodes representing n-ary
relations.16
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a full complement of launchers and other associated equipment can be inferred, conditioned on the
assessed presence of an SA-6 battery).

Each node in a Level 2 hypothesis combines the effects of evidence from all adjacent nodes and propagates
the updated probability distributions and likelihood (i.e., association confidence) regarding an entity state
to the other nodes. Loops in the inference flow occur; however, methods have been defined to deal with them.

2.3.4.3 A Generalization about the Levels

Level 1 data fusion involves estimating and predicting the state of inferred entities based on observed
features. Level 2 data fusion involves estimating and predicting the state of inferred entities on the basis
of relationships to other inferred entities. Because of their reliance on these inference mechanisms, Levels
0 and 3 are seen as special cases of Levels 1 and 2, respectively (as illustrated in Figure 2.9):

• Level 0 is a special case of Level 1, where entities are signals/features.

• Level 3 is a special case of Level 2, where relations are first-person relations.

Earlier, this chapter asserted that Level 4 fusion is not fusion at all, but a species of Resource Manage-
ment; therefore, only two super-levels of fusion remain, and these are partitioned by type of data
association. A secondary partitioning by type of entity characterized distinguishes within these super-
levels. Section 2.5 presents the case for an even finer partitioning within the JDL levels.

2.4 Beyond the Physical

In general, then, the job of data fusion is that of estimating or predicting the state of some aspect of the
world. When that aspect includes people (or any other information systems, for that matter), it can be
relevant to include a consideration of informational and perceptual states and their relations to physical
states. Informational state refers to the data available to the target. Perceptual state refers to the target’s
own estimate of the world state.17 (See Chapter 15.) 

FIGURE 2.8 Attributive and relational inferencing example.
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A person or other information system (represented by the box at the left of Figure 2.10) senses physical
stimuli as a function of his physical state in relation to that of the stimulating physical world. These
include both stimuli originating outside the person’s body and those originating from within.

The person can combine multiple sensory reports to develop and refine estimates of perceived entities
(i.e., tracks), aggregations, and impacts on his plans and goals (Levels 1–3 fusion). This ensemble of
perceived entities and their interrelationships is part of the person’s perceptual state. As depicted in the
figure, his perceptual state can include an estimation of physical, informational, and perceptual states
and relations of things in the world. The person’s perceptions can be encoded symbolically for manipulation,

FIGURE 2.9 Attributive and relational inferencing.

FIGURE 2.10 Entity states: three aspects.
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communication, or storage. The set of symbolic representations available to the person is his informational
state. Informational state can encompass available data stores such as databases and documents. The notion
of informational state is probably more applicable to a closed system (e.g., a nonnetworked computer)
than to a person, for whom the availability of information is generally a matter of degree. The tripartite
view of reality developed by Waltz17 extends the work of philosopher Karl Popper. The status of information
as a separable aspect of reality is certainly subject to discussion. Symbols can have both a physical and a
perceptual aspect: they can be expressed by physical marks or sounds, but their interpretation (i.e.,
recognizing them orthographically as well as semantically) is a matter of perception.

As seen in this example, symbol recognition (e.g., reading) is clearly a perceptual process. It is a form
of context-sensitive model-based processing. The converse process, that of representing perceptions
symbolically for purpose of recording or communicating them, produces a physical product — text,
sounds, etc. Such physical products must be interpreted as symbols before their informational content
can be accessed. Whether there is more to information than these physical and perceptual aspects remains
to be demonstrated. Furthermore, the distinction between information and perception is not the differ-
ence between what a person knows and what he thinks (cf. Plato’s Theatetus, in which knowledge is shown
to involve true opinion plus some sense of understanding). Nonetheless, the notion of informational
state is useful as a topic for estimation because knowing what information is available to an entity (e.g.,
an enemy commander’s sources of information) is an important element in estimating (and influencing)
his perceptual state and, therefore, in predicting (and influencing) changes.

The person acts in response to his perceptual state, thereby affecting his and the rest of the world’s
physical state. His actions may include comparing and combining various representations of reality: his
network of perceived entities and relationships. He may search his memory or seek more information
from the outside. These are processes associated with data fusion Level 4.

Other responses can include encoding perceptions in symbols for storage or communication. These
can be incorporated in the person’s physical actions and, in turn, are potential stimuli to people (including
the stimulator himself) and other entities in the physical world (as depicted at the right of Figure 2.10).
Table 2.2 describes the elements of state estimation for each of the three aspects shown in Figure 2.10.
Note the recursive reference in the bottom right cell. 

Figure 2.11 illustrates this recursive character of perception. Each decision maker interacts with every
other one on the basis of an estimate of current, past, and future states. These include not only estimates
of who is doing what, where, and when in the physical world, but also what their informational states
and perceptual states are (including, “What do they think of me?”).

If state estimation and prediction are performed by an automated system, that system may be said to
possess physical and perceptual states, the latter containing estimates of physical, informational, and
perceptual states of some aspects of the world. 

TABLE 2.2 Elements of State Estimation

Object Aspect

Attributive State Relational State

Discrete Continuous Discrete Continuous

Physical Type, ID
Activity state

Location/kinematics
Waveform parameters

Causal relation type
Role allocation

Spatio-temporal 
relationships

Informational Available 
data types

Available 
data 
records and 
quantities

Available data values
Accuracies
Uncertainties

Informational relation type 
Info source/ recipient role 

allocation

Source data quality, 
quantity, timeliness

Output quality, quantity, 
timeliness

Perceptual Goals
Priorities

Cost assignments
Confidence
Plans/schedules

Influence relation type 
Influence source/recipient 

role allocation

Source confidence
World state estimates (per 

this table)
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2.5 Comparison with Other Models

2.5.1 Dasarathy’s Functional Model

Dasarathy18 has defined a very useful categorization of data fusion functions in terms of the types of
data/information that are processed and the types that result from the process. Table 2.3 illustrates the
types of inputs/outputs considered. Processes corresponding to the cells in the highlighted diagonal X
region are described by Dasarathy, using the abbreviations DAI-DAO, DAI-FEO, FEI-FEO, FEI-DEO, and
DEI-DEO. A striking benefit of this categorization is the natural manner in which technique types can
be mapped into it.

FIGURE 2.11 World states and nested state estimates.

TABLE 2.3 Interpretation of Dasarathy’s Data Fusion I/O Model

Model-Based
Detection/
Estimation

Model-Based
Detection/

Feature Extraction

Model-Based
Feature Extract

FEI-DAO

DEI-DAO DEI-FEO

Gestalt-Based
Object

Characterization
DAI-DEO

Data Objects

IN
P

U
T

Features

Objects

Level 0 Level 1

Object
Refinement

Features
OUTPUT

Data

(Feature-Based)
Object

Characterization
FEI-DEO

DEI-DEO

Signal
Detection

Feature
Extraction

DAI-DAO DAI-FEO

Feature
Refinement

FEI-FEO
©2001 CRC Press LLC



We have augmented the categorization as shown in the remaining matrix cells by adding labels to
these cells, relating input/output (I/O) types to process types, and filling in the unoccupied cells in the
original matrix.

Note that Dasarathy’s original categories represent constructive, or data-driven, processes in which
organized information is extracted from relatively unorganized data. Additional processes — FEI-DAO,
DEI-DAO, and DEI-FEO — can be defined that are analytic, or model-driven, such that organized
information (a model) is analyzed to estimate lower-level data (features or measurements) as they relate
to the model. Examples include predetection tracking (an FEI-DAO process), model-based feature-
extraction (DEI-FEO), and model-based classification (DEI-DAO). The remaining cell in Table 2.3 —
DAO-DEO — has not been addressed in a significant way (to the authors’ knowledge) but could involve
the direct estimation of entity states without the intermediate step of feature extraction.

Dasarathy’s categorization can readily be expanded to encompass Level 2, 3, and 4 processes, as shown
in Table 2.4. Here, rows and columns have been added to correspond to the object types listed in Figure 2.4.

Dasarathy’s categories represent a useful refinement of the JDL levels. Not only can each of the levels
(0–4) be subdivided on the basis of input data types, but our Level 0 can also be subdivided into detection
processes and feature-extraction processes.*

Of course, much of Table 2.4 remains virgin territory; researchers have seriously explored only its
northwest quadrant, with tentative forays southeast. Most likely, little utility will be found in either the
northeast or the southwest. However, there may be gold buried somewhere in those remote stretches.

TABLE 2.4 Expansion of Dasarathy’s Model to Data Fusion Levels 0–4

* A Level 0 remains a relatively new concept in data fusion (although quite mature in the detection and signal
processing communities); therefore, it hasn’t been studied to a great degree. The extension of formal data fusion
methods into this area must evolve before the community will be ready to begin partitioning it. Encouragingly,
Bedworth and O’Brien11 describe a similar partitioning of Level 1-related functions in the Boyd and UK Intelligence
Cycle models.
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2.5.2 Bedworth and O'Brien’s Comparison among Models and Omnibus

Bedworth and O’Brien11 provide a commendable comparison and attempted synthesis of data fusion
models. That comparison is summarized in Table 2.5. By comparing the discrimination capabilities of
the various process models listed — and of the JDL and Dasarathy’s functional models — Bedworth and
O’Brien suggest a comprehensive “Omnibus” process model as represented in Figure 2.12.

As noted by Bedworth and O’Brien, an information system’s interaction with its environment need
not be the single cyclic process depicted in Figure 2.12. Rather, the OODA process is often hierarchical
and recursive, with analysis/decision loops supporting detection, estimation, evaluation, and response
decisions at several levels (illustrated in Figure 2.13).

2.6 Summary

The goal of the JDL Data Fusion Model is to serve as a functional model for use by diverse elements of
the data fusion community, to the extent that such a community exists, and to encourage coordination
and collaboration among diverse communities. A model should clarify the elements of problems and
solutions to facilitate recognition of commonalties in problems and in solutions. The virtues listed in
Section 2.3 are significant criteria by which any functional model should be judged.12 

TABLE 2.5 Bedworth and O'Brien's Comparison of Data Fusion-related Models11

FIGURE 2.12 The “Omnibus” process model.11
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Additionally, a functional model must be amenable to implementation in process models. A functional
model must be compatible with diverse instantiations in architectures and allow foundation in theoretical
frameworks. Once again, the goal of the functional model is to facilitate understanding and communi-
cation among acquisition managers, theoreticians, designers, evaluators, and users of data fusion systems
to permit cost-effect system design, development, and operation.

The revised JDL model is aimed at providing a useful tool of this sort. If used appropriately as part
of a coordinated system engineering methodology (as discussed in Chapter 16), the model should facilitate
research, development, test, and operation of systems employing data fusion. This model should

• Facilitate communications and coordination among theoreticians, developers, and users by pro-
viding a common framework to describe problems and solutions.

• Facilitate research by representing underlying principles of a subject. This should enable research-
ers to coordinate their attack on a problem and to integrate results from diverse researchers. By
the same token, the ability to deconstruct a problem into its functional elements can reveal the
limits of our understanding.

• Facilitate system acquisition and development by enabling developers to see their engineering
problems as instances of general classes of problems. Therefore, diverse development activities can
be coordinated and designs can be reused. Furthermore, such problem abstraction should enable
the development of more cost-effective engineering methods.

• Facilitate integration and test by allowing the application of performance models and test data
obtained with other applications of similar designs.

• Facilitate system operation by permitting a better sense of performance expectations, derived from
experiences with entire classes of systems. Therefore, a system user will be able to predict his
system’s performance with greater confidence.
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3.1 Introduction

When a major-league outfielder runs down a long fly ball, the tracking of a moving object looks easy.
Over a distance of a few hundred feet, the fielder calculates the ball’s trajectory to within an inch or two
and times its fall to within milliseconds. But what if an outfielder were asked to track 100 fly balls at
once? Even 100 fielders trying to track 100 balls simultaneously would likely find the task an impossible
challenge.

Problems of this kind do not arise in baseball, but they have considerable practical importance in other
realms. The impetus for the studies described in this chapter was the Strategic Defense Initiative (SDI),
the plan conceived in the early 1980s for defending the U.S. against a large-scale nuclear attack. According
to the terms of the original proposal, an SDI system would be required to track tens or even hundreds of
thousands of objects — including missiles, warheads, decoys, and debris — all moving at speeds of up to
8 kilometers per second. Another application of multiple-target tracking is air-traffic control, which
attempts to maintain safe separations among hundreds of aircraft operating near busy airports. In particle
physics, multiple-target tracking is needed to make sense of the hundreds or thousands of particle tracks
emanating from the site of a high-energy collision. Molecular dynamics has similar requirements.

The task of following a large number of targets is surprisingly difficult. If tracking a single baseball,
warhead, or aircraft requires a certain measurable level of effort, then it might seem that tracking 10 similar
objects would require at most 10 times as much effort. Actually, for the most obvious methods of solving
the problem, the difficulty is proportional to the square of the number of objects; thus, 10 objects demand
100 times the effort, and 10,000 objects increase the difficulty by a factor of 100 million. This combinatorial
explosion is a first hurdle to solving the multiple-target tracking problem. In fact, exploiting all information

Jeffrey K. Uhlmann
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to solve the problem optimally requires exponentially scaling effort. This chapter, however, considers
computational issues that arise for any proposed multiple-target tracking system.*

Consider how the motion of a single object might be tracked, based on a series of position reports from
a sensor such as a radar system. To reconstruct the object’s trajectory, plot the successive positions in
sequence and then draw a line through them (as shown on the left-hand side of Figure 3.1). Extending
this line yields a prediction of the object’s future position. Now, suppose you are tracking 10 targets
simultaneously. At regular time intervals 10 new position reports are received, but the reports do not have
labels indicating the targets to which they correspond. When the 10 new positions are plotted, each report
could, in principle, be associated with any of the 10 existing trajectories (as illustrated on the right-hand
side of Figure 3.1). This need to consider every possible combination of reports and tracks makes the
difficulty of all n-target problem proportional to — or on the order of — n2, which is denoted as O(n2).

Over the years, many attempts have been made to devise an algorithm for multiple-target tracking
with better than O(n2) performance. Some of the proposals offered significant improvements in special
circumstances or for certain instances of the multiple-target tracking problem, but they retained their
O(n2) worst-case behavior. However, recent results in the theory of spatial data structures have made
possible a new class of algorithms for associating reports with tracks — algorithms that scale better than
quadratically in most realistic environments. In degenerate cases, in which all of the targets are so densely
clustered that they cannot be individually resolved, there is no way to avoid comparing each report with
each track. When each report can be feasibly associated only with a constant number of tracks on average,
subquadratic scaling is achievable. This will become clear later in the chapter. Even with the new methods,
multiple-target tracking remains a complex task that strains the capacity of the largest and fastest
supercomputers. However, the new methods have brought important problem instances within reach.

3.1.1 Keeping Track

The modern need for tracking algorithms began with the development of radar during World War II.
By the 1950s, radar was a relatively mature technology. Systems were installed aboard military ships and
aircraft and at airports. The tracking of radar targets, however, was still performed manually by drawing
lines through blips on a display screen. The first attempts to automate the tracking process were modeled
closely on human performance. For the single-target case, the resulting algorithm was straightforward —
the computer accumulated a series of positions from radar reports and estimated the velocity of the
target to predict its future position.

Even single-target tracking presented certain challenges related to the uncertainty inherent in position
measurements. A first problem involves deciding how to represent this uncertainty. A crude approach is
to define an error radius surrounding the position estimate. This practice implies that the probability of
finding the target is uniformly distributed throughout the volume of a three-dimensional sphere. Unfor-
tunately, this simple approach is far from optimal. The error region associated with many sensors is
highly nonspherical; radar, for example, tends to provide accurate range information but has relatively
poorer radial resolution. Furthermore, one would expect the actual position of the target to be closer on
average to the mean position estimate than to the perimeter of the error volume, which suggests, in turn,
that the probability density should be greater near the center.

A second difficulty in handling uncertainty is determining how to interpolate the actual trajectory of
the target from multiple measurements, each with its own error allowance. For targets known to have
constant velocity (e.g., they travel in a straight line at constant speed), there are methods for calculating
tile straight-line path that best fits, by some measure, the series of past positions. A desirable property
of this approach is that it should always converge on the correct path — as the number of reports increases,
the difference between the estimated velocity and the actual velocity should approach zero. On the other
hand, retaining all past reports of a target and recalculating the entire trajectory every time a new report

* The material in this chapter updates and supplements material that first appeared in American Scientist.1
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FIGURE 3.1 The information available for plotting a track consists of position reports (shown as dots) from a
sensor such as a radar system. In tracking a single target (left), one can accumulate a series of reports and then fit a
line or curve corresponding to those data points to estimate the object’s trajectory. With multiple targets (right),
there is no obvious way to determine which object has generated each report. Here, five reports appear initially at
timestep t = 1, then five more are received at t = 2. Neither the human eye nor a computer can easily distinguish
which of the later dots goes with which of the earlier ones. (In fact, the problem is even more difficult given that the
reports at t = 2 could be newly detected targets that are not correlated with the previous five reports.) As additional
reports arrive, coherent tracks begin to emerge. The tracks from which these reports were derived are shown in the
lower panels at t = 5. Here and in subsequent figures, all targets are assumed to have constant velocity in two
dimensions. The problem is considerably more difficult for ballistic or maneuvering trajectories in three dimensions.
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arrives is impractical. Such a method would eventually exceed all constraints on computation time and
storage space.

A near-optimal method for addressing a large class of tracking problems was developed in 1960 by
R.E. Kalman.2 His approach, referred to as Kalman filtering, involves the recursive fusion of noisy mea-
surements to produce an accurate estimate of the state of a system of interest. A key feature of the Kalman
filter is its representation of state estimates in terms of mean vectors and error covariance matrices, where
a covariance matrix provides an estimate (usually a conservative over-estimate) of the second moment
of the error distribution associated with the mean estimate. The square root of the estimated covariance
gives an estimate of the standard deviation. If the sequence of measurement errors are statistically
independent, the Kalman filter produces a sequence of conservative fused estimates with diminishing
error covariances.

Kalman’s work had a dramatic impact on the field of target tracking in particular and data fusion in
general. By the mid-1960s, Kalman filtering was a standard methodology. It has become as central to
multiple-target tracking as it has been to single-target tracking; however, it addresses only one aspect of
the overall problem.

3.1.2 Nearest Neighbors

What multiple targets add to the tracking problem is the need to assign each incoming position report to
a specific target track. The earliest mechanism for classifying reports was the nearest-neighbor rule. The
idea of the rule is to estimate each object’s position at the time of a new position report, and then assign
the report to the nearest such estimate (see Figure 3.2). This intuitively plausible approach is especially
attractive because it decomposes the multiple-target tracking problem into a set of single-target problems.

The nearest-neighbor rule is straightforward to apply when all tracks and reports are represented as
points; however, there is no clear means for defining what constitutes “nearest neighbors” among tracks
and reports with different error covariances. For example, if a sensor has an error variance of 1 cm, then
the probability that measurements 10 cm apart are from the same object is O(10–20), whereas measure-
ments having a variance of 10 cm could be 20–30 centimeters apart and feasibly correspond to the same
object. Therefore, the appropriate measure of distance must reflect the relative uncertainties in the mean
estimates.

The most widely used measure of the correlation between two mean and covariance pairs {x1, P1},
which are assumed to be Gaussian-distributed random variables, is3,4

(3.1)

which reflects the probability that x1 is a realization of x2 or, symmetrically, the probability that x2 is a
realization of x1. If this quantity is above a given threshold — called a gate — then the two estimates are
considered to be feasibly correlated. If the assumption of Gaussianity does not hold exactly — and it
generally does not — then this measure is heuristically assumed (or hoped) to yield results that are at
least good enough to be used for ranking purposes (i.e., to say confidently that one measurement is more
likely than another measurement to be associated with a given track). If this assumption approximately
holds, then the gate will tend to discriminate high- and low-probability associations. Accordingly, the
nearest-neighbor rule can be redefined to state that a report should be assigned to the track with which
it has the highest association ranking. In this way, a multiple-target problem can still be decomposed
into a set of single-target problems.

The nearest-neighbor rule has strong intuitive appeal, but doubts and difficulties connected with it
soon emerged. For example, early implementers of the method discovered problems in creating initial
tracks for multiple targets. In the case of a single target, two reports can be accumulated to derive a
velocity estimate, from which a track can be created. For multiple targets, however, there is no obvious
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way to deduce such initial velocities. The first two reports received could represent successive positions
of a single object or the initial detection of two distinct objects. Every subsequent report could be the
continuation of a known track or the start of a new one. To make matters worse, almost every sensor
produces some background rate of spurious reports, which give rise to spurious tracks. Thus, the tracking
system needs an additional mechanism to recognize and delete tracks that do not receive any subsequent
confirming reports.

Another difficulty with the nearest-neighbor rule becomes apparent when reports are misclassified, as
will inevitably happen from time to time if the tracked objects are close together. A misassignment can
cause the Kalman-filtering process to converge very slowly, or fail to converge altogether, in which case
the track cannot be predicted. Moreover, tracks updated with misassigned reports (or not updated at all)
will tend to correlate poorly with subsequent reports and may, therefore, be mistaken as spurious by the
track-deletion mechanism. Mistakenly deleted tracks then necessitate subsequent track initiations and a
possible repetition of the process.

3.1.3 Track Splitting and Multiple Hypotheses

A robust solution to the problem of assignment ambiguities is to create multiple hypothesis tracks. Under
this scheme, the tracking system does not have to commit immediately or irrevocably to a single assign-
ment of each report. If a report is highly correlated with more than one track, an updated copy of each
track can be created; subsequent reports can be used to determine which assignment is correct. As more
reports come in, the track associated with the correct assignment will rapidly converge on the true target
trajectory, whereas the falsely updated tracks are less likely to be correlated with subsequent reports.

This basic technique is called track splitting.3 One of its worrisome consequences is a proliferation in
the number of tracks upon which a program must keep tabs. The proliferation can be controlled with
the same track deletion mechanism used in the nearest-neighbor algorithm, which scans through all the
tracks from time to time and eliminates those that have a low probability of association with recent

FIGURE 3.2 The nearest-neighbor rule is perhaps the simplest approach for determining which tracked object
produced a given sensor report. When a new position report arrives, all existing tracks are projected forward to the
time of the new measurement. (In this diagram, earlier target positions are indicated by dots and projected positions
by circles; the new position report is labeled.) Then, the distance from the report to each projected position is
calculated, and the report is associated with the nearest track. More generally, the distance calculation is computed
to reflect the relative uncertainties (covariances) associated with each track and report. In the situation depicted
above, the report would be assigned to Track 1, based purely on its Euclidean proximity to the report. If this assignment
is erroneous, the subsequent tracking process will be adversely affected.

Track 1�
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reports. A more sophisticated approach to track splitting, called multiple-hypothesis tracking, maintains
a history of track branchings, so that as soon as one branch is confirmed, the alternative branches can
be pruned away.

Track splitting in its various forms5 is a widely applied strategy for handling the ambiguities inherent
in correlating tracks with reports from multiple targets. It is also used to minimize the effects of spurious
reports when tracking a single target. Nevertheless, some serious difficulties remain. First, track splitting
does not completely decompose a multiple-target tracking problem into independent single-target prob-
lems, the way the nearest-neighbor strategy was intended to function. For example, two hypothesis tracks
may lock onto the trajectory of a single object. Because both tracks are valid, the standard track-deletion
mechanism cannot eliminate either of them. The deletion procedure has to be modified to detect
redundant tracks and, therefore, cannot look at just one track at a time. This coupling between multiple
tracks is theoretically troubling; however, experience has shown that it can be managed in practice at
low computational cost.

A second problem is the difficulty of deciding when a position report and a projected track are
correlated closely enough to justify creating a new hypothesis track. If the correlation threshold is set too
high, correct assignments may be missed so often as to prevent convergence of the Kalman filter. If the
threshold is too low, the number of hypotheses could grow exponentially. The usual practice is to set the
threshold low enough to ensure convergence, and then add another mechanism to limit the rate of
hypothesis generation. A simple strategy is to select the n hypothesis candidates with the highest prob-
abilities of association, where n is the maximum number of hypotheses that computational resource
constraints will allow. This “greedy” method often yields good performance.

Even with these enhancements, the tracking algorithm makes such prodigious demands on computing
resources that large problems remain beyond practical reach. Monitoring the computation to see how
much time is spent in various subtasks shows that calculating probabilities of association is, by far, the
biggest expense. The program gets bogged down projecting target tracks to the time of a position report
and calculating association probabilities. Because this is the critical section of the algorithm, further effort
has focused on improving performance in this area.

3.1.4 Gating

The various calculations involved in estimating a probability of association are numerically intensive and
inherently time consuming. Thus, one approach to speeding up the tracking procedure is to streamline
or fine-tune these calculations — to encode them more efficiently without changing their fundamental
nature. An obvious example is to calculate

(3.2)

rather than the full probability of association. This measure is proportional to the logarithm of the
probability of association and is commonly referred to as the Mahalanobis distance or log-likelihood
measure.4 Applying a suitably chosen threshold to this quantity yields a method for obtaining the same
set of feasible pairs, while avoiding a large number of numerically intensive calculations.

An approach for further reducing the number of computations is to minimize the number of log-like-
lihood calculations by performing a simpler preliminary screening of tracks and sensor reports. Only if
a track report pair passes this computationally inexpensive feasibility check is there a need to complete
the log-likelihood calculation. Multiple gating tests also can be created for successively weeding out
infeasible pairs, so that each gate involves more calculations but is applied to considerably fewer pairs
than the previous gate.

Several geometric tests could serve as gating criteria. For example, if each track is updated, on average,
every five seconds, and the targets are known to have a maximum speed of 10 kilometers per second, a
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track and report more than 50 kilometers apart are not likely to be correlated. A larger distance may be
required to take into account the uncertainty measures associated with both the tracks and the reports.

Simple gating strategies can successfully reduce the numerical overhead of the correlation process and
increase the number of targets that can be tracked in real time. Unfortunately, the benefits of simple gating
diminish as the number of targets increases. Specifically, implementers of gating algorithms have found
that increasing the number of targets by a factor of 20 often increases the computational burden by a
factor of more than 100. Moreover, the largest percentage of computation time is still spent in the
correlation process, although now the bulk of the demand is for simple distance calculations within the
gating algorithm. This implies that the quadratic growth in the number of gating tests is more critical
than the constant numerical overhead associated with the individual tests. In other words, simple gating
can reduce the average cost of each comparison, but what is really needed is a method to reduce the sheer
number of comparisons. Some structure must be imposed on the set of tracks that will allow correlated
track-report pairs to be identified without requiring every report to be compared with every track.

The gating problem is difficult conceptually because it demands that most pairs of tracks and reports
be excluded from consideration without ever being examined. At the same time, no track-report pair
whose probability of association exceeds the correlation threshold can be disregarded. Until the 1980s,
the consensus in the tracking literature was that these constraints were impossible to satisfy simulta-
neously. Consequently, the latter constraint was often sacrificed by the use of methods that did allow
some, but hopefully few, track-report pairs to be missed even though their probabilities of association
exceeded the threshold. This seemingly reasonable compromise, however, has led to numerous ad hoc
schemes that either fail to adequately limit the number of comparisons or fail to adequately limit the
number of missed correlations. Some approaches are susceptible to both problems.

Most of the ad hoc strategies depend heavily on the distribution of the targets. A common approach
is to identify clusters of targets that are sufficiently separated that reports from targets in one cluster will
never have a significant probability of association with tracks from another cluster.6 This allows the
correlation process to determine from which cluster a particular report could have originated and then
compare the report only to the tracks in that cluster. The problem with this approach is that the number
of properly separated clusters depends on the distribution of the targets and, therefore, cannot be
controlled by the clustering algorithm (Figure 3.3). If O(n) tracks are partitioned into O(n) clusters, each
consisting of a constant number of tracks, or into a constant number of clusters of O(n) tracks, the
method still results in a computational cost that is proportional to the comparison of every report to
every track. Unfortunately, most real-world tracking problems tend to be close to one of these extremes.

A gating strategy that avoids some of the distribution problems associated with clustering involves
partitioning the space in which the targets reside into grid cells. Each track can then be assigned to a cell
according to its mean projected position. In this way, the tracks that might be associated with a given
report can be found by examining only those tracks in cells within close proximity to the report’s cell.
The problem with this approach is that its performance depends heavily on the size of the grid cells, as
well as on the distribution of the targets (Figure 3.4). If the grid cells are large and the targets are densely
distributed in a small region, every track will be within a nearby cell. Conversely, if the grid cells are
small, the algorithm may spend as much time examining cells (most of which may be empty) as would
be required to simply examine each track.

3.1.5 Binary Search and kd-Trees

The deficiencies of grid methods suggest the need for a more flexible data structure. The main requirement
imposed on the data structure has already been mentioned — it must allow all proximate track-report
pairs to be identified without having to compare every report with every track (unless every track is
within the prescribed proximity to every report).

A clue to how real-time gating might be accomplished comes from one of the best-known algorithms
in computer science: binary search. Suppose one is given a sorted list of n numbers and asked to find
©2001 CRC Press LLC



                         
out whether or not a specific number, q, is included in the list. The most obvious search method is simply
to compare q with each number in sequence; in the worst case (when q is the last number or is not
present at all), the search requires n comparisons. There is a much better way. Because the list is sorted,
if q is found to be greater than a particular element of the list, one can exclude from further consideration
not only that element but all those that precede it in the list. This principle is applied optimally in binary
search. The algorithm is recursive — first compare q to the median value in the list of numbers (by
definition, the median will be found in the middle of a sorted list). If q is equal to the median value,
then stop, and report that the search was successful. If q is greater than the median value, then apply the

FIGURE 3.3 Clustering algorithms may produce spatially large clusters with few points and spatially small ones
with many points.

FIGURE 3.4 Grids may have a few cells with many points, while the remaining cells contain few or no points.
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same procedure recursively to the sublist greater than the median; otherwise apply it to the sublist less
than the median (Figure 3.5). Eventually either q will be found — it will be equal to the median of some
sublist — or a sublist will turn out to be empty, at which point the procedure terminates and reports
that q is not present in the list.

The efficiency of this process can be analyzed as follows. At every step, half of the remaining elements
in the list are eliminated from consideration. Thus, the total number of comparisons is equal to the
number of halvings, which in turn is O(log n). For example, if n is 1,000,000, then only 20 comparisons
are needed to determine if a given number is in the list.

Binary search can also be used to find all elements of the list that are within a specified range of values
(min, max). Specifically, it can be applied to find the position in the list of the largest element less than
min and the position of the smallest element greater than max. The elements between these two positions
then represent the desired set. Finding the positions associated with min and max requires O(log n)
comparisons. Assuming that some operation will be carried out on each of the m elements of the solution
set, the overall computation time for satisfying a range query scales as O(log n + m).

Extending binary search to multiple dimensions yields a kd-tree.7 This data structure permits the fast
retrieval of all 3-D points; for example, in a data set whose x coordinate is in the range (xmin, xmax), whose
y coordinate is in the range (ymin, ymax) and whose z coordinate is in the range (zmin, zmax). The kd-tree
for k = 3 is constructed as follows: The first step is to list the x coordinates of the points and choose the
median value, then partition the volume by drawing a plane perpendicular to the x-axis through this
point. The result is to create two subvolumes, one containing all the points whose x coordinates are less
than the median and the other containing the points whose x coordinates are greater than the median.
The same procedure is then applied recursively to the two subvolumes, except that now the partitioning
planes are drawn perpendicular to the y-axis and they pass through points that have median values of
the y coordinate. The next round uses the z coordinate, and then the procedure returns cyclically to the
x coordinate. The recursion continues until the subvolumes are empty.*

FIGURE 3.5 Each node in a binary search tree stores the median value of the elements in its subtree. Searching
the tree requires a comparison at each node to determine whether the left or right subtree should be searched.

* An alternative generalization of binary search to multiple dimensions is to partition the dataset at each stage
according to its distance from a selected set of points;8-14 those that are less than the median distance comprise one
branch of the tree, and those that are greater comprise the other. These data structures are very flexible because they
offer the freedom to use an appropriate application-specific metric to partition the dataset; however, they are also
much more computationally intensive because of the number of distance calculations that must be performed.

q < Median � Median < q�_
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Searching the subdivided volume for the presence of a specific point with given x, y, and z coordinates
is a straightforward extension of standard binary search. As in the one-dimensional case, the search
proceeds as a series of comparisons with median values, but now attention alternates among the three
coordinates. First the x coordinates are compared, then the y, then the z, and so on (Figure 3.6). In the
end, either the chosen point will be found to lie on one of the median planes, or the procedure will come
to an empty subvolume.

Searching for all of the points that fall within a specified interval is somewhat more complicated. The
search proceeds as follows: If xmin is less than the median-value x coordinate, the left subvolume must be
examined. If xmax is greater than the median value of x, the right subvolume must be examined. At the
next level of recursion, the comparison is done using ymin and ymax, then zmin and zmax.

A detailed analysis15-17 of the algorithm reveals that for k dimensions (provided that k is greater than 1),
the number of comparisons performed during the search can be as high as O(n1–1/k + m); thus in three
dimensions the search time is proportional to O(n2/3 + m). In the task of matching n reports with n
tracks, the range query must be repeated n times, so the search time scales as O(n ∗  n2/3 + m) or
O(n5/3 + m). This scaling is better than quadratic, but not nearly as good as the logarithmic scaling
observed in the one-dimensional case, which works out for n range queries to be O(n log n + m). The
reason for the penalty in searching a multidimensional tree is the possibility at each step that both subtrees
will have to be searched without necessarily finding an element that satisfies the query. (In one dimension,
a search of both subtrees implies that the median value satisfies the query.) In practice, however, this
seldom happens, and the worst-case scaling is rarely seen. Moreover, for query ranges that are small
relative to the extent of the dataset — as they typically are in gating applications — the observed query
time for kd-trees is consistent with O(log1+ε + n), where ε � 0.

3.2 Ternary Trees

The kd-tree is provably optimal for satisfying multidimensional range queries if one is constrained to
using only linear (i.e., O(n)) storage.16,17 Unfortunately, it is inadequate for gating purposes because the
track estimates have spatial extent due to uncertainty in their exact position. In other words, a kd-tree
would be able to identify all track points that fall within the observation uncertainty bounds. It would
fail, however, to return any imprecisely localized map item whose uncertainty region intersects the

A kd-tree partitions on a different coordinate at each level in the tree.

FIGURE 3.6 A kd-tree is analogous to an ordinary binary search tree, except that each node stores the median of
the multidimensional elements in its subtree projected onto one of the coordinate axes.

q < Median (x)_ q > Median (x)

q > Median (y) q < Median (y)_ q > Median (y)q < Median (y)_
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observation region, but whose mean position does not. Thus, the gating problem requires a data structure
that stores sized objects and is able to retrieve those objects that intersect a given query region associated
with an observation.

One approach for solving this problem is to shift all of the uncertainty associated with the tracks onto
the reports.18,19 The nature of this transfer is easy to understand in the simple case of a track and a report
whose error ellipsoids are spherical and just touching. Reducing the radius of the track error sphere to
zero, while increasing the radius of the report error sphere by an equal amount, leaves the enlarged report
sphere just touching the point representing the track, so the track still falls within the gate of the report
(Figure 3.7). Unfortunately, when this idea is applied to multiple tracks and reports, the query region
for every report must be enlarged in all directions by an amount large enough to accommodate the largest
error radius associated with any track. Techniques have been devised to find the minimum enlargement
necessary to guarantee that every track correlated with a given report will be found;19 however, many
tracks with large error covariances can result in such large query regions that an intolerable number of
uncorrelated tracks will also be found.

FIGURE 3.7 Transferring uncertainty from tracks to reports reduces intersection queries to range queries.

FIGURE 3.8 The intersection of error boxes offers a preliminary indication that a track and a report probably
correspond to the same object. A more definitive test of correlation requires a computation to determine the extent
to which the error ellipses (or their higher-dimensional analogs) overlap, but such computations can be too time
consuming when applied to many thousands of track/report pairs. Comparing bounding boxes is more computa-
tionally efficient; if they do not intersect, an assumption can be made that the track and report do not correspond
to the same object. However, intersection does not necessarily imply that they do correspond to the same object.
False positives must be weeded out in subsequent processing.

If the position uncertainties are thresholded, then �
gating requires intersection detection.�

Report Radius + Track Radius�

Track Radius�

Report Radius�

If the largest track radius is added to all the report radii,�
then the tracks can be treated as points.�
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A solution that avoids the need to inflate the search volumes is to use a data structure that can satisfy
ellipsoid intersection queries instead of range queries. One such data structure that has been applied in
large scale tracking applications is an enhanced form of kd-tree that stores coordinate-aligned boxes.1,20

A box is defined as the smallest rectilinear shape, with sides parallel to the coordinate axes, that can
entirely surround a given error ellipsoid (see Figure 3.8). Because the axes of the ellipse may not corre-
spond to those of the coordinate system, the box may differ significantly in size and shape from the
ellipse it encloses. The problem of determining optimal approximating boxes is presented in Reference 21.

An enhanced form of the kd-tree is needed for searches in which one range of coordinate values is
compared with another range, rather than the simpler case in which a range is compared with a single
point. A binary tree will not serve this purpose because it is not possible to say that one interval is entirely
greater than or less than another when they intersect. What is needed is a ternary tree, with three
descendants per node (Figure 3.9). At each stage in a search of the tree, the maximum value of one
interval is compared with the minimum of the other, and vice versa. These comparisons can potentially
eliminate either the left subtree or the right subtree. In either case, examining the middle subtree — the
one made up of nodes representing boxes that might intersect the query interval — is necessary. Because
all of the boxes in a middle subtree intersect the plane defined by the split value, however, the dimen-
sionality of the subtree can be reduced by one, causing subsequent searches to be more efficient.

The middle subtree represents obligatory search effort; therefore, one goal is to minimize the number
of boxes that straddle the split value. However, if most of the nodes fall to the left or right of the split
value, then few nodes will be eliminated from the search, and query performance will be degraded. Thus,
a tradeoff must be made between the effects of unbalance and of large middle subtrees. Techniques have
been developed for adapting ternary trees to exploit distribution features of a given set of boxes,20 but
they cannot easily be applied when boxes are inserted and deleted dynamically. The ability to dynamically
update the search structure can be very important in some applications; this topic is addressed in
subsequent sections of this chapter.

FIGURE 3.9 Structure of a ternary tree. In a ternary tree, the boxes in the left subtree fall on one side of the
partitioning (split) plane; the boxes in the right subtree fall to the other side of the plane; and the boxes in the middle
subtree are strictly cut by the plane.

<  split  >�
=�

_
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3.3 Priority kd-Trees

The ternary tree represents a very intuitive approach to extending the kd-tree for the storage of boxes.
The idea is that, in one dimension, if a balanced tree is constructed from the minimum values of each
interval, then the only problematic cases are those intervals whose min endpoints are less than a split
value while their max endpoints are greater. Thus, if these cases can be handled separately (i.e., in separate
subtrees), then the rest of the tree can be searched the same way as an ordinary binary search tree. This
approach fails because it is not possible to ensure simultaneously that all subtrees are balanced and that
the extra subtrees are sufficiently small. As a result, an entirely different strategy is required to bound
the worst-case performance.

A technique is known for extending binary search to the problem of finding intersections among one-
dimensional intervals.22,23 The priority search tree is constructed by sorting the intervals according to the
first coordinate as in an ordinary one-dimensional binary search tree. Then down every possible search
path, the intervals are ordered by the second endpoint. Thus, the intervals encountered by always
searching the left subarray will all have values for their first endpoint that are less than those of intervals
with larger indices (i.e., to their right). At the same time, though, the second endpoints in the sequence
of intervals will be in ascending order. Because any interval whose second endpoint is less than the first
endpoint of the query interval cannot possibly produce an intersection, an additional stopping criterion
is added to the ordinary binary search algorithm.

The priority search tree avoids the problems associated with middle subtrees in a ternary tree by storing
the min endpoints in an ordinary balanced binary search tree, while storing the max endpoints in priority
queues stored along each path in the tree. This combination of data structures permits the storage of n
intervals, such that intersection queries can be satisfied in worst-case O(log n + m) time, and insertions
and deletions of intervals can be performed in worst-case O(log n) time. Thus, the priority search tree
generalizes binary search on points to the case of intervals, without any penalty in terms of errors.
Unfortunately, the priority search tree is defined purely for intervals in one dimension.

Whereas the kd-tree can store multidimensional points, but not multidimensional ranges, the priority
search tree can store one-dimensional ranges, but not multiple dimensions. The question that arises is
whether the kd-tree can be extended to store boxes efficiently, or whether the priority search tree can be
extended to accommodate the analogue of intervals in higher dimensions (i.e., boxes). The answer to
the question is “yes” for both data structures, and the solution is, in fact, a combination of the two.

A priority kd-tree24 is defined as follows: given a set S of k-dimensional box intervals (loi,hii), 1 < i < k,
a priority kd-tree consists of a kd-tree constructed from the lo endpoints of the intervals with a priority
set containing up to k items stored at each node (Figure 3.10).* The items stored at each node are the
minimum set so that the union of the hi endpoints in each coordinate includes a value greater than the
corresponding hi endpoint of any interval of any item in the subtree. Searching the tree proceeds exactly
as for all ordinary priority search trees, except that the intervals compared at each level in the tree cycle
through the k dimensions as in a search of a kd-tree.

The priority kd-tree can be used to efficiently satisfy box intersection queries. Just as important,
however, is the fact that it can be adapted to accommodate the dynamic insertion and deletion of boxes
in optimal O(log n) time by replacing the kd-tree structure with a divided kd-tree structure.25 The
difference between the divided kd-tree and an ordinary kd-tree is that the divided variant constructs a
d-layered tree in which each layer partitions the data structure according to only one of the d coordinates.
In three dimensions, for example, the first layer would partition on the x coordinate, the next layer on y,
and the last layer on z. The number of levels per layer/coordinate is determined so as to minimize query

* Other data structures have been independently called “priority kd-trees” in the literature, but they are designed
for different purposes.
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time complexity. The reason for stratifying the tree into layers for the different coordinates is to allow
updates within the different layers to be treated just like updates in ordinary one-dimensional binary trees.

Associating priority fields with the different layers results in a dynamic variant of the priority kd-tree,
which is referred to as a Layered Box Tree. Note that the i priority fields, for coordinates l,...,i, need to be
maintained at level i. This data structure has been proven26 to be maintainable at a cost of O(log n) time
per insertion or deletion and can satisfy box intersection queries O(n1–1/k log1/k n + m), where m is the
number of boxes in S that intersect a given query box b. A relatively straightforward variant27 of the data
structure improves the query complexity to O(n1–1/k + m), which is optimal.

The priority kd-tree is optimal among the class of linear-sized data structures, i.e., ones using only
O(n) storage, but asymptotically better O(logk n + m) query complexity is possible if O(n logk–1 n) storage
is used.16,17 However, the extremely complex structure, called a range-segment tree, requires O(logk n)
update time, and the query performance is O(logk n + m). Unfortunately, this query complexity holds
in the average case, as well as in the worst case, so it can be expected to provide superior query performance
in practice only when n is extremely large. For realistic distributions of objects, however, it may never
provide better query performance practice. Whether or not that is the case, the range-segment tree is
almost never used in practice because the values of n1–1/k and logk n are comparable even for n as large
as 1,000,000, and for datasets of that size the storage for the range-segment tree is multiplied by a factor
of log2(1,000,000) = 400.

3.3.1 Applying the Results

The method in which multidimensional search structures are applied in a tracking algorithm can be
summarized as follows: tracks are recorded by storing the information — such as current positions,
velocities, and accelerations — that a Kalman filter needs to estimate the future position of each candidate

FIGURE 3.10 Structure of a priority kd-tree. The priority kd-tree stores multidimensional boxes, instead of vectors.
A box is defined by an interval (loi, hii) for each coordinate i. The partitioning is applied to the lo coordinates
analogously to an ordinary kd-tree. The principal difference is that the maximum hi value for each coordinate is
stored at each node. These hi values function analogously to the priority fields of a priority search tree. In searching
a priority kd-tree, the query box is compared to each of the stored values at each visited node. If the node partitions
on coordinate i, then the search proceeds to the left subtree if loi is less than the median loi associated with the node.
If hii is greater than the median loi, then the right subtree must be searched. The search can be terminated, however,
if for any j, loj of the query box is greater than the hij stored at the node.

hiloi k1 hi2hi

Partition according to coordinate 1

Partition according to coordinate 2

Partition according to coordinate 3

{median      , max       , max       , ... , max       }
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target. When a new batch of position reports arrives, the existing tracks are projected forward to the time
of the reports. An error ellipsoid is calculated for each track and each report, and a box is constructed
around each ellipsoid. The boxes representing the track projections are organized into a multidimensional
tree. Each box representing a report becomes the subject of a complete tree search; the result of the search
is the set of all track boxes that intersect the given report box. Track-report pairs whose boxes do not
intersect are excluded from all further consideration. Next the set of track-report pairs whose boxes do
overlap is examined more closely to see whether the inscribed error ellipsoids also overlap. Whenever
this calculation indicates a correlation, the track is projected to the time of the new report. Tracks that
consistently fail to be associated with any reports are eventually deleted; reports that cannot be associated
with any existing track initiate new tracks.

The approach for multiple-target tracking described above ignores a plethora of intricate theoretical
and practical details. Unfortunately, such details must eventually be addressed, and the SDI forced a
generation of tracking, data fusion, and sensor system researchers to face all of the thorny issues and
constraints of a real-world problem of immense scale. The goal was to develop a space-based system to
defend against a full-scale missile attack against the U.S. Two of the most critical problems were the
design and deployment of sensors to detect the launch of missiles at the earliest moment possible in their
20-minute mid-course flight, and the design and deployment of weapons systems capable of destroying
the detected missiles. Although an automatic tracking facility would clearly be an integral component of
any SDI system, it was not generally considered a “high risk” technology. Tracking, especially of aircraft,
had been widely studied for more than 30 years, so the tracking of nonmaneuvering ballistic missiles
seemed to be a relatively simple engineering exercise. The principal constraint imposed by SDI was that
the tracking be precise enough to predict a missile’s future position to within a few meters, so that it
could be destroyed by a high-energy laser or a particle-beam weapon.

The high-precision tracking requirement led to the development of highly detailed models of ballistic
motion that took into account the effects of atmospheric drag and various gravitational perturbations
over the earth. By far the most significant source of error in the tracking process, however, resulted from
the limited resolution of existing sensors. This fact reinforced the widely held belief that the main obstacle
to effective tracking was the relatively poor quality of sensor reports. The impact of large numbers of
targets seemed manageable; just build larger, faster computers. Although many in the research community
thought otherwise, the prevailing attitude among funding agencies was that if 100 objects could be tracked
in real time, then little difficulty would be involved in building a machine that was 100 times faster —
or simply having 100 machines run in parallel — to handle 10,000 objects.

Among the challenges facing the SDI program, multiple-target tracking seemed far simpler than what
would be required to further improve sensor resolution. This belief led to the awarding of contracts to build
tracking systems in which the emphasis was placed on high precision at any cost in terms of computational
efficiency. These systems did prove valuable for determining bounds on how accurately a single cluster of
three to seven missiles could be tracked in an SDI environment, but ultimately pressures mounted to scale
up to more realistic numbers. In one case, a tracker that had been tested on five missiles was scaled up to
track 100, causing the processing time to increase from a couple of hours to almost a month of nonstop
computation for a simulated 20-minute scenario. The bulk of the computations was later determined to
have involved the correlation step, where reports were compared against hypothesis tracks.

In response to a heightened interest in scaling issues, some researchers began to develop and study
prototype systems based on efficient search structures. One of these systems demonstrated that 65 to
100 missiles could be tracked in real time on a late-1980s personal workstation. These results were based
on the assumption that a good-resolution radar report would be received every five seconds for every
missile, which is unrealistic in the context of SDI; nevertheless, the demonstration did provide convincing
evidence that SDI trackers could be adapted to avoid quadratic scaling. A tracker that had been installed
at the SDI National Testbed in Colorado Springs achieved significant performance improvements after
a tree-based search structure was installed in its correlation routine; the new algorithm was superior for
as few as 40 missiles. Stand-alone tests showed that the search component could process 5,000 to 10,000
range queries in real time on a modest computer workstation of the time. These results suggested that
©2001 CRC Press LLC



the problem of correlating vast numbers of tracks and reports had been solved. Unfortunately, a new
difficulty was soon discovered.

The academic formulation of the problem adopts the simplifying assumption that all position reports
arrive in batches, with all the reports in a batch corresponding to measurements taken at the same instant
of all of the targets. A real distributed sensor system would not work this way; reports would arrive in a
continuing stream and would be distributed over time. In order to determine the probability that a given
track and report correspond to the same object, the track must be projected to the measurement time
of the report. If every track has to be projected to the measurement time of every report, the combinatorial
advantages of the tree-search algorithm is lost.

A simple way to avoid the projection of each track to the time of every report is to increase the search
radius in the gating algorithm to account for the maximum distance an object could travel during the
maximum time difference between any track and report. For example, if the maximum speed of a missile
is 10 kilometers per second, and the maximum time difference between any report and track is five
seconds, then 50 kilometers would have to be added to each search radius to ensure that no correlations
are missed. For boxes used to approximate ellipsoids, this means that each side of the box must be
increased by 100 kilometers.

As estimates of what constitutes a realistic SDI scenario became more accurate, members of the tracking
community learned that successive reports of a particular target often would be separated by as much
as 30 to 40 seconds. To account for such large time differences would require boxes so immense that the
number of spurious returns would negate the benefits of efficient search. Demands for a sensor config-
uration that would report on every target at intervals of 5 to 10 seconds were considered unreasonable
for a variety of practical reasons. The use of sophisticated correlation algorithms seemed to have finally
reached its limit. Several heuristic “fixes” were considered, but none solved the problem.

A detailed scaling analysis of the problem ultimately pointed the way to a solution. Simply accumulate
sensor reports until the difference between the measurement time of the current report and the earliest
report exceeds a threshold. A search structure is then constructed from this set of reports, the tracks are
projected to the mean time of the reports, and the correlation process is performed with the maximum
time difference being no more than half of the chosen time-difference threshold. The subtle aspect of
this deceptively simple approach is the selection of the threshold. If it is too small, every track will be
projected to the measurement time of every report. If it is too large, every report will fall within the
search volume of every track. A formula has been derived that, with only modest assumptions about the
distribution of targets, ensures the optimal trade-off between these two extremes.

Although empirical results confirm that the track file projection approach essentially solves the time
difference problem in most practical applications, significant improvements are possible. For example,
the fact that different tracks are updated at different times suggests that projecting all of the tracks at the
same points in time may be wasteful. An alternative approach might take a track updated with a report
at time ti and construct a search volume sufficiently large to guarantee that the track gates with any report
of the target arriving during the subsequent s seconds, where s is a parameter similar to the threshold
used for triggering track file projections. This is accomplished by determining the region of space the
target could conceivably traverse based on its kinematic state and error covariance. The box circumscrib-
ing this search volume can then be maintained in the search structure until time ti + s, at which point it
becomes stale and must be replaced with a search volume that is valid from time ti + s to time ti + 2s.
However, if before becoming stale it is updated with a report at time tj, ti < tj < ti + s, then it must be
replaced with a search volume that is valid from time tj to time tj + s.

The benefit of the enhanced approach is that each track is projected only at the times when it is updated
or when all extended period has passed without an update (which could possibly signal the need to delete
the track). In order to apply the approach, however, two conditions must be satisfied. First, there must
be a mechanism for identifying when a track volume has become stale and needs to be recomputed. It
is, of course, not possible to examine every track upon the receipt of each report because the scaling of
the algorithm would be undermined. The solution is to maintain a priority queue of the times at which
the different track volumes will become invalid. A priority queue is a data structure that can be updated
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efficiently and supports the retrieval of the minimum of n values in O(log n) time. At the time a report
is received, the priority queue is queried to determine which, if any, of the track volumes have become
stale. New search volumes are constructed for the identified tracks, and the times at which they will
become invalid are updated in the priority queue.

The second condition that must be satisfied for the enhanced approach is a capability to incrementally
update the search structure as tracks are added, updated, recomputed, or deleted. The need for such a
capability was hinted at in the discussion of dynamic search structures. Because the layered box tree
supports insertions and deletions in O(log n) time, the update of a track’s search volume can be efficiently
accommodated. The track’s associated box is deleted from the tree, an updated box is computed, and
then the result is inserted back into the tree. In summary, the cost for processing each report involves
updates of the search structure and the priority queue, at O(log n) cost, plus the cost of determining the
set of tracks with which the report could be feasibly associated.

3.4 Conclusion

The correlation of reports with tracks numbering in the thousands can now be performed in real time
on a personal computer. More research on large-scale correlation is needed, but work has already begun
on implementing efficient correlation modules that can be incorporated into existing tracking systems.
Ironically, by hiding the intricate details and complexities of the correlation process, these modules give
the appearance that multiple-target tracking involves little more than the concurrent processing of several
single-target problems. Thus, a paradigm with deep historical roots in the field of target tracking is at
least partially preserved.

Note that the techniques described in this chapter are applicable only to a very restricted class of
tracking problems. Other problems, such as the tracking of military forces, demand more sophisticated
approaches. Not only does the mean position of a military force change, its shape also changes. Moreover,
reports of its position are really only reports of the positions of its parts, and various parts may be moving
in different directions at any given instant. Filtering out the local deviations in motion to determine the
net motion of the whole is beyond the capabilities of a simple Kalman filter. Other difficult tracking
problems include the tracking of weather phenomena and soil erosion. The history of multiple-target
tracking suggests that, in addition to new mathematical techniques, new algorithmic techniques will
certainly be required for any practical solution to these problems.
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The Principles and

Practice of Image and
Spatial Data Fusion*

4.1 Introduction
4.2 Motivations for Combining Image and Spatial Data
4.3 Defining Image and Spatial Data Fusion
4.4 Three Classic Levels of Combination for Multisensor 

Automatic Target Recognition Data Fusion
Pixel-Level Fusion • Feature-Level Fusion • Decision-Level 
Fusion • Multiple-Level Fusion

4.5 Image Data Fusion for Enhancement of Imagery 
Data 
Multiresolution Imagery • Dynamic Imagery • Three-
Dimensional Imagery

4.6 Spatial Data Fusion Applications
Spatial Data Fusion: Combining Image and Non-Image Data 
to Create Spatial Information Systems • Mapping, Charting 
and Geodesy (MC&G) Applications

4.7 Summary
References

4.1 Introduction

The joint use of imagery and spatial data from different imaging, mapping, or other spatial sensors has the
potential to provide significant performance improvements over single sensor detection, classification, and
situation assessment functions. The terms imagery fusion and spatial data fusion have been applied to
describe a variety of combining operations for a wide range of image enhancement and understanding
applications. Surveillance, robotic machine vision, and automatic target cueing are among the application
areas that have explored the potential benefits of multiple sensor imagery. This chapter provides a framework
for defining and describing the functions of image data fusion in the context of the Joint Directors of
Laboratories (JDL) data fusion model. The chapter also describes representative methods and applications.

Sensor fusion and data fusion have become the de facto terms to describe the general abductive or
deductive combination processes by which diverse sets of related data are joined or merged to produce

*Adapted from the principles and practice of image and spatial data fusion, in Proceedings of the 8th National
Data Fusion Conference, Dallas, Texas, March 15–17, 1995, pp. 257–278.

Ed Waltz
Veridian Systems
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a product that is greater than the individual parts. A range of mathematical operators has been applied
to perform this process for a wide range of applications. Two areas that have received increasing research
attention over the past decade are the processing of imagery (two-dimensional information) and spatial
data (three-dimensional representations of real-world surfaces and objects that are imaged). These
processes combine multiple data views into a composite set that incorporates the best attributes of all
contributors. The most common product is a spatial (three-dimensional) model, or virtual world, which
represents the best estimate of the real world as derived from all sensors.

4.2 Motivations for Combining Image and Spatial Data

A diverse range of applications has employed image data fusion to improve imaging and automatic
detection/classification performance over that of single imaging sensors. Table 4.1 summarizes represen-
tative and recent research and development in six key application areas. 

Satellite and airborne imagery used for military intelligence, photogrammetric, earth resources, and
environmental assessments can be enhanced by combining registered data from different sensors to refine
the spatial or spectral resolution of a composite image product. Registered imagery from different passes
(multitemporal) and different sensors (multispectral and multiresolution) can be combined to produce
composite imagery with spectral and spatial characteristics equal to or better than that of the individual
contributors. 

Composite SPOT™ and LANDSAT satellite imagery and 3-D terrain relief composites of military
regions demonstrate current military applications of such data for mission planning purposes.1-3 The
Joint National Intelligence Development Staff (JNIDS) pioneered the development of workstation-based
systems to combine a variety of image and nonimage sources for intelligence analysts4 who perform

TABLE 4.1 Representative Range of Activities Applying Spatial and Imagery Fusion

Activities Sponsors

Satellite/Airborne Imaging

Multiresolution image sharpening Multiple algorithms, tools in commercial packages U.S., commercial vendors
Terrain visualization Battlefield visualization, mission planning Army, Air Force
Planetary visualization-

exploration
Planetary mapping missions NASA

Mapping, Charting and Geodesy

Geographic information system 
(GIS) generation from multiple 
sources

Terrain feature extraction, rapid map generation DARPA, Army, Air Force

Earth environment information 
system

Earth observing system, data integration system NASA

Military Automatic Target Recognition ATR

Battlefield surveillance Various MMW/LADAR/FLIR Army
Battlefield seekers Millimeter wave (MMW)/forward looking IR (FLIR) Army, Air Force
IMINT correlation Single Intel IMINT correlation DARPA
IMINT-SIGINT/MTI correlation Dynamic database DARPA

Industrial Robotics

3-D multisensor inspection Product line inspection Commercial
Non-destructive inspection Image fusion analysis Air Force, commercial

Medical Imaging

Human body visualization, 
diagnosis

Tomography, magnetic resonance imaging, 3-D fusion Various R&D hospitals
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• registration — spatial alignment of overlapping images and maps to a common coordinate system;

• mosaicking — registration of nonoverlapping, adjacent image sections to create a composite of a
larger area;

• 3-D mensuration-estimation — calibrated measurement of the spatial dimensions of objects
within in-image data.

Similar image functions have been incorporated into a variety of image processing systems, from
tactical image systems such as the premier Joint Service Image Processing System (JSIPS) to Unix- and
PC-based commercial image processing systems. Military services and the National Imagery and Mapping
Agency (NIMA) are performing cross intelligence (i.e., IMINT and other intelligence source) data fusion
research to link signals and human reports to spatial data.5

When the fusion process extends beyond imagery to include other spatial data sets, such as digital
terrain data, demographic data, and complete geographic information system (GIS) data layers, numerous
mapping applications may benefit. Military intelligence preparation of the battlefield (IPB) functions
(e.g., area delimitation and transportation network identification), as well as wide area terrain database
generation (e.g., precision GIS mapping), are complex mapping problems that require fusion to automate
processes that are largely manual. One area of ambitious research in this area of spatial data fusion is the
U.S. Army Topographic Engineering Center’s (TEC) efforts to develop automatic terrain feature gener-
ation techniques based on a wide range of source data, including imagery, map data, and remotely sensed
terrain data.6 On the broadest scale, NIMA’s Global Geospatial Information and Services (GGIS) vision
includes spatial data fusion as a core functional element.7 NIMA’s Mapping, Charting and Geodesy Utility
Software package (MUSE), for example, combines vector and raster data to display base maps with
overlays of a variety of data to support geographic analysis and mission planning. 

Real-time automatic target cueing/recognition (ATC/ATR) for military applications has turned to
multiple sensor solutions to expand spectral diversity and target feature dimensionality, seeking to achieve
high probabilities of correct detection/identification at acceptable false alarm rates. Forward-looking
infrared (FLIR), imaging millimeter wave (MMW), and light amplification for detection and ranging
(LADAR) sensors are the most promising suite capable of providing the diversity needed for reliable
discrimination in battlefield applications. In addition, some applications seek to combine the real-time
imagery to present an enhanced image to the human operator for driving, control, and warning, as well
as manual target recognition. 

Industrial robotic applications for fusion include the use of 3-D imaging and tactile sensors to provide
sufficient image understanding to permit robotic manipulation of objects. These applications emphasize
automatic object position understanding rather than recognition (e.g., the target recognition) that is, by
nature, noncooperative).8 

Transportation applications combine millimeter wave and electro-optical imaging sensors to provide
collision avoidance warning by sensing vehicles whose relative rates and locations pose a collision threat.

Medical applications fuse information from a variety of imaging sensors to provide a complete 3-D
model or enhanced 2-D image of the human body for diagnostic purposes. The United Medical and
Dental Schools of Guy’s and St. Thomas’ Hospital (London, U.K.) have demonstrated methods for
registering and combining magnetic resonance (MR), positron emission tomography (PET), and com-
puter tomography (CT) into composites to aid surgery.9

4.3 Defining Image and Spatial Data Fusion

In this chapter, image and spatial data fusion are distinguished as subsets of the more general data fusion
problem that is typically aimed at associating and combining 3-D data about sparse point-objects located in
space. Targets on a battlefield, aircraft in airspace, ships on the ocean surface, or submarines in the 3-D ocean
volume are common examples of targets represented as point objects in a three-dimensional space model. 

Image data fusion, on the other hand, is involved with associating and combining complete, spatially
filled sets of data in 2-D (images) or 3-D (terrain or high resolution spatial representations of real objects).
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Herein lies the distinction: image and spatial data fusion requires data representing every point on a
surface or in space to be fused, rather than selected points of interest. 

The more general problem is described in detail in introductory texts by Waltz and Llinas10 and Hall,11

while the progress in image and spatial data fusion is reported over a wide range of the technical literature,
as cited in this chapter. 

The taxonomy in Figure 4.1 distinguishes the data properties and objectives that distinguish four
categories of fusion applications.

In all of the image and spatial applications cited above, the common thread of the fusion function is
its emphasis on the following distinguishing functions:

• Registration involves spatial and temporal alignment of physical items within imagery or spatial
data sets and is a prerequisite for further operations. It can occur at the raw image level (i.e., any
pixel in one image may be referenced with known accuracy to a pixel or pixels in another image,
or to a coordinate in a map) or at higher levels, relating objects rather than individual pixels. Of
importance to every approach to combining spatial data is the accuracy with which the data layers
have been spatially aligned relative to each other or to a common coordinate system (e.g., geo-
location or geo-coding of earth imagery to an earth projection). Registration can be performed
by traditional internal image-to-image correlation techniques (when the images are from sensors
with similar phenomena and are highly correlated)12 or by external techniques.13 External methods
apply in-image control knowledge or as-sensed information that permits accurate modeling and
estimation of the true location of each pixel in two- or three-dimensional space. 

• The combination function operates on multiple, registered “layers” of data to derive composite
products using mathematical operators to perform integration; mosaicking; spatial or spectral
refinement; spatial, spectral or temporal (change) detection; or classification. 

• Reasoning is the process by which intelligent, often iterative search operations are performed
between the layers of data to assess the meaning of the entire scene at the highest level of abstraction
and of individual items, events, and data contained in the layers. 

The image and spatial data fusion functions can be placed in the JDL data fusion model context to
describe the architecture of a system that employs imagery data from multiple sensors and spatial data

FIGURE 4.1 Data fusion application taxonomy.
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(e.g., maps and solid models) to perform detection, classification, and assessment of the meaning of
information contained in the scenery of interest.

Figure 4.2 compares the JDL general model14 with a specific multisensor ATR image data fusion
functional flow to show how the more abstract model can be related to a specific imagery fusion
application. The Level 1 processing steps can be directly related to image counterparts:

• Alignment — The alignment of data into a common time, space, and spectral reference frame
involves spatial transformations to warp image data to a common coordinate system (e.g., pro-
jection to an earth reference model or three-dimensional space). At this point, nonimaging data
that can be spatially referenced (perhaps not to a point, but often to a region with a specified
uncertainty) can then be associated with the image data.

• Association — New data can be correlated with previous data to detect and segment (select) targets
on the basis of motion (temporal change) or behavior (spatial change). In time-sequenced data
sets, target objects at time t are associated with target objects at time t – 1 to discriminate newly
appearing targets, moved targets, and disappearing targets.

• Tracking — When objects are tracked in dynamic imagery, the dynamics of target motion are
modeled and used to predict the future location of targets (at time t + 1) for comparison with
new sensor observations. 

• Identification — The data for segmented targets are combined from multiple sensors (at any one
of several levels) to provide an assignment of the target to one or more of several target classes. 

Level 2 and 3 processing deals with the aggregate of targets in the scene and other characteristics of
the scene to derive an assessment of the “meaning” of data in the scene or spatial data set.

In the following sections, the primary image and spatial data fusion application areas are described
to demonstrate the basic principles of fusion and the state of the practice in each area.

4.4 Three Classic Levels of Combination for Multisensor 
Automatic Target Recognition Data Fusion

Since the late 1970s, the ATR literature has adopted three levels of image data fusion as the basic design
alternatives offered to the system designer. The terminology was adopted to describe the point in the
traditional ATR processing chain at which registration and combination of different sensor data occurred.
These functions can occur at multiple levels, as described later in this chapter. First, a brief overview of

FIGURE 4.2 Image of a data fusion functional flow can be directly compared to the joint directors of labs (JDL)
data fusion subpanel model of data fusion.
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the basic alternatives and representative research and development results is presented. (Broad overviews
of the developments in ATR in general, with specific comments on data fusion, are available in other
literature.15-17)

4.4.1 Pixel-Level Fusion

At the lowest level, pixel-level fusion uses the registered pixel data from all image sets to perform detection
and discrimination functions. This level has the potential to achieve the greatest signal detection perfor-
mance (if registration errors can be contained) at the highest computational expense. At this level,
detection decisions (pertaining to the presence or absence of a target object) are based on the information
from all sensors by evaluating the spatial and spectral data from all layers of the registered image data.
A subset of this level of fusion is segment-level fusion, in which basic detection decisions are made
independently in each sensor domain, but the segmentation of image regions is performed by evaluation
of the registered data layers.

Fusion at the pixel level involves accurate registration of the different sensor images before applying
a combination operator to each set of registered pixels (which correspond to associated measurements

FIGURE 4.3 Three basic levels of fusion are provided to the multisensor ATR designer as the most logical alternative
points in the data chain for combining data.

TABLE 4.2 Most Common Decision-Level Combination Alternatives
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M-of-N Confirm decision based on m-out-of-n sensors that agree. 

Soft Decision Bayesian Apply Bayes rule to combine sensor independent conditional probabilities.
Dempster-Shafer Apply Dempster's rule of combination to combine sensor belief functions.
Fuzzy Variable Combine fuzzy variables using fuzzy logic (AND, OR) to derive combined 
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in each sensor domain at the highest spatial resolution of the sensors.) Spatial registration accuracies
should be subpixel to avoid combination of unrelated data, making this approach the most sensitive to
registration errors. Because image data may not be sampled at the same spacing, resampling and warping
of images is generally required to achieve the necessary level of registration prior to combining pixel data. 

In the most direct 2-D image applications of this approach, coregistered pixel data may be classified
on a pixel-by-pixel basis using approaches that have long been applied to multispectral data classifica-
tion.18 Typical ATR applications, however, pose a more complex problem when dissimilar sensors, such
as FLIR and LADAR, image in different planes. In such cases, the sensor data must be projected into a
common 2-D or 3-D space for combination. Gonzalez and Williams, for example, have described a
process for using 3-D LADAR data to infer FLIR pixel locations in 3-D to estimate target pose prior to
feature extraction.19 Schwickerath and Beveridge present a thorough analysis of this problem, developing
an eight-degree of freedom model to estimate both the target pose and relative sensor registration
(coregistration) based on a 2-D and 3-D sensor.20

Delanoy et al. demonstrated pixel-level combination of spatial interest images using Boolean and fuzzy
logic operators.21 This process applies a spatial feature extractor to develop multiple interest images
(representing the relative presence of spatial features in each pixel), before combining the interest images
into a single detection image. Similarly, Hamilton and Kipp describe a probe-based technique that uses
spatial templates to transform the direct image into probed images that enhance target features for
comparison with reference templates.22,23 Using a limited set of television and FLIR imagery, Duane
compared pixel-level and feature-level fusion to quantify the relative improvement attributable to the
pixel-level approach with well-registered imagery sets.24

4.4.2 Feature-Level Fusion

At the intermediate level, feature-level fusion combines the features of objects that are detected and
segmented in the individual sensor domains. This level presumes independent detectability of objects in
all of the sensor domains. The features for each object are independently extracted in each domain; these
features crate a common feature space for object classification.

Such feature-level fusion reduces the demand on registration, allowing each sensor channel to segment
the target region and extract features without regard to the other sensor’s choice of target boundary. The
features are merged into a common decision space only after a spatial association is made to determine
that the features were extracted from objects whose centroids were spatially associated. 

During the early 1990s, the Army evaluated a wide range of feature-level fusion algorithms for
combining FLIR, MMW, and LADAR data for detecting battlefield targets under the Multi-Sensor Feature
Level Fusion (MSFLF) Program of the OSD Multi-Sensor Aided Targeting Initiative. Early results dem-
onstrated marginal gains over single sensor performance and reinforced the importance of careful
selection of complementary features to specifically reduce single sensor ambiguities.25 

At the feature level of fusion, researchers have developed model-based (or model-driven) alternatives
to the traditional statistical methods, which are inherently data driven. Model-based approaches maintain
target and sensing models that predict all possible views (and target configurations) for comparison with
extracted features rather than using a more limited set of real signature data for comparison.26 The
application of model-based approaches to multiple-sensor ATR offers several alternative implementa-
tions, two of which are described in Figure 4.4. The Adaptive Model Matching approach performs feature
extraction (FE) and comparison (match) with predicted features for the estimated target pose. The process
iteratively searches to find the best model match for the extracted features.

4.4.2.1 Discrete Model Matching Approach

A multisensor model-based matching approach described by Hamilton and Kipp27 develops a relational
tree structure (hierarchy) of 2-D silhouette templates. These templates capture the spatial structure of
the most basic all-aspect target “blob” (at the top or root node), down to individual target hypotheses at
specific poses and configurations. This predefined search tree is developed on the basis of model data
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for each sensor, and the ATR process compares segmented data to the tree, computing a composite score
at each node to determine the path to the most likely hypotheses. At each node, the evidence is accu-
mulated by applying an operator (e.g., weighted sum, Bayesian combination, etc.) to combine the score
for each sensor domain.

4.4.2.2 Adaptive Model Matching Approach

Rather than using prestored templates, this approach implements the sensor/target modeling capability
within the ATR algorithm to dynamically predict features for direct comparison. Figure 4.4 illustrates a
two-sensor extension of the one-sensor, model-based ATR paradigm (e.g., ARAGTAP28 or MSTAR29

approaches) in which independent sensor features are predicted and compared iteratively, and evidence
from the sensors is accumulated to derive a composite score for each target hypothesis. 

Larson et al. describe a model-based IR/LADAR fusion algorithm that performs extensive pixel-level
registration and feature extraction before performing the model-based classification at the extracted feature
level.30 Similarly, Corbett et al. describe a model-based feature-level classifier that uses IR and MMW
models to predict features for military vehicles.31 Both of these follow the adaptive generation approach.

4.4.3 Decision-Level Fusion

Fusion at the decision level (also called post-decision or post-detection fusion) combines the decisions of
independent sensor detection/classification paths by Boolean (AND, OR) operators or by a heuristic
score (e.g., M-of-N, maximum vote, or weighted sum). Two methods of making classification decisions
exist: hard decisions (single, optimum choice) and soft decisions, in which decision uncertainty in each
sensor chain is maintained and combined with a composite measure of uncertainty. 

The relative performance of alternative combination rules and independent sensor thresholds can be
optimally selected using distribution data for the features used by each sensor.32 In decision-level fusion,
each path must independently detect the presence of a candidate target and perform a classification on
the candidate. These detections and/or classifications (the sensor decisions) are combined into a fused
decision. This approach inherently assumes that the signals and signatures in each independent sensor

FIGURE 4.4 Two model-based sensor alternatives demonstrate the use of a prestored hierarchy of model-based
templates or an online, iterative model that predicts features based upon estimated target pose.
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chain are sufficient to perform independent detection before the sensor decisions are combined. This
approach is much less sensitive to spatial misregistration than all others and permits accurate association
of detected targets to occur with registration errors over an order of magnitude larger than for pixel-
level fusion. Lee and Vleet have shown procedures for estimating the registration error between sensors
to minimize the mean square registration error and optimize the association of objects in dissimilar
images for decision-level fusion.33

Decision-level fusion of MMW and IR sensors has long been considered a prime candidate for
achieving the level of detection performance required for autonomous precision-guided munitions.34

Results of an independent two-sensor (MMW and IR) analysis on military targets demonstrated the
relative improvement of two-sensor decision-level fusion over either independent sensor.35-37 A summary
of ATR comparison methods was compiled by Diehl, Shields, and Hauter.38 These studies demonstrated
the critical sensitivity of performance gains to the relative performance of each contributing sensor and
the independence of the sensed phenomena. 

4.4.4 Multiple-Level Fusion

In addition to the three classic levels of fusion, other alternatives or combinations have been advanced.
At a level even higher than the decision level, some researchers have defined scene-level methods in which
target detections from a low-resolution sensor are used to cue a search-and-confirm action by a higher
resolution sensor. Menon and Kolodzy described such a system, which uses FLIR detections to cue the
analysis of high spatial resolution laser radar data using a nearest neighbor neural network classifier.39

Maren describes a scene structure method that combines information from hierarchical structures devel-
oped independently by each sensor by decomposing the scene into element representations.40 Others
have developed hybrid, multilevel techniques that partition the detection problem to a high level (e.g.,
decision level) and the classification to a lower level. Aboutalib et al. described a hybrid algorithm that
performs decision-level combination for detection (with detection threshold feedback) and feature-level
classification for air target identification in IR and TV imagery.41

Other researchers have proposed multi-level ATR architectures, which perform fusion at all levels,
carrying out an appropriate degree of combination at each level based on the ability of the combined
information to contribute to an overall fusion objective. Chu and Aggarwal describe such a system that
integrates pixel-level to scene-level algorithms.42 Eggleston has long promoted such a knowledge-based
ATR approach that combines data at three levels, using many partially redundant combination stages to
reduce the errors of any single unreliable rule.43,44 The three levels in this approach are

• Low level — Pixel-level combinations are performed when image enhancement can aid higher-
level combinations. The higher levels adaptively control this fine grain combination.

• Intermediate symbolic level — Symbolic representations (tokens) of attributes or features for
segmented regions (image events) are combined using a symbolic level of description.

• High level — The scene or context level of information is evaluated to determine the meaning of
the overall scene, by considering all intermediate-level representations to derive a situation assess-
ment. For example, this level may determine that a scene contains a brigade-sized military unit
forming for attack. The derived situation can be used to adapt lower levels of processing to refine
the high-level hypotheses. 

Bowman and DeYoung described an architecture that uses neural networks at all levels of the conven-
tional ATR processing chain to achieve pixel-level performances of up to 0.99 probability of correct
identification for battlefield targets using pixel-level neural network fusion of UV, visible, and MMW
imagery.45

Pixel, feature, and decision-level fusion designs have focused on combining imagery for the purposes
of detecting and classifying specific targets. The emphasis is on limiting processing by combining only the
most likely regions of target data content and combining at the minimum necessary level to achieve the
desired detection/classification performance. This differs significantly from the next category of image
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fusion designs, in which all data must be combined to form a new spatial data product that contains the
best composite properties of all contributing sources of information. 

4.5 Image Data Fusion for Enhancement of Imagery Data

Both still and moving image data can be combined from multiple sources to enhance desired features,
combine multiresolution or differing sensor look geometries, mosaic multiple views, and reduce uncor-
related noise. 

4.5.1 Multiresolution Imagery

One area of enhancement has been in the application of band sharpening or multiresolution image fusion
algorithms to combine differing resolution satellite imagery. The result is a composite product that
enhances the spatial boundaries in lower resolution multispectral data using higher resolution panchro-
matic or Synthetic Aperture Radar (SAR) data. 

Veridian-ERIM International has applied its Sparkle algorithm to the band sharpening problem,
demonstrating the enhancement of lower-resolution SPOT™ multispectral imagery (20-meter ground
sample distance or GSD) with higher resolution airborne SAR (3-meter GSD) and panchromatic pho-
tography (1-meter) to sharpen the multispectral data. Radar backscatter features are overlayed on the
composite to reveal important characteristics of the ground features and materials. The composite image
preserves the spatial resolution of the pancromatic data, the spectral content of the multispectral layers,
and the radar reflectivity of the SAR.

Vrabel has reported the relative performance of a variety of band sharpening algorithms, concluding
that Veridian ERIM International’s Sparkle algorithm and a color normalization (CN) technique provided
the greatest GSD enhancement and overall utility.46 Additional comparisons and applications of band
sharpening techniques have been published in the literature.47-50

Imagery can also be mosaicked by combining overlapping images into a common block, using classical
photogrammetric techniques (bundle adjustment) that use absolute ground control points and tie points
(common points in overlapped regions) to derive mapping polynomials. The data may then be forward
resampled from the input images to the output projection or backward resampled by projecting the location
of each output pixel onto each source image to extract pixels for resampling.51 The latter approach permits
spatial deconvolution functions to be applied in the resampling process. Radiometric feathering of the data
in transition regions may also be necessary to provide a gradual transition after overall balancing of the
radiometric dynamic range of the mosaicked image is performed.52 Such mosaicking fusion processes have
also been applied to three-dimensional data to create composite digital elevation models (DEMs) of terrain.53

4.5.2 Dynamic Imagery

In some applications, the goal is to combine different types of real-time video imagery to provide the
clearest possible composite video image for a human operator. The David Sarnoff Research Center has
applied wavelet encoding methods to selectively combine IR and visible video data into a composite
video image that preserves the most desired characteristics (e.g., edges, lines, and boundaries) from each
data set.54 The Center later extended the technique to combine multitemporal and moving images into
composite mosaic scenes that preserve the “best” data to create a current scene at the best possible
resolution at any point in the scene.55,56 

4.5.3 Three-Dimensional Imagery

Three-dimensional perspectives of the earth’s surface are a special class of image data fusion products
that have been developed by draping orthorectified images of the earth’s surface over digital terrain
models. The 3-D model can be viewed from arbitrary static perspectives, or a dynamic fly-through, which
provides a visualization of the area for mission planners, pilots, or land planners. 
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Off-nadir regions of aerial or spaceborne imagery include a horizontal displacement error that is a
function of the elevation of the terrain. A digital elevation model (DEM) is used to correct for these
displacements in order to accurately overlay each image pixel on the corresponding post (i.e., terrain
grid coordinate). Photogrammetric orthorectification functions57 include the following steps to combine
the data:

• DEM preparation — the digital elevation model is transformed to the desired map projection for
the final composite product.

• Transform derivation — platform, sensor, and the DEM are used to derive mapping polynomials
that will remove the horizontal displacements caused by to terrain relief, placing each input image
pixel at the proper location on the DEM grid. 

• Resampling — The input imagery is resampled into the desired output map grid.

• Output file creation — The resampled image data (x, y, and pixel values) and DEM (x, y, and z)
are merged into a file with other geo-referenced data, if available.

• Output product creation — Two-dimensional image maps may be created with map grid lines,
or three-dimensional visualization perspectives can be created for viewing the terrain data from
arbitrary viewing angles.

The basic functions necessary to perform registration and combination are provided in an increasing
number of commercial image processing software packages (see Table 4.3), permitting users to fuse static
image data for a variety of applications.

4.6 Spatial Data Fusion Applications

Robotic and transportation applications include a wide range of applications similar to military appli-
cations. Robotics applications include relatively short-range, high-resolution imaging of cooperative
target objects (e.g., an assembly component to be picked up and accurately placed) with the primary
objectives of position determination and inspection. Transportation applications include longer-range
sensing of vehicles for highway control and multiple sensor situation awareness within a vehicle to provide
semi-autonomous navigation, collision avoidance, and control.

The results of research in these areas are chronicled in a variety sources, beginning with the 1987
Workshop on Spatial Reasoning and MultiSensor Fusion,58 and many subsequent SPIE conferences.59-63 

TABLE 4.3 Basic Image Data Fusion Functions Provided in Several Commercial Image Processing Software Packages

Function Description

Registration Sensor-platform modeling Model sensor-imaging geometry; derive correction 
transforms (e.g., polynomials) from collection parameters 
(e.g., ephemeris, pointing, and earth model)

Ground Control Point (GCP) calibration Locate known GCPs and derive correction transforms 
Warp to polynomial Spatially transform (warp) imagery to register pixels to 

regular grid or to a digital terrain model
Orthorectify to digital terrain model
Resample imagery Resample warped imagery to create fixed pixel-sized image

Combination Mosaic imagery Register adjacent and overlapped imagery; resample to 
common pixel grid

Edge feathering Combine overlapping imagery data to create smooth 
(feathered) magnitude transitions between two image 
components

Band sharpening Enhance spatial boundaries (high-frequency content) in 
lower resolution band data using higher resolution registered 
imagery data in a different band
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4.6.1 Spatial Data Fusion: Combining Image and Non-Image Data 
to Create Spatial Information Systems

One of the most sophisticated image fusion applications combines diverse sets of imagery (2-D), spatially
referenced nonimage data sets, and 3-D spatial data sets into a composite spatial data information system.
The most active area of research and development in this category of fusion problems is the development
of geographic information systems (GIS) by combining earth imagery, maps, demographic and infra-
structure or facilities mapping (geospatial) data into a common spatially referenced database.

Applications for such capabilities exist in three areas. In civil government, the need for land and
resource management has prompted intense interest in establishing GISs at all levels of government. The
U.S. Federal Geographic Data Committee is tasked with the development of a National Spatial Data
Infrastructure (NSDI), which establishes standards for organizing the vast amount of geospatial data
currently available at the national level and coordinating the integration of future data.64

Commercial applications for geospatial data include land management, resources exploration, civil engi-
neering, transportation network management, and automated mapping/facilities management for utilities.

The military application of such spatial databases is the intelligence preparation of the battlefield
(IPB),65 which consists of developing a spatial database containing all terrain, transportation, ground-
cover, manmade structures, and other features available for use in real-time situation assessment for
command and control. The Defense Advanced Research Projects Agency (DARPA) Terrain Feature
Generator is one example of a major spatial database and fusion function defined to automate the
functions of IPB and geospatial database creation from diverse sensor sources and maps.66

To realize efficient, affordable systems capable of accommodating the volume of spatial data required
for large regions and performing reasoning that produces accurate and insightful information depends
on two critical technology areas:

• Spatial Data Structure — Efficient, linked data structures are required to handle the wide variety
of vector, raster, and nonspatial data sources. Hundreds of point, lineal, and areal features must
be accommodated. Data volumes are measured in terabytes and short access times are demanded
for even broad searches. 

• Spatial Reasoning — The ability to reason in the context of dynamically changing spatial data is
required to assess the “meaning” of the data. The reasoning process must perform the following
kinds of operations to make assessments about the data:

• Spatial measurements (e.g., geometric, topological, proximity, and statistics)

• Spatial modeling

• Spatial combination and inference operations, in uncertainty

• Spatial aggregation of related entities

• Multivariate spatial queries

Antony surveyed the alternatives for representing spatial and spatially referenced semantic knowledge67

and published the first comprehensive data fusion text68 that specifically focused on spatial reasoning for
combining spatial data.

4.6.2 Mapping, Charting and Geodesy (MC&G) Applications

The use of remotely sensed image data to create image maps and generate GIS base maps has long been
recognized as a means of automating map generation and updating to achieve currency as well as
accuracy.69-71 The following features characterize integrated geospatial systems:

• Currency — Remote sensing inputs enable continuous update with change detection and moni-
toring of the information in the database.

• Integration — Spatial data in a variety of formats (e.g., raster and vector data) is integrated with
meta data and other spatially referenced data, such as text, numerical, tabular, and hypertext
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formats. Multiresolution and multiscale spatial data coexist, are linked, and share a common
reference (i.e., map projection). 

• Access — The database permits spatial query access for multiple user disciplines. All data is
traceable and the data accuracy, uncertainty, and entry time are annotated. 

• Display — Spatial visualization and query tools provide maximum human insight into the data
content using display overlays and 3-D capability.

Ambitious examples of such geospatial systems include the DARPA Terrain Feature Generator, the
European ESPRIT II MultiSource Image Processing System (MuSIP),72,73 and NASA’s Earth Observing
Systems Data and Information System (EOSDIS).74

Figure 4.5 illustrates the most basic functional flow of such a system, partitioning the data integration
(i.e., database generation) function from the scene assessment function. The integration functions spa-
tially registers and links all data to a common spatial reference and also combines some data sets by
mosaicking, creating composite layers, and extracting features to create feature layers. During the inte-
gration step, higher-level spatial reasoning is required to resolve conflicting data and to create derivative
layers from extracted features. The output of this step is a registered, refined, and traceable spatial
database.

The next step is scene assessment, which can be performed for a variety of application functions (e.g.,
further feature extraction, target detection, quantitative assessment, or creation of vector layers) by a
variety of user disciplines. This stage extracts information in the context of the scene, and is generally
query driven. 

Table 4.4 summarizes the major kinds of registration, combination, and reasoning functions that are
performed, illustrating the increasing levels of complexity in each level of spatial processing. Faust
described the general principles for building such a geospatial database, the hierarchy of functions, and
the concept for a blackboard architecture expert system to implement the functions described above.75

4.6.2.1 A Representative Example

The spatial reasoning process can be illustrated by a hypothetical military example that follows the process
an image or intelligence analyst might follow in search of critical mobile targets (CMTs). Consider the
layers of a spatial database illustrated in Figure 4.6, in which recent unmanned air vehicle (UAV) SAR
data (the top data layer) has been registered to all other layers, and the following process is performed
(process steps correspond to path numbers on the figure):

FIGURE 4.5 The spatial data fusion process flow includes the generation of a spatial database and the assessment
of spatial information in the database by multiple users.
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1. A target cueing algorithm searches the SAR imagery for candidate CMT targets, identifying
potential targets in areas within the allowable area of a predefined delimitation mask (Data Layer 2).*

2. Location of a candidate target is used to determine the distance to transportation networks (which
are located in the map Data Layer 3) and to hypothesize feasible paths from the network to the
hide site.

3. The terrain model (Data Layer 8) is inspected along all paths to determine the feasibility that the
CMT could traverse the path. Infeasible path hypotheses are pruned.

4. Remaining feasible paths (on the basis of slope) are then inspected using the multispectral data
(Data Layers 4, 5, 6, and 7). A multispectral classification algorithm is scanned over the feasible

ABLE 4.4 Spatial Data Fusion Functions

Increasing Complexity and Processing

Registration Combination Reasoning

ata Fusion 
Functions

Image registration
Image-to-terrain registration
Orthorectification
Image mosaicking, including 

radiometric balancing and 
feathering

Multitemporal change detection

Multiresolution image sharpening
Multispectral classification of 

registered imagery
Image-to-image cueing
Spatial detection via multiple layers 

of image data
Feature extraction using multilayer 

data

Image-to-image cross layer 
searches

Feature finding: extraction by 
roaming across layers to increase 
detection, recognition, and 
confidence

Context evaluation
Image-to-nonimage cueing (e.g., 

IMINT to SIGINT)
Area delimitation

xamples Coherent radar imagery change 
detection

SPOT™ imagery mosaicking
LANDSAT magnitude change 

detection

Multispectral image sharpening 
using panchromatic image

3-D scene creation from multiple 
spatial sources

Area delimitation to search for 
critical target

Automated map feature extraction
Automated map feature updating

Note: Spatial data fusion functions include a wide variety of registration, combination, and reasoning processes and algorithms.

FIGURE 4.6 Target search example uses multiple layers of spatial data and applies iterative spatial reasoning to
evaluate alternative hypotheses while accumulating evidence for each candidate target.

*This mask is a derived layer produced, by a spatial reasoning process in the scene generation stage, to delimit the
entire search region to only those allowable regions in which a target may reside.
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paths to assess ground load-bearing strength, vegetation cover, and other factors. Evidence is
accumulated for slope and these factors (for each feasible path) to determine a composite path
likelihood. Evidence is combined into a likelihood value and unlikely paths are pruned.

5. Remaining paths are inspected in the recent SAR data (Data Layer 1) for other significant evidence
(e.g., support vehicles along the path, recent clear cut) that can support the hypothesis. Supportive
evidence is accumulated to increase likelihood values.

6. Composite evidence (target likelihood plus likelihood of feasible paths to candidate target hide
location) is then used to make a final target detection decision.

In the example presented in Figure 4.6, the reasoning process followed a spatial search to accumulate
(or discount) evidence about a candidate target. In addition to target detection, similar processes can be
used to

• Insert data in the database (e.g., resolve conflicts between input sources),

• Refine accuracy using data from multiple sources, etc.,

• Monitor subtle changes between existing data and new measurements, and

• Evaluate hypotheses about future actions (e.g., trafficability of paths, likelihood of flooding given
rainfall conditions, and economy of construction alternatives).

4.7 Summary

The fusion of image and spatial data is an important process that promises to achieve new levels of
performance and integration in a variety of application areas. By combining registered data from multiple
sensors or views, and performing intelligent reasoning on the integrated data sets, fusion systems are
beginning to significantly improve the performance of current generation automatic target recognition,
single-sensor imaging, and geospatial data systems.
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5.1  Introduction

Sensor fusion refers to the use of multiple sensor readings to infer a single piece of information. Inputs
may be received from a single sensor over a period of time. They may be received from multiple sensors
of the same or different types. Inputs may be raw data, extracted features, or higher-level decisions. This
process provides increased robustness and accuracy in machine perception. This is conceptually similar
to the use of repeated experiments to establish parameter values using statistics.1 Several reference books
have been published on sensor fusion.2-4

One decomposition of the sensor fusion process is shown in Figure 5.1. Sensor readings are gathered,
preprocessed, compared, and combined, and a final result is derived. An essential preprocessing step for
comparing readings from independent physical sensors is transforming all input data into a common
coordinate system. This is referred to as data registration. In this chapter, we describe data registration,
provide a review of existing methods, and discuss some recent results.

Data registration transformation is often assumed to be known a priori, partially because the problem
is not trivial. Traditional methods are based on methods developed by cartographers. These methods
have a number of drawbacks and often make invalid assumptions concerning the input data.

Although data input includes raw sensor readings, features extracted from sensor data, and higher-
level information, registration is a preprocessing stage and, therefore, is usually applied only to either
raw data or extracted features. Sensor readings can have one to n dimensions. The number of dimensions
will not necessarily be an integer. Most techniques deal with data of two or three dimensions; however,
same approaches can be trivially applied to one-dimensional readings. Depending on the sensing modal-
ities used, occlusion may be a problem with data in more than two dimensions, causing data in the
environment to be obscured by the relative position of objects in the environment. The specific case
studies presented in this chapter use image data in two dimensions and range data in 21/2 dimensions.

This chapter is organized as follows. Section 5.2 gives a formal definition of image registration. Section
5.3 provides a brief survey of existing methods. Section 5.4 discusses meta-heuristic techniques that have
been used for image registration. This includes objective functions for sensor readings with various types
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of noise. Section 5.5 discusses a multiresolution implementation of image registration. Section 5.6
provides a brief summary discussion.

5.2 Registration Problem

Competitive multiple sensor networks consist of a large number of physical sensors providing readings
that are at least partially redundant. The first step in fusing multiple sensor readings is registering them
to a common frame of reference.5 “Registration” refers to finding the correct mapping of one image onto
another. When an inaccurate estimate of the registration is known, finding the exact registration is referred
to as refined registration. Another survey of image registration can be found in Brown.6

As shown in Figure 5.2, the general image registration problem is, given two N-dimensional sensor
readings, find the function F which best maps the reading from sensor two, S2(x1,...,xn) onto the reading
from sensor one, S1(x1,...,xn). Ideally, F(S2(x1,...,xn)) = S1(x1,...,xn). Because all sensor readings contain
some amount of measurement error or noise, the ideal case rarely occurs.

Many processes require that data from one image, called the observed image, be compared with or
mapped to another image, called the reference image. As a result, a wide range of critical applications
depends on image registration. 

Perhaps the largest amount of image registration research is focused on medical imaging. One appli-
cation is sensor fusion to combine outputs from several medical imaging technologies, such as PET and
MRI, to form a more complete image of internal organs.7 Registered images are then used for medical
diagnosis of illness8 and automated control of radiation therapy.9 Similar applications of registered and
fused images are common11 in military applications (e.g. terrain “footprints”),10 remote sensing applica-
tions, and robotics. A novel application is registering portions of images to estimate motion. Descriptions
of motion can then be used to construct intermediate images in television transmissions. Jain and Jain
describe the applications of this to bandwidth reduction in video communications.12 These are some of
the more recent applications that rely on accurate image registration. Methods of image registration have
been studied since the beginning of the field of cartography.

FIGURE 5.1 Decomposition of sensor fusion process.

FIGURE 5.2 Registration is finding the mapping function F(S2).

Gather raw�
data

Preprocess�
data

Compare/�
combine data Report results

Given two images:
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observed image to the reference image:

F = rotate observed image 90 degrees�
and translate image 5 inches in the�
positive y direction.

F(S2) - S1
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5.3 Review of Existing Research

This section discusses the current state of research concerning image registration. Image registration is
a basic problem in image processing, and a large number of methods have been proposed. 

Table 5.1 summarizes the features of representative image registration methods discussed in this
section. The discussion is followed by a detailed discussion of the established methodologies, and algo-
rithms currently in use. Each is explored in more detail in the remainder of the section.

The traditional method of registering two images is an extension of methods used in cartography. A
number of control points are found in both images. The control points are matched, and this match is
used to deduce equations that interpolate all points in the new image to corresponding points in the
reference image.13,14

Several algorithms exist for each phase of this process. Control points must be unique and easily
identified in both images. Control points have been explicitly placed in the image by the experimenter9

and edges have been defined by intensity changes,15 specific points peculiar to a given image,16 line
intersections, center of gravity of closed regions, or points of high curvature.13 The type of control point
that should be used primarily depends on the application and contents of the image. For example, in
medical image processing, the contents of the image and approximate poses are generally known a priori.

Similarly, many methods have been proposed for matching control points in the observed image to
the control points in the reference image. The obvious method is to correlate a template of the observed

TABLE 5.1 Image Registration Methods

Algorithm
Image
Type

Matching 
Method

Interpolation 
Function

Transforms 
Supported Comments

Andrus Boundary maps Correlation None Gruence Noise intolerant, small rotations

Barnea No restriction Improved 
correlation

None Translation No rotation, scaling noise, 
rubber sheet

Barrow No restriction Hill climbing Parametric 
chamfer

Gruence Noise tolerant, small 
displacement

Brooks
Iyengar

No restriction Elitist gen. Alg. None Gruence Noise tolerant, tolerates 
periodicity

Cox Line segments Hill climbing None Gruence Matches using small number of 
features

Davis Specific shapes Relaxation None Affine Matches shapes

Goshtasby 
1986

Control points Various Piecewise 
linear

Rubber sheet Fits images using mapped points

Goshtasby 
1987

Control points Various Piecewise 
cubic

Rubber sheet Fits images using mapped points

Goshtasby 
1988

Control points Various Lease squares Rubber sheet Fits images using mapped points

Jain Sub-images Hill climbing None Translation Small translations, no rotation, 
no noise

Mandara Control points Classic G.A.S.A. Bi-linear Rubber sheet Fits 4 fixed points using error 
fitness

Mitiche Control points Least squares None Affine Uses control points

Oghabian Control points Sequential search Least squares Rubber sheet Assumes small displacement

Pinz Control points Tree search None Affine Difficulty with local minima

Stockman Control points Cluster None Affine Assumes landmarks, periodicity 
problem

Wong Intensity 
differences

Exhaustive search None Affine Uses edges, intense computation
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image.17,18 Another widely used approach is to calculate the transformation matrix, which describes the
mapping with the least square error.11,16,19 Other standard computational methods, such as relaxation
and hill-climbing, have also been used.12,20,21 Pinz et al. use a hill-climbing algorithm to match images
and note the difficulty posed by local minima in the search space; to overcome this, they run a number
of attempts in parallel with different initial conditions.22

Some interesting methods have been implemented that consider all possible transformations. Stock-
man et al. construct vectors between all pairs of control points in an image.10 For each vector in each
image, an affine transformation matrix is computed which converts the vector from the observed image
to one of the vectors from the reference image. These transformations are then plotted, and the region
containing the largest number of correspondences is assumed to contain the correct transformation.10

This method is computationally expensive because it considers the power set of control points in each
image. Wong and Hall match scenes by extracting edges or intensity differences and constructing a tree
of all possible matches that fall below a given error threshold.15 They reduce the amount of computation
needed by stopping all computation concerning a potential matching once the error threshold is exceeded;
however, this method remains computationally intensive. Dai and Khorram extract affine transform
invariant features based on the central moments of regions found in remote sensing images.23 Regions
are defined by zero-crossing points. Similarly, Yang and Cohen describe a moments-based method for
registering images using affine transformations given sets of control points.24 

Registration of multisensor data to a three-dimensional scene, given a knowledge of the contents of
the scene, is discussed by Chellappa.25 The use of an extended Kalman filter (EKF) to register moving
sensors in a sensor fusion problem is discussed by Zhou.26 Mandara and Fitzpatrick have implemented
a very interesting approach8 using simulated annealing and genetic algorithm heuristics to find good
matches between two images. They find a rubber sheet transformation, which fits two images by using
linear interpolation around four control points, and assume that the images match approximately at the
beginning. A similar approach has been espoused by Matsopoulos.27

A number of researchers have used multiresolution methods to prune the search space considered by
their algorithms. Mandara and Fitzpatrick8 use a multiresolution approach to reduce the size of their initial
search space for registering medical images using simulated annealing and genetic algorithms. This work
influenced Oghabian and Todd-Prokopek, who similarly reduced their search space when registering brain
images with small displacements.7 Pinz adjusted both multiresolution scale space and step size in order to
reduce the computational complexity of a hill-climbing registration method.22 These researchers believe
that by starting with low-resolution images, they can reject large numbers of possible matches and find the
correct match by progressively increasing the resolution. Note that in images with a strong periodic com-
ponent, a number of low-resolution matches may be feasible. In such cases, the multiresolution approach
will be unable to prune the search space and, instead, will increase the computational load. Another problem
with a common multiresolution approach, the wavelet transform, is its sensitivity to translation.28

A number of methods have been proposed for fitting the entire image around the control points once
an appropriate match has been found. Simple linear interpolation is computationally straightforward.8

Goshtasby has explored using a weighted least-squares approach,19 constructing piecewise linear inter-
polation functions within triangles defined by the control points,13 and developing piecewise cubic
interpolation functions.29 These methods create nonaffine rubber sheet transformation functions to
attempt to reduce the image distortion caused by either errors in control point matching, or differences
in the sensors that constructed the image.

Several algorithms exist for image registration. The algorithms described have some common draw-
backs. The matching algorithms assume that a small number of distinct features can be matched,10,16,30

that specific shapes are to be matched,31 that no rotation exists, or that the relative displacement is
small.7,8,12,16,17,21 Refer to Table 5.1 for a summary of many of these points.

Choosing a small number of control points is not a trivial problem and has a number of inherent
drawbacks. For example, the control point found may be a product of measurement noise. When two
readings have more than a trivial relative displacement, control points in one image may not exist in the
other image. This requires considering the power set of the control points. When an image contains
©2001 CRC Press LLC



                       
periodic components, control points may not define a unique mapping of the observed image to the
reference image. Additional problems exist. The use of multiresolution cannot always trim the search
space and, if the image is dominated by periodic elements, it will only increase the computational
complexity of an algorithm.7,8,22

Many algorithms attempt to minimize the square error over the image; however, this does not consider
the influence of noise in the image.7,8 Most of the existing methods are sensitive to noise.7,16,17 Section 5.4
discusses meta-heuristics based methods, which try to overcome these drawbacks. Section 5.5 discusses
a multiresolution approach.

5.4 Registration Using Meta-Heuristics

This section discusses research on automatically finding a gruence (i.e., translation and rotation) registering
two overlapping images. Results from this research have previously been presented in a number of sources.2,32-35 
This approach attempts to correctly calibrate two two-dimensional sensor readings with identical geome-
tries. These assumptions about the sensors can be made without a loss of generality because 

• A method that works for two readings can be extended to register any number of readings sequentially. 

• The majority of sensors work in one or two dimensions. Extensions of calibration methods to
more dimensions is desirable, but not imperative. 

• Calibration of two sensors presupposes known sensor geometry. If geometries are known, a
function can be derived that maps the readings as if the geometries were identical when a regis-
tration is given.

This approach finds gruences because these functions best represent the most common class of
problems. The approach used can be directly extended to include the class of all affine transformations
by adding scaling transformations.36 It does not consider “rubber sheet” transformations that warp the
contents of the image because these transformations mainly correct local effects after use of an affine
transformation correctly matches the images.14 It assumes that any rubber sheet deformations of the
sensor image are known and corrected before the mapping function is applied, or that their effects over
the image intersections are negligible.

The computational examples used pertain to two sensors returning two-dimensional gray scale data
from the same environment. The amount of noise and the relative positions of the two sensors are not
known. Sensor two is translated and rotated by an unknown amount with relation to sensor one.

If the size or content of the overlapping areas is known, a correlation using the contents of the overlap
on the two images could find the point where they overlap directly. Use of central moments could also
find relative rotation of the readings. When the size or content of the areas is unavailable, this approach
is impossible.

In this work, the two sensors have identical geometric characteristics. They return readings covering
a circular region, and these readings overlap. Both sensors’ readings contain noise. What is not known,
however, is the relative positions of the two sensors. Sensor two is translated and rotated by an unknown
amount with relation to sensor one.

The best way to solve this problem depends on the nature of the terrain being observed. If unique
landmarks can be identified in both images, those points can be used as control points. Depending on
the number of landmarks available, minor adjustments may be needed to fit the readings exactly.
Goshtasby’s methods could be used at that point.13,19,29

Thus, the problem to be solved is, given noisy gray scale data readings from sensor one and sensor
two, find the optimal set of parameters (x-displacement, y-displacement, and angle of rotation) that
defines the center of the sensor two image relative to the center of the sensor one image. These parameters
would provide the optimal mapping of sensor two readings to the readings from sensor one. This can
be done using meta-heuristics for optimization. Brooks describes implementations of genetic algorithms,
simulated annealing, and tabu search for this problem.2 Chen applies TRUST, a subenergy tunneling
approach from Oak Ridge National Laboratories.35
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To measure optimality, a fitness function can be used. The fitness function provides a numerical
measure of the goodness of a proposed answer to the registration problem. Brooks derives a fitness
function for sensor readings corrupted with Gaussian noise:2

where
w is a point in the search space
K(W) is the number of pixels in the overlap for w
(x ′,y ′) is the point corresponding to (x,y) 
read1(x,y)read2(x ′,y ′) is the pixel value returned by sensor 1 (2) at point (x,y) (x ′,y ′ )
gray1(x,y)gray2(x ′,y ′) is the noiseless value for sensor 1 (2) at (x,y) (x ′,y ′ )
noise1(x,y)noise2(x ′,y ′) is the noise in the sensor 1 (2) reading at (x,y) (x ′,y ′ )

The equation is derived by separating the sensor reading into information and additive noise compo-
nents. This means the fitness function is made up of two components: (a) lack of fit, and (b) stochastic
noise. The lack of fit component has a unique minimum when the two images have the same gray scale
values in the overlap (i.e., when they are correctly registered). The noise component follows a Chi-squared
distribution, whose expected value is proportional to the number of pixels in the region where the two
sensor readings intersect. Dividing the difference squared by the cardinality of the overlap, makes the
expected value of the noise factor constant. Dividing by the cardinality squared favors large intersections.
For a more detailed explanation of this derivation, see Brooks.2

Other noise models simply modify the fitness function. Another common noise model addresses salt-
and-pepper noise typically caused by either malfunctioning pixels in electronic cameras or dust in optical
systems. In this model, the correct gray-scale value in a picture is replaced by a value of 0 (255) with an
unknown probability p(q). An appropriate fitness function for this type of noise is Equation 5.2.

(5.2)

A similar function can be derived for uniform noise by using the expected value E[(U1 – U2)2] of the
squared difference of two uniform variables U1 and U2. An appropriate fitness function is then given by

(5.3)

Figure 5.3 shows the best fitness function value found by simulated annealing, elitist genetic algorithms,
classic genetic algorithms, and tabu search versus the number of iterations performed. In Brooks, elitist
genetic algorithms out-perform the other methods attempted. Further work by Chen indicates that
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TRUST is more efficient than the elitist genetic algorithms.35 These studies show that optimization
techniques can work well on the problem, even in the presence of large amounts of noise. This is surprising
because the fitness functions take the difference of noise-corrupted data — essentially a derivative.
Derivatives are sensitive to noise. Further inspection of the fitness functions explains this surprising
result. Summing over the area of intersection is equivalent to integrating over the area of intersection.
Implicitly, integrating counteracts the derivative’s magnification of noise.

Matsopoulos uses affine, b-linear, and projective transformations to register medical images of the
retina.27 The techniques tested include genetic algorithms, simulated annealing, and the downhill simplex
method. They use image correlation as a fitness function. For their application, much preprocessing is
necessary, which removes sensor noise. Their results indicate the superiority of genetic algorithms for
automated image registration. This is consistent with Brooks’ results.2,34 

5.5 Wavelet-Based Registration of Range Images

This section uses range sensor readings. More details are provided by Grewe.39 Range images consist of
pixels with values corresponding to range or depth rather than photometric information. The range
image represents a perspective of a three-dimensional world. The registration approach described herein
can be trivially applied to other kinds of images, including one-dimensional readings. If desired, the
approaches described by Brooks2,34 and Chen35 can be directly extended to include the class of all affine
transformations by adding scaling transformations. This section discusses an approach for finding these
transformations. 

The approach uses a multiresolution technique, the wavelet transform, to extract features used to
register images. Other researchers have also applied wavelets to this problem, including using locally
maximum wavelet coefficient values as features from two images.37 The centroids of these features are
used to compute the translation offset between the two images. A principle components analysis is then
performed and the eigenvectors of the covariance matrix provide an orthogonal reference system for
computing the rotation between the two images. (This use of a simple centroid difference is subject to
difficulties when the scenes only partially overlap and, hence, contain many other features.) 

In another example, the wavelet transform is used to obtain a complexity index for two images.38 The
complexity measure is used to determine the amount of compression appropriate for the image. Com-
pression is then performed, yielding a small number of control points. The images, made up of control
points for rotations, are tested to determine the best fit.

The system described in Grewe39 is similar to some of the previous work discussed. Similar to DeVore,38

Grewe uses wavelets to compress the amount of data used in registration. Unlike previous wavelet-based
systems prescribed by Sharman37 and DeVore,38 Grewe’s39 capitalizes on the hierarchical nature of the
wavelet domain to further reduce the amount of data used in registration. Options exist to perform a
hierarchical search or simply to perform registration inside one wavelet decomposition level. Other system
options include specifying an initial registration estimate, if known, and the choice of the wavelet

FIGURE 5.3 Fitness function results variance 1.
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decomposition level in which to perform or start registration. At higher decomposition levels, the amount
of data is significantly reduced, but the resulting registration will be approximate. At lower decomposition
levels, the amount of data is reduced to a lesser extent, but the resulting registration is more exact. This
allows the user to choose between accuracy and speed as necessary. 

Figure 5.4 shows a block diagram of the system. It consists of a number of phases, beginning with the
transformation of the range image data to the wavelet domain. Registration can be performed on only
one decomposition level of this space to reduce registration complexity. Alternately, a hierarchical reg-
istration across multiple levels will extract features from a wavelet decomposition level as a function of
a number of user-selected parameters, which determine the amount of compression desired in the level.
Matching features from the two range images are used to hypothesize the transformation between the
two images and are evaluated. The “best” transformations are retained. This process is explained in the
following paragraphs.

First, a Daubechies-4 wavelet transform is applied to each range image. The wavelet data is compressed
by thresholding the data to eliminate low magnitude wavelet coefficients. The wavelet transform produces
a series of 3-D edge maps at different resolutions. A maximal wavelet value indicates a relatively sharp
change in depth.

Features, special points of interest in the wavelet domain, are simply points of maximum value in the
current wavelet decomposition level under examination. These points are selected so that no two points
are close to each other. The minimum distance is scaled with the changing wavelet level under exami-
nation. Figure 5.5 shows features detected for different range scenes at different wavelet levels. Notice
how these correspond to points of sharp change in depth. 

Using a small number of feature points allows this approach to overcome the wavelets transform’s
sensitivity to translation. Stone28 proposed another method for overcoming the sensitivity to translation.
Stone noted that the low-pass portions of the wavelet transform are less sensitive to translation and that
coarse to fine registration of images using the wavelet transform should be robust.

The next stage involves hypothesizing correspondences between features extracted from the two unreg-
istered range images. Each hypothesis represents a possible registration and is subsequently evaluated for
its goodness. Registrations are compared and the best retained. 

Hypothesis formation begins at a default wavelet decomposition level. Registrations retained at this
level are further “refined” at the next lower level, L-1. This process continues until the lowest level in the
wavelet space is reached. 

For each hypothesis, the corresponding geometric transformation relating the matched features is
calculated, and the remaining features from one range image are transformed into the other’s space. This

FIGURE 5.4 Block diagram of WaveReg system.

Range Data

Retained Registrations

Range Data

Wavelet�
Transform

Wavelet�
Transform

Registration Hypothesis & Test

Hierarchical Registration

next level next level

Feature�
Extraction

Feature�
Extraction
©2001 CRC Press LLC



greatly reduces the computation involved in hypothesis evaluation in comparison to those systems that
perform non-feature-based registration. Next, features not part of the hypothesis are compared. Two
features match if they are close in value and location. Hypotheses are ranked by the number of features
matched and how closely the features match. Examples are given in Figure 5.6.

5.6 Registration Assistance/Preprocessing

All of the registration techniques discussed herein operate on the basic premise that there is identical
content in the data sets being compared. However, the difficulty in registration pertains to the fact that

FIGURE 5.5 Features detected, approximate location indicated by white squares: (a) for wavelet Level 2 and (b)
for wavelet Level 1.

FIGURE 5.6 (a) Features extracted Level 1, Image 1, (b) Features extracted Level 1, Image 2, (c) Merged via
averaging registered images, (d) Merged via subtraction of registered images.
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the content is the same semantically, but often not numerically. For example, sensor readings taken at
different times of the day can lead to lighting changes that can significantly alter the underlying data
values. Also, weather changes can lead to significant changes in data sets. Registration of these kinds of
data sets can be improved by first preprocessing the data. Figure 5.7 shows some preliminary work by
Grewe40 on the process of altering one image to appear more like another image in terms of photometric
values. Such systems may improve registration systems of the future.

5.7 Conclusion 

Addressing the data registration problem is an essential preprocessing step in multisensor fusion. Data
from multiple sensors must be transformed onto a common coordinate system. This chapter provided
a survey of existing methods, including methods for finding registrations and applying registrations to
data after they have been found. In addition, example approaches were described in detail.

Brooks2 and Chen35 detail meta-heuristic-based optimization methods that can be applied to raw data.
Of these methods, TRUST, a new meta-heuristic from Oak Ridge National Laboratories, is the most
promising. Fitness functions have been given for readings corrupted with Gaussian, uniform, and salt-
and-pepper noise. Because these methods use raw data, they are computationally intensive.

Grewe39 presents a wavelet-based approach to registering range data. Features are extracted from the
wavelet domain. A feedback approach is then applied to search for good registrations. Use of the wavelet
domain compresses the amount of data that must be considered, providing for increased computational
efficiency. Drawbacks to using feature-based methods have also been discussed in the chapter.
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6.1 Introduction

This chapter offers a conceptual-level view of the data fusion process and discusses key principles
associated with both data analysis and information combination. The discussion begins with a high-level
view of data fusion requirements and analysis options. Although the discussion focuses on tactical
situation awareness development, a much wider range of applications exists for this technology.

After motivating the concepts behind effective information combination and decision making through
a series of easily understood metaphors, the chapter

• Presents a top-down view of the data fusion process,

• Discusses the inherent complexities of combining uncertain, erroneous, and fragmentary information,

• Offers a taxonomic approach for distinguishing classes of fusion algorithms, and

• Identifies key algorithm requirements for practical and effective machine-based reasoning.

6.1.1 Biological Fusion Metaphor

Multiple sensory fusion in biological systems provides a natural metaphor for studying artificial data
fusion systems. As with any good metaphor, consideration of a simpler or more familiar phenomenon
can provide valuable insight into the study of a more complex or less familiar process.

Richard Antony
VGS Inc.
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Even the most primitive animals sense their environment, develop some level of situation awareness,
and react to the acquired information. Situation awareness directly supports survival of the species by
assisting in the acquisition of food and the avoidance of animals of prey. A barn owl, for instance, fuses
visual and auditory information to help accurately locate mice under very low light conditions, while a
mouse responds to threatening visual and auditory cues to attempt to avoid being caught by an owl.

In general, natural selection has tended to favor the development of more capable senses (sensors)
and more effective utilization of the derived information (exploitation and fusion). Color vision in
humans, for instance, is believed to have been a natural adaptation that permitted apes to more easily
locate ripe fruit among vegetation. Situation awareness in animals can rely on a single, highly developed
sense, or on multiple, often less capable senses. A hawk depends principally on a highly acute visual
search and tracking capability, while a shark primarily relies on its sense of smell when hunting. Sexual
attraction can depend primarily on sight (plumage), smell (pheromones), or sound (mating call). For
humans, sight is arguably the most vital sense, with hearing a close second. Dogs, on the other hand,
rely most heavily on the senses of smell and hearing, with vision typically acting as a secondary infor-
mation source.

Sensory input in biological organisms typically supports both sensory cueing and situation awareness
development. Sounds cue the visual sense to the presence and the general direction of an important
event. Information gained by the aural sense (i.e., direction, speed, and tentative object classification) is
then combined (fused) with the information gathered by the visual system to produce more complete,
higher confidence, or higher level situation awareness. In many cases, multiple sensory fusion can be
critical to successful decision making. Food that looks appetizing (sight) might be extremely salty (taste),
spoiled (smell), or too hot (touch). At the other extreme, fusion of multiple sensory input might be
unnecessary if the various senses provide highly redundant information. Bacon frying in a pan need not
be seen, smelled, and tasted to be positively identified; each sense, taken separately, could perform such
a function.

Although discarding apparently redundant information may seem to be prudent, such information
can aid in sorting out conflicts, both intentional (deception) and unintentional (confusion). While single-
source deception is reasonably straightforward to perpetrate, deception across multiple senses (sensor
modalities) is considerably more difficult. For example, successful hunting and fishing depend, to a large
degree, on effective multisource deception. Duck hunters use both visual decoys and mating calls to
simultaneously provide deceptive visual and auditory information. Because deer can sense danger through
the sense of smell, sound, and sight, the shrewd hunter must mask his scent (or stay down-wind), make
little or no noise, and remain motionless if the deer looks in his direction. Even in nonadversarial
applications, data fusion requires resolution of unintentional conflicts among supporting data sources
in order to deal effectively with the inherent uncertainty in both the measurement and decision spaces.

Multiple sensory fusion need not be restricted to the familiar five senses of sight, sound, smell, taste, and
touch. Internal signals, such as acidity of the stomach, coupled with visual and/or olfactory cues, can trigger
hunger pains. The fusion of vision, inner-ear balance information, and muscle feedback signals facilitate
motor control. In a similar manner, measurement and signature intelligence (MASINT) in a tactical appli-
cation focuses on the collection and analysis of a wide range of nontraditional information classes.

6.1.2 Command and Control Metaphor

The game of chess provides a literal metaphor for military command and control (C2), as well as an
abstract metaphor for any system that senses and reacts to its environment. Both chess players and
battlefield commanders require a clear picture of the “playing field” to properly evaluate the options
available to them and their opponents. In both chess and C2, opposing players command numerous
individual resources (i.e., pieces or units) that possess a range of characteristics and capabilities. Resources
and strategies vary over time. Groups of chess pieces are analogous to higher-level organizations on the
battlefield. The chessboard represents domain constraints to movement that are similar to constraints
posed by terrain, weather, logistics, and other features of the military problem domain. Player-specific
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strategies are analogous to tactics, while legal moves represent established doctrine. In both domains,
the overall objective of an opponent may be known, while specific tactics and subgoals must be deduced.

Despite a chess player’s complete knowledge of the chess board (all domain constraints), the location
of all pieces (own and opponent-force locations), and all legal moves (own and opponent-force doctrine),
and his ability to exercise direct control over all of his own assets, chess remains a highly challenging
game. Metaphorically similar to chess, tactical situation development has numerous domain character-
istics that make it an even more challenging problem.

First, battlefield commanders normally possess neither a complete nor fully accurate picture of their
own forces or those of their adversaries. Forced to deal with incomplete and inaccurate force structure
knowledge, as well as location uncertainty, chess players would be reduced to guessing the location and
composition of an adversary’s pieces, somewhat akin to playing “Battleship,” the popular children’s game.

Second, individual sensors provide only limited observables, coverage, resolution, and accuracy. Thus,
the analysis of individual sensor reports tend to lead to ambiguous and rather local interpretations. Third,
domain constraints in tactical situation awareness are considerably more complex than the well-struc-
tured (and level) playing field in chess. Fourth, doctrinal knowledge in the tactical domain tends to be
more difficult to exploit effectively and far less reliable that its counterpart in chess.

A wide range of other application-motivated metaphors can also be useful for studying specific fusion
applications. Data fusion, for example, seems destined to play a significant role in the development of
future “smart highway” control systems where a simple car driving metaphor can be applied to study
sensor requirements and fusion opportunities. The underpinning of such a system is a sophisticated control
capability that optimally resolves a range of conflicting requirements, such as (1) expedite the movement
of both local and long distance traffic, (2) ensure maximum safety for all vehicles, and (3) create the
minimum environmental impact. The actors in the metaphor are drivers (or automated vehicle control
systems), the rules of the game are the “rules of the road,” and domain constraints are the road network
and traffic control means. Individual players possess individualized objectives and tactics; road charac-
teristics and vehicle performance capabilities provide physical constraints on the problem solution.

6.1.3 Puzzle-Solving Metaphor

Situation awareness development requires the production and maintenance of an adequate multiple level-
of-abstraction picture of a (dynamic) situation; therefore, the data fusion process can be compared to
assembling a complex jigsaw puzzle for which no picture of the completed scene exists. While assembling
puzzles that contain hundreds of pieces (information fragments) can challenge an individual’s skill and
patience, the production of a comprehensive situational picture, created by fusing disparate and frag-
mentary sensor-derived information, represents an even more challenging task. Although a completed
jigsaw puzzle represents a fixed scene, the process of collecting and integrating the numerous information
fragments clearly evolves over time. Time, on the other hand, represents a key dimension in highly
dynamic tactical situation awareness applications.

The partially completed puzzle (fused situation awareness product) illustrated in Figure 6.1 contains
numerous aggregate objects (i.e., forest and meadow), each composed of simpler objects (i.e., trees and
ground cover). Each of these objects, in turn, have been assembled from multiple puzzle pieces, some
representing a section of bark on a single tree trunk, others a grassy area associated with a meadow. In
terms of the metaphor then, sensor-derived information can be associated with individual puzzle pieces,
providing little more information than color and texture, as well as pieces that depict higher level of
abstraction objects.

At the beginning of the reconstruction process, problem solving necessarily relies on general analysis
strategies (e.g., locate border pieces). Because little context exists to direct either puzzle piece selection
or puzzle piece placement, at the early stages of the process, rather simple, brute-force pattern matching
strategies are needed. A predominately blue-colored piece, for example, might represent either sky or
water with little basis for distinguishing between the two interpretations. Unless they came from an
unopened box, there may be no assurance that the scattered pieces on the table all belong in the puzzle
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under construction. However, once certain sections of the puzzle have been filled in, the assembly process
(fusion) tends to become much more goal-directed.

Fitting a single puzzle piece supports both scene entropy reduction as well as higher level-of-abstraction
scene interpretation. As regions of the puzzle begin to take form, identifiable features in the scene emerge
(e.g., trees, grass, and cliffs) and higher-level interpretations can be developed (e.g., forest, meadows, and
mountains). By supporting the placement of the individual pieces, as well as the goal-driven search (sensor
resource management) for specific pieces, the context provided by the developing multiple level-of-
abstraction picture of the scene (situation awareness product) helps further focus the reconstruction
process (fusion process optimization).

Just as duplicate or erroneous pieces can significantly complicate puzzle assembly, redundant and
irrelevant sensor-derived information similarly burdens machine-based situation development. There-
fore, goal-directed information collection offers a two-fold benefit: critical information requirements are
satisfied and the collection (and subsequent analysis) of unnecessary information is minimized. Although
numerous puzzle pieces may be yet unplaced (undetected objects) and perhaps some pieces are actually
missing (information not collectible by the available sensor suite), a reasonably comprehensive, multiple
level-of-abstraction understanding of the overall scene (situation awareness) gradually emerges.

Three broad classes of knowledge are apparent in the puzzle reconstruction metaphor:

• Individual puzzle pieces — collected information fragments, i.e., sensor-derived knowledge,

• Puzzle-solving strategies, such as edge detection and pattern matching — a priori reasoning
knowledge

• World knowledge, such as the relationship between meadows and grass — domain context knowledge.

To investigate the critical role that each knowledge form plays in fusion product development, recast
the analysis in terms of a building construction metaphor. Puzzle pieces (sensor input) are clearly the
building blocks required to assemble the scene (fused situation awareness product). A priori reasoning
knowledge represents construction knowledge and skills, and context provides the nails and mortar that
“glue” the sensor input together to form a coherent whole. When too many puzzle pieces (or building
blocks) are missing (inadequate sensor-derived information), scene reconstruction (or building construc-
tion) becomes difficult or impossible.

FIGURE 6.1 Puzzle-solving metaphor example.
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A simple example demonstrates how both the complexity of the fusion process and the quality of the
resultant product are sensitive to the availability of adequate information. Figure 6.2(a) illustrates a cluster
of azimuth and elevation measurements associated with two separate groups of air targets. Given the
spatial overlap between the data sets, reliable target-to-group assignment may not be possible, regardless
of the selected analysis paradigm or the extent of algorithm training. However, with the addition of range
measurements (increased measurement space dimensionality), two easily separable clusters become readily
apparent (Figure 6.2(b)). Because the information content of the original 2-D data set was fundamentally
inadequate, even sophisticated clustering algorithms would be unable to discriminate between the two
target groups. However, with the addition of the third measurement dimension, a simple clustering
algorithm easily handles the decision task.

 Reasoning knowledge can be implemented using a spectrum of problem solving paradigms (e.g., rules,
procedures, and statistical-based algorithms), evidence combination strategies (e.g., Bayes, Dempster-
Shafer, and fuzzy set theory), and decision-making approaches (e.g., rule instantiation and parametric
algorithms). In general, the process of solving a complex puzzle (or performing automated situation
awareness) benefits from both bottom-up (deductive-based) and top-down (goal-directed) reasoning
that exploits relationships among the hierarchy of domain entities (i.e., primitive, composite, aggregate,
and organizational).

In the puzzle-solving metaphor, context knowledge refers to relevant domain knowledge not explicitly
contained within a puzzle piece (non-sensor-derived knowledge). Humans routinely apply a wide range
of contextual knowledge during analysis and decision making.* For example, context-sensitive evaluation
of Figure 6.1 permits the determination that the picture is a summer scene in the western U.S. The season
and location are deduced from the presence of deciduous trees in full leaf (summer) in the foreground
and jagged snow-capped mountain peaks in the distance (western U.S.). In a similar fashion, the exploi-
tation of context knowledge in automated fusion systems can promote much more effective and com-
prehensive interpretations of sensor-derived information.

In both puzzle assembly and automated situation development, determining when an adequate situ-
ation representation has been achieved can be difficult. In the puzzle reconstruction problem, although
the general landscape characteristics might be evident, missing puzzle pieces could depict denizens of
the woodland community that can be hypothesized, but for which no compelling evidence yet exists.
On the other hand, individual puzzle pieces might contain partial or ambiguous information. For

FIGURE 6.2 (a) Two-dimensional measurements and (b) the corresponding three-dimensional measurement
space.

* This fact partially accounts for the disparity in performance between manual and automated approaches to data
fusion.
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example, the presence of a section of log wall in the evolving scene suggests the possibility of a log cabin.
However, additional evidence is required to validate such a hypothesis.

6.1.4 Evidence Combination

Reliance on a single information source can lead to ambiguous, uncertain, and inaccurate situation
awareness. Data fusion seeks to overcome such limitations by synergistically combining all relevant (and
available) information sources leading to the generation of consistent, accurate, comprehensive, and
global situation awareness. A famous poem by John Godfrey Saxe,* written more than a century ago,
aptly demonstrates both the need for and challenge of effectively combining fragmentary information.

The poem describes an attempt by six blind men to gain a first-hand understanding of an elephant.
The first man happens to approach the elephant from the side and surmises that an elephant must be
something like a wall. The second man touches the tusk and imagines an elephant to be like a spear. The
third man approaches the trunk and decides an elephant is similar to a snake. The fourth man reaches
out and touches a leg and determines an elephant to be much like a tree. The fifth man chances to touch
an ear and imagines an elephant must be like a fan. The sixth man grabs the tail and concludes an
elephant is similar to a rope. While each man’s assessment is entirely consistent within his own limited
sensory space and myopic frame of reference, unless the six observations are effectively integrated (fused),
a true picture of an elephant fails to emerge.

Among other insights, the puzzle-solving metaphor illustrated that (1) complex dependencies can
exist among and between information fragments and the completed situation description, and
(2) determining whether an individual puzzle piece actually belongs to the scene being assembled can
be difficult. Even when the collected information is known to be relevant, based strictly on local inter-
pretations, determining whether a given blue-colored piece represents sky, water, or some other feature
class may not be possible. Much like assembling observations, hunting for clues, and evaluating motives
required during criminal investigations, a similar approach to information combination is required by
general situation awareness systems. Just as at the outset of a criminal investigation, a single strand of
hair might appear insignificant, but it could later prove to be the key piece of evidence that discriminates
among several suspects. Similarly, a seemingly irrelevant piece of sensor-derived information might
ultimately link observations with motives, or provide other significant situational awareness benefits.
Thus, not only is the information content (information measure) associated with a given piece of data
important; its relationship to the overall fusion task is also vital to achieving successful information
fusion. As a direct consequence of this observation, the development of a comprehensive information
theoretical framework for the data fusion process appears to be problematic. Only through a top-down,
holistic treatment of the analysis task can the content of a single information fragment be properly
assessed and its true value to the overall fusion process be fully realized.

6.1.5 Information Requirements

Because no widely accepted formal theory exists for determining when adequate information has been
assembled to support a given fusion task, empirical measures of performance generally must be relied
upon to evaluate the effectiveness of both individual fusion algorithms and an overall fusion system. In
general, data fusion performance can be enhanced by

• Technical improvements in sensor measurements (i.e., longer range, higher resolution, improved
signal-to-noise ratio, better accuracy, higher reliability);

• Increased measurement space dimensionality afforded by heterogeneous sensors that provide at
least partially independent information;

* Saxe, J. G., “The Blind Man and the Elephant,” The Poetical Works of John Godfrey Saxe, Boston, MA: Houghton,
Mifflin and Company, 1882.
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• Spatially distributed sensors providing improved coverage, perspective, and measurement reliability;

• Relevant non-sensor-derived domain knowledge to constrain the information combination and
decision-making process.

In general, effective data fusion automation requires the development of robust, context-sensitive
algorithms that are practical to implement. The first two requirements reflect the “quality of performance”
of the algorithm, while the latter reflects cost/benefit tradeoffs associated with meeting a wide range of
implicit and explicit performance objectives. In general, robust performance argues for the use of all
potentially relevant sensor-derived information sources and reasoning knowledge. Achieving context-
sensitive performance argues for maximal utilization of relevant non-sensor-derived information. On the
other hand, to be practical to implement and efficient enough to employ in an operational setting, the
algorithms may need to compromise some fusion performance quality. Consequently, system developers
must quantify or otherwise assess the value of these various information sources in light of system
requirements, moderated by programmatic, budgetary, and performance constraints (e.g., decision time-
line and hardware capability). The interplay between achieving optimal algorithm robustness and context-
sensitivity, on the one hand, and a practical implementation, on the other, is a fundamental tension
associated with virtually any form of machine-based reasoning directed at solving complex, real-world
problems.

6.1.6 Problem Dimensionality

Effective situational awareness, with or without intentional deception, generally benefits from the col-
lection and analysis of a wide range of observables. As a result of the dynamic nature of many problem
domains, observables can change with time and, in some cases, may require continuous monitoring. In
a tactical application, objects of interest can be stationary (fixed or currently nonmoving), quasistationary
(highly localized motion), or moving. Individual objects possess characteristics that constrain their behav-
ior. Objects emit different forms of electromagnetic energy that vary with time and can indicate the state
of the object. Object emissions include intentional or active emissions, such as radar, communications,
and data link signals, as well as unintentional or passive emissions, such as acoustic, magnetic, or thermal
signatures generated by internal heat sources or environmental loading. Patterns of physical objects and
their behavior provide indications of organization, tactics, and intent. Patterns of emissions, both active
and passive, can reveal the same. For example, a sequence of signals emitted from a surface-to-air missile
radar over time representing search, lock-on, launch, and hand-over clearly indicates hostile intent.

A single sensor modality is incapable of measuring all relevant information dimensions; therefore,
multiple sensor classes often must be relied upon to detect, track, classify, and infer the likely intent of
a host of objects, from submarines and surface vessels, to land, air, and space-based objects. Certain
sensor classes lend themselves to surveillance applications, providing both wide-area and long-range
coverage, and readily automated target detection capability. Examples of such sensor classes include
signals intelligence (SIGINT) for collecting active emissions, moving target indication (MTI) radar for
detecting and tracking moving targets against a high clutter background, and synthetic aperture radar
(SAR) for detecting stationary targets. Appropriately cued, other sensor classes that possess narrower
fields of view and that typically operate at much shorter ranges may be capable of providing higher
fidelity measurement to support refined analysis. Geospatial and other intelligence databases can provide
the static domain context within which the target-sensed data must be interpreted, while environmental
sensors generate dynamic context estimates, such as weather and current atmospheric conditions.

6.1.7 Commensurate and Noncommensurate Data

Although the fusion of similar (commensurate) information would seem to be more straightforward
than the fusion of dissimilar (noncommensurate) information, that is not always the case. Three examples
are offered to highlight the varying degrees of difficulty associated with the combination of multiple-
source data. First, consider the relative simplicity of fusing registered electronic intelligence (ELINT) data
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and real-time synthetic aperture radar (SAR) imagery. Although these sensors measure dramatically
different information dimensions, both sources provide reasonably wide area coverage, relatively good
geolocation, and highly complementary information. As a consequence, the fusion process tends to be
straightforward. Even when an ELINT sensor provides little more than target line-of-bearing, the ELINT
and SAR measurements can potentially be combined by simply overlaying the two data sets. If the line-
of-bearing intercepts a single piece of equipment in the SAR image, the radar system class, as well as its
precise location, would be known. This information, in turn, can support the identification of other
nearby objects in the image (e.g., missile launchers normally associated with track-while-scan radar).

At the other end of the spectrum, the fusion of information from two or more identical sensors can
present a significant challenge. Consider, for example, fusing data sets obtained from spatially separated
forward-looking infrared (FLIR) radars. Although FLIR imagery provides good azimuth and elevation
resolution, it does not directly measure range. Because the range and view angles to targets will be different
for multiple sensors, combining such data sets demands sophisticated registration and normalization.

Finally, consider the fusion of two bore-sited sensors: light-intensified and forward-looking infrared
(FLIR). The former device amplifies low intensity optical images to enhance night vision. When coupled
with the human’s natural ability to separate moving objects from the relatively stationary background, such
devices permit visualization of the environment and detection of both stationary and moving objects.
However, such devices offer limited capability for the detection of stationary personnel and equipment
located in deep shadows or under extremely low ambient light levels (e.g., heavy cloud cover, no moon, or
inside buildings). Rather than detecting reflected energy, FLIR devices detect thermal radiation from objects.
Consequently, these devices support the detection of humans, vehicles, and operating equipment based on
their higher temperature relative to the background. Consequently, with bore-sighted sensors, pixel-by-pixel
combination of the two separate images may be feasible, providing a highly effective night vision capability.

6.2 Biologically Motivated Fusion Process Model

A hierarchically organized functional-level model of data fusion is presented in Chapter 2. In contrast,
this section focuses on a process-level model. While the functional model describes what analysis functions
or processes need to be performed, a process-level model describes at a high level of abstraction how
this analysis is accomplished.

The goal of data fusion, as well as most other forms of data processing, is to turn data into useful
information. In perhaps the simplest possible view, all of the required information is assumed to be
present within a set of sensor measurements. Thus, the role of data fusion is extraction of information
embedded in a data set (separating the wheat from the chaff). In this case, fusion algorithms can be
characterized as a function of

• Observables

• Current situation description (e.g., target track files and current situation description)

• A priori declarative knowledge (e.g., distribution functions, templates, constraint sets, filters, and
decision threshold values).

As shown in Figure 6.3(a), the fusion process output provides updates to the situation description, as
well as feedback to the reasoning knowledge base to support knowledge refinement (learning).

Signal processing, statistical hypothesis testing, target localization performed by intersecting two
independently derived error ellipses, and target identification based on correlation of an image with a
set of rigid templates are simple examples of such a fusion model. In general, this “information extraction”
view of data fusion makes a number of unstated, simplifying assumptions including the existence of

• Adequate information content in the sensor observables

• Adequate sensor update rates

• Homogeneous sensor data
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• Relatively small number of readily distinguishable targets

• Relatively high resolution sensors

• High reliability sensors

• Full sensor coverage of the area of interest

• Stationary, Gaussian random interference.

When such assumptions are appropriate, data analysis tends to be straightforward and an “information
extraction” fusion model is adequate. Rigid template-match paradigms typically perform well when a
set of observables closely matches a single template and are uncorrelated with the balance of the templates.
Track association algorithms perform well against a small number of moving, widely spaced targets
provided the radar generates relatively high update rates. The combination of similar features is often
more straightforward than the combination of disparate features. When the sensor data possesses ade-
quate information content, high confidence analysis is possible. High signal-to-noise ratios tend to
enhance signal detection. High resolution sensors reduce ambiguity and uncertainty with respect to
feature measurements (e.g., location and frequency). High reliability sensors maximize sensor availability.
Adequate sensor coverage provides a “complete” view of the areas of interest. Statistical-based reasoning
is generally simplified when signal interference can be modeled as a Gaussian random process.

Typical applications where such assumptions are realistic, include

• Track assignment in low target-density environments or for ballistic targets that obey well-estab-
lished physical laws of motion

• Classification of military organizations based on associated radio types

• Detection of signals and targets exhibiting high signal-to-background ratio.

However, numerous real-world data fusion tasks exhibit one or more of the following complexities:

• Large number of target and nontarget entities (e.g., garbage trucks may be nearly indistinguishable
from armored personnel carriers);

• Within-class variability of individual targets (e.g., hatch open vs. hatch closed);

FIGURE 6.3 (a) Basic fusion process model and (b) generalized process model.
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• Low data rates (exacerbating track association problems);

• Multiple sensor classes (disparate numeric and symbolic observables can be difficult to combine);

• Inadequate sensor coverage of areas of interest (i.e., inadequate number of sensors, obscuration
due to terrain and foliage, radio frequency interference, weather, or counter measures);

• Inadequate set of sensor observables (e.g., inadequate input space dimensionality);

• Inadequate sensor resolution;

• Registration and measurement errors;

• Inadequate a priori statistical knowledge (e.g., unknown prior and conditional probabilities, mul-
timodal density functions, or non-Gaussian and nonstationary statistics);

• Processing and communication latencies;

• High level-of-abstraction analysis product required (i.e., not merely platform location and iden-
tification);

• Complex propagation phenomenon (i.e., multipath, diffraction, or atmospheric attenuation);

• Purposefully deceptive behavior.

When such complexities exist, sensor-derived information tends to be incomplete, ambiguous, erro-
neous, and difficult to combine and/or abstract. Thus, a data fusion process that relies on rigid compo-
sition among (1) the observables, (2) the current situation description, and (3) a set of rigid templates
or filters, tends to be fundamentally inadequate.

As stated earlier, rather than simply “extracting” information from sensor-derived data, effective data
fusion requires the combination, consolidation, organization, and abstraction of information. Such
analysis can enhance the fusion product, its confidence, and its ultimate utility in at least four ways:

1. Existing sensors can be improved to provide better resolution, accuracy, sensitivity, and reliability.
2. Additional similar sensors can be employed to improve the coverage and/or confidence in the

domain observables.
3. Dissimilar sensors can be used to increase the dimensionality of the observation space, permitting

the measurement of at least partially independent target attributes (a radar can offer excellent
range and azimuth resolution, while an ELINT sensor can provide target identification).

4. Additional domain knowledge and context constraints can be utilized.

While the first three recommendations effectively increase the information content and/or dimension-
ality of the observables, the latter effectively reduces the decision space dimensionality by constraining
the possible decision states.

Observables can be treated as explicit knowledge (i.e., knowledge that is explicitly provided by the
sensors). Context knowledge, on the other hand, represents implicit (or non-sensor-derived) knowledge.
Although human analysts routinely use both forms in performing fusion tasks, automated approaches
have traditionally relied almost exclusively on the former.

As an example of the utility of implicit domain knowledge, consider the extrapolation of the track of
a ground-based vehicle that has been observed moving along the relatively straight-line path shown in
Figure 6.4. Although the target is a wheeled vehicle traveling along a road with a hairpin curve just beyond
the last detection point, a purely statistical-based tracker will likely attempt to extend the track through
the hill (the reason for the curve in the road) and into the lake on the other side.

Although tracking aircraft, ballistic projectiles, and naval vessels using statistical-based motion models
has been highly successful, adapting such algorithms to tracking ground vehicles has proved to be a
considerable challenge. Tracked and wheeled vehicles typically exhibit many more degrees of freedom
than a high performance aircraft or naval vessel because they can stop and move in an unpredictable
manner. Additional complications include the potentially large numbers of ground vehicles, nonresolv-
able individual vehicles, terrain and vegetation masking, and infrequent target update rates. However,
through the application of relevant domain constraints (e.g., mobility, observability, vehicle class behav-
ior, and vehicle group behavior), the expectation-based analysis process can be effectively constrained,
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thus helping to manage the additional degrees of freedom. In much the same way that a system of
equations with too many unknowns does not produce a unique solution, “missing” domain knowledge
can lead to an “underdamped” Kalman filter solution to ground target tracking. In recognition of the
benefits of context-sensitive analysis, domain-sensitive ground target tracking models have received
considerable interest in recent years.

In addition to the importance of reasoning in context, the road-following target tracking problem also
dramatically illustrates the critical role of paradigm selection in the algorithm development process. Rather
than demonstrating the failure of a statistical-based tracker, the above example illustrates its misappli-
cation. Applying a purely statistical approach to this problem assumes (perhaps unwittingly) that domain
constraints are either irrelevant or insignificant. However, in this application, domain constraints tend
to be stronger than the relatively weak constraints on platform motion provided by a strictly statistical-
based motion model.

Paradigm selection, in fact, must be viewed as a key component of successful data fusion automation.
Consequently, algorithm developers must ensure that both the capability and limitations of a selected
problem-solving paradigm are appropriately matched to the requirements of the fusion task they are
attempting to automate.

To illustrate the importance of both context-sensitive reasoning and paradigm selection, consider the
problem of analyzing the time-stamped radar detections from multiple closely spaced targets, some with
potentially crossing trajectories, as illustrated in Figure 6.5. A traditional statistical tracking algorithm
typically associates the “closest” (with respect to a specified evaluation metric) new detection to an existing
track. A human analyst, on the other hand, would quite naturally invoke a context-sensitive model of
vehicle behavior. By employing multiple behavior models, alternative interpretations of the observations
can be made. False hypotheses can be eliminated once adequate information is obtained to resolve the
associated ambiguity.

Emulating such an analysis strategy requires the time-stamped detections to be associated with local
cultural and topographic features. In addition, the analysis model(s) must accommodate individual
vehicle-class capabilities, as well as a priori class-specific behavioral knowledge. By doing so, it can be
inferred that tracks 1–3 would be highly consistent with a road-following behavior, tracks 4 and 5 would
be determined to be most consistent with a minimum terrain-gradient following behavior, while track
6 would be found to be inconsistent with any ground-based vehicle behavior model. By evaluating track
updates from targets 1–3 with respect to road association, estimated vehicle speed, and observed inter-
target spacing (assuming individual targets are resolvable), it can be deduced that targets 1–3 are wheeled

FIGURE 6.4 Road-following target tracking model.
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vehicles traveling in a convoy along a secondary road. Based on the maximum observed vehicle speeds
and the associated surface conditions along their trajectories, tracks 4 and 5 can be deduced to be tracked
vehicles. Finally, because of its relatively high speed and the rugged terrain in the vicinity, track 6 would
be determined to be most consistent with a low-flying airborne target. Because the velocity of target 6
is too low to be a fixed-wing aircraft, the target can be inferred to be a helicopter.

Targets may be moving at one instant of time and stationary at another and communicating during
one interval and silent during another, resulting in four mutually exclusive target states: (1) moving,
nonemitting, (2) moving emitting, (3) nonmoving, nonemitting, and (4) nonmoving, emitting. Over
time, many entities in the domain may change between two or more of these four states. Thus, if the
situation awareness product is to be continuously maintained, data fusion inherently involves a recursive
analysis. Table 6.1 provides a mapping between these four target states and a wide range of sensor classes.
As shown, the ability to track entities through these state changes effectively requires multiple source
sensor data.

In general, individual targets exhibit complex patterns of behavior that can help discriminate object
classes and identify activities of interest. Consider the scenario depicted in Figure 6.6, showing the
movement of a tactical erectable missile launcher (TEL) between time t0 and time t6. At t0, the vehicle is
in a location that makes it difficult to detect. At t1, the vehicle is moving along a dirt road at velocity v1.
At time t2, the vehicle continues along the road and begins communicating with its support elements.
At time t3, the vehicle is traveling off road at velocity v3 along a minimum terrain gradient path. At time
t4, the target has stopped moving and begins to erect its launcher. At time t5, just prior to launch, radar
emissions begin. At time t6, the vehicle is traveling to a new hide location at velocity v6.

FIGURE 6.5 Example of the fusion of multiple-target tracks over time.

TABLE 6.1 Mapping between Sensor Classes and Target States
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6�

5�

4�

3�2�1�
©2001 CRC Press LLC



                    
Table 6.2 identifies sensor classes that could contribute to the detection and identification of the various
target states. Opportunities for effective sensor cross cueing for the TEL scenario discussed earlier are
shown in the “Potentially Contributing Sensors” column. At the lowest level of abstraction, observed

FIGURE 6.6 Dynamic target scenario showing sensor snapshots over time.
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behavior can be interpreted with respect to a highly local perspective, as indicated in column 6, “Local
Interpretation.” By assuming that the object is performing some higher level behavior, progressively more
global interpretations can be developed as indicated in columns 7 and 8.

Individual battle space objects are typically organized into operational or functional-level units,
enabling observed behavior among groups of objects to be analyzed to generate higher level situation
awareness products. Table 6.3 categorizes the behavioral fragments of an engineer battalion engaged in
a bridge-building operation and identifies sensors that could contribute to the recognition of each
fragment.

Situation awareness development involves the recursive refinement of a composite multiple level-of-
abstraction scene description. Consequently, the generalized fusion process model shown in Figure 6.3(b)
supports the effective combination of (1) domain observables, (2) a priori reasoning knowledge, and
(3) the multiple level-of-abstraction/multiple-perspective fusion product. The process refinement loop
controls both effective information combination and collection management. Each element of the process
model is potentially sensitive to implicit (non-sensor-derived) domain knowledge.

6.3 Fusion Process Model Extensions

Recasting the generalized fusion process model within a biologically motivated framework establishes its
relationship to the more familiar manual analysis paradigm. With suitable extensions, this biological
framework leads to the development of a problem-solving taxonomy that categorizes the spectrum of
machine-based approaches to reasoning. Drawing on this taxonomy of problem solving approaches helps
to

• Reveal underlying similarities and differences between apparently disparate data analysis paradigms,

• Explore fundamental shortcomings of classes of machine-based reasoning approaches,

• Demonstrate the critical role of a database management system in terms of its support to both
algorithm development and algorithm performance,

• Identify opportunities for developing more powerful approaches to machine-based reasoning.

6.3.1 Short-, Medium-, and Long-Term Knowledge

The various knowledge forms involved in the fusion process model can be compared with short-term,
medium-term and long-term memory. Short-term memory retains highly transient short-term knowledge;
medium-term memory retains dynamic, but somewhat less transient medium-term knowledge;* and long-
term memory retains relatively static long-term knowledge. Thus, just as short-, medium-, and long-term
memory suggest the durability of the information in biological systems, short-, medium-, and long-term
knowledge relate to the durability of the information in machine-based reasoning applications.

TABLE 6.3 Mapping between Sensor Classes and Activities for a Bridging Operation

State MTI Radar SAR COMINT ELINT FLIR Optical Acoustic

Engineers move to river bank • • • •
Construction activity • • • • • •
Forces move toward river bank • • • • •
Forces move from opposite side of river • • • •

* In humans, medium-term memory appears to be stored in the hippocampus in a midprocessing state between
short-term and long-term memory, helping to explain why, after a trauma, a person often loses all memory from a
few minutes to a few days.
©2001 CRC Press LLC



                               
Within this metaphor, sensor data relates to the short-term knowledge, while long-term knowledge
relates to relatively static factual and procedural knowledge. Because the goal of both biological and
artificial situation awareness systems is the development and maintenance of the current relevant percep-
tion of the environment, the dynamic situation description represents medium-term memory. In both
biological and tactical data fusion systems, current emphasizes the character of the dynamically changing
scene under observation, as well as the potentially time-evolving analysis process that could involve
interactions among a network of distributed fusion processes. Memory limitations and the critical role
medium-term memory plays in both biological and artificial situation awareness systems enables only
relevant states to be maintained. Because sensor measurements are inherently information-limited, real-
world events are often nondeterministic, and uncertainties often exist in the reasoning process, a disparity
between perception and reality must be expected.

As illustrated in Figure 6.7, sensor observables represent short-term declarative knowledge and the
situation description represents medium-term declarative knowledge. Templates, filters, and the like are
static declarative knowledge; domain knowledge includes both static (long-term) and dynamic (medium-
and short-term) declarative context knowledge; and F represents the fusion process reasoning (long-term
procedural) knowledge. Thus, as in biological situation awareness development, machine-based
approaches require the interaction among short-, medium-, and long-term declarative knowledge, as
well as long-term procedural knowledge. Medium-term knowledge tends to be highly perishable, while
long-term declarative and procedural knowledge is both learned and forgotten much more slowly. With
the exception of the difference in the time constants, learning of long-term knowledge and update of the
situation description are fully analogous operations.

In general, short-, medium-, and long-term knowledge can be either context-sensitive or context-
insensitive. In this chapter, context is treated as a conditional dependency among objects, attributes, or
functions (e.g., f(x1,x2|x3 = a)). Thus, context represents both explicit and implicit dependencies or
conditioning that exist as a result of the state of the current situation representation or constraints
imposed by the domain and/or the environment.

Short-term knowledge is dynamic, perishable, and highly context sensitive. Medium-term knowledge
is less perishable and is learned and forgotten at a slower rate than short-term knowledge. Medium-term
knowledge maintains the context-sensitive situation description at all levels of abstraction. The inherent
context-sensitivity of short- and medium-term knowledge indicates that effective interpretation can be
achieved only through consideration of the broadest possible context.

Long-term knowledge is relatively nonperishable information that may or may not be context-
sensitive. Context-insensitive long-term knowledge is either generic knowledge, such as terrain/elevation,
soil type, vegetation, waterways, cultural features, system performance characteristics, and coefficients
of fixed-parameter signal filters, or context-free knowledge that simply ignores any domain sensitivity.
Context-sensitive long-term knowledge is specialized knowledge, such as enemy Tables of Equipment,

FIGURE 6.7 Biologically motivated metaphor for the data fusion process.
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context-conditioned rule sets, doctrinal knowledge, and special-purpose two-dimensional map overlays
(e.g., mobility maps or field-of-view maps). The specialization of long-term knowledge can be either
fixed (context-specific) or conditionally dependent on dynamic or static domain knowledge (context-
general).

Attempts at overcoming limitations of context-free algorithms often relied on fixed context algorithms
that lack both generality and extensibility. The development of algorithms that are implicitly sensitive to
relevant domain knowledge, on the other hand, tends to produce algorithms that are both more powerful
and more extensible. Separate management of these four classes of knowledge potentially enhances
database maintainability.

6.3.2 Fusion Classes

The fusion model depicted in Figure 6.3(b) views the process as the composition among (1) short-term
declarative, (2) medium-term declarative, (3) long-term declarative, and (4) long-term procedural knowl-
edge. Based on such a characterization, 15 distinct data fusion classes can be defined as illustrated by
Table 6.4, representing all combinations of the four classes of knowledge.

Fusion classes provide a simple characterization of fusion algorithms, permitting a number of straight-
forward observations to be made. For example, only algorithms that employ short-term knowledge are
sensitive to a dynamic input space, while only algorithms that employ medium-term knowledge are
sensitive to the existing situation awareness product. Only algorithms that depend on long-term declar-
ative knowledge are sensitive to static domain constraints.

While data fusion algorithms can rely on any possible combination of short-term, medium-term, and
long-term declarative knowledge, every algorithm employs some form of procedural knowledge. Such
knowledge may be either explicit or implicit. Implicit procedural knowledge is implied knowledge, while
explicit procedural knowledge is formally represented knowledge. In general, implicit procedural knowl-
edge tends to be associated with rigid analysis paradigms (i.e., cross correlation of two signals), whereas
explicit procedural knowledge supports more flexible and potentially more powerful reasoning forms
(e.g., model-based reasoning).

All fusion algorithms rely on some form of procedural knowledge; therefore, the development of a
procedural knowledge taxonomy provides a natural basis for distinguishing approaches to machine-based
reasoning. For our purposes, procedural knowledge will be considered to be long-term declarative knowl-
edge and its associated control knowledge. Long-term declarative knowledge, in turn, is either specific or

TABLE 6.4 Fusion Classes

Fusion 
Class

Declarative Knowledge Class Procedural 
KnowledgeShort-Term Knowledge Medium-Term Knowledge Long-Term Knowledge

1 •
2 •
3 •
4 • •
5 • •
6 • •
7 • • •
8 •
9 • •

10 • •
11 • •
12 • • •
13 • • •
14 • • •
15 • • • •
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general. Specific declarative knowledge represents fixed (static) facts, transformations, or templates, such
as filter transfer functions, decision trees, sets of explicit relations, object attributes, exemplars, or
univariate density functions. General declarative knowledge, on the other hand, characterizes not just
the value of individual attributes, but the relationships among attributes. Thus, object models, produc-
tion-rule condition sets, parametric models, joint probability density functions, and semantic constraint
sets are examples of general long-term declarative knowledge. Consequently, specific long-term declarative
knowledge supports relatively fixed and rigid reasoning, while general long-term declarative knowledge
supports more flexible approaches to reasoning.

Fusion algorithms that rely on specific long-term declarative knowledge are common when these three
conditions all hold true:

• The decision process has relatively few degrees of freedom (attributes, parameters, dimensions).

• The problem attributes are relatively independent (no complex interdependencies among
attributes).

• Relevant reasoning knowledge is static.

Thus, static problems characterized by moderate-sized state spaces and static domain constraints tend
to be well served by algorithms that rely on specific long-term declarative knowledge.

At the other end of the spectrum are problems that possess high dimensionality and complex depen-
dencies and are inherently dynamic. For such problems, reliance on algorithms that employ specific long-
term declarative knowledge inherently limits the robustness of their performance. While such algorithms
might yield acceptable performance for highly constrained problem sets, their performance tends to
degrade rapidly as conditions deviate from nominal or as the problem set is generalized. In addition,
dependence on specific declarative knowledge often leads to computation and/or search requirements
exponentially related to the problem size. Thus, algorithms based on general long-term declarative
knowledge can offer significant benefits when one or more of the following hold:

• The decision process has a relatively large number of degrees of freedom.

• The relationships among attributes are significant (attribute dependency).

• Reasoning is temporally sensitive.

Control knowledge can be grouped into two broad classes: rigid and flexible. Rigid control knowledge
is appropriate for simple, routine tasks that are static and relatively context-insensitive. The computation
of the correlation coefficient between an input data set and a set of stored exemplar patterns is an example
of a simple rigid control strategy. Flexible control knowledge, on the other hand, supports more complex
strategies, such as multiple-hypothesis, opportunistic, and mixed-initiative approaches to reasoning. In
addition to being flexible, such knowledge can be characterized as either single level-of-abstraction or
multiple level-of-abstraction. The former implies a relatively local control strategy, while the latter supports
more global reasoning strategies. Based on these definitions, four distinct classes of control knowledge exist:

• Rigid, single level-of-abstraction;

• Flexible, single level-of-abstraction;

• Rigid, multiple level-of-abstraction;

• Flexible, multiple level-of abstraction.

Given the two classes of declarative knowledge and the four classes of control knowledge, there exist eight
distinct forms of procedural knowledge.

In general, there are two fundamental approaches to reasoning: generation-based and hypothesis-based.
Viewing analysis as a “black box” process with only its inputs and outputs available enables a simple
distinction to be made between the two reasoning modalities. Generation-based problem-solving
approaches “transform” a set of input states into output states; hypothesis-based approaches begin with
output states and hypothesize and, ultimately, validate input states. Numerous reasoning paradigms such
as filtering, neural networks, template match approaches, and forward-chained expert systems rely on
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generation-based reasoning. Other paradigms, such as backward-chained expert systems and certain
graph-based and model-based reasoning approaches, rely on the hypothesis-based paradigm. Hybrid
approaches utilize both reasoning modalities.

In terms of object-oriented reasoning, generation-based approaches tend to emphasize bottom-up
analysis, while hypothesis-based reasoning often relies on top-down reasoning. Because both generation-
based and hypothesis-based approaches can utilize any of the eight forms of procedural knowledge,16

canonical problem solving (or paradigm) forms can be defined, as shown in Table 6.5.
Existing problem-solving taxonomies are typically constructed in a bottom-up fashion, by clustering

similar problem-solving techniques and then grouping the clusters into more general categories. The
categorization depicted in Table 6.5, on the other hand, being both hierarchical and complete, represents
a true taxonomy. In addition to a convenient organizational framework, this taxonomy forms the basis
of a “capability-based” paradigm classification scheme.

6.3.3 Fusion Classes and Canonical Problem-Solving Forms

Whereas a fusion class characterization categorizes the classes of data utilized by a fusion algorithm, the
canonical problem solving form taxonomy can help characterize the potential robustness, context-sensi-
tivity, and efficiency of a given algorithm. Thus, the two taxonomies serve different, yet fully comple-
mentary purposes.

6.3.3.1 The Lower-Order Canonical Forms

6.3.3.1.1 Canonical Forms I and II
Canonical forms I and II represent the simplest generation-based and hypothesis-based analysis
approaches, respectively. Both of these canonical forms employ specific declarative knowledge and simple,
rigid, single level-of-abstraction control. Algorithms based on these canonical form approaches generally

• Perform rather fixed data-independent operations,

• Support only implicit temporal reasoning (time series analysis),

• Rely on explicit inputs,

• Treat problems at a single level-of-abstraction.

TABLE 6.5 Biologically Motivated Problem-Solving Form Taxonomy

Canonical
Form #

Procedural Knowledge

Gen/
Hyp

Declarative Control

Specific General Rigid Flexible
Single Level 

of Abstraction
Multiple Levels 
of Abstraction

I • • • Gen
II • • • Hyp
III • • • Gen
IV • • • Hyp
V • • • Gen
VI • • • Hyp
VII • • • Gen
VIII • • • Hyp
IX • • • Gen
X • • • Hyp
XI • • • Gen
XII • • • Hyp
XIII • • • Gen
XIV • • • Hyp
XV • • • Gen
XVI • • • Hyp
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Signal processing, correlation-based analysis, rigid template match, and artificial neural systems are
typical examples of these two canonical forms. Such approaches are straightforward to implement;
therefore, examples of these two forms abound.

Early speech recognition systems employed relatively simple canonical form I class algorithms. In these
approaches, an audio waveform of individual spoken words was correlated with a set of prestored
exemplars of all words in the recognition system’s vocabulary. The exemplar achieving the highest
correlation above some threshold was declared the most likely candidate. Because the exemplars were
obtained during a training phase from the individual used to test its performance, these systems were
highly speaker-dependent. The algorithm clearly relied on specific declarative knowledge (specific exem-
plars) and rigid, single level-of-abstraction control (exhaustive correlation followed by rank ordering of
candidates). Although easy to implement and adequate in certain idealized environments (speaker-
dependent, high signal-to-noise ratio, nonconnected word-speech applications), the associated exhaustive
generation-and-test operation made the approach too inefficient for large vocabulary systems, and too
brittle for noisy, speaker-independent, and connected-speech applications.

Although artificial neural systems are motivated by their biological counterpart, current capabilities
of undifferentiated artificial neural systems (ANS) generally fall short of the performance of even simple
biological organisms. Whereas humans are capable of complex, context-sensitive, multiple level-of-
abstraction reasoning based on robust world models, ANS effectively filter or classify a set of input states.
While humans can learn as they perform tasks, the ANS weight matrix is typically frozen (except in
certain forms of clustering) during the state-transition process.

Regardless of the type of training, the nature of the nonlinearity imposed by the algorithm, or the
specific details of the connection network, pretrained ANS represent static, specific long-term declarative
knowledge; the associated control element is clearly static, rigid, and single level-of-abstraction. Most
neural networks are used in generation-based processing applications and therefore possess all the key
characteristics of all canonical form I problem-solving forms. Typical of canonical form I approaches,
neural network performance tends to be brittle for problems of general complexity (because they are not
model based) and non-context-sensitive (because they rely on either a context-free or highly context-
specific weight matrix). Widely claimed properties of neural networks, such as robustness and ability to
generalize, tend to be dependent on the data set and on the nature and extent of data set preprocessing.

Although the computational requirements of most canonical form I problem-solving approaches
increase dramatically with problem complexity, artificial neural systems can be implemented using high
concurrency hardware realizations to effectively overcome this limitation. Performance issues are not
necessarily eliminated, however, because before committing a network to hardware (and during any
evolutionary enhancements), extensive retraining and testing may be required.

6.3.3.1.2 Canonical Forms III-VIII
Canonical form III and IV algorithms utilize specific declarative knowledge and rigid, multiple level-of-
abstraction control knowledge. Although such algorithms possess most of the limitations of the lowest order
problem solving approaches, canonical form III and IV algorithms, by virtue of their support to multiple
level-of-abstraction control, tend to be somewhat more efficient than canonical forms I and II. Simple
recursive, multiple resolution, scale-space, and relaxation-based algorithms are examples of these forms.

As with the previous four problem-solving forms, canonical form V and VI algorithms rely on specific
declarative knowledge. However, rather than rigid control, these algorithms possess a flexible, single level-
of-abstraction control element that can support multiple hypothesis approaches, dynamic reasoning, and
limited context-sensitivity.

Canonical form VII and VIII approaches employ specific declarative and flexible, multiple level-of-
abstraction control knowledge. Although fundamentally non-model-based reasoning forms, these forms
support flexible, mixed top-down/bottom-up reasoning.

6.3.3.2 The Higher-Order Canonical Forms

As a result of their reliance on specific declarative knowledge, the eight lower-order canonical form approaches
represent the core of most numeric-based approaches to reasoning. In general, these lower-order form
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approaches are unable to effectively mimic the high-level semantic and cognitive processes employed by
human decision makers. The eight higher-level canonical forms, on the other hand, provide significantly
better support to semantic and symbolic-based reasoning.

6.3.3.2.1 Canonical Forms IX and X
Canonical forms IX and X rely on general declarative knowledge and rigid, single level-of-abstraction
control, representing simple model-based transformation and model-based constraint set evaluation
approaches, respectively. General declarative knowledge supports more dynamic and more context-
sensitive reasoning than specific declarative knowledge. However, because these two canonical forms rely
on rigid, single level-of-abstraction control, canonical form IX and X algorithms tend to be inefficient.

The motivation behind expert system development was to emulate the human reasoning process in a
restricted problem domain. An expert system rule-set generally contains both formal knowledge (e.g.,
physical laws and relationships), as well as heuristics and “rules-of-thumb” gleaned from practical expe-
rience. Although expert systems can accommodate rather general rule condition and action sets, the
associated control structure is typically quite rigid (i.e., sequential condition set evaluation, followed by
straightforward resolution of which instantiated rules should be allowed to fire). In fact, the separation
of procedural knowledge into modular IF/THEN rule-sets (general declarative knowledge) that are
evaluated using a rigid, single level-of-abstraction control structure (rigid control knowledge) represents
the hallmark of the pure production-rule paradigm. Thus, demanding rule modularity and a uniform
control structure effectively relegates conventional expert system approaches to the two lowest-order,
model-based, problem-solving forms.

6.3.3.2.2 Canonical Forms XI through XIV
Problem solving associated with canonical forms XI and XII relies on a general declarative element and
rigid, multiple level-of-abstraction control. Consequently, these forms support both top-down and bot-
tom-up reasoning. Production rule paradigms that utilize a hierarchical rule-set are an example of such
an approach.

Canonical forms XIII and XIV employ procedural knowledge that possesses a general declarative
element and flexible, single level-of-abstraction control. As a result, these canonical forms can support
sophisticated single level-of-abstraction, model-based reasoning.

6.3.3.2.3 Canonical Forms XV and XVI
Canonical form XV and XVI paradigms employ general declarative knowledge and flexible, multiple
level-of-abstraction control; therefore, they represent the most powerful generation-based and hypoth-
esis-based problem-solving forms, respectively. Although few canonical form XV and XVI fusion algo-
rithms have achieved operational status, efficient algorithms that perform sophisticated, model-based
reasoning, while meeting rather global optimality criteria, can be reasonably straightforward to develop.1

The HEARSAY speech understanding system2 was an early attempt at building a higher-order reasoning
system. This system, developed in the early 1980s, treated speech recognition as both inherently context-
sensitive and multiple level-of-abstraction. HEARSAY employed a hierarchy of models appropriate at the
various levels-of-abstraction within the problem domain, from signal processing to perform formant
tracking and spectral analysis for phoneme extraction, to symbolic reasoning for meaning extraction.
Higher-level processes, with their broader perspective and higher-level knowledge, provided some level
of control over the lower-level processes. Importantly, HEARSAY viewed speech understanding in a
holistic fashion with each level of the processing hierarchy treated as a critical component of the fully
integrated analysis process.

6.3.3.3 Characteristics of the Higher-Order Canonical Forms

Five key algorithm issues have surfaced during the preceding discussion:

• Robustness

• Context-sensitivity

• Extensibility
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• Maintainability

• Efficiency

Each of these issues is discussed briefly below.

6.3.3.3.1 Robustness
Robustness measures the fragility of a problem-solving approach to changes in the input space. Algorithm
robustness depends, quite naturally, on both the quality and efficacy of the models employed. The
development of an “adequate” model depends, in turn, on the complexity of the process being modeled.
A problem that intrinsically exhibits few critical degrees of freedom would logically require a simpler
model than one that possesses many highly correlated features.

As a simple illustration, consider the handwritten character recognition problem. Although handwrit-
ten characters possess a large number of degrees-of-freedom (e.g., line thickness, character orientation,
style, location, size, color, darkness, and contrast ratio), a simple model can capture the salient attributes
of the character “H” (i.e., two parallel lines connected at their approximate centers by a third line
segment). Thus, although the handwritten character intrinsically possesses many degrees-of-freedom,
most are not relevant for distinguishing the letter “H” from other handwritten characters. Conversely,
in a non-model-based approach, each character must be compared with a complete set of exemplar
patterns for all possible characters. Viewed from this perspective, a non-model-based approach can
require consideration of all combinations of both relevant and nonrelevant problem attributes.

6.3.3.3.2 Context Sensitivity
Context refers to both the static domain constraints (natural and cultural features, physical laws) and
dynamic domain constraints (current location of all air defense batteries) relevant to the problem-solving
process. Dynamic short-term and medium-term knowledge are generally context-sensitive, while a priori
long-term reasoning knowledge may or may not be sensitive to context.

Context-sensitive long-term knowledge (both declarative and procedural) is conditional knowledge
that must be specialized by static or dynamic domain knowledge (e.g., mobility map or current dynamic
Order of Battle). Context-insensitive knowledge is generic, absolute, relatively immutable knowledge that
is effectively domain independent (e.g., terrain obscuring radar coverage or wide rivers acting as obstacles
to ground-based vehicles). Such knowledge is fundamentally unaffected by the underlying context.
Context-specific knowledge is long-term knowledge that has been specialized for a given, fixed context.
Context-free knowledge simply ignores any effects related to the underlying context.

In summary, context-sensitivity is a measure of a problem’s dependency on implicit domain knowledge
and constraints. As such, canonical forms I–IV are most appropriate for tasks that require either context-
insensitive or context-specific knowledge. Because canonical forms V–VIII possess flexible control, all are
potentially sensitive to problem context. General declarative knowledge can be sensitive to non-sensor-
derived domain knowledge (e.g., a mobility map, the weather, the current ambient light level, or the
distance to the nearest river); therefore, all higher order canonical forms are potentially context-sensitive.
Canonical forms XIII–XVI support both context-sensitive declarative and context-sensitive control knowl-
edge and, therefore, are the only fully context-sensitive problem-solving forms.

6.3.3.3.3 Extensibility and Maintainability
Extensibility and maintainability are two closely related concepts. Extensibility measures the “degree of
difficulty” of extending the knowledge base to accommodate domain changes or to support related
applications. Maintainability measures the “cost” of storing and updating knowledge. Because canonical
forms I–VIII rely on a specific declarative knowledge, significant modifications to the algorithm can be
required for even relatively minor domain changes. Alternatively, because they employ general declarative
knowledge, canonical forms IX–XVI tend to be much more extensible.

The domain sensitivity of the various canonical form approaches varies considerably. The lower-order
canonical form paradigms typically rely on context-free and context-specific knowledge, leading to
relatively nonextensible algorithms. Because context-specific knowledge may be of little value when the
problem context changes (e.g., a mobility map that is based on dry conditions cannot be used to support
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analysis during a period of flooding), canonical form I–IV approaches tend to exhibit brittle performance
as the problem context changes. Attempting to support context-sensitive reasoning using context-specific
knowledge can lead to significant database maintainability problems.

Conversely, context-insensitive knowledge (e.g., road, bridge, or terrain-elevation databases) is unaf-
fected by context changes. Context-insensitive knowledge remains valid when the context changes; how-
ever, context-sensitive knowledge may need to be redeveloped. Therefore, database maintainability
benefits from the separation of these two knowledge bases. Algorithm extensibility is enhanced by model-
based approaches and knowledge base maintainability is enhanced by the logical separation of context-
sensitive and context-insensitive knowledge.

6.3.3.3.4 Efficiency
Algorithm efficiency measures the relative performance of algorithms with respect to computational and/or
search requirements. Although exceptions exist, for complex, real-world problem solving, the following
generalizations often apply:

• Model-based reasoning tends to be more efficient than non-model-based reasoning.

• Multiple level-of-abstraction reasoning tends to be more efficient than single level-of-abstraction
reasoning.

The general characteristics of the 16 canonical forms are summarized in Figure 6.8.

6.4 Observations

This chapter concludes with five general observations pertaining to data fusion automation.

6.4.1 Observation 1

Attempts to automate many complex, real-world fusion tasks face a considerable challenge. One obvious
explanation relates to the disparity between manual and algorithmic approaches to data fusion. For
example, humans

FIGURE 6.8 General characteristics of the sixteen canonical fusion forms and associated problem-solving paradigms.
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• Are adept at model-based reasoning (which supports robustness and extensibility),

• Naturally employ domain knowledge to augment formally supplied information (which supports
context-sensitivity),

• Update or modify existing beliefs to accommodate new information as it becomes available (which
supports dynamic reasoning),

• Intuitively differentiate between context-sensitive and context-insensitive knowledge (which sup-
ports maintainability),

• Control the analysis process in a highly focused, often top-down fashion (which enhances efficiency).

As a consequence, manual approaches to data fusion tend to be inherently dynamic, robust, context-
sensitive, and efficient. Conversely, traditional paradigms used to implement data fusion algorithms have
tended to be inherently static, nonrobust, non-context-sensitive, and inefficient. Many data fusion prob-
lems exhibit complex, and possibly dynamic, dependencies among relevant features, advocating the
practice of

• Relying more on the higher order problem solving forms,

• Applying a broader range of supporting databases and reasoning knowledge,

• Utilizing more powerful, global control strategies.

6.4.2 Observation 2

Although global phenomena naturally require global analysis, local phenomena can benefit from both a
local and a global analysis perspective. As a simple example, consider the target track assignment process
typically treated as a strictly local analysis task. With a conventional canonical form I approach to target
tracking, track assignment is based on recent, highly local behavior (often assuming a Markoff process).
For ground-based objects, a vehicle’s historical trajectory and its maximum performance capabilities
provide rather weak constraints on future target motion. A “road-constrained target extrapolation strat-
egy,” for example, provides much stronger constraints on ground-vehicle motion than a purely statistical-
based approach. As a result, the latter tends to generate highly under-constrained solutions.

Although applying nearby domain constraints could adequately explain the local behavior of an object
(e.g., constant velocity travel along a relatively straight, level road), a more global viewpoint is required
to interpret global behavior. Figure 6.9 demonstrates local (i.e., concealment, minimum terrain gradient,
and road seeking), medium-level (i.e., river-crossing and road-following), and global (i.e., reinforce at
unit) interpretations of a target’s trajectory over space and time. The development and maintenance of
such a multiple level-of-abstraction perspective is a critical underlying requirement for automating the
situation awareness development process.

6.4.3 Observation 3

 Production systems have historically performed better against static, well-behaved, finite-state diagnostic-
like problems than against problems that possess complex dependencies and exhibit dynamic, time-
varying behavior. These shortcomings occur because such systems rely on rigid, single level-of-abstraction
control that is often insensitive to domain context. Despite this fact, during the early 1990s, expert systems
were routinely applied to dynamic, highly context-sensitive problem domains, often with disappointing
results.

The lesson to be learned is that both the strengths and limitations of a selected problem-solving
paradigm must be fully understood by the algorithm developer from the outset. When an appropriately
constrained task was successfully automated using an expert system approach, developers often found
that the now well-understood problem could be more efficiently implemented using another paradigm.
In such cases, better results were obtained by using either an alternative canonical form IX or X problem-
solving approach or a lower-order, non-model-based approach.
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When an expert system proved to be inadequate for handling a given problem, artificial neural systems
were often seen as an alternative or preferred approach. Neural networks require no programming;
therefore, the paradigm appeared ideal for handling ill-defined or poorly understood problems. While
expert systems could have real-time performance problems, artificial neural systems promised high
performance hardware implementations. In addition, the adaptive nature of the neural net learning
process often seemed to match real-world, dynamically evolving problem-solving requirements. However,
most artificial neural systems operate more like a statistical or fuzzy pattern recognizer than as a sophis-
ticated reasoning system capable of generalization, reasoning by analogy, and abstract inference. As
indicated by the reasoning class taxonomy, while expert systems represent a lower-order model-based
reasoning approach, a neural network represents the lowest-order non-model-based reasoning approach.

6.4.4 Observation 4

Radar systems typically employ a single statistical-based algorithm for tracking air targets, regardless of
whether an aircraft is flying at an altitude of 20 kilometers or just above tree-top level. Likewise, such
algorithms are generally insensitive as to whether the target is a high performance fighter aircraft or a
relatively low speed helicopter. Suppose a nonfriendly high-performance reconnaissance aircraft is flying
just above a river as it snakes through a mountainous region. There exist a wide range of problems
associated with tracking such a target, including dealing with high clutter return, terrain masking, and
multipath effects. In addition, an airborne radar system may have difficulty tracking the target as a result
of high acceleration turns associated with an aircraft following a highly irregular surface feature. The
inevitable track loss and subsequent track fragmentation errors typically would require intervention by
a radar analyst. Tracking helicopters can be equally problematic. Although they fly more slowly, such
targets can hover, fly below tree-top level, and execute rapid directional changes.

Tracking performance can potentially be improved by making the tracking analysis sensitive to target
class-specific behavior, as well as to constraints posed by the domain. For example, the recognition that
the aircraft is flying just above the terrain suggests that surface features are likely to influence the target’s
trajectory. When evaluated with respect to “terrain feature-following models,” the trajectory would be
discovered to be highly consistent with a “river-following flight path.” Rather than relying on past behavior
to predict future target positions, a tracking algorithm could anticipate that the target is likely to continue
to follow the river.

FIGURE 6.9 Multiple level-of-abstraction situation understanding.
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In addition to potentially improving tracking performance, the interpretation of sensor-derived data
within context also permits more abstract interpretations. If the aircraft were attempting to avoid radar
detection by one or more nearby surface-to-air missile batteries, a nap of the earth flight profile could
indicate hostile intent. Even more global interpretations can be hypothesized. Suppose a broader view
of the “situation picture” reveals another unidentified aircraft operating in the vicinity of the river-
following target. By evaluating the apparent coordination between the two aircraft, the organization and
mission of the target group can be conjectured. For example, if the second aircraft begins jamming
friendly communication channels just as the first aircraft reaches friendly airspace, the second aircraft’s
role can be inferred to be “standoff protection for the primary collection or weapon delivery aircraft.”
The effective utilization of relevant domain knowledge and physical domain constraints offers the poten-
tial for developing both more effective and higher level-of-abstraction interpretations of sensor-derived
information.

6.4.5 Observation 5

Indications and warnings, as well as many other forms of expectation-based analysis have traditionally
relied on relatively rigid doctrinal and tactical knowledge. However, contemporary data fusion applica-
tions often must support intelligence applications where flexible, ill-defined, and highly creative tactics
and doctrine are employed. Consequently, the credibility of any analysis that relies on rigid expectation-
based behavior needs to be carefully scrutinized. Although the lack of strong, reliable a priori knowledge
handicaps all forms of expectation-based reasoning, the use of relevant logical, physical, and logistical
context at least partially compensates for the lack of more traditional problem domain constraints.
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7.1 Introduction

A broad consensus holds that a probabilistic approach to evidence accumulation is appropriate because
it enjoys a powerful theoretical foundation and proven guiding principles. Nevertheless, many would
argue that probability theory is not suitable for practical implementation on complex real-world prob-
lems. Further debate arises when considering people’s subjective opinions regarding events of interest.
Such debate has resulted in the development of several alternative approaches to combining evidence.1-3

Two of these alternatives, possibility theory (or fuzzy logic)4-6 and belief theory (or Dempster-Shafer
theory),7-10 have each achieved a level of maturity and a measure of success to warrant their comparison
with the historically older probability theory.

This chapter first provides some background on each of the three approaches to combining evidence
in order to establish notation and to collect summary results about the approaches. Then an example
system that accumulates evidence about the identity of an aircraft target is introduced. The three methods
of combining evidence are applied to the example system, and the results are contrasted. At this point,
possibility theory is dropped from further consideration in the rest of the chapter because it does not
seem well suited to the sequential combination of information that the example system requires. Finally,
an example data fusion system is constructed that determines the presence and location of mobile missile
batteries. The evidence is derived from multiple sensors and is introduced into the system in temporal
sequence, and a software component approach is adopted for its implementation. Probability and belief
theories are contrasted within the context of the example system.

One key idea that emerges for simplifying the solution of complex, real-world problems involves
collections of spaces. This is in contradistinction to collections of events in a common space. Although

Joseph W. Carl
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the spaces are all related to each other, considering each space individually proves clearer and more
manageable. The relationships among the spaces become explicit by considering some as fundamental
representations of what is known about the physical setting of a problem, and others as arising from
observation processes defined at various knowledge levels. 

The data and processes employed in the example system can be encapsulated in a component-based
approach to software design, regardless of the method adopted to combine evidence. This leads naturally
to an implementation within a modern distributed processing environment. 

Contrasts and conclusions are stated in Section 7.4.

7.2 Alternative Approaches to Combine Evidence

Probability is much more than simply a relative frequency. Rather, there is an axiomatic definition11 of
probability that places it in the general setting of measure theory. As a particular measure, it has been crafted
to possess certain properties that make it useful as the basis for modeling the occurrence of events in various
real-world settings. Some critics (fuzzy logicians among them) have asserted that probability theory is too
weak to include graded membership in a set; others have asserted that probability cannot handle non-
monotonic logic. In this chapter, both of these assertions are demonstrated by example to be unfounded.
This leads to the conclusion that fuzzy logic and probability theory have much in common, and that they
differ primarily in their methods for dealing with unions and intersections of events (characterized as sets).
Other critics have asserted that probability theory cannot account for imprecise, incomplete, or inconsistent
information. Evidence is reviewed in this chapter to show that interval probabilities can deal with imprecise
and incomplete information in a natural way that explicitly keeps track of what is known and what is not
known. The collection of spaces concept (developed in Section 7.3) provides an explicit means that can be
used with any of the approaches to combine evidence to address the inconsistencies. 

7.2.1 The Probability Theory Approach

The definition of a probability space tells what properties an assignment of probabilities must possess,
but it does not indicate what assignment should be made in a specific setting. The specific assignment
must come from our understanding of the physical situation being modeled, as shown in Figure 7.1. The
definition tells us how to construct probabilities for events that are mutually exclusive (i.e., their set

FIGURE 7.1 The comparison of predictions with measurements places probability models on firm scientific
ground.
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representations are disjoint). Generally speaking, when collections of events are not mutually exclusive,
a new collection of mutually exclusive events (i.e., disjoint sets) must first be constructed.

Consider the desirable properties for measuring the plausibility of statements about some specific
experimental setting. Given that

1. The degree of plausibility can be expressed by a real number,
2. The extremes of the plausibility scale must be compatible with the truth values of logic,
3. An infinitesimal increase in the plausibility of statement A implies an infinitesimal decrease in the

plausibility of the statement not-A,
4. The plausibility of a statement must be independent of the order in which the terms of the

statement are evaluated,
5. All available evidence must be used to evaluate plausibility, and
6. Equivalent statements must have the same plausibility,

then the definition of a probability space follows as a logical consequence.12 Further, the definition implies
that the probability measure has properties (1) through (6). Hence, any formalism for measuring the
plausibility of statements must necessarily be equivalent to the probability measure, or it must abandon
one or more of the properties listed. 

7.2.1.1 Apparent Paradoxes and the Failure of Intuition

Some apparent paradoxes about probability theory reappear from time to time in various forms. Two
will be discussed — Bertrand’s paradox and Hughes’ paradox. A dice game that cannot be lost is then
described. This will help to make the point that human intuition can fail with regard to the outcome of
probability-space models. A failure of intuition is probably the underlying reason for the frequent
underestimation of the power of the theory.

7.2.1.1.1 Bertrand’s Paradox
Bertrand’s paradox13 begins by imagining that lines are drawn at random to intersect a circle to form
chords. Suppose that the coordinates of the center of the circle and the circle’s radius are known. The
length of each chord can then be determined from the coordinates of the midpoint of the chord, which
might be assumed to be uniformly distributed within the circle. The length of each chord can also be
determined from the distance from the center of the chord to the center of the circle, which might be
assumed to be uniformly distributed between zero and the radius of the circle. The length of each chord
can also be determined from the angle subtended by the chord, which might be assumed to be uniformly
distributed between 0 and 180 degrees. The length of each chord is certainly the same, regardless of the
method used to compute it. 

Bertrand asked, “What is the probability that the length of a chord will be longer than the side of an
inscribed equilateral triangle?” Three different answers to the question appear possible depending on
which of the three assumptions is made. How can that be if the lengths must be the same? A little reflection
reveals that the lengths may indeed be the same when determined by each method, but that assumptions
have been made about three different related quantities, none of which is directly the length. In fact, the
three quantities cannot simultaneously be distributed in the same way. Which one is correct? Jaynes14

has shown that only the assumption that chord centers are uniformly distributed within the circle provides
an answer that is invariant under infinitesimal translations and rotations.

Bertrand’s paradox touches on the principle of indifference: if no reason exists for believing that any
one of n mutually exclusive events is more likely than any other, a probability of 1/n is assigned to each
event. This is a valid principle, but it must be applied with caution to avoid pitfalls. Suppose, for instance,
four cards — two black and two red — are shuffled and placed face down on a table. Two cards are
picked at random. What is the probability they are the same color? One person reasons, “They are either
both black, or they are both red, or they are different; in two cases the colors are the same, so the answer
is 2/3.” A second person reasons, “No, the cards are either the same or they are different; the answer is 1/2.”
They are both wrong, as shown in Figure 7.2. There is simply no substitute for careful analysis. 
©2001 CRC Press LLC



                 
7.2.1.1.2 Hughes’ Paradox
The Hughes paradox arose in the context of pattern recognition studies during the late 1960s and early
1970s. Patterns were characterized as vectors, and rules to decide a pattern’s class membership were
studied using a collection of samples of the patterns. The collection size was held constant. The perfor-
mance of a decision rule was observed experimentally to often improve as the dimension of the pattern
vectors increased — up to a point. The performance of the decision rule decreased beyond that point.
This led some investigators to conclude that there was an optimal dimension for pattern vectors. However,
most researchers believed that the performance of a Bayes-optimal classifier never decreases as the
dimension of the pattern vectors increases. This can be attributed to the fact that a Bayes-optimal decision
rule, if given irrelevant information, will just throw the information away. (See, for example, the “theorem
of irrelevance.”15). The confusion was compounded by the publication of Hughes’ paper,16 which seemed
to prove that an optimal dimension existed for a Bayes classifier. As a basis for his proof, Hughes
constructed a monotonic sequence of data quantizers that provided the Bayes classifier with a finer
quantization of the data at each step. Thus, the classifier dealt with more data at each step of the sequence.
Hughes thought that he had constructed a sequence of events in a common probability space. However,
he had not; he had constructed a sequence of probability spaces.17 Because the probability-space definition
was changing at each step of the sequence, the performance of a Bayes classifier in one space was not
simply related to the performance of a Bayes classifier in another space. There was no reason to expect
that the performances would be monotonically related in the same manner as the sequence of classifiers.
This experience sheds light on how to construct rules to accumulate evidence in data fusion systems:
accumulating evidence can change the underlying probability-space model in subtle ways for which
researchers must account.

7.2.1.1.3 A Game That Can’t Be Lost
This next example demonstrates that people do not have well-developed intuition about what can happen
in probability spaces. Given the four nonstandard, fair, six-sided dice shown in Figure 7.3, play the
following game. First, pick one of the dice. Then have someone else pick one of the remaining three.
Both of you roll the die that you have selected; the one with the highest number face up wins. You have
the advantage, right? Wrong! No matter which die you pick, one of the remaining three will win at this
game two times out of three. Call the dice A, B, C, and D. A beats B with probability 2/3, B beats C with
probability 2/3, C beats D with probability 2/3, and D beats A with probability 2/3 — much like the
childhood game rock-scissors-paper, this game involves nontransitive relationships. People typically think
about “greater than” as inducing a transitive relation among ordinary numbers. Their intuition fails when
operating in a domain with nontransitive relations.18 In this sense, probability-space models can deal
with non-monotonic logic. 

FIGURE 7.2 No matter which two cards one picks, P(same color) = 1/3.
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The point of this section is to emphasize that the physical situation at hand is critically important.
Considerable work may be required to construct an accurate probability model, but the effort can be
very rewarding. The power of probability theory is that it tells us how to organize and quantify what is
known in terms that lead to minimizing the expected cost of making decisions.

7.2.1.2 Observation Processes and Random Variables

In many physical settings, an item of interest cannot be directly accessed. Instead, it can only be indirectly
observed. For example, the receiver in a communication system must observe a noise-corrupted modu-
lated signal for some interval of time to decide which message was sent. Based on the sampling theorem,
a received signal can be characterized completely by a vector of its samples taken at an appropriate rate.
The sample vectors are random vectors; their components are joint random variables. The random
variables of interest arise from some well-defined observation processes implemented as modules in a
data fusion system. It is important to be precise about random variables that can characterize observation
processes.

Formally, a random variable is a measurable function defined on a sample space (e.g., ( ) or
( ), indicating scalar or vector random variables taking values on the real line or its extension
to n-dimensional space). The probability distribution on the random variable is induced by assigning to
each subset of R(Rn), termed events, the same probability as the subset of S that corresponds to the inverse
mapping from the event-subset to S. This is the formal definition of a measurable function. In Figure 7.4,
the event, B, occurs when the random variable takes on values in the indicated interval on the real line.
The image of B under the inverse mapping is a subset of S, called B′. This results in P(B) = P(B′), even
though B and B′ are in different spaces.

The meaning of this notation when observation processes are involved should be emphasized. If the
set, A, in Ω represents an event defined on the sample space, and if the set, B, in R represents an event
defined on the real line through a random variable, then one set must be mapped into a common space
with the other. This enables a meaningful discussion about the set { f (A) & B}, or about the set {A & f –1 (B)}.
The joint events [A & B] can similarly be discussed, taking into consideration the meaning in terms of the
set representations of those events. In other words, P[A & B] = P[{f (A) & B}] = P[{A & f –1 (B)}]. Note
that even when a collection of sets, Ai, for i = 1,2,…,n, partitions some original sample space, the images
of those sets under the observation mapping, , will not, in general, partition the new sample space.
In this way, probability theory clearly accommodates concepts of measurement vectors belonging to a
set (representing a cause) with graded membership.

FIGURE 7.3 These dice (reported in 1970 by Martin Gardner to be designed by Bradley Efron at Stanford Univer-
sity) form the basis of a game one cannot lose.
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7.2.1.3 Bayes’ Theorem

There may be modules in a data fusion system that observe the values of random variables (or vectors)
and compute the probability that the observed values have some particular cause. The causes partition
their sample space. Bayes’ theorem is employed to compute the probability of each possible cause, given
some observation event. Suppose A1,A2,…An form a collection of subsets of S (representing causes) that
partition S. Then for any observation event, B, with P(B) > 0, 

(7.1)

and

(7.2)

The quantities P(Ai|B) and P(B|Ai) are termed conditional probabilities; the quantities P(Ai) and P(B)
are termed marginal probabilities. The quantities P(B|Ai) and P(Ai) are termed a priori probabilities because
they represent statements that can be made prior to knowing the value of any observation. Again, note
that Bayes theorem remains true for events represented by elements of Ω, as well as for random events
defined through an observation process. This can cause some confusion. The original sample space and
the observation space are clearly related, but they are separate probability spaces. Knowing which space
you are operating in is important.

Note that Bayes’ theorem assumes that some event is given (i.e., it has unequivocally occurred). Often
this is not the case in a data fusion system. Suppose, for example, that an event, E, is observed with
confidence 0.9. This could be interpreted to mean that E has occurred with probability 0.9, and that its
alternatives occur with a combined probability of 0.1. Assuming two alternatives, A1 and A2, interval

FIGURE 7.4 (a) Forward mappings and (b) inverse mappings relate the sample space to an observation space.
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probabilities can be employed to conclude that E occurred with probability 0.9, A1 occurred with
probability x, and A2 occurred with probability 0.1 – x, where 0 ≤ x ≤ 0.1. Finally, assuming that one of
the possible causes of the observed events is C, and noting that a true conditioning event does not yet
exist, a superposition of probability states can be defined. Thus, combining the results from using Bayes’
theorem on each of the possible observed events and weighting them together gives

(7.3)

where 0 ≤ x ≤ 0.1.
This particular form of motivation for the resulting probability interval does not seem to appear in

the substantial literature on interval probabilities. Yet, it has a nice physical feel to it. To compensate for
the uncertainty of not knowing the current state, an interval probability is created from a superposition
of possible event states. As addressed in the next section of this chapter, enough evidence may later be
accumulated to “pop” the superposition and declare with acceptable risk that a true conditioning event
has occurred.

7.2.1.4 Bayes-Optimal Data Fusion

The term Bayes-optimal means minimizing risk, where risk is defined to be the expected cost associated
with decision-making. There are costs associated with correct decisions, as well as with incorrect decisions,
and typically some types of errors are more costly than others. Those who must live with the decisions
made by the system must decide the cost structure associated with any particular problem. Once decided,
the cost structure influences the optimal design through an equation that defines expected cost. To
simplify notation, just the binary-hypotheses case will be presented; the extension to multiple-hypotheses
is straightforward.

Suppose there are just two underlying causes of some observations, C1 or C2. Then there are four
elements to the cost structure: 

1. C11, the cost of deciding C1 when really C1 (a correct decision);
2. C22, the cost of deciding C2 when really C2 (another correct decision);
3. C21, the cost of deciding C2 when really C1 (an error; sometimes a miss); and
4. C12, the cost of deciding C1 when really C2 (an error; sometimes a false alarm).

The expected cost is simply Risk = E{cost} = C11P11 + C22P22 + C21P21 + C12P12, where the indicated
probabilities have the obvious meaning. Suppose the observation process produces a measurement vector,
X, and define two regions in the associated vector space: R1 = {X|decide C1}, and R2 = {X|decide C2}.
Let p(X|C1) denote the conditional probability density function of a specific value of the measurement
vector given C1. Let p(X|C2) denote the conditional probability density function of a specific value of
the measurement vector given C2. Let p(X) denote the marginal probability density function on the
measurement vector. Then, as shown elsewhere,19 minimize risk by forming the likelihood ratio and
comparing it to a threshold: 

Decide C1 if

(7.4)

otherwise, decide C2. Because applying the same monotonic function to both sides preserves the ine-
quality, an equivalent test is (for example) to decide C1 if
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(7.5)

and decide C2 otherwise.
An equivalent test that minimizes risk is realized by comparing d(X) = (C21 – C22)P(C2)p(X|C2) – (C12 –

C11)P(C1)p(X|C1) to 0. That is, decide C1 if d(X) < 0, and decide C2 otherwise. In some literature,20,21

d(X) is called a discriminant function; it has been used together with nonparametric estimators (e.g.,
potential functions or Parzen estimators) of the conditional probabilities as the basis for pattern recog-
nition systems, including neural networks.

An important property of this test in any of its equivalent forms is its ability to optimally combine
prior information with measurement information. It is perhaps most obvious in the likelihood ratio
form that relative probability is what is important — how much greater p(X|C1) is than p(X|C2) —
rather than the specific values of the two conditional probabilities. When one is sufficiently greater than
the other, there may be acceptable risk in “popping” a superposition of probability states to declare a
true conditioning event has occurred. Finally, note that in any version of the test, knowledge of the form
of the optimal decision rule is a focal point and guide to understanding a particular problem domain.

7.2.1.5 Exploiting Lattice Structure

Many researchers likely under-appreciate the fact that the lattice structure induced by the event relation-
ships within a probability space can be exploited to determine the probability of events, perhaps in
interval form, from partial information about some of the probabilities. To be precise, consider S =
{x1,x2,…,xN} to be an exhaustive collection of N mutually exclusive (simple, or atomic) events. The set
2S is the set of all possible subsets of S. Suppose unnormalized probabilities (e.g., as odds) are assigned
to M events in 2S, say Ek for k = 1,2,…,M, where M may be less than, equal to, or greater than N. The
next section of this chapter partially addresses the question: under what conditions can the probabilities
of xi be inferred?

7.2.1.5.1 A Characteristic Matrix 
Consider only the case M = N. Define C, an N × N matrix with elements ci,j = 1 if {xj} ⊂ Ei, and 0
otherwise. C can be called the characteristic matrix for the Eks. Also, define P, an N × 1 vector with
elements pk (k = 1,2,…,N) that are the assigned unnormalized probabilities of Ek. From the rule for
combining probabilities of mutually exclusive events, P = C X, where X is an N × 1 vector with elements
P[{xi}], some or all of which are unknown. Clearly, X = C–1 P. For this last equation to be solvable, the
determinant of C must be nonzero, which means the rows/columns of C are linearly independent. Put
another way, the collection {Ek |k=1,2,…,N} must “span” the simple events. 

7.2.1.5.2 Applicability
The characteristic matrix defined above provides a mathematically sound, intuitively clear method of
determining the probabilities of simple events from the probabilities of compound events derived from
them, including combining evidence across knowledge sources. Bayes’ theorem is not used to obtain any
of these results, and the question of how to assign prior probabilities does not arise. The lattice structure
implicit in the definition of probabilities is simply exploited. This concept and its use are discussed later
in this chapter, where methods of combining evidence are considered.

7.2.2 The Possibility Theory Approach

Possibility theory considers a body of knowledge represented as subsets of some established reference
set, S. (Most often in literature on possibility theory the domain of discourse is denoted Ω. This discussion
uses S to minimize the introduction of new notation for each approach. It will remain clear that the
syntax and semantics of possibility theory differs from those of probability theory.) Denote the collection
of all subsets of S as Ω = 2S. In the case that S has an infinite number of elements, Ω denotes a sigma-
algebra (the definition of Ω given for probability in Appendix 7.A defines a sigma-algebra). Most of the
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time this chapter restricts S to finite cardinality for reasons of simplicity. This is not a severe restriction,
since in practical systems the representable body of knowledge will be finite.

There are two distinguished subsets of Ω , the empty set, φ, and the set S itself. Let C denote a confidence
function that maps the elements of Ω into the interval [0, 1], C:Ω → [0, 1]. It is required that C(ϕ) =
0 and that C(S) = 1. ϕ can be called the “impossible” or “never true” event, and S can be called the “sure”
or “always true” event. Note that C(A) = 0 does not imply A = ϕ and C(A) = 1 does not imply A = S,
where A ∈ Ω .

In order to have a minimum of coherence, any confidence function should be monotonic with respect
to inclusion, which requires that A ⊆ B implies C(A) ≤ C(B). This is interpreted to mean that if a first
event is a restriction of (or implies) a second event, then there is at least as much confidence in the
occurrence of the second as in the occurrence of the first. Immediate consequences of this monotonicity
are that C(A∪ B) ≥ max[C(A), C(B)] and C(A∩B) ≤ min[C(A), C(B)].

The limiting case, C(A∪ B) = max[C(A), C(B)], can be taken as an axiom that defines a possibility
measure.22 (Zadeh was the first to use the term possibility measures to describe confidence measures that
obey this axiom. He denoted them Π(·), the convention that is followed in this chapter.) The term
“possibility” for this limiting case can be motivated, even justified, by the following observations (this
motivation follows a similar treatment in Dubois and Prade.)5 

Suppose E ∈ Ω  is such that C(E) = 1. Define a particular possibility measure as Π1(A) = 1 if A ∩ E ≠
ϕ and 0 otherwise. Then interpret Π1(A) = 1 to mean A is possible. Also, since Π1(A ∪ not-A) =
Π1(S) = 1, max[Π1(A), Π1(not-A)] = 1. Interpret this to mean that of two contradictory events, at
least one is possible. However, one being possible does not prevent the other from being possible, too.
This is consistent with the semantics of judged possibilities, which invokes little commitment. Finally,
Π1(A ∪ B) = max[Π1(A),Π1(B)] seems consistent with notions of physical possibility: to realize A ∪ B
requires only the easiest (i.e., the most possible) of the two to be realized.

Because “max” is a reflexive, associative, and transitive operator, any possibility measure can be
represented in terms of the (atomic) elements of S: Π1(A) = sup{π1(a)|a∈ A}, where “sup” stands for
supremum (that is, for least upper bound), A∈Ω , a∈ S, and π1(a) = Π1({a}). Call π1(a) a possibility
distribution (defined on S). Consider a possibility distribution to be normalized if there exists at least one
a ∈ S such that π1(a) = 1. If S is infinite, a possibility distribution exists only if the axiom is extended to
include infinite unions of events.23

Now take the limiting case C(A ∩ B) = min[C(A), C(B)] as a second axiom of possibility theory, and
call set functions that satisfy this axiom necessity measures. The term “necessity” for this limiting case
can be motivated, even justified, by the following observations.

Suppose E∈Ω  is such that C(E) = 1. Define a particular necessity measure as N1(A) = 1 if E ⊆ A, and
0 otherwise. N1(A) = 1 clearly means that A is necessarily true. This is easy to verify from the definitions:
if Π1(A) = 1 then N1(not-A)] = 0, and if Π1(A) = 0 then N1(not-A)] = 1. Thus, Π1(A) = 1 – N1(not-A)].
This is interpreted to mean that if an event is necessary, its contrary is impossible, or, conversely, if an
event is possible its contrary is absolutely not necessary. This last equation expresses a duality between
the possible and the necessary, at least for the particular possibility and necessity functions used here.

Because “min” is a reflexive, associative, transitive operator, this duality implies it is always appropriate
to construct a necessity measure from a possibility distribution:

(7.6)

where “inf” stands for infemum (or greatest lower bound).
Several additional possibility and necessity relationships can be quickly derived from the definitions.

For example:

N A a a A1 11( ) = − ( ) ∉{ }inf π
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1. min[N1(A), N1(not-A)] = 0 (if an event is necessary its complement is not the least bit necessary).
2. Π1(A) ≥ N1(A) for all A∈Ω  (an event becomes possible before it becomes necessary).
3. Π1(A) + Π1(not-A) ≥ 1.
4. N1(A) + N1(not-A) ≤ 1.

Thus, the relationship between the possibility (or the necessity) of an event and the possibility (or
necessity) of its contrary is weaker than in probability theory, and both possibility and necessity numbers
are needed to characterize the uncertainty of an event. However, both probability and possibility can be
characterized in terms of a distribution function defined on the atomic members of the reference set.

Now adopt this motivation and justification to call arbitrary functions, Π(A) and N(A), possibility
and necessity functions, respectively, if they satisfy the two axioms given above and can be constructed
from a distribution, π(a), as Π(A) = sup{π(a)|a∈ A} and N(A) = inf{1 – π(a) | a ∉ A} for all a ∈ A. It is
straightforward to show that all the properties defined here for Π1(A) and N1(A) hold for these arbitrary
possibility and necessity functions provided that 0 ≤ π(a) ≤ 1 for all a ∈ S and provided π(a) is normalized
(i.e., there exists at least one a∈ S such that π(a) = 1). The properties would have to be modified if the
distribution function is not normalized. In the sequel it is assumed that possibility distribution functions
are normalized.

A relationship exists between possibility theory and fuzzy sets. To understand this relationship, some
background on fuzzy sets is also needed.

L. A. Zadeh introduced fuzzy sets in 1965.24 Zadeh noted that there is no unambiguous way to
determine whether or not a particular real number is much greater than one. Likewise, no unambiguous
way exists of determining whether or not a particular person is in the set of tall people. Ambiguous sets
like these arise naturally in our everyday life. The aim of fuzzy set theory is to deal with such situations
wherein sharply defined criteria for set membership are absent. 

Perhaps the most fundamental aspect of fuzzy sets that differentiates them from ordinary sets is the
domain on which they are defined. A fuzzy set is a function defined on some (ordinary) set of interest,
S, termed the domain of discourse. As discussed earlier in this chapter, probability is defined on a collection
of ordinary sets, 2S. This is a profound difference. Measure theory and other topics within the broad area
of real analysis employ collections of subsets of some given set (such as the natural numbers or the real
line) in order to avoid logical problems that can otherwise arise.25

Another difference between fuzzy sets and probability theory is that fuzzy sets leave vague the meaning
of membership functions and the operations on membership functions beyond a generalization of the
characteristic functions of ordinary sets (note that the terms fuzzy set and fuzzy membership function
refer to the same thing). To understand this, let {x} be the domain from which the elements of an ordinary
set are drawn. The characteristic function of the ordinary “crisp” set is defined to have value 1 if and
only if x is a member of the set, and to have the value 0 otherwise. A fuzzy set is defined to have a
membership function that satisfies 0 ≤ f(x) ≤ 1. In this sense, the characteristic function of the ordinary
set is included as a special case. However, the interpretation of the fuzzy membership function is
subjective, rather than precise; some researchers have asserted that it does not correspond to a probability
interpretation26 (although that assertion is subject to debate). This suggests that fuzzy membership
functions will prove useful in possibility theory as possibility distribution functions, but not directly as
possibility measures.

Operations on fuzzy sets are similarly motivated by properties of characteristic functions. Table 7.1
summarizes the definitions of fuzzy sets, including those that result from operations on one or more
other fuzzy sets. There, f(x) denotes a general fuzzy set, and fA(x) denotes a particular fuzzy set, A. “Max”
and “min” played a role in the initial definition of fuzzy sets. Thus, fuzzy intersection suggests a possibility
measure, fuzzy intersection suggests a necessity measure, and if a fuzzy set is thought of as a possibility
distribution, the connection that f(x) can equal Π({x}) for x ∈ S is established.

Assigning numerical values as the range of a membership function is no longer essential. One gener-
alization of Zadeh’s original definition that now falls within possibility theory is the accommodation of
word labels in the range for a fuzzy membership function. This naturally extends fuzzy sets to include
©2001 CRC Press LLC



language, creating an efficient interface with rule-based expert systems. Architectures created using this
approach are often referred to as fuzzy controllers.27 Except for this difference in range, the fuzzy sets in
a fuzzy controller continue to be combined as indicated in Table 7.1.

7.2.3 The Belief Theory Approach

Dempster7 and Shafer8 start with an exhaustive set of mutually exclusive outcomes of some experiment
of interest, S, and call it the frame of discernment. (In much of the literature on Dempster-Shafer theory,
the frame of discernment is denoted Θ. This discussion uses S to minimize the introduction of new
notation for each approach. It will remain clear that the syntax and semantics of belief theory differ from
those of probability theory.) Dempster-Shafer then form Ω = 2S, and assign a belief, B(A), to any set
A ⊂  Ω . (In some literature on belief theory, the set formed is 2S – ϕ, but this can cause confusion and
makes no difference, as the axioms will show.) The elements of S can be called atomic events; the elements
of Ω can be called molecular if they are not atomic. The interpretation of a molecular event is that any
one of its atomic elements is “in it,” but not in a constructive sense. The evidence assigned to a molecular
event cannot be titrated; it applies to the molecular event as a whole. The mass of evidence is also
sometimes called the basic probability assignment; it satisfies the following axioms:

1. m (φ) = 0
2. m (A) > 0 for all A ∈  Ω

3.

Note that although these axioms bear some similarity to the axioms for probability, they are not the
same. Belief and probability are not identical. The crucial difference is that axiom 3 equates unity with
the total accumulated evidence assigned to all elements of Ω , whereas an axiom of probability equates
unity with S ∈  Ω . Belief theorists interpret S to mean a state of maximal ignorance, and the evidence
for S is transferable to other elements of Ω as knowledge becomes manifest, that is, as ignorance
diminishes. Hence, in the absence of any evidence, in a state of total ignorance, assign m(S) =1 and to
all other elements of Ω assign a mass of 0. In time, as knowledge increases, some other elements of Ω
will have assigned nonzero masses of evidence. Then, if m(A) > 0 for some A ∈ Ω , m(S) < 1 in accord
with the reduction of ignorance. This ability of belief theory to explicitly deal with ignorance is often
cited as a useful property of the approach. However, this property is not unique to belief theory.28

TABLE 7.1 Summary Definition of Fuzzy Membership Functions

Operation Definition

Empty Set f is empty iff f(x) = 0 ∀  x
Complement f C = 1 – f(x) ∀  x
Equality fA = fB iff fA(x) = fB(x) ∀  x
Inclusion fA ⊆  fB iff fA(x) ≤ fB(x) ∀  x
Disjunction fA∪ B(x) = max [fA(x), fB(x)]
Conjunction fA∩B(x) = min [fA(x), fB(x)]
Convexity A is a convex fuzzy set ⇔ fA[kx1 + (1 – k)x2] > 

min [fA(x1), fA(x2)] for all x1 and x2 in X, and 
for any constant, k, in the interval [0,1].

Algebraic Product � fA(x) fB(x)�
Algebraic Sum � fA(x) + fB(x)� ≤ 1
Absolute Difference � fA(x) – fB(x)�
Entropy Ratio

dx f x f x

dy f y f y

A A

A A

min ( ), ( )

max ( ), ( )

1

1

−[ ]
−[ ]

∫
∫

m A
A

( ) =
⊆
∑ 1

Ω
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Belief theory further defines a belief function in terms of the mass of evidence. The mass of evidence
assigned to a particular set is committed exactly to the set, and not to any of the constituent elements
of the set. Therefore, to obtain a measure of total belief committed to the set, add the masses of evidence
associated with all the sets that are subsets of the given set. For all sets A and B in Ω, define

(7.7)

Given Bel(A), m(B) can be recovered as follows:

(7.8)

Thus, given either representation, the other can be recovered. This transform pair is known as the
Möbius transformation.29

B ∈ Ω  is a focal element of the belief system if m(B) > 0. (Confusingly, some authors seem to equate
the focal elements of a belief system with the atomic events. That definition would not be sufficient to
obtain the results cited here.) The union of all the focal elements of a belief system is called the core of
the belief system, denoted C. It should be apparent that Bel(A) = 1 if and only if C ⊆ A. It should also
be apparent that if all the focal elements are atomic events, then Bel(A) is the classical probability measure
defined on S. It is this last property that leads some authors to assert that belief theory (or Dempster-
Shafer theory) is a generalization of probability theory. However, a generalization should also be expected
to do something the other cannot do, and this has not been demonstrated. Indeed, Dempster explicitly
acknowledges that there are stronger constraints on belief theory than on probability theory.5,23,30 Demp-
ster was well aware that his rule of combination (still to be discussed) leads to more constrained results
than probability theory, but he preferred it because it allows an artificial intelligence system to get started
with zero initial information about priors.

This belief function has been called the credibility function, denoted Cr(A), and also the support for
A, denoted Su(A). In the sequel, Su(A) will be used in keeping with the majority of the engineering
literature. By duality, a plausibility function, denoted Pl(A), can be defined in terms of the support
function: 

(7.9)

Thus, the plausibility of A is 1 minus the sum of the mass of evidence assigned to all the subsets of Ω
that have an empty intersection with A. Equivalently, it is the sum of the mass of evidence assigned to
all the subsets of Ω that have a nonempty intersection with A. An example should help to solidify these
definitions. Suppose S = {x, y, z}. Then Ω = {φ, {x}, {y}, {z}, {x,y}, {x,z}, {y,z}, S}. The credibility and the
plausibility of all the elements of Ω can be computed by assigning a mass of evidence to some of the
elements of Ω as shown in Table 7.2. 

For any set A ∈ Ω , Su(A) ≤ Pl(A), Su(A) + Su(not-A) ≤ 1, and Pl(A) + Pl(not-A) ≥ 1.
The relationship between support and plausibility leads to the definition of an interval, [Su(A),Pl(A)].

What is the significance of this interval? The support of a proposition can be interpreted as the total
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mass of evidence that has been transferred to the proposition, whereas the plausibility of the proposition
can be interpreted as the total mass of evidence that has either already been transferred to the proposition
or is still free to transfer to it. Thus, the interval spans a spectrum of belief from that which is already
available to that which may yet become available given the information at hand.

7.2.4 Methods of Combining Evidence

Each of the three theories just reviewed has its own method of combining evidence. This section provides
an example problem as a basis of comparison (this example follows Blackman10). Suppose there are four
possible targets operating in some area, which are called t1, t2, t3, and t4. Suppose t1 is a friendly interceptor
(fighter aircraft), t2 is a friendly bomber, t3 is a hostile interceptor, and t4 is a hostile bomber. 

7.2.4.1 Getting Started

This is enough information to begin to define a probability space. Define S = {t1, t2, t3, t4} and form
Ω = 2S. Clearly, ϕ ∈  Ω and P [ϕ] = 0. Also, S ∈  Ω and P[S] = 1 (i.e., one of the targets will be observed
because S is exhaustive).

This provides enough information for a possibility system to establish its universe of discourse, S =
{t1, t2, t3, t4}. However, there is no clearly defined way to characterize the initial ignorance of which target
may be encountered. Note that there is not a constraint of the form f0(S) = 1. A possible choice is f0(x) =
1 if x ∈  S, and 0 otherwise, corresponding to an assignment of membership equal to nonmembership
for each of the possible targets about which no information is initially available. Another possible choice
is f0(x) = 0, corresponding to an assignment of the empty set to characterize that no target is present
prior to the receipt of evidence. As noted above, {Low, Medium, High} could also be chosen as the range,
and f0(x) = Low could be assigned for all x in S. In order to be concrete, choose f0(x) = 0. 

This is also enough information to begin to construct a belief system. Accepting this knowledge at
face value and storing it as a single information string, {t1 ∪  t2 ∪  t3 ∪  t4}, with unity belief (which implies
P(Ω) = 1, as required), minimizes the required storage and computational resources of the system.

7.2.4.2 Receipt of First Report

Suppose a first report comes in from a knowledge source that states, “I am 60 percent certain the target
is an interceptor.” All three systems map the attribute “interceptor” to the set {t1, t3}. 

7.2.4.2.1 Probability Response
Based on the first report, P[{t1,t3}|1st report}] = 0.6. A probability approach requires that P[not{t1,t3}|1st

report}] = 1 – P[{t1,t3}|1st report}]. The set complement is with respect to S, so P[{t2,t4}|1st report}] =
0.4. The status of knowledge at this point is summarized on the lattice structure based on subsets of S,
as shown in Figure 7.5.

TABLE 7.2 An Example Clarifying Belief System Definitions

Event
A

Mass of Evidence
m(A)

Support Plausibility

ϕ 0 0 0
{x} mx mx 1 – my – mz – myz

{y} my my 1 – mx – mz – mxz

{z} mz mz 1 – mx – my – mxy

{x,y} mxy mx + my + mxy 1 – mz

{x,z} mxz mx + mz + mxz 1 – my

{y,z} myz my + mz + myz 1 – mx

S 1 – Σ (all other masses) 1 1

m B
B A

( )
⊆
∑ 1−

∩ =
∑ m B

A B

( )
φ
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 With pi = P[{ti}] the constraints from this lattice structure lead to the conclusion that:

(7.10)

(7.11)

(7.12)

(7.13)

7.2.4.2.2 Possibility Response
The possibility system interprets the message as saying that Π({t1}∪ {t3}) = 0.6. = max[Π({t1}, Π({t3}].
This implies only that 0 ≤ Π({t1} ≤ 0.6, and 0 ≤ Π({t3} ≤ 0.6, and does not express any constraining
relationship between Π{t1} and Π{t3}. Because {S} = {t1,t3}∪ {t2,t4} and Π({S}) = 1, max[Π{t1,t3}, Π{t2,t4}] =
max[0.6, Π{t2,t4}] = 1, which implies that Π{t2,t4}] = 1. From this, the conclusion is reached that 0 ≤
Π{t2} ≤ 1, and 0 ≤ Π{t4} ≤ 1, again without any constraint between Π{t2} and Π{t4}. This contributes little.

7.2.4.2.3 Belief Response
Since the reported information is not certain regarding whether or not the target is an interceptor, the
belief system transfers some of the mass of evidence from S as follows: m1(S) = 0.4 and m1({t1, t3}) = 0.6
(all the others are assigned zero). From these the support and the plausibility for these two propositions
can be computed, as shown in Table 7.3. This is all that can be inferred; no other conclusions can be
drawn at this point.

7.2.4.3 Receipt of Second Report

Next, a second report comes in from a knowledge source that states, “I am 70 percent sure the target is
hostile.” All three systems map the attribute “hostile” to the set {t3,t4}.

FIGURE 7.5 The lattice imposes exploitable constraints.

TABLE 7.3 Belief Support and Plausibility

Event Support Plausibility

{t1, t3} 0.6 1.0
S 1.0 1.0

0 0 61≤ ≤p .

0 0 42≤ ≤p .

p p p3 1 30 6 0 0 6= − ≤ ≤( ). .

p p p4 2 40 4 0 0 4= − ≤ ≤( ). .
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7.2.4.3.1 Probability Combination
At this point, P[{t3,t4}|2nd report}] = 0.7 and P[{t1,t2}|2nd report] = 0.3. Thus, the following probabilities
for six possible pairings of four targets result from the second report:

(7.14)

(7.15)

(7.16)

(7.17)

(7.18)

(7.19)

Now, using Equations 7.13, 7.14, and 7.16 (because this choice involves only three unknowns; any such
choice necessarily provides the same answers), together with a characteristic matrix, gives

(7.20)

and any standard technique for matrix inversion can be used to obtain

(7.21)

This leads to the conclusions that

(7.22)

(7.23)

(7.24)

(7.25)
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The fact that these are all probabilities constrains x to the range 0.3 ≤ x ≤ 0.9, which, in turn, implies

(7.26)

(7.27)

(7.28)

(7.29)

This is all that can be deduced until at least one additional piece of independent information arrives.
However, even this partial information supports a preliminary decision, as shown in Figure 7.6.

7.2.4.3.2 Possibility Combination
Possibility theory combines information using min and max beginning with the following observed facts:
(1) Π[{t1,t3}] = 0.6, and (2) Π[{t3,t4}] = 0.7. Since {t3} = {t1,t3} ∩ {t3,t4}, N({t3}) = min[0.6, 0.7] = 0.6.
However, since there are no defined constraints among the individual possibilities aside from the min-
max rules of combination, little else can be deduced. Therefore, possibility theory does not seem well
suited to a sequential combination of information even though it may be an effective way to assign
measures of belief in other settings (e.g., in fuzzy controllers27). For this reason, there will be no further
consideration of possibility theory in this chapter.

7.2.4.3.3 Belief Combination
The belief system represents the information in the second report as an assignment of masses of evidence
from a second source: m2(S) = 0.3 and m2({t3,t4}) = 0.7. Dempster’s rule is then used to combine the
masses of evidence from the two independent sources. In this case the calculations are particularly simple,
as shown in Table 7.4. Again, the support and the plausibility of each of these events can be computed,
as shown in Table 7.5.

Obviously Dempster’s rule does not directly inform belief in the presence of individual targets, yet the
physical situation often presents only one target. This and related phenomena have led some authors to
point out that belief theory is weak in its ability to result in a decision.28 

FIGURE 7.6 Even partial information supports a preliminary decision (“•” marks the mid-range of x).
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7.2.4.4 Inconsistent Evidence

Inconsistency is said to occur when one knowledge source assigns a mass of evidence to one event (set),
a second knowledge source assigns a mass of evidence to a different event (set), and the two events have
nothing in common — the intersection of their set representations is null. This situation has not so far
arisen in the target identification example considered above and will now be introduced.

Suppose a third report comes in that states “I am 80 percent sure one of the known targets is present:
{t2} is twice as likely as {t1}; {t3} is three times as likely as {t1}; and {t4} is twice as likely as {t1}.”

7.2.4.4.1 Probability Resolution
This third report calls into question whether or not the probability space so far constructed to model
the situation is accurate. Do the four targets represent an exhaustive set of outcomes, or don’t they? One
possibility is that other target types are possible; another possibility is that there really is no target present.
So the probability space must be modified to consider the possibility that something else can happen
and guarantee that the atomic events really exhaustively span all possible outcomes. Therefore, define an
additional atomic event, O, called “other” to denote the set of whatever other undifferentiated possibilities
there might be. The probability system then represents the third report as stating that P[{t1}] = 0.1;
P[{t2}] = 0.2; P[{t3}] = 0.3; P[{t4}] = 0.2; and P[O] = 0.2. Now in order to combine this report with the
earlier reports, the earlier probability results must be mapped to the new probability space just defined,
otherwise they are simply incommensurate. 

For example, based on the first report, P[{t1,t3}|1st report}] = 0.6. A probability approach requires that
P[not{t1,t3}|1st report}] = 1 – P[{t1,t3}|1st report}]. The set complement is with respect to S, so if S includes
O, P[{t2,t4,O}|1st report}] = 0.4. Similarly, when P[{t3,t4}|2nd report}] = 0.7 and S includes O, P[{t1,t2,O}|2nd

report] = 0.3. This requires a complete new analysis that obviates the analysis reported in Sections 7.2.4.2.1
and 7.2.4.3.1, above, and there is not sufficient space in this chapter to do it again. Suffice it to say that
the results from the two messages agree qualitatively with the third message, but there are quantitative
disparities. Utility theory has been developed to address such situations. A rational person is expected
to choose an alternative that has the greatest utility. So, how can utility be assigned to these two
alternatives? One way is to equate utility with the number of corroborating reports; this is appropriate
if all data sources have equal veracity. Since two reports are consistent for the first alternative, and only
one report is self-consistent for the second alternative, the data fusion system would prefer the first
alternative if this utility function is adopted. Utility theory also offers the means to create a linear
combination of the alternatives, and the number of corroborating reports can again be used to form the
weights. The computations are omitted.

7.2.4.4.2 Belief Resolution
The belief system represents the third report as stating that m[{t1}] = 0.1; m[{t2}] = 0.2; m[{t3}] = 0.3;
m[{t4}] = 0.2; and m[S] = 0.2. The assignment of a mass of evidence to S accounts for the uncertainty

TABLE 7.4 Application of Dempster’s Rule

m2({t3,t4}) = 0.7 m2(S) = 0.3

m1({t1, t3}) = 0.6 m{t3}) = 0.42 m({t1, t3}) = 0.18
m1(S) = 0.4 m({t3,t4}) = 0.28 m(S) = 0.12

TABLE 7.5 Combined Support and Plausibility

Event Support Plausibility

{t3} 0.42 1.0
{t1,t3} 0.60 1.0
{t3,t4} 0.70 1.0
S 1.0 1.0
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as to whether or not one of the known targets is actually present. The Dempster-Shafer rule of combi-
nation applies as before, but with one modification. When the evidence is inconsistent, their products
of masses of evidence are assigned to a measure of inconsistency, termed k. The results from this first
part of the procedure are shown in Table 7.6.

The next step is to sum all the corresponding elements of the matrix. Thus, for example, the total
mass of evidence assigned to inconsistency, k, is 0.042 + 0.028 + 0.084 + 0.036 + 0.056 + 0.084 + 0.036 =
0.366. Finally, divide the summed masses of evidence by the normalizing factor (1 – k), which has the
value 0.634 in this example. The results for individual targets follow: m[{t1}] = (0.018 + 0.012)/0.634 =
0.047; m[{t2}] = 0.022/0.634 = 0.038; m[{t3}] = (0.084 + 0.084 + 0.126 + 0.054 +0.036)/0.634 = 0.606;
and m[{t4}] = (0.056 + 0.024)/0.634 = 0.126. The resulting Support-Plausibility intervals are diagrammed
in Figure 7.7.

7.3 An Example Data Fusion System

The characterization of components needed in a data fusion system begins with standard techniques,
such as structured, object-oriented, or component-based analysis. A complete analysis is beyond the
scope of this chapter; however, the following example should help clarify and demonstrate the concepts
discussed herein. The first step in any method of analyzing system requirements is to establish the system
context. The system context is summarized in a context diagram that represents a jumping-off point for
the abstract decomposition that follows.

TABLE 7.6 The Dempster-Shafer Rule Applied to Inconsistent Evidence

m1,2[{t3}] = 0.42 m1,2[{t1, t3}] = 0.18 m1,2[{t3,t4}] = 0.28 m1,2[S] = 0.12

m3[{S}] = 0.2 m[{t3}] = 0.084 m[{t1, t3}] = 0.036 m[{t3,t4}] = 0.056 m[S] = 0.024
m3[{t1}] = 0.1 k = 0.042 m[{t1}] = 0.018 k = 0.028 m[{t1}] = 0.012
m3[{t2}] = 0.2 k = 0.084 k = 0.036 k = 0.056 m[{t2}] = 0.024
m3[{t3}] = 0.3 m[{t3}] = 0.126 m[{t3}] = 0.054 m[{t3}] = 0.084 m[{t3}] = 0.036
m3[{t4}] = 0.2 k = 0.084 k = 0.036 m3[{t4}] = 0.056 m3[{t4}] = 0.024

FIGURE 7.7 Support-plausibility intervals result from combining three bodies of evidence.
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7.3.1 System Context

Suppose that an adversarial ground force armed with mobile ground-to-ground missiles has been
deployed to harass a friendly force in a fixed location within a contested region. The friendly force is
supported by an all-source intelligence center that provides target location data to a fire control system
and to an air tasking order system. The fire control system directs artillery, while the air tasking order
system automatically requests air support. The data fusion system resides within the all-source intelligence
center, and is required to 

• Interface with other elements within the center that provide signals intelligence (SIGINT) mes-
sages, measurements and analysis intelligence (MASINT) messages, and image intelligence
(IMINT) reports;

• Analyze the messages received from those elements to determine the presence and location of the
mobile missile launchers;

• Report those locations and any other available information about the status of the located launch-
ers to a human analyst who will determine the optimal response to the threat posed by the
launchers.

The human controls the follow-on flow of location and status information to either the fire control
system or the air tasking order system. 

The system context is summarized in the context diagram, which in structured analysis is known as
the Level 0 diagram and is shown in Figure 7.8. Level 0 establishes the system boundary and clarifies
what information is regarded as being internal or external to the system. 

7.3.1.1 Intelligence Preparation of the Battlefield

Suppose intelligence preparation of the battlefield (IPB) has estimated the following composition of
mobile missile batteries operating in the contested region:

• 12 batteries, each with 1 vehicle of type 1 (V1)

10 with 3 vehicles of type 2 (V2)
2 with 2 V2
8 with 3 vehicles of type 3 (V3)
3 with 2 V3
1 with 1 V3

FIGURE 7.8 The Level 0 diagram establishes the system boundary and clarifies what is considered to be inside or
outside the system.
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• 11 of the V1 have SIGINT emitter type 1 (E1) and 6 of the V1 have SIGINT emitter type 2 (E2);
all 12 V1 have at least one of these two types of emitters. When V1 has both emitter types, only
one emitter is on at a time, and it is used half the time.

• 24 of the V2 have SIGINT emitter type 3 (E3) and 17 of them have E2; all 34 V2 have at least one
of these two types of emitters. When V2 has both emitter types, only one emitter is on at a time,
and it is used half the time.

• 22 of the V3 have E1 and 19 of them have E3; all 31 V3 have at least one of these two types of
emitters. When V3 has both emitter types, only one emitter is on at a time, and it is used half the
time.

• Image reports (IMINT) correctly identify vehicle type 98% of the time.

• V1 yield IR signature type 1 (IR1) 10 percent of the time; IR signature type 2 (IR2) 60 percent of
the time; and no IR signature (NoIR) 30 percent of the time.

• V2 yield IR1 80 percent of the time, IR2 10 percent of the time, and NoIR 10 percent of the time.

• V3 yield IR1 10 percent of the time, IR2 40 percent of the time, and NoIR 50 percent of the time. 

• Batteries are composed of vehicles arrayed within a radius of 1 kilometer centered on V1.

7.3.1.2 Initial Estimates

The example experiment involves receiving an intelligence report (i.e., a report that an emitter or an IR
signature has been detected) and then determining the vehicle type. There are 77 vehicles. The IPB
estimates given in Section 7.3.1.1 indicate that there are nine configurations of vehicle/emitter, as shown
in Table 7.7. Furthermore, there are nine configurations of vehicle/IR-signature, as listed in Table 7.8. 

TABLE 7.7 Nine Vehicle/Emitter Configurations

Config. No. Vehicle/Emitter Configuration Quantity

1 V1 with E1 6
2* V1 with E1 and E2 5
3 V1 with E2 1
4 V2 with E2 10
5* V2 with E2 and E3 7
6 V2 with E3 17
7 V3 with E1 12
8* V3 with E1 and E3 10
9 V3 with E3 9

Total 77

* Note: Each emitter is on half the time, one at a time.

TABLE 7.8 Nine Vehicle/IR-Signature Configurations

Config. No. Vehicle/IR Signature-Configuration Quantity

1 V1 with IR1 1.2
2 V1 with IR2 7.2
3 V1 with NoIR 3.6
4 V2 with IR1 27.2
5 V2 with IR2 3.4
6 V2 with NoIR 3.4
7 V3 with IR1 3.1
8 V3 with IR2 12.4
9 V3 with NoIR 15.5

Total 77
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7.3.1.2.1 Initial Probability Estimates
These considerations (and others) lead to the following prior probabilities:

(7.30)

(7.31)

(7.32)

(7.33)

(7.34)

(7.35)

(7.36)

(7.37)

(7.38)

(7.39)

(7.40)

(7.41)

(7.42)

(7.43)

(7.44)

(7.45)

(7.46)

(7.47)

P E V1 1 8 5 12[ ] = .

P E V1 2 0[ ] =

P E V1 3 17 31[ ] =

P E V2 1 3 5 12[ ] = .

P E V2 2 13 5 34[ ] = .

P E V2 3 0[ ] =

P E V3 1 0[ ] =

P E V3 2 20 5 34[ ] = .

P E V3 3 14 31[ ] =

P IR V1 1 0 1[ ] = .

P IR V1 2 0 8[ ] = .

P IR V1 3 0 1[ ] = .

P IR V2 1 0 6[ ] = .

P IR V2 2 0 1[ ] = .

P IR V2 3 0 4[ ] = .

P NoIRV1 0 3[ ] = .

P NoIRV 2 0 1[ ] = .

P NoIRV 3 0 5[ ] = .
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(7.48)

(7.49)

(7.50)

(7.51)

(7.52)

(7.53)

(7.54)

(7.55)

(7.56)

(7.57)

(7.58)

(7.59)

From these, the initial values of the posterior probabilities can be computed using Bayes’ rule. In
anticipation of an example that follows, examine P[V1|E1], P[V2|E1], and P[V3|E1] (other initial pos-
terior probabilities can, of course, be computed in a similar manner):

(7.60)

(7.61)

(7.62)

7.3.1.2.2 Initial Belief Estimates
The representation of uncertainty within the Dempster-Shafer approach is an assignment of mass based
either on observations reported by knowledge sources or on defined rules. Some rules typically come
from an understanding of the problem domain, such as from IPB. To be concrete, consider the prior
probabilities to also define a mass of evidence distribution, and from them compute the initial support
and plausibility values for each event of interest (these computations are omitted to conserve space in
this chapter). Note, however, that a belief system could express the conditional probability information

P V IMINT1 0 98[ ] = .

P V IMINT2 0 98[ ] = .

P V IMINT3 0 98[ ] = .

P IR1 31 5 77[ ] = .

P IR2 23 77[ ] =

P NoIR[ ] = 22 5 77.

P V1 12 77[ ] =

P V 2 34 77[ ] =

P V 3 31 77[ ] =

P E1 25 5 77[ ] = .

P E2 17 77[ ] =

P E3 34 5 77[ ] = .

P V E P E V P V P E1 1 1 1 1 1 8 5 12 12 77 77 25 5 0 333[ ] = [ ] ∗ [ ] [ ] = ( )∗ ( )∗ ( ) =. . .

P V E P E V P V P E1 2 2 1 1 2 3 5 12 12 77 77 17 0 206[ ] = [ ] ∗ [ ] [ ] = ( )∗ ( )∗ ( ) =. .

P V E P E V P V P E1 3 3 1 1 3 0[ ] = [ ] ∗ [ ] [ ] =
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in the IPB in the form of rules. For example, P[V1|IMINT] = 0.98 could be expressed as the rule, “If
IMINT reports V1, then V1 occurs with mass of evidence 0.98.” Or, “If E2 is reported, then the mass of
evidence for V3 is zero.” Additional examples are presented in Section 7.3.2.2 below.

7.3.2 Collections of Spaces

This section considers how this example data fusion system can most efficiently be constructed. This will
prove useful when examining the system in operation. This section summarizes some of the aspects of
human decision making that motivate the use of collections of spaces. It also characterizes the modules
that can implement the collection-of-spaces approach.

7.3.2.1 Motivation

Pearl31 provided a summary of human performance in decision-making tasks that contrasts the brute
force applications of the Bayesian theory. This section is based on his ideas.

The enumeration of all propositions of interest, and all combinations in which they can occur, is
exponentially complex. This means that practical systems that attempt to define a joint probability
function in a brute force way — by listing arguments in a table and trying to manipulate the table to
compute marginal and conditional probabilities — are doomed to fail. In practice, many of the entries
in such a matrix will be zero — most combinations of evidence never occur in nature. Pearl noted that
humans seem to counter this complexity by only dealing with a small number of propositions at a time.
Although humans make probabilistic judgments quickly and reliably when making pair-wise conditional
statements (such as the likelihood of finding a target based on observing a certain feature), they estimate
joint probabilities of many propositions poorly, hesitantly, and only with difficulty. Further, humans may
be reluctant to estimate even pair-wise conditional statements in numerical terms, but they usually state
with confidence whether or not two propositions are independent (that is, whether or not one statement
influences the truth of the other). Even three-way dependency statements (e.g., measurement M implies
target presence given condition C) are handled with confidence and consistency.

This suggests that the fundamental building blocks of human knowledge are not exhaustive entries in
a table to estimate joint probabilities. Instead, human knowledge builds on low-order marginal and
conditional probabilities defined over small clusters of propositions. Notions of dependence within
clusters and of independence between clusters seem basic to human reasoning. Our limited short-term
memory and narrow focus of attention seem to imply that “… we reason over fairly local domains
incrementally along parallel pathways whose structure implicitly codes information at the knowledge
level itself.”31 This apparent manner in which humans manage the complexity of decision making in real
world settings can be captured in an approach that unites the concept of collections of probability spaces
with Bayesian methods.

7.3.2.2 Component-Based Implementation

A software component is a unit of software with the following characteristics: (1) it is discrete and
functionally well defined; (2) it has standardized, clear, and usable interfaces to its methods; and (3) it
runs in a container, either with other components or as a stand-alone entity.32-34 A component may
contain object classes, methods, and data that can be reused in a manner similar to the reuse of hardware
components of a system (although a component need not be object-oriented). The conceived collection-
of-spaces component constitutes such a reusable component.

A collection of related spaces imparts a common nature to components of a data fusion system — a
system that may be distributed. Although the spaces exist at various levels of modeling abstraction and
observation representation, the common nature provides the foundation for component definition and
integration, as indicated in Figure 7.9. Each component comprises knowledge and evidence in a local
domain. A local space and its associated observation processes model the domain. This means that the
spaces in which the mutually exclusive causes lie are explicitly modeled, and the observation processes
are analyzed in physical terms to explicitly characterize the evidence that can be measured. This results
in C, a computation component with
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• Input — measured evidence in a common observation space (vector or scalar variables or events
and/or logical assertions in a defined domain);

• Internal data — prior information (e.g., prior marginal and conditional probabilities), if available,
and data and knowledge about attributes of each cause;

• Processing:

• Calculate posterior values for occurrence of each cause (e.g., Bayes’ theorem and/or exploit
lattice structure, Dempster-Shafer combining of evidence mass, fuzzy logic min-max, and/or
rule-based calculation),

• Calculate a figure of merit for each cause (e.g., probability interval, support-plausibility interval,
or rule-based assertion),

• Determine most likely causes from figures of merit,

• Associate attributes with likely causes (e.g., from local database or from the properties of an
observation process),

• Determine routing of output data,

• Accept and process feedback;

• Output — likely or plausible causes with figures of merit (e.g., attributes of causes and routing
information);

• Feedback — from other components in the data fusion system (e.g., data and knowledge updates
and updates affecting prior information).

7.3.2.3 Component Examples

Consider as examples two components that share the task of determining the vehicle type based on
message traffic that flows into the system. 

Both probability and belief systems are built on the foundation of an exhaustive set of possible
outcomes, S, and go on to consider subsets of S. Therefore, the space defined for any component consists
of S, Ω (the collection of subsets of S), and the assignment of either an initial probability or an initial
mass of evidence distribution (and its associated support and plausibility) for as many possible outcomes
as is feasible. Two examples follow.

1. S1 = {V1, V2, V3} because these comprise the totality of observable outcomes with respect to
vehicle type. There are 23 = 8 elements in Ω1. The initial (prior) probabilities are computed from
the data stored in the database: 

(7.63)

FIGURE 7.9 Components in the system represent local domains, but they share a common nature.
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(7.64)

(7.65)

These same values could be used to initialize a mass of evidence distribution, and the resulting
support and plausibility could be calculated.

2. S2 = {E1, E2, E3} because these comprise the totality of observable outcomes with respect to emitter
type. There are 23 = 8 elements in Ω2. The initial (prior) probabilities are computed from the data
stored in the database:

(7.66)

(7.67)

(7.68)

These same values could be used to initialize a mass of evidence distribution, and the resulting
support and plausibility could be calculated.

7.3.3 The System in Operation

Now suppose a first message arrives from the SIGINT analyst that states E1 has been identified at location
(x1, y1) at time t1 with confidence 0.9. Then, suppose a later message arrives from the MASINT analyst
that states NoIR is detected at location (x1, y1) at time t2 and that t2 is shortly after t1. The MASINT
analyst appends a note that states the IR detector has a miss rate of 0.05.

7.3.3.1 The Probability System Response

The emitter probability component employs interval probabilities to update the elements of its probability
space lattice: state E1 with probability 0.9; state E2 with probability x; state E3 with probability 0.1 – x,
where 0 ≤ x ≤ 0.1; and the others based on the subset relationships. The vehicle component interprets
this to mean a superposition of probability states because no true conditioning event yet exists. The
vehicle component responds by weighting the three states together:

(7.69)

This leads to a range of values that expresses an updated P[V1] at time t1 and location (x1, y1), which is
denoted as P1,1[V1]: 0.300 ≤ P1,1[V1] ≤ 0.321. Similar ranges are computed for V2 and V3, respectively: 0.059
≤ P1,1[V2] ≤ 0.079 and 0.600 ≤ P1,1[V3] ≤ 0.641. The vehicle component represents these as interval proba-
bilities assigned to the elements of its probability space lattice, as shown in Figure 7.10. Note that ΣP[Vi]
must equal 1, and that simultaneous choices exist within these three intervals that satisfy this constraint. 

Even the first message results in a preliminary identification of vehicle type. Indeed, if the maximum
possible values are assigned to P1,1[V1] (0.321) and P1,1[V2] (0.079), then P1,1[V3] = 0.600. The ratio
P1,1[V3]/P1,1[V1] would equal 0.600/0.321 = 1.87, which can be tested against the threshold defined in
Section 7.2.4, above: 

(7.70)

P V 2 34 77{ }[ ] =

P V 3 31 77{ }[ ] =

P E1 25 5 77{ }[ ] = .

P E2 17 77{ }[ ] =

P E3 34 5 77{ }[ ] = .

0 9 1 1 1 2 0 1 1 3 0 9 0 333 0 206. . . . .( )∗ [ ] +( )∗ [ ] + −( )∗ [ ] = ( )∗ ( )+( )∗ ( )P V E x P V E x P V E x
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C C P V

C C P V
3 1 87
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Assuming that the costs of mistakes are equal, the threshold becomes P[V1]/P[V3] = 12/31 = 0.387.
Clearly, 1.87 > 0.387, which leads to a decision with (assumed) acceptable risk that V3 has been detected
at (x1, y1). However, let us postpone this decision to examine the effect that the receipt of additional
evidence has on the probability intervals.

The IR component employs interval probabilities to update the elements of its probability space lattice:
state NoIR with probability 0.95; state IR1 with probability x; state IR2 with probability 0.05 – x, where
0 ≤ x ≤ 0.05; and the others based on the subset relationships. The vehicle component could interpret
this to mean a superposition of probability states because no true conditioning event yet exists. The
vehicle component would then respond by weighting the three states together. As before, three ranges of
values would express the updated probabilities of V1, V2, and V3:

(7.71)

(7.72)

(7.73)

However, in this case, the vehicle component has already made an initial assessment of vehicle type
at location (x1, y1), and a determination must be made about how the probability intervals evolve in this
setting where observations arrive in temporal sequence. Computing P[Vi|Ej,IRk] from P[Vi,Ej,IRk] and
P[Ej,IRk] using the intelligence preparation of the battlefield information presented in Section 7.3.1.1,
yields

(7.74)

(7.75)

(7.76)

Next, each P[Vi|Ej,IRk] must be weighted by the reported values of P[Ej] and P[IRk], and then summed
over j and k to obtain Pc[Vi], which denotes the combined probability interval for Vi . The required
computations are shown in Tables 7.9, 7.10, and 7.11(a–c).

FIGURE 7.10 The first message results in a preliminary identification of vehicle type.

0 0.1 0.2 0.3 0.40.5

Combined Probability, P1,1

V1

V2

V3

0.6 0.7 0.8 0.9 1.0

T
a

rg
et

0 154 1 0 1681 2. .,≤ [ ] ≤P V

0 146 2 0 1811 2. .,≤ [ ] ≤P V

0 661 3 0 6831 2. .,≤ [ ] ≤P V

P V E IR P E V P IR V P Vi j k j i k i i, ,[ ] = [ ] [ ] [ ]

P E IR P V E IRj k i j k, , ,[ ] = [ ]∑

P V E IR
P V E IR

P E IR
i j k

i j k

j k

,
, ,

,
[ ] = [ ]

[ ]
©2001 CRC Press LLC



These computations result in the updated probability intervals depicted in Figure 7.11: 

(7.77)

(7.78)

TABLE 7.9 Computation of 
P[Vi,Ej,IRk] from the IPB

i j k P[Ej|Vi] P[IRk|Vi] P[Vi]

1 1 1 (8.5/12) (0.3) (12/77)
1 1 2 (8.5/12) (0.1) (12/77)
1 1 3 (8.5/12) (0.6) (12/77)
1 2 1 (3.5/12) (0.3) (12/77)
1 2 2 (3.5/12) (0.1) (12/77)
1 2 3 (3.5/12) (0.6) (12/77)
2 2 1 (13.5/34) (0.1) (34/77)
2 2 2 (13.5/34) (0.8) (34/77)
2 2 3 (13.5/34) (0.1) (34/77)
2 3 1 (20.5/34) (0.1) (34/77)
2 3 2 (20.5/34) (0.8) (34/77)
2 3 3 (20.5/34) (0.1) (34/77)
3 1 1 (17/31) (0.5) (31/77)
3 1 2 (17/31) (0.1) (31/77)
3 1 3 (17/31) (0.4) (31/77)
3 3 1 (14/31) (0.5) (31/77)
3 3 2 (14/31) (0.1) (31/77)
3 3 3 (14/31) (0.4) (31/77)

TABLE 7.10 Computation of P[Ej,IRk] from 
Information in Table 7.9

j k P[Ej,IRk]

1 1 (8.5/12) (0.3) (12/77) + (17/31) (0.5) (31/77)
1 2 (8.5/12) (0.1) (12/77) + (17/31) (0.1) (31/77)
1 3 (8.5/12) (0.6) (12/77) + (17/31) (0.4) (31/77)
2 1 (3.5/12) (0.3) (12/77) + (13.5/34) (0.1) (34/77)
2 2 (3.5/12) (0.1) (12/77) + (13.5/34) (0.8) (34/77)
2 3 (3.5/12) (0.6) (12/77) + (13.5/34) (0.1) (34/77)
3 1 (20.5/34) (0.1) (34/77) + (14/31) (0.5) (31/77)
3 2 (20.5/34) (0.8) (34/77) + (14/31) (0.1) (31/77)
3 3 (20.5/34) (0.1) (34/77) + (14/31) (0.4) (31/77)

TABLE 7.11a Computation of P[V1|Ej,IRk]

j k P[V1|Ej,IRk] Reported P[Ej] Reported P[IRk] P[V1,Ej,IRk]

1 1 0.231 0.9 0.95 0.178
1 2 0.333 0.9 x [0, 0.015]
1 3 0.429 0.9 0.05 – x [0, 0.019]
2 1 0.438 y 0.95 [0, 0.042]
2 2 0.032 y x [0, 0.000]
2 3 0.609 y 0.05 – x [0, 0.005]

Note: These values are then weighted by reported information and
summed to yield Pc[V1] = [0.178, 0.259]. Note that 0 ≤ x ≤ 0.05 and
0 ≤ y ≤ 0.10.

0 178 1 0 259. .≤ [ ] ≤P Vc

0 000 2 0 088. .≤ [ ] ≤P Vc
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(7.79)

Note again the simultaneous choices within these three intervals that satisfy the constraint ∑P[Vi] = 1.
Assigning the minimum possible values to Pc[V3] (0.803) and to Pc[V2] (0) gives a maximum possible
value for Pc[V1] of 0.197. The ratio Pc[V3]/Pc[V1] then equals 0.803/0.197 = 4.08, which provides even
greater confidence (i.e., reduced risk) than before in a decision that V3 is present at (x1, y1). At this point,
the superposition of probability states could be “popped” and V3 could be declared to be present at
location (x1, y1) as a true conditioning event. 

Also note that an engineering approximation is available to simplify the calculations. Product terms
that include x and y contribute little to the summations when x and y are on the order of 0.1 or less.
Ignoring such terms would enable analysts to arrive more quickly at the estimates Pc[V1] ≈ 0.178 and
Pc[V3] ≈ 0.803, and then Pc[V2] ≈ 0.019 in order to satisfy the known constraint. Note that these
approximations comprise one set of choices that simultaneously lie within the three probability intervals. 

TABLE 7.11b Computation of P[V2|Ej,IRk] 

j k P[V2|Ej,IRk] Reported P[Ej] Reported P[IRk] P[V2,Ej,IRk]

2 1 0.563 y 0.95 [0, 0.053]
2 2 0.967 y x [0, 0.005]
2 3 0.391 y 0.05 – x [0, 0.002]
3 1 0.227 0.1 – y 0.95 [0, 0.022]
3 2 0.921 0.1 – y x [0, 0.005]
3 3 0.268 0.1 – y 0.05 – x [0, 0.001]

Note: These values are then weighted by reported information and summed
to yield Pc[V2] = [0.000, 0.088]. Note that 0 ≤ x ≤ 0.05 and 0 ≤ y ≤ 0.10.

TABLE 7.11c Computation of P[V3|Ej,IRk] 

j k P[V3|Ej,IRk] Reported P[Ej] Reported P[IRk] P[V3,Ej,IRk]

1 1 0.939 0.9 0.95 0.803
1 2 0.095 0.9 x [0, 0.004]
1 3 0.889 0.9 0.05 – x [0, 0.040]
3 1 0.773 y 0.95 [0, 0.073]
3 2 0.079 y x [0, 0.000]
3 3 0.732 y 0.05 – x [0, 0.004]

Note: These values are then weighted by reported information and
summed to yield Pc[V3] = [0.803, 0.924]. Note that 0 ≤ x ≤ 0.05 and 0 ≤ y ≤
0.10.

FIGURE 7.11 The combined interval estimates result from the probability-evolution computations (compare with
Figure 7.10).
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In addition, other components can be defined. For example, a vehicle-tracking component could use
standard probability methods to keep track of detected vehicles’ trajectories over time. Another compo-
nent could identify batteries by using a distance metric to group detected vehicles into candidate batteries
and track the batteries as entities over time.

7.3.3.2 The Belief System Response

After the first message arrives, the emitter belief component assigns a mass of evidence value to state E1
of 0.9 and a mass of evidence value to state S of 0.1. The vehicle component uses a rule base that is
constructed by essentially duplicating the calculation of initial posterior conditional probabilities from
the information in the IPB. Three examples follow.

Rule 1: If emitter E1 is reported, then m(V1) = 0.333.
Rule 2: If emitter E1 is reported, then m(V2) = 0.
Rule 3: If emitter E1 is reported, then m(V3) = 0.667. 

The vehicle component combines the information from the emitter component with the information
in its rule base by multiplying the rule-provided masses of evidence by an appropriate mass of evidence
from the emitter component, and by transferring any mass of evidence assigned by the emitter component
to S as shown in Table 7.12. Note that the combined masses of evidence sum to one, as required; it is
easy to show that this is always the outcome when transferring the ignorance this way.

The vehicle component then computes the Support-Plausibility interval for each vehicle, as shown in
Table 7.13. A comparison of these intervals with those produced by the probability system after receiving
the first message (see Figure 7.10) shows that they are qualitatively the same. Unlike probability, however,
belief theory is not equipped with a clear-cut decision-making rule. 

After the second message arrives, the IR belief component assigns a mass of evidence value to state
NoIR of 0.95 and a mass of evidence value to state S of 0.05. The vehicle component also contains rules
that relate MASINT reports to vehicles. Three examples follow. 

Rule 1: If NoIR is reported, then m(V1) = 0.160. 
Rule 2: If NoIR is reported, then m(V2) = 0.151. 
Rule 3: If NoIR is reported, then m(V3) = 0.689. 

The vehicle component combines the information from the second message with the information in
its rule base by multiplying the rule-provided masses of evidence by an appropriate mass of evidence
from the message, and by transferring the mass of evidence assigned by the IR component to S as shown
in Table 7.14.

The vehicle component now combines the masses of evidence from Tables 7.12 and 7.14 using the
standard Dempster-Shafer combination rule as shown in Table 7.15. The inconsistency values from

TABLE 7.12 Combination of Rule-Provided Information 
with Emitter Information

me(E1) = 0.9 me(S) = 0.1

mr1(V1) = 0.333 m1(V1) = (0.333)(0.9) = 0.3 —
mr1(V2) = 0 m1(V2) = (0)(0.9) = 0 —
mr1(V3) = 0.667 m1(V3) = (0.667)(0.9) = 0.6 —
mr1(S) = 0 — m1(S) = 0.1

TABLE 7.13 Computation of Support-Plausibility Intervals

Vehicle Support Plausibility

V1 0.3 0.4
V2 0 0.1
V3 0.6 0.7
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Table 7.15 are summed to calculate the normalization factor (1 – k) = (1 – 0.4164) = 0.5836. Then the
new combined masses of evidence are calculated as shown in Table 7.16. Finally, the Support-Plausibility
interval for each vehicle is calculated as shown in Table 7.17.

A comparison of these intervals with those produced by the probability system, after receiving the
second message (see Figure 7.10), shows that they are again qualitatively the same. Even though belief
theory is not equipped with a clear-cut decision-making rule, the situation that presents itself here clearly
justifies a decision that vehicle 3 has been detected.

7.3.4 Summary

This chapter has introduced all of the key concepts and has provided a vehicle-identification example to
show that components can characterize local domains. These components can communicate with each
other to accumulate evidence up an abstraction hierarchy. New spaces can be formed in ways that relate
to the earlier spaces but that account for the differences in the level of abstraction, as well as for the
amount and kinds of evidence available. Partial information can be collected in local domains, and the
domains can eventually result in a situation level. However, capturing all of the information in a single
space is unnecessary and impractical. The changes in the spaces track the changes in the levels of our
human understanding. 

TABLE 7.14 Combination of Rule-Provided Information 
with IR Information

mir(NoIR) = 0.95 mir(S) = 0.05

mr2(V1) = 0.160 m2 = (0.160)(0.95) = 0.152 —
mr2 (V2) = 0.151 m2 = (0.151)(0.95) = 0.143 —
mr2 (V3) = 0.689 m2 = (0.689)(0.95) = 0.655 —
mr2 (S) = 0 — m2 = 0.05

TABLE 7.15 Combination of Masses of Evidence Derived from Messages 1 and 2

m1(V1) = 0.3 m1(V2) = 0 m1(V3) = 0.6 m1(S) = 0.1

m2(V1) = 0.152 mc(V1) = 0.0456 k = 0 k = 0.0912 mc(V1) = 0.0152
m2(V2) = 0.143 k = 0.0429 mc(V2) = 0 k = 0.0858 mc(V2) = 0.0143
m2(V3) = 0.655 k = 0.1965 k = 0 mc(V3) = 0.3930 mc(V3) = 0.0655
m2(S) = 0.05 mc(V1) = 0.0150 mc(V2) = 0 mc(V3) = 0.0300 mc(S) = 0.0050

TABLE 7.16 Calculation of Normalized Combined 
Masses of Evidence

mc(V1) (0.0456 + 0.0152 + .0150)/0.5836 = 0.1299
mc (V2) (0.0143)/0.5836 = 0.0245
mc (V3) (0.3930 + 0.0300 + 0.0655)/0.5836 = 0.8370
mc (S) (0.0050)/0.5836 = 0.0086

TABLE 7.17 Computation of New Support-Plausibility Intervals

Vehicle Support Plausibility

V1 0.1299 0.1385
V2 0.0245 0.0331
V3 0.8370 0.8456 
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7.4 Contrasts and Conclusion

Other authors have described related ideas. Peter Cheeseman has argued strongly for adoption of Bayesian
techniques in favor of alternative methods of combining evidence,35 and Judea Pearl31 has developed
techniques for implementing Bayesian methods in a distributed network environment. Here, the idea of
a collection of spaces has been proposed as the idea that both clarifies the theoretical underpinnings of
data fusion methods and makes their implementation practical.

The highly modular approach that is described herein is well suited to a modern component-based
software design pattern. Multiple processes, each matched to the computations of individual components,
could lead naturally to real-time systems that solve real-world data fusion problems.

Appendix 7.A The Axiomatic Definition of Probability

Formally, a probability space is a three-tuple, (S, Ω, P), where

• S is a set of observable outcomes from some experiment of interest (the totality of outcomes).

• Ω is a collection of subsets of S with the following properties:

1. If A is an element of Ω then, the complement of A (with respect to S) is also an element of Ω.
2. If both A and B are elements of Ω , then the union of A and B is also an element of Ω.
3. If Ai are elements of Ω for i = 1,2,…, then any countable union of Ai is also an element of Ω.

• P is a set-function defined on the elements of Ω (termed events) that has the following properties:

1. To each event A in Ω there is assigned a nonnegative real number, P(A) (that is, 0 Ω P(A)).
2. P(S) = 1.
3. For A and B both in Ω, if the intersection of A and B is empty, then P(A or B) = P(A) + P(B).

and, if the intersection of Ai and Aj is empty when i ≠ j, then P(U Ai) = ∑ P(Ai).
The axioms presented here are in essentially the same form as proposed first (in 1933) by the Russian

mathematician Andrei Nikolaevich Kolmogorov.36
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8.1 Introduction

In tracking targets with less-than-unity probability of detection in the presence of false alarms (clutter),
data association — deciding which of the received multiple measurements to use to update each track —
is crucial. A number of algorithms have been developed to solve this problem.1-4 Two simple solutions
are the Strongest Neighbor Filter (SNF) and the Nearest Neighbor Filter (NNF). In the SNF, the signal

T. Kirubarajan
University of Connecticut
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with the highest intensity among the validated measurements (in a gate) is used for track update and
the others are discarded. In the NNF, the measurement closest to the predicted measurement is used.
While these simple techniques work reasonably well with benign targets in sparse scenarios, they begin
to fail as the false alarm rate increases or with low observable (low probability of target detection)
maneuvering targets.5,6 Instead of using only one measurement among the received ones and discarding
the others, an alternative approach is to use all of the validated measurements with different weights
(probabilities), known as Probabilistic Data Association (PDA).3 The standard PDA and its numerous
improved versions have been shown to be very effective in tracking a single target in clutter.6,7

Data association becomes more difficult with multiple targets where the tracks compete for measure-
ments. Here, in addition to a track validating multiple measurements as in the single target case, a
measurement itself can be validated by multiple tracks (i.e., contention occurs among tracks for mea-
surements). Many algorithms exist to handle this contention. The Joint Probabilistic Data Association
(JPDA) algorithm is used to track multiple targets by evaluating the measurement-to-track association
probabilities and combining them to find the state estimate.3 The Multiple-Hypothesis Tracking (MHT)
is a more powerful (but much more complex) algorithm that handles the multitarget tracking problem
by evaluating the likelihood that there is a target given a sequence of measurements.4 In the tracking
benchmark problem8 designed to compare the performance of different algorithms for tracking highly
maneuvering targets in the presence of electronic countermeasures, the PDA-based estimator, in con-
junction with the Interacting Multiple Model (IMM) estimator, yielded one of the best solutions. Its
performance was comparable to that of the MHT algorithm.6,9

This chapter presents an overview of the PDA technique and its application for different target-tracking
scenarios. Section 8.2 summarizes the PDA technique. Section 8.3 describes the use of the PDA technique
for tracking low observable targets with passive sonar measurements. This target motion analysis (TMA)
is an application of the PDA technique, in conjunction with the maximum likelihood (ML) approach
for target motion parameter estimation via a batch procedure. Section 8.4 presents the use of the PDA
technique for tracking highly maneuvering targets and for radar resource management. It illustrates the
application of the PDA technique for recursive state estimation using the IMMPDAF. Section 8.5 presents
a state-of-the-art sliding-window (which can also expand and contract) parameter estimator using the
PDA approach for tracking the state of a maneuvering target using measurements from an electro-optical
sensor. This, while still a batch procedure, offers the flexibility of varying the batches depending on the
estimation results.

8.2 Probabilistic Data Association

The PDA algorithm calculates in real-time the probability that each validated measurement is attributable
to the target of interest. This probabilistic (Bayesian) information is used in a tracking filter, the PDA
filter (PDAF), which accounts for the measurement origin uncertainty.

8.2.1 Assumptions

The following assumptions are made to obtain the recursive PDAF state estimator (tracker):

• There is only one target of interest whose state evolves according to a dynamic equation driven
by process noise.

• The track has been initialized.

• The past information about the target is summarized approximately by

(8.1)p x k Z N x k x k k P k kk( )[ ] = ( ) −( ) −( )





−1 1 1; ˆ ,
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where N[x(k); x̂(k|k – 1)] denotes the normal probability density function (pdf) with argument
x(k), mean x̂(k|k – 1), and covariance matrix P(k|k – 1). This assumption of the PDAF is similar
to the GPB1 (Generalized Pseudo-Bayesian) approach,10 where a single “lumped” state estimate
is a quasi-sufficient statistic.

• At each time, a validation region as in Reference 3 is set up (see Equation 8.4).

• Among the possibly several validated measurements, at most one of them can be target-originated —
if the target was detected and the corresponding measurement fell into the validation region.

• The remaining measurements are assumed to be false alarms or clutter and are modeled as
independent identically distributed (iid) measurements with uniform spatial distribution.

• The target detections occur independently over time with known probability PD.

These assumptions enable a state estimation scheme to be obtained, which is almost as simple as the
Kalman filter, but much more effective in clutter.

8.2.2 The PDAF Approach

The PDAF uses a decomposition of the estimation with respect to the origin of each element of the latest
set of validated measurements, denoted as

(8.2)

where zI (k) is the i-th validated measurement and m(k) is the number of measurements in the validation
region at time k.

The cumulative set (sequence) of measurements* is

(8.3)

8.2.3 Measurement Validation

From the Gaussian assumption (Equation 8.1), the validation region is the elliptical region

(8.4)

where γ is the gate threshold and

(8.5)

is the covariance of the innovation corresponding to the true measurement. The volume of the validation
region (Equation 8.4) is

(8.6)

* When the running index is a time argument, a sequence exists; otherwise it is a set where the order is not
relevant. The context should indicate which is the case.
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where the coefficient cnz
 depends on the dimension of the measurement (it is the volume of the nz-

dimensional unit hypersphere: c1 = 2, c2 = π, c3 = 4π/3, etc.).

8.2.4 The State Estimation

In view of the assumptions listed, the association events

(8.7)

are mutually exclusive and exhaustive for m(k) ≥ 1.
Using the total probability theorem10 with regard to the above events, the conditional mean of the

state at time k can be written as

(8.8)

where x̂i(k|k) is the updated state conditioned on the event that the i-th validated measurement is correct,
and

(8.9)

is the conditional probability of this event — the association probability, obtained from the PDA proce-
dure presented in the next subsection.

The estimate conditioned on measurement i being correct is

(8.10)

where the corresponding innovation is

(8.11)

The gain W(k) is the same as in the standard filter

(8.12)

since, conditioned on θi(k), there is no measurement origin uncertainty.
For i = 0 (i.e., if none of the measurements is correct) or m(k) = 0 (i.e., there is no validated

measurement)
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(8.13)

8.2.5 The State and Covariance Update

Combining Equations 8.10 and 8.13 into Equation 8.8 yields the state update equation of the PDAF

(8.14)

where the combined innovation is

(8.15)

The covariance associated with the updated state is

(8.16)

where the covariance of the state updated with the correct measurement is3

(8.17)

and the spread of the innovations term (similar to the spread of the means term in a mixture10) is

(8.18)

8.2.6 The Prediction Equations

The prediction of the state and measurement to k + 1 is done as in the standard filter, i.e.,

(8.19)

(8.20)

The covariance of the predicted state is, similarly,

(8.21)

where P(k|k) is given by Equation 8.16.
The innovation covariance (for the correct measurement) is, again, as in the standard filter

(8.22)
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8.2.7 The Probabilistic Data Association

To evaluate the association probabilities, the conditioning is broken down into the past data Zk–1 and the
latest data Z(k). A probabilistic inference can be made on both the number of measurements in the
validation region (from the clutter density, if known) and on their location, expressed as:

(8.23)

Using Bayes’ formula, the above is rewritten as

(8.24)

The joint density of the validated measurements conditioned on θi(k), i ≠ 0, is the product of

• The (assumed) Gaussian pdf of the correct (target-originated) measurements

• The pdf of the incorrect measurements, which are assumed to be uniform in the validation region
whose volume V(k) is given in Equation 8.6.

The pdf of the correct measurement (with the PG factor that accounts for restricting the normal density
to the validation gate) is

(8.25)

The pdf from Equation 8.24 is then

(8.26)

The probabilities of the association events conditioned only on the number of validated measurements are

(8.27)

where µF (m) is the probability mass function (pmf) of the number of false measurements (false alarms
or clutter) in the validation region.

Two models can be used for the pmf µF (m) in a volume of interest V:

1. A Poisson model with a certain spacial density λ

(8.28)

2. A diffuse prior model3

(8.29)

where the constant δ is irrelevant since it cancels out.
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Using the (parametric) Poisson model in Equation 8.27 yields

(8.30)

The (nonparametric) diffuse prior (Equation 8.29) yields

 (8.31)

The nonparametric model (Equation 8.31) can be obtained from Equation 8.30 by setting

 (8.32)

i.e., replacing the Poisson parameter with the sample spatial density of the validated measurements. The
volume V(k) of the elliptical (i.e., Gaussian-based) validation region is given in Equation 8.6.

8.2.8 The Parametric PDA
Using Equations 8.30 and 8.26 with the explicit expression of the Gaussian pdf in Equation 8.24 yields,
after some cancellations, the final equations of the parametric PDA with the Poisson clutter model

 (8.33)

where

 (8.34)

 (8.35)

The last expression above can be rewritten as

 (8.36)

8.2.9 The Nonparametric PDA
The nonparametric PDA is the same as above except for replacing λV(k) in Equation 8.36 by m(k) —
this obviates the need to know λ. 
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8.3 Low Observable TMA Using the ML-PDA Approach 
with Features

This section considers the problem of target motion analysis (TMA) — estimation of the trajectory
parameters of a constant velocity target — with a passive sonar, which does not provide full target position
measurements. The methodology presented here applies equally to any target motion characterized by a
deterministic equation, in which case the initial conditions (a finite dimensional parameter vector) char-
acterize in full the entire motion. In this case the (batch) maximum likelihood (ML) parameter estimation
can be used; this method is more powerful than state estimation when the target motion is deterministic
(it does not have to be linear). Furthermore, the ML-PDA approach makes no approximation, unlike
the PDAF in Equation 8.1.

8.3.1 Amplitude Information Feature

The standard TMA consists of estimating the target’s position and its constant velocity from bearings-
only (wideband sonar) measurements corrupted by noise.10 Narrowband passive sonar tracking, where
frequency measurements are also available, has been studied.11 The advantages of narrowband sonar are
that it does not require a maneuver of the platform for observability, and it greatly enhances the accuracy
of the estimates. However, not all passive sonars have frequency information available. In both cases, the
intensity of the signal at the output of the signal processor, which is referred to as measurement amplitude
or amplitude information (AI), is used implicitly to determine whether there is a valid measurement. This
is usually done by comparing it with the detection threshold, which is a design parameter.

This section shows that the measurement amplitude carries valuable information and that its use in
the estimation process increases the observability even though the amplitude information cannot be
correlated to the target state directly. Also superior global convergence properties are obtained.

The pdf of the envelope detector output (i.e., the AI) a when the signal is due to noise only is denoted
as p0(a) and the corresponding pdf when the signal originated from the target is p1(a). If the signal-to-
noise ratio (SNR — this is the SNR in a resolution cell, to be denoted later as SNRc) is d, the density
functions of noise only and target-originated measurements can be written as

 (8.37)

 (8.38)

respectively. This is a Rayleigh fading amplitude (Swerling I) model believed to be the most appropriate
for shallow water passive sonar.

A suitable threshold, denoted by τ, is used to declare a detection. The probability of detection and the
probability of false alarm are denoted by PD and PFA, respectively. Both PD and PFA can be evaluated from
the probability density functions of the measurements. Clearly, in order to increase PD, the threshold τ
must be lowered. However, this also increases PFA. Therefore, depending on the SNR, τ must be selected
to satisfy two conflicting requirements.*

The density functions given above correspond to the signal at the envelope detector output. Those
corresponding to the output of the threshold detector are

*For other probabilistic models of the detection process, different SNR values correspond to the same PD, PFA

pair. Compared to the Rician model receiver operating characteristic (ROC) curve, the Rayleigh model ROC curve
requires a higher SNR for the same pair (PD, PFA), i.e., the Rayleigh model considered here is pessimistic.

p a a
a

a0

2

2
0( ) = −







≥exp     

p a
a

d

a

d
a1

2

1 2 1
0( ) =

+
−

+( )












≥exp     
©2001 CRC Press LLC



 (8.39)

 (8.40)

where  is the pdf of the validated measurements that are caused by noise only, and  is the pdf
of those that originated from the target. In the following, a is the amplitude of the candidate measure-
ments. The amplitude likelihood ratio, ρ, is defined as

 (8.41)

8.3.2 Target Models

Assume that n sets of measurements, made at times t = t1, t2,…, tn, are available.
For bearings-only estimation, the target motion is defined by the four-dimensional parameter vector

 (8.42)

where ξ(t0) and η(t0) are the distances of the target in the east and north directions, respectively, from
the origin at the reference time t0. The corresponding velocities, assumed constant, are  and , respec-
tively. This assumes deterministic target motion (i.e., no process noise10). Any other deterministic motion
(e.g., constant acceleration) can be handled within the same framework.

The state of the platform at ti (i = 1,…, n) is defined by

 (8.43)

The relative position components in the east and north directions of the target with respect to the platform
at ti are defined by rξ (ti, x) and rη (ti, x), respectively. Similarly, vξ (ti, x) and vη (ti, x) define the relative
velocity components. The true bearing of the target from the platform at ti is given by

 (8.44)

The range of possible bearing measurements is

 (8.45)

The set of measurements at ti is denoted by

 (8.46)

where mi is the number of measurements at ti, and the pair of bearing and amplitude measurements
zj(i), is defined by
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 (8.47)

The cumulative set of measurements during the entire period is

 (8.48)

The following additional assumptions about the statistical characteristics of the measurements are also
made:11

1. The measurements at two different sampling instants are conditionally independent, i.e., 

 (8.49)

where p[·]is the probability density function.
2. A measurement that originated from the target at a particular sampling instant is received by the

sensor only once during the corresponding scan with probability PD and is corrupted by zero-
mean Gaussian noise of known variance. That is

 (8.50)

where  is the bearing measurement noise. Due to the presence of false measurements,
the index of the true measurement is not known.

3. The false bearing measurements are distributed uniformly in the surveillance region, i.e.,

 (8.51)

4. The number of false measurements at a sampling instant is generated according to a Poisson law
with a known expected number of false measurements in the surveillance region. This is deter-
mined by the detection threshold at the sensor (exact equations are given in Section 8.3.5). 

For narrowband sonar (with frequency measurements) the target motion model is defined by the
five-dimensional vector

 (8.52)

where γ is the unknown emitted frequency assumed constant. Due to the relative motion between the
target and platform at ti, this frequency will be Doppler shifted at the platform. The (noise-free) shifted
frequency, denoted by γi (x), is given by

(8.53)

where c is the velocity of sound in the medium. If the bandwidth of the signal processor in the sonar is
[Ω1, Ω2], the measurements can lie anywhere within this range. As in the case of bearing measurements,
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we assume that an operator is able to select a frequency subregion [Γ1, Γ2] for scanning. In addition to
the bearing surveillance region given in Equation 8.45, the region for frequency is defined as

(8.54)

The noisy frequency measurements are denoted by fij and the measurement vector is

(8.55)

As for the statistical assumptions, those related to the conditional independence of measurements (assump-
tion 1) and the number of false measurements (assumption 4) are still valid. The equations relating the
number of false alarms in the surveillance region to detection threshold are given in Section 8.3.5.

The noisy bearing measurements satisfy Equation 8.50 and the noisy frequency measurements fij satisfy

 (8.56)

where  is the frequency measurement noise.
It is also assumed that these two measurement noise components are conditionally independent. That is,

 (8.57)

The measurements resulting from noise only are assumed to be uniformly distributed in the entire
surveillance region.

8.3.3 Maximum Likelihood Estimator Combined 
with PDA  —  The ML-PDA

In this section we present the derivation and implementation of the maximum likelihood estimator
combined with the PDA technique for both bearings-only tracking and narrowband sonar tracking. If
there are mi detections at ti, one has the following mutually exclusive and exhaustive events:3

 (8.58)

The pdf of the measurements corresponding to the above events can be written as

(8.59)

where u = Uθ is the area of the surveillance region. 
Using the total probability theorem, the likelihood function of the set of measurements at ti can be

expressed as
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(8.60)

where µf (mi) is the Poisson probability mass function of the number of false measurements at ti. Dividing
the above by p[Z(I)|ε0(I), x] yields the dimensionless likelihood ratio Φi [Z(I), x] at ti. Then

 (8.61)

where λ is the expected number of false alarms per unit area. Alternately, the log-likelihood ratio at ti

can be defined as

(8.62)

Using conditional independence of measurements, the likelihood function of the entire set of mea-
surements can be written in terms of the individual likelihood functions as

(8.63)

Then the dimensionless likelihood ratio for the entire data is given by

(8.64)

From the above, the total log-likelihood ratio Φi[Z(i), x]ti can be expressed as

(8.65)
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The maximum likelihood estimate (MLE) is obtained by finding the state x = x̂ that maximizes the
total log-likelihood function. In deriving the likelihood function, the gate probability mass, which is the
probability that a target-originated measurement falls within the surveillance region, is assumed to be
one. The operator selects the appropriate region. 

Arguments similar to those given earlier can be used to derive the MLE when frequency measurements
are also available. Defining εj(i) as in Equation 8.58, the pdf of the measurements is

(8.66)

where u = UθUγ is the volume of the surveillance region.
After some lengthy manipulations, the total log-likelihood function is obtained as

(8.67)

For narrowband sonar, the MLE is found by maximizing Equation 8.67. 
This section demonstrated the essence of the use of the PDA — all the measurements are accounted

for and the likelihood function is evaluated using the total probability theorem, similar to Equation 8.8.
However, since Equation 8.67 is exact (for the parameter estimation formulation), there is no need for
the approximation in Equation 8.1, which is necessary in the PDAF for state estimation.

The same ML-PDA approach is applicable to the estimation of the trajectory of an exoatmospheric
ballistic missile.12,13 The modification of this fixed-batch ML-PDA estimator to a flexible (sliding/expand-
ing/contracting) procedure is discussed in Section 8.5 and demonstrated with an actual electro-optics
(EO) data example. 

8.3.4 Cramér-Rao Lower Bound for the Estimate 

For an unbiased estimate, the Cramér-Rao lower bound (CRLB) is given by

(8.68)

where J is the Fisher information matrix (FIM) given by

(8.69)

Only in simulations will the true value of the state parameter be available. In practice CRLB is evaluated
at the estimate.

As expounded in Reference 14, the FIM J is given in the present ML-PDA approach for the bearings-
only case — wideband sonar — by

(8.70)
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where q2(PD, λvg, g) is the information reduction factor that accounts for the loss of information resulting
from the presence of false measurements and less-than-unity probability of detection,3 and the expected
number of false alarms per unit volume is denoted by λ .

In deriving Equation 8.70, only the bearing measurements that fall within the validation region

(8.71)

at ti were considered. The validation region volume (g-sigma region), vg, is given by

(8.72)

The information reduction factor q2(PD, λvg, g) for the present two-dimensional measurement situation
(bearing and amplitude) is given by

(8.73)

where I2(m, PD, g) is a 2m-fold integral given in Reference 14 where numerical values of q2(PD , λvg, g)
for different combinations of PD and λvg are also presented. The derivation of the integral is based on
Bar-Shalom and Li.3 In this implementation, g = 5 was selected. Knowing PD and λvg, PFA can be
determined by using

(8.74)

where Vc is the resolution cell volume of the signal processor (discussed in more detail in Section 8.3.5).
Finally, d, the SNR, can be calculated from PD and λvg.

The rationale for the term information reduction factor follows from the fact that the FIM for zero false
alarm probability and unity target detection probability, J0, is given by Reference 10

(8.75)

Equations 8.70 and 8.75 clearly show that q2(PD, λvg, g), which is always less than or equal to unity,
represents the loss of information due to clutter.

For narrowband sonar (bearing and frequency measurements), the FIM is given by

(8.76)

where q2(PD, λvg, g) for this three-dimensional measurement (bearing, frequency, and amplitude) case
is evaluated14 using

(8.77)
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The expression for I2(m, PD, g) and the numerical values for q2(PD, λvg, g) are also given by Kirubarajan
and Bar-Shalom.14

For narrowband sonar, the validation region is defined by

(8.78)

and the volume of the validation region, vg, is

(8.79)

8.3.5 Results

Both the bearings-only and narrowband sonar problems with amplitude information were implemented
to track a target moving at constant velocity. The results for the narrowband case are given below,
accompanied by a discussion of the advantages of using amplitude information by comparing the
performances of the estimators with and without amplitude information.

In narrowband signal processing, different bands in the frequency domain are defined by an appro-
priate cell resolution and a center frequency about which these bands are located. The received signal is
sampled and filtered in these bands before applying FFT and beamforming. Then the angle of arrival is
estimated using a suitable algorithm.15 As explained earlier, the received signal is registered as a valid
measurement only if it exceeds the threshold τ. The threshold value, together with the SNR, determines
the probability of detection and the probability of false alarm. 

The signal processor was assumed to consist of the frequency band [500Hz, 1000Hz] with a 2048-
point FFT. This results in a frequency cell whose size is given by

(8.80)

Regarding azimuth measurements, the sonar is assumed to have 60 equal beams, resulting in an
azimuth cell Cθ with size

(8.81)

Assuming uniform distribution in a cell, the frequency and azimuth measurement standard deviations
are given by*

(8.82)

(8.83)

The SNRC in a cell** was taken as 6.1dB and PD = 0.5. The estimator is not very sensitive to an incorrect
PD.This is verified by running the estimator with an incorrect PD on the data generated with a different

* The “uniform” factor  corresponds to the worst case. In practice, σθ and σγ are functions of the 3dB-
bandwidth and of the SNR.

** The commonly used SNR, designated here as SNR1, is signal strength divided by the noise power in a 1-Hz
bandwidth. SNRC is signal strength divided by the noise power in a resolution cell. The relationship between them, for
Cγ = 0.25Hz is SNRC = SNR1 – 6dB. SNRC is believed to be the more meaningful SNR because it determines the ROC curve.
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PD. Differences up to 0.15 are tolerated by the estimator. The corresponding SNR in a 1-Hz bandwidth
SNR1 is 0.1dB. These values give

(8.84)

(8.85)

From PFA, the expected number of false alarms per unit volume, denoted by λ, can be calculated using

(8.86)

Substituting the values for Cθ and λ gives

(8.87)

The surveillance regions for azimuth and frequency, denoted by Uθ and Uγ, respectively, are taken as

(8.88)

(8.89)

The expected number of false alarms in the entire surveillance region and that in the validation gate
Vg can be calculated. These values are 9.8 and 0.2, respectively, where the validation gate is restricted to
g = 5. These values mean that, for every true measurement that originated from the target, there are
about 10 false alarms that exceed the threshold. 

The estimated tracks were validated using the hypothesis testing procedure described in Reference 14.
The track acceptance test was carried out with a miss probability of five percent. 

To check the performance of the estimator, simulations were carried out with clutter only (i.e., without
a target) and also with a target present; measurements were generated accordingly. Simulations were
done in batches of 100 runs. 

When there was no target, irrespective of the initial guess, the estimated track was always rejected.
This corroborates the accuracy of the validation algorithm given by Kirubarajan and Bar-Shalom.14

For the set of simulations with a target, the following scenario was selected: the target moves at a speed
of 10 m/s heading west and 5 m/s heading north starting from (5000 m, 35,000 m). The signal frequency
is 750 Hz. The target parameter is x = [5000 m, 35,000 m, –10 m/s, 5 m/s, 750 Hz]. The motion of the
platform consisted of two velocity legs in the northwest direction during the first half, and in the northeast
direction during the second half of the simulation period with a constant speed of 7:1 m/s. Measurements
were taken at regular intervals of 30 s. The observation period was 900 s. Figure 8.1 shows the scenario
including the target true trajectory (solid line), platform trajectory (dashed line), and the 95% probability
regions of the position estimates at the initial and final sampling instants based on the CRLB
(Equation 8.76). The initial and the final positions of the trajectories are marked by I and F, respectively.
The purpose of the probability region is to verify the validity of the CRLB as the actual parameter estimate
covariance matrix from a number of Monte Carlo runs.4

Figure 8.1 shows the 100 tracks formed from the estimates. Note that in all but six runs (i.e., 94 runs)
the estimated trajectory endpoints fall in the corresponding 95% uncertainty ellipses.
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�

Table 8.1 gives the numerical results from 100 runs. Here –x is the average of the estimates, σ̂ the
variance of the estimates evaluated from 100 runs, and σCRLB the theoretical CRLB derived in Section 8.3.4.
The range of initial guesses found by rough grid search to start off the estimator are given by xinit.

The efficiency of the estimator was verified using the normalized estimation error squared (NEES)10

defined by 

(8.90)

where
–
x is the estimate, and J is the FIM (Equation 8.76). Assuming approximately Gaussian estimation

error, the NEES is chi-square distributed with n degrees-of-freedom where n is the number of estimated
parameters. For the 94 accepted tracks the NEES obtained was 5.46, which lies within the 95% confidence
region [4:39; 5:65]. Also note that each component of

–
x is within  of the corresponding compo-

nent of xtrue. 

8.4 The IMMPDAF for Tracking Maneuvering Targets

Target tracking is a problem that has been well studied and documented. Some specific problems of
interest in the single-target, single-sensor case are tracking maneuvering targets,10 tracking in the presence
of clutter,3 and electronic countermeasures (ECM). In addition to these tracking issues, a complete

FIGURE 8.1 Estimated tracks from 100 runs for narrowband sonar with AI.

TABLE 8.1 Results of 100 Monte Carlo Runs 
for Narrowband Sonar with AI (SNRC = 6:1dB)

Unit xtrue xinit
–x σCRLB σ̂

m 5000 –12,000 to 12,000 4991 667 821
m 35,000 49,000 to 50,000 35,423 5576 5588
m/s –10 –16 to 5 –9.96 0.85 0.96
m/s 5 –4 to 9 4.87 4.89 4.99
Hz 750 747 to 751 749.52 2.371 2.531

-1.00� -0.75� -0.50� -0.25� 0.00� 0.25� 0.50� 0.75� 1.00
 x10^4�0�

1�

2�

3�

4�

5�

6�
 x10^4� True and Estimated Trajectories�

East (meters)�

N
or

th
 (

m
et

er
s)

�

I�

F�

I�

F�

∈ = −( )′ −( )x x x J x x
∆ ˆ ˆ

2 100σ̂
©2001 CRC Press LLC



tracking system for a sophisticated electronically steered antenna radar has to consider radar scheduling,
waveform selection, and detection threshold selection.

Although many researchers have worked on these issues and many algorithms are available, there had
been no standard problem comparing the performances of the various algorithms. Rectifying this, the
first benchmark problem16 was developed, focusing only on tracking a maneuvering target and point-
ing/scheduling a phased array radar. Of all the algorithms considered for this problem, the interacting
multiple model (IMM) estimator yielded the best performance.17 The second benchmark problem9

included false alarms (FA) and ECM  —  specifically, a stand-off jammer (SOJ) and range gate pull off
(RGPO)  —  as well as several possible radar waveforms (from which the resource allocator has to select
one at every revisit time). Preliminary results for this problem showed that the IMM and multiple-
hypothesis tracking (MHT) algorithms were the best solutions.6,9 For the problem considered, the MHT
algorithm yielded similar results as the IMM estimator with probabilistic data association filter (IMMP-
DAF) modules,3 although the MHT algorithm was one to two orders of magnitude costlier computa-
tionally (as many as 40 hypotheses were needed*). The benchmark problem of Reference 18 was upgraded
in Reference 8 to require the radar resource allocator/manager to select the operating constant false alarm
rate (CFAR) and included the effects of the SOJ on the direction of arrival (DOA) measurements; also
the SOJ power was increased to present a more challenging benchmark problem. While, in Reference 18,
the primary performance criterion for the tracking algorithm was minimization of radar energy, the
primary performance was changed in Reference 8 to minimization of a weighted combination of radar
time and energy. 

This section presents the IMMPDAF technique for automatic track formation, maintenance, and
termination. The coordinate selection for tracking, radar scheduling/pointing and the models used for
mode-matched filtering (the modules inside the IMM estimator) are also discussed. These cover the
target tracking aspects of the solution to the benchmark problem. These are based on the benchmark
problem tracking and sensor resource management.6,8

8.4.1 Coordinate Selection 

For target tracking in track-dwell mode of the radar, the number of detections at scan k (time tk) is
denoted by mk . The m-th detection report

–

ζm (tk) (m = 1,2,…,mk) consists of a time stamp tk, range rm,
bearing bm, elevation em, amplitude information (AI) ρm given by the SNR, and the standard deviations
of bearing and elevation measurements, σ b

m and σe
m , respectively. Thus,

(8.91)

where the overbar indicates that this is in the radar’s spherical coordinate system.
The AI is used only to declare detections and select the radar waveform for the next scan. Since the

use of AI, for example, as in Reference 17, can be counterproductive in discounting RGPO measurements,
which generally have higher SNR than target-originated measurements, AI is not utilized in the estimation
process itself. Using the AI would require a separate model for the RGPO intensity, which cannot be
estimated in real time due to its short duration and variability.17

For target tracking, the measurements are converted from spherical coordinates to Cartesian coordi-
nates, and then the IMMPDAF is used on these converted measurements. This conversion avoids the use
of extended Kalman filters and makes the problem linear.4 The converted measurement report ςm (tk)
corresponding to

–ςm(tk) is given by6

(8.92)

* The more recent IMM-MHT (as opposed to Kalman filter-based MHT) requires six to eight hypotheses.

ς ρ σ σm k k m m m m m
b

m
et t r b e( ) = [ ] ′,   ,   ,   ,   ,   ,   

ς ρm k k m m m m mt t x y z R( ) = [ ],   ,   ,   ,   ,   
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where xm, ym, zm, and Rm are the three position measurements in the Cartesian frame and their covariance
matrix, respectively. The converted values are

(8.93)

(8.94)

(8.95)

(8.96)

where σr
k is the standard deviation of range measurements at scan k and Tm is the spherical-to-Cartesian

transformation matrix given by

(8.97)

For the scenarios considered here, this transformation is practically unbiased and there is no need for
the debiasing procedure of Reference 4.

8.4.2 Track Formation

In the presence of false alarms, track formation is crucial. Incorrect track initiation will result in target
loss. In Reference 3, an automatic track formation/deletion algorithm in the presence of clutter is
presented based on the IMM algorithm. In the present benchmark problem, a noisy measurement
corresponding to the target of interest is given in the first scan.* Forming new tracks for each validated
measurement (based on a velocity gate) at subsequent scans, as suggested in Reference 3 and as imple-
mented in Reference 6, is expensive in terms of both radar energy and computational load. In this
implementation, track formation is simplified and handled as follows:

Scan 1 (t = 0s) — As defined by the benchmark problem, there is only one (target-originated, noisy)
measurement. The position component of this measurement is used as the starting point for the
estimated track. 

Scan 2 (t = 0.1s) — The beam is pointed at the location of the first measurement. This yields, possibly,
more than one measurement and these measurements are gated using the maximum possible
velocity of the targets to avoid the formation of impossible tracks. This validation region volume,
which is centered on the initial measurement, is given by 

(8.98)

where δ2 = 0:1s is the sampling interval and ·xmaxδ2, ymaxδ2, and zmaxδ2 are the maximum speeds in
the X, Y, and Z directions respectively; R x

m2
, Ry

m2
, and Rz

m2
are the variances of position measurements

in these directions obtained from the diagonal components of Equation 8.96. The maximum speed
in each direction is assumed to be 500 m/s.

*Assuming that this is a search pulse without (monopulse) split-beam processing, the angular errors are uniformly
distributed in the beam.
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The measurement in the first scan and the measurement with the highest SNR in the second
scan are used to form a track with the two-point initialization technique.10 The track splitting
used in References 3 and 6 was found unnecessary — the strongest validated measurement was
adequate. This technique yields the position and velocity estimates and the associated covariance
matrices in all three coordinates. 

Scan 3 (t = 0.2s) — The pointing direction for the radar is given by the predicted position at t = 0.2 s
using the estimates at scan 2. An IMMPDA filter with three models discussed in the sequel is
initialized with the estimates and covariance matrices obtained at the second scan. The acceleration
component for the third order model is assumed zero with variance (amax)2 , where amax = 70 m/s2

is the maximum expected acceleration of the target. 

From scan 3 on, the track is maintained using the IMMPDAF as described in Section 8.4.3. In order
to maintain a high SNR for the target-originated measurement during track formation, a high-energy
waveform is used. Also, scan 3 dwells are used to ensure target detection. This simplified approach cannot
be used if the target-originated measurement is not given at the first scan. In that case, the track formation
technique in Reference 3 can be used. 

Immediate revisit with sampling interval 0.1s is carried out during track formation because the initial
velocity of the target is not known  —  in the first scan only the position is measured and there is no a
priori velocity. This means that in the second scan the radar must be pointed at the first scan position,
assuming zero velocity. Waiting longer to obtain the second measurement could result in the loss of the
target-originated measurement due to incorrect pointing. Also, in order to make the IMM mode prob-
abilities converge to the correct values as quickly as possible, the target is revisited at a high rate.

8.4.3 Track Maintenance

The true state of the target at tk is

where x(tk), y(tk), and z(tk) are the positions, ·x(tk), ·y(tk), and ·z(tk) are the velocities, and ··x(tk), ··y(tk),
and ··z(tk) are the accelerations of the target in the corresponding coordinates, respectively. The measure-
ment vector consists of the Cartesian position components at tk and is denoted by z(tk).

Assuming that the target motion is linear in the Cartesian coordinate system, the true state of the
target can be written as

(8.99)

and the target-originated measurement is related to the state according to

(8.100)

where δk = t – tk – 1. The white Gaussian noise sequences v(tk) and w(tk) are independent and their
covariances are Q(δk) and R(tk), respectively.

With the above matrices, the predicted state x̂(t –
k ) at time tk is

(8.101)

and the predicted measurement is

(8.102)

x t x t x t x t y t y t y t z t z t z tk k k k k k k k k k( ) = ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )[ ] ′
  ˙   ˙̇     ˙   ˙̇     ˙   ˙̇

x xt F t v tk k k k k( ) = ( ) ( )+ ( ) ( )− −δ δ1 1Γ

z t H t w tk k k( ) = ( )+ ( )x

ˆ ˆ–x xt F tk k k( ) = ( )+ ( )−δ 1

ˆ ˆ– –z xt H tk k( ) = ( )
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with associated innovation covariance

(8.103)

where P(t –
k ) is the predicted state covariance to be defined in Equation 8.117 and R(tk) is the (expected)

measurement noise covariance.

8.4.3.1 Probabilistic Data Association

During track maintenance, each measurement at scan tk is validated against the established track. This
is achieved by setting up a validation region centered around the predicted measurement at t –

k . The
validation region is

(8.104)

where S(tk) is the expected covariance of the innovation corresponding to the correct measurement and
γ = 16 (0.9989 probability mass3) is the gate size. The appropriate covariance matrix to be used in the
above is discussed in the sequel.

The set of measurements validated for the track at tk is

(8.105)

where mk is the number of measurements validated and associated with the track. Also, the cumulative
set of validated measurements up to and including scan k is denoted by Z k

1 . All unvalidated measurements
are discarded.

With these mk validated measurements at tk, one has the following mutually exclusive and exhaustive
events:

(8.106)

Using the nonparametric version of the PDAF,4 the validated measurements are associated probabilisti-
cally to the track. The combined target state estimate is obtained as

(8.107)

where βm (tk) is the probability that the m-th validated measurement is correct and x̂m(tk) is the updated
state conditioned on that event. The conditionally updated states are given by

(8.108)

where Wm(tk) is the filter gain and vm(tk) = zm(tk) – ẑm(t –
k ) is the innovation associated with the m-th

validated measurement. The gain, which depends on the measurement noise covariance, is

(8.109)

where Rm(tk) depends on the observed SNR for measurement m.8
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The association event probabilities βm(tk) are given by

(8.110)

(8.111)

where 

(8.112)

(8.113)

and PD is the probability of detection of a target-originated measurement. The probability that a target-
originated measurement, if detected, falls within the validation gate is assumed to be unity. Also, �[v;0, S]
denotes the normal pdf with argument v, mean zero, and covariance matrix S. The common validation
volume V(tk) is the union of the validation volumes Vm(tk) used to validate the individual measurements
associated with the target V(tk) and is given by

(8.114)

where Vnz
 is the volume of the unit hypersphere of dimension nz, the dimension of the measurement z.

For the three-dimensional position measurements Vnz
 =  (see Reference 3).

The state estimate is updated as

 (8.115)

and the associated covariance matrix is updated as

(8.116)

where

(8.117)

is the predicted state covariance and the term
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(8.118)

is analogous to the spread of the innovations in the standard PDA.3 Monopulse processing results in
different accuracies (standard deviations) for different measurements within the same dwell. This
accounts for the difference in the above equations from the standard PDA, where the measurement
accuracies are assumed to be the same for all of the validated measurements.

To initialize the filter at k = 3, the following estimates are used:10

(8.119)

where h is the index corresponding to the validated measurement with the highest SNR in the second
scan, and the superscripts x, y, and z denote the components in the corresponding directions, respectively.
The associated covariance matrix can be derived10 using the measurement covariance Rh and the maxi-
mum target acceleration amax. If the two point differencing results in a velocity component that exceeds
the corresponding maximum speed, it is replaced by that speed. Similarly, the covariance terms corre-
sponding to the velocity components are upper bounded by the corresponding maximum values.

8.4.3.2 IMM Estimator Combined with the PDA Technique

In the IMM estimator it is assumed that at any time the target trajectory evolves according to one of a
finite number of models, which differ in their noise levels and/or structures.10 By probabilistically com-
bining the estimates of the filters, typically Kalman, matched to these modes, an overall estimate is found.
In the IMM-PDAF the Kalman filter is replaced with the PDA filter (given in Section 8.4.3.1 for mode-
conditioned filtering of the states), which handles the data association. 

Let r be the number of mode-matched filters used, M(tk) the index of the mode in effect in the semi-
open interval (tk – 1, tk) and µj (tk) be the probability that mode j (j = 1, 2,…, r) is in effect in the above
interval. Thus,

(8.120)

The mode transition probability is defined as

(8.121)
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The state estimates and their covariance matrix at tk conditioned on the j-th mode are denoted by and
Pj(tk), respectively.

The steps of the IMMPDAF are as follows3

Step 1 — Mode interaction or mixing. The mode-conditioned state estimate and the associated
covariances from the previous iteration are mixed to obtain the initial condition for the mode-
matched filters. The initial condition in cycle k for the PDAF matched to the j-th mode is computed
using

(8.122)

where

(8.123)

are the mixing probabilities. The covariance matrix associated with Equation 8.122 is given by

(8.124)

Step 2 — Mode-conditioned filtering. A PDAF is used for each mode to calculate the mode-condi-
tioned state estimates and covariances. In addition, we evaluate the likelihood function Λj (tk) of
each mode at tk using the Gaussian-uniform mixture

(8.125)

(8.126)

where ej(m) is defined in Equation 8.112 and b in Equation 8.113. Note that the likelihood function,
as a pdf, has a physical dimension that depends on mk. Since ratios of these likelihood functions
are to be calculated, they all must have the same dimension, i.e., the same mk. Thus a common
validation region (Equation 8.104) is vital for all the models in the IMMPDAF. Typically the
“largest” innovation covariance matrix corresponding to “noisiest” model covers the others and,
therefore, this can be used in Equations 8.104 and 8.114. 

Step 3 — Mode update. The mode probabilities are updated based on the likelihood of each mode using

(8.127)
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Step 4 — State combination. The mode-conditioned estimates and covariances are combined to find
the overall estimate x̂(tk) and its covariance matrix P(tk), as follows:

(8.128)

(8.129)

8.4.3.3 The Models in the IMM Estimator

The selection of the model structures and their parameters is one of the critical aspects of the imple-
mentation of IMMPDAF. Designing a good set of filters requires a priori knowledge about the target
motion, usually in the form of maximum accelerations and sojourn times in various motion modes.10

The tracks considered in the benchmark problem span a wide variety of motion modes — from benign
constant velocity motions to maneuvers up to 7g. To handle all possible motion modes and to handle
automatic track formation and termination, the following models are used: 

Benign motion model (M1) — This second-order model with low noise level (to be given later) has
a probability of target detection PD given by the target’s expected SNR and corresponds to the
nonmaneuvering intervals of the target trajectory. For this model the process noise is, typically,
assumed to model air turbulence. 

Maneuver model (M2) — This second-order model with high noise level corresponds to ongoing
maneuvers. For this white noise acceleration model, the process noise standard deviation σv2 is
obtained using

(8.130)

where amax is the maximum acceleration in the corresponding modes and 0.5 < α ≤ 1.10

Maneuver detection model (M3) — This is a third-order (Wiener process acceleration) model with
high level noise. For highly maneuvering targets, like military attack aircraft, this model is useful
for detecting the onset and termination of maneuvers. For civilian air traffic surveillance,19 this
model is not necessary.

For a Wiener process acceleration model, the standard deviation σv3 is chosen using

(8.131)

where ∆a is the maximum acceleration increment per unit time (jerk), δ is the sampling interval,
and 0.5 < α ≤ 1.3

For the targets under consideration, amax = 70 m/s2 and ∆a = 35 m/s3. Using these values, the process
noise standard deviations were taken as

σv1 = 3 m/s2 (for nonmaneuvering intervals)

σv2 = 35 m/s2 (for maneuvering intervals)

σv3 = min {35δ,70} (for maneuver start/termination)

In addition to the process noise levels, the elements of the Markov chain transition matrix between the
modes, defined in Equation 8.121, are also design parameters. Their selection depends on the sojourn
time in each motion mode. The transition probability depends on the expected sojourn time via
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(8.132)

where τi is the expected sojourn time of the I-th mode, pii is the probability of transition from I-th mode
to the same mode and δ is the sampling interval.10

For the above models, pii, I = 1,2,3 are calculated using

(8.133)

where li = 0:1 and ui = 0:9 are the lower and upper limits, respectively, for the I-th model transition
probability.

The expected sojourn times of 15, 4, and 2s, are assumed for modes M1, M2, and M3, respectively.
The selection of the off-diagonal elements of the Markov transition matrix depends on the switching
characteristics among the various modes and is done as follows:

p12 = 0.1(1 – p11) p13 = 0.9(1 – p11)

p21 = 0.1(1 – p22) p23 = 0.9(1 – p22)

p31 = 0.3(1 – p33) p32 = 0.7(1 – p33)

The x, y, z components of target dynamics are uncoupled, and the same process noise is used in each
coordinate. 

8.4.4 Track Termination

According to the benchmark problem, a track is declared lost if the estimation error is greater than the
two-way beam width in angles or 1.5 range gates in range. In addition to this problem-specific criterion,
the IMMPDAF declares (on its own) track loss if the track is not updated for 100s. Alternatively, one
can include a “no target” model,3 which is useful for automatic track termination, in the IMM mode set.
In a more general tracking problem, where the true target state is not known, the “no target” mode
probability or the track update interval would serve as the criterion for track termination, and the
IMMPDAF would provide a unified framework for track formation, maintenance, and termination.

8.4.5 Simulation Results

This section presents the simulation results obtained using the algorithms described earlier. The com-
putational requirements and root-mean-square errors (RMSE) are given. 

The tracking algorithm using the IMMPDAF is tested on the following six benchmark tracks (the
tracking algorithm does not know the type of the target under track — the parameters are selected
to handle any target): 

Target 1 — A large military cargo aircraft with maneuvers up to 3g.
Target 2 — A Learjet or commercial aircraft which is smaller and more maneuverable than target 1

with maneuvers up to 4g.
Target 3 — A high-speed medium bomber with maneuvers up to 4g.
Target 4 — Another medium bomber with good maneuverability up to 6g.
Targets 5 and 6 — Fighter or attack aircraft with very high maneuverability up to 7g.

In Table 8.2, the performance measures and their averages of the IMMPDAF (in the presence of FA,
RGPO, and SOJ6,8) are given. The averages are obtained by adding the corresponding performance metrics

τ δ
i

iip
=

−1

p u lii i i
i

= −

















min ,,max 1

δ
τ

©2001 CRC Press LLC



of the six targets (with those of target 1 added twice) and dividing the sum by 7. In the table, the maneuver
density is the percentage of the total time that the target acceleration exceeds 0.5g. The average floating
point operation (FLOP) count per second was obtained by dividing the total number of floating point
operations by the target track length. This is the computational requirement for target and jammer
tracking, neutralizing techniques for ECM, and adaptive parameter selection for the estimator, i.e., it
excludes the computational load for radar emulation. 

The average FLOP requirement is 25 kFLOPS, which can be compared with the FLOP rate of
78 MFLOPS of a Pentium® processor running at 133 MHz. (The FLOP count is obtained using the built-
in MATLAB function flops. Note that these counts, which are given in terms of thousands of floating
point operations per second (kFLOPS) or millions of floating point operations per second (MFLOPS),
are rather pessimistic — the actual FLOP requirement would be considerably lower.) Thus, the real-time
implementation of the complete tracking system is possible. With the average revisit interval of 2.5s, the
FLOP requirement of the IMMPDAF is 62.5 kFLOP/radar cycle. With the revisit time calculations taking
about the same amount of computation as a cycle of the IMMPDAF, but running at half the rate of the
Kalman filter (which runs at constant rate), the IMMPDAF with adaptive revisit time is about 10 times
costlier computationally than a Kalman filter. Due to its ability to save radar resources, which are much
more expensive than computational resources, the IMMPDAF is a viable alternative to the Kalman filter,
which is the standard “workhorse” in many current tracking systems. (Some systems still use the α-β
filter as their “work mule.”)

8.5 A Flexible-Window ML-PDA Estimator for Tracking Low 
Observable (LO) Targets

One difficulty with the ML-PDA approach of Section 8.3, which uses a set of scans of measurements as
a batch, is the incorporation of noninformative scans when the target is not present in the surveillance
region for some consecutive scans. For example, if the target appears within the surveillance region of
the sensor after the first few scans, the estimator can be misled by the pure clutter in those scans — the
earlier scans contain no relevant information, and the incorporation of these into the estimator not only
increases the amount of processing (without adding any more information), but also results in less
accurate estimates or even track rejection. Also, a target could disappear from the surveillance region for
a while during tracking and reappear sometime later. Again, these intervening scans contain little or no
information about the target and can potentially mislead the tracker.

In addition, the standard ML-PDA estimator assumes that the target SNR, the target velocity, and the
density of false alarms over the entire tracking period remain constant. In practice, this may not be the
case, and then the standard ML-PDA estimator will not yield the desired results. For example, the average
target SNR may vary significantly as the target gets closer to or moves away from the sensor. In addition,
the target might change its course and/or speed intermittently over time. For electro-optical sensors,
depending on the time of the day and weather, the number of false alarms may vary as well. 

TABLE 8.2 Performance of IMMPDAF in the Presence of False Alarms, Range Gate Pull-Off, 
and the Standoff Jammer

Target

Time 
Length

(s)
Max. Acc.

(m/s2)

Man. 
Density

(%)

Sample 
Period

(s)

Avg. 
Power
(W)

Pos. 
RMSE

(m)

Vel. 
RMSE
(m/s)

Ave. Load 
(kFLOPS)

Lost 
Tracks

(%)

1 165 31 25 2.65 8.9 98.1 61.3 22.2 1
2 150 39 28.5 2.39 5.0 97.2 68.5 24.3 0
3 145 42 20 2.38 10.9 142.1 101.2 24.6 1
4 184 58 20 2.34 3.0 26.5 25.9 24.3 0
5 182 68 38 2.33 18.4 148.1 110.7 27.1 2
6 188 70 35 2.52 12.4 98.6 71.4 24.6 1

Avg. — — — 2.48 8.3 — — 24.5 —
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Because of these concerns, an estimator capable of handling time-varying SNR (with online adapta-
tion), false alarm density, and slowly evolving course and speed is needed. While a recursive estimator
like the IMM-PDA is a candidate, in order to operate under low SNR conditions in heavy clutter, a batch
estimator is still preferred. In this section, the above problems are addressed by introducing an estimator
that uses the ML-PDA with AI adaptively in a sliding-window fashion,20 rather than using all the
measurements in a single batch as the standard ML-PDA estimator does.14 The initial time and the length
of this sliding window are adjusted adaptively based on the information content in the measurements
in the window. Thus, scans with little or no information content are eliminated and the window is moved
over to scans with “informative” measurements.

This algorithm is also effective when the target is temporarily lost and reappears later. In contrast,
recursive algorithms will diverge in this situation and may require an expensive track reinitiation. The
standard batch estimator will be oblivious to the disappearance and may lose the whole track. This section
demonstrates the performance of the adaptive sliding-window ML-PDA estimator on a real scenario with
heavy clutter for tracking a fast-moving aircraft using an electro-optical (EO) sensor.

8.5.1 The Scenario

The adaptive ML-PDA algorithm was tested on an actual scenario consisting of 78 frames of Long Wave
Infrared (LWIR) IR data collected during the Laptex data collection, which occurred in July, 1996 at
Crete, Greece. The sequence contains a single target — a fast-moving Mirage F1 fighter jet. The 920 ×
480 pixel frames, taken at a rate of 1Hz were registered to compensate for frame-to-frame line-of-sight
(LOS) jitter. Figure 8.2 shows the last frame in the F1 Mirage sequence.

A sample detection list for the Mirage F1 sequence obtained at the end of preprocessing is shown in
Figure 8.3. Each “x” in the figure represents a detection above the threshold. 

FIGURE 8.2 The last frame in the F1 Mirage sequence.

X (Pixel)

Y
 (

P
ix

el
)

100 200 300 400 500 600 700 800 900

50

100

150

200

250

300

350

400

450
©2001 CRC Press LLC



8.5.2 Formulation of the ML-PDA Estimator 

This section describes the target models used by the estimator in the tracking algorithm and the statistical
assumptions made by the algorithm. The ML-PDA estimator for these models is introduced, and the
CRLB for the estimator and the hypothesis test used to validate the track are presented.

8.5.2.1 Target Models

The ML-PDA tracking algorithm is used on the detection lists after the data preprocessing phase. It is
assumed that there are n detection lists obtained at times t = t1,t2,…tn. The i-th detection list, where
1 ≤ i ≤ n, consists of mi detections at pixel positions (xij, yij) along the X and Y directions. In addition to
locations, the signal strength or amplitude, aij , of the j-th detection in the i-th list, where 1 ≤ j ≤ m, is
also known. Thus, assuming constant velocity over a number of scans, the problem can be formulated
as a two-dimensional scenario in space with the target motion defined by the four-dimensional vector 

(8.134) 

where ξ(t0) and η(t0) are the horizontal and vertical pixel positions of the target, respectively, from the
origin at the reference time t0. The corresponding velocities along these directions are assumed constant
at

·ξ(to) pixel/s and
·η(to) pixel/s, respectively.

The set of measurements in list i at time ti is denoted by

(8.135)

where mi is the number of measurements at ti. The measurement vector zj(i) is denoted by

FIGURE 8.3 Detection list corresponding to the frame in Figure 8.2.
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(8.136)

where xij and yij are observed X and Y positions, respectively.
The cumulative set of measurements made in scans t1 through t–n is given by

(8.137)

A measurement can either originate from a true target or from a spurious source. In the former case,
each measurement is assumed to have been received only once in each scan with a detection probability
PD and to have been corrupted by zero-mean additive Gaussian noise of known variance, i.e.,

(8.138)

(8.139)

where ∈ ij and vij are the zero-mean Gaussian noise components with variances σ1
2 and σ2

2 along the X
and Y directions, respectively.

Thus, the joint probability density function of the position components of zij is given by

(8.140)

The false alarms are assumed to be distributed uniformly in the surveillance region and their number
at any sampling instant obeys the Poisson probability mass function

(8.141)

where U is the area of surveillance and λ is the expected number of false alarms per unit of this area.
Kirubarajan and Bar-Shalom14 have shown that the performance of the ML-PDA estimator can be
improved by using amplitude information (AI) of the received signal in the estimation process itself, in
addition to thresholding. After the signal has been passed through the matched filter, an envelope detector
can be used to obtain the amplitude of the signal. The noise at the matched filter is assumed to be
narrowband Gaussian. When this is fed through the envelope detector, the output is Rayleigh distributed.
Given the detection threshold, τ, the probability of detection PD and the probability of false alarm PFA are

(8.142)

and

 (8.143)
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where P(·) is the probability of an event.
The probability density functions at the output of the threshold detector, which corresponds to signals

from the target and false alarms are denoted by p1
τ (a) and p0

τ (a), respectively. Then the amplitude
likelihood ratio, ρ, can then be written as3

(8.144)

where τ is the detection threshold.

8.5.2.2 The Maximum Likelihood-Probabilistic Data Association Estimator

This section focuses on the maximum likelihood estimator combined with the PDA approach. If there
are mi detections at ti, one has the following mutually exclusive and exhaustive events3

(8.145)

The pdf of the measurements corresponding to the above events can be written as3

(8.146)

Using the total probability theorem,

(8.147)

the above can be written explicitly as

(8.148)
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To obtain the likelihood ratio, Φ[Z(i), x], at ti, divide Equation 8.148 by p[Z(i)|ε0(i), x]

(8.149)

Assuming that measurements at different sampling instants are conditionally independent, i.e.,

(8.150)

the total likelihood ratio3 for the entire data set is given by

(8.151)

Then, the total log-likelihood ratio, Φ[Zn, x], expressed in terms of the individual log-likelihood ratios
φ[Z(i), x] at sampling time instants ti, becomes

 (8.152)

The maximum likelihood estimate (MLE) is obtained by finding the vector x = x̂ that maximizes the
total log-likelihood ratio given in Equation 8.152. This maximization is performed using a quasi-Newton
(variable metric) method. This can also be accomplished by minimizing the negative log-likelihood
function. In our implementation of the MLE, the Davidon-Fletcher-Powell variant of the variable metric
method is used. This method is a conjugate gradient technique that finds the minimum value of the
function iteratively.21 However, the negative log-likelihood function may have several local minima; i.e.,
it has multiple modes. Due to this property, if the search is initiated too far away from the global
minimum, the line search algorithm may converge to a local minimum. To remedy this, a multi-pass
approach is used as in Reference 14.

8.5.3 Adaptive ML-PDA

Often, the measurement process begins before the target becomes visible — that is, the target enters the
surveillance region of the sensor some time after the sensor started to record measurements. In addition,
the target may disappear from the surveillance region for a certain period of time before reappearing.
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During these periods of blackout, the received measurements are purely noise-only, and the scans of data
contain no information about the target under track. Incorporating these scans into a tracker reduces
its accuracy and efficiency. Thus, detecting and rejecting these scans is important to ensure the fidelity
of the estimator. This subsection presents a method that uses the ML-PDA algorithm in a sliding-window
fashion. In this case, the algorithm uses only a subset of the data at a time rather than all of the frames
at once, to eliminate the use of scans that have no target. The initial time and the length of the sliding
window are adjusted adaptively based on the information content of the data — the smallest window,
and thus the fewest number of scans, required to identify the target is determined online and adapted
over time.

The key steps in the adaptive ML-PDA estimator are as follows:

1. Start with a window of minimum size.
2. Run the ML-PDA estimator within this window and carry out the validation test on the estimates.
3. If the estimate is accepted (i.e., if the test is passed), and if the window is of minimum size, accept

the window. The next window is the present window advanced by one scan. Go to step 2.
4. If the estimate is accepted, and if the window is greater than minimum size, try a shorter window

by removing the initial scan. Go to step 2 and accept the window only if estimates are better than
those from the previous window.

5. If the test fails and if the window is of minimum size, increase the window length to include one
more scan of measurements and, thus, increase the information content in the window. Go to
step 2.

6. If the test fails and if the window is greater than minimum size, eliminate the first scan, which
could contain pure noise only. Go to step 2.

7. Stop when all scans are used.

The algorithm is described below. In order to specify the exact steps in the estimator, the following
variables are defined:

W = Current window length
Wmin = Minimum window length
Z(ti) = Scan (set) of measurements at time ti

With these definitions, the algorithm is given below:

BEGIN PROCEDURE Adaptive ML PDA estimator(Wmin , Z(t1), Z(tn))
i = 1 — Initialize the window at the first scan.
W = Wmin — Initially, use a window of minimum size.
WHILE (i + W < n) — Repeat until the last scan at tn.

Do grid search for initial estimates by numerical search on Z(ti), Z(ti+1),…,Z(ti+W)
Apply ML-PDA Estimator on the measurements in Z(ti), Z(ti+1),…,Z(ti+W)
Validate the estimates
IF the estimates are rejected

IF (W > Wmin) — Check if we can reduce the window size.
i = i + 1 — Eliminate the initial scan that might be due to noise only.

ELSEIF (W = Wmin)
W = W + 1 — Expand window size to include an additional scan.

ENDIF
ENDIF
IF the estimates are accepted

IF (W > Wmin) — Check if we can reduce the window size.
Try a shorter window by removing the initial scan and check if estimates are
better, i = i + 1

ENDIF
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IF estimates for shorter window are NOT better OR (W = Wmin)
Accept estimates and try next window, i = i + 1

ENDIF
ENDIF

END WHILE
END PROCEDURE

To illustrate the adaptive algorithm, consider a scenario where a sensor records 10 scans of measure-
ments over a surveillance region. The target, however, appears in this region (i.e., its intensity exceeds
the threshold) only after the second scan (i.e., from the third scan onward). This case is illustrated in
Figure 8.4. The first two scans are useless because they contain only noise.

Consider the smallest window size required for a detection to be 5. Then the algorithm will evolve as
shown in Figure 8.5. First, for the sake of illustration, assume that a single “noisy” scan present in the
data set is sufficient to cause the MLE to fail the hypothesis test for track acceptance. The algorithm tries
to expand the window to include an additional scan if a track detection is not made. This is done because
an additional scan of data may bring enough additional information to detect the target track. The
algorithm next tries to cut down the window size by removing the initial scans. This is done to check
whether a better estimate can be obtained without this scan. If this initial scan is noise only, then it
degrades the accuracy of the estimate. If a better estimate is found (i.e., a more accurate estimate) without
this scan, the latter is eliminated. Thus, as in the example given above, the algorithm expands at the front
(most recent scan used) and contracts at the rear end of the window to find the best window that produces
the strongest detection, based on the validation test.

FIGURE 8.4 Scenario with a target being present for only a partial time during observation.

FIGURE 8.5 Adaptive ML-PDA algorithm applied to the scenario illustrated above.
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8.5.4 Results

8.5.4.1 Estimation Results

The Mirage F1 data set consists of 78 scans or frames of LWIR IR data. The target appears late in this
scenario and moves towards the sensor. There are about 600 detections per frame. In this implementation
the parameters shown in Table 8.3 were chosen.

The choice of these parameters is explained below:

• σ1 and σ2 are, as in Equation 8.140, the standard deviations along the horizontal and vertical axes
respectively. The value of 1:25 for both variables models the results of the preprocessing.

• The minimum window size, Wmin, was chosen to be 10. The algorithm will expand this window
if a target is not detected in 10 frames. Initially a shorter window was used, but the estimates
appeared to be unstable. Therefore, fewer than 10 scans is assumed to be ineffective at producing
an accurate estimate.

• The initial target SNR, d0, was chosen as 9:5 dB because the average SNR of all the detections over
the frames is approximately 9:0 dB. However, in most frames, random spikes were noted. In the
first frame, where a target is unlikely to be present, a single spike of 15:0 dB is noted. These spikes,
however, cannot and should not be modeled as the target SNR.

• A constant probability of detection (PDC) of 0:7 was chosen. A value that is too high would bring
down the detection threshold and increase PFA.

• α is the parameter used to update the estimated target SNR with an α filter. A high value is chosen
for the purpose of detecting a distant target that approaches the sensor over time and to account
for the presence of occasional spikes of noise. Thus, the estimated SNR is less dependent on a
detection that could originate from a noisy source and, thus, set the bar too high for future
detections.

• πm is the miss probability.

• –v and –σv are used in the multipass approach of the optimization algorithm.11,14

• The number of passes K in the multipass approach of the optimization algorithm was chosen as 4.

Figure 8.6 further clarifies the detection process by depicting the windows where the target has been
detected.

From the above results, note the following:

• The first detection uses 22 scans and occurs at scan 28. This occurs because the initial scans have
low-information content as the target appears late in the frame of surveillance. The IMM-MHT
algorithm22 required 38 scans for a detection, while the IMMPDA23 required 39 scans. Some
spurious detections were noticed at earlier scans, but these were rejected.

TABLE 8.3 Parameters Used 
in the ML-PDA Algorithm 
for the F1 Mirage Jet

Parameter Value

σ1

σ2

1.25
1.25

Min Window Size, W
Initial Target SNR, d0

PDC

α

10
9.5
0.70
0.85

πm
–v
–σ v

K

5%
5.0
0.15
4
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• The next few detection windows produce similar target estimates. This is because a large number
of scans repeat themselves in these windows.

• After the initial detections, there is a “jump” in the scan number at which a detection is made. In
addition, the estimates, particularly the velocity estimates, deteriorate. This could indicate either
that the target has suddenly disappeared (became less visible) from the region of surveillance or
that the target made a maneuver.

• From scan 44 onward, the algorithm stabilizes for several next windows. At scan 52, however,
there is another jump in detection windows. This is also followed by a drop in the estimated target
SNR, as explained above. This, however, indicates that the algorithm can adjust itself and restart
after a target has become suddenly invisible. Recursive algorithms will diverge in this case.

• From scan 54 onward, the algorithm stabilizes, as indicated by the estimates. Also, a detection is
made for every increasing window because the target has come closer to the sensor and, thus, is
more visible. This is noted by the sharp rise in the estimated target SNR after scan 54.

• The above results provide an understanding of the target’s behavior. The results suggest that the
Mirage F1 fighter jet appears late in the area of surveillance and moves towards the sensor. However,
initially it remains quite invisible and possibly undergoes maneuvers. As it approaches the sensor,
it becomes more and more visible and, thus, easier to detect.

8.5.4.2 Computational Load

The adaptive ML-PDA tracker took 442s, including the time for data input/output, on a Pentium® III
processor running at 550MHz to process the 78 scans of the Mirage F1 data. This translates into about
5.67s per frame (or 5.67s running time for one-second data), including input/output time. A more
efficient implementation on a dedicated processor can easily make the algorithm real-time capable on a
similar processor. Also, by parallelizing the initial grid search, which required more than 90% of the time,
the adaptive ML-PDA estimator can be made even more efficient.

FIGURE 8.6 Progress of the algorithm showing windows with detections.
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8.6 Summary

This chapter presented the use of the PDA technique for different tracking problems. Specifically, the
PDA approach was used for parameter estimation as well as recursive state estimation. As an example of
parameter estimation, track formation of a low observable target using a nonlinear maximum likelihood
estimator in conjunction with the PDA technique with passive (sonar) measurements was presented. The
use of the PDA technique in conjunction with the IMM estimator, resulting in the IMMPDAF, was
presented as an example of recursive estimation on a radar-tracking problem in the presence of ECM.
Also presented was an adaptive sliding-window PDA-based estimator that retains the advantages of the
batch (parameter) estimator while being capable of tracking the motion of maneuvering targets. This
was illustrated on an EO surveillance problem. These applications demonstrate the usefulness of the PDA
approach for a wide variety of real tracking problems.
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9.1 Introduction

Applying filtering algorithms to track the states of multiple targets first requires the correlation of the
tracked objects with their corresponding sensor observations. A variety of probabilistic measures can be
applied to each track estimate to determine independently how likely it is to have produced the current
observation; however, such measures are useful only in practice for eliminating obviously infeasible
candidates. Chapter 3 uses these measures to construct gates for efficiently reducing the number of feasible
candidates to a number that can be accommodated within real-time computing constraints. Subsequent
elimination of candidates can then be effected by measures that consider the joint relationships among
the remaining track and report pairs.

After the gating step has been completed, a determination must be made concerning which feasible
associations between observations and tracks are most likely to be correct. In a dense environment,
however, resolving the ambiguities among various possible assignments of sensor reports to tracks may
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be impossible. The general approach proposed in the literature for handling such ambiguities is to
maintain a set of hypothesized associations in the hope that some will be eliminated by future observa-
tions.1-3 The key challenge is somehow to bound the overall computational cost by limiting the prolifer-
ation of pairs under consideration, which may increase in number at a geometric rate.

If n observations are made of n targets, one can evaluate an independent estimate of the probability
that a given observation is associated with a given beacon. An independently computed probability,
however, may be a poor indicator of how likely a particular observation is associated with a particular
track because it does not consider the extent to which other observations may also be correlated with
that item. More sophisticated methods generally require a massive batch calculation (i.e., they are a
function of all n beacon estimates and O(n) observations of the beacons) where approximately one
observation of each target is assumed.4 Beyond the fact that a real-time tracking system must process
each sensor report as soon as it is obtained, the most informative joint measures of association scale
exponentially with n and are, therefore, completely useless in practice.

This chapter examines some of the combinatorial issues associated with the batch data association
problem arising in tracking and correlation applications. A procedure is developed that addresses a large
class of data association problems involving the calculation of permanents of submatrices of the original
association matrix. This procedure yields what is termed the joint assignment matrix (JAM), which can
be used to optimally rank associations for hypothesis selection. Because the computational cost of the
permanent scales exponentially with the size of the matrix, improved algorithms are developed both for
calculating the exact JAM and for generating approximations to it. Empirical results suggest that at least
one of the approximations is suitable for real-time hypothesis generation in large-scale tracking and
correlation applications. Novel theoretical results include an improved upper bound on the calculation
of the JAM and new upper bound inequalities for the permanent of general nonnegative matrices. One
of these inequalities is an improvement over the best previously known inequality.

9.2 Background

The batch data association problem4-8 can be defined as follows:

Given predictions about the states of n objects at a future time t, n measurements of that set of objects
at time t, and a function to compute a probability of association between each prediction and mea-
surement pair, calculate a new probability of association for a prediction and a measurement that is
conditioned on the knowledge that the mapping from the set of predictions to the set of measurements
is one-to-one.

For real-time applications, the data association problem is usually defined in terms only of estimates
maintained at the current timestep of the filtering process. A more general problem can be defined that
considers observations over a series of timesteps. Both problems are intractable, but the single-timestep
variant appears to be more amenable to efficient approximation schemes.

As an example of the difference between these two measures of the probability of association, consider
an indicator function that provides a binary measure of whether or not a given measurement is compatible
with a given prediction. If the measure considers each prediction/measurement pair independently of all
other predictions and measurements, then it could very well indicate that several measurements are
feasible realizations of a single prediction. However, if one of the measurements has only that prediction
as a feasible association, then from the constraint that the assignment is one-to-one, it and the prediction
must correspond to the same object. Furthermore, it can then be concluded, based on the same constraint,
that the other measurements absolutely are not associated with that prediction. Successive eliminations
of candidate pairs will hopefully yield a set of precisely n feasible candidates that must represent the
correct assignment; however, this is rare in real-world applications. The example presented in Figure 9.1
demonstrates the process.

The above association problem arises in a number of practical tracking and surveillance applications.
A typical example is the following: a surveillance aircraft flies over a region of ocean and reports the
©2001 CRC Press LLC



            
positions of various ships. Several hours later another aircraft repeats the mission. The problem then
arises how to identify which reports in the second pass are associated with which from the earlier pass.
The information available here includes known kinematic constraints (e.g., maximum speed) and the
time difference between the various reports. If each ship is assumed to be traveling at a speed in the
interval [vmin, vmax], then the indicator function can identify feasible pairs simply by determining which

FIGURE 9.1 Assignment example.

Assignment Example
Consider the effect of the assignment constraint on the following matrix of feasible associations:

R1 R2 R3 R4

T1 0 0 1 1

T2 1 1 0 1

T3 0 1 0 1

T4 0 0 1 1

Every track has more than one report with which it could be feasibly assigned. The report R1, however, can 
only be assigned to T2. Given the one-to-one assignment constraint, R1 clearly must have originated from 
track T2. Making this assignment leaves us with the following options for the remaining tracks and reports:

R1 R2 R3 R4

T1 – 0 1 1

T2 1 – – –

T3 – 1 0 1

T4 – 0 1 1

The possibility that R2 originated from T2 has been eliminated; therefore, R2 could only have originated from 
the remaining candidate, T3. This leaves:

R1 R2 R3 R4

T1 – – 1 1

T2 1 – – –

T3 – 1 – –

T4 – – 1 1

where two equally feasible options now exist for assigning tracks T1 and T4 to reports R3 and R4. From this 
ambiguity only the following can be concluded:

R1 R2 R3 R4

T1 – – 0.5 0.5

T2 1 – – –

T3 – 1 – –

T4 – – 0.5 0.5
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reports from the second pass fall within the radial interval [vmin∆t, vmax∆t] about reports from the first
pass (see Figure 9.2). This problem is called track initiation4,5 because its solution provides a full position
and velocity estimate — referred to as a track — which can then permit proper tracking.

After the tracking process has been initiated, the association problem arises again at the arrival of each
batch of new reports. Thus, data association in this case is not a “one shot” problem — it is a problem
of associating series of reports over a period of time in order to identify distinct trajectories. This means
that attempting to remove ambiguity entirely at each step is not necessary; it is possible to retain a set
of pairs in the hope that some will be eliminated at future steps. The maintenance of tentative tracks —
referred to as hypotheses — is often termed track splitting. Track splitting can be implemented in several
ways, ranging from methods that simply add extra tracks to the track set with no logical structure to
indicate which were formed from common reports, to methods that construct a complete “family tree”
of tracks so that confirmation of a single leaf can lead to the pruning of large branches. No matter what
the method, the critical problem is to determine which pairs to keep and which to discard.

9.3 Most Probable Assignments

One way to deal with ambiguities arising in the joint analysis of the prior probabilities of association is
to determine which of the a priori n! possible assignments is most probable. In this case, “most probable”
means the assignment that maximizes the product of the prior probabilities of its component pairs. In
other words, it is the assignment, σi, that maximizes

(9.1)

where aij is the matrix element giving the probability that track i is associated with report j. Unfortunately,
this approach seems to require the evaluation and examination of n! products. There exists, however, a
corpus of work on the closely related problem of optimal assignment (also known as maximum-weighted
bipartite matching). The optimal assignment problem seeks the assignment that maximizes the sum of
the values of its component pairs. In other words, it maximizes 

(9.2)

FIGURE 9.2 The inner circle represents the possible positions of the ship if it travels at minimum speed, while the
outer circle represents its possible positions at maximum speed.
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This can be accomplished in O(n3) time.9 Thus, the solution to the maximum product problem can be
obtained with an optimal assignment algorithm simply by using the logs of the prior probabilities, with
the log of zero replaced with an appropriately large negative number. The optimal assignment approach
eliminates ambiguity by always assuming that the best assignment is always the correct assignment. Thus,
it never maintains more than n tracks. The deficiency with this approach is that unless there are very
few ambiguous pairs, many assignments will have almost the same probability. For example, if two
proximate reports are almost equally correlated with each of two tracks, then swapping their indices in
the optimal assignment will generate a new but only slightly less probable assignment. In fact, in most
nontrivial applications, the best assignment has a very low probability of being correct.

The optimal assignment method can be viewed as the best choice of track-report pairs if the criterion
is to maximize the probability of having all of the pairs be correct. Another reasonable optimality criterion
would seek the set of n pairs that maximizes the expected number of pairs that are correct. To illustrate
the difference between these criteria, consider the case in which two proximate reports are almost equally
correlated with two tracks, and no others. The optimal assignment criterion would demand that the two
reports be assigned to distinct tracks, while the other criterion would permit all four pairs to be kept as
part of the n selected pairs. With all four possible pairs retained, the second criterion ensures that at least
two are correct. The two pairs selected by the optimal assignment criterion, however, have almost a 0.5
probability of both being incorrect.

9.4 Optimal Approach

A strategy for generating multiple hypotheses within the context of the optimal assignment approach is
to identify the k best assignments and take the union of their respective pairings.6,10,11 The assumption
is that pairs in the most likely assignments are most likely to be correct. Intuition also would suggest
that a pair common to all of the k best assignments stands a far better chance of being correct than its
prior probability of association might indicate. Generalizing this intuition leads to the exact character-
ization of the probabilities of association under the assignment constraint. Specifically, the probability
that report Ri is associated with track Tj is simply the sum of the probabilities of all the assignments
containing the pair, normalized by the sum of the probabilities of all assignments:6

(9.3)

For example, suppose the following matrix is given containing the prior probabilities of association for
two tracks with two reports:

(9.4)

Given the assignment constraint, the correct pair of associations must be either (T1, R1) and (T2, R2) or
(T1, R2) and (T2, R1). To assess the joint probabilities of association, Equation 9.3 must be applied to
each entry of the matrix to obtain:

(9.5)
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Notice that the resulting matrix is doubly stochastic (i.e., it has rows and columns all of which sum
to unity), as one would expect. (The numbers in the tables have been rounded, but still sum appropriately.
One can verify that the true values do as well.) Notice also that the diagonal elements are equal. This is
the case for any 2 x 2 matrix because elements of either diagonal can only occur jointly in an assignment;
therefore, one element of a diagonal cannot be more or less likely than the other. The matrix of proba-
bilities generated from the assignment constraint is called the joint assignment matrix, or the JAM.

Now consider the following matrix:

(9.6)

which, given the assignment constraint, leads to the following:

(9.7)

This demonstrates how significant the difference can be between the prior and the joint probabilities. In
particular, the pair (T1, R1) has a prior probability of 0.9, which is extremely high. Considered jointly
with the other measurements, however, its probability drops to only 0.31.

A more extreme example is the following:

(9.8)

which leads to:

(9.9)

where the fact that T2 cannot be associated with R2 implies that there is only one feasible assignment.
Examples like this show why a “greedy” selection of hypotheses based only on the independently assessed
prior probabilities of association can lead to highly suboptimal results.

The examples that have been presented have considered only the ideal case where the actual number
of targets is known and the number of tracks and reports equals that number. However, the association
matrix can easily be augmented* to include rows and columns to account for the cases in which some
reports are spurious and some targets are not detected. Specifically, a given track can have a probability
of being associated with each report, as well as a probability of not being associated with any of them.
Similarly, a given report has a probability of association with each of the tracks and a probability that it
is a false alarm which is not associated with any target. Sometimes a report that is not associated with

* Remember the use of an association “matrix” is purely for notational convenience. In large applications, such
a matrix would not be generated in its entirety; rather, a sparse graph representation would be created by identifying
and evaluating only those entries with probabilities above a given threshold.

R1 R2

T1 0.9 0.5

T2 0.4 0.1

R1 R2

T1 0.31 0.69

T2 0.69 0.31

R1 R2

T1 0.99 0.01

T2 0.01 0.0

R1 R2

T1 0.0 1.0

T2 1.0 0.0
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any tracks signifies a newly detected target. If the actual number of targets is not known, a combined
probability of false alarm and probability of new target must be used. Estimates of probabilities of
detection, probabilities of false alarms, and probabilities of new detections are difficult to determine
because of complex dependencies on the type of sensor used, the environment, the density of targets,
and a multitude of other factors whose effects are almost never known. In practice, such probabilities
are often lumped together into one tunable parameter (e.g., a “fiddle factor”).

9.5 Computational Considerations

A closer examination of Equation 9.3 reveals that the normalizing factor is a quantity that resembles the
determinant of the matrix, but without the alternating ±1 factors. In fact, the determinant of a matrix
is just the sum of products over all even permutations minus the sum of products over all odd permu-
tations. The normalizing quantity of Equation 9.3, however, is the sum of products over all permutations.
This latter quantity is called the permanent7,12,13 of a matrix, and it is often defined as follows:

(9.10)

where the summation extends over all permutations Q of the integers 1,2,...,n. The Laplace expansion of
the determinant also applies for the permanent:

(9.11)

where Aij is the submatrix obtained by removing row i and column j. This formulation provides a
straightforward mechanism for evaluating the permanent, but it is not efficient. As in the case of the
determinant, expanding by Laplacians requires O(n · n!) computations. The unfortunate fact about the
permanent is that while the determinant can be evaluated by other means in O(n3) time, effort exponential
in n seems to be necessary to evaluate the permanent.14

If Equation 9.3 were evaluated without the normalizing coefficient for every element of the matrix,
determining the normalizing quantity by simply computing the sum of any row or column would seem
possible, since the result must be doubly stochastic. In fact, this is the case. Unfortunately, Equation 9.3
can be rewritten, using Equation 9.11, as

(9.12)

where the evaluation of permanents seems unavoidable. Knowing that such evaluations are intractable,
the question then is how to deal with computational issues.

The most efficient method for evaluating the permanent is attributable to Ryser:7 Let A be an n × n
matrix, let Ar denote a submatrix of A obtained by deleting r columns, let Π(Ar) denote the product of
the row sums of Ar, and let ΣΠ(Ar) denote the sum of the products Π(Ar) taken over all possible Ar. Then,

(9.13)

This formulation involves only O(2n), rather than O(n!), products. This may not seem like a significant
improvement, but for n in the range of 10–15, the reduction in compute time is from hours to minutes
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on a typical workstation. For n greater than 35, however, scaling effects thwart any attempt at evaluating
the permanent. Thus, the goal must be to reduce the coefficients as much as possible to permit the
optimal solution for small matrices in real time, and to develop approximation schemes for handling
large matrices in real time.

9.6 Efficient Computation of the JAM

Equation 9.13 is known to permit the permanent of a matrix to be computed in O(n2 · 2n) time. From
Equation 9.12, then, one can conclude that the joint assignment matrix is computable in O(n4 · 2n) time
(i.e., the amount of time required to compute the permanent of Aij for each of the n2 elements aij).
However, this bound can be improved by showing that the joint assignment matrix can be computed in
O(n3 · 2n) time, and that the time can be further reduced to O(n2 · 2n).

First, the permanent of a general matrix can be computed in O(n · 2n) time. This is accomplished by
eliminating the most computationally expensive step in direct implementations of Ryser’s method — the
O(n2) calculation of the row sums at each of the 2n iterations. Specifically, each term of Ryser’s expression
of the permanent is just a product of the row sums with one of the 2n subsets of columns removed. A
direct implementation, therefore, requires the summation of the elements of each row that are not in
one of the removed columns. Thus, O(n) elements are summed for each of the n rows at a total cost of
O(n2) arithmetic operations per term. In order to reduce the cost required to update the row sums,
Nijenhuis and Wilf showed that the terms in Ryser’s expression can be ordered so that only one column
is changed from one term to the next.15 At each step the algorithm updates the row sums by either adding
or subtracting the column element corresponding to the change. Thus, the total update time is only
O(n). This change improves the computational complexity from O(n2 · 2n) to O(n · 2n).

The above algorithm for evaluating the permanent of a matrix in O(n · 2n) time can be adapted for
the case in which a row and column of a matrix are assumed removed. This permits the evaluation of
the permanents of the submatrices associated with each of the n2 elements, as required by Equation 9.12,
to calculate the joint assignment matrix in O(n3 · 2n) time. This is an improvement over the O(n4 · 2n)
scaling obtained by the direct application of Ryser’s formula (Equation 9.13) to calculate the permanent
of each submatrix. The scaling can, however, be reduced even further. Specifically, note that the permanent
of the submatrix associated with element aij is the sum of all ((n – 1)2(n – 1))/(n – 1) terms in Ryser’s
formula that do not involve row i or column j. In other words, one can eliminate a factor of (n – 1) by
factoring the products of the (n – 1) row sums common to the submatrix permanents of each element
in the same row. This factorization leads to an optimal JAM algorithm with complexity O(n2 · 2n).16

An optimized version of this algorithm can permit the evaluation of 12 × 12 joint assignment matrices
in well under a second. Because the algorithm is highly parallelizable — the O(2n) iterative steps can be
divided into k subproblems for simultaneous processing on k processors — solutions to problems of size n
in the range 20–25 should be computable in real time with O(n2) processors. Although not practical, the
quantities computed at each iteration could also be computed in parallel on n · 2n processors to achieve
an O(n2) sequential scaling. This might permit the real-time solution of somewhat larger problems, but
at an exorbitant cost. Thus, the processing of n · n matrices, for n > 25, will require approximations.

Figure 9.3 provides actual empirical results (on a circa 1994 workstation) showing that the algorithm
is suitable for real-time applications for n < 10, and it is practical for offline applications for n as large
as 25. The overall scaling has terms of n22n and 2n, but the test results and the algorithm itself clearly
demonstrate that the coefficient on the n22n term is small relative to the 2n term.

9.7 Crude Permanent Approximations

In the late 1980s, several researchers identified the importance of determining the number of feasible
assignments in sparse association matrices arising in tracking applications. In this section, a recently
developed approach for approximating the JAM via permanent inequalities is described which yields
surprisingly good results within time roughly proportional to the number of feasible track/report pairs.
©2001 CRC Press LLC



Equation 9.12 shows that an approximation to the permanent would lead to a direct approximation
of Equation 9.3. Unfortunately, research into approximating the permanent has emphasized the case in
which the association matrix A has only 0–1 entries.17 Moreover, the methods for approximating the
permanent, even in this restricted case, still scale exponentially for reasonable estimates.17-19 Even “unrea-
sonable” estimates for the general permanent, however, may be sufficient to produce a reasonable estimate
of a conditional probability matrix. This is possible because the solution matrix has additional structure
that may permit the filtering of noise from poorly estimated permanents. The fact that the resulting
matrix should be doubly stochastic, for example, suggests that the normalization of the rows and/or
columns (i.e., dividing each row or column by the sum of its elements) should improve the estimate.

One of the most important properties of permanents relating to the doubly stochastic property of the
joint assignment matrix is the following: Multiplying a row or column by a scalar c has the effect of multiplying
the permanent of the matrix by the same factor.7,12,13 This fact verifies that the multiplication of a row or
column by some c also multiplies the permanent of any submatrix by c. This implies that the multipli-
cation of any combination of rows and/or columns of a matrix by any values (other than zero) has no
effect on the joint assignment matrix. This is because the factors applied to the various rows and columns
cancel in the ratio of permanents in Equation 9.12. Therefore, the rows and columns of a matrix can be
normalized in any manner before attempting to approximate the joint assignment matrix.

To see why a conditioning step could help, consider a 3 × 3 matrix with all elements equal to 1. If row
1 and column 1 are multiplied by 2, the following matrix is obtained:

(9.14)

where the effect of the scaling of the first row and column has been undone.* This kind of preconditioning
could be expected to improve the reliability of an estimator. For example, it seems to provide more
reliable information for the greedy selection of hypotheses. This iterative process could also be useful for
the post conditioning of an approximate joint assignment matrix (e.g., to ensure that the estimate is

FIGURE 9.3 Tests of the new JAM algorithm reveal the expected exponentially scaling computation time.

*A physical interpretation of the original matrix in sensing applications is that each row and column corresponds
to a set of measurements, which is scaled by some factor due to different sensor calibrations or models.
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doubly stochastic). Remember that its use for preconditioning is permissible because it does nothing
more than scale the rows and columns during each iteration, which does not affect the obtained joint
assignment matrix. The process can be repeated for O(n) iterations,* involves O(n2) arithmetic operations
per iteration, and thus scales as O(n3). In absolute terms, the computations take about the same amount
of compute time as required to perform an n × n matrix multiply.

9.8 Approximations Based on Permanent Inequalities

The possibility has been discussed of using crude estimators of the permanent, combined with knowledge
about the structure of the joint assignment matrix, to obtain better approximations. Along these lines,
four upper bound inequalities, ε1 – ε4, for the permanent are examined for use as crude estimators. The
first inequality, ε1, is a well-known result:

(9.15)

where ri is the sum of the elements in row i. This inequality holds for nonnegative matrices because it
sums over all products that do not contain more than one element from the same row. In other words, it
sums over a set larger than that of the actual permanent because it includes products with more than one
element from the same column. For example, the above inequality applied to a 2 × 2 matrix would give
a11a21 + a11a22 + a12a21 + a12a22, rather than the sum over one-to-one matchings a11a22 + a12a21. In fact, the
product of the row sums is the first term in Ryser’s equation. This suggests that the evaluation of the first
k terms should yield a better approximation. Unfortunately, the computation required scales exponentially
in the number of evaluated terms, thus making only the first two or three terms practical for approximation
purposes. All of the inequalities in this section are based on the first term of Ryser’s equation applied to
a specially conditioned matrix. They can all, therefore, be improved by the use of additional terms, noting
that an odd number of terms yields an upper bound, while an even number yields a lower bound.

This inequality also can be applied to the columns to achieve a potentially better upper bound. This
would sum over products that do not contain more than one element from the same column. Thus, the
following bound can be placed on the permanent:7,12,13

(9.16)

While taking the minimum of the product of the row sums and the product of the column sums tends
to yield a better bound on the permanent, there is no indication that it is better than always computing
the bound with respect to the rows. This is because the goal is to estimate the permanent of a submatrix
for every element of the matrix, as required by Equation 9.12, to generate an estimate of the joint
assignment matrix. If all of the estimates are of the same “quality” (i.e., are all too large by approximately
the same factor), then some amount of post conditioning could yield good results. If the estimates vary
considerably in their quality, however, post conditioning might not provide significant improvement.

*The process seems to converge rapidly if there are no nonzero elements in the matrix. Otherwise, a preprocessing
step can be taken to promote more rapid convergence: When an entry must be 1 because it is the only nonzero value
in its row (column), then all other values in its column (row) must become zero in the limit (assuming there exists
at least one feasible assignment). Setting these values to zero and applying the same process repeatedly to the matrix
seem to eliminate slower converging sequences. The author has not performed a complete theoretical analysis of the
convergence behavior of the iterative renormalization, so comments on its behavior are based purely on empirical
results.
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The second inequality considered, ε2, is the Jurkat-Ryser upper bound:12,20 Given a nonnegative n × n
matrix A = [aij] with row sums r1,r2,…,rn and column sums c1, c2,…,cn, where the row and column sums
are indeed so that rk ≤ rk+1 and ck ≤ ck+1 for all k, then:

(9.17)

For cases in which there is at least one k, such that rk ≠ ck, this upper bound is less than that obtained
from the product of row or column sums. This has been the best of all known upper bounds since it
was discovered in 1966. The next two inequalities, ε3 and ε4, are new results.16

ε3 is defined as:

(9.18)

This inequality is obtained by normalizing the columns, computing the product of the row sums of the
resulting matrix, and then multiplying that product by the product of the original column sums. In other
words,

(9.19)

(9.20)

(9.21)

Note that the first summation is just the row sums after the columns have been normalized.
This new inequality is interesting because it seems to be the first general upper bound to be discovered

that is, in some cases, superior to Jurkat-Ryser. For example, consider the following matrix:

(9.22)

Jurkat-Ryser (ε2) yields an upper bound of 15, while the estimator ε3 yields a bound of 13.9. Although
ε3 is not generally superior, it is considered for the same reasons as the estimator ε1.

The fourth inequality considered, ε4, is obtained from ε3 via ε2:

(9.23)

The inequality is derived by first normalizing the columns. Then applying Jurkat-Ryser with all column
sums equal to unity yields the following:
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(9.24)

(9.25)

(9.26)

where the first summation simply represents the row sums after the columns have been normalized.
Similar to ε1 and ε3, this inequality can be applied with respect to the rows or columns, whichever

yields the better bound. In the case of ε4, this is critical, because one case usually provides a bound that
is smaller than the other and is smaller than that obtained from Jurkat-Ryser.

In the example matrix (Equation 9.22), the ε4 inequality yields an upper bound of 11 — an improve-
ment over the other three estimates. Small-scale tests of the four inequalities on matrices of uniform
deviates suggest that ε3 almost always provides better bounds than ε1; ε2 almost always provides better
bounds than ε3; and ε4 virtually always (more than 99% of the time) produces superior bounds to the
other three inequalities. In addition to producing relatively tighter upper bound estimates in this restricted
case, inequality ε4 should be more versatile analytically than Jurkat-Ryser, because it does not involve a
re-indexing of the rows and columns.

9.9 Comparisons of Different Approaches

Several of the JAM approximation methods described in this chapter have been compared on matrices
containing

1. Uniformly and independently generated association probabilities
2. Independently generated binary (i.e., 0–1) indicators of feasible association
3. Probabilities of association between two three-dimensional (3D) sets of correlated objects.

The third group of matrices were generated from n tracks with uniformly distributed means and equal
covariances by sampling the Gaussian defined by each track covariance to generate n reports. A probability
of association was then calculated for each track/report pair.

The first two classes of matrices are examined to evaluate the generality of the various methods. These
matrices have no special structure to be exploited. Matrices from the third class, however, contain
structure typical of association matrices arising in tracking and correlation applications. Performance on
these matrices should be indicative of performance in real-world data association problems, while per-
formance in the first two classes should reveal the general robustness of the approximation schemes.

The approximation methods considered are

1. ε1, the simplest of the general upper bound inequalities on the permanent. Two variants are
considered:

The upper bound taken with respect to the rows.
The upper bound taken with respect to the rows or columns, whichever is less.

Scaling: O(n3).
2. ε2, the Jurkat-Ryser inequality.

Scaling: O(n3 log n).
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3. ε3 with two variants:
The upper bound taken with respect to the rows.
The upper bound taken with respect to the rows or columns, whichever is less.

Scaling: O(n3) (see Appendix 9.A).
4. ε4 with two variants:

The upper bound taken with respect to the rows.
The upper bound taken with respect to the rows or columns, whichever is less.

Scaling: O(n3).
5. Iterative renormalization alone.

Scaling: O(n3).
6. The standard greedy method4 that assumes the prior association probabilities are accurate (i.e.,

performs no processing of the association matrix).
Scaling: O(n2 log n).

7. The one-sided normalization method that normalizes only the rows (or columns) of the associ-
ation matrix.

Scaling: O(n2 log n).

The four ε estimators include the O(n3) cost of pre- and postprocessing via iterative renormalization.
The quality of hypotheses generated by the greedy method O(n2 log n) is also compared to those

generated optimally via the JAM. The extent to which the greedy method is improved by first normalizing
the rows (or columns) of the association matrix is also examined. The latter method is relevant for real-
time data association applications in which the set of reports (or tracks) cannot be processed in batch.

The following tables give the results of the various schemes when applied to different classes of n × n
association matrices. The n best associations for each scheme are evaluated via the true JAM to determine
the expected number of correct associations. The ratio of the expected number of correct associations
for each approximation method and the optimal method yields the percentages in the table.* For example,
an entry of 50% implies that the expected number of correct associations is half of what would be
obtained from the JAM.

Table 9.1 provides a comparison of the schemes on matrices of size 20 × 20. Matrices of this size are
near the limit of practical computability. For example, the JAM computations for a 35 × 35 matrix would
demand more than a hundred years of nonstop computing on current high-speed workstations.

The most interesting information provided by Table 9.1 is that the inequality-based schemes are all
more than 99% of optimal, with the approximation based on the Jurkat-Ryser inequality performing
worst. The ε3 and ε4 methods performed best and always yielded identical results on the doubly stochastic
matrices obtained by preprocessing. Preprocessing also improved the greedy scheme by 10 to 20%.
Tables 9.2 and 9.3 show the effect of matrix size on each of the methods.

In almost all cases, the inequality-based approximations seemed to improve with matrix size. The obvious
exception is the case of 5 × 5 0–1 matrices: The approximations are perfect because there tends to be only
one feasible assignment for randomly generated 5 × 5 0–1 matrices. Surprisingly, the one-sided normalization
approach is 80 to 90% optimal, yet scales as O(p log p), where p is the number of feasible pairings.

The one-sided approach is the only practical choice for large-scale applications that do not permit
batch processing of sensor reports because the other approaches require the generation of the (preferably
sparse) assignment matrix. The one-sided normalization approach requires only the set of tracks with
which it gates (i.e., one row of the assignment matrix). Therefore, it permits the sequential processing
of measurements. Of the methods compared here, it is the only one that satisfies online constraints in
which each observation must be processed at the time it is received.

* The percentages are averages over enough trials to provide an accuracy of at least five decimal places in all cases
except tests involving 5 × 5 0–1 matrices. The battery of tests for the 5 × 5 0–1 matrices produced some instances in
which no assignments existed. The undefined results for these cases were not included in the averages, so the precision
may be slightly less.
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To summarize, the JAM approximation schemes based on the new permanent inequalities appear to
yield near-optimal results. An examination of the matrices produced by these methods reveals a standard
deviation of less than 3 × 10–5 from the optimal JAM computed via permanents. The comparison of

TABLE 9.1 Results of Tests of Several JAM Approximation Methods 
on 20 × 20 Association Matrices

Tests of JAM Approximations (% optimal for 20 × 20 Matrices)

Method Uniform Matrices 0-1 Matrices 3-D Spatial Matrices

ε1r 99.9996186 99.9851376 99.9995588
ε1c 99.9996660 99.9883342 100.0000000
Jurkat-Ryser (ε2) 99.9232465 99.4156865 99.8275153
ε3r 99.9996660 99.9992264 99.9999930
ε3c 99.9997517 99.9992264 100.0000000
ε4r 99.9996660 99.9992264 99.9999930
ε4c 99.9997517 99.9992264 100.0000000
Iter. Normalized 99.9875369 99.9615623 99.9698123
Standard Greedy 84.7953351 55.9995049 86.3762418
One-Sided Norm. 93.6698728 82.5180206 98.0243181

Note: Each entry in the table represents the ratio of the expected number of
correct associations made by the approximate method and the expected number
for the optimal JAM. The subscripts r and c on the ε1–4 methods denote the
application of the method to the rows and to the columns, respectively.

TABLE 9.2 Results of Tests of the JAM Approximation on Variously Sized 
Association Matrices Generated from Uniform Random Deviates

JAM Approximations on Varying Sized Uniform Matrices

Method 5 × 5 10 × 10 15 × 15 20 × 20

ε1r 99.9465167 99.9883438 99.9996111 99.9996186
ε1c 99.9465167 99.9920086 99.9996111 99.9996660
Jurkat-Ryser (ε2) 99.8645867 99.7493972 99.8606475 99.9232465
ε3r 99.9465167 99.9965856 99.9996111 99.9996660
ε3c 99.9465167 99.9965856 99.9997695 99.9997517
ε4r 99.9465167 99.9965856 99.9996111 99.9996660
ε4c 99.9465167 99.9965856 99.9997695 99.9997517
Iter. Normalized 99.4492256 99.8650315 99.9646233 99.9875369
Standard Greedy 80.3063296 80.5927739 84.2186048 84.7953351
One-Sided Norm. 90.6688891 90.7567223 93.2058342 93.6698728

TABLE 9.3 Results of Tests of the JAM Approximation on Variously Sized 
Association Matrices Generated from Uniform 0–1 Random Deviates

JAM Approximations on Varying Sized 0–1 Matrices

Method 5 × 5 10 × 10 15 × 15 20 × 20

ε1r 100.0000000 99.9063047 99.9606670 99.9851376
ε1c 100.0000000 99.9137304 99.9754337 99.9883342
Jurkat-Ryser (ε2) 100.0000000 99.7915349 99.6542955 99.4156865
ε3r 100.0000000 99.9471028 99.9947939 99.9992264
ε3c 100.0000000 99.9503096 99.9949549 99.9992264
ε4r 100.0000000 99.9471028 99.9947939 99.9992264
ε4c 100.0000000 99.9503096 99.9949549 99.9992264
Iter. Normalized 100.0000000 99.7709328 99.9256354 99.9615623
Standard Greedy 56.1658957 55.7201435 53.8121279 55.9995049
One-Sided Norm. 72.6976451 77.6314664 83.6890193 82.5180206
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expected numbers of correct assignments given in the tables, however, is the most revealing in terms of
applications to multiple-target tracking. Specifically, the recursive formulation of the tracking process
leads to highly nonlinear dependencies on the quality of the hypothesis generation scheme. In a dense
tracking environment, a deviation of less than 1% in the expected number of correct associations can
make the difference between convergence and divergence of the overall process. The next section considers
applications to large-scale problems.

9.10 Large-Scale Data Association

This section examines the performance of the one-sided normalization approach. The evidence provided
in the previous section indicates that the estimator ε3 yields probabilities of association conditioned on
the assignment constraint that are very near optimal. Therefore, ε3 can be used as a baseline of comparison
for the one-sided estimator for problems that are too large to apply the optimal approach. The results
in the previous section demonstrates that the one-sided approach yields relatively poor estimates when
compared to the optimal and near-optimal methods. However, because the latter approaches cannot be
applied online to process each observation as it arrives, the one-sided approach is the only feasible
alternative. The goal, therefore, is to demonstrate only that its estimates do not diminish in quality as
the size of the problem increases. This is necessary to ensure that a system that is tuned and tested on
problems of a given size will behave predictably when applied to larger problems.

In the best-case limit, as the amount of ambiguity goes to zero, any reasonable approach to data
association should perform acceptably. In the worst-case limit, as all probabilities converge to the same
value, no approach can perform any better than a simple random selection of hypotheses. The worst-
case situation in which information can be exploited is when the probabilities of association appear to
be uncorrelated random deviates. In such a case, only higher-order estimation of the joint probabilities
of association can provide useful discriminating information. The following is an example of an associ-
ation matrix that was generated from a uniform random number generator:

This example matrix was chosen from among ten that were generated because it produced the most
illustrative JAM. The uniform deviate entries have been divided by n so that they are of comparable
magnitude to actual association probabilities.

Applying the optimal JAM algorithm yields the following true probabilities of association conditioned
on the assignment constraint:

A cursory examination of the differences between corresponding entries in the two matrices demonstrates
that a significant amount of information has been extracted by considering higher order correlations.
For example, the last entries in the first two rows of the association matrix are 0.059 and 0.058 — differing
by less than 2% — yet their respective JAM estimates are 0.077 and 0.109, a difference of almost 30%.

0.266 0.057 0.052 0.136 0.227 0.020 0.059
0.051 0.023 0.208 0.134 0.199 0.135 0.058
0.031 0.267 0.215 0.191 0.117 0.227 0.002
0.071 0.057 0.243 0.029 0.230 0.281 0.046
0.020 0.249 0.166 0.148 0.095 0.178 0.121
0.208 0.215 0.064 0.268 0.067 0.180 0.039
0.018 0.073 0.126 0.062 0.125 0.141 0.188

0.502 0.049 0.037 0.130 0.191 0.014 0.077
0.075 0.026 0.244 0.167 0.243 0.136 0.109
0.034 0.310 0.182 0.193 0.093 0.186 0.003
0.088 0.055 0.244 0.027 0.237 0.278 0.071
0.022 0.285 0.139 0.144 0.076 0.144 0.191
0.259 0.200 0.043 0.279 0.048 0.124 0.048
0.021 0.074 0.111 0.060 0.113 0.119 0.501
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Remarkably, despite the fact that the entries in the first matrix were generated from uniform deviates,
the first entry in the first row and the last entry in the last row of the resulting JAM represents hypotheses
that each have a better than 50% chance of being correct.

To determine whether the performance of the one-sided hypothesis selection approach suffers as the
problem size is increased, its hypotheses were compared with those of estimator ε3 on n × n, for n in the
range 10 to 100, association matrices generated from uniform random deviates. Figure 9.4 shows that
the number of correct associations for the one-sided approach seems to approach the same number as
ε3 as n increases. This may be somewhat misleading, however, because the expected number of correct
associations out of n hypotheses selected from n × n possible candidates will tend to decrease as n increases.
More specifically, the ratio of correct associations to number of hypotheses (proportional to n) will tend
to zero for all methods if the prior probabilities of association are generated at random.

A better measure of performance is how many hypotheses are necessary for a given method to ensure
that a fixed number are expected to be correct. This can be determined from the JAM by summing its
entries corresponding to a set of hypotheses. Because each entry contains the expectation that a particular
track/report pair corresponds to the same object, the sum of the entries gives the expected number of
correct assignments. To apply this measure, it is necessary to fix a number of hypotheses that must be
correct, independent of n, and determine the ratio of the number of hypotheses required for the one-
sided approach to that required by ε3. Figure 9.5 also demonstrates that the one-sided method seems to
approach the same performance as ε3 as n increases in a highly ambiguous environment. In conclusion,
the performance of the one-sided approach scales robustly even in highly ambiguous environments.

The good performance of the one-sided approach — which superficially appears to be little more than
a crude heuristic — is rather surprising given the amount of information it fails to exploit from the
association matrix. In particular, it uses information only from the rows (or columns) taken indepen-
dently, thus making no use of information provided by the columns (or rows). Because the tests described
above have all rows and columns of the association matrix scaled randomly, but uniformly, the worst-
case performance of the one-sided approach may not have been seen. In tests in which the columns have
been independently scaled by vastly different values, results generated from the one-sided approach show
little improvement over those of the greedy method. (The performances of the optimal and near optimal
methods, of course, are not affected.) In practice, a system in which all probabilities are scaled by the
same value (e.g., as a result of using a single sensor) should not be affected by this limitation of the one-
sided approach. In multisensor applications, however, association probabilities must be generated

FIGURE 9.4 The performance of the one-sided approach relative to ε3 improves with increasing N. This is somewhat
misleading, however, because the expected number of correct assignments goes to zero in the limit N → ∞ for both
approaches.
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consistently. If a particular sensor is not modeled properly, and its observations produce track/report
pairs with consistently low or high probabilities of association, then the hypotheses generated from these
pairs by the one-sided approach will be ranked consistently low or high.

9.11 Generalizations

The combinatorial analysis of the assignment problem in previous sections has considered only the case
of a single “snapshot” of sensor observations. In actual tracking applications, however, the goal is to
establish tracks from a sequence of snapshots. Mathematically, the definition of a permanent can be easily
generalized to apply not only to assignment matrices but also to tensor extensions. Specifically, the
generalized permanent sums over all assignments of observations at timestep k, for each possible assign-
ment of observations at timestep k – 1, continuing recursively down to the base case of all possible
assignments of the first batch of observations to the initial set of tracks. (This multidimensional
assignment problem is described more fully in Chapter 11.) Although generalizing the crude permanent
approximations for application to the multidimensional assignment problem is straightforward, the
computation time scales geometrically with exponent k. This is vastly better than the super-exponential
scaling required for the optimal approach, but it is not practical for large values of n and k unless the
gating process yields a very sparse association matrix (see Chapter 3).

9.12 Conclusions

This chapter has discussed some of the combinatorial issues arising in the batch data association problem.
It described the optimal solution for a large class of data association problems involving the calculation
of permanents of submatrices of the original association matrix. This procedure yields the JAM, which
can be used to optimally rank associations for hypothesis selection. Because the computational cost of
the permanent scales exponentially in the size of the matrix, improved algorithms have been developed
both for calculating the exact JAM and for generating approximations to it. Empirical results suggest
that the approximations are suitable for hypothesis generation in large-scale tracking and correlation
applications. New theoretical results include an improved upper bound on the calculation of the JAM
and new upper bound inequalities, ε3 and ε4, for the permanent of general nonnegative matrices.

FIGURE 9.5 This test plots the number of hypotheses required by the one-sided approach to achieve some fixed
expected number of correct assignments. Again, it appears that the one-sided approach performs comparably to ε3

as N increases.
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The principal conclusion that can be drawn from this chapter is that the ambiguities introduced by a
dense environment are extremely difficult and computationally expensive to resolve. Although this
chapter examined the most general possible case in which tracking has to be performed in an environment
dense with indistinct (other than position) targets, there is little doubt that the constraints imposed by
most real-world applications would necessitate some sacrifice of this generality.
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Appendix 9.A Algorithm for Data Association Experiment

The following algorithm demonstrates how O(n3) scaling can be obtained for approximating the JAM
of an n × n association matrix using inequality ε3. A straightforward implementation that scales as O(n4)
can be obtained easily; the key to removing a factor of n comes from the fact that from a precomputed
product of row sums, rprod, the product of all row sums excluding row i is just rprod divided by row
sum i. In other words, performing an O(n) step of explicitly computing the product of all row sums
except row i is not necessary. Some care must be taken to accommodate row sums that are zero, but the
following pseudocode shows that there is little extra overhead incurred by the more efficient implemen-
tation. Similar techniques lead to the advertised scaling for the other inequality approaches. (Note,
however, that sums of logarithms should be used in place of explicit products to ensure numerical stability
in actual implementations.)

E3r(M, P, n) 
r and c are vectors of length n corresponding to the row and column sums, respectively. rn is a

vector of length n of normalized row sums.
for i = 1 to n : ri ← ci ← 0.0
Apply iterative renormalization to M
for i = 1 to n:

for j = 1 to n:
ri ← ri + Mij

ci ← ci + Mij

end
end 
for i = 1 to n:

for l = 1 to n:
rnl ← 0.0
for k = 1 to n, if (ck – Mik) > 0.0

then rnl ← rnl + Mik/(ck – Mik)
end
for j = 1 to n:

nprod = 1.0 
for k = 1 to n, if k ≠ j

then nprod ← nprod ∗  (ck – Mik)
rprod ← cprod ← 1.0
for k = 1 to n, if k ≠ 1

if (cj – Mij) > 0.0
then rprod ← rprod ∗  (rnk – Mkj)/(cj – Mij)

else rprod ← rprod ∗  rnk
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end
rprod ← rprod ∗  nprod
Pij ← Mij ∗  rprod

end
end 
Apply iterative renormalization to P

end.
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10.1 Introduction

This chapter views the multiple-target tracking problem as a Bayesian inference problem and highlights
the benefits this approach. The goal of this chapter is to provide the reader with some insights and
perhaps a new view of multiple-target tracking. It is not designed to provide the reader with a set of
algorithms for multiple-target tracking.

*This chapter is based on Bayesian Multiple Target Tracking, by Stone, L. D., Barlow, C. A., and Corwin, T. L.,
1999. Artech House, Inc., Norwood, MA. www.artechhouse.com.

Lawrence D. Stone
Metron Inc.
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The chapter begins with a Bayesian formulation of the single-target tracking problem and then extends
this formulation to multiple targets. It then discusses some of the interesting consequences of this
formulation, including:

• A mathematical formulation of the multiple-target tracking problem with a minimum of com-
plications and formalisms

• The emergence of likelihood functions as a generalization of the notion of contact and as the basic
currency for valuing and combining information from disparate sensors

• A general Bayesian formula for calculating association probabilities

• A method, called unified tracking, for performing multiple-target tracking when the notions of
contact and association are not meaningful

• A delineation of the relationship between multiple-hypothesis tracking (MHT) and unified tracking

• A Bayesian track-before-detect methodology called likelihood ratio detection and tracking.

10.1.1  Definition of Bayesian Approach

To appreciate the discussion in this chapter, the reader must first understand the concept of Bayesian
tracking. For a tracking system to be considered Bayesian, it must have the following characteristics:

• Prior Distribution — There must be a prior distribution on the state of the targets. If the targets
are moving, the prior distribution must include a probabilistic description of the motion charac-
teristics of the targets. Usually the prior is given in terms of a stochastic process for the motion
of the targets.

• Likelihood Functions — The information in sensor measurements, observations, or contacts must
be characterized by likelihood functions.

• Posterior Distribution — The basic output of a Bayesian tracker is a posterior probability distribution
on the (joint) state of the target(s). The posterior at time t is computed by combining the motion
updated prior at time t with the likelihood function for the observation(s) received at time t.

These are the basics: prior, likelihood functions, posterior. If these are not present, the tracker is not
Bayesian. The recursions given in this chapter for performing Bayesian tracking are all “recipes” for
calculating priors, likelihood functions, and posteriors.

10.1.2 Relationship to Kalman Filtering

Kalman filtering resulted from viewing tracking as a least squares problem and finding a recursive method
of solving that problem. One can think of many standard tracking solutions as methods for minimizing
mean squared errors. Chapters 1 to 3 of Blackman and Popoli1 give an excellent discussion of tracking
from this point of view. One can also view Kalman filtering as Bayesian tracking. To do this, one starts
with a prior that is Gaussian in the appropriate state space with a “very large” covariance matrix. Contacts
are measurements that are linear functions of the target state with Gaussian measurement errors. These
are interpreted as Gaussian likelihood functions and combined with motion updated priors to produce
posterior distributions on target state. Because the priors are Gaussian and the likelihood functions are
Gaussian, the posteriors are also Gaussian. When doing the algebra, one finds that the mean and
covariance of the posterior Gaussian are identical to the mean and covariance of the least squares solution
produced by the Kalman filter. The difference is that from the Bayesian point of view, the mean and
covariance matrices represent posterior Gaussian distributions on target state. Plots of the mean and
characteristic ellipses are simply shorthand representations of these distributions.

Bayesian tracking is not simply an alternate way of viewing Kalman filtering. Its real value is demon-
strated when some of the assumptions required for Kalman filtering are not satisfied. Suppose the prior
distribution on target motion is not Gaussian, or the measurements are not linear functions of the target
state, or the measurement error is not Gaussian. Suppose that multiple sensors are involved and are quite
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different. Perhaps they produce measurements that are not even in the target state space. This can happen
if, for example, one of the measurements is the observed signal-to-noise-ratio at a sensor. Suppose that
one has to deal with measurements that are not even contacts (e.g., measurements that are so weak that
they fall below the threshold at which one would call a contact). Tracking problems involving these
situations do not fit well into the mean squared error paradigm or the Kalman filter assumptions. One
can often stretch the limits of Kalman filtering by using linear approximations to nonlinear measurement
relations or by other nonlinear extensions. Often these extensions work very well. However, there does
come a point where these extensions fail. That is where Bayesian filtering can be used to tackle these
more difficult problems. With the advent of high-powered and inexpensive computers, the numerical
hurdles to implementing Bayesian approaches are often easily surmounted. At the very least, knowing
how to formulate the solution from the Bayesian point of view will allow one to understand and choose
wisely the approximations needed to put the problem into a more tractable form.

10.2 Bayesian Formulation of the Single-Target 
Tracking Problem

This section presents a Bayesian formulation of single-target tracking and a basic recursion for performing
single-target tracking.

10.2.1 Bayesian Filtering
Bayesian filtering is based on the mathematical theory of probabilistic filtering described by Jazwinski.2

Bayesian filtering is the application of Bayesian inference to the problem of tracking a single target. This
section considers the situation where the target motion is modeled in continuous time, but the observations
are received at discrete, possibly random, times. This is called continuous-discrete filtering by Jazwinski.

10.2.2 Problem Definition
The single-target tracking problem assumes that there is one target present in the state space; as a result,
the problem becomes one of estimating the state of that target.

10.2.2.1 Target State Space

Let S be the state space of the target. Typically, the target state will be a vector of components. Usually
some of these components are kinematic and include position, velocity, and possibly acceleration. Note
that there may be constraints on the components, such as a maximum speed for the velocity component.
There can be additional components that may be related to the identity or other features of the target.
For example, if one of the components specifies target type, then that may also specify information such
as radiated noise levels at various frequencies and motion characteristics (e.g., maximum speeds). In
order to use the recursion presented in this section, there are additional requirements on the target state
space. The state space must be rich enough that (1) the target’s motion is Markovian in the chosen state
space and (2) the sensor likelihood functions depend only on the state of the target at the time of the
observation. The sensor likelihood functions depend on the characteristics of the sensor, such as its
position and measurement error distribution which are assumed to be known. If they are not known,
they need to be determined by experimental or theoretical means.

10.2.2.2 Prior Information

Let X(t) be the (unknown) target state at time t. We start the problem at time 0 and are interested in
estimating X(t) for t ≥ 0. The prior information about the target is represented by a stochastic process
{X(t); t ≥ 0}. Sample paths of this process correspond to possible target paths through the state space, S.
The state space S has a measure associated with it. If S is discrete, this measure is a discrete measure. If
S is continuous (e.g., if S is equal to the plane), this measure is represented by a density. The measure
on S can be a mixture or product of discrete and continuous measures. Integration with respect to this
measure will be indicated by ds. If the measure is discrete, then integration becomes summation.
©2001 CRC Press LLC



                                                                                                                                                                                                               
10.2.2.3 Sensors

There is a set of sensors that report observations at an ordered, discrete sequence of (possibly random)
times. These sensors may be of different types and report different information. The set can include
radar, sonar, infrared, visual, and other types of sensors. The sensors may report only when they have a
contact or on a regular basis. Observations from sensor j take values in the measurement space Hj. Each
sensor may have a different measurement space. The probability distribution of each sensor’s response
conditioned on the value of the target state s is assumed to be known. This relationship is captured in
the likelihood function for that sensor. The relationship between the sensor response and the target state
s may be linear or nonlinear, and the probability distribution representing measurement error may be
Gaussian or non-Gaussian.

10.2.2.4 Likelihood Functions

Suppose that by time t observations have been obtained at the set of times 0 ≤ t1 ≤ … ≤ tK ≤ t. To allow
for the possibility that more than one sensor observation may be received at a given time, let Yk be the
set of sensor observations received at time tk. Let yk denote a value of the random variable Yk. Assume
that the likelihood function can be computed as

(10.1)

The computation in Equation 10.1 can account for correlation among sensor responses. If the distribution
of the set of sensor observations at time tk is independent given target state, then Lk (yk | s) is computed by
taking the product of the probability (density) functions for each observation. If they are correlated, then
one must use the joint density function for the observations conditioned on target state to compute Lk (yk | s).

Let Y(t) = (Y1,Y2,…,YK) and y = (y1,…,yK). Define L(y |s1,…, sK) = Pr {Y(t) = y |X(t1) = s1,…, X(tK) = sK}.
Assume

(10.2)

Equation 10.2 means that the likelihood of the data Y(t) received through time t depends only on the
target states at the times {t1,…,tK} and not on the whole target path.

10.2.2.5 Posterior

Define q(s1,…,sK) = Pr{X(t1) = s1,…,X(tK) = sK} to be the prior probability (density) that the process
{X(t); t ≥ 0} passes through the states s1,…,sK at times t1,…,tK. Let p(tK, sK) = Pr{X(tK) = sK |Y(tK) = y}.
Note that the dependence of p on y has been suppressed. The function p(tK, · ) is the posterior distribution
on X(tK) given Y(tK) = y. In mathematical terms, the problem is to compute this posterior distribution.
Recall that from the point of view of Bayesian inference, the posterior distribution on target state
represents our knowledge of the target state. All estimates of target state derive from this posterior.

10.2.3 Computing the Posterior

Compute the posterior by the use of Bayes’ theorem as follows:

(10.3)
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Computing p(tK, sK) can be quite difficult. The method of computation depends upon the functional
forms of q and L. The two most common ways are batch computation and a recursive method.

10.2.3.1 Recursive Method

Two additional assumptions about q and L permit recursive computation of p(tK, sK). First, the stochastic
process {X(t; t ≥ 0} must be Markovian on the state space S. Second, for i ≠ j, the distribution of Y(ti)
must be independent of Y(tj) given (X(t1) = s1,…, X(tK) = sK) so that

(10.4)

The assumption in Equation 10.4 means that the sensor responses (or observations) at time tk depend
only on the target state at the time tk. This is not automatically true. For example, if the target state space
is position only and the observation is a velocity measurement, this observation will depend on the target
state over some time interval near tk. The remedy in this case is to add velocity to the target state space.
There are other observations, such as failure of a sonar sensor to detect an underwater target over a
period of time, for which the remedy is not so easy or obvious. This observation may depend on the
whole past history of target positions and, perhaps, velocities. 

Define the transition function qk (sk |sk – 1) = Pr {X(tk) = sk |X(tk – 1) = sk – 1} for k ≥ 1, and let q0 be the
probability (density) function for X(0). By the Markov assumption

(10.5)

10.2.3.2 Single-Target Recursion

Applying Equations 10.4 and 10.5 to 10.3 results in the basic recursion for single-target tracking given
below.

Basic Recursion for Single-Target Tracking

Initialize Distribution: (10.6)

For k ≥ 1 and sk ∈ S,

Perform Motion Update: (10.7)

Compute Likelihood Function Lk from the observation Yk = yk

Perform Information Update: (10.8)

The motion update in Equation 10.7 accounts for the transition of the target state from time tk–1 to
tk. Transitions can represent not only the physical motion of the target, but also changes in other state
variables. The information update in Equation 10.8 is accomplished by point-wise multiplication of
p– (tk, sk) by the likelihood function Lk (yk |sk). Likelihood functions replace and generalize the notion of
contacts in this view of tracking as a Bayesian inference process. Likelihood functions can represent sensor
information such as detections, no detections, Gaussian contacts, bearing observations, measured signal-
to-noise ratios, and observed frequencies of a signal. Likelihood functions can represent and incorporate
information in situations where the notion of a contact is not meaningful. Subjective information also
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can be incorporated by using likelihood functions. Examples of likelihood functions are provided in
Section 10.2.4. If there has been no observation at time tk, then there is no information update, only a
motion update.

The above recursion does not require the observations to be linear functions of the target state. It does
not require the measurement errors or the probability distributions on target state to be Gaussian. Except
in special circumstances, this recursion must be computed numerically. Today’s high-powered scientific
workstations can compute and display tracking solutions for complex nonlinear trackers. To do this,
discretize the state space and use a Markov chain model for target motion so that Equation 10.7 is
computed through the use of discrete transition probabilities. The likelihood functions are also computed
on the discrete state space. A numerical implementation of a discrete Bayesian tracker is described in
Section 3.3 of Stone et al.3

10.2.4 Likelihood Functions

The use of likelihood functions to represent information is at the heart of Bayesian tracking. In the
classical view of tracking, contacts are obtained from sensors that provide estimates of (some components
of) the target state at a given time with a specified measurement error. In the classic Kalman filter
formulation, a measurement (contact) Yk at time tk satisfies the measurement equation

(10.9)

where

Yk is an r-dimensional real column vector
X(tk) is an l-dimensional real column vector
Mk is an r × l matrix
εk ~ N (0, Σk)

Note that ~N(µ, Σ) means “has a Normal (Gaussian) distribution with mean µ and covariance Σ.” In
this case, the measurement is a linear function of the target state and the measurement error is Gaussian.
This can be expressed in terms of a likelihood function as follows. Let LG (y |x) = Pr{Yk = y |X(tk) = x}. Then

(10.10)

Note that the measurement y is data that is known and fixed. The target state x is unknown and varies,
so that the likelihood function is a function of the target state variable x. Equation 10.10 looks the same
as a standard elliptical contact, or estimate of target state, expressed in the form of multivariate normal
distribution, commonly used in Kalman filters. There is a difference, but it is obscured by the symmetrical
positions of y and Mk x in the Gaussian density in Equation 10.10. A likelihood function does not represent
an estimate of the target state. It looks at the situation in reverse. For each value of target state x, it
calculates the probability (density) of obtaining the measurement y given that the target is in state x. In
most cases, likelihood functions are not probability (density) functions on the target state space. They
need not integrate to one over the target state space. In fact, the likelihood function in Equation 10.10
is a probability density on the target state space only when Yk is l-dimensional and Mk is an l × l matrix.

Suppose one wants to incorporate into a Kalman filter information such as a bearing measurement,
speed measurement, range estimate, or the fact that a sensor did or did not detect the target. Each of
these is a nonlinear function of the normal Cartesian target state. Separately, a bearing measurement,
speed measurement, and range estimate can be handled by forming linear approximations and assuming
Gaussian measurement errors or by switching to special non-Cartesian coordinate systems in which the

Y X tk k k k= ( )+M ε

L y x y x y xG

r

k k

T

k( ) = ( ) − −( ) −( )





− − −2

1

2

2 1 2
1π det Σ Σexp M M
©2001 CRC Press LLC



measurements are linear and hopefully the measurement errors are Gaussian. In combining all this
information into one tracker, the approximations and the use of disparate coordinate systems become
more problematic and dubious. In contrast, the use of likelihood functions to incorporate all this
information (and any other information that can be put into the form of a likelihood function) is quite
straightforward, no matter how disparate the sensors or their measurement spaces. Section 10.2.4.1
provides a simple example of this process involving a line of bearing measurement and a detection.

10.2.4.1 Line of Bearing Plus Detection Likelihood Functions

Suppose that there is a sensor located in the plane at (70,0) and that it has produced a detection. For
this sensor the probability of detection is a function, Pd (r), of the range r from the sensor. Take the case
of an underwater sensor such as an array of acoustic hydrophones and a situation where the propagation
conditions produce convergence zones of high detection performance that alternate with ranges of poor
detection performance. The observation (measurement) in this case is Y = 1 for detection and 0 for no
detection. The likelihood function for detection is Ld (1|x) = Pd (r(x)), where r(x) is the range from the
state x to the sensor. Figure 10.1 shows the likelihood function for this observation. 

Suppose that, in addition to the detection, there is a bearing measurement of 135 degrees (measured
counter-clockwise from the x1 axis) with a Gaussian measurement error having mean 0 and standard
deviation 15 degrees. Figure 10.2 shows the likelihood function for this observation. Notice that, although
the measurement error is Gaussian in bearing, it does not produce a Gaussian likelihood function on
the target state space. Furthermore, this likelihood function would integrate to infinity over the whole
state space. The information from these two likelihood functions is combined by point-wise multiplica-
tion. Figure 10.3 shows the likelihood function that results from this combination.

10.2.4.2 Combining Information Using Likelihood Functions

Although the example of combining likelihood functions presented in Section 10.2.4.1 is simple, it
illustrates the power of using likelihood functions to represent and combine information. A likelihood
function converts the information in a measurement to a function on the target state space. Since all
information is represented on the same state space, it can easily and correctly be combined, regardless
of how disparate the sources of the information. The only limitation is the ability to compute the
likelihood function corresponding to the measurement or the information to be incorporated. As an
example, subjective information can often be put into the form of a likelihood function and incorporated
into a tracker if desired.

FIGURE 10.1 Detection likelihood function for a sensor at (70,0).
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10.3 Multiple-Target Tracking without Contacts or Association 
(Unified Tracking)

In this section, the Bayesian tracking model for a single target is extended to multiple targets in a way
that allows multiple-target tracking without calling contacts or performing data association.

10.3.1 Multiple-Target Motion Model

In Section 10.2, the prior knowledge about the single target’s state and its motion through the target
state space S were represented in terms of a stochastic process {X(t); t ≥ 0} where X(t) is the target state
at time t. This motion model is now generalized to multiple targets.

FIGURE 10.2 Bearing likelihood function for a sensor at (70,0).

FIGURE 10.3 Combined bearing and detection likelihood function.
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Begin the multiple-target tracking problem at time t = 0. The total number of targets is unknown but
bounded by N, which is known. We assume a known bound on the number of targets because it allows
us to simplify the presentation and produces no restriction in practice. Designate a region, �, which
defines the boundary of the tracking problem. Activity outside of � has no importance. For example,
we might be interested in targets having only a certain range of speeds or contained within a certain
geographic region.

Add an additional state φ to the target state space S. If a target is not in the region �, it is considered
to be in state φ. Let S+ = S � {φ} be the extended state space for a single target and S+ = S+ ×…× S+ be
the joint target state space where the product is taken N times.

10.3.1.1 Multiple-Target Motion Process

Prior knowledge about the targets and their “movements” through the state space S+ is expressed as a
stochastic process X = {X(t); t ≥ 0}. Specifically, let X(t) = (X1(t),…,XN(t)) be the state of the system at
time t where Xn(t) ∈ S+ is the state of target n at time t. The term “state of the system” is used to mean
the joint state of all of the the targets. The value of the random variable Xn(t) indicates whether target
n is present in � and, if so, in what state. The number of components of X(t) with states not equal to
φ at time t gives the number of targets present in � at time t. Assume that the stochastic process X is
Markovian in the state space S+ and that the process has an associated transition function. Let qk(sk | sk–1) =
Pr{X(tk) = sk |X(tk–1) = sk–1} for k ≥ 1, and let q0 be the probability (density) function for X(0). By the
Markov assumption

(10.11)

The state space S+ of the Markov process X has a measure associated with it. If the process S+ is a discrete
space Markov chain, then the measure is discrete and integration becomes summation. If the space is
continuous, then functions such as transition functions become densities on S+ with respect to that measure.
If S+ has both continuous and discrete components, then the measure will be the product or mixture of
discrete and continuous measures. The symbol ds will be used to indicate integration with respect to the
measure on S+, whether it is discrete or not. When the measure is discrete, the integrals become summations.
Similarly, the notation Pr indicates either probability or probability density as appropriate.

10.3.2 Multiple-Target Likelihood Functions

There is a set of sensors that report observations at a discrete sequence of possibly random times. These
sensors may be of different types and may report different information. The sensors may report only
when they have a contact or on a regular basis. Let Z(t, j) be an observation from sensor j at time t.
Observations from sensor j take values in the measurement space Hj. Each sensor may have a different
measurement space.

For each sensor j, assume that one can compute

(10.12)

To compute the probabilities in Equation 10.12, one must know the distribution of the sensor response
conditioned on the value of the state s. In contrast to Section 10.2, the likelihood functions in this section
can depend on the joint state of all the targets. The relationship between the observation and the state
s may be linear or nonlinear, and the probability distribution may be Gaussian or non-Gaussian.

Suppose that by time t, observations have been obtained at the set of discrete times 0 ≤ t1 ≤ … ≤ tK ≤ t.
To allow for the possibility of receiving more than one sensor observation at a given time, let Yk be the
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set of sensor observations received at time tk. Let yk denote a value of the random variable Yk. Extend
Equation 10.12 to assume that the following computation can be made

(10.13)

Lk (yk | ·) is called the likelihood function for the observation Yk = yk. The computation in Equation 10.13
can account for correlation among sensor responses if required.

Let Y(t) = (Y1, Y2,…, YK) and y = (y1,…, yK). Define L(y |s1,…, sK) = Pr {Y(t) = y |X(t1) = s1,…, X(tK) =
sk}.

In parallel with Section 10.2, assume that

(10.14)

and 

(10.15)

Equation 10.14 assumes that the distribution of the sensor response at the times {tk, k = 1,…, K}
depends only on the system states at those times. Equation 10.15 assumes independence of the sensor
response distributions across the observation times. The effect of both assumptions is to assume that the
sensor response at time tk depends only on the system state at that time.

10.3.3 Posterior Distribution

For unified tracking, the tracking problem is equivalent to computing the posterior distribution on X(t)
given Y(t). The posterior distribution of X(t) represents our knowledge of the number of targets present
and their state at time t given Y(t). From this distribution point estimates can be computed, when
appropriate, such as maximum a posteriori probability estimates or means. Define q(s1,…, sK) = Pr{X(t1) =
s1,…, X(tK) = sK} to be the prior probability (density) that the process X passes through the states s1,…,
sK at times t1,…,tK. Let q0 be the probability (density) function for X(0). By the Markov assumption

(10.16)

Let p(t, s) = Pr{X(t) = s |Y(t)}. The function p(t, ·) gives the posterior distribution on X(t) given Y(t)
By Bayes’ theorem,

(10.17)
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10.3.4 Unified Tracking Recursion

Substituting Equations 10.15 and 10.16 into Equations 10.17 gives

and

(10.18)

where C and C ′ normalize p(tK, ·) to be a probability distribution. Equation 10.18 provides a recursive
method of computing p(tK, ·). Specifically,

Unified Tracking Recursion

Initialize Distribution: (10.19)

For k ≥ 1 and sk ∈  S+,

Perform Motion Update:  (10.20)

Compute Likelihood Function Lk from the observation Yk = yk

Perform Information Update:  (10.21)

10.3.4.1 Multiple-Target Tracking without Contacts or Association

The unified tracking recursion appears deceptively simple. The difficult part is performing the calculations
in the joint state space of the N targets. Having done this, the combination of the likelihood functions
defined on the joint state space with the joint distribution function of the targets automatically accounts
for all possible association hypotheses without requiring explicit identification of these hypotheses.
Section 10.4 demonstrates that this recursion produces the same joint posterior distribution as multiple-
hypothesis tracking (MHT) does when the conditions for MHT are satisfied. However, the unified
tracking recursion goes beyond MHT. One can use this recursion to perform multiple-target tracking
when the notions of contact and association (notions required by MHT) are not meaningful. Examples
of this are given in Section 5.3 of Stone et al.3 Another example by Finn4 applies to tracking two aircraft
targets with a monopulse radar when the aircraft become so close together in bearing that their signals
become unresolved. They merge inextricably at the radar receiver. 
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10.3.4.1.1 Merged Measurements
The problem tackled by Finn4 is an example of the difficulties caused by merged measurements. A typical
example of merged measurements is when a sensor’s received signal is the sum of the signals from all the
targets present. This can be the case with a passive acoustic sensor. Fortunately, in many cases the signals
are separated in space or frequency so that they can be treated as separate signals. In some cases, two
targets are so close in space (and radiated frequency) that it is impossible to distinguish which component
of the received signal is due to which target. This is a case when the notion of associating a contact to a
target is not well defined. Unified tracking will handle this problem correctly, but the computational load
may be too onerous. In this case an MHT algorithm with special approximations could be used to provide
an approximate but computationally feasible solution. See, for example, Mori et al.5

Section 10.4 presents the assumptions that allow contact association and multiple-target tracking to
be performed by using MHT.

10.3.4.2 Summary of Assumptions for Unified Tracking Recursion
In summary, the assumptions required for the validity of the unified tracking recursion are

1. The number of targets is unknown but bounded by N.
2. S+ = S � {φ} is the extended state space for a single target where φ indicates the target is not

present. Xn(t) ∈  S+ is the state of the nth target at time t.
3. X(t) = (X1(t),…, XN(t)) is the state of the system at time t, and X = {X(t); t ≥ 0} is the stochastic

process describing the evolution of the system over time. The process, X, is Markov in the state
space S+ = S+ ×…× S+ where the product is taken N times.

4. Observations occur at discrete (possibly random) times, 0 ≤ t1 ≤ t2…. Let Yk = yk be the observation
at time tk, and let Y(tK) = yK = (y1,…, yK) be the first K observations. Then the following is true

10.4 Multiple-Hypothesis Tracking (MHT)

In classical multiple-target tracking, the problem is divided into two steps: (1) association and
(2) estimation. Step 1 associates contacts with targets. Step 2 uses the contacts associated with each target
to produce an estimate of that target’s state. Complications arise when there is more than one reasonable
way to associate contacts with targets. The classical approach to this problem is to form association
hypotheses and to use MHT, which is the subject of this section. In this approach, alternative hypotheses
are formed to explain the source of the observations. Each hypothesis assigns observations to targets or
false alarms. For each hypothesis, MHT computes the probability that it is correct. This is also the
probability that the target state estimates that result from this hypothesis are correct. Most MHT algo-
rithms display only the estimates of target state associated with the highest probability hypothesis. 

The model used for the MHT problem is a generalization of the one given by Reid6 and Mori et al.7

Section 10.4.3.3 presents the recursion for general multiple-hypothesis tracking. This recursion applies
to problems that are nonlinear and non-Gaussian as well as to standard linear-Gaussian situations. In
this general case, the distributions on target state may fail to be independent of one another (even when
conditioned on an association hypothesis) and may require a joint state space representation. This
recursion includes a conceptually simple Bayesian method of computing association probabilities.
Section 10.4.4 discusses the case where the target distributions (conditioned on an association hypothesis)
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are independent of one another. Section 10.4.4.2 presents the independent MHT recursion that holds
when these independence conditions are satisfied. Note that not all tracking situations satisfy these
independence conditions.

Numerous books and articles on multiple-target tracking examine in detail the many variations and
approaches to this problem. Many of these discuss the practical aspects of implementing multiple target
trackers and compare approaches. See, for example, Antony,8 Bar-Shalom and Fortman,9 Bar-Shalom
and Li,10 Blackman,11 Blackman and Popoli,1 Hall,12 Reid,6 Mori et al.,7 and Waltz and Llinas.13 With the
exception of Mori et al.,7 these references focus primarily on the linear-Gaussian case. 

In addition to the full or classical MHT as defined by Reid6 and Mori et al.,7 a number of approxima-
tions are in common use for finding solutions to tracking problems. Examples include joint probabilistic
data association (Bar-Shalom and Fortman9) and probabilistic MHT (Streit14). Rather than solve the full
MHT, Poore15 attempts to find the data association hypothesis (or the n hypotheses) with the highest
likelihood. The tracks formed from this hypothesis then become the solution. Poore does this by providing
a window of scans in which contacts are free to float among hypotheses. The window has a constant
width and always includes the latest scan. Eventually contacts from older scans fall outside the window
and become assigned to a single hypothesis. This type of hypothesis management is often combined with
a nonlinear extension of Kalman filtering called an interactive multiple model Kalman filter (Yeddanapudi
et al.16).

Section 10.4.1 presents a description of general MHT. Note that general MHT requires many more
definitions and assumptions than unified tracking.

10.4.1 Contacts, Scans, and Association Hypotheses

This discussion of MHT assumes that sensor responses are limited to contacts.

10.4.1.1 Contacts

A contact is an observation that consists of a called detection and a measurement. In practice, a detection
is called when the signal-to-noise ratio at the sensor crosses a predefined threshold. The measurement
associated with a detection is often an estimated position for the object generating the contact. Limiting
the sensor responses to contacts restricts responses to those in which the signal level of the target, as seen
at the sensor, is high enough to call a contact. Section 10.6 demonstrates how tracking can be performed
without this assumption being satisfied.

10.4.1.2 Scans

This discussion further limits the class of allowable observations to scans. The observation Yk at time tk

is a scan if it consists of a set �k of contacts such that each contact is associated with at most one target,
and each target generates at most one contact (i.e., there are no merged or split measurements). Some
of these contacts may be false alarms, and some targets in � might not be detected on a given scan. 

More than one sensor group can report a scan at the same time. In this case, the contact reports from
each sensor group are treated as separate scans with the same reporting time. As a result, tk+1 = tk. A scan
can also consist of a single contact report.

10.4.1.3 Data Association Hypotheses

To define a data association hypothesis, h, let

�j = set of contacts of the jth scan

�(k) = set of all contacts reported in the first k scans

Note that

 � k( ) �j
j 1=

k

∪=
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A data association hypothesis, h, on �(k) is a mapping 

h : �(k) → {0,1,…,N}

such that

h(c) = n > 0 means contact c is associated to target n

h(c) = 0 means contact c is associated to a false alarm

and no two contacts from the same scan are associated to the same target.
Let H(k) = set of all data association hypotheses on �(k). A hypothesis h on �(k) partitions �(k) into

sets U(n) for n = 0,1,…,N where U(n) is the set of contacts associated to target n for n > 0 and U(0) is
the set of contacts associated to false alarms.

10.4.1.4 Scan Association Hypotheses

Decomposing a data association hypothesis h into scan association hypotheses is convenient. For each
scan Yk, let 

Mk = the number of contacts in scan k
Γk = the set of all functions γ:{1,…,Mk} → {0,…,N} such that no two contacts are assigned to the same

positive number. If γ(m) = 0, then contact m is associated to a false alarm. If γ(m) = n > 0, then
contact m is associated to target n.

A function γ ∈  Γk is called a scan association hypothesis for the kth scan, and Γk is the set of scan
association hypotheses for the kth scan. For each contact, a scan association hypothesis specifies which
target generated the contact or that the contact was due to a false alarm.

Consider a data association hypothesis hK ∈ H(K). Think of hK as being composed of K scan association
hypotheses {γ1,…,γK} where γk is the association hypothesis for the kth scan of contacts. The hypothesis
hK ∈ H(K) is the extension of the hypothesis hK–1 = {γ1,…,γk–1} ∈ H(K – 1). That is, hK is composed of
hK–1 plus γΚ. This can be written as hK = hK –1 ∧ γK .

10.4.2 Scan and Data Association Likelihood Functions

The correctness of the scan association hypothesis γ is equivalent to the occurrence of the event “the
targets to which γ associates contacts generate those contacts.” Calculating association probabilities
requires the ability to calculate the probability of a scan association hypothesis being correct. In particular,
we must be able to calculate the probability of the event {γ ∧ Yk = yk}, where {γ ∧ Yk = yk} denotes the
conjunction or intersection of the events γ and Yk = yk.

10.4.2.1 Scan Association Likelihood Function

Assume that for each scan association hypothesis γ, one can calculate the scan association likelihood
function

(10.22)

The factor Pr{γ|X(tk) = sk} is the prior probability that the scan association γ is the correct one. We
normally assume that this probability does not depend on the system state sk, so that one may write

(10.23)
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Note that lk (γ ∧ Yk = yk| ·) is not, strictly speaking, a likelihood function because γ is not an observation.
Nevertheless, it is called a likelihood function because it behaves like one. The likelihood function for
the observation Yk = yk is

(10.24)

10.4.2.1.1 Scan Association Likelihood Function Example
Consider a tracking problem where detections, measurements, and false alarms are generated according
to the following model. The target state, s, is composed of an l-dimensional position component, z, and
an l-dimensional velocity component, v, in a Cartesian coordinate space, so that s = (z, v). The region
of interest, �, is finite and has volume V in the l-dimensional position component of the target state
space. There are at most N targets in �.

Detections and measurements. If a target is located at z, then the probability of its being detected on a
scan is Pd(z). If a target is detected then a measurement Y is obtained where Y = z + ε and ε ∼ N(0,Σ).
Let η(y, z, Σ) be the density function for a N(z,Σ) random variable evaluated at y. Detections and
measurements occur independently for all targets.

False alarms. For each scan, false alarms occur as a Poisson process in the position space with density
ρ. Let Φ be the number of false alarms in a scan, then

 

Scan. Suppose that a scan of M measurements is received y = (y1,…, yM) and γ is a scan association.
Then γ specifies which contacts are false and which are true. In particular, if γ(m) = n > 0, measurement
m is associated to target n. If γ(m) = 0, measurement m is associated to a false target. No target is associated
with more than one contact. Let

ϕ(γ) = the number of contacts associated to false alarms
I(γ) = {n :γ associates no contact in the scan to target n} = the set of targets that have no contacts

associated to them by γ

Scan Association Likelihood Function. Assume that the prior probability is the same for all scan asso-
ciations, so that for some constant G, Pr{γ} = G for all γ. The scan association likelihood function is

(10.25)

10.4.2.2 Data Association Likelihood Function

Recall that Y(tK) = yK is the set of observations (contacts) contained in the first K scans and H(K) is the
set of data association hypotheses defined on these scans. For h ∈  H(K), Pr{h ∧ Y(tK) = yK |X(u) = su,
0 ≤ u ≤ tK} is the likelihood of {h ∧ Y(tK) = yk}, given {X(u) = su, 0 ≤ u ≤ tK}. Technically, this is not a
likelihood function either, but it is convenient and suggestive to use this terminology. As with the
observation likelihood functions, assume that 

(10.26)

L y Y y t Y yk k k k k k k k k k k k

k

| |s Pr X s s s S( ) = = ( ) ={ } = ∧ =( ) ∈
∈

+∑� γ
γ Γ

 for 

Pr
!

, ,Φ ={ } =
( )

= …j
V

j
j

j
ρ

 for 0 1

l z v
G V

V
e P z y z P zV

d m m m d n

n Im m

γ
ρ

ϕ γ
η

ϕ γ

ϕ γ
ρ

γ γ
γγ

∧ = ( )( ) =
( )
( ) ( ) ( ) − ( )( )

)

)
−

( (
∈>{ }
∏∏y s| ,

!
, ,

(

( ) )

( ): ( )

Σ 1
0

Pr Y y X s

Pr Y y X s

h t u u u t

h t t t k K

K K K

K K k k

∧ ( ) = ( ) = ( ) ≤ ≤{ }
= ∧ ( ) = ( ) = ( ) = …{ }

,

, , ,

0

1

©2001 CRC Press LLC



In addition, assuming that the scan association likelihoods are independent, the data association likeli-
hood function becomes

(10.27)

where yK = (y1,…yK) and h = {γ1,…,γk}.

10.4.3 General Multiple-Hypothesis Tracking

Conceptually, MHT proceeds as follows. It calculates the posterior distribution on the system state at
time tK, given that data association hypothesis h is true, and the probability, α(h), that hypothesis h is
true for each h ∈  H(K). That is, it computes

(10.28)

and

(10.29)

Next, MHT can compute the Bayesian posterior on system state by

(10.30)

Subsequent sections show how to compute p(tK, sK |h) and α(h) in a joint recursion.
A number of difficulties are associated with calculating the posterior distribution in Equation 10.30.

First, the number of data association hypotheses grows exponentially as the number of contacts increases.
Second, the representation in Equation 10.30 is on the joint N fold target state space, a state space that
is dauntingly large for most values of N. Even when the size of the joint state space is not a problem,
displaying and understanding the joint distribution is difficult.

Most MHT algorithms overcome these problems by limiting the number of hypotheses carried,
displaying the distribution for only a small number of the highest probability hypotheses — perhaps
only the highest. Finally, for a given hypothesis, they display the marginal distribution on each target,
rather than the joint distribution. (Note, specifying a data association hypothesis specifies the number
of targets present in �.) Most MHT implementations make the linear-Gaussian assumptions that produce
Gaussian distributions for the posterior on a target state. The marginal distribution on a two-dimensional
target position can then be represented by an ellipse. It is usually these ellipses, one for each target, that
are displayed by an MHT to represent the tracks corresponding to an hypothesis.

10.4.3.1 Conditional Target Distributions

Distributions conditioned on the truth of an hypothesis are called conditional target distributions. The
distribution p(tK, · |h) in Equation 10.28 is an example of a conditional joint target state distribution.
These distributions are always conditioned on the data received (e.g., Y(tK) = yK), but this conditioning
does not appear in our notation, p(tK, sK |h).
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Let hK = {γ1,…,γK}, then

and by Equation 10.11 and the data association likelihood function in Equation 10.27, 

(10.31)

Thus,

(10.32)

where C(hK) is the normalizing factor that makes p(tK, · |hK) a probability distribution. Of course

(10.33)

10.4.3.2 Association Probabilities

Sections 4.2.1 and 4.2.2 of Stone et al.3 show that

(10.34)

10.4.3.3 General MHT Recursion

Section 4.2.3 of Stone et al.3 provides the following general MHT recursion for calculating conditional
target distributions and hypothesis probabilities.

General MHT Recursion 

1. Intialize: Let H(0) = {h0}, where h0 is the hypothesis with no associations. Set
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2. Compute Conditional Target Distributions: For k =1,2,…, compute

(10.35)

For hk = hk–1 ∧ γk ∈  H(k), compute

(10.36)

(10.37)

3. Compute Association Probabilities: For k =1,2,…, compute

(10.38)

10.4.3.4 Summary of Assumptions for General MHT Recursion

In summary, the assumptions required for the validity of the general MHT recursion are

1. The number of targets is unknown but bounded by N.
2. S+ = S � {φ} is the extended state space for a single target, where φ indicates that the target is not

present.
3. Xn(t) ∈  S+ is the state of the nth target at time t.
4. X(t) = (X1(t),…,XN(t)) is the state of the system at time t, and X = {X(t); t ≥ 0} is the stochastic

process describing the evolution of the system over time. The process, X, is Markov in the state
space S+ = S+ ×…× S+ where the product is taken N times.

5. Observations occur as contacts in scans. Scans are received at discrete (possibly random) times
0 ≤ t1 ≤ t2… Let Yk = yk be the scan (observation) at time tk, and let Y(tK) = yK � (y1,…,yK) be
the set of contacts contained in the first K scans. Then, for each data association hypothesis h ∈
H(K), the following is true:

 

6. For each scan association hypothesis γ at time tk, there is a scan association likelihood function

7. Each data association hypothesis, h ∈  H(K), is composed of scan association hypotheses so that
h = {γ1,…,γK} where γk is a scan association hypothesis for scan k.

8. The likelihood function for the data association hypothesis h = {γ1,…,γK} satisfies
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10.4.4 Independent Multiple-Hypothesis Tracking

The decomposition of the system state distribution into a sum of conditional target distributions is most
useful when the conditional distributions are the product of independent single-target distributions. This
section presents a set of conditions under which this happens and restates the basic MHT recursion for
this case.

10.4.4.1 Conditionally Independent Scan Association Likelihood Functions

Prior to this section no special assumptions were made about the scan association likelihood function
lk (γ ∧ Yk = yk |sk) = Pr{γ ∧ Yk = yk |X(tk) = sk} for sk ∈  S+. In many cases, however, the joint likelihood of
a scan observation and a data association hypothesis satisfies an independence assumption when condi-
tioned on a system state.

The likelihood of a scan observation Yk = yk obtained at time tk is conditionally independent, if and
only if, for all scan association hypotheses γ ∈  Γk,

(10.39)

for some functions g γ
n ,  n = 0,…, N, where g γ

0  can depend on the scan data but not sk.
Equation 10.39 shows that conditional independence means that the probability of the joint event

{γ ∧ Yk = yk}, conditioned on X(tk) = (x1,…,xN), factors into a product of functions that each depend on
the state of only one target. This type of factorization occurs when the component of the response due
to each target is independent of all other targets. As an example, the scan association likelihood in
Equation 10.25 is conditionally independent. This can be verified by setting

and for n = 1,…,N

Conditional independence implies that the likelihood function for the observation Yk = yk is given by

(10.40)
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The assumption of conditional independence of the observation likelihood function is implicit in most
multiple target trackers. The notion of conditional independence of a likelihood function makes sense
only when the notions of contact and association are meaningful. As noted in Section 10.3, there are
cases in which these notions do not apply. For these cases, the scan association likelihood function will
not satisfy Equation 10.39.

Under the assumption of conditional independence, the Independence Theorem, given below, says
that conditioning on a data association hypothesis allows the multiple-target tracking problem to be
decomposed into N independent single target problems. In this case, conditioning on an hypothesis
greatly simplifies the joint tracking problem. In particular, no joint state space representation of the target
distributions is required when they are conditional on a data association hypothesis.

10.4.4.1.1 Independence Theorem
Suppose that (1) the assumptions of Section 10.4.3.4 hold, (2) the likelihood functions for all scan
observations are conditionally independent, and (3) the prior target motion processes, {Xn(t); t ≥ 0} for
n = 1,…,N are mutually independent. Then the posterior system state distribution conditioned on the
truth of a data association hypothesis is the product of independent distributions on the targets.

Proof. The proof of this theorem is given in Section 4.3.1 of Stone et al.3 
Let Y(t) = {Y1, Y2,…,yK(t)} be scan observations that are received at times 0 ≤ t1 ≤…,≤ tk ≤ t, where K =

K(t), and let H(k) be the set of all data association hypotheses on the first k scans. Define pn(tk, xn |h) =
Pr{Xn(tk) = xn |h} for xn ∈  S+, k = 1,…, K, and n = 1,…,N. Then by the independence theorem,

(10.41)

Joint and Marginal Posteriors. From Equation 10.30 the full Bayesian posterior on the joint state
space can be computed as follows:

(10.42)

Marginal posteriors can be computed in a similar fashion. Let
–
pn(tK, ·) be the marginal posterior on Xn(tK)

for n = 1,…, N. Then

Thus, the posterior marginal distribution on target n may be computed as the weighted sum over n of
the posterior distribution for target n conditioned on h.
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10.4.4.2 Independent MHT Recursion

Let q0(n, x) = Pr{Xn(0) = x} and qk(x |n, x ′ ) = Pr{Xn(tk) = x |Xn(tk–1) = x ′ }. Under the assumptions of

the independence theorem, the motion models for the targets are independent, and qk(sk |sk–1) =

(xn |n, x ′n ), where sk = (x1,…,xN) and sk–1 = (x ′1,…,x ′N ). As a result, the transition density, qk (sk |sk–1),

factors just as the likelihood function does. This produces the independent MHT recursion below.

Independent MHT Recursion 

1. Intialize: Let H(0) = {h0} where h0 is the hypothesis with no associations. Set

2. Compute Conditional Target Distributions: For k =1,2,…, do the following: For each hk ∈  H(k),
find hk–1 ∈  H(k – 1) and γ ∈ Γ k, such that hk = hk–1 ∧ γ. Then compute

(10.43)

where C(n, hk) is the constant that makes pn (tk, · |hk) a probability distribution.
3. Compute Association Probabilities: For k =1,2,…, and hk = hk–1 ∧ γ ∈  H(k) compute

(10.44)

Then

(10.45)

In Equation 10.43, the independent MHT recursion performs a motion update of the probability
distribution on target n given hk–1 and multiplies the result by g γ

n (yk, x), which is the likelihood function
of the measurement associated to target n by γ. When this product is normalized to a probability
distribution, we obtain the posterior on target n given hk = hk–1 ∧ γ. Note that these computations are
all performed independently of the other targets. Only the computation of the association probabilities
in Equations 10.44 and 10.45 requires interaction with the other targets and the likelihoods of the
measurements associated to them. This is where the independent MHT obtains its power and simplicity.
Conditioned on a data association hypothesis, each target may be treated independently of all other targets.
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10.5 Relationship of Unified Tracking to MHT and Other 
Tracking Approaches

This section discusses the relationship of unified tracking to other tracking approaches such as general
MHT.

10.5.1 General MHT Is a Special Case of Unified Tracking

Section 5.2.1 of Stone et al.3 shows that the assumptions for general MHT that are given in Section
10.4.3.4 imply the validity of the assumptions for unified tracking given in Section 10.3.4.2. This means
that whenever it is valid to perform general MHT, it is valid to perform unified tracking. In addition,
Section 5.2.1 of Stone et al.3 shows that when the assumptions for general MHT hold, MHT produces
the same Bayesian posterior on the joint target state space as unified tracking does. Section 5.3.2 of Stone
et al.3 presents an example where the assumptions of unified tracking are satisfied, but those of general
MHT are not. This example compares the results of running the general MHT algorithm to that obtained
from unified tracking and shows that unified tracking produces superior results. This means that general
MHT is a special case of unified tracking.

10.5.2 Relationship of Unified Tracking to Other Multiple-Target 
Tracking Algorithms

Bethel and Paras,17 Kamen and Sastry,18 Kastella,19-21 Lanterman et al.,22 Mahler,23 and Washburn24 have
formulated versions of the multiple-target tracking problem in terms of computing a posterior distribu-
tion on the joint target state space. In these formulations the steps of data association and estimation
are unified as shown in Section 10.3 of this chapter.

Kamen and Sastry,18 Kastella,19 and Washburn24 assume that the number of targets is known and that
the notions of contact and association are meaningful. They have additional restrictive assumptions.
Washburn24 assumes that all measurements take values in the same space. (This assumption appears to
preclude sets of sensors that produce disparate types of observations.) Kamen and Sastry18 and Kastella19

assume that the measurements are position estimates with Gaussian errors. Kamen and Sastry18 assume
perfect detection capability. Kastella20 considers a fixed but unknown number of targets. The model in
Kastella20 is limited to identical targets, a single sensor, and discrete time and space. Kastella21 extends
this to targets that are not identical. Bethel and Paras17 require the notions of contact and association to
be meaningful. They also impose a number of special assumptions, such as requiring that contacts be
line-of-bearing and assuming that two targets cannot occupy the same cell at the same time.

Mahler’s formulation, in Section 3 of Mahler,23 uses a random set approach in which all measurements
take values in the same space with a special topology. Mahler23 does not provide an explicit method for
handling unknown numbers of targets. Lanterman et al.22 consider only observations that are camera
images. They provide formulas for computing posterior distributions only in the case of stationary targets.
They discuss the possibility of handling an unknown number of targets but do not provide an explicit
procedure for doing so.

In Goodman et al.,25 Mahler develops an approach to tracking that relies on random sets. The random
sets are composed of finite numbers of contacts; therefore, this approach applies only to situations where
there are distinguishable sensor responses that can clearly be called out as contacts or detections. In order
to use random sets, one must specify a topology and a rather complex measure on the measurement
space for the contacts. The approach, presented in Sections 6.1 and 6.2 of Goodman et al.25 requires that
the measurement spaces be identical for all sensors. In contrast, the likelihood function approach pre-
sented in Section 10.3 of this chapter, which transforms sensor information into a function on the target
state space, is simpler and appears to be more general. For example, likelihood functions and the tracking
approach presented Section 10.3 can accommodate situations in which sensor responses are not strong
enough to call contacts.
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The approach presented in Section 10.3 differs from previous work in the following important aspects:

• The unified tracking model applies when the number of targets is unknown and varies over time.

• Unified tracking applies when the notions of contact and data association are not meaningful.

• Unified tracking applies when the nature (e.g., measurement spaces) of the observations to be
fused are disparate. It can correctly combine estimates of position, velocity, range, and bearing as
well as frequency observations and signals from sonars, radars, and IR sensors. Unified tracking
can fuse any information that can be represented by a likelihood function.

• Unified tracking applies to a richer class of target motion models than are considered in the
references cited above. It allows for targets that are not identical. It provides for space-and-time
dependent motion models that can represent the movement of troops and vehicles through terrain
and submarines and ships though waters near land.

10.5.3 Critique of Unified Tracking

The unified tracking approach to multiple-target tracking has great power and breadth, but it is com-
putationally infeasible for problems involving even moderate numbers of targets. Some shrewd numerical
approximation techniques are required to make more general use of this approach. 

The approach does appear to be feasible for two targets as explained by Finn.4 Kock and Van Keuk26

also consider the problem of two targets and unresolved measurements. Their approach is similar to the
unified tracking approach; however, they consider only probability distributions that are mixtures of
Gaussian ones. In addition, the target motion model is Gaussian.

A possible approach to dealing with more than two targets is to develop a system that uses a more
standard tracking method when targets are well separated and then switches to a unified tracker when
targets cross or merge.

10.6 Likelihood Ratio Detection and Tracking

This section describes the problem of detection and tracking when there is, at most, one target present.
This problem is most pressing when signal-to-noise ratios are low. This will be the case when performing
surveillance of a region of the ocean’s surface hoping to detect a periscope in the clutter of ocean waves
or when scanning the horizon with an infrared sensor trying to detect a cruise missile at the earliest
possible moment. Both of these problems have two important features: (1) a target may or may not be
present; and (2) if a target is present, it will not produce a signal strong enough to be detected on a single
glimpse by the sensor.

Likelihood ratio detection and tracking is based on an extension of the single-target tracking meth-
odology, presented in Section 10.2, to the case where there is either one or no target present. The
methodology presented here unifies detection and tracking into one seamless process. Likelihood ratio
detection and tracking allows both functions to be performed simultaneously and optimally.

10.6.1 Basic Definitions and Relations

Using the same basic assumptions as in Section 10.2, we specify a prior on the target’s state at time 0
and a Markov process for the target’s motion. A set of K observations or measurements Y(t) = (Y1,…,YK)
are obtained in the time interval [0, t]. The observations are received at the discrete (possibly random)
times (t1,…,tK) where 0 < t1…≤ tK ≤ t. The measurements obtained at these various times need not be
made with the same sensor or even with sensors of the same type; the data from the various observations
need not be of the same structure. Some observations may consist of a single number while others may
consist of large arrays of numbers, such as the range and azimuth samples of an entire radar scan.
However, we do assume that, conditioned on the target’s path, the statistics of the observations made at
any time by a sensor are independent of those made at other times or by other sensors.
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The state space in which targets are detected and tracked depends upon the particular problem.
Characteristically, the target state is described by a vector, some of whose components refer to the spatial
location of the target, some to its velocity, and perhaps some to higher-order properties such as acceler-
ation. These components, as well as others which might be important to the problem at hand, such as
target orientation or target strength, can assume continuous values. Other elements that might be part
of the state description may assume discrete values. Target class (type) and target configuration (such as
periscope extended) are two examples.

As in Section 10.3, the target state space S is augmented with a null state to make S+ = S � φ. There
is a probability (density) function, p, defined on S+, such that p(φ) + p(s)ds = 1.

Both the state of the target X(t) ∈  S+ and the information accumulated for estimating the state
probability densities evolve with time t. The process of target detection and tracking consists of computing
the posterior version of the function p as new observations are available and propagating it to reflect the
temporal evolution implied by target dynamics. Target dynamics include the probability of target motion
into and out of S as well as the probabilities of target state changes.

Following the notation used in Section 10.2 for single target Bayesian filtering, let p(t,s) =
Pr{X(t) = s |Y(t) = (Y(t1),…,Y(tK))} for s ∈  S+ so that p(t, ·) is the posterior distribution on X(t) given all
observations received through time t. This section assumes that the conditions that insure the validity
of the basic recursion for single-target tracking in Section 10.2 hold, so that p(t, ·) can be computed in
a recursive manner. Recall that p–(tk, sk) = q(sk |sk–1) p(tk–1,sk–1) dsk–1 for sk ∈  S+ is the posterior from
time tk–1 updated for target motion to time tk , the time of the kth observation. Recall also the definition
of the likelihood function Lk . Specifically, for the observation Yk = yk

(10.46)

where for each s ∈  S+, Lk ( · |s) is a probability (density) function on the measurement space Hk.
According to Bayes’ rule,

(10.47)

In these equations, the denominator is the probability of obtaining the measurement Yk = yk, that is,
C(k) = p–(tk, φ) Lk (yk |φ) + p–(tk,s)Lk(yk|s)ds.

10.6.1.1 Likelihood Ratio

The ratio of the state probability (density) to the null state probability p(φ) is defined to be the likelihood
ratio (density), Λ(s); that is,

(10.48)

It would be more descriptive to call Λ(s) the target likelihood ratio to distinguish it from the measurement
likelihood ratio defined below. However, for simplicity, we use the term likelihood ratio for Λ(s). The
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notation for Λ is consistent with that already adopted for the probability densities. Thus, the prior and
posterior forms become

(10.49)

The likelihood ratio density has the same dimensions as the state probability density. Furthermore,
from the likelihood ratio density one may easily recover the state probability density as well as the
probability of the null state. Since L(t,s)ds = (1 – p(t,φ))/p(t,φ), it follows that

(10.50)

10.6.1.2 Measurement Likelihood Ratio

The measurement likelihood ratio �k for the observation Yk is defined as

 for (10.51)

�k(y|s) is the ratio of the likelihood of receiving the observation Yk = yk (given the target is in state s) to
the likelihood of receiving Yk = yk given no target present. As discussed by Van Trees,27 the measurement
likelihood ratio has long been recognized as part of the prescription for optimal receiver design. This
section demonstrates that it plays an even larger role in the overall process of sensor fusion.

Measurement likelihood ratio functions are chosen for each sensor to reflect its salient properties, such
as noise characterization and target effects. These functions contain all the sensor information that is
required for making optimal Bayesian inferences from sensor measurements.

10.6.2 Likelihood Ratio Recursion

Under the assumptions for which the basic recursion for single-target tracking in Section 10.1 holds, the
following recursion for calculating the likelihood ratio holds.

Likelihood Ratio Recursion 

Initialize: (10.52)

For k ≥ 1 and s ∈  S+,

Perform Motion Update:  (10.53)

Calculate Likelihood Function:  (10.54)
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Perform Information Update:  (10.55)

For k ≥ 1,

Calculate Likelihood Ratio:  (10.56)

The constant, C, in Equation 10.55 is a normalizing factor that makes p(tk, ·) a probability (density)
function.

10.6.2.1 Simplified Recursion

The recursion given in Equations 10.52–10.56 requires the computation of the full probability function
p(tk, ·) using the basic recursion for single-target tracking discussed in Section 10.2. A simplified version
of the likelihood ratio recursion has probability mass flowing from the state φ to S and from S to φ in
such a fashion that 

(10.57)

Since

we have 

From Equation 10.57 it follows that

(10.58)

Assuming Equation 10.57 holds, a simplified version of the basic likelihood ratio recursion can be
written.
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Simplified Likelihood Ratio Recursion 

Initialize Likelihood Ratio: (10.59)

For k ≥ 1 and s ∈  S,

Perform Motion Update: (10.60)

Calculate Measurement Likelihood Ratio: (10.61)

Perform Information Update: (10.62)

The simplified recursion is a reasonable approximation to problems involving surveillance of a region
that may or may not contain a target. Targets may enter and leave this region, but only one target is in
the region at a time.

As a special case, consider the situation where no mass moves from state φ to S or from S to φ under
the motion assumptions. In this case qk (s |φ) = 0 for all s ∈  S, and p– (tk,φ) = p(tk–1,φ) so that
Equation 10.60 becomes

(10.63)

10.6.3 Log-Likelihood Ratios

Frequently, it is more convenient to write Equation 10.62 in terms of natural logarithms. Doing so results
in quantities that require less numerical range for their representation. Another advantage is that,
frequently, the logarithm of the measurement likelihood ratio is a simpler function of the observations
than is the actual measurement likelihood ratio itself. For example, when the measurement consists of
an array of numbers, the measurement log-likelihood ratio often becomes a linear combination of those
data, whereas the measurement likelihood ratio involves a product of powers of the data. In terms of
logarithms, Equation 10.62 becomes

for (10.64)

The following example is provided to impart an understanding of the practical differences between a
formulation in terms of probabilities and a formulation in terms of the logarithm of the likelihood ratios.
Suppose there are I discrete target states, corresponding to physical locations so that the target state X ∈
{s1,s2,…,sI} when the target is present. The observation is a vector, Y, that is formed from measurements
corresponding to these spatial locations, so that Y = (Y(s1),…,Y(sI)), where in the absence of a target in
state, si, the observation Y(si) has a distribution with density function η(· ,0,1), where η(· ,µ,σ2) is the
density function for a Gaussian distribution with mean µ and variance σ2. The observations are inde-
pendent of one another regardless of whether a target is present. When a target is present in the ith state,
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the mean for Y(si) is shifted from 0 to a value r. In order to perform a Bayesian update, the likelihood
function for the observation Y = y = (y(s1),…,y(sI)) is computed as follows:

 

Contrast this with the form of the measurement log-likelihood ratio for the same problem. For state i, 

 

Fix si and consider ln�k(Y|si) as a random variable. That is, consider ln�k(Y|si) before making the
observation. It has a Gaussian distribution with

 

This reveals a characteristic result. Whereas the likelihood function for any given state requires examination
and processing of all the data, the log-likelihood ratio for a given state commonly depends on only a small
fraction of the data — frequently only a single datum. Typically, this will be the case when the observation
Y is a vector of independent observations.

10.6.4 Declaring a Target Present

The likelihood ratio methodology allows the Bayesian posterior probability density to be computed,
including the discrete probability that no target resides in S at a given time. It extracts all possible
inferential content from the knowledge of the target dynamics, the a priori probability structure, and the
evidence of the sensors. This probability information may be used in a number of ways to decide whether
a target is present. The following offers a number of traditional methods for making this decision, all
based on the integrated likelihood ratio. Define

 

Then

 

is defined to be the integrated likelihood ratio at time t. It is the ratio of the probability of the target being
present in S to the probability of the target not being present in S at time t.
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10.6.4.1 Minimizing Bayes’ Risk

To calculate Bayes’ risk, costs must be assigned to the possible outcomes related to each decision (e.g.,
declaring a target present or not). Define the following costs:

C(1|1) if target is declared to be present and it is present
C(1|φ) if target is declared to be present and it is not present
C(φ|1) if target is declared to be not present and it is present
C(φ|φ) if target is declared to be not present and it is not present

Assume that it is always better to declare the correct state; that is,

 

The Bayes’ risk of a decision is defined as the expected cost of making that decision. Specifically the Bayes’
risk is

 for declaring a target present

 for declaring a target not present

One procedure for making a decision is to take that action which minimizes the Bayes’ risk. Applying
this criterion produces the following decision rule. Define the threshold 

(10.65)

Then declare

Target present if Λ (t) > ΛT

Target not present if Λ (t) ≤ ΛT

This demonstrates that the integrated likelihood ratio is a sufficient decision statistic for taking an action
to declare a target present or not when the criterion of performance is the minimization of the Bayes’ risk.

10.6.4.2 Target Declaration at a Given Confidence Level

Another approach is to declare a target present whenever its probability exceeds a desired confidence
level, pT. The integrated likelihood ratio is a sufficient decision statistic for this criterion as well. The
prescription is to declare a target present or not according to whether the integrated likelihood ratio
exceeds a threshold, this time given by ΛT = pT /(1 – pT). 

A special case of this is the ideal receiver, which is defined as the decision rule that minimizes the
average number of classification errors. Specifically, if C(1|1) = 0, C(φ|φ) = 0, C(1|φ) = 1, and C(φ|1) = 1,
then minimizing Bayes’ risk is equivalent to minimizing the expected number of miscalls of target present
or not present. Using Equation 10.65 this is accomplished by setting ΛT = 1, which corresponds to a
confidence level of pT = 1/2.

10.6.4.3 Neyman-Pearson Criterion for Declaration

Another standard approach in the design of target detectors is to declare targets present according to a
rule that produces a specified false alarm rate. Naturally, the target detection probability must still be
acceptable at that rate of false alarms. In the ideal case, one computes the distribution of the likelihood
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ratio with and without the target present and sets the threshold accordingly. Using the Neyman-Pearson
approach, a threshold, ΛT, is identified such that calling a target present when the integrated likelihood
ratio is above ΛT produces the maximum probability of detection subject to the specified constraint on
false alarm rate. 

10.6.5 Track-Before-Detect

The process of likelihood ratio detection and tracking is often referred to as track-before-detect. This
terminology recognizes that one is tracking a possible target (through computation of P(t, ·)) before
calling the target present. The advantage of track-before-detect is that it can integrate sensor responses
over time on a moving target to yield a detection in cases where the sensor response at any single time
period is too low to call a detection. In likelihood ratio detection and tracking, a threshold is set and a
detection is called when the likelihood ratio surface exceeds that threshold. The state at which the peak
of the threshold crossing occurs is usually taken to be the state estimate, and one can convert the likelihood
ratio surface to a probability distribution for the target state.

Section 6.2 of Stone et al.3 presents an example of performing track-before-detect using the likelihood
ratio detection and tracking approach on simulated data. Its performance is compared to a matched filter
detector that is applied to the sensor responses at each time period. The example shows that, for a given
threshold setting, the likelihood ratio detection methodology produces a 0.93 probability of detection at
a specified false alarm rate. In order to obtain that same detection probability with the matched filter
detector, one has to suffer a false alarm rate that is higher by a factor of 1018. As another example,
Section 1.1.3 of Stone et al.3 describes the application of likelihood ratio detection and tracking to
detecting a periscope with radar.

References

1. Blackman, S.S. and Popoli, R., Design and Analysis of Modern Tracking Systems, Artech House Inc.,
Boston, 1999.

2. Jazwinski, A.H., Stochastic Processes and Filtering Theory, Academic Press, New York, 1970.
3. Stone, L.D., Barlow, C.A., and Corwin, T.L., Bayesian Multiple Target Tracking, Artech House Inc.,

Boston, 1999.
4. Finn, M.V., Unified data fusion applied to monopulse tracking, Proc. IRIS 1999 Nat’l. Symp. Sensor

and Data Fusion, I, 47–61, 1999.
5. Mori, S., Kuo-Chu, C., and Chong, C-Y., Tracking aircraft by acoustic sensors, Proc. 1987 Am.

Control Conf., 1099–1105, 1987.
6. Reid, D.B., An algorithm for tracking multiple targets, IEEE Trans. Automatic Control, AC-24,

843–854, 1979.
7. Mori, S., Chong, C-Y., Tse, E., and Wishner, R. P., Tracking and classifying multiple targets without

a priori identification, IEEE Trans. Automatic Control, AC-31, 401–409, 1986.
8. Antony, R.T., Principles of Data Fusion Automation, Artech House Inc., Boston, 1995.
9. Bar-Shalom, Y. and Fortman, T.E., Tracking and Data Association, Academic Press, New York, 1988.

10. Bar-Shalom, Y. and Li, X.L., Multitarget-Multisensor Tracking: Principles and Techniques, Published
by Yaakov Bar-Shalom, Storrs, CT, 1995.

11. Blackman, S.S., Multiple Target Tracking with Radar Applications, Artech House Inc., Boston, 1986.
12. Hall, D.L., Mathematical Techniques in Multisensor Data Fusion, Artech House Inc., Boston, 1992.
13. Waltz, E. and Llinas, J., Multisensor Data Fusion, Artech House Inc., Boston, 1990.
14. Streit, R.L., Studies in Probabilistic Multi-Hypothesis Tracking and Related Topics, Naval Undersea

Warfare Center Publication SES-98-101, Newport, RI, 1998.
15. Poore, A.B., Multidimensional assignment formulation of data association problems arising from

multitarget and multisensor tracking, Computational Optimization and Applications, 3, 27–57,
1994.
©2001 CRC Press LLC



16. Yeddanapudi, M., Bar-Shalom, Y., and Pattipati, K.R., IMM estimation for multitarget-multisensor
air traffic surveillance, Proc. IEEE, 85, 80–94, 1997.

17. Bethel, R.E. and Paras, G.J., A PDF multisensor multitarget tracker, IEEE Trans. Aerospace and
Electronic Systems, 34, 153–168, 1998.

18. Kamen, E.W. and Sastry, C.R., Multiple target tracking using products of position measurements,
IEEE Trans. Aerospace and Electronics Systems, 29, 476–493, 1993.

19. Kastella, K., Event-averaged maximum likelihood estimation and mean-field theory in multitarget
tracking, IEEE Trans. Automatic Control, AC-40, 1070–1074, 1995.

20. Kastella, K, Discrimination gain for sensor management in multitarget detection and tracking,
IEEE-SMC and IMACS Multiconference CESA, 1–6, 1996.

21. Kastella, K, Joint multitarget probabilities for detection and tracking, Proc. SPIE, Acquisition,
Tracking and Pointing XI, 3086, 122–128, 1997.

22. Lanterman, A.D., Miller, M.I., Snyder, D.L., and Miceli, W.J., Jump diffusion processes for the
automated understanding of FLIR Scenes, SPIE Proceedings, 2234, 416–427, 1994.

23. Mahler, R., Global optimal sensor allocation, Proc. 9th Nat’l. Symp. Sensor Fusion, 347–366, 1996.
24. Washburn, R.B., A random point process approach to multiobject tracking, Proc. Am. Control

Conf., 3, 1846–1852, 1987.
25. Goodman, I.R., Mahler, R.P.S., and Nguyen, H.T., Mathematics of Data Fusion, Kluwer Academic

Publishers, Boston, 1997.
26. Kock, W. and Van Keuk, G., Multiple hypothesis track maintenance with possibly unresolved

measurements, IEEE Trans. Aerospace and Electronics Systems, 33, 883–892, 1997.
27. Van Trees, H.L., Detection, Estimation, and Modulation Theory, Part I: Detection, Estimation, and

Linear Modulation Theory, John Wiley & Sons, New York, 1967.
©2001 CRC Press LLC



                                       
11
Data Association Using

Multiple Frame
Assignments

11.1 Introduction
11.2 Problem Background
11.3 Assignment Formulation of Some General Data 

Association Problems
11.4 Multiple Frame Track Initiation and Track 

Maintenance 
Track Initiation • Track Maintenance Using a Sliding Window

11.5 Algorithms
Preprocessing • The Lagrangian Relaxation Algorithm for the 
Assignment Problem • Algorithm Complexity • Improvement 
Methods

11.6 Future Directions
Other Data Association Problems and Formulations • Frames 
of Data • Sliding Windows • Algorithms • Network-
Centric Multiple Frame Assignments 

Acknowledgments
References

11.1 Introduction

The ever-increasing demand in surveillance is to produce highly accurate target identification and esti-
mation in real time, even for dense target scenarios and in regions of high track contention. Past
surveillance sensor systems have relied on individual sensors to solve this problem; however, current and
future needs far exceed single sensor capabilities. The use of multiple sensors, through more varied
information, has the potential to greatly improve state estimation and track identification. Fusion of
information from multiple sensors is part of a much broader subject called data or information fusion,
which for surveillance applications is defined as “a multilevel, multifaceted process dealing with the
detection, association, correlation, estimation, and combination of data and information from multiple
sources to achieve refined state and identity estimation, and complete and timely assessments of situation
and threat”.1 (A comprehensive discussion can be found in Waltz and Llinas.)2 Level 1 deals with single
and multisource information involving tracking, correlation, alignment, and association by sampling the
external environment with multiple sensors and exploiting other available sources. Numerical processes
thus dominate Level 1. Symbolic reasoning involving various techniques from artificial intelligence
permeates Levels 2 and 3.
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Within Level 1 fusion, architectures for single and multiple platform tracking must also be considered.
These are generally delineated into centralized, distributed, and hybrid architectures3-5 each with its
advantages and disadvantages. The architecture most appropriate to the current development is that of
a centralized tracking, wherein all measurements are sent to one location and processed with tracks being
transmitted back to the different platforms. This architecture is optimal in that it is capable of producing
the best track quality (e.g., purity and accuracy) and a consistent air picture.4,5 Although this architecture
is appropriate for single platform tracking, it may be unacceptable for multiple platform tracking for
several reasons. For example, communication loading and the single-point-failure problems are impor-
tant shortcomings. However, this architecture does provide a baseline against which other architectures
should be compared. The case of distributed data association is discussed further in Section 11.6.

The methods for centralized tracking follow two different approaches: single and multiple frame
processing. The three basic methods in single frame processing are nearest neighbor, joint probabilistic
data association (JPDA), and global-nearest neighbor. The nearest neighbor works well when the objects
are all far apart and with infrequent clutter. The JPDA works well for a few targets in moderate clutter,
but is computationally expensive and may corrupt the target recognition or discrimination information.6

The global-nearest neighbor approach is posed as a two-dimensional assignment problem (for which
there are algorithms that solve the problem optimally in polynomial time) has been successful for cases
of moderate target density and light clutter.

Deferred logic techniques consider several data sets or frames of data all at once in making data
association decisions. At one extreme is batch processing in which all observations (from all time) are
processed together. This method is too computationally intensive for real-time applications. The other
extreme is sequential processing. This chapter examines deferred logic methods that fall between these
two extremes. The most popular deferred logic method used to track large numbers of targets in low to
moderate clutter is called multiple-hypothesis tracking (MHT) in which a tree of possibilities is built,
likelihood scores are assigned to each track, an intricate pruning logic is developed, and the data asso-
ciation problem is solved using an explicit enumeration scheme. The use of these enumeration schemes
to solve this NP-hard combinatorial optimization problem in real-time is inevitably faulty in dense
scenarios, since the time required to solve the problem optimally can grow exponentially with the size
of the problem.

Over the last ten years a new formulation and class of algorithms for data association have proven to
be superior to all other deferred logic methods.4,7-14 This formulation is based on multidimensional
assignment problems and the algorithms, on Lagrangian relaxation. The use of combinatorial optimiza-
tion in multitarget tracking is not new; it dates back to the pioneering work of Morefield,15 who used
integer programming to solve set packing and covering problems arising from a data association problem.
MHT has been popularized by the fundamental work of Reid.16 These works are further discussed in
Blackman and Popoli,4 Bar-Shalom and Li,6 and Waltz and Llinas,1 all of which also serve as excellent
introductions to the field of multitarget tracking and multisensor data fusion. Bar-Shalom, Deb, Kirubara-
jan, and Pattipati17-21 have also formulated sensor fusion problems in terms of these multidimensional
assignment problems and have developed algorithms as discussed in Section 11.4 of this chapter.

The performance of any tracking system is dependent on a large number of components. Having one
component that is superior to all others does not guarantee a superior tracking system. To address some
of these other issues, this chapter provides a brief overview of the many issues involved in the design of
a tracking system, placing the problem within the context of the more general surveillance and fusion
problem in Section 11.2. The formulation of the problem is presented in Section 11.3, and an overview
of the Lagrangian relaxation based methods appears in Section 11.4. Section 11.5 contains a summary
of some opportunities for future investigation.

11.2 Problem Background

A question that often arises is that of the difference between air traffic control and surveillance. In the
former, planes, through their beacon codes, generally identify themselves so that observations can be
©2001 CRC Press LLC



                           
associated with the correct plane. For the surveillance problem, the objects being tracked do not identify
themselves, requiring a figure of merit to be derived for the association of a sequence of observations to
a particular target. The term “target” is used rather than “object.” This chapter addresses surveillance
needs and describes the use of likelihood ratios for track association.

The targets under consideration are classified as point or small targets; measurements or observations
of these targets are in the form of kinematic information, such as range, azimuth, elevation, and range
rate. Future sensor systems will provide additional feature or attribute information.4

A general surveillance problem involves the use of multiple platforms, such as ships, planes, or
stationary ground-based radar systems, on which one or more sensors are located for tracking multiple
objects. Optimization problems permeate the field of surveillance, particularly in the collection and fusion
of information. First, there are the problems of routing and scheduling surveillance platforms and then
dynamically retasking the platforms as more information becomes available. For each platform, the scarce
sensor resources must be allocated and managed to maximize the information returned. The second
area, information fusion, is the subject of this chapter.

Many issues are involved in the design of a fusion system for multiple surveillance platforms, such as
fusion architectures, communication links between sensor platforms, misalignment problems, tracking
coordinate systems, motion models, likelihood ratios, filtering and estimation, and the data association
problem of partitioning reports into tracks and false alarms. The recent book, Design and Analysis of
Modern Tracking Systems, by Blackman and Popoli4 presents an excellent overview of these topics and an
extensive list of other references.

One aspect of surveillance that is seldom discussed in the literature is the development of data structures
required to put all of this information together efficiently. In reality, a tracking system generally is
composed of a dynamic search tree that organizes this information and recycles memory for real-time
processing. However, the central problem is the data association problem.

To place the current data association problem within the context of the different architectures of
multiplatform tracking, a brief review of the architectures is helpful. The first architecture is centralized
fusion, in which raw observations are sent from the multiple platforms to a central processing unit where
they can be combined to give superior state estimation (compared to sensor level fusion).4 At the other
extreme is track fusion, wherein each sensor forms tracks along with the corresponding statistical infor-
mation from its own reports and then sends this preprocessed information to a processing unit that
correlates the tracks. Once the correlation is complete, the tracks can be combined and the statistics can
be modified appropriately. In reality, many sensor systems are hybrids of these two architectures, in which
some preprocessed data and some raw data are used and switches between the two are possible. A discussion
of the advantages and disadvantages of these architectures is presented in the Blackman and Popoli book.4

The centralized and hybrid architectures are most applicable to the current data association problem.

11.3 Assignment Formulation of Some General Data 
Association Problems

The goal of this section is to formulate the data association problem for a large class of multiple-target
tracking and sensor fusion applications as a multidimensional assignment problem. This development
extracts the salient features and assumptions that occur in a large class of these problems and is a brief
update to earlier work.22 A general class of data association problems was posed as set packing problems
by Morefield15 in 1977. Using an abstracted view of Morefield’s work to include set coverings, packings,
and partitionings, this section proceeds to formulate the assignment problem.

In tracking, a common surveillance challenge is to estimate the past, current, or future state of a
collection of targets (e.g., airplanes in the air, ships on the sea, or automobiles on the ground) from a
sequence of scans of the surveillance region by one or more sensors. This work specifically addresses
“small” targets23 for which the sensors generally supply kinematic information such as range, azimuth,
elevation, range rate, and some limited attribute or feature information.
©2001 CRC Press LLC



                                                                                        
Suppose that one or more sensors, either colocated or distributed, survey the surveillance region and
produce a stream of observations (or measurements), each with a distinct time tag. These observations
are then arranged into sets of observations called frames of data. Mathematically, let Z(k) =  denote
the kth frame of data where each is a vector of noise-contaminated observations with an associated
time tag . The index k represents the frame number and ik represents the ikth observation in frame k.
An observation in the frame of data Z(k) may emanate from a true target or may be a false report.

This discussion assumes that each frame of data is a “proper frame,” in which each target is seen no
more than once. For a rotating radar, one sweep or scan of the field of view generally constitutes a proper
frame. For sensors such as electronically scanning phased array radar, wherein the sensor switches from
surveillance to tracking mode, the partitioning of the data into proper frames of data is more interesting
as there are several choices. More efficient partitioning methods will be addressed in forthcoming work.

The data association problem to be solved is to correctly partition the data into observations emanating
from individual targets and false alarms. The combinatorial optimization problem that governs a large
number of data association problems in multitarget tracking and multisensor data fusion1,4,6,7,12-15,18-21,24

is generally posed as

(11.1)

where ZN represents N data sets (Equation 11.2), γ is a partition of indices of the data (Equations 11.3
and 11.4a-11.4d), Γ* is the finite collection of all such partitions (Equations 11.4a-11.4d), Γ is a discrete
random element defined on Γ*, γ0 is a reference partition, and is the posterior probability
of a partition γ being true given the data ZN. Each of these terms must be defined. The objective then
becomes formulating a reasonably general class of these data association problems (Equation 11.1) as
multidimensional assignment problems (Equation 11.15).

In the surveillance example, the data sets were observations of the objects in the surveillance region,
including false reports. Including more general types of data, such as tracks and track-observation
combinations, as well as observations, Reid16 used the term reports for the contents of the data sets. Thus,
let Z(k) denote a data set of Mk reports  and let ZN denote the cumulative data set of N such sets
defined by

and  (11.2)

respectively. In multisensor data fusion and multitarget tracking, the data sets Z(k) may represent different
classes of objects. For track initiation in multitarget tracking, the objects are observations that must be
partitioned into tracks and false alarms. In this formulation of track maintenance (Section 11.4), one
data set is comprised of tracks and the remaining data sets include observations that are assigned to
existing tracks, false observations, and observations of new tracks. In sensor level tracking, the objects
to be fused are tracks.1 In centralized fusion,1,4 the objects can all be observations that represent targets
or false reports, and the problem is to determine which observations emanate from a common source.

The next task is to define what is meant by a partition of the cumulative data set ZN in Equation 11.2.
Because this definition is independent of the actual data in the cumulative data set ZN, a partition of the
indices in ZN must first be defined. Let

, where (11.3)

denote the indices in the data sets Equation 11.2. A partition γ of IN and the collection of all such partitions
Γ* is defined by
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(11.4a)

(11.4b)

(11.4c)

(11.4d)

Here, in Equation 11.4a will be called a track, so that n(γ) denotes the number of tracks (or
elements) in the partition γ. A is called a set partitioning of the indices IN if the properties in
Equations 11.4a–11.4c are valid; a set covering of IN if the property in Equation 11.4b is omitted, but the
other two properties Equation 11.4a and Equation 11.4c are retained; and a set packing if the property
in Equation 11.4c is omitted, but Equations 11.4a and 11.4b are retained.25 A partition γ ∈  Γ* of the
index set IN induces a partition of the data ZN via

(11.5)

Clearly, Zγi
 ∩ Zγi

 =  for i ≠ j and ZN = ∪ n(γ)
j=1 Zγj

. Each Zγi
 is considered to be a track of data. Note that

a Zγi
 need not have observations from each frame of data, Z(k), but it must, by definition, have at least

one observation.
Under several independence assumptions between tracks,22 a probabilistic framework can be estab-

lished in which

(11.6)

where C is a constant and G is a function. This completes the formulation of the general data association
problem as presented in the works of Poore22 and Morefield.15

The next objective is to refine this formulation in a way that is amenable to the assignment problem.
For notational convenience in representing tracks, add a zero index to each of the index sets I(k)
(k = 1,…,N) in Equation 11.3 and a dummy report zk

0  to each of the data sets Z(k) in Equation 11.2, and
require that each

(11.7)

where ik and zk
ik

can assume the values of 0 and zk
0 , respectively. The dummy report zk

0  serves several
purposes in the representation of missing data, false reports, initiating tracks, and terminating tracks. If
Zγi

 is missing an actual report from the data set Z(k), then γi = (i1,…,ik–1, 0, ik+1,…,iN) and Zγi =
. A false report zk

ik
(ik > 0) is represented by γi = (0,…,0,ik,0,…,0) and Zγi =

 in which there is only one actual report. The partition γ0 of the data in which
all reports are declared to be false reports is defined by
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(11.8)

If each data set Z(k) represents a “proper frame” of observations, a track that initiates on frame m > 1
will contain only the dummy report zk

0 from each of the data sets Z(k) for each k = 1,…,m – 1. Likewise,
a track that terminates on frame m would have only the dummy report from each of the data sets for
k > m. These representations are discussed further in Section 11.3 for both track initiation and track
maintenance.

The use of the 0–1 variable

(11.9)

yields an equivalent characterization of a partition (Equations 11.4a to 11.4d and 11.7) as a solution of
the equations

(11.10)

With this characterization of a partition of the cumulative data set ZN as a set of equality constraints
(Equation 11.10), the multidimensional assignment problem can then be formulated.

Observe that for γi = (i1,…,iN), as in Equation 11.7, and the reference partition (Equation 11.8),

(11.11)

where

(11.12)

Here, the index ik in the denominator corresponds to the kth index of Zi1…iN
 in the numerator. Next, define

(11.13)

so that

(11.14)

Thus, in view of the characterization of a partition (Equations 11.4a to 11.4d and 11.5) specialized by
Equation 11.7 as a solution of Equation 11.10, the independence assumptions22 and the expansion
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(Equation 11.6) problem (Equation 11.1) are equivalently characterized as the following N-dimensional
assignment problem:

(11.15)

(11.16)

(11.17)

for ik = 1,…,Mk and k = 2,…,N – 1

(11.18)

(11.19)

where c0…0 is arbitrarily defined to be zero. Note that the definition of a partition and the 0–1 variable
zi1…iN

 in Equation 11.9 imply z0…0 = 0. (If z0…0 is not preassigned to zero and c0…0 is defined arbitrarily,
then z0…0 is determined directly from the value of c0…0, since it does not enter the constraints other than
being a zero-one variable.) Also, each cost coefficient with exactly one nonzero index is zero (i.e.,
c0…0ik0…0 = 0 for all ik = 1,…,Mk and k = 1,…,N) based on the use of the normalizing partition γ0 in the
likelihood ratio in Equations 11.1 and 11.12. Deriving the same problem formulation is possible when
not assuming that the cost coefficients with exactly one nonzero index are zero;22 however, these other
formulations can be reduced to the one above using the invariance theorem presented in Section 11.5.1.

Derivation of the assignment problem (Equation 11.15) leads to several pertinent remarks. The
definition of a partition in Equations 11.4 and 11.5 implies that each actual report belongs to, at most,
one track of reports Zγi

 in a partition Zγ of the cumulative data set. This can be modified to allow multi-
assignments of one, some, or all of the actual reports. The assignment problem changes accordingly. For
example, if zk

ik is to be assigned no more than, exactly, or no less than nk
ik times, then the “= 1” in the

constraint (Equation 11.15) is changed to “≤, =, ≥ nk
ik ,” respectively. (This allows both set coverings and

packings in the formulation.) In making these changes, pay careful attention to the independence
assumptions.22 Inequality constraint problems — in addition to the problem of unresolved closely spaced
objects — are common elements of the sensor fusion multiresolution problem.

The likelihood ratio Li1…iN
 is a complicated expression containing probabilities for detection, termi-

nation, model maneuvers, and density functions for an expected number of false alarms and initiating
targets. The likelihood that an observation arises from a particular target is also included; this requires
target dynamics to be estimated through the corresponding sequence of observations {z 1

i1,…,zk
ik,…,zN

iN}.
Filtering such sequences is the most time consuming part of the problem formulation and considerably
exceeds the time required to solve the data association problem. Derivations for appropriate likelihood
ratios can be found in the work of Poore22 and Blackman and Popoli.4
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11.4 Multiple Frame Track Initiation and Track Maintenance

A general expression has been developed for the data association problem arising from tracking. The
underlying tracking application is a dynamic one in that information from one or more sensors contin-
ually arrives at the processing unit where the data is partitioned into frames of data for the assignment
problem. Thus, the dimension of the assignment problem grows with the number of frames of data, N.
Processing all of the data at once, called batch processing, eventually becomes computationally unac-
ceptable as the dimension N increases. To circumvent this problem, a sliding window can be used, in
which data association decisions are hard prior to the window and soft within the window. The first
sliding window (single pane) formulation was presented in 199226 and refined in 199727 to include a dual
pane window. The single pane sliding window and its refinements are described in this section.

The moving window and resulting search tree are truly the heart of a tracking system. The importance
of the underlying data structures to the efficiency of a tracking system cannot be overemphasized;
however, these data structures can be very complex and are not discussed here.

11.4.1 Track Initiation

The pure track initiation problem is to formulate and solve the assignment problem described in the
previous section with an appropriate number of frames of data N. The choice of the number of frames
N is not trivial. Choices of N = 4, 5, 6 have worked well in many problems; however, a good research
topic would involve the development of a method that adaptively chooses the number of frames based
on the problem complexity.

11.4.2 Track Maintenance Using a Sliding Window

The term track maintenance as used in this section includes three functions: (1) extending existing tracks,
(2) terminating existing tracks, and (3) initiating new ones. Suppose that the observations on P frames
of observations have been partitioned into tracks and false alarms and that K new frames of observations
are to be added. One approach to solving the resulting data association problem is to formulate it as a
track initiation problem with P + K frames. This is the previously mentioned batch approach.

The deferred logic approach adopted here would treat the track extension problem within the frame-
work of a window sliding over the frames of observations. The P frames are partitioned into two
components: the first H frames, in which hard data association decisions are made, and the next S frames,
in which soft decisions are made. The K new frames of observations are added, making the number of
frames in the sliding window N = S + K, while the number of frames in which data association decisions
are hard is H = P – S. Various sliding windows can be developed including single pane, double pane,
and multiple pane windows. The intent of each of these is efficiency in solving the underlying tracking
problem.

11.4.2.1 A Single Pane Sliding Window

Assuming K = 1, let M0 denote the number of confirmed tracks (i.e., tracks that arise from the solution
of the data association problem) on frame k constructed from a solution of the data association problem
utilizing frames up to k + N – 1. Data association decisions are fixed on frames up to k. Now a new
frame of data is added. Thus, frame k denotes a list of tracks and frames k + 1 to k + N denote observations.
For i0 = 1,…,M0, the i0th such track is denoted by Ti0 and the (N + 1)-tuple {Tio,z

1
i1,…,z N

iN} will denote a
track Ti0

 plus a set of observations {z1
i1,…,z N

iN} , actual or dummy, that are feasible with the track Ti0
. The

(N + 1)-tuple {T0,z1
i1,…,z N

iN} will denote a track that initiates in the sliding window. A false report in the
sliding window is one in which all indices except one are zero in the (N + 1)-tuple {T0,z1

i1,…,z N
iN}.

The hypothesis about a partition γ ∈  Γ* being true is now conditioned on the truth of the M0 tracks
entering the N-scan window. (Thus, the assignments prior to this sliding window are fixed.) The likeli-
hood function is given by Lγ = ∏{Tio,zi1 ,…,ziN}∈γ  Li0i1…iN

, where Li0i1…iN
 = LTio

Li1…iN
, LTio

 is the composite
likelihood from the discarded frames just prior to the first scan in the window for i0 > 0, LT0

 = 1, and
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Li1…iN
 is defined as in Equation 11.8 for the N-scan window. (LT0

 = 1 is used for any tracks that initiate
in the sliding window.) Thus, the track extension problem can be formulated as Maximize {Lγ|γ ∈  Γ *}.
With the same convention as in Section 11.3, a feasible partition is one that is defined by the properties
in Equations 11.4 and 11.7. Analogously, the definition of the zero-one variable

and the corresponding cost for the assignment of the sequence {Ti0
, zi1,…,ziN

} to a track by ci0i1…iN
 = –ln

Li0i1…iN
 yield the following multidimensional assignment formulation of the data association problem for

track maintenance:

(11.20)

(11.21)

(11.22)

(11.23)

for 

(11.24)

(11.25)

Note that the association problem involving N frames of observations is an N-dimensional assignment
problem for track initiation and an (N + 1)-dimensional one for track maintenance.

11.4.2.2 Double and Multiple Pane Window

In the single pane window, the first frame contains a list of tracks and the remaining N frames, obser-
vations. The assignment problem is of dimension N + 1 where N is the number of frames of observations
in front of the existing tracks. The same window is being used to initiate new tracks and continue existing
ones. A newer approach is based on the belief that once a track is well established, only a few frames are
needed to benefit from the soft decisions on track continuation, while a longer window is needed for
track initiation. Thus, if the current frame is numbered k with frames k + 1,…,k + N being for track
continuation, one can go back to frames k – M,…,k and allow observations not attached to tracks that
exist through frame k to be used to initiate new tracks. Indeed, this concept works extremely well in
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practice and was initially proposed in the work of Poore and Drummond.27 The next approach to evolve
is that of a multiple pane window, in which the position of hard data association decisions of observations
to tracks can vary within the frames k – 1,…,k,…,k + N, depending on the difficulty of the problem as
measured by track contention. The efficiency of this approach has yet to be determined.

11.5 Algorithms

The multidimensional assignment problem for data association is one of combinatorial optimization
and is NP-hard,28 even for the case N = 3. The data association problems arising in tracking are generally
sparse, large scale, and noisy with real-time needs. Given the noise in the problem, the objective is
generally to solve the problem to within the noise level. Thus, heuristic methods are recommended;
however, efficient branch and bound schemes are potentially applicable to this problem, since they provide
the baseline against which other heuristic algorithms are judged. Lagrangian relaxation methods have
worked extremely well, probably due to the efficiency of nonsmooth optimization methods29,30 and the
fact that the relaxed problem is the two-dimensional assignment problem for which there are some very
efficient algorithms, such as the auction31 and Jonker Volbenant (JV) algorithms.32 Another advantage is
that these relaxation methods provide both a lower and upper bound on the optimal solution and, thus,
some measure of closeness to optimality. (This is obviously limited by the duality gap.)

This section surveys some of the algorithms that have been particularly successful in solving the data
association problems arising from tracking. There are, however, many potential algorithms that could
be used. For example, GRASP (Greedy Randomized Adaptive Local Search Procedure)33-35 also has been
used successfully.

11.5.1 Preprocessing

Two frequently used preprocessing techniques, fine gating and problem decomposition, are presented in
this section. These two methods can substantially reduce the complexity of the multidimensional assign-
ment problem.

11.5.1.1 Fine Gating

The term fine gating is used because this method is the last in a sequence of techniques used to reduce
the unlikely paths in the layered graph or pairings of combinations of reports. This method is based on
the following theorem.22

Theorem 1 (Invariance Property) 
Let N > 1 and Mk > 0 for k = 1,…,N, and assume ĉ0…0 = 0 and uk

0 = 0 for k = 1,…,N. Then the minimizing
solution and objective function value of the following multidimensional assignment problem are inde-
pendent of any choice of uk

ik
 for ik = 1,…,Mk and k = 1,…,N.

(11.26)
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for ik = 1,…,Mk and k = 2,…,N – 1

(11.29)

(11.30)

If ĉi1…iN
 = ci1…iN

 and uk
ik
c0…0ik0…0 is identified in this theorem, then

(11.31)

implies that the corresponding zero-one variable zi1…iN
 and cost ci1…iN

 can be removed from the problem
because a lower cost can be achieved with the use of the variables z0…0ik0…0 = 1. (This does not mean that
one should set z0…0ik 0…0 = 1 for k = 1,…,N.)

In the special case in which all costs with exactly one nonzero index are zero, this test is equivalent to

(11.32)

11.5.1.2 Problem Decomposition

Decomposition of the multidimensional assignment problem into a sequence of disjoint problems can
improve the solution quality and the speed of the algorithm, even on a serial machine. The following
decomposition method, originally presented in the work of Poore, Rijavec, Barker, and Munger,36 uses
graph theoretic methods.

Decomposition of the multidimensional assignment problem is accomplished by determining the
connected components of the associated layered graph. Let

(11.33)

denote the set of assignable variables. Define an undirected graph �(�, �) where the set of nodes is

� (11.34)

and the set of arcs is

(11.35)

The nodes corresponding to zero index have not been included in this graph, because two variables
that have only the zero index in common can be assigned independently. Connected components of the
graph are easily found by constructing a spanning forest via a depth first search. Furthermore, this
procedure can be used at each level in the relaxation (i.e., applied to each assignment problem for k =
3,…,N). Note that the decomposition algorithm depends only on the problem structure (i.e., the feasi-
bility of the variables) and not on the cost function.
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As an aside, this decomposition often yields small problems that are best and more efficiently handled
by a branch and bound or an explicit enumeration procedure to avoid the overhead associated with
relaxation. The remaining components are solved by relaxation. However, extensive decomposition can
be time consuming and limiting the number of components to approximately ten is desirable, unless
one is using a parallel machine.

11.5.2 The Lagrangian Relaxation Algorithm for the Assignment Problem

This section presents Lagrangian relaxation algorithms for multidimensional assignment which have
proven to be computationally efficient and accurate for tracking purposes. The N dimensional assignment
problem has M1 +…+ MN individual constraints, which can be grouped into N constraint sets. Let uk =

 denote the Mk + 1 dimensional Lagrange multiplier vector associated with the kth con-
straint set, with uk

0 = 0 and k = 1,…, N. The full set of multipliers is denoted by the vector u = [u1,…,uN].
The multidimensional assignment problem is relaxed to an n-dimensional assignment problem by incor-
porating N – n constraint sets into the objective function. There are several choices of n. The case n = 0
yields the linear programming dual; n = 2 yields a two-dimensional assignment problem and has been
highly successful in practice.

Although any constraint sets can be relaxed, sets n + 1,…, N are chosen for convenience. In the tracking
problem using a sliding window, these are the correct sets given the data structures that arise from the
construction of tracks.

 The relaxed problem for multiplier vector u is given by

(11.36)

(11.37)

(11.38)

(11.39)

� 

(11.40)

(11.41)

The above problem can be reduced to an n-dimensional assignment problem using the transformation

(11.42)
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(11.43)

(11.44)

Thus, the Lagrangian relaxation algorithm can be summarized as follows.

1. Solve the problem

(11.45)

2. Give an optimal or near optimal solution (un+1,…,uN); solve the above assignment problem for
this given multiplier vector. This produces an alignment of the first n indices. Let these be
enumerated by  where (i0

1,…, i0
n) = (0,…,0). Then, the variable and cost coefficient

(11.46)

(11.47)

satisfy the following N – n + 1 dimensional assignment problem.

(11.48)
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(11.50)
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(11.51)

(11.52)

Let the nonzero zero-one variables in a solution be denoted by , then the solution of the
original problem is  = 1 with all remaining values of z being zero.

In summary, this algorithm is the result of the N-dimensional assignment problem being relaxed to
an n-dimensional assignment problem by relaxing N – n constraint sets. The problem of restoring
feasibility is defined as an N – n + 1 dimensional problem.
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Notice that the problem of maximizing Ln(un+1,…,uN) is one of nonsmooth optimization. Bundle
methods37,38 have proven to be particularly successful for this purpose.

11.5.2.1 A Class of Algorithms

Earlier work8,12,39,40 involved relaxing an N-dimensional assignment problem to an N-dimensional one,
which is NP-hard for N > 2, by relaxing one set of constraints. The corresponding dual function
Ln(un+1,…,uN) is piecewise linear and concave, but the evaluation of the function and subgradients, as
needed by the nonsmooth maximization, requires an optimal solution of an NP-hard n-dimensional
assignment problem when n > 2. To address the real-time needs, suboptimal solutions to the relaxed
problem must be used; however, suboptimal solutions only provide approximate function and subgra-
dient values. To moderate this difficulty, Poore and Rijavec40 used a concave, piecewise affine merit
function to provide guidance for the function values for the nonsmooth optimization phase. This
approach computed approximate subgradients from good quality feasible solutions obtained from mul-
tiple relaxation and recovery cycles executed at lower levels in a recursive fashion. (The number of cycles
can be any fixed number greater than or equal to one or it can be chosen adaptively by allowing the non-
smooth optimization solver to converge to within user-defined tolerances.) Despite these approximations,
the numerical performance of these prior algorithms has been quite good.40

A variation on the N-to-(N – 1) relaxation algorithm using a one cycle is attributable to Deb, Pattipati,
Yeddanapudi, and Bar-Shalom.17 Similar approximate function and subgradient values are used at each
level of the relaxation process. To moderate this difficulty, they modify the accelerated subgradient method
of Shor41 by further weighting the search direction in the direction of violated constraints, and they
report improvement over the accelerated subgradient method. They do not, however, use problem
decomposition and a merit function as in Poore and Rijavec’s previous work.40

When relaxing an N-dimensional assignment problem to an n-dimensional one, the one case in which
the aforementioned difficulties are resolved is for n = 2; this is the algorithm that is currently used in
the Poore and Rijavec tracking system.

11.5.3 Algorithm Complexity

In the absence of a complexity analysis, computational experience shows that between 90 and 95 percent
of all the computation time is consumed in the search to find the minimizer in the list of feasible arcs
that are present in the assignment problem. Thus, the time required to solve an assignment problem
appears to be computationally linear in the number of feasible arcs (i.e., tracks) in the assignment
problem. Obviously, the gating techniques used in tracking to control the number of feasible tracks are
fundamental to managing complexity.

11.5.4 Improvement Methods

The relaxation methods presented above have been enormously successful in providing quality solutions
to the assignment problem. Improvement techniques are fundamentally important. Based on the relax-
ation and a branch and bound framework,11 significant improvements in the quality of the solution have
been achieved for tracking problems. On difficult problems in tracking, the improvement can be signif-
icant. Although straight relaxation can produce solutions to within three percent of optimality, the
improvement techniques can produce solutions to within one-half (0.5) percent of optimal on at least
one class of very difficult tracking problems. Given the ever increasing need for more accurate solutions,
further improvements, such as local search methods, should be developed.

11.6 Future Directions

Following the previous sections’ overview of the problem formulation and presentation of highly suc-
cessful algorithms, this section summarizes some of the open issues that should be addressed in the future.
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11.6.1 Other Data Association Problems and Formulations

Several alternate formulations — such as more general set packings and coverings of the data — should
be pursued. The current formulation is sufficiently general to include other important cases, such as
multisensor resolution problems and unresolved closely spaced objects in which an observation is nec-
essarily assigned to more than one target. The assigning of a report to more than one target can be
accomplished within the context of the multidimensional assignment problems by using inequality
constraints. The formulation, algorithms, and testing have yet to be systematically developed. Although
allowing an observation to be assigned to more than one target is easy to model mathematically, allowing
a target to be assigned to more than one observation is difficult and may introduce nonlinearity into the
objective function due to a loss of the independence assumptions discussed in Section 11.3. Certainly,
the original formulation of Morefield15 is worth revisiting.

11.6.2 Frames of Data

The use of the multidimensional assignment problems to solve the central data association problem rests
on the assumption that each target is seen at most once in each frame of data (i.e., the frame is a “proper”
frame). For a mechanically rotating radar, this is reasonably easy to approximate as a sweep of the
surveillance region. For electronically scanning sensors, which can switch from searching mode to track-
ing mode, the solution to this partitioning problem is less obvious. Although one such solution has been
developed, the formulation and solution are not yet optimal.

11.6.3 Sliding Windows

The batch approach to the data association problem of partitioning the observations into tracks and false
alarms is to add a frame of data (observations) to the existing frames and then formulate and solve the
corresponding multidimensional assignment problem. The dimension of the assignment problem
increases by the number of frames added. To avoid the intractability of this approach, a moving window
approach was developed in 1992 wherein the data association problem is resolved over the window of a
limited number of frames of data.26 This was revised in 199627 to use different length windows for track
continuation (maintenance) and initiation. This approach improves the efficiency of the multiframe
processing and maintains the longer window needed for track initiation. Indeed, numerical experiments
to date show it to be far more efficient than a single pane window. One can easily imagine using different
depths in the window for continuing tracks, depending on the complexity of the problem. The efficiency
of this approach in practice has yet to be determined.

A fundamental question relates to determining the dimension of the assignment problem that is most
appropriate for a particular tracking problem. The goal of future research will be the development of a
method that adapts the dimension to the difficulty of the problem or to the need in the surveillance problem.

11.6.4 Algorithms

Several Lagrangian relaxation methods were outlined in the previous section. The method that has been
most successful involves relaxation to a two-dimensional assignment problem, maximization of the
resulting relaxed problem with respect to the multipliers, and restoration of feasibility to the original
problem by formulating this recovery problem as a multidimensional assignment problem of one dimen-
sion lower than the original. The process is then repeated until a two-dimensional assignment problem
is reached which can be solved optimally.

Such an algorithm can generally produce solutions that are accurate to within three percent of optimal
on very difficult problems and optimal for easy problems. The use of an improvement algorithm based
on branch and bound can considerably improve the performance to within one-half (0.5) percent of
optimal, at least on some classes of difficult tracking problems.11 Other techniques, such as local search,
should equally improve the solution quality.
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Speed enhancements using the decomposition and clustering discussed in the previous section and as
presented in 199236 can improve the speed of the assignment solvers by an order of magnitude on large-
scale and difficult problems. Further work on distributed and parallel computing should enhance both
the solution quality and speed.

Another direction of work is the computation of K-near optimal solutions similar to K-best solutions
for two dimensional assignment problems.11 The K-near optimal solutions provide important informa-
tion about the reliability of the computed tracks which is not available with K-best solutions.

Finally, other approaches to the assignment problem, such as GRASP,33-35 have also been successful,
but not to the extent that relaxation has been.

11.6.5 Network-Centric Multiple Frame Assignments

Multiple platform tracking, like single platform multiple-sensor tracking, also has the potential to sig-
nificantly improve track estimation by providing geometric diversity and sensor variety. The architecture
for data association methods discussed in the previous sections can be applied to multiple platform
tracking in a centralized manner, wherein all measurements are sent to one location for processing and
then tracks are transmitted back to the different platforms. The centralized architecture is probably
optimal in that it is capable of producing the best track quality (e.g., purity and accuracy) and a consistent
air picture; however, it is unacceptable in many applications as a result of issues such as communication
loading and single-point-failure. Thus, a distributed architecture is needed for both estimation/fusion3

and data association. While much has been achieved in the area of distributed fusion, few efforts have
been extended to distributed, multiple frame, data association.

The objectives for a distributed multiple frame data association approach to multiple platform tracking
are to achieve a performance approaching that of the centralized architecture and to achieve a consistent
or single integrated air picture (SIAP) across multiple platforms while maintaining communications
loads to within a practical limit. Achieving these objectives will require researchers to address a host of
problems or topics, including (1) distributed data association and estimation; (2) single integrated air
picture; (3) management of communication loading using techniques such as data pruning, data com-
pression (e.g., tracklets,5 push/request schemes, and target prioritization; (4) network topology of the
communication architecture, including the design of new communication architectures and the incor-
poration of legacy systems; (5) types of information (e.g., measurements, tracks, tracklets) sent across
the network; (6) sensor location and registration errors (i.e. “gridlock”); (7) pedigree problems; and,
(8) out-of-order, latent, and missing data caused by both sensor and communication problems.

The network-centric algorithm architecture of the Navy’s Cooperative Engagement Capability and
Joint Composite Tracking Network provides a consistent or single integrated air picture across multiple
platforms. This approach limits the communications loads to within a practical limit.5 This was designed
with single frame data association in mind and has not been extended to multiple frame approaches.
Thus, the development of a “network multiple frame assignment” approach to data association remains
an open and fundamentally important problem.
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12.1 Introduction

One of the most important areas of research in the field of control and estimation is decentralized (or
distributed) data fusion. The motivation for decentralization is that it can provide a degree of scalability
and robustness that cannot be achieved with traditional centralized architectures. In industrial applica-
tions, decentralization offers the possibility of producing plug-and-play systems in which sensors can be
slotted in and out to optimize a tradeoff between price and performance. This has significant implications
for military systems as well because it can dramatically reduce the time required to incorporate new
computational and sensing components into fighter aircraft, ships, and other types of platforms.

The benefits of decentralization are not limited to sensor fusion onboard a single platform; decentral-
ization also can allow a network of platforms to exchange information and coordinate activities in a
flexible and scalable fashion that would be impractical or impossible to achieve with a single, monolithic
platform. Interplatform information propagation and fusion form the crux of the network centric warfare
(NCW) vision for the U.S. military. The goal of NCW is to equip all battlespace entities — aircraft, ships,
and even individual human combatants — with communication and computing capabilities to allow
each to represent a node in a vast decentralized command and control network. The idea is that each
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entity can dynamically establish a communications link with any other entity to obtain the information
it needs to perform its warfighting role.

Although the notion of decentralization has had strong intuitive appeal for several decades, achieving its
anticipated benefits has proven extremely difficult. Specifically, implementers quickly discovered that if
communications paths are not strictly controlled, pieces of information begin to propagate redundantly.
When these pieces of information are reused (i.e., double-counted), the fused estimates produced at different
nodes in the network become corrupted. Various approaches for avoiding this problem were examined, but
none seemed completely satisfactory. In the mid-1990s, the redundant information problem was revealed to
be far more than just a practical challenge; it is a manifestation of a fundamental theoretical limitation that
could not be surmounted using traditional Bayesian control and estimation methods such as the Kalman
filter.1 In response to this situation, a new data fusion framework, based on covariance intersection (CI), was
developed. The CI framework effectively supports all aspects of general decentralized data fusion.

The structure of this chapter is as follows: Section 12.2 describes the decentralized data fusion (DDF)
problem. The CI algorithm is described in Section 12.3. Section 12.4 demonstrates how CI supports
distributed data fusion and describes one such distribution architecture. A simple example of a network
with redundant links is presented in Section 12.5. Section 12.6 shows how to exploit known information
about network connectivity and/or information proliferation within the CI framework. This chapter
concludes with a brief discussion of other applications of CI.

12.2 Decentralized Data Fusion

A decentralized data fusion system is a collection of processing nodes, connected by communication
links (Figure 12.1), in which none of the nodes has knowledge about the overall network topology. Each
node performs a specific computing task using information from nodes with which it is linked, but no
“central” node exists that controls the network. There are many attractive properties of such decentralized
systems,2 including

• Decentralized systems are reliable in the sense that the loss of a subset of nodes and/or links does
not necessarily prevent the rest of the system from functioning. In a centralized system, however,
the failure of a common communication manager or a centralized controller can result in imme-
diate catastrophic failure of the system.

• Decentralized systems are flexible in the sense that nodes can be added or deleted by making only
local changes to the network. For example, the addition of a node simply involves the establishment
of links to one or more nodes in the network. In a centralized system, however, the addition of a

FIGURE 12.1 A distributed data fusion network. Each box represents a fusion node. Each node possesses 0 or more
sensors and is connected to its neighboring nodes through a set of communication links.
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new node can change the topology in such a way as to require massive changes to the overall
control and communications structure.

The most important class of decentralized networks involves nodes associated with sensors or other
information sources. Information from distributed sources propagates through the network so that each
node obtains the data relevant to its own processing task. In a battle management application, for example,
one node might be associated with the acquisition of information from reconnaissance photographs,
another with ground-based reports of troop movements, and another with the monitoring of commu-
nications transmissions. Information from these nodes could then be transmitted to a node that estimates
the position and movement of enemy troops. The information from this node could then be transmitted
back to the reconnaissance photo node, which would use the estimated positions of troops to aid in the
interpretation of ambiguous features in satellite photos.

In most applications, the information propagated through a network is converted to a form that
provides the estimated state of some quantity of interest. In many cases, especially in industrial applica-
tions, the information is converted into means and covariances that can be combined within the frame-
work of Kalman-type filters. A decentralized network for estimating the position of a vehicle, for example,
could combine acceleration estimates from nodes measuring wheel speed, from laser gyros, and from
pressure sensors on the accelerator pedal. If each independent node provides the mean and variance of
its estimate of acceleration, fusing the estimates to obtain a better filtered estimate is relatively easy.

The most serious problem arising in decentralized data fusion networks is the effect of redundant
information.3 Specifically, pieces of information from multiple source cannot be combined within most
filtering frameworks unless they are independent or have a known degree of correlation (i.e., known cross
covariances). In the battle management example described above, the effect of redundant information can
be seen in the following scenario, sometimes referred to as the “whispering in the hall” problem:

1. The photoreconnaissance node transmits information about potentially important features. This
information then propagates through the network, changing form as it is combined with infor-
mation at other nodes in the process.

2. The troop position estimation node eventually receives the information in some form and notes
that one of the indicated features could possibly represent a mobilizing tank battalion at position
x. There are many other possible interpretations of the feature, but the possibility of a mobilizing
tank battalion is deemed to be of such tactical importance that it warrants the transmission of a
low confidence hypothesis (a “heads up” message). Again, the information can be synopsized,
augmented, or otherwise transformed as it is relayed through a sequence of nodes.

3. The photoreconnaissance photo node receives the low confidence hypothesis that a tank battalion
may have mobilized at position x. A check of available reconnaissance photos covering position x
reveals a feature that is consistent with the hypothesis. Because the node is unaware that the
hypothesis was based on that same photographic evidence, it assumes that the feature that it
observes is an independent confirmation of the hypothesis. The node then transmits high confi-
dence information that a feature at position x represents a mobilizing tank battalion.

4. The troop position node receives information from the photoreconnaissance node that a mobi-
lizing tank battalion has been identified with high confidence. The troop position node regards
this as confirmation of its early hypothesis and calls for an aggressive response to the mobilization.
The obvious problem is that the two nodes are exchanging redundant pieces of information but
are treating them as independent pieces of evidence mounting in support of the hypothesis that
a tank battalion has mobilized. The end result is that critical resources may be diverted in reaction
to what is, in fact, a low probability hypothesis.

A similar situation can arise in a decentralized monitoring system for a chemical process:

1. A reaction vessel is fitted with a variety of sensors, including a pressure gauge.
2. Because the bulk temperature of the reaction cannot be measured directly, a node is added that

uses pressure information, combined with a model for the reaction, to estimate temperature.
3. A new node is added to the system that uses information from the pressure and temperature nodes.
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Clearly, the added node will always be using redundant information from the pressure gauge. If the
estimates of pressure and temperature are treated as independent, then the fact that their relationship is
always exactly what is predicted by the model might lead to over confidence in the stability of the system.
This type of inadvertent use of redundant information arises commonly when attempts are made to
decompose systems into functional modules. The following example is typical:

1. A vehicle navigation and control system maintains one Kalman filter for estimating position and
a separate Kalman filter for maintaining the orientation of the vehicle.

2. Each filter uses the same sensor information.
3. The full vehicle state is determined (for prediction purposes) by combining the position and

orientation estimates.
4. The predicted position covariance is computed essentially as a sum of the position and orientation

covariances (after the estimates are transformed to a common vehicle coordinate frame).

The problem in this example is that the position and orientation errors are not independent. This
means that the predicted position covariance will underestimate the actual position error. Obviously,
such overly confident position estimates can lead to unsafe maneuvers.

To avoid the potentially disastrous consequences of redundant data on Kalman-type estimators, cova-
riance information must be maintained. Unfortunately, maintaining consistent cross covariances in
arbitrary decentralized networks is not possible.1 In only a few special cases, such as tree and fully
connected networks, can the proliferation of redundant information be avoided. These special topologies,
however, fail to provide the reliability advantage because the failure of a single node or link results in
either a disconnected network or one that is no longer able to avoid the effects of redundant information.
Intuitively, the redundancy of information in a network is what provides reliability; therefore, if the
difficulties with redundant information are avoided by eliminating redundancy, then reliability will be
also be eliminated.

The proof that cross covariance information cannot be consistently maintained in general decentralized
networks seems to imply that the purported benefits of decentralization are unattainable. However, the
proof relies critically on the assumption that some knowledge of the degree of correlation is necessary
in order to fuse pieces of information. This is certainly the case for all classical data fusion mechanisms
(e.g., the Kalman filter and Bayesian nets), which are based on applications of Bayes’ rule. Furthermore,
independence assumptions are also implicit in many ad hoc schemes that compute averages over quan-
tities with intrinsically correlated error components.*

The problems associated with assumed independence are often side stepped by artificially increasing
the covariance of the combined estimate. This heuristic (or filter “tuning”) can prevent the filtering
process from producing nonconservative estimates, but substantial empirical analysis and “tweaking” is
required to determine how much to increase the covariances. Even with this empirical analysis, the
integrity of the Kalman filter framework is compromised, and reliable results cannot be guaranteed. In
many applications, such as in large decentralized signal/data fusion networks, the problem is much more
acute and no amount of heuristic tweaking can avoid the limitations of the Kalman filter framework.2

This is of enormous consequence, considering the general trend toward decentralization in complex
military and industrial systems.

In summary, the only plausible way to simultaneously achieve robustness, exibility, and consistency
in a general decentralized network is to exploit a data fusion mechanism that does not require indepen-
dence assumptions. Such a mechanism, called Covariance Intersection (CI), satisfies this requirement.

*Dubious independence assumptions have permeated the literature over the decades and are now almost taken
for granted. The fact is that statistical independence is an extremely rare property. Moreover, concluding that an
approach will yield good approximations when “almost independent” is replaced with “assumed independent” in its
analysis is usually erroneous.
©2001 CRC Press LLC



                                                                            
12.3 Covariance Intersection

12.3.1 Problem Statement

Consider the following problem. Two pieces of information, labeled A and B, are to be fused together to
yield an output, C. This is a very general type of data fusion problem. A and B could be two different
sensor measurements (e.g., a batch estimation or track initialization problem), or A could be a prediction
from a system model, and B could be sensor information (e.g., a recursive estimator similar to a Kalman
filter). Both terms are corrupted by measurement noises and modeling errors, therefore, their values are
known imprecisely and A and B are the random variables a and b, respectively. Assume that the true
statistics of these variables are unknown. The only available information are estimates of the means and
covariances of a and b and the cross-correlations between them. These are {a, Paa}, {b, Pbb}, and 0,
respectively.*

(12.1)

where  are the true errors imposed by assuming that the means are a and b. Note
that the cross-correlation matrix between the random variables, , is unknown and will not, in general,
be 0.

The only constraint that we impose on the assumed estimate is consistency. In other words,

(12.2)

This definition conforms to the standard definition of consistency.4 The problem is to fuse the con-
sistent estimates of A and B together to yield a new estimate C, {c, Pcc}, which is guaranteed to be
consistent:

(12.3)

where . 

12.3.2 The Covariance Intersection Algorithm

In its generic form, the CI algorithm takes a convex combination of mean and covariance estimates that
are represented information (inverse covariance) space. The intuition behind this approach arises from
a geometric interpretation of the Kalman filter equations. The general form of the Kalman filter equation
can be written as

(12.4)

(12.5)

where the weights Wa and Wb are chosen to minimize the trace of Pcc. This form reduces to the
conventional Kalman filter if the estimates are independent (Pab = 0) and generalizes to the Kalman filter
with colored noise when the correlations are known.

*Cross correlation can also be treated as a nonzero value. For brevity, we do not discuss this case here.
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These equations have a powerful geometric interpretation: If one plots the covariance ellipses (for a
covariance matrix P this is the locus of points {p : pT P–1 p = c} where c is a constant), Paa, Pbb , and Pcc

for all choices of Pab, Pcc always lies within the intersection of Paa and Pbb . Figure 12.2 illustrates this for
a number of different choices of Pab .

This interpretation suggests the following approach: if Pcc lies within the intersection of Paa and Pbb

for any possible choice of Pab, then an update strategy that finds a Pcc which encloses the intersection
region must be consistent even if there is no knowledge about Pab. The tighter the updated covariance
encloses the intersection region, the more effectively the update uses the available information.*

The intersection is characterized by the convex combination of the covariances, and the Covariance
Intersection algorithm is:5

(12.6)

(12.7)

where ω ∈  [0, 1]. Appendix 12.A proves that this update equation is consistent in the sense given by
Equation 12.3 for all choices of Pab and ω.

As illustrated in Figure 12.3, the free parameter ω manipulates the weights assigned to a and b. Different
choices of ω can be used to optimize the update with respect to different performance criteria, such as
minimizing the trace or the determinant of Pcc . Cost functions, which are convex with respect to ω, have
only one distinct optimum in the range 0 ≤ ω ≤ 1. Virtually any optimization strategy can be used,
ranging from Newton-Raphson to sophisticated semidefinite and convex programming6 techniques,
which can minimize almost any norm. Appendix 12.B includes source code for optimizing ω for the
fusion of two estimates.

Note that some measure of covariance size must be minimized at each update in order to guarantee
nondivergence; otherwise an updated estimate could be larger than the prior estimate. For example, if

FIGURE 12.2 The shape of the updated covariance ellipse. The variances of Paa and Pbb are the outer solid ellipses.
Different values of Pcc that arise from different choices of Pab are shown as dashed ellipses. The update with truly
independent estimates is the inner solid ellipse.

*Note that the discussion of “intersection regions” and the plotting of particular covariance contours should not
be interpreted in a way that confuses CI with ellipsoidal bounded region filters. CI does not exploit error bounds,
only covariance information.
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one were always to use ω = 0.5, then the updated estimate would simply be the Kalman updated estimate
with the covariance inflated by a factor of two. Thus, an update with an observation that has a very large
covariance could result in an updated covariance close to twice the size of the prior estimate. In summary,
the use of a fixed measure of covariance size with the CI equations leads to the nondivergent CI filter.

An example of the tightness of the CI update can be seen in Figure 12.4 for the case when the two
prior covariances approach singularity:

(12.8)

(12.9)

FIGURE 12.3 The value of ω determines the relative weights applied to each information term. (A) Shows the
1-sigma contours for 2-D covariance matrices A and B. (B)–(D) show the updated covariance C (drawn in a solid
line) for several different values of ω. For each value of ω, C passes through the intersection points of A and B.
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The covariance of the combined estimate is proportional to ε, and the mean is centered on the intersection
point of the one-dimensional contours of the prior estimates. This makes sense intuitively because, if
one estimate completely constrains one coordinate, and the other estimate completely constrains the
other coordinate, there is only one possible update that can be consistent with both constraints.

CI can be generalized to an arbitrary number of n > 2 updates using the following equations:

(12.10)

(12.11)

where n
i=1 ωi = 1. For this type of batch combination of large numbers of estimates, efficient codes, such

as the public domain MAXDET7 and SPDSOL8 are available.
In summary, CI provides a general update algorithm that is capable of yielding an updated estimate

even when the prediction and observation correlations are unknown.

12.4 Using Covariance Intersection for Distributed 
Data Fusion

Consider again the data fusion network that is illustrated in Figure 12.1. The network consists of N nodes
whose connection topology is completely arbitrary (i.e., it might include loops and cycles) and can change
dynamically. Each node has information only about its local connection topology (e.g., the number of
nodes with which it directly communicates and the type of data sent across each communication link).
Assuming that the process and observation noises are independent, the only source of unmodeled
correlations is the distributed data fusion system itself. CI can be used to develop a distributed data
fusion algorithm which directly exploits this structure. The basic idea is illustrated in Figure 12.5. Esti-
mates that are propagated from other nodes are correlated to an unknown degree and must be fused
with the state estimate using CI. Measurements taken locally are known to be independent and can be
fused using the Kalman filter equations.

Using conventional notation,9 the estimate at the ith node is x̂ i (k |k) with covariance Pi (k |k). CI can
be used to fuse the information that is propagated between the different nodes. Suppose that, at time
step k + 1, node i locally measures the observation vector zi (k |k). A distributed fusion algorithm for
propagating the estimate from timestep k to timestep k + 1 for node i is:

FIGURE 12.4 The CI update {c,C} of two 2-D estimates {a,A} and {b,B}, where A and B are singular, defines the
point of intersection of the colinear sigma contours of A and B.
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1. Predict the state of node i at time k + 1 using the standard Kalman filter prediction equations.
2. Use the Kalman filter update equations to update the prediction with zi (k  + 1). This update is

the distributed estimate with mean x̂ ∗
i (k + 1|k + 1) and covariance  P ∗

i (k + 1|k + 1). It is not the
final estimate, because it does not include observations and estimates propagated from the other
nodes in the network.

3. Node i propagates its distributed estimate to all of its neighbors.
4. Node i fuses its prediction x̂ i (k + 1|k) and Pi (k + 1|k) with the distributed estimates that it has

received from all of its neighbors to yield the partial update with mean x̂ +
i (k + 1|k + 1) and

covariance P+
i (k + 1|k + 1). Because these estimates are propagated from other nodes whose

correlations are unknown, the CI algorithm is used. As explained above, if the node receives
multiple estimates for the same time step, the batch form of CI is most efficient. Finally, node i
uses the Kalman filter update equations to fuse z i (k + 1) with its partial update to yield the new
estimate x̂ i (k + 1|k + 1) with covariance Pi(k + 1|k + 1). The node incorporates its observation
last using the Kalman filter equations because it is known to be independent of the prediction or
data which has been distributed to the node from its neighbors. Therefore, CI is unnecessary. This
concept is illustrated in Figure 12.5.

An implementation of this algorithm is given in the next section. This algorithm has a number of
important advantages. First, all nodes propagate their most accurate partial estimates to all other nodes
without imposing any unrealistic requirements for perfectly robust communication. Communication
paths may be uni- or bidirectional, there may be cycles in the network, and some estimates may be lost
while others are propagated redundantly. Second, the update rates of the different filters do not need to
be synchronized. Third, communications do not have to be guaranteed — a node can broadcast an
estimate without relying on other nodes’ receiving it. Finally, each node can use a different observation
model: one node may have a high accuracy model for one subset of variables of relevance to it, and

FIGURE 12.5 A canonical node in a general data fusion network that constructs its local state estimate using CI to
combine information received from other nodes and a Kalman filter to incorporate independent sensor measurements.

Covariance�
Intersect

Kalman�
Filter

State Estimate

Correlated Information

Independent
Sensor Measurements

from Other Nodes
©2001 CRC Press LLC



another node may have a high accuracy model for a different subset of variables, but the propagation of
their respective estimates allows nodes to construct fused estimates representing the union of the high
accuracy information from both nodes.

The most important feature of the above approach to decentralized data fusion is that it is provably
guaranteed to produce and maintain consistent estimates at the various nodes.* Section 5 demonstrates
this consistency in a simple example.

12.5 Extended Example

Suppose the processing network, shown in Figure 12.6, is used to track the position, velocity and accel-
eration of a one-dimensional particle. The network is composed of four nodes. Node 1 measures the
position of the particle only. Nodes 2 and 4 measure velocity and node 3 measures acceleration. The four
nodes are arranged in a ring. From a practical standpoint, this configuration leads to a robust system
with built-in redundancy: data can flow from one node to another through two different pathways.
However, from a theoretical point of view, this configuration is extremely challenging. Because this
configuration is neither fully connected nor tree-connected, optimal data fusion algorithms exist only in
the special case where full knowledge of the network topology and the states at each node is known.

The particle moves using a nominal constant acceleration model with process noise injected into the
jerk (derivative of acceleration). Assuming that the noise is sampled at the start of the timestep and is
held constant throughout the prediction step, the process model is

(12.12)

where

FIGURE 12.6 The network layout for the example.

*The fundamental feature of CI can be described as consistent estimates in, consistent estimates out. The Kalman
filter, in contrast, can produce an inconsistent fused estimate from two consistent estimates if the assumption of
independence is violated. The only way CI can yield an inconsistent estimate is if a sensor or model introduces an
inconsistent estimate into the fusion process. In practice this means that some sort of fault-detection mechanism
needs to be associated with potentially faulty sensors.
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υ(k) is an uncorrelated, zero-mean Gaussian noise with variance
σ 2

υ = 10 and the length of the time step ∆T = 0.1s.
The sensor information and the accuracy of each sensor is given

in Table 12.1.
Assume, for the sake of simplicity, that the structure of the state

space and the process models are the same for each node and the
same as the true system. However, this condition is not particularly
restrictive and many of the techniques of model and system distri-
bution that are used in optimal data distribution networks can be
applied with CI.10

The state at each node is predicted using the process model:

 

The partial estimates x̂ ∗
i (k + 1|k + 1) and P∗

i (k + 1|k + 1) are calculated using the Kalman filter update
equations. If Ri is the observation noise covariance on the ith sensor, and Hi is the observation matrix,
then the partial estimates are

(12.13)

(12.14)

(12.15)

(12.16)

(12.17)

Examine three strategies for combining the information from the other nodes:

1. The nodes are disconnected. No information flows between the nodes and the final updates are
given by

(12.18)

(12.19)

2. Assumed independence update. All nodes are assumed to operate independently of one another.
Under this assumption, the Kalman filter update equations can be used in Step 4 of the fusion
strategy described in the last section.

3. CI-based update. The update scheme described in Section 12.4 is used.

The performance of each of these strategies was assessed using a Monte Carlo of 100 runs.

TABLE 12.1 Sensor Information 
and Accuracy for Each Node 
from Figure 12.6

Node Measures Variance

1 x 1
2 ·x 2
3 0.25
4 ·x 3
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The results from the first strategy (no data distribution) are shown in Figure 12.7. As expected, the
system behaves poorly. Because each node operates in isolation, only Node 1 (which measures x) is fully
observable. The position variance increases without bound for the three remaining nodes. Similarly, the
velocity is observable for Nodes 1, 2, and 4, but it is not observable for Node 3.

The results of the second strategy (all nodes are assumed independent) are shown in Figure 12.8. The
effect of assumed independence observations is obvious: all of the estimates for all of the states in all of
the nodes (apart from x for Node 3) are inconsistent. This clearly illustrates the problem of double counting.

Finally, the results from the CI distribution scheme are shown in Figure 12.9. Unlike the other two
approaches, all the nodes are consistent and observable. Furthermore, as the results in Table 12.2 indicate,
the steady-state covariances of all of the states in all of the nodes are smaller than those for case 1. In
other words, this example shows that this data distribution scheme successfully and usefully propagates
data through an apparently degenerate data network.

FIGURE 12.7 Disconnected nodes. (A) Mean squared error in x. (B) Mean squared error in ·x. (C) Mean squared
error in ··x. Mean squared errors and estimated covariances for all states in each of the four nodes. The curves for
Node 1 are solid, Node 2 are dashed, Node 3 are dotted, and Node 4 are dash-dotted. The mean squared error is the
rougher of the two lines for each node.
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This simple example is intended only to demonstrate the effects of redundancy in a general data
distribution network. CI is not limited in its applicability to linear, time invariant systems. Furthermore,
the statistics of the noise sources do not have to be unbiased and Gaussian. Rather, they only need to
obey the consistency assumptions. Extensive experiments have shown that CI can be used with large
numbers of platforms with nonlinear dynamics, nonlinear sensor models, and continuously changing
network topologies (i.e., dynamic communications links).11

12.6 Incorporating Known Independent Information

CI and the Kalman filter are diametrically opposite in their treatment of covariance information: CI
conservatively assumes that no estimate provides statistically independent information, and the Kalman
filter assumes that every estimate provides statistically independent information. However, neither of
these two extremes is representative of typical data fusion applications. This section demonstrates how
the CI framework can be extended to subsume the generic CI filter and the Kalman filter and provide a
completely general and optimal solution to the problem of maintaining and fusing consistent mean and
covariance estimates.22

The following equation provides a useful interpretation of the original CI result. Specifically, the
estimates {a, A} and {b, B} are represented in terms of their joint covariance:

(12.20)

where in most situations the cross covariance, Pab, is unknown. The CI equations, however, support the
conclusion that

(12.21)

because CI must assume a joint covariance that is conservative with respect to the true joint covariance.
Evaluating the inverse of the right-hand-side (RHS) of the equation leads to the following consistent/con-
servative estimate for the joint system:

FIGURE 12.7 (continued).
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(12.22)

From this result, the following generalization of CI can be derived:*
CI with Independent Error: Let a = a1 + a2 and b = b1 + b2, where a1 and b1 are correlated to an

unknown degree, while the errors associated with a2 and b2 are completely independent of all others.

FIGURE 12.8 All nodes assumed independent. (A) Mean squared error in x. (B) Mean squared error in ·x. (C)
Mean squared error in ··x. Mean squared errors and estimated covariances for all states in each of the four nodes.
The curves for Node 1 are solid, Node 2 are dashed, Node 3 are dotted, and Node 4 are dash-dotted. The mean
squared error is the rougher of the two lines for each node.

*In the process, a consistent estimate of the covariance of a + b is also obtained, where a and b have an unknown
degree of correlation, as . We refer to this operation as covariance addition (CA).
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Also, let the respective covariances of the components be A1, A2, B1, and B2. From the above results, a
consistent joint system can be formed as:

(12.23)

Letting , gives the following generalized CI equations:

(12.24)

(12.25)

where the known independence of the errors associated with a2 and b2 is exploited.
Although the above generalization of CI exploits available knowledge about independent error com-

ponents, further exploitation is impossible because the combined covariance C is formed from both
independent and correlated error components. However, CI can be generalized even further to produce
and maintain separate covariance components, C1 and C2, reflecting the correlated and known-indepen-
dent error components, respectively. This generalization is referred to as Split CI.

If we let ã1 and ã2 be the correlated and known-independent error components of a, with b̃1 and b̃2

similarly defined for b, then we can express the errors c̃1 and c̃2 in information (inverse covariance)
form as

(12.26)

from which the following can be obtained after premultiplying by C:

FIGURE 12.8 (continued).
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(12.27)

Squaring both sides, taking expectations, and collecting independent terms* yields:

(12.28)

FIGURE 12.9 CI distribution scheme. (A) Mean squared error in x. (B) Mean squared error in ·x. (C) Mean squared
error in ··x. Mean squared errors and estimated covariances for all states in each of the four nodes. The curves for
Node 1 are solid, Node 2 are dashed, Node 3 are dotted, and Node 4 are dash-dotted. The mean squared error is the
rougher of the two lines for each node.

*Recall that .

0 10 20 30 40�
�
    (A)

50 60 70 80 90 100
0.2

0.4

0.6

0.8

1

1.2

1.4

1.6
Average MSE x(1) estimate

0 10 20 30 40�
�
    (B)

50 60 70 80 90 100
0

0.2

0.4

0.6

0.8

1

1.2

1.4
Average MSE x(2) estimate

˜ ˜ ˜ ˜ ˜ ˜c c C A a a B b b1 2
1

1 2
1

1 2+( ) = +( )+ +( )[ ]− −

A A B B B= = +−
1

1
1

1 1 2ω ω and 

C A B A A A B B B A B2
1 1

1
1

2
1 1

2
1 1 1

1

= +( ) +( ) +( )− −
−

− − − − − −
−

©2001 CRC Press LLC



where the nonindependent part can be obtained simply by subtracting the above result from the overall
fused covariance C = (A–1 + B–1)–1. In other words,

(12.29)

Split CI can also be expressed in batch form analogously to the batch form of original CI. Note that the
covariance addition equation can be generalized analogously to provide Split CA capabilities.

The generalized and split variants of CI optimally exploit knowledge of statistical independence. This
provides an extremely general filtering, control, and data fusion framework that completely subsumes
the Kalman filter.

FIGURE 12.9 (continued).

TABLE 12.2 The Diagonal Elements of the 
Covariance Matrices for Each Node at the End 
of 100 Timesteps for Each of the Consistent 
Distribution Schemes

Node Scheme σ2
x σ2

x· σ2
ẍ

1 NONE
CI

0.8823
0.6055

8.2081
0.9359

37.6911
14.823

2 NONE
CI

50.5716*
1.2186

1.6750
0.2914

16.8829
0.2945

3 NONE
CI

77852.3*
1.5325

7.2649*
0.3033

0.2476
0.2457

4 NONE
CI

75.207
1.2395

2.4248
0.3063

19.473
0.2952

Note: NONE – no distribution, and CI – the CI
algorithm). The asterisk denotes that a state is unob-
servable and its variance is increasing without bound.
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12.6.1 Example Revisited

The contribution of generalized CI can be demonstrated by revisiting the example described in
Section 12.5. The scheme described earlier attempted to exploit information that is independent in the
observations. However, it failed to exploit one potentially very valuable source of information — the fact
that the distributed estimates ( x̂ ∗

i (k + 1|k + 1) with covariance P∗
i (k + 1|k + 1)) contain the observations

taken at time step k + 1. Under the assumption that the measurement errors are uncorrelated, generalized
CI can be exploited to significantly improve the performance of the information network. The distributed
estimates are split into the (possibly) correlated and known independent components, and generalized
CI can be used to fuse the data remotely.

The estimate of node i at time step k is maintained in split form with mean x̂i (k |k) and covariances
Pi,1 (k |k) and Pi,2 (k |k). As explained below, it is not possible to ensure that Pi,2 (k |k) will be independent
of the distributed estimates that will be received at time step k. Therefore, the prediction step combines
the correlated and independent terms into the correlated term, and sets the independent term to 0:

(12.30)

The process noise is treated as a correlated noise component because each sensing node is tracking the
same object. Therefore, the process noise that acts on each node is perfectly correlated with the process
noise acting on all other nodes.

The split form of the distributed estimate is found by applying split CI to fuse the prediction with zi

(k + 1). Because the prediction contains only correlated terms, and the observation contains only
independent terms (A2 = 0 and B1 = 0 in Equation 12.24) the optimized solution for this update occurs
when ω = 1. This is the same as calculating the normal Kalman filter update and explicitly partitioining
the contributions of the predictions from the observations. Let W∗

i (k + 1) be the weight used to calculate
the distributed estimate. From Equation 12.30 its value is given by,

(12.31)

(12.32)

Note that the Covariance Addition equation can be generalized analogously to provide Split CA capabilities.
Taking outer products of the prediction and observation contribution terms, the correlated and

independent terms of the distributed estimate are

(12.33)

where X(k + 1) = I – W∗
i (k + 1)

 
H(k + 1).

The split distributed updates are propagated to all other nodes where they are fused with split CI to yield
a split partial estimate with mean x̂ +
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Split CI can now be used to incorporate z(k). However, because the observation contains no correlated
terms (B1 = 0 in Equation 12.24), the optimal solution is always ω = 1.

The effect of this algorithm can be seen in Figure 12.10 and in Table 12.3. As can be seen, the results
of generalized CI are dramatic. The most strongly affected node is Node 2, whose position variance is
reduced almost by a factor of 3. The least affected node is Node 1. This is not surprising, given that
Node 1 is fully observable. Even so, the variance on its position estimate is reduced by more than 25%.

12.7 Conclusions

This chapter has considered the extremely important problem of data fusion in arbitrary data fusion
networks. It described a general data fusion/update technique that makes no assumptions about the

FIGURE 12.10 Mean squared errors and estimated covariances for all states in each of the four nodes. (A) Mean
squared error in x. (B) Mean squared error in ·x. (C) Mean squared error in ··x. The curves for Node 1 are solid, Node
2 are dashed, Node 3 are dotted, and Node 4 are dash-dotted. The mean squared error is the rougher of the two
lines for each node.
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independence of the estimates to be combined. The use of the covariance intersection framework to
combine mean and covariance estimates without information about their degree of correlation provides
a direct solution to the distributed data fusion problem.

However, the problem of unmodeled correlations reaches far beyond distributed data fusion and
touches the heart of most types of tracking and estimation. Other application domains for which CI is
highly relevant include:

FIGURE 12.10 (continued).

TABLE 12.3 The Diagonal Elements of the 
Covariance Matrices for Each Node at the End 
of 100 Timesteps for Each of the Consistent 
Distribution Schemes

Node Scheme σ2
x σ2

x· σ2
ẍ

1 NONE
CI
GCI

0.8823
0.6055
0.4406

8.2081
0.9359
0.7874

37.6911
14.823
13.050

2 NONE
CI
GCI

50.5716*
1.2186
0.3603

1.6750
0.2914
0.2559

16.8829
0.2945
0.2470

3 NONE
CI
GCI

77852.3*
1.5325
0.7861

7.2649*
0.3033
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0.2476
0.2457
0.2453

4 NONE
CI
GCI

75.207
1.2395
0.5785

2.4248
0.3063
0.2636

19.473
0.2952
0.2466

Note: NONE — no distribution; CI — the CI algo-
rithm; GCI — generalized CI algorithm, which is described
in Section 12.6. An asterisk denotes that a state is unobserv-
able and its variance is increasing without bound. The
covariance used for the GCI values is Pi (k|k) = Pi,1 (k|k) +
Pi,2 (k|k).
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• Multiple model filtering — Many systems switch behaviors in a complicated manner, so that a
comprehensive model is difficult to derive. If multiple approximate models are available that
capture different behavioral aspects with different degrees of fidelity, their estimates can be com-
bined to achieve a better estimate. Because they are all modeling the same system, however, the
different estimates are likely to be highly correlated.12,13

• Simultaneous map building and localization for autonomous vehicles — When a vehicle estimates
the positions of landmarks in its environment while using those same landmarks to update its
own position estimate, the vehicle and landmark position estimates become highly correlated.5,14

• Track-to-track data fusion in multiple-target tracking systems — When sensor observations are made
in a dense target environment, there is ambiguity concerning which tracked target produced each
observation. If two tracks are determined to correspond to the same target, assuming independence
may not be possible when combining them, if they are derived from common observation
information.11,12

• Nonlinear filtering — When nonlinear transformations are applied to observation estimates, corre-
lated errors arise in the observation sequence. The same is true for time propagations of the system
estimate. Covariance intersection will ensure nondivergent nonlinear filtering if every covariance
estimate is conservative. Nonlinear extensions of the Kalman filter are inherently flawed because they
require independence regardless of whether the covariance estimates are conservative.5,15-20

Current approaches to these and many other problems attempt to circumvent troublesome correlations
by heuristically adding “stabilizing noise” to updated estimates to ensure that they are conservative. The
amount of noise is likely to be excessive in order to guarantee that no covariance components are
underestimated. Covariance intersection ensures the best possible estimate, given the amount of infor-
mation available. The most important fact that must be emphasized is that the procedure makes no
assumptions about independence, nor the underlying distributions of the combined estimates. Conse-
quently, covariance intersection likely will replace the Kalman filter in a wide variety of applications
where independence assumptions are unrealistic.
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Appendix 12.A The Consistency of CI

This appendix proves that covariance intersection yields a consistent estimate for any value of ω and
–
Pab

providing that a and b are consistent.21

The CI algorithm calculates its mean using Equation 12.7. The actual error in this estimate is

(12.34)

By taking outer products and expectations, the actual mean squared error which is committed by using
Equation 12.7 to calculate the mean is

(12.35)
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Because
–
Pab is not known, the true value of the mean squared error cannot be calculated. However, CI

implicitly calculates an upper bound of this quantity. If Equation 12.35 is substituted into Equation 12.3,
the consistency condition can be written as

(12.36)

Pre- and postmultiplying both sides by P –1
cc and collecting terms, gives

(12.37)

An upper bound on P –1
cc , which can be found and expressed using Paa, Pbb ,

–
Paa, and

–
Pbb. From the

consistency condition for a, 

(12.38)

or, by pre- and postmultiplying by P –1
aa ,  

(12.39)

A similar condition exists for b and, substituting these results in Equation 12.6,

(12.40)

(12.41)

Substituting this lower bound on P –1
cc into Equation 12.37 leads to

(12.42)

or

(12.43)

Clearly, the inequality must hold for all choices of 
–
Pab and ω ∈  [0, 1].
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Appendix 12.B MATLAB Source Code

This appendix provides source code for performing the CI update in MATLAB.

12.B.1 Conventional CI
function [c,C,omega]=CI(a,A,b,B,H)
%
% function [c,C,omega]=CI(a,A,b,B,H)
%
% This function implements the CI algorithm and fuses two estimates
% (a,A) and (b,B) together to give a new estimate (c,C) and the value
% of omega which minimizes the determinant of C.  The observation
% matrix is H.

Ai=inv(A);
Bi=inv(B);

% Work out omega using the matlab constrained minimiser function
% fminbnd().
f=inline('1/det(Ai*omega+H''*Bi*H*(1-omega))', ...
         'omega', 'Ai', 'Bi', 'H');
omega=fminbnd(f,0,1,optimset('Display','off'),Ai,Bi,H);

% The unconstrained version of this optimisation is:
% omega = fminsearch(f,0.5,optimset('Display','off'),Ai,Bi,H);
% omega = min(max(omega,0),1);

% New covariance
C=inv(Ai*omega+H'*Bi*H*(1-omega));

% New mean
nu=b-H*a;
W=(1-omega)*C*H'*Bi;
c=a+W*nu;

12.B.2 Split CI
function [c,C1,C2,omega] = SCI(a,A1,A2,b,B1,B2,H)
%
% function [c,C1,C2,omega] = SCI(a,A1,A2,b,B1,B2,H)
%
% This function implements the split CI algorithm and fuses two
% estimates (a,A1,A2) and (b,B1,B2) together to give a new estimate
% (c,C1,C2) and the value of omega which minimizes the determinant of
% (C1+C2). The observation matrix is H.
%

% Work out omega using the matlab constrained minimiser function
% fminbnd().

f=inline('1/det(omega*inv(A1+omega*A2)+(1-omega)*H''*inv(B1+(1-
omega)*B2)*H)', ...
         'omega', 'A1', 'A2', 'B1', 'B2', 'H');
omega = fminbnd(f,0,1,optimset('Display','off'),A1,A2,B1,B2,H);
©2001 CRC Press LLC



% The unconstrained version of this optimisation is:
% omega = fminsearch(f,0.5,optimset('Display','off'),A1,A2,B1,B2,H);
% omega = min(max(omega,0),1);

Ai=omega*inv(A1+omega*A2);
HBi=(1-omega)*H'*inv(B1+(1-omega)*B2);

% New covariance
C=inv(Ai+HBi*H);
C2=C*(Ai*A2*Ai'+HBi*B2*HBi')*C;
C1=C-C2;

% New mean
nu=b-H*a;
W=C*HBi;
c=a+W*nu;
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13.1 Introduction

The extended Kalman filter (EKF) has been one of the most widely used methods for tracking and
estimation based on its apparent simplicity, optimality, tractability, and robustness. However, after more
than 30 years of experience with it, the tracking and control community has concluded that the EKF is
difficult to implement, difficult to time, and only reliable for systems that are almost linear on the time
scale of the update intervals. This chapter reviews the unscented transformation (UT), a mechanism for
propagating mean and covariance information through nonlinear transformations, and describes its
implications for data fusion. This method is more accurate, is easier to implement, and uses the same
order of calculations as the EKF. Furthermore, the UT permits the use of Kalman-type filters in appli-
cations where, traditionally, their use was not possible. For example, the UT can be used to rigorously
integrate artificial intelligence-based systems with Kalman-based systems.

Performing data fusion requires estimates of the state of a system to be converted to a common
representation. The mean and covariance representation is the lingua franca of modern systems engi-
neering. In particular, the covariance intersection (CI)1 and Kalman filter (KF)2 algorithms provide
mechanisms for fusing state estimates defined in terms of means and covariances, where each mean
vector defines the nominal state of the system and its associated error covariance matrix defines a lower
bound on the squared error. However, most data fusion applications require the fusion of mean and
covariance estimates defining the state of a system in different coordinate frames. For example, a tracking
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system might maintain estimates in a global Cartesian coordinate frame, while observations of the tracked
objects are generated in the local coordinate frames of various sensors. Therefore, a transformation must
be applied to convert between the global coordinate frame and each local coordinate frame.

If the transformation between coordinate frames is linear, the linearity properties of the mean and
covariance makes the application of the transformation trivial. Unfortunately, most tracking sensors take
measurements in a local polar or spherical coordinate frame (i.e., they measure range and bearings) that
is not linearly transformable to a Cartesian coordinate frame. Rarely are the natural coordinate frames
of two sensors linearly related. This fact constitutes a fundamental problem that arises in virtually all
practical data fusion systems.

The UT, a mechanism that addresses the difficulties associated with converting mean and covariance
estimates from one coordinate frame to another, can be applied to obtain mean and covariance estimates
from systems that do not inherently produce estimates in that form. For example, this chapter describes
how the UT can allow high-level artificial intelligence (AI) and fuzzy control systems to be integrated
seamlessly with low-level KF and CI systems.

The structure of this chapter is as follows: Section 13.2 describes the nonlinear transformation problem
within the Kalman filter framework and analyzes the KF prediction problem in detail. The UT is
introduced and its performance is analyzed in Section 13.3. Section 13.4 demonstrates the effectiveness
of the UT with respect to a simple nonlinear transformation (polar to Cartesian coordinates with large
bearing uncertainty) and a simple discontinuous system. Section 13.5 examines how the transformation
can be embedded into a fully recursive estimator that incorporates process and observation noise.
Section 13.6 discusses the use of the UT in a tracking example, and Section 13.7 describes its use with a
complex process and observation model. Finally, Section 13.8 shows how the UT ties multiple levels of
data fusion together into a single, consistent framework.

13.2 Estimation in Nonlinear Systems

13.2.1 Problem Statement

Minimum mean squared error (MMSE) estimators can be broadly classified into linear and nonlinear
estimators. Of the linear estimators, by far the most widely used is the Kalman filter.2* Many researchers
have attempted to develop suitable nonlinear MMSE estimators. However, the optimal solution requires
that a complete description of the conditional probability density be maintained,3 and this exact descrip-
tion requires a potentially unbounded number of parameters. As a consequence, many suboptimal
approximations have been proposed in the literature. Traditional methods are reviewed by A. H.
Jazwinski4 and P. S. Maybeck.5 Recent algorithms have been proposed by F. E. Daum,6 N. J. Gordon et al.,7

and M. A. Kouritzin.8 Despite the sophistication of these and other approaches, the extended Kalman
filter (EKF) remains the most widely used estimator for nonlinear systems.9,10 The EKF applies the Kalman
filter to nonlinear systems by simply linearizing all of the nonlinear models so that the traditional linear
Kalman filter equations can be applied. However, in practice, the EKF has three well-known drawbacks:

1. Linearization can produce highly unstable filters if the assumption of local linearity is violated.
Examples include estimating ballistic parameters of missiles11-14 and some applications of computer
vision.15 As demonstrated later in this chapter, some extremely common transformations that are
used in target tracking systems are susceptible to these problems.

*Researchers often (and incorrectly) claim that the Kalman filter can be applied only if the following two conditions
hold: (i) all probability distributions are Gaussian and (ii) the system equations are linear. The Kalman filter is, in
fact, the minimum mean squared linear estimator that can be applied to any system with any distribution, provided
the first two moments are known. However, it is only the globally optimal estimator under the special case that the
distributions are all Gaussian.
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2. Linearization can be applied only if the Jacobean matrix exists, and the Jacobian matrix exists only
if the system is differentiable at the estimate. Although this constraint is satisfied by the dynamics
of continuous physical systems, some systems do not satisfy this property. Examples include jump-
linear systems, systems whose sensors are quantized, and expert systems that yield a finite set of
discrete solutions.

3. Finally, the derivation of the Jacobian matrices is nontrivial in most applications and can often
lead to significant implementation difficulties. In P. A. Dulimov,16 for example, the derivation of
a Jacobian requires six pages of dense algebra. Arguably, this has become less of a problem, given
the widespread use of symbolic packages such as Mathematica17 and Maple.18 Nonetheless, the
computational expense of calculating a Jacobian can be extremely high if the expressions for the
terms are nontrivial.

Appreciating how the UT addresses these three problems requires an understanding of some of the
mechanics of the KF and EKF.

Let the state of the system at a time step k be the state vector x(k). The Kalman filter propagates the
first two moments of the distribution of x(k) recursively and has a distinctive “predictor-corrector”
structure. Let x̂ (i | j) be the estimate of x(i) using the observation information up to and including time
j, Z j = [z(1),…,z(j)]. The covariance of this estimate is P(i | j). Given an estimate x̂(k |k), the filter first
predicts what the future state of the system will be using the process model. Ideally; the predicted
quantities are given by the expectations

(13.1)

(13.2)

When f[·] and h[·] are nonlinear, the precise values of these statistics can be calculated only if the
distribution of x(k) is perfectly known. However, this distribution has no general form, and a potentially
unbounded number of parameters are required. Therefore, in most practical algorithms these expected
values must be approximated.

The estimate x̂(k + 1|k + 1) is found by updating the prediction with the current sensor measurement.
In the Kalman filter, a linear update rule is specified and the weights are chosen to minimize the mean
squared error of the estimate.

(13.3)

Note that these equations are only a function of the predicted values of the first two moments of x(k)
and z(k). Therefore, the problem of applying the Kalman filter to a nonlinear system is the ability to
predict the first two moments of x(k) and z(k).
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13.2.2 The Transformation of Uncertainty

The problem of predicting the future state or observation of the system can be expressed in the following
form. Suppose that x is a random variable with mean –x and covariance Pxx. A second random variable,
y, is related to x through the nonlinear function

(13.4)

The mean –y and covariance Pyy of y must be calculated.
The statistics of y are calculated by (1) determining the density function of the transformed distribution

and (2) evaluating the statistics from that distribution. In some special cases, exact, closed form solutions
exist (e.g., when f[·] is linear or is one of the forms identified in F. E. Daum6). However; as explained
above, most data fusion problems do not possess closed-form solutions and some kind of an approxi-
mation must be used. A common approach is to develop a transformation procedure from the Taylor
series expansion of Equation 13.4 about –x. This series can be expressed as

(13.5)

where δx is a zero mean Gaussian variable with covariance Pxx and ∇ nfδxn is the appropriate nth order
term in the multidimensional Taylor Series. The transformed mean and covariance are

(13.6)

(13.7)

In other words, the nth order term in the series for –x is a function of the nth order moments of x
multiplied by the nth order derivatives of f[·] evaluated at x = –x. If the moments and derivatives can be
evaluated correctly up to the nth order, the mean is correct up to the nth order as well. Similar comments
hold for the covariance equation, although the structure of each term is more complicated. Since each
term in the series is scaled by a progressively smaller and smaller term the lowest-order terms in the
series are likely to have the greatest impact. Therefore, the prediction procedure should be concentrated
on evaluating the lower order terms.

The EKF exploits linearization. Linearization assumes that the second- and higher-order terms of δx
in Equation 13.5 can be neglected. Under this assumption,

(13.8)

(13.9)

However, in many practical situations, linearization introduces significant biases or errors. These cases
require more accurate prediction techniques.
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13.3 The Unscented Transformation (UT)

13.3.1 The Basic Idea

The UT is a method for calculating the statistics of a random variable that undergoes a nonlinear
transformation. This method is founded on the intuition that it is easier to approximate a probability
distribution than it is to approximate an arbitrary nonlinear function or transformation.19 The approach is
illustrated in Figure 13.1. A set of points (sigma points) is chosen with sample mean and sample covariance
of the nonlinear function is –x and Pxx. The nonlinear function is applied to each point, in turn, to yield
a cloud of transformed points; –y and Pyy are the statistics of the transformed points.

Although this method bears a superficial resemblance to Monte Carlo-type methods, there is an
extremely important and fundamental difference. The samples are not drawn at random; they are drawn
according to a specific, deterministic algorithm. Since the problems of statistical convergence are not
relevant, high-order information about the distribution can be captured using only a very small number
of points. For an n-dimensional space, only n + 1 points are needed to capture any given mean and
covariance. If the distribution is known to be symmetric, 2n points are sufficient to capture the fact that
the third- and all higher-order odd moments are zero for any symmetric distribution.19 

The set of sigma points, S, consists of l vectors and their appropriate weights, S = {i = 0, 0,…, l – 1 :
Xi, Wi}. The weights Wi can be positive or negative but must obey the normalization condition

(13.10)

Given these points, –y and Pyy are calculated using the following procedure:

1. Instantiate each point through the function to yield the set of transformed sigma points,

2. The mean is given by the weighted average of the transformed points,

(13.11)

FIGURE 13.1 The principle of the unscented transformation.
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3. The covariance is the weighted outer product of the transformed points,

(13.12)

The crucial issue is to decide how many sigma points should be used, where they should be located,
and what weights they should be assigned. The points should be chosen so that they capture the “most
important” properties of x. This can be formalized as follows. Let Px(x) be the density function of x. The
sigma points capture the necessary properties by obeying the condition

The decision as to which properties of x are to be captured precisely and which are to be approximated
is determined by the demands of the particular application in question. Here, the moments of the
distribution of the sigma points are matched with those of x. This is motivated by the Taylor series
expansion, given in Section 13.2.2, which shows that matching the moments of x up to the nth order
means that Equations 13.11 and 13.12 capture –y and Pyy, up to the nth order as well.20

Note that the UT is distinct from other efforts published in the literature. First, some authors have
considered the related problem of assuming that the distribution takes on a particular parameterized
form, rather than an entire, arbitrary distribution. Kushner, for example, describes an approach whereby
a distribution is approximated at each time step by a Gaussian.21 However, the problem with this approach
is that it does not address the fundamental problem of calculating the mean and covariance of the
nonlinearly transformed distribution. Second, the UT bears some relationship to quadrature, which has
been used to approximate the integrations implicit in statistical expectations. However, the UT avoids
some of the difficulties associated with quadrature methods by approximating the unknown distribution.
In fact, the UT is most closely related to perturbation analysis. In a 1989 article, Holztmann introduced
a noninfinitesimal perturbation for a scalar system.22 Holtzmann’s solution corresponds to that of the
symmetric UT in the scalar case, but their respective generalizations (e.g., to higher dimensions) are not
equivalent.

13.3.2 An Example Set of Sigma Points

A set of sigma points can be constructed using the constraints that they capture the first three moments
of a symmetric distribution: g [S, px(x)] = [g1 [S, px(x)] g2 [S, px(x)] g3 [S, px(x)]]T where

(13.13)
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The set is23

(13.16)

where κ  is a real number,  is the ith row or column* of the matrix square root of (n + κ)
P (k |k), and Wi is the weight associated with the ith point.

13.3.3 Properties of the Unscented Transform

Despite its apparent similarity to other efforts described in the data fusion literature, the UT has a number
of features that make it well suited for the problem of data fusion in practical problems:

• The UT can predict with the same accuracy as the second-order Gauss filter, but without the need
to calculate Jacobians or Hessians. The reason is that the mean and covariance of x are captured
precisely up to the second order, and the calculated values of the mean and covariance of y also
are correct to the second order. This indicates that the mean is calculated to a higher order of
accuracy than the EKF, whereas the covariance is calculated to the same order of accuracy.

• The computational cost of the algorithm is the same order of magnitude as the EKF. The most
expensive operations are calculating the matrix square root and determining the outer product of
the sigma points to calculate the predicted covariance. However, both operations are O(n3), which
is the same cost as evaluating the n × n matrix multiplies needed to calculate the predicted
covariance.**

• The algorithm naturally lends itself to a “black box” filtering library. The UT calculates the mean
and covariance using standard vector and matrix operations and does not exploit details about
the specific structure of the model.

• The algorithm can be used with distributions that are not continuous. Sigma points can straddle
a discontinuity. Although this does not precisely capture the effect of the discontinuity, its effect
is to spread the sigma points out such that the mean and covariance reflect the presence of the
discontinuity.

• The UT can be readily extended to capture more information about the distribution. Because the
UT captures the properties of the distribution, a number of refinements can be applied to improve
greatly the performance of the algorithm. If only the first two moments are required, then n + 1
sigma points are sufficient. If the distribution is assumed or is known to be symmetric, then n + 2

*If the matrix square root A of P is of the form P = ATA, then the sigma points are formed from the rows of A.
However, for a root of the form P = AAT, the columns of A are used.

**The matrix square root should be calculated using numerically efficient and stable methods such as the Cholesky
decomposition.24
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sigma points are sufficient. Therefore, the total number of calculations required for calculating
the new covariance is O(n3), which is the same order as that required by the EKF. The transform
has also been demonstrated to propagate successfully the fourth-order moment (or kurtosis) of
a Gaussian distribution25 and that it can be used to propagate the third-order moments (or skew)
of an arbitrary distribution.26

13.4 Uses of the Transformation

This section demonstrates the effectiveness of the UT with respect to two nonlinear systems that represent
important classes of problems encountered in the data fusion literature — coordinate conversions and
discontinuous systems.

13.4.1 Polar to Cartesian Coordinates

One of the most important transformations in target tracking is the conversion from polar to Cartesian
coordinates. This transformation is known to be highly susceptible to linearization errors. D. Lerro and
Y. Bar-Shalom, for example, show that the linearized conversion can become inconsistent when the
standard deviation in the bearing estimate is less than a degree.27 This subsection illustrates the use of
the UT on a coordinate conversion problem with extremely high angular uncertainty.

Suppose a mobile autonomous vehicle detects targets in its environment using a range-optimized
sonar sensor. The sensor returns polar information (range, r, and bearing, θ), which is converted to
estimate Cartesian coordinates. The transformation is

The real location of the target is (0, 1). The difficulty with this transformation arises from the physical
properties of the sonar. Fairly good range accuracy (with 2cm standard deviation) is traded off to give
a very poor bearing measurement (standard deviation of 15°).28 The large bearing uncertainty causes the
assumption of local linearity to be violated.

To appreciate the errors that can be caused by linearization, compare its values for the statistics of
(x, y) with those of the true statistics calculated by Monte Carlo simulation. Due to the slow convergence
of random sampling methods, an extremely large number of samples (3.5 × 106) were used to ensure
that accurate estimates of the true statistics were obtained. The results are shown in Figure 13.2(a). This
figure shows the mean and 1σ contours calculated by each method. The 1σ contour is the locus of points
{y : (y – –y) P –1

y (y – –y) = 1} and is a graphical representation of the size and orientation of Pyy. The figure
demonstrates that the linearized transformation is biased and inconsistent. This is most pronounced
along the y-axis, where linearization estimates that the position is lm, whereas in reality it is 96.7cm. In
this example, linearization errors effectively introduce an error which is over 1.5 times the standard
deviation of the range measurement. Since it is a bias that arises from the transformation process itself,
the same error with the same sign will be committed each time a coordinate transformation takes place.
Even if there were no bias, the transformation would still be inconsistent because its ellipse is not
sufficiently extended along the y-axis.

In practice, this inconsistency can be resolved by introducing additional stabilizing noise that increases
the size of the transformed covariance. This is one possible explanation of why EKFs are difficult to
tune — sufficient noise must be introduced to offset the defects of linearization. However, introducing
stabilizing noise is an undesirable solution because the estimate remains biased and there is no general
guarantee that the transformed estimate remains consistent or efficient.

The performance benefits of using the UT can be seen in Figure 13.2(b), which shows the means and
1σ contours determined by the different methods. The mismatch between the UT mean and the true
mean is extremely small (approximately 6 × 10–4). The transformation is consistent, ensuring that the
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filter does not diverge. As a result, there is no need to introduce artificial noise terms that would degrade
performance even when the angular uncertainty is extremely high.

13.4.2 A Discontinuous Transformation
Consider the behavior of a two-dimensional particle whose state consists of its position x (k) = [x(k),
y(k)]T. The projectile is initially released at time 1 and travels at a constant and known speed, vx, in the
x direction. The objective is to estimate the mean position and covariance of the position at time 2, [x(2),
y(2)]T, where ∆T

∆
= t2 – t1. The problem is made difficult by the fact that the path of the projectile is

obstructed by a wall that lies in the “bottom right quarter-plane” (x ≥ 0, y ≤ 0). If the projectile hits the
wall, a perfectly elastic collision will occur, and the projectile will be reflected back at the same velocity

FIGURE 13.2 The mean and standard deviation ellipses for the true statistics, those calculated through linearization
and those calculated by the unscented transformation. (A) Results from linearization. The true mean is at × and the
uncertainty ellipse is solid. Linearization calculates the mean at C and the uncertainty ellipse is dashed. (B) Results
from the UT. The true mean is at × and the uncertainty ellipse is dotted. The UT mean is at + (overlapping the
position of the true mean) and is the solid ellipse. The linearized mean is at C and its ellipse is also dotted.
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as it traveled forward. This situation is illustrated in Figure 13.3(A), which also shows the covariance
ellipse of the initial distribution.

The process model for this system is

(13.17)

(13.18)

At time 1, the particle starts in the left half-plane (x ≤ 0) with position [x(1), y(1)]T. The error in this
estimate is Gaussian, has zero mean, and has covariance P(1|1). Linearized about this start condition,
the system appears to be a simple constant velocity linear model.

FIGURE 13.3 A discontinuous system example: a particle can either strike a wall and rebound, or continue to move
in a straight line. The experimental results show the effect of using different start values for y. 
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The true conditional mean and covariance was determined using Monte Carlo simulation for different
choices of the initial mean of y. The mean squared error calculated by the EKF and by the UT for different
values is shown in Figure 13.3(B). The UT estimates the mean very closely, suffering only small spikes
as the translated sigma points successively pass the wall. Further analysis shows that the covariance for
the filter is only slightly larger than the true covariance, but conservative enough to account for the
deviation of its estimated mean from the true mean. The EKF, however, bases its entire estimate of the

1. The set of sigma points are created by applying a sigma point selection algorithm (e.g., Equation 13.16) to the
augmented system given by Equation 13.21.

2. The transformed set is given by instantiating each point through the process model,

3. The predicted mean is computed as

4. And the predicted covariance is computed as

5. Instantiate each of the prediction points through the observation model,

6. The predicted observation is calculated by

7. The innovation covariance is

8. The cross-correlation matrix is determined by

9. Finally, the update can be performed using the normal Kalman filter equations:

FIGURE 13.4 A general formulation of the Kalman filter using the unscented transformation. As explained in the
text, there is a significant scope for optimizing this algorithm.
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conditional mean on the projection of the prior mean; therefore, its estimates bear no resemblance to
the true mean, except when most of the distribution either hits or misses the wall and the effect of the
discontinuity is minimized.

13.5 The Unscented Filter

The UT can be used as the cornerstone of a recursive Kalman-type of estimator. The transformation
processes that occur in a Kalman filter (Equation 13.3) consist of the following steps:

1. Predict the new state of the system, x̂ (k + 1|k), and its associated covariance, P (k + 1|k). This
prediction must take into account the effects of process noise.

2. Predict the expected observation, ẑ (k + 1|k), and the innovation covariance, Pvv (k + 1|k). This
prediction should include the effects of observation noise.

3. Finally, predict the cross-correlation matrix, Pxz (k + 1|k).

These steps can be easily accommodated by slightly restructuring the state vector and process and
observation models. The most general formulation augments the state vector with the process and noise
terms to give an na = n + q + r dimensional vector,

(13.19)

The process and observation models are rewritten as a function of xa (k),

(13.20)

and the UT uses sigma points that are drawn from

(13.21)

The matrices on the leading diagonal are the covariances and the off-diagonal sub-blocks are the
correlations between the state errors and the process noises.* Although this method requires the use of
additional sigma points, it incorporates the noises into the predicted state with the same level of accuracy
as the propagated estimation errors. In other words, the estimate is correct to the second order and no
Jacobians, Hessians, or other numerical approximations must be calculated.

*If correlations exist between the noise terms, Equation 13.21 can be generalized to draw the sigma points from
the covariance matrix

Such correlation structures commonly arise in algorithms such as the Schmidt-Kalman filter.29
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The full unscented filter is summarized in Figure 13.4. However, recall that this is the most general
form of the UF and many optimizations can be made. For example, if the process model is linear, but
the observation model is not, the normal linear Kalman filter prediction equations can be used to
calculate x̂ (k + 1|k) and P (k + 1|k). The sigma points would be drawn from the prediction distribution
and would only be used to calculate ẑ (k + 1|k), Pxv (k + 1|k), and Pvv (k + 1|k).

The following two sections describe the application of the unscented filter to two case studies. The
first demonstrates the accuracy of the recursive filter, and the second considers the problem of an
extremely involved process model.

13.6 Case Study: Using the UF with Linearization Errors

This section considers the problem that is illustrated in Figure 13.5: a vehicle entering the atmosphere at
high altitude and at very high speed. The position of the body is to be tracked by a radar which accurately
measures range and bearing. This type of problem has been identified by a number of authors11-14 as being
particularly stressful for filters and trackers, based on the strongly nonlinear nature of three types of forces
that act on the vehicle. The most dominant is aerodynamic drag, which is a function of vehicle speed and
has a substantial nonlinear variation in altitude. The second type of force is gravity, which accelerates the
vehicle toward the center of the earth. The final type of force is random buffeting. The effect of these
forces gives a trajectory of the form shown in Figure 13.5. Initially the trajectory is almost ballistic; however,
as the density of the atmosphere increases, drag effects become important and the vehicle rapidly decel-
erates until its motion is almost vertical. The tracking problem is made more difficult by the fact that the
drag properties of the vehicle could be only very crudely known.

In summary, the tracking system should be able to track an object which experiences a set of compli-
cated, highly nonlinear forces. These depend on the current position and velocity of the vehicle, as well
as on certain characteristics that are not precisely known. The filter’s state space consists of the position
of the body (x1 and x2), its velocity (x3 and x4), and a parameter of its aerodynamic properties (x5). The
vehicle state dynamics are

(13.22)

FIGURE 13.5 The reentry problem. The dashed line is the sample vehicle trajectory and the solid line is a portion
of the Earth’s surface. The position of the radar is marked by a C.
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where D(k) is the drag-related force term, G(k) is the gravity-related force term, and v1(k), v2(k), and v3(k)
are the process noise terms. Defining R(k) =  as the distance from the center of the Earth
and V(k) =  as absolute vehicle speed, the drag and gravitational terms are

For this example, the parameter values are β0 = –0.59783, H0 = 13.406, Gm0 = 3.9860 × 105, and R0 =
6374, and they reflect typical environmental and vehicle characteristics.13 The parameterization of the
ballistic coefficient, β(k), reflects the uncertainty in vehicle characteristics.12 β0 is the ballistic coefficient
of a “typical vehicle,” and it is scaled by exp x5(k) to ensure that its value is always positive. This is vital
for filter stability.

The motion of the vehicle is measured by a radar located at (xr,yr). It can measure range r and bearing
θ at a frequency of 10Hz, where

w1(k) and w2(k) are zero mean uncorrelated noise processes with variances of lm and 17mrad, respec-
tively.30 The high update rate and extreme accuracy of the sensor results in a large quantity of extremely
high quality data for the filter.

The true initial conditions for the vehicle are

In other words, the vehicle’s coefficient is twice the nominal coefficient.
The vehicle is buffeted by random accelerations,
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The initial conditions assumed by the filter are

The filter uses the nominal initial condition and, to offset for the uncertainty, the variance on the initial
estimate is 1.

Both filters were implemented in discrete time and observations were taken at a frequency of 10Hz.
However, as a result of the intense nonlinearities of the vehicle dynamics equations, the Euler approxi-
mation of Equation 13.22 was valid only for small time steps. The integration step was set to be 50ms,
which meant that two predictions were made per update. For the unscented filter, each sigma point was
applied through the dynamics equations twice. For the EKF, an initial prediction step and relinearization
had to be performed before the second step.

The performance of each filter is shown in Figure 13.6. This figure plots the estimated mean squared
estimation error (the diagonal elements of P(k |k)) against actual mean squared estimation error (which
is evaluated using 100 Monte Carlo simulations). Only x1, x3, and x5 are shown. The results for x2 are
similar to x1, and the x4 and x3 results are the same. In all cases, the unscented filter estimates its mean
squared error very accurately, maximizing the confidence of the filter estimates. The EKF, however, is
highly inconsistent; the peak mean squared error in x1 is 0.4km2, whereas its estimated covariance is over
100 times smaller. Similarly, the peak mean squared velocity error is 3.4 × 10–4km2s–2, which is more than
five times the true mean squared error. Finally, x5 is highly biased, and this bias decreases only slowly
over time. This poor performance shows that, even with regular and high quality updates, linearization
errors inherent in the EKF can be sufficient to cause inconsistent estimates.

13.7 Case Study: Using the UF with a High-Order 
Nonlinear System

In many tracking applications, obtaining large quantities of accurate sensor data is difficult. For example, an
air traffic control system might measure the location of an aircraft only once every few seconds. When
information is scarce, the accuracy of the process model becomes extremely important for two reasons. First,
if the control system must obtain an estimate of the target state more frequently than the tracker updates, a
predicted tracker position must be used. Different models can have a significant impact on the quality of
that prediction.31 Second, to optimize the performance of the tracker, the limited data from the sensors must
be exploited to the greatest degree possible. Within the Kalman filter framework, this can only be achieved
by developing the most accurate process model that is practical. However, such models can be high order
and nonlinear. The UF greatly simplifies the development and refinement of such models.

This section demonstrates the ease with which the UF can be applied to a prototype Kalman filter-
based localization system for a conventional road vehicle. The road vehicle, shown in Figure 13.7, under-
takes maneuvers at speeds in excess of 45mph (15ms–1). The position of the vehicle is to be estimated
with submeter accuracy. This problem is made difficult by the paucity of sensor information. Only the
following sources are available: an inertial navigation system (which is polled only at 10Hz), a set of
encoders (also polled at 10Hz), and a bearing-only sensor (rotation rate of 4Hz) which measures bearing
to a set of beacons. Because of the low quality of sensor information, the vehicle localization system can
meet the performance requirements only through the use of an accurate process model. The model that
was developed is nonlinear and incorporates kinematics, dynamics and slip due to tire deformation. It
also contains a large number of process noise terms. This model is extremely cumbersome to work with,
but the UF obviates the need to calculate Jacobians, greatly simplifying its use.
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The model of vehicle motion is developed from the two-dimensional “fundamental bicycle” which is
shown in Figure 13.7.32-34 This approximation, which is conventional for vehicle ride and handling
analysis, assumes that the vehicle consists of front and rear virtual wheels.* The vehicle body is the line
FGR with the front axle affixed at F and the rear axle fixed at R. The center of mass of the vehicle is
located at G, a distance a behind the front axle and b in front of the rear axle. The length of the wheel
base is B = a + b. The wheels can slip laterally with slip angles α f and αr respectively. The control inputs
are the steer angle, δ, and angular speed, ω, of the front virtual wheel.

FIGURE 13.6 The mean squared errors and estimated covariances calculated by an EKF and an unscented filter. (A)
Results for x1. (B) Results for x3. (C) Results for x5. In all of the graphs, the solid line is the mean squared error calculated
by the EKF, and the dotted line is its estimated covariance. The dashed line is the unscented mean squared error and the
dot-dashed line is its estimated covariance. In all diagrams, the EKF estimate is inconsistent but the UT estimate is not.

*Each virtual wheel lumps together the kinematic and dynamic properties of the pairs of wheels at the front and
rear axles.
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The filter estimates the position of F, (XF, YF) the orientation of FGR, ψ, and the effective radius of
the front wheel, R, (defined as the ratio of vehicle velocity to the rotation rate of the front virtual wheel).
The speed of the front wheel is VF and the path curvature is ρF. From the kinematics. the velocity of F is

FIGURE 13.6 (continued).

FIGURE 13.7 The actual experimental vehicle and the “fundamental bicycle model” representation used in the
design of the vehicle process model. (A) The host vehicle at the test site with sensor suite. (B) Vehicle kinematics.

0 20 40 60 80 100120140160180200
10-5

10-4

10-3

10-2

10-1

100
Mean squared error and variance of x5

Time s

(C)

C
oe

ffi
ci

en
t v

ar
ia

nc
e

(A)

RV α r

α f

VF

rF

rR
R

G

δψ

F

O

(B)

˙ cos sin cos tan

˙ cos cos

˙ ˙ ˙

˙

X V B

Y V V R

V

R

F F f F f f r

F F f F f

F F f

= + −[ ] = −[ ] + −[ ]( )
= + −[ ] =

= − −

=

ψ δ α ρ δ α δ α α

ψ δ α ω α

ψ ρ δ α

where

0

©2001 CRC Press LLC



The slip angle (α f) plays an extremely important role in determining the path taken by the vehicle
and a model for determining the slip angle is highly desirable. The slip angle is derived from the properties
of the tires. Specifically, tires behave as if they are linear torsional springs. The slip ankle on each wheel
is proportional to the force that acts on the wheel33

(13.23)

 Cαf
 and Cαr

 are the front and rear wheel lateral stiffness coefficients (which are imprecisely known). The
front and rear lateral forces, Fyf and Fyr, are calculated under the assumption that the vehicle has reached
a steady state; at any instant in time the forces are such that the vehicle moves along an arc with constant
radius and constant angular speed.35 Resolving moments parallel and perpendicular to OG, and taking
moments about G, the following simultaneous nonlinear equations must be solved:

m is the mass of the vehicle, VG and ρG are the speed and path curvature of G, and β is the attitude angle
(illustrated in Figure 13.7). These equations are solved using a conventional numerical solver24 to give
the tire forces. Through Equation 13.23, these determine the slip angles and, hence, the path of the
vehicle. Since Cαf

 and Cαr
 must account for modeling errors (such as the inaccuracies of a linear force-

slip angle relationship), these were treated as states and their values were estimated.
As this section has shown, a comprehensive vehicle model is extremely complicated. The state space

consists of six highly interconnected states. The model is made even more complicated by the fact that
that it possesses twelve process noise terms. Therefore, 18 terms must be propagated through the nonlinear
process model. The observation models are also very complex. (The derivation and debugging of such
Jacobians proved to be extremely difficult.) However, the UF greatly simplified the implementation,
tuning, and testing of the filter. An example of the performance of the final navigation system is shown
in Figure 13.8. Figure 13.8(a) shows a “figure of eight” route that was planned for the vehicle. This path
is highly dynamic (with continuous and rapid changes in both vehicle speed and steer angle) and contains
a number of well-defined landmarks (which were used to validate the algorithm). There is extremely
good agreement between the estimated and the actual paths, and the covariance estimate (0.25m2 in
position) exceeds the performance requirements.

13.8 Multilevel Sensor Fusion

This section discusses how the UT can be used in systems that do not inherently use a mean and covariance
description to describe their state. Because the UT can be applied to such systems, it can be used as a
consistent framework for multilevel data fusion. The problem of data fusion has been decomposed into
a set of hierarchical domains.36 The lowest levels, Level 0 and Level 1 (object refinement), are concerned
with quantitative data fusion problems such as the calculation of a target track. Level 2 (situation
refinement) and Level 3 (threat refinement) apply various high-level data fusion and pattern recognition
algorithms to attempt to glean strategic and tactical information from these tracks.

The difficulty lies in the fundamental differences in the representation and use of information. On the
one hand, the low-level tracking filter provides only mean and covariance information. It does not specify
an exact kinematic state from which an expert system could attempt to infer a tactical state. On the other
hand, an expert system may be able to predict accurately the behavior of a pilot under a range of situations.
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However, the system does not define a rigorous low-level framework for fusing its predictions with raw
sensor information to obtain high-precision estimates suitable for reliable tracking. The practical solution
to this problem has been to take the output of standard control and estimation routines, discretize them
into a more symbolic form (e.g., “slow” or “fast”), and process them with an expert/fuzzy rule base. The

FIGURE 13.8 The positions of the beacons can be seen in (A) and (B) as the row of ellipses at the top and bottom
of the figures.
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results of such processing are then converted into forms that can be processed by conventional process
technology.

One approach for resolving this problem, illustrated in Figure 13.9, is to combine the different data
fusion algorithms together into a single, composite data fusion algorithm that takes noise-corrupted raw
sensor data and provides the inferred high-level state. From the perspective of the track estimator, the
higher level fusion rules are considered to be arbitrary, nonlinear transformations. From the perspective
of the higher level data fusion algorithms, the UT converts the output from the low-level tracker into a
set of vectors. Each vector is treated as a possible kinematic state, which is processed by the higher-level
fusion algorithms. In other words, the low-level tracking algorithms do not need to understand the
concept of higher-level constructs, such as maneuvers, whereas the higher level algorithms do not need
to understand or produce probabilistic information.

Consider the problem of tracking an aircraft. The aircraft model consists of two components — a
kinematic model, which describes the trajectory of the aircraft for a given set of pilot inputs, and an
expert system, which attempts to infer current pilot intentions and predict future pilot inputs. The
location of the aircraft is measured using a tracking system, such as a radar.

Some sigma points might imply that the aircraft is making a rapid acceleration, some might indicate
a moderate acceleration, and yet others might imply that there is no discernible acceleration. Each of the
state vectors produced from the UT can be processed individually by the expert system to predict various
possible future states of the aircraft. For some of the state vectors, the expert system will signal air evasive
maneuvers and predict the future position of the aircraft accordingly. Other vectors, however, will not
signal a change of tactical state and the expert system will predict that the aircraft will maintain its current
speed and bearing. The second step of the UT consists of computing the mean and covariance of the set
of predicted state vectors from the expert system. This mean and covariance gives the predicted state of
the aircraft in a form that can then be fed back to the low-level filter. The important observation to be
made is that this mean and covariance reflect the probability that the aircraft will maneuver even though
the expert system did not produce any probabilistic information and the low-level filter knows nothing about
maneuvers.

13.9 Conclusions

This chapter has described some of the important issues arising from the occurrence of nonlinear
transformations in practical data fusion applications. Linearization is the most widely used approach for
dealing with nonlinearities, but linearized approximations have been shown to yield relatively poor
results. In response to this and other deficiencies of linearization, a new technique based on the UT has

FIGURE 13.9 A possible framework for multilevel information fusion using the unscented transformation.
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been developed for directly applying nonlinear transformations to discrete point distributions having
specified statistics (such as mean and covariance). An analysis of the new approach reveals that

• The UT is demonstrably superior to linearization in terms of expected error for all absolutely
continuous nonlinear transformations. The UT can be applied with non-differentiable functions
in which linearization is not possible.

• The UT avoids the derivation of Jacobian (and Hessian) matrices for linearizing nonlinear kine-
matic and observation models. This makes it conducive to the creation of efficient, general purpose
“black box” code libraries.

• Empirical results for several nonlinear transformations that typify those arising in practical appli-
cations clearly demonstrate that linearization yields very poor approximations compared to those
of the UT.

Beyond analytic claims of unproved accuracy, the UT offers a black box solution to a wide variety of
problems arising in both low- and high-level data fusion applications. In particular, it offers a mechanism
for seamlessly integrating the benefits of high-level methodologies — such as artificial intelligence, fuzzy
logic and neural networks — with the low-level workhorses of modern engineering practice — such as
covariance intersection and the Kalman filter.
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14.9 Summary and Conclusions
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The subject of this chapter is finite-set statistics (FISST), which is described extensively in Mathematics
of Data Fusion,1 and summarized in the recent article, “An Introduction to Multisource-Multitarget
Statistics and its Applications.”2 FISST provides a fully unified, scientifically defensible, probabilistic
foundation for the following aspects of multisource, multitarget, multiplatform data fusion: (1) multi-
source integration (i.e., detection, identification, and tracking) based on Bayesian filtering and estima-
tion;3-7 (2) sensor management using control theory;5,8,9 (3) performance evaluation using information
theory;10-13 (4) expert systems theory (e.g., fuzzy logic, the Dempster-Shafer theory of evidence, and rule-
based inference);14-16 (5) distributed fusion;17 and (5) aspects of situation/threat assessment.18

The core of FISST is a multisource-multitarget differential and integral calculus based on the fact that
belief-mass functions are the multisensor-multitarget counterparts of probability-mass functions. One
purpose of this calculus is to enable signal processing engineers to directly generalize conventional,
engineering-friendly statistical reasoning to multisensor, multitarget, multi-evidence applications. A
second purpose is to extend Bayesian (and other probabilistic) methodologies so that they are capable
of dealing with (1) imperfectly characterized data and sensor models and (2) true sensor models and
true target models for multisource-multitarget problems. One consequence is that FISST encompasses
certain expert-system approaches that are often described as “heuristic” — fuzzy logic, the Dempster-
Shafer theory of evidence, and rule-based inference — as special cases of a single probabilistic paradigm.

FISST has attracted a great deal of positive attention — and two distinct forms of criticism — since
it was first described in 1994. “An Introduction to Multisource-Multitarget Statistics and its Applications”2

was written as a response to both reactions, and this chapter is essentially a distillation of that monograph.
On the one hand, many engineering researchers have complained that Mathematics of Data Fusion is

difficult to understand. “An Introduction to Multisource-Multitarget Statistics and its Applications”
explains that if the foundations outlined in that book are taken for granted, FISST can — by design —
be reduced to a relatively simple “Statistics 101” formalism suitable for real applications using real data.
Some applications currently being investigated at the applied-research level are2

• Multisource datalink fusion and target identification,19

• Naval passive-acoustic anti-submarine fusion and target identification,20

• Air-to-ground target identification using SAR,21

• Scientific performance evaluation of multisource-multitarget data fusion algorithms,13,22,23

• Unified detection and tracking using true multitarget likelihood functions and approximate non-
linear filters,24

• Joint tracking, pose estimation, and target identification using HRRR.25

In recent years, FISST has been the target of a few attacks that can be summarized by the following
statement: “The multisource-multitarget engineering problems addressed by FISST actually require noth-
ing more complicated than Bayes’ rule, which means that FISST is of mere theoretical interest at best
and, at worst, is nothing more than pointless mathematical obfuscation.” “Multisource-Multitarget Sta-
tistics” demonstrates that this assertion is extraordinary — less in the ignorance that it displays regarding
FISST than in the ignorance that it displays regarding Bayes’ rule. Venturing away from standard appli-
cations addressed by standard textbooks and applying Bayesian approaches in a “cookbook” fashion
(rather than using a FISST approach) can create severe difficulties. This chapter highlights these diffi-
culties and shows how and why FISST resolves them.

The chapter is organized as follows. Section 14.1 introduces the basic practical issues underlying Bayesian
tracking and identification. Section 14.2 summarizes the basic statistical foundations of single-sensor,
©2001 CRC Press LLC



                                                                          
single-target tracking and identification. Section 14.3 introduces the concept of a multisource-multitarget
measurement model; multitarget motion models are likewise introduced in Section 14.4. The mathemat-
ical core of the approach — the FISST multisource-multitarget integral and differential calculus — is
summarized in Section 14.5. The basic concepts of multisource-multitarget statistics — especially those
of true multitarget measurement models and true multitarget motion models — are described in
Section 14.6. Optimal-Bayes and Robust-Bayes multisource-multitarget fusion, detection, tracking, and
identification (including sensor management) are described in Sections 14.7 and 14.8, respectively. Con-
clusions are presented in Section 14.9.

14.1 Introduction

This section describes the problems that FISST is meant to address and summarizes the FISST approach
for addressing them. The section is organized as follows. Sections 14.1.1 and 14.1.2 describe some basic
engineering issues in single-target and multitarget Bayesian inference — the “Bayesian Iceberg.” The
FISST approach is summarized in in Section 14.1.3, and Section 14.1.4 shows why this approach is
necessary if the “Bayesian Iceberg” is to be confronted successfully.

14.1.1 The “Bayesian Iceberg”: Models, Optimality, Computability

Recursive Bayesian nonlinear filtering and estimation has become the most accepted standard for devel-
oping algorithms that are optimal, theoretically defensible, and practical. However, the success of any
optimal-Bayes technique hinges on a number of subtle issues. In recent years, shortcomings in conven-
tional Bayesian thinking — and corresponding desires to expand the conceptual scope of Bayesian
methods to deal with them — have become evident. The purpose of this section is to explain why this
is the case. Our jumping-off point is Bayes’ rule:

(14.1)

where:

x denotes the unknown quantities of interest (e.g., position, velocity, and target class)

fprior (x), the prior distribution, encapsulates our previous knowledge about x

z represents new data

f (x|z), the likelihood function, describes the generation of data

fposterior (x|z), the posterior distribution, encapsulates our current knowledge about x
f (z) is the normalization constant

If time has expired before collection of the new information, z, then fprior (x) cannot be immediately
used in Bayes’ rule. It must first be extrapolated to a new prior f +

prior (x) that accounts for the uncertainties
caused by possible interim target motion. This extrapolation is accomplished using either the Markov
time-prediction integral26

(14.2)

or solution of the Fokker-Planck equation (FPE).27 In Equation 14.2, the density f+ (x |y) is the Markov
transition density that describes the likelihood that the target will have state x if it previously had state y.

The density, fposterior (x |z), contains all relevant information about the unknown state variables (i.e.,
position, velocity, and target identity) contained in x. One could, in principle, plot graphs or contour

f
f f

f
posterior

prior
x z

x z x

z
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( ) ( )
( )

f f f dprior prior
+ +( ) = ( ) ( )∫x x y y y
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maps of fposterior (x |z) in real time. However, this presupposes the existence of a human operator trained
to interpret them. Since current operational reality in most data fusion and tracking applications consists
of fewer and fewer operators overwhelmed by more and more data, full automation is a necessity. To
render the information in fposterior (x |z) available for fully automated real-time applications, we need a
Bayes-optimal state estimator that extracts an estimate x̂ of the actual target state from the posterior.
The maximum a posteriori (MAP) and expected a posteriori (EAP) estimators

(14.3)

are the most familiar Bayes-optimal state estimators. (Here, x̂ = arg maxx f (x) means that f (x̂) is the
largest possible value of f (x).)

The current near-sacrosanct status of the Bayesian approach is due in large part to the fact that it leads
to provably optimal algorithms within a simple conceptual framework — one that imposes no great
mathematical demands on its practitioners. Since engineering mathematics is a tool and not an end in
itself, this simplicity is a great strength — but also a great weakness. Recent years have seen the emergence
of a “cookbook Bayesian” viewpoint, which seems to consist of the belief that it is possible to appear
deeply authoritative about any engineering research and development problem — and at the same time
avoid careful thinking — by (1) writing down Bayes’ rule, (2) uttering the sacred incantation “Bayes-
optimal” (usually without a clue as to what this phrase actually means), (3) declaring victory, and then
(4) portraying complacency toward possible unexpected difficulties as a sign of intellectual superiority.
What such a belief reveals is a failure to grasp the fact that in and of itself, Bayes’ rule is nearly content-
free — its proof requires barely a single line. Its power derives from the fact that it is merely the visible
tip of a conceptual iceberg, the existence of which tends to be forgotten precisely because the rest of the
iceberg is taken for granted. In particular, both the optimality and the simplicity of the Bayesian frame-
work can be taken for granted only within the confines of standard applications addressed by standard
textbooks. When one ventures out of these confines one must exercise proper engineering prudence —
which includes verifying that standard textbook assumptions still apply.

14.1.1.1 The Bayesian Iceberg: Sensor Models

Bayes’ rule exploits, to the best possible advantage, the high-fidelity knowledge about the sensor contained
in the likelihood function f (z |x). If f (z |x) is too imperfectly understood, then an algorithm will “waste”
a certain amount Nsens of data trying (and perhaps failing) to overcome the mismatch between model
and reality. Many forms of data (e.g., generated by tracking radars) are well enough characterized that
f (z |x) can be constructed with sufficient fidelity. Other kinds of data (e.g., synthetic aperture radar (SAR)
images or high range resolution radar (HRRR) range profiles) are proving to be so difficult to simulate
that there is no assurance that sufficiently high fidelity will ever be achieved, particularly in real-time
operation. This is the point at which “cookbook Bayesian” complacency enters the scene: we jot down
Bayes’ rule and declare victory. In so doing, we have either failed to understand that there is a potential
problem — that our algorithm is Bayes-optimal with respect to an imaginary sensor unless we have the
provably true likelihood f (z |x) — or we are playing a shell game. That is, we are avoiding the real
algorithmic issue (what to do when likelihoods cannot be sufficiently well characterized) and instead
implicitly “passing the buck” to the data simulation community.

Finally, there are types of data — features extracted from signatures, English-language statements
received over link, and rules drawn from knowledge bases — that are so ambiguous (i.e., poorly understood
from a statistical point of view) that probabilistic approaches are not obviously applicable. Rather than
seeing this as a gap in Bayesian inference that needs to be filled, the “cookbook Bayesian” viewpoint
sidesteps the problem and frowns upon those who attempt to fill the gap with heuristic approaches such
as fuzzy logic.

ˆ arg max       ˆx x z x x z xMAP

x
posterior

EAP
posteriorf x f d= ( ) = ( ) ( )∫
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Even if f (z |x) can be determined with sufficient fidelity, multitarget problems present a new challenge.
We will “waste” data — or worse — unless we find the corresponding provably true multitarget likelihood —
the specific function f (z1,…,zm|x1,…,xn) that describes, with the same high fidelity as f (z |x), the likeli-
hood that the sensor will collect observations z1,…,zm (m random) given the presence of targets with
states x1,…xn (n random). Again, “cookbook Bayesian” complacency overlooks the problem — that our
boast of “Bayes-optimality” is hollow unless we can construct the provably true f (z1,…,zm |x1,…xn) —
or encourages us to play another shell game, constructing a heuristic multitarget likelihood and implicitly
assuming that it is true.

14.1.1.2 The Bayesian Iceberg: Motion Models

Much of what has been said about likelihoods f (z |x) applies with equal force to Markov densities f+ (x |y).
The more accurately that f+ (x |y) models target motion, the more effectively Bayes’ rule will do its job.
Otherwise, a certain amount Ntarg of data must be expended in overcoming poor motion-model selection.
Once again, however, what does one do in the multitarget situation if f+ (x |y) is truly accurate? We must
find the provably true multitarget Markov transition density — i.e., the specific function
f (x1,…,xn |y1,…yn′) that describes, with the same high fidelity as f+ (x |y) how likely it is that a group of
targets that previously were in states y1,…yn′ (n′ random) will now be found in states x1,…xn (n random).
The “cookbook Bayesian” viewpoint encourages us to simply assume that

f (x1,…,xn|y1,…,yn′) = f + (x1|y1)…f + (xn|yn′)

meaning, in particular, that the number of targets is constant and target motions are uncorrelated.
However, in real-world scenarios, targets can appear (e.g., MIRVs and decoys emerging from a ballistic
missile re-entry vehicle) or disappear (e.g., aircraft that drop beneath radar coverage) in correlated ways.
Consequently, multitarget filters that assume uncorrelated motion and/or constant target number may
perform poorly against dynamic multitarget environments, for the same reason that single-target trackers
that assume straight-line motion may perform poorly against maneuvering targets. In either case, data
is “wasted” in trying to overcome — successfully or otherwise — the effects of motion-model mismatch.

14.1.1.3 The Bayesian Iceberg: Output Generation

When we are faced with the problem of extracting an “answer” from the posterior distribution, compla-
cency may encourage us to blindly copy state estimators from textbooks — e.g. the MAP and EAP
estimators of Equation 14.3 — or define ad hoc ones. Great care must be exercised in the selection of a
state estimator, however. If the state estimator has unrecognized inefficiencies, then a certain amount,
Nest, of data will be unnecessarily “wasted” in trying to overcome them, though not necessarily with
success. For example, the EAP estimator plays an important role in theory, but often produces erratic
and inaccurate solutions when the posterior is multimodal.

Another example involves joint-estimation applications in which the state x has the form x = (u, v),
where u, v are two different kinds of state variables — e.g. kinematic state variables u versus target-
identity state variables v. In this case, we may be tempted to treat u, v as nuisance parameters and compute
separate marginal-MAP estimates:

(14.4)

Because integration loses information about the state variable being regarded as a nuisance parameter,
estimators of this type can converge more slowly than a joint estimator. They will also produce noisy,
unstable solutions when u, v are correlated and the signal-to-noise ratio is not large.28

In the multitarget case, the dangers of taking state estimation for granted become even more acute.
For example, we may fail to notice that the multitarget versions of the standard MAP and EAP estimators

ˆ arg max ,       ˆ arg max ,u u v z v v u v z u
u v

MAP
posterior

MAP
posteriorf d f d= ( ) = ( )∫ ∫
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are not even defined, let alone provably optimal. The source of this failure is, moreover, not some abstruse
point in theoretical statistics. Rather, it is a “cookbook Bayesian” carelessness that encourages us to
overlook unexpected difficulties caused by a familiar part of everyday engineering practice: units of
measurement.

14.1.1.4 The Bayesian Iceberg: Formal Optimality

The failure of the standard Bayes-optimal state estimators in the multitarget case has far-reaching con-
sequences for optimality. One of the reasons that the “cookbook Bayesian” viewpoint has become so
prevalent is that — because well-known textbooks have already done the work for us — we can, without
expended effort or cost, proclaim the “optimality” of whatever algorithms we propose. A key point that
is often overlooked, however, is that many of the classical Bayesian optimality results depend on certain
seemingly esoteric mathematical concerns. In perhaps ninety-five percent of all engineering applications —
which is to say, standard applications covered by the standard textbooks — these concerns can be safely
ignored. Danger awaits the “cookbook Bayesian” viewpoint in the other five percent. Such is the case
with multitarget applications. Because the standard Bayes-optimal state estimators fail in the multitarget
case, we must construct new multitarget state estimators and prove that they are well behaved. This
means that words like “topology” and “measurable” can no longer be swept under the rug.

14.1.1.5 The Bayesian Iceberg: Computability

If the simplicity of Equations 14.1 and 14.3 cannot be taken for granted in so far as modeling and
optimality are concerned, then such is even more the case when it comes to computational tractability.29

The prediction integral and Bayes normalization constant must be computed using numerical integration,
and — since an infinite number of parameters are required to characterize fposterior (x |y) in general —
approximation is unavoidable. A “cookbook Bayesian” viewpoint may tempt us to apply blindly (decep-
tively) easy-to-understand textbook techniques that seem to promise high (i.e., O(N) or O(N log N))
computational efficiencies per data-collection cycle. Naive approximations, however, create the same
difficulties as model-mismatch problems. An algorithm must “waste” a certain amount Nappx of data
overcoming — or failing to overcome — accumulation of approximation error, numerical instability, etc.

One example is the use of central finite-difference schemes to solve the Fokker-Planck equation (FPE)
for f +

prior. In filtering problems, the convection term of the FPE dominates the diffusion term. Under such
circumstances, central differencing results in loss of probability mass (as well as creation of negative
probability), not only at the boundaries but throughout the region of interest, often resulting in poor
solutions and numerical instability. This fact has long been well known in the computational fluid
dynamics community.30 Not only has this problem been cited as one of “Seven Deadly Sins of Numerical
Computation,”31 it is such a well-known error that it is cited as such in Numerical Recipes in C.32

14.1.1.6 The Bayesian Iceberg: Robustness

The engineering issues addressed in the previous sections (measurement-model mismatch, motion-
model mismatch, inaccurate or slowly-convergent state estimators, accumulation of approximation error,
numerical instability) can be collectively described as problems of robustness — i.e., the “brittleness”
that Bayesian approaches can exhibit when reality deviates too greatly from assumption. One might be
tempted to argue that, in practical application, these difficulties can be overcome by simple brute force —
i.e., by assuming that the data-rate is high enough to permit a large number of computational cycles per
unit time. In this case — or so the argument goes — the algorithm will override its internal inefficiencies
because the total amount Ndata of data that is collected is much larger than the amount Nineffic

∆
=

Nsens+Ntarg+Nest+Napps of data required to overcome those inefficiencies.
If this were the case, there would be few tracking and target identification problems left to solve. Most

current challenging problems are challenging either because data rates are not sufficiently high or because
brute force computation cannot be accomplished in real time. This unpleasant reality is particularly evident
in target-classification problems. An optimal-Bayes target identification algorithm that is forced to use
less-than-high-fidelity sensor models has a tendency to be highly confident about incorrect identifications.
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This is because it treats its imperfect target models as though they are perfect, thus potentially interpreting
a weak or spurious match (between data and target model) as a high-likelihood match. Because data is
either too sparse or too low-quality, not enough information is available to compensate for avoidable
algorithm inefficiencies. The brute force approach is likely to fail even when data rates are large. In tracking
applications, for example, Bayes filtering algorithms will usually be barely tractable for real-time operation
even if they are ideal (i.e., Nineffic = 0 and even if they have O(N) computational efficiency.)2 This is because
N (which typically has the form N = N0

d where d is the dimensionality of the problem) is already very
large — which means that the algorithm designer must use all possible means to reduce computations,
not increase them. In such situations, brute force means the same thing as non-real-time operation. Such
difficulties will be even more pronounced in multitarget situations where d will be quite large.

14.1.2 Why Multisource, Multitarget, Multi-Evidence Problems Are Tricky

Given the technical community’s increased understanding of the actual complexity of real signature and
other kinds of data, it is no longer credible to invoke Bayesian filtering and estimation as a cookbook
panacea. Likewise, given the technical community’s increased understanding of the actual complexity of
multitarget problems, it is not credible to propose yet another ad hoc multitarget tracking approach. One
needs systematic and fully probabilistic methodologies for

• Modeling uncertainty in poorly characterized likelihoods

• Modeling ambiguous data and likelihoods for such data

• Constructing multisource likelihoods for ambiguous data

• Efficiently fusing data from all sources (ambiguous or otherwise)

• Constructing provably true (as opposed to heuristic) multisource-multitarget likelihood functions
from the underlying sensor models of the sensors

• Constructing provably true (as opposed to heuristic) multitarget Markov densities, from the
underlying motion models of the targets, that account for target motion correlations and changes
in target number

• Constructing stable, efficient, and provably optimal multitarget state estimators that address the
failure of the classical Bayes-optimal estimators — in particular, that simultaneously determine
target number, target kinematics, and target identity without resort to operator intervention or
optimal report-to-track association.

14.1.3 Finite-Set Statistics (FISST)

One of the major goals of finite-set statistics (FISST) is to address the “Bayesian Iceberg” issues described
in Sections 14.1.1 and 14.1.2. FISST deals with imperfectly characterized data and/or measurement
models by extending Bayesian approaches in such a way that they are robust with respect to these
ambiguities. This robust-Bayes methodology is described more fully in Section 14.1.7. FISST deals with
the difficulties associated with multisource and/or multitarget problems by directly extending engineer-
ing-friendly single-sensor, single-target statistical calculus to the multisensor-multitarget realm. This
optimal-Bayes methodology is described in Sections 14.3 through 14.7. Finally, FISST provides mathe-
matical tools that may help address the formidable computational difficulties associated with multisource-
multitarget filtering (whether optimal or robust). Some of these ideas are discussed in Section 14.7.3.

The basic approach is as follows. A suite of known sensors transmits, to a central data fusion site, the
observations they collect regarding targets whose number, positions, velocities, identities, threat states,
etc. are unknown. Then

1. Reconceptualize the sensor suite as a single sensor (a “global sensor”).
2. Reconceptualize the target set as a single target (a “global target”) with multitarget state X =

{x1,…,xn} (a “global state”).
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3. Reconceptualize the set Z = {z1,…,zm} of observations, collected by the sensor suite at approxi-
mately the same time, as a single measurement (a “global measurement”) of the “global target”
observed by the “global sensor.”

4. Represent statistically ill-characterized (“ambiguous”) data as random closed subsets Θ of (mul-
tisource) observation space (see Section 14.8). Thus, in general, Z = {z1,…,zm, Θ1,…,Θm′}.

5. Just as single-sensor, single-target data can be modeled using a measurement model Z = h(x, W),
model multitarget multisensor data using a multisensor-multitarget measurement model — a
randomly varying finite set Σ = T(X) ∪  C(X) (See Section 14.3.).

6. Just as single-target motion can be modeled using a motion model Xk+1 = Φk(xk,Vk), model the
motion of multitarget systems using a multitarget motion model — a randomly varying finite set
Γk+1 = Φk(Xk,Vk) ∪  Bk(Xk). (See Section 14.4.)

Given this, we can mathematically reformulate multisensor, multitarget estimation problems as single-
sensor, single-target problems. The basis of this reformulation is the concept of belief-mass. Belief-mass
functions are nonadditive generalizations of probability-mass functions. (Nevertheless, they are not
heuristic: they are equivalent to probability-mass functions on certain abstract topological spaces.1) That
is,

• Just as the probability-mass function p (S |x) = Pr(Z ∈  S) is used to describe the generation of
conventional data, z, use belief-mass functions of the general form ρ(Θ|x) = Pr(Θ ⊆  Σ|x) to
describe the generation of ambiguous data Θ. (See Section 14.8.)

• Just as the probability-mass function p(S |x) = Pr(Z ∈  S) of a single-sensor, single-target measure-
ment model, Z, is used to describe the statistics of ordinary data, use the belief-mass function
β(S |X) = Pr(Σ ⊆  S) of a multisource-multitarget measurement model ∑ to describe the statistics
of multisource-multitarget data.

• Just as the probability-mass function pk+1|k(S |xk) = Pr(Xk ∈  S) of a single-target motion model
Xk is used to describe the statistics of single-target motion, use the belief-mass function
βk+1|k(S |Xk) = Pr(Γk+1 ⊆  S) of a multitarget motion model Γk+1 to describe multitarget motion.

The FISST multisensor-multitarget differential and integral calculus is what transforms these mathemat-
ical abstractions into a form that can be used in practice.

• Just as the likelihood function, f(z |x), can be derived from p(S |x) via differentiation, so the true
multitarget likelihood function f(Z |X) can be derived from β(S |X) using a generalized differen-
tiation operator called the set derivative. (See Section 14.6.1.)

• Just as the Markov transition density fk+1 |k(xk+1|xk) can be derived from pk+1 |k(S |xk) via differen-
tiation, so the true multitarget Markov transition density index can be derived from βk+1 |k(S |Xk)
via set differentiation.

• Just as f(z |x) and p(S |x) are related by p(S |x) = ∫S f(z |x)dx, so f(Z |X) and β(Z |X) are related by
β(Z |X) = ∫S f(Z |X)δZ where the integral is now a multisource-multitarget set integral.

Accordingly, let Z(k) = {Z1,…,Zk} be a time sequence of multisource-multitarget observations. This
enables true multitarget posterior distributions fk |k(X |Z(k)) to be created from the true multisource, mul-
titarget likelihood (see Section 14.6.4):

From these distributions, simultaneous, provably optimal estimates of target number, kinematics, and
identity can be computed without resorting to the optimal report-to-track assignment characteristic of
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multihypothesis approaches (see Section 14.6.7). Finally, these fundamentals enable both optimal-Bayes
and robust-Bayes multisensor-multitarget data fusion, detection, tracking, and identification (see
Sections 14.7.1 and 14.8).

Table 14.1 summarizes the direct mathematical parallels between the world of single-sensor, single-
target statistics and the world of multisensor, multitarget statistics. This parallelism is so close that general
statistical methodologies can, with a bit of prudence, be directly translated from the single-sensor, single-
target case to the multisensor-multitarget case. That is, the table can be thought of as a dictionary that
establishes a direct correspondence between the words and grammar in the random-vector language and
cognate words and grammar of the random-set language. Consequently, any “sentence” (any concept or
algorithm) phrased in the random-vector language can, in principle, be directly “translated” into a cor-
responding sentence (corresponding concept or algorithm) in the random-set language. This process can
be encapsulated as a general methodology for attacking multisource-multitarget data fusion problems:

Almost-Parallel Worlds Principle (APWOP) — Nearly any concept or algorithm phrased in random-
vector language can, in principle, be directly translated into a corresponding concept or algorithm in
the random-set language.4,5,10

The phrase “almost-parallel” refers to the fact that the correspondence between dictionaries is not
precisely one-to-one. For example, vectors can be added and subtracted, whereas finite sets cannot.
Nevertheless, the parallelism is complete enough that, provided some care is taken, 100 years of accu-
mulated knowledge about single-sensor, single-target statistics can be directly brought to bear on mul-
tisensor-multitarget problems.

The following simple example has been used to illustrate the APWOP since 1994. The performance
of a multitarget data fusion algorithm can be measured by constructing information-based measures of
effectiveness, as shown in the following multitarget generalization of the Kullback-Leibler cross-
entropy.1,4,10

TABLE 14.1 Mathematical Parallels between Single-Sensor, Single-Target Statistics 
and Multisensor, Multitarget Statistics

Random Vector, Z Finite Random Set, Σ

Sensor, � Global sensor, �*
Target, � Global target, �*
Observation, z Observation-set, Z
Parameter, x Parameter-set, X
Sensor model, z = h(x, W) Multitarget sensor model, Z = T(X) ∪  C(X)

Motion model, Multitarget, multi-motion, 

Differentiation, Set differentiation, 

Integration, Set integration, 

Probability-mass function, Belief-mass function, 

Likelihood function, Multitarget likelihood function, 

Posterior density, Multitarget posterior, 

Markov densities, Multitarget Markov densities, 

x x Vk k k k+ = ( )1 Φ , X X B Xk k k k k k+ = ( ) ∪1 Φ , ( )V

dp

dz

δβ
δZ
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(14.5)

Here the APWOP replaces conventional statistical concepts with their FISST multisensor, mulitarget
counterparts. The ordinary densities f,g and the ordinary integral on the left are replaced by the multi-
target densities f,g and the set integral (Section 14.5.3) on the right.

14.1.4 Why Random Sets?

Random set theory was systematically formulated by Mathéron in the mid-1970s.33 Its centrality as a
unifying foundation for expert systems theory and ill-characterized evidence has become increasingly
apparent since the mid-1980s.34-38 Its centrality as a unifying foundation for data fusion applications has
been promoted since the late-1970s by I.R. Goodman. The basic relationships between random set theory
and the Dempster-Shafer theory of evidence were established by Shafer,39 Nguyen,40 and others.41 The
basic relationships between random set theory and fuzzy logic can be attributed to Goodman,34,42 Orlov,43

and Hohle.44 Mahler developed relationships between random set theory and rule-based evidence.45,46

Mori, Chong, et al. first proposed random set theory as a potential foundation for multitarget detection,
tracking, and identification (although within a multihypothesis framework).1,47 (Since 1995, Mori has
published a number of very interesting papers based on random set ideas.48-51)

FISST, whose fundamental ideas were codified in 1993 and 1994, builds upon this existing body of research
by showing that random set theory provides a unified framework for both expert systems theory and
multisensor-multitarget fusion detection, tracking, identification, sensor management, and performance
estimation. FISST is unique in that it provides, under a single probabilistic paradigm, a unified and relatively
simple and familiar statistical calculus for addressing all of the “Bayesian Iceberg” problems described earlier.

14.2 Basic Statistics for Tracking and Identification

This section summarizes those aspects of conventional statistics that are most pertinent to tracking and
target identification. The foundation of applied tracking and identification — the recursive Bayesian
nonlinear filtering equations — are described in Section 14.2.1. The procedure for constructing provably
true sensor likelihood functions from sensor models, and provably true Markov transition densities from
target motion models, is described in Sections 14.2.2 and 14.2.3, respectively. Bayes-optimal state esti-
mation is reviewed in Section 14.2.4. In all four sections, data “vectors” have the form y = (y1,…, yn,
w1,…, wn) where y1,…, yn are continuous variables and w1,…,wn are discrete variables.1 Integrals of
functions of such variables involve both summations and continuous integrals.

14.2.1 Bayes Recursive Filtering

Most signal processing engineers are familiar with the Kalman filtering equations. Less well known is the
fact that the Kalman filter is a special case of the Bayesian discrete-time recursive nonlinear filter.26,27,52

This more general filter is nothing more than Equations 14.6, 14.7, and 14.8 applied recursively:

(14.6)

(14.7)
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(14.8)

where

f (zk + 1|Zk) = (zk + 1|yk + 1) fk + 1|k (yk + 1|Zk)dyk + 1 is the Bayes normalization constant

f (z|x) is the sensor likelihood function
fk + 1|k (xk + 1|Zk) is the target Markov transition density

fk|k (xk|Zk) is the posterior distribution conditioned on the data-stream Zk = {z1,…, zk}

fk + 1|k (xk + 1|Zk) is the time-prediction of the posterior fk|k (xk|Zk) to time-step k + 1

The practical success of Equations 14.6 and 14.7 relies on the ability to construct effectively the likelihood
function, f(z|x), and the Markov transition density, fk + 1|k (xk + 1|xk). Although likelihood functions some-
times are constructed via direct statistical analysis of data, more typically they are constructed from sensor
measurement models. Markov densities typically are constructed from target motion models. In either
case, differential and integral calculus must be used, as shown in the following two sections.

14.2.2 Constructing Likelihood Functions from Sensor Models

Suppose that a target with randomly varying state X is interrogated by a sensor that generates observations
of the form Z ∆

= Z|X=x
∆
= h(x) + W (where W is a zero-mean random noise vector with density fw (w))

but does not generate missed detections or false alarms. The statistical behavior of Z is characterized by
its likelihood function, f (z|x) ∆

= fZ|X (z|x), which describes the likelihood that the sensor will collect mea-
surement z given that the target has state x. How is this likelihood function computed? Begin with the
probability mass function of the sensor model: p (S|x) ∆

= p(z|x) = pr(Z ∈ S). This is the total probability
that the random observation Z will be found in any given region S if the target has state x. The total
probability mass, p(S |x), in a region S is the sum of all of the likelihoods in that region: p (S |x) =

(y |x)dy. So,

when Ez is some very small region surrounding the point z with (hyper) volume V = λ (Ez). (For example,
Ez = Bε,z is a hyperball of radius ε centered at z.) So,

where the smaller the value of λ (Ez), the more accurate the approximation. Stated differently, the
likelihood function, f (z |x), can be constructed from the probability measure, p (S |x), via the limiting
process

(14.9)

The resulting equations
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are the relationships that show that f (z|x) ∆
= δp|δz is the provably true likelihood function (i.e., the density

function that faithfully describes the measurement model Z = h(x, W)). For this particular problem, the
“true” likelihood is, therefore:

14.2.3 Constructing Markov Densities from Motion Models

Suppose that, between the kth and (k + 1)st measurement collection times, the motion of the target is
best modeled by an equation of the form Xk+1 = Φk (xk) + Vk where Vk is a zero-mean random vector
with density fvk(v). That is, if the target had state xk at time-step k, then it will have state Φk (xk) at time-
step k + 1 — except possible error in this belief is accounted for by appending the random variation Vk.
How would fk+1|k (Xk+1|Xk) be constructed? This situation parallels that of Section 14.2.2. The probability
mass function pk + 1 (S |xk)

∆
= Pr (Xk + 1 ∈ S) is the total probability that the target will be found in region S

at time-step k +1, given that it had state xk at time-step k. So,

is the true Markov density associated with the motion model Xk+1 = Φk (Xk) + Vk more generally, the
equations

are the relationships that show that fk + 1| k (xk + 1|xk)
∆
=  is the provably true Markov density —

i.e., the density function that faithfully describes the motion model Xk+1 = Φk (xk, Vk).

14.2.4 Optimal State Estimators

An estimator of the state x is any family x̂(z1,…,zm) of state-valued functions of the (static) measurements
z1,…,zm. “Good” state estimators x̂ should be Bayes-optimal in the sense that, in comparison to all other
possible estimators, they minimize the Bayes risk

for some specified cost (i.e., objective) function C (x, y) defined on states x, y.53 Secondly, they should
be statistically consistent in the sense that x̂(z1,…,zm) converges to the actual target state as m → ∞.
Other properties (e.g., asymptotically unbiased, rapidly convergent, stably convergent, etc.) are desirable
as well. The most common “good” Bayes state estimators are the maximum a posteriori (MAP) and
expected a posteriori (EAP) estimators described earlier.

14.3 Multitarget Sensor Models

In the single-target case, probabilistic approaches to tracking and identification (and Bayesian approaches
in particular) depend on the ability to construct sensor models and likelihood functions that model the
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data-generation process with enough fidelity to ensure optimal performance. As argued in Section 14.1.1,
multitarget tracking and identification have suffered from the lack of a statistical calculus of the kind
that is readily available in the single-target case. The purpose of this section is to show how to construct
FISST multitarget measurement models. These models, and the FISST statistical calculus to be introduced
in Section 14.5, will be integrated in Section 14.6.1 to construct true multitarget likelihood functions.

The following sections illustrate the process of constructing multitarget measurement models for the
following successively more realistic situations: (1) multitarget measurement models with no missed
detections and no false alarms/clutter; (2) multitarget measurement models with missed detections;
(3) multitarget measurement models with missed detections and false alarms or clutter; and (4) multi-
target measurement models for the multiple-sensor case. The problem of constructing single-target and
multitarget measurement models for data that is ambiguous is discussed in Section 14.8.

14.3.1 Case I: No Missed Detections, No False Alarms

Suppose that two targets with states x1 and x2 are interrogated by a single sensor that generates observa-
tions of the form Z = h (x) + W1, where W1 is a random noise vector with density fw(w). Assume also
that there are no missed detections or false alarms, and that observations within a scan are independent.
Then the multitarget measurement is the randomly varying two-element observation set.

(14.11)

where W1, W2 are independent random vectors with density fw(w). We assume that individual targets
produce unique observations only for the sake of clarity. Clearly, we could just as easily produce models
for other kinds of sensors — for example, sensors that detect only superpositions of the signals produced
by multiple targets. One such measurement model is

14.3.2 Case II: Missed Detections

Suppose that the sensor of Section 14.3.1 has a probability of detection pD < 1. In this case, observations
can have not only the form Z = {z1, z2}, but also Z = {z} or Z =  (missed detection). The more complex
observation model ∑ = T1 �T2 is needed, which has T1, T2 observation sets with the following properties:
(a) Ti =  (i.e., missed detection) with probability 1 – pD and (b) Ti is nonempty with probability pD, in
which case, Ti = {Zi}. If the sensor has a specific field of view, then pD = pD (x, y) will be a function of
both the target state x and the state y of the sensor.

14.3.3 Case III: Missed Detection and False Alarms

Suppose the sensor of Section 14.3.2 has probability of false alarm pFA ≠ 0. Then we need an observation
model of the form

Σ =  ∪   = T1 ∪  T2 ∪  C

where C models false alarms and/or (possibly state-dependent) point clutter. As a simple example, C
could have the form C = C1 �…�Cm, where each Cj is a clutter generator — meaning that there is a
probability, pFA, that Cj will be nonempty (i.e., generator of a clutter-observation) — in which case C =
{Ci} where Ci is some random noise vector with density fCi(z). (Note: ∑ = T1 � C models the single-
target case.)
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14.3.4 Case IV: Multiple Sensors

In this case, observations will have the form z[s] ∆
= (z, s) where the integer tag s identifies which sensor

originated the measurement. A two-sensor multitarget measurement will have the form ∑ = ∑[1] � ∑[2]

where ∑[s] for s = 1, 2 is the random multitarget measurement-set collected by the sensor with tag s and
can have any of the forms previously described.

14.4 Multitarget Motion Models

This section shows how to construct multitarget motion models in relation to the construction of single-
target motion models. These models, combined with the FISST calculus (Section 14.5), enables the
construction of true multitarget Markov densities (Section 14.6.2). In the single-target case, the construc-
tion of Markov densities from motion models strongly parallels the construction of likelihood functions
from sensor measurement models. In like fashion, the construction of multitarget Markov densities
strongly resembles the construction of multisensor-multitarget likelihood functions.

This section illustrates the process of constructing multitarget motion models by considering the
following increasingly more realistic situations: (1) multitarget motion models assuming that target
number does not change; (2) multitarget motion models assuming that target number can decrease; and
(3) multitarget motion models assuming that target number can decrease or increase.

14.4.1 Case I: Target Number Does Not Change

Assume that the states of individual targets have the form x = (y, c) where y is the kinematic state and
c is the target type. Assume that each target type has an associated motion model Yc,k+1 = Φc,k (yk) + Wc,k .
Define

where Wk denotes the family of random vectors Wc,k.
To model a multitarget system in which two targets never enter or leave the scenario, the obvious

multitarget extension of the single-target motion model would be Γk+1 = Φk (Xk, Wk), where Γk+1 is the
randomly varying parameter set at time step k + 1. That is, for the cases X = , X = {x}, or X = {x1, x2},
respectively, the multitarget state transitions are:

14.4.2 Case II: Target Number Can Decrease

Modeling scenarios in which target number can decrease (but not increase) is analogous to modeling
multitarget observations with missed detections. Suppose that no more than two targets are possible,
but that one or more of them can vanish from the scene. One possible motion model would be Γk+1|k =
Φ (Xk |k, Wk) where, for the cases X = , X = {x}, or X = {x1, x2}, respectively,
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where Tk,x is a track-set with the following properties: (a) Tk,x ≠ Ø with probability pv, in which case Tk,x =
{Xk+1,x}, and (b) Tk,x = Ø (i.e., target disappearance), with probability 1 – pv . In other words, if no targets
are present in the scene, this will continue to be the case. If, however, there is one target in the scene,
then either this target will persist (with probability pv) or it will vanish (with probability 1 – pv ). If there
are two targets in the scene, then each will either persist or vanish in the same manner. In general, one
would model Φk ({x1,…,xn}) = Tk,x1

 ∪ … ∪  Tk,xn.

14.4.3 Case III: Target Number Can Increase and Decrease

Modeling scenarios in which target number can decrease and/or increase is analogous to modeling
multitarget observations with missed detections and clutter. In this case, one possible model is

where Bk is the set of birth targets (i.e, targets that have entered the scene).

14.5 The FISST Multisource-Multitarget Calculus

This section introduces the mathematical core of FISST — the FISST multitarget integral and differential
calculus. That is, it shows that the belief-mass function β(S) of a multitarget sensor or motion model
plays the same role in multisensor-multitarget statistics that the probability-mass function p(S) plays in
single-target statistics. The integral ∫s f (z)dz and derivative dp/dz — which can be computed using
elementary calculus — are the mathematical basis of conventional single-sensor, single-target statistics.
We will show that the basis of multisensor-multitarget statistics is a multitarget integral ∫s f (z)δz and a
multitarget derivative δβ/δZ that can also be computed using “turn-the-crank” calculus rules. In partic-
ular we will show that, using the FISST calculus,

• True multisensor-multitarget likelihood functions can be constructed from the measurement
models of the individual sensors, and

• True multitarget Markov transition densities can be constructed from the motion models of the
individual targets.

Section 14.5.1 defines the belief-mass function of a multitarget sensor measurement model and
Section 14.5.2 defines the belief-mass function of a multitarget motion model. The FISST multitarget
integral and differential calculus is introduced in Section 14.5.3. Section 14.5.4 lists some of the more
useful rules for using this calculus.

14.5.1 The Belief-Mass Function of a Sensor Model

Just as the statistical behavior of a random observation vector Z is characterized by its probability mass
function p (S |x) = Pr(Z ∈ S), the statistical behavior of the random observation-set Σ is characterized
by its belief-mass function:1

where Γ is the random multitarget state. The belief mass is the total probability that all observations in
a sensor (or multisensor) scan will be found in any given region S, if targets have multitarget state X.

For example, if X = {x} and Σ = {Z} where Z is a random vector, then

Φk n k k kT T B
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In other words, the belief mass of a random vector is equal to its probability mass. On the other hand,
for a single-target, missed-detection model ∑ = T1,

(14.12)

and for the two-target missed-detection model ∑ = {T1 � T2} (Section 14.3.2),

where p (S|x)
∆
= Pr (Ti ⊆  S|Ti ≠ ) and X = {x1, x2}. Setting pD = 1 yields

(14.13)

which is the belief-mass function for the model ∑ = {Z1, Z2} of Equation 14.11. Suppose next that two
sensors with identifying tags s = 1,2 collect observation-sets ∑ = ∑[1] � ∑[2]. The corresponding belief-
mass function has the form βΣ (S[1] ∪  S[2] |X) = Pr(Σ[1] ⊆  S[1], Σ[2] ⊆  S[2]) where S[1], S[2] are (measurable)
subsets of the measurement spaces of the respective sensors. If the two sensors are independent then the
belief-mass function has the form

(14.14)

14.5.2 The Belief-Mass Function of a Motion Model

In single-target problems, the statistics of a motion model Xk+1 = Φk(Xk, Wk) are described by the
probability-mass function pXk+1 (S|xk) = Pr(Xk+1 ∈ S), which is the probability that the target-state will
be found in the region S if it previously had state xk. Similarly, suppose that Γk+1 = Φk (Xk , Wk) is a
multitarget motion model (Section 14.4). The statistics of the finitely varying random state-set Γk+1 can
be described by its belief-mass function:

This is the total probability of finding all targets in region S at time-step k+1 if, in time-step k, they
had multitarget state Xk = {xk,1,…,xk,n(k)}.

For example, the belief-mass function for the multitarget motion model of Section 14.4.1 is
. This is entirely analo-

gous to Equation 14.13, the belief-mass function for the multitarget measurement model of
Section 14.3.1.

14.5.3 The Set Integral and Set Derivative

Equation 14.9 showed that single-target likelihood can be computed from probability-mass functions
using an operator δ/δz inverse to the integral. Multisensor-multitarget likelihoods can be constructed
from belief-mass functions in a similar manner.
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14.5.3.1 Basic Ideas of the FISST Calculus

For example, convert the missed-detection model  of Section 14.3.1 into a multitarget likelihood
function

(Notice that two alternative notations for a multitarget likelihood function were used — a set notation
and a vector notation. In general, the two notations are related by the relationship f ({z1,…,zm}|X) = m!
f (z1,…,zm|X).)

The procedure required is suggested by analogy to ordinary probability theory. Consider the measure-
ment model ∑ = {Z1, Z2} of Section 14.3.1 and assume that we have constructed a multitarget likelihood.
Then the total probability that Σ will be in the region S should be the sum of all the likelihoods that
individual observation-vectors (z1, z2) will be contained in S × S:

Likewise, for the missed-detection model  of Section 14.3.2, the possible observation-acts are,
respectively,  (missed detections on both targets), (missed detection on one target), and
{z1, z2} ⊆  S (no missed detections). Consequently, the total probability that Σ will be in the region S
should be the sum of the likelihoods of all of these possible observations:

(14.15)

where  means that the set Y has k elements and where the quantity (Z|X)δZ is a set integral.
The equation β(S|X) = (Z|X)δZ is the multitarget analog of the usual probability-summation equation
p (S|x) = (z|x)dz.

14.5.3.2 The Set Integral

Suppose a function F(Y) exists for a finite-set variable Y. That is, F(Y) has the form

In particular, F could be a multisource-multitarget likelihood  or a multitarget Markov
density  or a multitarget prior or posterior . Then the set integral
of F is12
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 (14.16)

for any region S.

14.5.3.3 The Set Derivative

Constructing the multitarget likelihood function  of a multisensor-multitarget sensor model (or
the multitarget Markov transition density  of a multitarget motion model) requires an
operation that is the inverse of the set integral — the set derivative. Let β(S) be any function whose
arguments S are arbitrary closed subsets (typically this will be the belief-mass function of a multisensor-
multitarget measurement model or of a multitarget motion model). If  with 
distinct, the set derivative1 is the following generalization of Equation 14.9:

(14.17)

14.5.3.4 Key Points on Multitarget Likelihoods and Markov Densities

The set integral and the set derivative are inverse to each other:

These are the multisensor-multitarget analogs of Equation 14.10. They yield two fundamental points of
the FISST multitarget calculus1:

• The provably true likelihood function  of a multisensor-multitarget problem is a set
derivative of the belief-mass function  of the corresponding sensor (or multisensor) model:

(14.18)

• The provably true Markov transition density  of a multitarget problem is a set
derivative of the belief-mass function  of the corresponding multitarget motion model:

(14.19)

14.5.4 “Turn-the-Crank” Rules for the FISST Calculus

Engineers usually find it possible to apply ordinary Newtonian differential and integral calculus by
applying the “turn-the-crank” rules they learned as college freshman. Similar “turn-the-crank” rules exist
for the FISST calculus, for example:
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(sum rule)

(product rules)

(chain rule)

14.6 FISST Multisource-Multitarget Statistics

Thus far this chapter has described the multisensor-multitarget analogs of measurement and motion
models, probability mass functions, and the integral and differential calculus. This section shows how
these concepts join together to produce a direct generalization of ordinary statistics to multitarget
statistics. Section 14.6.1 illustrates how true multitarget likelihood functions can be constructed from
multitarget measurement models using the “turn-the-crank” rules of the FISST calculus. Section 14.6.2
shows how to similarly construct true multitarget Markov densities from multitarget motion models.
The concepts of multitarget prior distribution and multitarget posterior distribution are introduced in
Sections 14.6.3 and 14.6.4. The failure of the classical Bayes-optimal state estimators in multitarget
situations is described in Section 14.6.6. The solution of this problem — the proper definition and
verification of Bayes-optimal multitarget state estimators — is described in Section 14.6.7. The remaining
two subsections summarize a Cramér-Rao performance bound for vector-valued multitarget state esti-
mators and a “multitarget miss distance.”

14.6.1 Constructing True Multitarget Likelihood Functions

Let us apply the turn-the-crank formulas of Subsection 5.4 to the belief-mass function β(S|X) = p(S|x1)
p(S|x2) corresponding to the measurement model Σ = {Z1, Z2} of Equation 3.2, where X = {x1, x2}. We get
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and the higher-order derivatives vanish identically. The multitarget likelihood is

(14.20)

where f (Z|X) = 0 identically if Z contains more than two elements. More general multitarget likelihoods
can be computed similarly.2

14.6.2 Constructing True Multitarget Markov Densities

Multitarget Markov densities1,7,53 are constructed from multitarget motion models in much the same way
that multisensor-multitarget likelihood functions were constructed from multisensor-multitarget mea-
surement models in Section 14.6.1. First, construct a multitarget motion model Γk+1 = Φk (Xk ,Wk) from
the underlying motion models of the individual targets. Second, build the corresponding belief-mass
function . Finally, construct the multitarget Markov density  from
the belief-mass function using the turn-the-crank formulas of the FISST calculus.

For example, the belief measure  for the multitarget motion model
of Section 14.4.1 has the same form as the multitarget measurement model in Equation 14.20. Conse-
quently, its multitarget Markov density is33

14.6.3 Multitarget Prior Distributions

The initial states of the targets in a multitarget system are specified by a multitarget prior of the form
f0 (X) = f0|0 (X),1,4 where ∫ f0 (X)δX = 1 and where the integral is a set integral. Suppose that states have
the form x = (y,c) where y is the kinematic state variable restricted to some bounded region D of (hyper)
volume λ(D) and c the discrete state variable(s), drawn from a universe C with N possible members. In
conventional statistics, the uniform distribution u(x) = λ(D)–1N–1 is the most common way of initializing
a Bayesian algorithm when nothing is known about the initial state of the target. The concepts of prior
and uniform distributions carry over to multitarget problems, but in this case there is an additional
dimension that must be taken into account — target number.

For example, suppose that there can be no more than M possible targets in a scene.1,4 If X = {x1,…,xn},
the multitarget uniform distribution is

14.6.4 Multitarget Posterior Distributions

Given a multitarget likelihood f (Z|X) and a multitarget prior f0 (X|Z1,…,Zk), the multitarget posterior is
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(14.21)

where f (X|Z1,…,Zk+1) = ∫ f (Zk+1|X) f0 (X|Z1,…,Zk)δX is a set integral.1,4 Like multitarget priors, multi-
target posteriors are normalized multitarget densities: ∫ f (X|Z1,…,Zk)δX = 1, where the integral is a set
integral.

Multitarget posteriors and priors, like multitarget density functions in general, have one peculiarity
that sets them apart from conventional densities: their behavior with respect to units of measurement.1,6,28

In particular, when continuous state variables are present, the units of a multitarget prior or posterior f (X)
vary with the cardinality of X.

As a simple example of multitarget posteriors and priors, suppose that a scene is being observed by a
single sensor with probability of detection pD and no false detections.1 This sensor collects a single
observation Z =  (missed detection) or Z = {z0}. Let the multitarget prior be

where π(x) denotes the conventional prior. That is, there is at most one target in the scene. There is prior
probability 1 – π0 that there are no targets at all. The prior density of there being exactly one target with
state x is π0 π (x). The nonvanishing values of the corresponding multitarget posterior can be shown to be:

where f (x|z) is the conventional posterior. That is, the fact that nothing is observed (i.e., ) may be
attributable to the fact that no target is actually present (with probability F ( | )) or that a target is
present, but was not observed because of a missed detection (with probability 1 – F ( | )).

14.6.5 Expected Values and Covariances

Suppose that Σ1,…,Σm are finite random sets and the F (Z1,…,Zm) is a function that transforms finite sets
into vectors. The expected value and covariance of the random vector X = F (Σ1,…,Σm) are1

14.6.6 The Failure of the Classical State Estimators

The material in this section has been described in much greater detail in a recent series of papers.6,7,28 In
general, in multitarget situations (i.e., the number of targets is unknown and at least one state variable
is continuous) the classical Bayes-optimal estimators cannot be defined. This can be explained using a
simple example.2 Let
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where the variance σ2 has units km2. To compute that classical MAP estimate, find the state X =  or X =
{x} that maximizes f (X). Because f (0) = 1/2 is a unitless probability and f ({1}) = 1/2 σ has units of
1/km, the classical MAP would compare the values of two quantities that are incommensurable because
of mismatch of units. As a result, the numerical value of f ({1}) can be arbitrarily increased or decreased —
thereby getting XMAP =  (no target in the scene) or XMAP ≠  (target in the scene) — simply by changing
units of measurement. The posterior expectation also fails. If it existed, it would be

Notice that, once again, there is the problem of mismatched units — the unitless quantity  must be
added to the quantity 1 km. Even assuming that the continuous variable x is discrete (to alleviate this
problem disappears) still requires the quantity  be added to the quantity 1. If  + 1 = , then 1 = 0,
which is impossible. If  + 1 = 1 then  = 0, resulting in the same mathematical symbol representing
two different states (the no-target state  and the single-target state x = 0). The same problem occurs if

 + a = ba is defined for any real numbers a, ba since then  = ba – a.
Thus, it is false to assert that if “the target space is discretized into a collection of cells [then] in the

continuous case, the cell probabilities can be replaced by densities in the usual way.”57 General continu-
ous/discrete-state multitarget statistics are not blind generalizations of discrete-state special cases. Equally
false is the assertion that “The [multitarget] posterior distribution … constitutes the Bayes estimate of the
number and state of the targets … From this distribution we can compute other estimates when appro-
priate, such as maximum a posteriori probability estimates or means.”55,56 Posteriors are not “estimators”
of state variables like target number or target position/velocity; the multitarget MAP can be defined only
when state space is discretized and a multitarget posterior expectation cannot be defined at all.

14.6.7 Optimal Multitarget State Estimators
Section 14.6.6 asserted that the classical Bayes-optimal state estimators do not exist in general multitarget
situations; therefore, new estimators must be defined and demonstrated to be statistically well behaved.

In conventional statistics, the maximum likelihood estimator (MLE) is a special case of the MAP
estimator (assuming that the prior is uniform) and, as such, is optimal and convergent. In the multitarget
case, this does not hold true. If f (Z|X) is the multitarget likelihood function, the units of measurement
for f (Z|X) are determined by the observation-set Z (which is fixed) and not the multitarget state X.
Consequently, in multitarget situations, the classical MLE is defined,4 although the classical MAP is not

or in condensed notation, X̂MLE = arg max X f (Z|X). The multitarget MLE will converge to the correct
answer if given enough data.1

Because the multitarget MLE is not a Bayes estimator, new multitarget Bayes state estimators must be
defined and their optimality must be demonstrated. In 1995 two such estimators were introduced, the
“Marginal Multitarget Estimator (MaME)” and the “Joint Multitarget Estimator (JoME).”1,28 The JoME
is defined as

f X

X

N x

X

X x( ) { }=
=
−( )

≥

=










1 2 0

1 2 1

0 2

2

if

if

ifσ

/0
2π

/0 /0

Xf X X f xf x dx km( ) = / ⋅ /( )+ ( ) = / +( )∫ ∫δ 0 0
1

2
0 1

/0

/0 /0 /0
/0 /0

/0
/0 /0

ˆ , , ˆ arg max , ,˙
, , ,

x x x x
x x

1 1
1

…{ } = …{ }( )
…n

MLE

n
n

n

f Z
∆

ˆ , , ˆ arg max , ,
!

˙
, , ,

( )x x f Z
c

nn

JoME

n k k n
k

n

n
1 1

1

…{ } = …{ }( )⋅…

∆

x x
x x
©2001 CRC Press LLC



where c is a fixed constant whose units have been chosen so the f (X) = c –|X| is a multitarget density. Or,
in condensed notation, X̂JoME = arg maxX fk|k (X|Z(k)) ·c |X|/|X|!. One of the consequences of this is that both
the JoME and the multitarget MLE estimate the number n̂ and the identities/kinematics x̂1,…, x̂ n̂ of
targets optimally and simultaneously without resort to optimal report-to-track association. In other
words, these multitarget estimators optimally resolve the conflicting objectives of detection, tracking,
and identification.

14.6.8 Cramér-Rao Bounds for Multitarget State Estimators

The purpose of a performance bound is to quantify the theoretically best-possible performance of an
algorithm. The most well-known of these is the Cramér-Rao bound, which states that no unbiased state
estimator can achieve better than a certain minimal accuracy (covariance) defined in terms of the
likelihood function f (z|x). This bound can be generalized to estimators Jm of vector-valued outputs of
multisource-multitarget algorithms:1,2,4

14.6.9 Multitarget Miss Distance

FISST provides a natural generalization of the concept of “miss distance” to multitarget situations, defined
by

14.7 Optimal-Bayes Fusion, Tracking, ID

Section 14.6 demonstrated that conventional single-sensor, single-target statistics can be directly gener-
alized to multisensor-multitarget problems. This section shows how this leads to simultaneous multisen-
sor-multitarget fusion, detection, tracking, and identification based on a suitable generalization of
nonlinear filtering Equations 14.6 and 14.7. This approach is optimal because it is based on true multi-
target sensor models and true multitarget Markov densities, which lead to true multitarget posterior
distributions and, hence, optimal multitarget filters.

Section 14.7.1 summarizes the FISST approach to optimal multisource-multitarget detection, tracking,
and target identification. Section 14.7.2 is a brief history of multitarget recursive Bayesian nonlinear
filtering. Section 14.7.3 summarizes a “para-Gaussian” approximation that may offer a partial solution
to computational issues. Section 14.7.4 suggests how optimal control theory can be directly generalized
to multisensor-multitarget sensor management.

14.7.1 Multisensor-Multitarget Filtering Equations

Bayesian multitarget filtering is inherently nonlinear because multitarget likelihoods f (Z|X) are, in gen-
eral, highly non-Gaussian even for a Gaussian sensor.2 Therefore, multitarget nonlinear filtering is unavoid-
able if the goal is optimal-Bayes tracking of multiple, closely spaced targets.

Using FISST, nonlinear filtering Equations 14.6 and 14.7 of Section 14.2 can be generalized to multi-
sensor, multitarget problems. Assume that a time-sequence Z(k) = {Z1,…,Zk} of precise multisensor-
multitarget observations, Zk = {zj ;1,…,zj ;m(j)}, has been collected. Then the state of the multitarget system
is described by the true multitarget posterior density fk|k (Xk|Z(k)). Suppose that, at any given time instant
k + 1, we wish to update fk|k (Xk|Z(k)) to a new multitarget posterior, fk+1|k+1 (Xk+1|Z(k+1)), on the basis of a
new observation-set Zk+1. Then nonlinear filtering Equations 14.6 and 14.7 become1,5
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(14.22)

with normalization constant f (Zk+1|Z(k)) = ∫ f (Zk+1|Y) fk+1|k (Y|Z(k))δY and where the two integrals now
are set integrals.

14.7.2 A Short History of Multitarget Filtering

The concept of multitarget Bayesian nonlinear filtering is a relatively new one. For situations where the
number of targets is known, the earliest exposition appears to be attributable to Washburn58 in 1987.
(For more information, see “Why Multisource, Multitarget Data Fusion is Tricky”28) Table 14.2 summa-
rizes the history of the approach when the number of targets n is not known and must be determined
in addition to the individual target states. The earliest work in this case appears to have originated with
Miller, O’Sullivan, Srivastava, and others. Their very sophisticated approach is also the only approach
that addresses the continuous evolution of the multitarget state. (All other approaches listed in the table
assume discrete state-evolution.)

Mahler3,4 was the first to systematically deal with the general discrete state-evolution case (Bethel and
Paras63 assumed discrete observation and state variables). Portenko et al.66 used branching-process con-
cepts to model changes in target number. Kastella’s8,9,55 “joint multitarget probabilities (JMP),” introduced
at LM-E in 1996, was a renaming of a number of early core FISST concepts (i.e., set integrals, multitarget
Kullback Leibler metrics, multitarget posteriors, joint multitarget state estimators, and the APWOP) that
were devised two years earlier.

Stone et al. provided a valuable contribution by clarifying the relationship between multitarget Bayes
filtering and multihypothesis correlation.1,2 Nevertheless, their approach, which cites multitarget filtering
Equation 14.22,57 is described as “heuristic” in the table. This is because (1) its theoretical basis is so
imprecisely formulated that the authors have found it possible to both disparage and implicitly assume
a random set framework; (2) its Bayes-optimality and “explicit procedures” are both frequently asserted
but never actually justified or spelled out with precision; (3) its treatment of certain basic technical issues
in Bayes multitarget filtering — specifically the claim to have an “explicit procedure” for dealing with an
unknown number of targets — is erroneous (see Section 14.6.6); and (4) the only justifications offered
in support of its claim to be “simpler and … more general”57 are false assertions about the supposed
theoretical deficiencies of earlier research — particularly other researchers’ alleged lack of an “explicit
procedure” for dealing with an unknown number of targets.56,57 (See An Introduction to Multisource-
Multitarget Statistics and Its Applications for more details.2)

14.7.3 Computational Issues in Multitarget Filtering

The single-sensor, single-target Bayesian nonlinear filtering Equations 14.6 and 14.7 are already compu-
tationally demanding. Computational difficulties can get only worse when attempting to implement the

TABLE 14.2  History of Multitarget, Bayesian Nonlinear Filtering

Date Author(s) Theoretical Basis

1991 Miller et al.59-62 “Jump Diffusion” Stochastic PDEs
1994 Bethel and Paras63 Discrete filtering
1994 Mahler1,3-5 “Finite-Set Statistics” FISST
1996 Stone et al.56,57,64 “Unified Data Fusion” Heuristic
1996 Mahler-Kastella55,65 “Joint Multitarget Probabilites” FISST9

1997 Portenko et. al.66 Point processes
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multitarget nonlinear filtering Equation 14.22. This section summarizes some ideas (first proposed in
Mathematics of Data Fusion1,7) for approximate multitarget nonlinear filtering.

14.7.3.1 The Gaussian Approximation in Single-Target Filtering

A possible strategy is suggested by drawing an analog with the single-target nonlinear filtering Equations
14.6 and 14.7. The Gaussian approximation uses the identity27

(14.23)

(where C–1 ∆
= A–1 + B–1 and C–1c

∆
= A–1a + B–1b). This shows that Bayes’ rule is closed with respect to

Gaussians and also that the prediction and Bayes-normalization integrals satisfy the closed-form integra-
bility property:

(14.24)

Suppose that f (Z|X) is the multitarget likelihood for a Gaussian sensor (taking into account both missed
detections and false alarms). There is a family of multitarget distributions that has a closed-form inte-
grability property analogous to Equation 14.24. Using this family, computational tractability may be
feasible even if the motion models used do not assume that the number of targets is fixed.

14.7.3.2 Para-Gaussian Multitarget Distributions

Suppose that a single Gaussian sensor has missed detections. From the FISST multitarget calculus, the
multitarget likelihood is1

for Z = (z1,…,zm) and X = (x1,…,xn). If the Gaussian sensor also is corrupted by a statistically independent,
state-independent clutter process with density κ(Z), the multitarget likelihood is

For X = (x1,…,xn) and X′ = (x ′1,…, x ′n) and Cn′,n = n′!/(n′ – n)!n!, define

where q(n|n′) ≥ 0 for all j and where q(n|n′) ≥ 0 (if n > n′ or n < 0) and Σn′
n=0q(n|n′) = 1. The distribution

NQ,q,κ (X|X′) is called a para-Gaussian density.1 The multitarget likelihood of a Gaussian sensor is a para-
Gaussian.

The set integral of certain products of para-Gaussians can be evaluated in closed form:1,7

where (p ⊗  q)(k|i) ∆
= Σi

j=k p(k|j)q(j|i). (In fact, this result can be generalized to much more general multi-
target Markov densities.1) Consequently, both the multitarget prediction integral and the multitarget Bayes

N N N NA B A B Cx a x b a b x c−( ) −( )= −( ) −( )+

N N d NA B A Bx a x b x a b−( ) −( ) = −( )∫ +

f p p N B N Bm n D
m

D

n m

Q i

i i n

Q m i

m

m
z z x x z x z x1 1 1

1

1
1

1

, , , ,…{ } …{ }( )= −( ) ⋅ −( )… −( )−

≤ ≠…≠ ≤
∑

f Z X f W X Z Wclutter w z( )= ( ) −( )⊆Σ κ

N X X q nn C N N

N X X N W X X W

Q q n n Q i Q n i

i i n

Q q Q q

W X

n

n

, ,

, , ,

′( )= ′( ) − ′( )… − ′( )

′( )= ′( ) −( )

′
−

≤ ≠…≠ ≤ ′

⊆

∑

∑

∆

∆

1
1

1
1

1

x x x x

κ κ

∫ ( ) ( ) = ( )+ ⊗N Z X N Z X X N Z XP p Q q P Q p q, , , , ,κ κδ
©2001 CRC Press LLC



normalization constant can be evaluated in closed form if the densities in the integrands are suitable para-
Gaussians (see below). The resulting computational advantage suggests a multitarget analog of the Gaus-
sian approximation. Two publications2,54 provide a more detailed discussion of this approach.

14.7.4 Optimal Sensor Management

Sensor management has been usefully described as the process of directing the right platforms and the
right sensors on those platforms, to the right targets at the right times. FISST allows multiplatform-
multisensor sensor management to be reformulated as a direct generalization of optimal (nonlinear)
control theory, based on the multitarget miss distance of Section 14.6.9. See An Introduction to Multi-
source-Multitarget Statistics and Its Application for more details.2

14.8 Robust-Bayes Fusion, Tracking, ID

This section addresses the question of how to extend Bayesian (or other forms of probabilistic) inference
to situations in which likelihood functions and/or data are imperfectly understood. The optimal-Bayes
techniques described in previous sections can be extended to robust-Bayes techniques designed to address
such issues. The basic approach, which was summarized in Section 14.1.3, is as follows:

1. Represent statistically ill-characterized (“ambiguous”) data as random closed subset 1 of (multi-
source) observation space.

2. Thus, in general, multisensor-multitarget observations will be randomly varying finite sets of the
form Z = {z1,…,zm,Θ1,…,Θm′}, where z1,…,zm are conventional data and Θ1,…,Θm′ are “ambigu-
ous” data.

3. Just as the probability-mass function p (S|x) = Pr(Z ∈ S) is used to describe the generation of
conventional data z, use “generalized likelihood functions” such as ρ(Θ|x) = Pr(Θ ⊆  Σ|x) to
describe the generation of ambiguous data.

4. Construct single-target posteriors fk|k (x |Zk) and multitarget posteriors fk|k (X |Z(k)) conditioned on
all data, whether “ambiguous” or otherwise.

5. Proceed essentially as in Section 14.7.

Section 14.8.1 discusses the concept of “ambiguous” data and why random set theory provides a useful
means of mathematically representing such data. Section 14.8.2 discusses the various forms of ambiguous
data — imprecise, vague (fuzzy), and contingent — and their corresponding random set representations.
Section 14.8.3 defines the concept of a true Bayesian likelihood function for ambiguous data and argues
that true likelihoods of this kind may be impossible to construct in practice. Section 14.8.4 proposes an
engineering compromise — the concept of a generalized likelihood function. The concept of a posterior
distribution conditioned on ambiguous data is introduced in Section 14.8.5. Section 14.8.6 shows how
to construct practical generalized likelihood functions, based on the concept of geometric model-match-
ing. Finally, the recursive Bayesian nonlinear filtering equations — Equations 14.6 and 14.7 — are
generalized to the multisource-multitarget case in Section 14.8.7.

14.8.1 Random Set Models of “Ambiguous” Data

The FISST approach to data that is difficult to statistically characterize is based on the key notion that
ambiguous data can be probabilistically represented as random closed subsets of (multisource) measurement
space.1

Consider the following simple example. (For a more extensive discussion see Mahler.1,2) Suppose that
z = Cx + W where x is target state, W is random noise, and C is an invertible matrix. Let B be an
“ambiguous observation” in the sense that it is a subset of measurement space that constrains the possible
values of z: B ∋  z. Then the random variable Γ defined by Γ = {C–1 (z – W)|z ∈ B} is the randomly varying
subset of all target states that are consistent with this ambiguous observation. That is, the ambiguous
observation B also indirectly constrains the possible target states.
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Suppose, on the other hand, that the validity of the constraint z ∈  B is uncertain; there may be many
possible constraints — of varying plausibility — on z. This ambiguity could be modeled as a randomly
varying subset Θ of measurements, where the probability Pr(Θ = B) represents the degree of belief in
the plausibility of the specific constraint B. The random subset of all states that are consistent with Θ
would then be Γ = {C–1 (z – W)|z ∈Θ }. (Caution: The random closed subset Θ is a model of a single
observation collected by a single source. Do not confuse this subset with a multisensor, multitarget obser-
vation set, Σ, whose instantiations Σ = Z are finite sets of the form Z = {z1,…,zm, Θ1,…,Θm′} where
z1,…,zm are individual conventional observations and Θ1,…,Θm′ are random-set models of individual
ambiguous observations.)

14.8.2 Forms of Ambiguous Data

Recognizing that random sets provide a common probabilistic foundation for various kinds of statistically
ill-characterized data is not enough to tell us how to construct practical random set representations of
such data. This section shows how three kinds of ambiguous data — imprecise, vague, and contingent —
can be represented probabilistically by random sets.

14.8.2.1 Vague Data: Fuzzy Logic

A fuzzy membership function on some (finite or infinite) universe U is a function that assigns a number
f(u) between zero and one to each member u of U. The random subset ∑A( f), called the canonical random
set representation of the fuzzy subset f, is defined by

(14.25)

14.8.2.2 Imprecise Data: Dempster-Shafer Bodies of Evidence

A Dempster-Shafer body of evidence B on some space U consists of nonempty subsets B : B1,…, Bb of U
and nonnegative weights b1,…,bb that sum to one. Define the random subset Σ of U by p(Σ = Bi) = bi

for i = 1,…,b. Then Σ is the random set representation of B and B = BΣ.34-36,40,41 The Dempster-Shafer
theory can be generalized to the case when the Bi are fuzzy membership functions.67 Such “fuzzy bodies
of evidence” can also be represented in random set form.

14.8.2.3 Contingent Data: Conditional Event Algebra

Knowledge-based rules have the form X ⇒  S = “if X then S” where S, X are subsets of a (finite) universe
U. There is at least one way to represent knowledge-based rules in random set form.45,46 Specifically, let
Φ be a uniformly distributed random subset of U — that is, one whose probability distribution is
p(Φ = S) = 2–|U | for all S � U. A random set representation ΣΦ (X ⇒  S) of the rule X ⇒  S is

14.8.3 True Likelihood Functions for Ambiguous Data

The next step in a strict Bayesian formulation of the ambiguous-data problem is to specify a likelihood
function for ambiguous evidence that models the understood likelihood that a specific ambiguous datum
Θ will be observed, given that a target of state x is present. This is where practical problems are
encountered. The required likelihood function must have the form
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where � is a random variable that ranges over all random closed subsets Θ of measurement space.
However, f (Θ|x) cannot be a likelihood function unless it satisfies a normality equation of the form

∫ f (Θ|x)dΘ = 1 where ∫ f (Θ|x)dΘ is an integral that sums over all closed random subsets of measurement
space. No clear means exists for constructing a likelihood function f (Θ|x) that not only models a
particular real-world situation but also provably integrates to unity. If f (Θ|x) could be specified with
sufficient exactitude, a high-fidelity conventional likelihood f (z|x) could be constructed.

14.8.4 Generalized Likelihood Functions

To address this problem, FISST employs an engineering compromise based on the fact that Bayes’ rule
is very general — it applies to all events, not just those having the specific Bayesian form X = x or R = 1.
That is, Bayes’ rule states that Pr(E1|E2)Pr(E2) = Pr(E2|E1)Pr(E1) for any events E1, E2. Consequently, let
EΘ be any event with some specified functional dependence on the ambiguous measurement 1 — for
example, , where Θ, Σ are random closed subsets of observation space. Then

where fo(x) = Pr(X = x) is the prior distribution on x and where ρ(Θ|x) ∆= Pr(EΘ|X = x) is considered to
be a generalized likelihood function. Notice that  will usually be unnormalized because events EΘ

are not mutually exclusive. Joint generalized likelihood functions can be defined in the same way.
For example, suppose that evidence consists of a fuzzy Dempster-Shafer body of evidence B : B1,…, Bb;

b1,…,bb on state space V.68,69 Let q(v) be a prior probability distribution on V and q(Bi)
∆
= Σv Bi(v)q(v). The

FISST likelihood for B can be shown to be

14.8.5 Posteriors Conditioned on Ambiguous Data

Bayes’ rule can be used to compute the following posterior distribution, conditioned on the ambiguous
data modeled by the closed random subsets Θ1,…, Θm:

(14.26)

with proportionality constant p (Θ1,…,Θm) ∆= ∫ρ(Θ1,…,Θm|x) f0(x)dx .  For example,7,25 suppose that evi-
dence consists of a fuzzy Dempster-Shafer body of evidence B : B1,…, Bb; b1,…,Bb on state space V. Let
q(v) be a prior probability distribution on V and q(Bi)

∆= Σn Bi(v)q(v). Then the FISST posterior distri-
bution conditioned on B can be shown to be:

14.8.6 Practical Generalized Likelihood Functions

How can generalized likelihood functions be produced that are usable in application? To address this
problem, FISST recognizes that generalized likelihood functions can be constructed using the concept of
“model-matching” between observations and model signatures.
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This point can be illustrated by showing that in the conventional Bayesian case, geometric model-
matching yields the conventional Bayesian measurement model.2 Lack of space prevents a detailed
illustration here; however, this section will address the general case. Let Θ be the random closed subset
of measurement space U that models a particular piece of evidence about the unknown target. Let Σ be
another random closed subset of U that models the generation of observations. A conditional random
subset of U exists, denoted , such that Pr(Σ|X = x = T) = Pr(Σ = T|X = x). What is the probability
that the observed (ambiguous) evidence Θ matches a particular (ambiguous) model signature ?
Different definitions of geometric matching — for example,  (complete consistency between
observation and model) or  (noncontradiction between observation and model) — will
yield different generalized likelihood functions:

Practical generalized likelihood functions can be constructed by choosing suitable random-set model
signatures Σx

∆= Σ|X=x.
For example, let g be a fuzzy observation and fx a fuzzy signature model (where both g and fx are fuzzy

membership functions on measurement space).1 Let Θg
∆= ΣA(g) and Σx

∆= ΣA(fx) and ρ(g|x) ∆= Pr(Σ|X=x ∩
Θg ≠ ) where ΣA(h) is defined as in Equation 14.25. Then

(14.27)

14.8.7 Unified Multisource-Multitarget Data Fusion

Suppose that there are a number of independent sources, some of which supply conventional data and
others that supply ambiguous data. As in Section 14.6.1, a multisource-multitarget joint generalized
likelihood can be constructed of the form:

where Z[s] ={z1
[s],…, z s

m(s)} denotes a multitarget observation collected by a conventional sensor with iden-
tifier s = 1,…,e, and where Θ[s] ={Θ1

[s],…, Θ s
m′(s)} denotes a multitarget observation supplied by a source

with identifier s = e + 1,…, e + e′ that collects ambiguous data. Given this, the data can be fused using
Bayes’ rule: ρ(X|Z) ∝ ρ (Z|X) f(X). Robust multisource-multitarget detection, tracking, and identification
can be accomplished by using the joint generalized likelihood function with the multitarget recursive
Bayesian nonlinear filtering Equation 14.22 of Section 14.7. In the event that data sources are indepen-
dent, these become

where Z(k) denotes the time series of data, ambiguous or otherwise, collected from all sources. Mahler
provides an example of nonlinear filtering using fuzzy data.2,16
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14.9 Summary and Conclusions

Finite-set statistics (FISST) were created, in part, to address the issues in probabilistic inference that the
“cookbook Bayesian” viewpoint overlooks. These issues include

• Dealing with poorly characterized sensor likelihoods

• Dealing with ambiguous data

• Constructing likelihoods for ambiguous data

• Constructing true likelihoods and true Markov transition densities for multitarget problems

• Dealing with the dimensionality in multitarget problems

• Providing a single, fully probabilistic, systematic, and genuinely unified foundation for multi-
source-multitarget detection, tracking, identification, data fusion, sensor management, perfor-
mance estimation, and threat estimation and prediction

• Accomplishing all of these objectives within the framework of a direct, relatively simple, and
engineering-friendly generalization of “Statistics 101.”

During the last two years, FISST has begun to emerge from the realm of basic research and is being
applied, with some preliminary indications of success, to a range of practical engineering research
applications. This chapter has described the difficulties associated with the “cookbook Bayesian” view-
point and summarized how and why FISST resolves them.
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15.1 Introduction

The design of practical systems requires the translation of data fusion theoretic principles, practical
constraints, and operational requirements into a physical, functional, and operational architecture that
can be implemented, operated, and maintained. This translation of principles to practice demands a
discipline that enables the system engineer or architect to perform the following basic functions:

• Define user requirements in terms of functionality (qualitative description) and performance
(quantitative description),

• Synthesize alternative design models and analyze/compare the alternatives in terms of require-
ments and risk,

• Select optimum design against some optimization criteria,

• Allocate requirements to functional system subelements for selected design candidates,

• Monitor the as-designed system to measure projected technical performance, risk, and other
factors (e.g., projected life cycle cost) throughout the design and test cycle,

• Verify performance of the implemented system against top- and intermediate-level requirements
to ensure that requirements are met and to validate the system performance model.

The discipline of system engineering, pioneered by the aerospace community to implement complex
systems over the last four decades, has been successfully used to implement both research and develop-
ment and large-scale data fusion systems. This approach is characterized by formal methods of require-
ment definition at a high level of abstraction, followed by decomposition to custom components, that
can then be implemented. More recently, as information technology has matured, the discipline of
enterprise architecture design has also developed formal methods for designing large-scale enterprises
using commercially available and custom software and hardware components. Both of these disciplines
contribute sound methodologies for implementing data fusion systems.

Ed Waltz
Veridian Systems

David L. Hall
The Pennsylvania State University
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This chapter introduces each approach before comparing the two to illustrate their complementary
nature and utility of each. The approaches are not mutually exclusive, and methods from both may be
applied to translate data fusion principles to practice.

15.2 Requirements Analysis Process

Derivation of requirements for a multisensor data fusion system must begin with the recognition of a
fundamental principal: there is no such thing as a data fusion system. Instead, there are applications to
which data fusion techniques can be applied. This implies that generating requirements for a generic
data fusion system is not particularly useful (although one can identify some basic component functions).
Instead, the particular application or mission to which the data fusion is addressed drives the require-
ments. This concept is illustrated in Figures 15.1(A) and 15.1(B).1

Figure 15.1(A) indicates that the requirements analysis process begins with an understanding of the
overall mission requirements. What decisions or inferences are sought by the overall system? What
decisions or inferences do the human users want to make? The analysis and documentation of this is
illustrated at the top of the figure. An understanding of the anticipated targets supports this analysis, the
types of threats anticipated, the environment in which the observations and decisions are to be made,
and the operational doctrine. For Department of Defense (DoD) applications — such as automated
target recognition — this would entail specifying the types of targets to be identified (e.g., army tanks
and launch vehicles) and other types of entities that could be confused for targets (e.g., automobiles and
school buses). The analysis must specify the environment in which the observations are made, the
conditions of the observation process, and sample missions or engagement scenarios. This initial analysis
should clearly specify the military or mission needs and how these would benefit from a data fusion
system.

From this initial analysis, system functions can be identified and performance requirements associated
with each function. The Joint Directors of Laboratories (JDL) data fusion process model can assist with
this step. For example, the functions related to communications/message processing could be specified.
What are the external interfaces to the system? What are the data rates from each communications link
or sensor? What are the system transactions to be performed?2 These types of questions assist in the
formulation of the functional performance requirements. For each requirement, one must also specify

FIGURE 15.1(A) Requirements flow-down process for data fusion.
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how the requirement can be verified or tested (e.g., via simulations, inspection, and effectiveness analysis).
A requirement is vague (and not really a requirement) unless it can be verified via a test or inspection.

Ideally, the system designer has the luxury of analyzing and selecting a sensor suite. This is shown in
the middle of the diagram that appears in Figure 15.1(A). The designer performs a survey of current
sensor technology, analyzes the observational phenomenology (i.e., how the inferences to be made by
the fusion system can be mapped to observable phenomena such as infrared spectra and radio frequency
measurements). The result of this process is a set of sensor performance measures that link sensors to
functional requirements, and an understanding of how the sensors could perform under anticipated
conditions. In many cases, of course, the sensors have already been selected (e.g., when designing a fusion
system for an existing platform such as a tactical aircraft). Even in such cases, the designer should perform
the sensor analysis in order to understand the operation and contributions of each sensor in the sensor
suite.

The flow-down process continues as shown in Figure 15.1(B). The subsystem design/analysis process
is shown within the dashed frame. At this step, the designer explicitly begins to allocate requirements
and functions to subsystems such as the sensor subsystem, the processing subsystem, and the commu-
nications subsystem. These must be considered together because the design of each subsystem affects the
design of the others. The processing subsystem design entails the further selection of algorithms, the
specific elements of the database required, and the overall fusion architecture (i.e., the specification of
where in the process flow the fusion actually occurs).

The requirement analysis process results in well-defined and documented requirements for the sensors,
communications, processing, algorithms, displays, and test and evaluation requirements. If performed
in a systematic and careful manner, this analysis provides a basis for an implemented fusion system that
supports the application and mission.

15.3 Engineering Flow-Down Approach

Formal systems engineering methods are articulated by the U.S. DoD in numerous classical military
standards3 and defense systems engineering guides. A standard approach for development of complex
hardware and software systems is the waterfall approach shown in Figure 15.2.

This approach uses a sequence of design, implementation, and test and evaluation phases or steps
controlled by formal reviews and delivery of documentation. The waterfall approach begins at the left
side of Figure 15.2 with system definition, subsystem design, preliminary design, and detailed design. In

FIGURE 15.1(B) Requirements flow-down process for data fusion (continued).
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this approach, the high-level system requirements are defined and partitioned into a hierarchy of increas-
ingly smaller subsystems and components. For software development, the goal is to partition the require-
ments to a level of detail so that they map to individual software modules comprising no more than
about 100 executable lines of code. Formal reviews, such as a requirement review, preliminary design
review (PDR), and a critical design review (CDR), are held with the designers, users, and sponsors to
obtain agreement at each step in the process. A baseline control process is used, so that requirements
and design details developed at one phase cannot be changed in a subsequent phase without a formal
change/modification process.

After the low-level software and hardware components are defined, the implementation begins. (This
is shown in the middle of Figure 15.2.) Small hardware and software units are built and aggregated into
larger components and subsystems. The system development proceeds to build small units, integrate
these into larger entities, and test and evaluate evolving subsystems. The test and integration continues
until a complete system is built and tested (as shown on the right side of Figure 15.2). Often a series of
builds and tests are planned and executed.

Over the past 40 years, numerous successful systems have been built in this manner. Advantages of
this approach include:

• The ability to systematically build large systems by decomposing them into small, manageable,
testable units.

• The ability to work with multiple designers, builders, vendors, users, and sponsoring organizations.

• The capability to perform the development over an extended period of time with resilience to
changes in development personnel.

• The ability to define and manage risks by identifying the source of potential problems.

• Formal control and monitoring of the system development process with well-documented stan-
dards and procedures.

This systems engineering approach is certainly not suitable for all system developments. The approach
is most applicable for large-scale hardware and software system. Basic assumptions include the following:

• The system to be developed is of sufficient size and complexity that it is not feasible to develop it
using less formal methods.

• The requirements are relatively stable.

• The requirements can be articulated via formal documentation.

• The underlying technology for the system development changes relatively slowly compared to the
length of the system development effort.

• Large teams of people are required for the development effort.

• Much of the system must be built from scratch rather than purchased commercially.

FIGURE 15.2 System engineering methodology.
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Over the past 40 years, the formalism of systems engineering has been very useful for developing large-
scale DoD systems. However, recent advances in information technology have motivated the use of
another general approach.

15.4 Enterprise Architecture Approach

The rapid growth in information technology has enabled the construction of complex computing net-
works that integrate large teams of humans and computers to accept, process, and analyze volumes of
data in an environment referred as the “enterprise.” The development of enterprise architectures requires
the consideration of functional operations and the allocation of these functions in a network of human
(cognitive), hardware (physical), or software components.

The enterprise includes the collection of people, knowledge (tacit and explicit), and information
processes that deliver critical knowledge (often called “intelligence”) to analysts and decision-makers to
enable them to make accurate, timely, and wise decisions. This definition describes the enterprise as a
process that is devoted to achieving an objective for its stakeholders and users. The enterprise process
includes the production, buying, selling, exchange, and/or promotion, of an item, substance, service,
and/or system. The definition is similar to that adopted by DaimlerChrysler’s extended virtual enterprise,
which encompasses its suppliers:

A DaimlerChrysler coordinated, goal-driven process that unifies and extends the business relation-
ships of suppliers and supplier tiers in order to reduce cycle time, minimize systems cost and achieve
perfect quality.4

This all-encompassing definition brings the challenge of describing the full enterprise, its operations,
and its component parts. Zachman has articulated many perspective views of an enterprise information
architecture and has developed a comprehensive framework of descriptions to thoroughly describe an
entire enterprise.5,6 The following section describes a subset of architecture views that can represent the
functions in most data fusion enterprises.

15.4.1 The Three Views of the Enterprise Architecture

The enterprise architecture is described in three views (as shown in Figure 15.3), each with different
describing products. These three, interrelated perspectives or architecture views are outlined by the DoD
in their description of the Command, Control, Communication, Computation, Intelligence, Surveillance,
and Reconnaissance (C4ISR) framework.7 They include:

1. Operational architecture (OA) is a description (often graphical) of the operational elements,
business processes, assigned tasks, workflows, and information flows required to accomplish or
support the C4ISR function. It defines the type of information, the frequency of exchange, and
tasks supported by these information exchanges. This view uniquely describes the human role in
the enterprise and the interface of human activities to automated (machine) processes.

2. Systems architecture (SA) is a description, including graphics, of the systems and interconnections
providing for or supporting functions. The SA defines the physical connection, location, and
identification of the key nodes, circuits, networks, and war-fighting platforms, and it specifies
system and component performance parameters. It is constructed to satisfy operational architec-
ture requirements per standards defined in the technical architecture. The SA shows how multiple
systems within a subject area link and interoperate and may describe the internal construction or
operations of particular systems within the architecture.

3. Technical architecture (TA) is a minimal set of rules governing the arrangement, interaction, and
interdependence of the parts or elements whose purpose is to ensure that a conformant system
satisfies a specified set of requirements. The technical architecture identifies the services, interfaces,
standards, and their relationships. It provides the technical guidelines for implementation of
©2001 CRC Press LLC



                          
systems upon which engineering specifications are based, common building blocks are built, and
product lines are developed.

The primary products that describe the three architecture views (Figure 15.3) include the following:

1. Context diagram: the intelligence community context that relates shareholders (owners, users,
and producers).

2. Scenarios: selected descriptions of problems the enterprise must solve that represent the wide
range of situations expected to be confronted by the enterprise.

3. Process hierarchy: tree diagrams that relate the intelligence community business processes and
describe the functional processes that are implemented as basic services.

4. Activity diagrams: sequential relationships between business processes that are described in activ-
ity sequence diagrams.

5. Domain operation: the structure of collaborative domains of human virtual teams (user community).
6. Service descriptions: define core and special software services required for the enterprise — most

commercial and some custom.
7. N-tier structure diagram: the n-tier structure of the information system architecture is provided

at a top level (e.g., two-tier systems are well-known client-server tiers; three-tier systems are
partitioned into data warehouse, business logic, and presentation layers).

8. Technical standards: critical technical standards that have particular importance to data fusion
business processes, such as data format standards and data service standards (e.g., SQL and XML).

9. Information technology roadmaps: projected technology needs and drivers that influence system
growth and adoption of emerging technologies are critical components of an enterprise; they
recognize the highly dynamic nature of both the enterprise and information technology as a whole.

15.5 Comparison of Approaches

The two design methods are complementary in nature and both provide helpful approaches for decom-
posing problems into component parts and developing data fusion solutions. Comparing the major
distinguishing characteristics of the approaches (Table 15.1) illustrates the strengths of each approach
for data fusion system implementation:

FIGURE 15.3 Three architecture views are described in a variety of products.
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• Perspective: System engineering seeks specific (often custom) solutions to meet all specific func-
tional requirements; system architecting begins with components and seeks to perform the set of
use cases (accepting requirements’ flexibility) with the optimum use of components (minimizing
custom designed components).

• Starting assumptions: System engineering assumes that top-level system requirements exist and
are quantifiable. The requirements are specific and can be documented along with performance
specifications. System engineering emphasizes functional models. By contrast, system architecting
assumes that functional components exist and that the requirements are general and user oriented.
The emphasis is on use-case models.

• Methodology: The methodology of system engineering involves structured problem decomposi-
tion and requirements flow-down (as described in Section 15.2). The design and implementation
proceeds in accordance with a waterfall approach. System architecting involves use-case modeling
and data and functional modeling. Multiple functional perspectives may be adopted, and the focus
is on integration of standard components.

• Risk analysis: Systems engineering addresses risks in system implementation by partitioning the
risks to subsystems or components. Risks are identified and addressed by breaking the risks into
manageable smaller units. Alternative approaches are identified to address the risks. In the system
architecting approach, risk is viewed in terms of operational utility over a life cycle. Alternative
components and architectures address risks.

TABLE 15.1 Comparison of System-Level Design Approaches

System Engineering System Architecting

Perspective Design from first principles
Optimize design solution to meet all functional 

requirements; quantify risk to life cycle cost and 
to implementation cost and schedule

Provide traceability from requirements to 
implementation 

Design from best standard components
Optimize design solution to implement use 

cases; quantify risk to operational 
performance and enterprise future growth 
(scalability, component upgrade)

Provide traceability between multiple 
architecture views

Starting 
assumptions

• Top-level problem requirements exist and are 
quantified

• Requirements are specific, technical, and 
quantified

• Emphasis on functional models

• Functional components (e.g., software 
components) exist

• Requirements tend to be general, user-
oriented applications, and subjective

• Emphasis on use case models

Methodology • Structured problem decomposition
• Requirements flow-down (deriving and 

allocating requirements)
• Design, integrate custom components

• Use case modeling
• Data and functional modeling
• Multiple architecture views construction 

(multiple functional perspectives)
• Design structure, integrate standard 

components

Basis of risk analysis Implementation (cost, schedule) and 
performance risk as a function of alternative 
design approaches

Operational utility (over life cycle) risk as a 
function of implementation cost

Design variable 
perspective

Requirements are fixed; cost is variable Cost is fixed; requirements are variable

Applicable data 
fusion systems

• One-of-a-kind intelligence and military 
surveillance systems

• Mission-critical, high reliability systems

• General business data analysis systems
• Highly networked component-based, 

service-oriented systems employing 
commercial software components 
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• Design variables: System engineering assumes that the system requirements are fixed but that
development cost and schedule may be varied to meet the requirements. By contrast, system
architecting assumes that the cost is fixed and the requirements may be varied or traded off to
meet cost constraints.

• Application: The system engineering approach provides a formal means of deriving, tracking, and
allocating requirements to permit detailed performance analysis and legal contract administration.
This is often applied on one-of-a-kind systems, critical systems, or unique applications. The
architectural approach is appropriate for the broader class of systems, where many general
approaches can meet the requirements (e.g., many software products may provide candidate
solutions).

The two basic approaches described here are complimentary. Both hardware and software develop-
ments will tend to evolve toward a hybrid utilization of systems engineering and architecting engineering.
The rapid evolution of information technology and the appearance of numerous commercial-off-the-
shelf tools provide the basis for the use of methods such as architecting engineering. New data fusion
systems will likely involve combinations of traditional systems engineering and architecting engineering
approaches, which will provide benefits to both the implementation and the user communities.
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16.1 Scope

This chapter defines a systematic process for developing data fusion systems and intends to provide a
common, effective foundation for the design and development of such systems. It also provides guidelines
for selecting among design alternatives for specific applications.

This systems engineering approach has been developed to provide

• A standard model for representing the requirements, design, and performance of data fusion
systems, and 

• A methodology for developing multisource data fusion systems and for selecting system
architecture and technique alternatives for cost-effective satisfaction of system requirements.

This systems engineering approach builds on a set of data fusion engineering guidelines that were
developed in 1995–96 as part of the U.S. Air Force Space Command’s Project Correlation.1,2* The
present work extends these guidelines by proposing a formal model for systems engineering, thereby
establishing the basis for rigorous problem decomposition, system design, and technique application.

*A closely related set of guidelines3 for selecting among data correlation and association techniques, developed as
part of the same project, is discussed in Chapter 17.

Christopher L. Bowman
Consultant

Alan N. Steinberg
Utah State University
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Integral to the guidelines is the use of a functional model for characterizing diverse system architectures
and processing and control functions within a data fusion process. This architecture paradigm has been
found to capture successfully the salient operating characteristics of the diverse automatic and manual
approaches that have been employed across a great diversity of data fusion applications.

This fusion system paradigm can be implemented in human, as well as automated, processes and in
hybrids involving both. Also, the node paradigm can be employed in both fusion system development
and reverse engineering for the purpose of applying countermeasures.

The recommended architecture concept represents data fusion systems as networks — termed data
fusion trees — of processing nodes that are amenable to a standard representation. The tight coupling of
a data fusion tree with a resource management tree is characteristic of many successful system designs.
The close relationship between fusion and management — both in interactive operation and in their
underlying design principles — will play an important part in effective system design. It will also be
important in defining effective engineering methods for achieving those designs.

The guidelines recommend a four-phase process for developing data fusion functionality within an
information processing system. Design and development decisions flow from overall system requirements
and constraints to a specification of the role for data fusion within the system. Further partitioning results
in a specification of a data fusion tree structure and corresponding nodes. Pattern analysis of the
requirements for each node allows selection of appropriate techniques, based on analysis and experience.

The largely heuristic methods presented in the Project Correlation Data Fusion Engineering Guidelines
are amenable to more rigorous treatment. Systems engineering — and, specifically, data fusion systems
engineering — can be viewed as a planning (i.e., resource management) process. Available techniques
and design resources are applied to meet an objective criterion: cost-effective system performance.
Therefore, the techniques of optimal planning can be applied to building optimal systems.

Furthermore, the formal duality between data fusion and resource management — first propounded
by Bowman4 — enables data fusion design principles to be applied to the corresponding problem of
resource management. As systems engineering is itself a resource management problem, the principles
of data fusion can be used for building data fusion systems. The formal relationship between Data Fusion
and Resource Management is discussed in Section 16.3.2.

16.2 Architecture for Data Fusion

16.2.1 Role of Data Fusion in Information Processing Systems

As shown in Figure 16.1, data fusion characteristically is used to provide assessments of an observed
environment to users who further assess and manage responses to the assessed environment. A system’s
resource management function uses the fused assessments and user directives to plan and control the

FIGURE 16.1 Characteristic role of data fusion in an information management system.
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available resources. This can include platform navigation, weapon deployment, countermeasures, and
other active responses, and allocation of sensor and processing resources (including data fusion and
response management processing resources) in support of mission objectives.

16.2.2 Open System Environment

The open system environment (OSE) has become the preferred system environment for major command,
control, communications, computers, and intelligence (C4I) architectures. This environment comprises
a comprehensive set of interfaces, services, supporting formats, and user aspects. The OSE is intended
to reduce development, integration, and software maintenance costs. OSE architecture features that were
designed to provide the desired system interoperability and portability include

• Distributed processing

• Open-layered architecture

• Near-real-time data distribution

• Data source independence

• Software modularity

• Application independence

• Flexible reconfiguration

• Scalability

16.2.3 Layered Design

A layered design approach facilitates system design by hierarchically partitioning a complex design
problem. It applies the principle of “divide and conquer” to the systems engineering problem, much like
a fan-in fusion tree applies this principle to batching large, diverse input data. The relationship between
systems engineering and data fusion processes is described in Section 16.3.

The data fusion systems engineering process applies an open, layered, paradigm-based architecture to
permit a cost-effective method for achieving a required level of performance. The process uses the data
fusion tree paradigm as its basis, to provide a common methodology for addressing the design and
development of fusion systems.5

Both the fusion and management tree architectures (i.e., components, interfaces, and utilization
guidelines) are implemented in a system’s applications layer, as depicted in Figure 16.2. As a result, the
user of the recommended data fusion architecture can apply any standard lower-layer architecture (e.g.,
GCCS, JMCIS, TBMCS).

16.2.4 Paradigm-Based Architecture

The recommended system development process applies a paradigm-based architecture to the specific
issues involved in data fusion systems. Systems are specified in terms of a broadly applicable model for
the fusion process. The employed paradigm defines a data fusion system in terms of a fusion tree, which
is a network of fusion nodes, each of which is specified according to a standard functional paradigm that
describes system components and interfaces.

A fusion tree typically takes the form of a fan-in (or “bottom-up”) tree for fusion and a fan-out (or
“top-down”) tree for management, as illustrated in Figure 16.3. (The characteristic inseparability of the
data fusion and resource management aspects of system design prompts the new name “data fusion and
resource management dual node architecture.”) All such data-flow networks are called fusion and man-
agement trees (regardless of whether they are actually configured as trees) since tree configurations are
the norm. Note that any feedback (e.g., of more accurate central tracks to lower level fusion processes)
is performed through process management as part of the resource management feedback tree.

The engineering process discussed in this chapter involves a hierarchical decomposition of system-level
requirements and constraints. Goals and constraints are refined by feedback of performance assessments.
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FIGURE 16.2 Data fusion processing in the applications layer of an open-layered architecture.

FIGURE 16.3 Representative interlaced data fusion and resource management trees.
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This is an example of a goal-driven problem-solving approach, which is the typical approach in systems
engineering. A more general approach to problem-solving is presented in Reference 6. As depicted in
Figure 16.4 with amplification in Table 16.1, goal-driven approaches are but one of four approaches appli-
cable to various sorts of problems. In cases where it is difficult to state system goals — as in very experi-
mental systems or in those expected to operate in poorly understood environments ∇  the goal-driven
systems engineering approach will incorporate elements of data-, technique-, or model-driven methods.

Fusion system design involves

• selecting the data flow among the fusion nodes (i.e., how data is to be batched for association and
fusion processing), and

• selecting the methods to be used within each fusion node for processing input batches of data to
refine the estimate of the observed environment.

The fusion node paradigm involves the three basic functions of data alignment, data association, and
entity state estimation functions, as shown in Figure 16.5. The means for implementing these functions
and the data and control flow among them will vary from node to node and from system to system.

FIGURE 16.4 Types of problem-solving approaches.
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Nonetheless, the given paradigm has proven to be a useful model for characterizing, developing, and
evaluating automatic, human, and other biological fusion systems.

Data alignment (sometimes termed data preparation or common referencing) preprocesses data received
by a node to permit comparisons and associations among the data. Alignment involves functions for

• Common formatting

• Spatio-temporal alignment

• Confidence normalization

Data association assigns data observations — received in the form of sensor measurements or reports —
to hypothesized entities (we commonly refer to the resulting entity estimates based on this association
as tracks). Before a sensor observation and its associated information are fused with an existing track,
the hypothesis that the observation is of the same entity as that represented by the track information
must be postulated, tested, and then accepted or rejected.*

The association process is accomplished via the following three functions:

• Hypothesis generation: identifying sets of sensor reports and existing tracks (report associations)
that are feasible candidates for association;

• Hypothesis evaluation: determining the confidence (i.e., quality) of the report to track association
or non-association as defined by a particular metric;

• Hypothesis selection: determining which of the report-to-track associations, track propagations or
deletions, and report track initiations or false alarm declarations the fusion system should retain
and use for state estimation.

The state estimation and prediction function uses a selected batch of data to refine the estimates reported
in the data and to infer entity attributes and relations. For example, kinematic measurements or tracks
can be filtered to refine kinematic states. Kinematic and other measurements can be compared with entity
and situation models to infer features, identity, and relationships of entities in the observed environment.
This can include inferring states of entities other than those directly observed.

FIGURE 16.5 Data fusion node paradigm.

*Significant progress has been made in developing multisensor/multitarget data fusion systems that do not depend
on explicit association of observations to tracks (see Chapter 14). Once again, the data fusion node paradigm is
meant to be comprehensive; every system should be describable in terms of the functions and structures of the DF
and RM Dual Node Architecture. This does not imply that every node or every system need include every function.
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16.3 Data Fusion Systems Engineering Process

16.3.1 Data Fusion Engineering Methodology

The Data Fusion Engineering Guidelines provide direction for selecting among fusion trees and fusion
node design alternatives in developing a fusion system for specific applications, as discussed in
Sections 16.4 through 16.7 below.

The guidelines for the fusion systems engineering process are intended to help improve the cost-
effectiveness of fusion system development, integration, test, and evaluation. These guidelines define a
methodology for selecting among alternative approaches in the development of a multisource data fusion
system. In most applications, fusion processes systems are tightly coupled with management systems that
determine how to apply the available resources to achieve the overall system objectives.

The data fusion tree paradigm is used as the basis of the data fusion systems engineering process. This
paradigm-based process provides a common methodology for addressing the design and development
of fusion systems. The appropriate set of common process objects and their interfaces can be defined in
terms of the paradigm, which provides a set of broadly applicable prior objects upon which solution
“patterns” can be built in future fusion software developments.

This data fusion system development process, as originally presented in the Project Correlation Data
Fusion Engineering Guidelines,1 is depicted in Figure 16.6. This process provides a common methodology
for addressing the design and development of data fusion and resource management systems. It applies
an open, layered, paradigm-based architecture to permit a cost-effective method for achieving a required
level of performance. The process involves four distinct phases, which are amenable to implementation
via waterfall, spiral, or other software development processes:

1. Fusion system role design: analyze system requirements to determine the relationship between a
proposed data fusion system and the other systems with which it interfaces.

2. Fusion tree design: define how the data is batched to partition the fusion problem.
3. Fusion node design: define the data and control flow within the nodes of a selected fusion tree.
4. Fusion algorithm design: define processing methods for the functions to be performed within each

fusion node (e.g., data association, data alignment, and state estimation/prediction).

FIGURE 16.6 Data fusion system development process.
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The data fusion tree paradigm is the basis of the paradigm for the fusion system development process.
The individual phases of this process are described as follows:

1. Fusion System Role Optimization (Section 16.4),
2. Fusion System Tree Optimization (Section 16.5),
3. Fusion Tree Node Optimization (Section 16.6),
4. Detailed Design and Development (Section 16.7).

The requirements and design decisions developed in each phase are documented in a set of canonical
products, depicted in Figure 16.7. These requirements and design products are defined in subsequent
sections. In general, they provide standardized communications media for

• Coordinating the design of data fusion processes,
• Comparing and contrasting alternative designs,
• Determining the availability of suitable prior designs, and
• Integrating fusion processes into C4ISR and other distributed information systems.

Figure 16.8 indicates the mapping of these products to the C4ISR Architecture Framework developed
by the U.S. DoD C4ISR Integrated Architecture Panel (CISA).

FIGURE 16.7 Data fusion engineering phases and products. (Note: Q A T = Data quality, availability, timeliness.)

FIGURE 16.8 The data fusion engineering processes.
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16.3.2 The Process of Systems Engineering
This section discusses formal principles for systems engineering in general and for data fusion engineering
specifically. A key insight, first presented in Reference 8, is in formulating the systems engineering process
as a resource management problem, allowing the application of Bowman’s4 model of the duality between
data fusion and resource management.

16.3.2.1 Data Fusion and Resource Management

A resource management process combines multiple available actions* (e.g., allocation of multiple avail-
able resources) over time to maximize some objective function. Such a process must contend with
uncertainty in the current situational state and in the predictive consequences of any candidate action.
A resource management process will

• Develop candidate response plans to respond to estimated world states,
• Estimate the effects of candidate actions on mission objectives,
• Identify conflicts for resource usage or detrimental side effects of candidate actions, and
• Resolve conflicts to assemble composite resource assignment plans, based on the estimated net

impact on mission attainment.

16.3.2.2 Functional Model for Resource Management

The duality between data fusion and resource management, evident in the previous definition, expands
on the well-known duality between estimation and control processes. The formal correspondence
between estimation and control, shown in Figure 16.9, has been useful in permitting techniques to be
applied directly from one to the other. This duality can be extended to include the architectures and
remaining functionality of data fusion and resource management, shown in Figure 16.10.

Figure 16.3 depicts the characteristic intertwining of a fan-in data fusion tree with a corresponding
fan-out resource management tree.

Given this formal duality, the maturity of data fusion can be used to “bootstrap” the less mature
resource management field, much like the duality of estimation did for control over 30 years ago. In so
doing, the fusion system development process, shown in Figure 16.5, becomes intertwined with the
resource management system development within each design phase shown.

As multinodal data fusion trees are useful in partitioning the data association and state estimation
problems, so are resource management trees useful in partitioning planning and control problems. A
data fusion tree performs an association/estimation process; a resource management tree performs a
planning/execution process. Both of these trees — one synthetic (i.e., constructive) and the other analytic
(i.e., decompositional) — are characteristically recursive and hierarchical.

FIGURE 16.9 Formal duality between estimation and control. (Note: Separation principle for linear stochastic
systems enables optimal estimator to be cascaded with optimal controller.)

*As noted in Section 16.2.4, not all problems have clear, immutable goals. Thus, resource management is often
an opportunistic blend of data-, technique-, model-, and goal-driven processes.
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As depicted in Figure 16.11, a resource management node involves functions that directly correspond
to those of a data fusion node:

1. Problem alignment (common referencing) — normalizing performance metrics of the given prob-
lem and normalizing performance models of available resources, as well as any control format
and spatio-temporal alignment.

2. Planning:

• Plan generation – candidate partitioning of the problem into subordinate problems and candi-
date assignment of resources.

FIGURE 16.10 Extending the duality to data fusion and resource management.

FIGURE 16.11 Dual paradigm for data fusion and resource management nodes.
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• Plan evaluation – evaluating the conditional net cost (e.g., Bayesian cost).

• Plan selection – determining a decision strategy.

3. Control (i.e., plan execution) — generating the control commands to implement the selected
resource allocation plan.

Planning is analogous to data association in data fusion. Planning functions that correspond to
association hypothesis generation, evaluation, and selection involve: (a) plan generation (i.e., search-
ing over a number of possible actions for assembly into candidate plan segments), (b) plan evalua-
tion, and (c) plan selection.

Plan generation, plan evaluation, and plan selection offer challenges similar to those encountered
in designing the corresponding data fusion functions. As with hypothesis generation in data fusion,
plan generation involves potentially massive searches, which must be constrained in practical systems.
The objective is to reduce the number of feasible plans for which a detailed evaluation is required.
Challenges for plan evaluation lie in the derivation of efficient scoring schemes capable of reflecting
the expected utility of alternative response plans.

Candidate plans — i.e., schedules of tasking for system resources — are assembled recursively. The
level of planning is adapted on the basis of (1) the assessed utility relative to the mission goals of the
given plan segment as currently developed and (2) the time available for further planning. By (1), near-
term plan segments tend to be constructed in greater detail than far-term ones, for which the added
expenditure in planning resources may outweigh the confidence that the plan will still be appropriate at
execution time.

Deeper planning is accomplished by recursively partitioning a goal into candidate sets of subgoals
(plan generation) and combining them into a composite higher-level plan (plan selection). At each level,
candidate plans are evaluated with regard to their effectiveness in achieving assigned goals, the global
value of each respective goal, and the cost of implementing each candidate plan (plan evaluation). By
evaluating higher-level cost/payoff impacts, the need for deeper planning or for selecting alternate plans
is determined. In many applications, plan selection can be an NP-hard problem — a search of multiple
resource allocations over n future time intervals.

Contentions for assigning available resources are resolved by prioritized rescheduling on the basis of
time sensitivity and predicted utility of contending allocations. Each resource management node presents
a candidate plan segment for higher-level evaluation.

Interlaced data fusion nodes estimate potential side effects of the plan. For example, in countermeasures
management in a combat aircraft, evaluation of self-protection actions must consider detectable signature
changes, flight path changes, or emissions that could interfere with another sensor. Higher-level nodes
respond by estimating the impact of such effects on their respective higher-level goals. In this way, plans
responsive to global mission goals are assembled in a hierarchical fashion.

16.3.2.3 Systems Engineering as a Resource Management Problem

Resource management is a process for determining a mapping from a problem space to a solution space.
Systems engineering is such a process, in which the problem is to build a system to meet a set of
requirements. Fundamental to the systems engineering process (as in all resource management processes)
is a method for representing the structure of a problem in a way that is amenable to a patterned solution.

The model for resource management permits a powerful general method for systems engineering
(e.g., for data fusion systems engineering). It does so by providing a standardized formal represen-
tation that allows formal resource allocation theory and methods to be applied.

Issues pertaining to data fusion systems engineering include

• Selecting feature sets for exploitation,

• Discovering exploitable context,

• Modeling problem variability,
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• Discovering patterns that allow solution generalization,

• Predicting technique and system performance,

• Predicting development cost and schedule.

As a resource management process, systems engineering can be implemented as a hierarchical, recursive
planning and execution process.

16.3.2.4 Data Fusion Systems Engineering

The data fusion (DF) engineering guidelines can be thought of as the design specification for a resource
management (RM) process, the “phases” depicted in Figure 16.1 being levels in a hierarchical RM tree.
A tree-structured RM process is used to build, validate, and refine a system concept which, in this
application, may be a tree-structured RM or DF process — something of a Universal Turing machine.
The relationship between system design and system operation is indicated in Table 16.2.

The relationship between the operation of sensor management, data fusion and systems engineering
can be dramatized by recasting Figures 16.3 and 16.6 as Figures 16.12 and 16.13, respectively. The systems
engineering process (Figure 16.13) is a fan-out (top-down) resource management tree interlaced with a
fan-in (bottom-up) data fusion tree, similar to that shown in Figure 16.12. Design goals and constraints
flow down from the system level to allocations over successively finer problem partitionings. At each
level, a design phase constitutes a grouping of situations (e.g., batches of data) for which responses (design
approaches) are coordinated.

Each RM node in a systems engineering process involves functions that are characteristic of all RM
nodes:

• Problem alignment (common referencing): normalizing requirements for the given design (sub-)prob-
lem and normalizing performance models of available resources (e.g., DF tree types or DF tech-
niques) using problem-space/solution-space matrices.

• Planning: generating, evaluating, and selecting design alternatives (partitioned according to the
four design phases shown in Figure 16.13).

• Control (plan execution): building or evaluating a DF tree, node, or component technique.

The systems engineering process builds, evaluates, and selects candidate designs for the system and its
components via a hierarchical, recursive process that permits simultaneous reasoning at multiple levels
of depth. The recursive planning process provides the ability to optimize a design against a given set of
requirements and redesign as requirements change.

The systems engineering process distributes the problem solution into multiple design (i.e., manage-
ment) nodes. Nodes communicate to accumulate incremental evidence for or against each plausible
solution. At any given stage, therefore, the systems engineering process will provide the best design plan
for achieving current goals, consistent with the available situational and procedural knowledge and the
available resources (e.g., design patterns, development and test environments, engineers, time, and money).

TABLE 16.2 Developmental and Operational RM and DF Characteristics

Problem Characteristic

Resource Management Data Fusion
Sensor 

Management
System 

Engineering
Sensor Data 

Fusion
System 

Evaluation
Process Sequence Fan-Out Tree Fan-Out Tree Fan-In Tree Fan-In Tree
Solution determination
• Generation
• Evaluation
• Solution

Plan development
(problem 

decomposition)

Design 
development

(problem 
decomposition)

Data association Performance
diagnosis fusion

Solution filter Control (plan 
implementation)

Build (design 
implementation)

Observed state 
estimation

Performance 
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This procedure is hierarchical and recursive. Subordinate resource management nodes are activated
to develop more detailed, candidate design segments when a higher-level node determines that more
detailed design is both feasible (in terms of estimated resource cost and development time) and beneficial
(in terms of the likelihood of attaining the assigned design goal).

FIGURE 16.12 Dual DF/RM tree architecture for fighter aircraft.

FIGURE 16.13 Dual DF/RM tree architecture for DF systems engineering.
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In response to the requirements/constraints of downward flow, there is an upward flow consisting of
evaluated candidate design segments (i.e., proposed technique assignments and controls plus estimates
of the performance of proposed design segments relative to their assigned goals). A higher-level node
evaluates cost versus benefit of the received design proposals (in terms of the node’s higher-level goal)
and may repartition its higher goal into a new set of subgoals if the initial allocations are not achievable.
For example, if a required performance against a particular system requirement cannot be met, a new
criterion for batching data must be developed. A data fusion tree interleaved with the resource manage-
ment tree performs the upward flow of evaluated plan segments. In the systems engineering tree depicted,
a unique evaluation process can correspond to each design node.

The process of developing data fusion, resource management, and other types of systems is depicted
in Figure 16.14. Resource management methods are applied to develop systems engineering and, specif-
ically, data fusion systems engineering techniques. These, in turn, allow the employment of data fusion
technology in building systems. Except for the special “dual” relationship between DF and RM, the same
is true of other types of systems engineering.

16.3.2.5 Adaptive Information Acquisition and Fusion

An important avenue of research involves the development of adaptive data fusion techniques, which are
used by a system’s resource management process during run time to select the data to be processed and
the processing techniques to be applied. In effect, the data fusion tree and nodes are constructed adap-
tively, based on the system’s assessed current information state and the predicted effectiveness of available
techniques to move to a desired information state. Significant work in this area was conducted under
the U.S. DARPA DMIF (Dynamic Multi-User Information Fusion) project and continued under the U.S.
Air Force Research Laboratory’s Adaptive Sensor Fusion project.

Figure 16.15 shows the concept for adaptive response to a dynamic mission environment. This extends
the adaptive sensor fusion concept to incorporate all manner of adaptive response, involving the coor-
dinated use of sensors, communications, processing (including data fusion and resource management),
and response systems (e.g., weapons, countermeasures, and trajectory management). For lack of a
generally accepted term, we refer to such processes as information acquisition management processes, to
include both sensor management and data fusion process management (i.e., the JDL Model’s Level 4).

FIGURE 16.14 Data fusion and systems engineering relationships.

Employ�

DF System�
Builds�

Data�
Fusion�

Techniques�

RM System�
Builds�

Sensor�
System�
Builds�

Apply�

Formal�
duality�Resource�

Mgmt�
Techniques�

Sensor�
Techniques�

Sensor�
Techniques�

Sensor�
Techniques�

System Engineering Techniques�

(etc.)�RM System�
Engineering�
Techniques�

Sensor System
Engineering�
Techniques�

(etc.)�

DF System�
Engineering�
Techniques�
©2001 CRC Press LLC



                                             
Traditional data fusion (indicated by the shaded area to the left of Figure 16.15) involves the feedback
loop labeled A in the figure; estimates of the observed situation, along with prior models are used to
interpret new data.

The adaptive sensor fusion concept adds two more feedback loops, labeled B and C. Resources are
allocated based on the current estimated knowledge state and a desired knowledge state. The process
develops and refines action plans (B) with a goal of mapping from partitionings of possible world state
space into decision space. Additionally, the system refines its library of models — target and background
models, as well as models of resource performance — as their performance is assessed in mission (C).

Following the method developed by Moore and Whinston,9-11 information acquisition management
can be modeled as a process of choosing a sequence of information acquisition actions (i.e., a strategy,
α, and a decision function, δ:B → D, with a goal to maximize the expected net payoff, Ω*:

(16.1)

where

B = {B1,B2,…,Bq} An exhaustive partitioning of possible world states x∈ X; Bi∩Bj = φ for i ≠ j

Φ:X → [0,1] Probability density function on possible world states

D The system’s available response decisions

C:B → R Cost function for possible utility results R

ω*:X × D × R → R Payoff function

A cost function, C, in an information acquisition system includes such costs as those involved with the
allocation of resources, the physical and security risks from such an allocation, processor and commu-
nications loading and latency, and resource contentions and mutual interference.

An information acquisition action, a∈ A, yields an information set, Ya. A mapping function, ηa:X→Ya,
induces an information structure, Ma, on X:

(16.2)

A sequence of such actions creates a sequence, B, of partitionings on X, each a refinement on its
predecessor:

(16.3)

FIGURE 16.15 Adaptive information exploitation.
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The goal of the information acquisition system is to determine such a sequence for which the final
element, Bq, maps into the system’s set of feasible responses, D.

Model revision (C in Figure 16.15) can be an integral component of an information acquisition system.
Such a system will characterize off-normal measurements in terms of four components:

• Random process noise affecting the observations of an individual target entity.

• Random process noise affecting entire classes of entities (e.g., random behavioral or design vari-
ability).

• Nonstationary processes in the individual target entity (e.g., kinematic maneuver or signature
changes caused by cumulative heating, damage, or intentional action).

• Nonstationary processes affecting related entities (e.g., coordinated maneuvers, collateral damage,
or doctrinal or design changes).

Similar to a target hypothesis, a target model is ultimately a state estimate representing the association
of a multiplicity of data. Target models are abstract hypotheses; regular target hypotheses are concrete
association hypotheses. As accumulated data refines the support and state estimate of concrete hypotheses,
so do accumulated data refine the support to abstract hypotheses. Thus, abstract hypotheses — often
treated as static databases — are, in fact, adaptive to the sensed environment.

The data fusion paradigm permits this adaptivity to be defined in a rigorous way as an organic part
of an integrated data fusion. In other words, the model is not an external part of the system. Indeed, the
system’s set of models combine with its set of concrete hypotheses at all levels of aggregation to form the
fusion system’s global hypothesis — its estimation and prediction of the state history of the sensed world.

16.3.2.6 Coordinated Multilevel Data Fusion and Resource Management

The recasting of the systems engineering process as a class of resource management processes — coupled
with the formal duality between resource management and data fusion — permits a systematic integration
of a wide range of engineering and analysis efforts. In effect, this insight allows data fusion techniques
to be used in the systematic design and validation of data fusion systems. It also paves the way for a
rigorous approach to the entire discipline of systems engineering. Finally, the search for general methods
that span systems engineering and in-mission resource management, should lead to a coordinated multi-
level approach to real-world problems. This concept is depicted in Figure 16.16, in the form of the well-
known Boyd OODA control loop.

FIGURE 16.16 Resource management at multiple levels of granularity.
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As shown, perceived changes in the world state can elicit a diversity of responses, depending on

• The assessed impact (i.e., the cost if no change in the current action plan is taken),

• Timeliness and other physical constraints,

• Resource capability available over time.

An integrated resources management process will employ such factors in considering, evaluating, and
selecting one or more of the action types shown in Figure 16.16. For example, an unanticipated capability
in a threat weapon system may be inferred through the sensing and fusion processes. Reaction can include
a direct response with weapons, other countermeasures, or passive defenses. Other reactions could include
refining the object and situation assessment by controlling the data fusion process, or modifying the sensor
management plan, or reallocating communications resources to provide the desired new observation data.

These are all “near real-time” responses, with action plans spanning milliseconds to a few minutes.
Modifications in the threat system model may also be needed, even within the course of a tactical
engagement. The same new assessment may precipitate longer-term responses and the development of
system and technology capabilities to address the newly perceived situation.*

16.4 Fusion System Role Optimization

16.4.1 Fusion System Requirements Analysis

16.4.1.1 System Requirements Definition

The fusion systems engineering development process begins with an understanding of needs
expressed in the concept of operations (CONOPS) for the system. The CONOPS and its resulting
design criteria and constraints define the problem for the fusion system design development.

The CONOPS provides the following:

• Mission needs statement:

– Current deficiencies.

– Objectives for the planned system design.

• Operational requirements for the planned system:

– Operational scenarios: environment and mission objectives.

– Measures of effectiveness.

• System design constraints:

– Budget, schedule, processing, and communications environment and standards.

16.4.1.2 Fusion System Functional Role Development

The second step in fusion system role optimization is that of developing the functional role of the fusion
system as a “black box” within the system environment. This is an iterative process that culminates in a
fusion system specification. The fusion system specification includes

• System functional capabilities: requirements inferred from the CONOPS.

• Data sources: types of available sensors and other information sources (e.g., Internet and other
electronic data sources, human information sources, documents, and databases).

*In much the same way that resource management can build coordinated action plans operating at diverse levels
of “action granularity”, data fusion can be coordinated at diverse levels of “estimation granularity.” For example, if a
mission objective is to characterize and track a tank column, characterizing and tracking each individual vehicle may
not be necessary. By associating observations and estimating entities consistently at the appropriate level of granu-
larity, the combinatorial complexity can be reduced and, potentially, features may be recognized that only emerge
at higher levels of aggregation.
©2001 CRC Press LLC



• External interfaces: descriptions of physical interfaces, communication media, nature of data,
security issues, support environments, databases, and users.

• Hardware/software environment: physical environmental characteristics, computer equipment, and
support software specified for use by the system.

• Fusion system quality factors: reliability, redundancy, maintainability, availability, accuracy, porta-
bility, flexibility, integrity, reserve capacity, trustworthiness, and robustness.

• Personnel/training: numbers, skills, and training responsibilities of available personnel.

• Documentation: requirements for manuals, test plans, procedures, training, and other descriptive
materials in various hard copy, electronic, and audio/video forms.

• Logistics: hardware, software, and database maintenance; supplies and facility impacts.

This black-box design determines the relationship of the proposed system with respect to the other
supporting systems, as shown at a high level in Figure 16.1. The design development may use functional
partitioning to define design trades, or it may use an object-oriented approach that specifies system
charter, function statements, and key use cases. In either approach, the process of iterative feedback
development of the fusion system role is employed to optimize system effectiveness.

16.4.1.3 System Effectiveness/Performance Evaluation

The third and final step in fusion system role optimization involves evaluating alternate roles for the
fusion system to refine the system requirements and the design. This system requirements analysis
provides the effectiveness criteria for this top-level feedback process, which accomplishes the fusion
system role optimization. As illustrated in Figure 16.17, the overall performance of a fusion process will
be affected by

• The performance of sensors and communications

• The application of prior models

• The nature of process control

• The fusion process per se

• The nature of the operational scenario being examined

FIGURE 16.17 Data fusion role optimization.
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The performance evaluation to optimize the role for the proposed fusion system balances affordability
with system effectiveness per the CONOPS.

16.4.2 Fusion System Tree Optimization

After the role for the fusion system is defined (allowing for subsequent iterative refinement), the design
of the fusion process itself is optimized using a feedback process similar to that described above. Specif-
ically, requirements are decomposed in a way that enables a fusion tree design solution to be developed
and refined.

16.4.2.1 Fusion Tree Requirements Analysis

The requirements refinement process generates detailed descriptions of system elements and operational
environments. A sufficiently detailed refinement enables fusion tree design trades regarding performance
versus cost/complexity. When using object-oriented design methods, this requirement analysis will
include the following elements:

• Class specifications with relationships, operations, attributes, and inheritances,

• Object-scenario diagrams with interactions between system functions,

• A data dictionary with all entity abstractions.

The resulting object and dynamic models, which support both requirements and design, include

• Observation models that describe the availability and coverage for each of the data sources and
their reported data accuracy, rates, and latency.

• Contextual models that describe applicable physical processes, physical and cultural geography,
and history.

• Dynamic environment models that describe the range of scenarios of interest in terms of objects,
their behaviors, and their relationships.

• Process functional models that describe available engineering techniques, including libraries of
fusion tree and fusion node models with fusion tree and node class diagrams.

• System environment models that describe common operating environments, applications interfaces
to migration architecture layers, and reporting outputs.

• User presentation models that describe graphical user interfaces (GUIs) and application program
interfaces (APIs).

The following subsections present a categorization of the input and output requirements refinement
for data fusion systems.

16.4.2.1.1 Fusion System Input Categorization
The inputs that the fusion system is required to process are categorized in a matrix, which we conven-
tionally refer to as Matrix A and which is shown in Table 16.3. In applying these guidelines in practice,
Matrix A lists the assumed salient characteristics of each data source to the data fusion system. For each
such source, Matrix A describes

• Reported continuous kinematic data types (e.g., location, altitude, course, speed, angle-only, slant
range),

• Reported parametric data types (e.g., RF, PRF, PW, scan rate, RCS, and intensity),

• Reported discrete entity identification inputs (e.g., entity class and type, individual ID and IFF),
and

• Reported entity attributes (e.g., track number and scan type).

The elements of Matrix A are general (often qualitative) specifications of input data types and their
respective accuracy, timeliness, and availability. For each sensor/source the elements of this matrix are
categorized as follows:
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1. Classes of reported entities (e.g., aircraft, surface targets, weather patterns, and terrain features).
2. Data aggregation level (e.g., measurement, feature, contact, object report, track, cluster, complex).
3. Source diversity (number of sources and spectral or spatio-temporal diversity).
4. Reporting quality.
5. Confidence reporting (e.g., in terms of statistical, possibilistic, or heuristic representations).
6. Reporting rate.
7. Data availability (e.g., periodicity, aperiodic schedule, and contingencies).
8. Report latency.

Note that data sources include available databases and other data stores (e.g., documents and Web sites),
as well as sensors and other “live” sources.

16.4.2.1.2 Fusion System Output Requirements
A fusion system’s output requirements are categorized in a Matrix B, with format following the pattern
of Table 16.4. The requirements matrix columns include specifications for the various applications mission
areas that the system is required to support. Specifications include descriptions of

TABLE 16.3 Matrix A: Data Fusion System Input Requirements
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• Operational mission entities to be reported,

• Fused output data capabilities: data types and associated quality, availability and timeliness, as in
Matrix A,

• System functional capabilities: cost, adaptability, robustness, human/computer interfaces, infer-
ence explanation, and misalignment issues,

• Software and hardware system environment, and

• User interface requirements.

16.4.2.2 Fusion Tree Design

This section describes a broadly applicable paradigm for representing the solution space of fusion tree
types. The paradigm is useful for describing, comparing, and designing alternative fusion tree approaches.
A corresponding set of guidelines for designing fusion trees is also described in this section. Based on
the data fusion problem space description outlined in Tables 16.3 and 16.4, data fusion trees are designed
to partition the problem to achieve a required performance versus cost/complexity.

The smaller the batches of data to be fused, the less complex the overall processing; however, less data
generally results in poorer performance. The least complex approach is to process each datum singularly,
which occurs often in current fusion systems. However, this serial approach tends to reduce association
performance due to the lack of perspective: the process either must allow only high confidence associations
or must force data association decisions that may be wrong. For example, shifts in entity geolocation
data as a result of sensor misalignments or drift cannot be detected using the one-at-a-time processing
approach because the comparison of association hypotheses do not occur over a large enough sample to
observe a registration shift pattern.

The maximal performance data fusion tree would have only a single, central node where all available
data (i.e., data of all types, received from all sources over all past time) are considered for association
and assessment/estimation. However, such a fully batched approach would be unrealistically complex
and costly in most real-world applications of interest. Thus, a partitioned approach to fusion system tree
design is employed in most practical systems.

The object-oriented system design steps to be accomplished in this fusion tree development phase are
as follows:

1. Define a fusion tree type (subject to subsequent refinement or revision).
2. Determine the order and concurrency of fusion nodes (which may include fixed, selectable, or

cooperating fusion nodes).
3. Define the data stores strategy (data structures, internal and external files, and databases).
4. Allocate processor and other resources to fusion nodes.
5. Define the software control approach (local, central, distributed, client-server, etc.).
6. Define the implementation architecture (processing hardware, software, and communications

architectures; tools; services; technology trades; and standards).

16.4.2.2.1 Fusion Tree Solution Space
There are many alternatives available in partitioning the fusion process. Diverse partitioning schemes are
appropriate for different data mixes, ambiguities, and densities, and system requirements for information
types, quality, availability, and timeliness. Table 16.5 provides examples of the diverse types of partitioning
methods for DF trees, including batching by

• Aggregation level – first processing signal or pixel data, then features, object reports, tracks,
aggregates (object clusters and complexes).

• Sensor/source – by source type, sensor platform type, or communications medium.

• Data type – by platform class, priority class, or air/surface/subsurface/space objects.

• Time – by observation or reporting time.
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• Association type – associating tracks across sources (or databases); reports to tracks; and nonidentity
relations between tracks (clustering, subordination, interaction, etc.).

• Model – associating reports directly with object models (e.g., within prior ambiguity sets that
include entity types of interest).

In cases where the process is data driven (i.e., where there is a need to account for all incoming reports,
regardless of source or significance), partitioning by aggregation level is often appropriate. This situation
is illustrated in Figure 16.18, where fusion is performed by source and aggregation level, with different
types of processing used at each level.

At the other extreme, in a system whose mission is the rapid recognition of a small set of high-value
events (e.g., nuclear detonations or ballistic missile launches), model-driven batching may be preferable.
In many cases, hybrid schemes for batching are used.

TABLE 16.5 Examples of Diverse Partitioning Methods for DF Trees

FIGURE 16.18 Fusion tree example.
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In general, the goal is to reduce the curse of dimensionality with minimum sacrifice in estimation
performance. This is accomplished by

• Reducing communications and downstream processing loads by beginning with sources or tracks
that are expected to provide the greatest reduction from input to output data rates; these will tend
to be sensors with the highest track update rates and high probability of correct observation/track
association.

• Localizing the use of specialized data — fusing all ELINT data together before combining it with
IMINT data, so that sensor-specific parameters (RF, PRI characteristics, etc.) can be exploited
using sensor-specific models, and results being expressed as features or state variables that
are commensurate with other classes of sensors (e.g., target type and location).

• Balancing the processing and communications burden within the system by adjusting the operating
characteristics among fusion nodes in terms of track impurity and track fragmentation.*

16.4.2.2.2 Fusion Tree Topology Optimization
In fusion tree design, an iterative process is used to define the tree topology (i.e., the data and control
flow among nodes) and the processing requirements of each node; this process involves a tradeoff between
data availability and processing complexity. These two interrelated design processes are discussed in the
following subsections.

In all cases, the fusion tree design process should begin with as fine a partitioning as possible, to reduce
the complexity and processing load on individual fusion nodes. Subsequently, additional data are incor-
porated into nodes, as necessary, to achieve the needed performance. In many cases, fusion is performed
sequentially under some batching scheme (i.e., fusion tree).

In a simple fan-in tree, data are taken, either one report or prior hypothesis at a time or in batches,
then fused sequentially with a central track file. In a variant of this architecture, received data and the
central track file are partitioned (e.g., by sensor/source or data type) before fusion.

Another type of fusion tree handles distributed track files. These track files are generated when data
are batched into several fusion nodes (e.g., by sensor/source, data type, and/or time). This occurs,
for example, when different platforms or sensors maintain their own locally generated track files.
Key distributed fusion issues are

• The maintenance of a consistent situational estimates among platforms,

• Updating the confidences in the track output,

• Compensating for misalignments, bandwidth limitations, and data latencies.

Simpler and generally preferred distributed fusion trees partition the incoming data and the fusion
node products using a fan-in fusion tree. In such systems, the input data is not used more than once,
and the fusion products are not fed back into prior fusion nodes to reappear as inputs to later fusion
nodes for reprocessing. This reduces the complexity of needing to discount for reuse of data or for
self-induced “rumors” (i.e., self-reinforcing inferences via positive feedback).

However, in some fusion systems (e.g., those that process broadcast communication data) there
is no straightforward way to prevent such reuse. In some cases, reuse can be detected and rumors
can be ignored. In other cases a “pedigree” (i.e., a track’s collection and processing history) must be
passed to eliminate repeated use of contributing data. Reduced forms of these pedigrees are often
required in fan-in trees as well (e.g., to account for the correlated ID from two sources using the
same type of ID observables).

In other fusion trees, a very limited track state feedback (e.g., via process management) is used
specifically to reduce the computational burden of a prior fusion node. This type of feedback is

*These are the type 1 and type 2 tracking errors analogous to the familiar types of detection errors (false alarms
and missed detections, respectively). Fusion node optimization is discussed in Section 16.4.3.
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differentiated from cues passed through sensor management processes; fusion feedback can directly
corrupt (i.e., initiate correlated state errors in) the fusion state estimation, whereas cues enable more
effective collection of new data or eliminate the processing of tracks that would be pruned by downstream
processing nodes.

Finally, there are fusion trees that permit feedback of tracks into nodes that have already processed
data incorporated in the feedback tracks. These tend to be more difficult to design and to control, given
the complexities of compensating for the error correlations in the shared data. Nonetheless, in many
applications, fusion nodes are distributed like nodes in the World Wide Web. For these applications, the
pedigree of the data required to remove the error correlations becomes significant.

16.4.2.2.3 Fusion Tree Design Issues
As discussed above, the data fusion tree design determines how data are batched for association and
fusion. In some systems, all input batches are fused to a single centralized track file. In other systems,
input batches are fused to multiple distributed track files. In the latter case, a fusion tree specifies the
order for the various fusion processes, as well as how the inputs are to be batched (e.g., by sensor, time,
and data type as described above) to support federated track generation.

The design of an effective fusion tree requires an understanding of the fusion data inputs, assessment
of the outputs, and the fusion system requirements. The tree structure provides the designer with a
formal mechanism for understanding the difficulty of a given fusion problem, and methods for achieving
required performance (e.g., in terms of accuracy, timeliness, throughput, etc.) under required processing
and cost constraints.

To reduce complexity and/or cost, the system should accomplish as much as possible as early and as
easily as possible in the processing sequence. That is, relatively unambiguous, high confidence decisions
should be made as soon as possible in the fusion tree. For example, a sensor that can generate high
confidence tracks based on its own data should be allocated its own node of the tree early in the process,
using only that sensor’s data. Other data that can be fused sequentially to existing tracks with high
confidence should also be done early in the fusion tree (e.g., fusion of data from off-board sources
reporting unique entity identifiers).

The fusion trees with the simpler fusion node processing are those that use the smaller batches of data
(e.g., one report at a time is fused with a centralized set of tracks). However, in many applications, such
sequential processing does not yield sufficient association performance, including those involving dense
scenarios or highly maneuverable targets and/or low observation updates rates, or with sensors subject
to unmodeled misalignment.

In other cases, sequential processing does not yield a sufficiently broad perspective for estimation —
for example, for situation assessment or threat prediction where the relationship to contextual data must
be considered. Thus, the size of the batches to be selected involves a tradeoff between performance and
computational complexity and cost.

The size of the batch of data input to a single fusion node should be only as large as necessary to
enable the consideration of the other data needed to achieve sufficiently accurate association and esti-
mation results. Otherwise, smaller batches could be used with no loss in performance and reduced overall
complexity.

Figure 16.19 illustrates this process of developing the fusion tree in order to achieve the knee-of-the-
curve in performance versus cost/complexity in available data batching dimensions. The resulting fusion
tree can be distributed across multiple processors operating in parallel at different points in the qual-
ity/quantity surveillance space. Typically, quality and timeliness are reduced at the higher levels of the
hierarchy of fusion nodes, which offer broader perspectives (e.g., for situation awareness). This type of
fusion tree enables increased speed and accuracy for local tracking/ID (e.g., for weapon handover), as
well as high-level situation assessment, all using the same data fusion tree paradigm.

In typical integrated information management systems, the data fusion and resource management
trees are highly intertwined, with nodes distributed and coupled at each level (as illustrated in
Figure 16.3). This interaction between fusion and management nodes enables more centralized decisions
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(and, therefore, generally better decisions), as well as local feedback for higher rate responses. Such tight
coupling between estimation and control processes allows rapid autonomous feedback, with centralized
coordination commands requiring less communications bandwidth. These cascaded data fusion and
resource management trees also enable the data fusion tree to be selected online via resource management
(Level 4 data fusion). This can occur when, for example, a high priority set of data arrives or when
observed operating conditions differ significantly from those for which the given fusion tree was designed.

In summary, the data fusion tree specifies

• How the data can be batched (e.g., by level, sensor/source, time, and report/data type), and

• The order that the batches (i.e., fusion tree nodes) are to be processed.

The success of a particular fusion tree will be determined by the fidelity of the model of the data
environment and of the required decision space used in developing the tree. A tree based on high-fidelity
models will be more likely to associate received data effectively (i.e., sufficient to resolve state estimates
that are critical to making response decisions). This is the case when the data that is batched in early
fusion nodes are of sufficient accuracy and precision in common dimensions to create association
hypotheses that closely reflect the actual report-to-entity causal relationships.

For poorly understood or highly dynamic data environments, a reduced degree of partitioning may
be warranted. Alternately, the performance of any fusion process can generally be improved by making
the process adaptive to the estimated sensed environment. This can be accomplished by integrating the
data fusion tree with a dual fan-out resource management tree to provide more accurate local feedback
at higher rates, as well as slower situational awareness and mission management with broader areas of
concern.12 A more dynamic approach is to permit the fusion tree itself to be adaptively reconstructed in
response to the estimated environment and to the changing data needs.10,11

16.4.2.2.4 Fusion Tree Design Categorization
The fusion tree architecture used by the data fusion system indicates the tree topology and data batching
in the tree nodes. These design decisions are documented in the left half of a Matrix C, illustrated in
Table 16.6, and include the following partial categorization:

• Centralized Track File: all inputs are fused to a view of the world based on all prior associated data.

• Batching 

FIGURE 16.19 Selecting data aggregation and batching criteria to achieve desired performance vs. cost.
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• 1HC: one input at a time, high-confidence-only fusion to a centralized track file.

• 1HC/BB: one input at a time, high-confidence-only fusion nodes that are followed by batching
of ambiguously associated inputs for fusion to a centralized track file.

• Batch: batching of input data by source, time, and/or data type before fusion to a centralized
track file.

• Sequencing 

• SSQ: input batches are fused in a single sequential set of fusion nodes, each with the previous
resultant central track file.

• PSQ: input data and the central track file are partitioned before sequential fusion into non-
overlapping views of the world, with the input data independently updating each centralized
track file.

• Distributed Track Files: different views of the world from subsets of the inputs are maintained (e.g.,
radar-only tracking) and then fused (e.g., onboard to offboard fusion).

• Batching 

• 1HC: one input at a time, high-confidence-only fusion to distributed track files that are later
fused.

• 1HC/BB: one input at a time, high-confidence-only fusion nodes followed by batching of
ambiguously associated inputs for fusion to corresponding distributed track files.

• Batch: batching of input data by source, time, and/or data type for fusion to a corresponding
distributed track file.

• Sequencing 

• FAN: a fan-in fusion of distributed fusion nodes.

• FB: a fusion tree with feedback of tracks into fusion nodes that have already processed a portion
of the data upon which the feedback tracks are based.

Fusion tree nodes are characterized by the type of input batching and can be categorized according
to combinations in a variety of dimensions, as illustrated above and documented per the right half of
Matrix C (Table 16.6). A partial categorization of fusion nodes follows.

• Sensor/source 

• BC: batching by communications type (e.g., RF, WA, Internet, press)

• SR: batching by sensor type (e.g., imagery, video, signals, text)

• PL: batching by collector platform

TABLE 16.6 Matrix C: Fusion Tree Categorization (example)

Fusion Tree Architecture
Fusion
System

Fusion Tree Types Fusion Node Types

[Per Level] Centralized Tracks Distributed Tracks Batching Types
One/Batch SSQ/PSQ One/Batch Fan/FB Source Time Data Types (etc.)

SYSTEM 1
Level 1 BATCH FAN SR AT S/M Act
Level 2 BATCH FB SR AT V/H O

SYSTEM 2
Level 0 (1HC) (PSQ) IT ID
Level 1 1HC (PSQ) IT ID

SYSTEM 3
Level 0 1HC PSQ SR MF
Level 1 1HC PSQ/SSQ SR MF
Level 2 1HC SSQ MF
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• SB: batching by spectral band

• Data type 

• VC: batching by vehicle class/motion model (e.g., air, ground, missile, sea)

• Loc: batching by location (e.g., around a named area of interest)

• S/M Act: batching into single and/or multiple activities modeled per object (e.g., transit, setup,
launch, hide activities for a mobile missile launcher)

• V/H O: batching for vertical and/or horizontal organizational aggregation (e.g., by unit subor-
dination relationships or by sibling relations)

• ID: batching into identification classes (e.g., fixed, relocatable, tracked vehicle or wheeled
vehicle)

• IFF: batching into priority class (e.g., friend, foe, and neutral classes)

• PARM: batching by parametrics type

• Time 

• IT: batching by observation time of data

• AT: batching by arrival time of data

• WIN: time window of data

• Other. 

In addition to their use in the system design process, these categorizations can be used in object-oriented
software design, allowing instantiations as hierarchical fusion tree-type and fusion node-type objects.

16.4.2.3 Fusion Tree Evaluation

This step evaluates the alternative fusion trees to enable the fusion tree requirements and design to be
refined. The fusion tree requirement analysis provides the effectiveness criteria for this feedback process,
which results in fusion tree optimization. Effectiveness is a measure of the achievement of goals and of
their relative value. Measures of effectiveness (MOEs) specific to particular types of missions areas will
relate system performance to measures of effectiveness and permit traceability from measurable perfor-
mance attributes of intelligence association/fusion systems.

The following list of MOEs provides a sample categorization of useful alternatives, after Llinas, Johnson,
and Lome.13 There are, of course, many other metrics appropriate to diverse system applications.

• Entity nomination rate: rate at which an information system recognizes and characterizes entities
relative to mission response need.

• Timeliness of information: effectiveness in supporting response decisions.

• Entity leakage: fraction of entities against which no adequate response is taken.

• Data quality: measurement accuracy sufficiency for response decision (e.g., targeting or navigation).

• Location/tracking errors: mean positional error achieved by the estimation process.

• Entity feature resolution: signal parameters, orientation/dynamics as required to support a given
application.

• Robustness: resistance to degradation caused by process noise or model error.

Unlike MOEs, measures of performance (MOPs) are used to evaluate system operation independent
of operational utility and are typically applied later in fusion node evaluation.

16.4.3 Fusion Tree Node Optimization

The third phase of fusion systems engineering optimizes the design of each node in the fusion tree.
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16.4.3.1 Fusion Node Requirements Analysis

Versions of Matrices A and B are expanded to a level of detail sufficient to perform fusion node design
trades regarding performance versus cost and complexity. Corresponding to system-level input/output
Matrices A and B, the requirements for each node in a data fusion tree are expressed by means of
quantitative input/output Matrices D and E (illustrated in Tables 16.7 and 16.8, respectively). In other
words, the generally qualitative requirements obtained via the fusion tree optimization are refined
quantitatively for each node in the fusion tree.

Matrix D expands Matrix A to indicate the quality, availability, and timeliness (QAT in the example
matrices) for each essential element of information provided by each source to the given fusion node.
The scenario characteristics of interest include densities, noise environment, platform dynamics, viewing
geometry, and coverage.

Categories of expansion pertinent to Matrix E include

• Software life-cycle cost and complexity (i.e., affordability)

• Processing efficiency (e.g., computations/sec/watt)

• Data association performance (i.e., accuracy and consistency sufficient for mission)

• Ease of user adaptability (i.e., operational refinements)

• Ease of system tuning to data/mission environments (e.g., training set requirements)

• Ease of self-coding/self-learning (e.g., system’s ability to learn how to evaluate hypotheses on its
own)

• Robustness to measurement errors and modeling errors (i.e., graceful degradation)

• Result explanation (e.g., ability to respond to queries to justify hypothesis evaluation)

• Hardware timing/sizing constraints (i.e., need for processing and memory sufficient to meet
timeliness and throughput requirements).

From an object-oriented analysis, the node-specific object and dynamic models are developed to
include models of physical forces, sensor observation, knowledge bases, process functions, system envi-
ronments, and user presentation formats. A common model representation of these environmental and
system factors across fusion nodes is important in enabling inference from one set of data to be applied
to another. Only by employing a common means of representing data expectations and uncertainty in
hypothesis scoring and state estimates can fusion nodes interact to develop globally consistent inferences.

Fusion node requirements are derived requirements since fusion performance is strongly affected by
the availability, quality, and alignment of source data, including sensors, other live sources, and prior
databases. Performance metrics quantitatively describe the capabilities of system functionality in non-
mission-specific terms. Figure 16.20 shows some MOPs that are relevant to information fusion. The
figure also indicates dependency relations among MOPs for fusion and related system functions: sensor,
alignment, communications and response management performance, and prior model fidelity. These
dependencies form the basis of data fusion performance models.

16.4.3.2 Fusion Node Design

Each fusion node performs some or all of the following three functions:

• Data Alignment: time and coordinate conversion of source data.

• Data Association: typically, associating reports with tracks.

• State Estimation: estimation and prediction of entity kinematics, ID/attributes, internal and exter-
nal relationships, and track confidence.

The specific design and complexity of each of these functions will vary with the fusion node level and type.

16.4.3.2.1 Data Alignment
Data alignment (also termed common referencing and data preparation) includes all processes required
to test and modify data received by a fusion node so that multiple items of data can be compared and
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TABLE 16.7 Matrix D
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associated. Data alignment transforms all of the data that has been input to a fusion node to consistent
formats, spatio-temporal coordinate frame, and confidence representations, with compensation for esti-
mated misalignments in any of these dimensions.

Data from two or more sensors/sources can be effectively combined only if the data are compatible
in format and consistent in frame of reference and in confidence assignments. Alignment procedures are
designed to permit association of multisensor data either at the decision, feature, or pixel level, as
appropriate to the given fusion node.

Five processes are involved in data alignment:

• Common Formatting: testing and transforming the data to system-standard data types and units.

• Time Propagation: extrapolating old track location and kinematic data to a current update time.

• Coordinate Conversion: translating data received in various coordinate systems (e.g., platform
referenced systems) to a common spatial reference system.

• Misalignment Compensation: correcting for known misalignments or parallax between sensors.

• Evidential Conditioning: assigning or normalizing likelihood, probability, or other confidence
values associated with data reports and individual data attributes.

Common formatting. This function performs the data preparation needed for data association, includ-
ing parsing, fault detection, format and unit conversions, consistency checking, filtering (e.g., geographic,
strings, polygon inclusion, date/time, parametric, or attribute/ID), and base-banding.

Time propagation. Before new sensor reports can be associated with the fused track file, the latter
must be updated to predict the expected location/kinematic states of moving entities. Filter-based tech-
niques for track state prediction are used in many applications.15,16

Coordinate conversion. The choice of a standard reference system for multisensor data referencing
depends on

• The standards imposed by the system into which reporting is to be made

• The degree of alignment attainable and required in the multiple sensors to be used

• The sensors’ adaptability to various reference standards

FIGURE 16.20 System-level performance analysis of data fusion.
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• The dynamic range of measurements to be obtained in the system (with the attendant concern
for unacceptable quantization errors in the reported data).

A standard coordinate system does not imply that each internetted platform will perform all of its tracking
or navigational calculations in this reference frame. The frame selected for internal processing is depen-
dent on what is being solved. For example, when an object’s trajectory needs to be mapped on the earth,
the WGS84 is a natural frame for processing. On the other hand, ballistic objects (e.g., spacecraft, ballistic
missiles, and astronomical bodies) are most naturally tracked in an inertial system, such as the FK5
system of epoch J2000.0. Each sensor platform will require a set of well-defined transformation matrices
relating the local frame to the network standard one (e.g., for multi-platform sensor data fusion).17

Misalignment compensation. Multisensor data fusion processing enables powerful alignment tech-
niques that involve no special hardware and minimal special software. Systematic alignment errors can
be detected by associating reports on entities of opportunity from multiple sensors. Such techniques have
been applied to problems of mapping images to one another (or for rectifying one image to a given
reference system). Polynomial warping techniques can be implemented without any assumptions con-
cerning the image formation geometry. A linear least squares mapping is performed based on known
correspondences between a set of points in the two images.

Alignment based on entities of opportunity presupposes correct association and should be performed
only with high confidence associations. A high confidence in track association of point source tracks is
supported by

• A high degree of correlation in track state, given a constant offset

• Reported attributes (features) that are known a priori to be highly correlated and to have reasonable
likelihood of being detected in the current mission context

• A lack of comparable high kinematic and feature correlation in conflicting associations among
sensor tracks.

Confidence normalization (evidence conditioning). In many cases, sensors/sources provide some
indication of the confidence to be assigned to their reports or to individual data fields. Confidence values
can be stated in terms of likelihoods, probabilities, or ad hoc methods (e.g., figures of merit). In some
cases, there is no reporting of confidence values; therefore, the fusion system must often normalize
confidence values associated with a data report and its individual data attributes. Such evidential condi-
tioning uses models of the data acquisition and measurement process, ideally including factors relating
to the entity, background, medium, sensor, reference system, and collection management performance.

16.4.3.2.2 Data Association
Data association uses the commensurate information in the data to determine which data should be
associated for improved state estimation (i.e., which data belongs together and represents the same
physical object or collaborative unit, such as for situation awareness). This section summarizes the top-
level data association functions.

The following overview summarizes the top-level data association functions. Mathematically, deter-
ministic data association is a labeled set-covering decision problem: given a set of prepared input data,
the problem is to find the best way to sort the data into subsets where each subset contains the data to
be used for estimating the state of a hypothesized entity. This collection of subsets must cover all the
input data and each must be labeled as an actual target, false alarm, or false track.

The hypothesized groupings of the reports into subsets describe the objects in the surveillance area.
Figure 16.21(a) depicts the results of a single scan by each of three sensors, A, B, and C. Reports from
each sensor — e.g., reports A1 and A2 — are presumed to be related to different targets (or one or both
may be false alarms).

Figure 16.21(a) indicates two hypothesized coverings of a set, each containing two subsets of reports —
one subset for each target hypothesized to exist. Sensor resolution problems are treated by allowing the
report subsets to overlap wherever one report may originate from two objects; e.g., the sensor C1 report
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in Figure 16.21(a). When there is no overlap allowed, data association becomes a labeled set partitioning
problem, illustrated in Figure 16.21(b).

Data association is segmented into three subfunctions:

1. Hypothesis generation: data are used to generate association hypotheses (tracks) via feasibility
gating of prior hypotheses (tracks) or via data clustering.

2. Hypothesis evaluation: these hypotheses are evaluated for self consistency using kinematic, para-
metric, attribute, ID, and a priori data.

3. Hypothesis selection: a search is performed to find the preferred hypotheses based either on the
individual track association scores or on a global score (e.g., MAP likelihood of set coverings or
partitionings).

In cases where the initial generation or evaluation of all hypotheses is not efficient, hypothesis selection
schemes can provide guidance regarding which new hypotheses to generate and score.

In hypothesis selection, a stopping criterion is eventually applied, and the best (or most unique)
hypotheses are selected as a basis for entity state estimation, using either probabilistic or deterministic
association.

The functions necessary to accomplish data association are as presented in the following sections.
Hypothesis generation. Hypothesis generation reduces the search space for the subsequent functions

by determining the feasible data associations. Hypothesis generation typically applies spatio-temporal
relational models to gate, prune, combine, cluster, and aggregate the data (i.e., kinematics, parameters,
attributes, ID, and weapon system states).

Because track-level hypothesis generation is intrinsically a suboptimizing process (eliminating from
consideration low value, thought possible, data associations), it should be conservative, admitting more
false alarms rather than eliminating possible true ones. The hypothesis generation process should be
designed so that the mean computational complexity of the techniques is significantly less than in the
hypothesis evaluation or selection functions.

Hypothesis evaluation. Hypothesis evaluation assigns scores to optimize the selection of the hypoth-
eses resulting from hypothesis generation. The scoring is used in hypothesis selection to compute the
overall objective function which guides efficient selection searching. Success in designing hypothesis
evaluation techniques resides largely in the means for representing uncertainty. The representational
problem involves assigning confidence in models of the deterministic and random processes that generate
data.

FIGURE 16.21 Set covering and set partitioning representations of data association.
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Concepts for representing uncertainty include

• Fisher likelihood

• Bayesian probabilities

• Evidential mass

• Fuzzy membership

• Information theoretic and other nonparametric similarity metrics

• Neural network

• Ad hoc (e.g., figures of merit or other templating schemes)

• Finite set statistics

These models of uncertainty — described and discussed in References 3, 10, and 18–21 and elsewhere —
differ in

• Degree to which they are empirically supportable or supportable by analytic or physical models

• Ability to draw valid inferences with little or no direct training

• Ease of capturing human sense of uncertainty

• Ability to generate inferences that agree either with human perceptions or with truth

• Processing complexity

The average complexity usually grows linearly with the number of feasible associations; however, fewer
computations are required per feasible hypothesis than in hypothesis selection.

Hypothesis evaluation is sometimes combined with state estimation, with the uncertainty in the state
estimate used as evaluation scores. For example, one may use the likelihood ratio λ(Z) as an association
score for a set of reports Z with λ(Z) being determined as a function of the probability distribution in
continuous and discrete state space, xc and xc, respectively:

where

λB(xd) is the prior for a discrete state,

xd and pB(xc |xd) is a conditioned prior on the expected continuous state xc,

GZ(xc) is a density function — possibly Gaussian — on xc conditioned on Z.22

This evaluation would generally be followed by hypothesis selection and updating of track files with
the selected state estimates.

Hypothesis selection. Hypothesis selection involves searching the scored hypotheses to select one or
more to be used for state estimation. Hypothesis selection eliminates, splits, combines, retains, and
confirms association hypotheses to maintain or delete tracks, reports, and/or aggregated objects.

Hypothesis selection can operate at the track level, e.g., using greedy techniques. Preferably, hypothesis
selection operates globally across all feasible set partitionings (or coverings). Optimally, this involves
searching for a partitioning (or covering) R of reports that maximizes the global score, e.g., the global
likelihood .

The full assignment problem, either in set-partitioning or, worse, in set-covering schemes, is of
exponential complexity. Therefore, it is common to reduce the search space to that of associating only a
current data scan, or just a few, to previously accepted tracks.

This problem is avoided altogether in techniques that estimate multitarget states directly, without the
medium of observation-to-track associations.21,23,24
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16.4.3.2.3 State Estimation
State estimation involves estimating and predicting states, both discrete and continuous, of entities
hypothesized to be the referents of sets of sensor/source data. Discrete states include (but are not limited
to) values for entity type and specific ID, and activity and discrete parametric attributes (e.g., modulation
types).

Depending on the types of entities of interest and the mission information needs, state estimation can
include kinematic tracking with misalignment estimation, parametric estimation (e.g., signal modulation
characteristics, intensity, size, and cross sections), and resolution of discrete attributes and classification
(e.g., by nationality, IFF, class, type or unique identity). State estimation often applies more accurate
models to make these updates than are used in data association, especially for the kinematics, parametrics,
and their misalignments. Techniques for discrete state estimation are categorized as logical or symbolic,
statistical, possibilistic, or ad hoc methods.

State estimation does not necessarily update a track with a unique (i.e., deterministic) data association;
however, it can smooth over numerous associations according to their confidences of association (e.g.,
probabilistic data association filter,16,25 or global tracking.21,26). Also, object and aggregate classification
confidences can be updated using probabilistic or possibilistic27 knowledge combination schemes.

In level 2 data fusion nodes, the state estimation function may perform estimation of relations among
entities to include the following classes of relations:

• Spatio-temporal

• Causal

• Organizational

• Informational

• Intentional

In level 3 data fusion, state estimation involves estimation or prediction of costs associated with
estimated situations. In a threat environment, these can include assessment of adversaries’ intent and
impact on one’s assets (these topics are treated in Reference 28 and in Chapter 2).

16.4.3.2.4 Fusion Node Component Design Categorization
For each node, the pertinent functions for data alignment, data association, and state estimation are
designed. The algorithmic characterizations for each of these three functions can then be determined.
The detailed techniques or algorithms are not needed or desired at this point; however, the type of
filtering, parsing, gating, scoring, searching, tracking, and identification in the fusion functions can be
characterized.

The emphasis in this stage is on achieving balance within the nodes for these functions in their relative
computational complexity and accuracy. It is at this point, for example, when the decision to perform
deterministic or probabilistic data association is made, as well as what portions of the data are to be used
for feasibility gating and for association scoring. The detailed design and development (e.g., the actual
algorithms) are not specified until this node processing optimization balance is achieved. For object-
oriented design, common fusion node objects for the above functions can be utilized to initiate these
designs.

Design decisions are documented in Matrix F, as illustrated in Table 16.9 for a notional data fusion
system. The primary fusion node component types used to compare alternatives in Matrix F are listed
in the following subsections.

Data Alignment (Common Referencing) 

CC: Coordinate conversion (e.g., UTM or ECI to lat/long)
TP: Time propagation (e.g., propagation of last track location to current report time)
SC: Scale and/or mode conversion (e.g., emitter RF base-banding)
FC: Format conversion and error detection and correction
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TABLE 16.9 Matrix F: Data Fu amples)

Fusion Tree Node Components

Data Association State Estimation

Fusion Nodes Kinema
esis 
tion 

Hypothesis 
Evaluation 

Hypothesis 
Selection Kinematics Parametrics ID/Attributes

1 (Single Disc/Level 1) CC, T Bay/LKL/CHI P,ND,SP,S, MHT KF Bay Bay
2 (Single Disc/Level 1) CC, T Bay/LKL/CHI P,ND,SP,S, MHT KF Bay Bay
3 (Single Disc/Level 1) CC, T AH D,1D,SP,S, SHT KF AH
4 (Multi-Disc/Level 1) CC, T Bay/LKL P,2D,SP,S, SHT AH Bay Bay
5 (Multi-Disc/Level 2) Bay/BN P,2D,SC,S, SHT AH Bay Bay
6 (Multi-Disc/Level 2) , ST AH D,2D,SC,S, SHT KF L/S
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Data Association (Association) 

Hypothesis generation — generating feasible association hypotheses
K gate: Kinematic gating
K/P gate: Kinematic and parametric gating
KB: Knowledge-based methods (e.g., logical templating and scripting)
SM: Syntactic methods
ST: Script templating based on doctrine
OT: Organizational templating based on doctrine
KC: Kinematic clustering
K/PC: Kinematic and parametric clustering
PR: Pattern recognition
GL: Global association

Hypothesis evaluation — assigning scores to feasible association hypotheses
Bay: Conditional Bayesian scoring, including a posteriori, likelihoods, chi-square, Neyman-Pear-

son, and Bayesian nets
L/S: Logic and symbolic scoring including case-based reasoning, semantic distance, scripts/frames,

expert system rules, ad hoc, and hybrids
Poss: Possibilistic scoring (e.g., evidential mass or fuzzy set membership), as well as non-paramet-

ric, conditional event algebras, and information theoretic; often used in combination with L/S
techniques, particularly with highly uncertain rules

NN: Neural networks, including unsupervised and supervised feed-forward and recurrent
Hypothesis selection — selecting one or more association hypotheses for state estimation, based on

the overall confidenceof the hypotheses.
D/P: Deterministic or probabilistic data association (i.e., select highest scoring hypothesis or

smooth over many associations)
S/M HT: Single- or multiple-hypothesis testing (i.e., maintain best full-scene hypothesis or many

alternative scenes/world situation views)
SC/SP: Solve as a set covering or as a set partitioning problem (i.e., allow or disallow one-to-many

report/track associations)
2D/ND: Solve as a two-dimensional or as an n-dimensional association problem (i.e., associating

a single batch of data or more scans of data with a single track file)
S/O: Use suboptimal or optimal search schemes

State Estimation and Prediction 

KF: Kalman filter
EKF: Extended Kalman filter to include linearization of fixed and adaptive Kalman gains
MM: Multiple model linear filters using either model averaging (IMM) or selection based on the

residuals
NL: Nonlinear filtering to include nonlinear templates and Daumís methods
AH: Ad hoc estimation methods without a rigorous basis (not including approximations to rigorous

techniques)
LS: Least squares estimation and regression
L/S: Logic and symbolic updates, especially for ID/attributes such as case-based reasoning, semantic

distance, scripts/frames, expert system rules, ad hoc, and hybrids
Prob: Probabilistic ID/attribute updates including Bayesian nets and entity class trees
Poss: Possibilistic (e.g., evidential reasoning and fuzzy logic), as well as nonparametric, conditional

event algebras, and information theoretic methods

16.4.3.3 Fusion Node Performance Evaluation
This step evaluates the alternative fusion node functions to enable the refinement of the fusion node
requirements analysis, and the fusion node design development. The performance evaluation is generally
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fed back to optimize the design and interfaces for each function in each node in the trees. This feedback
enables balancing of processing loads among nodes and may entail changes in the fusion tree node
structure in this optimization process. The fusion node requirements analysis provides the MOPs for
this feedback process.

A systems performance relative to these MOPs will be a function of several factors, many external to
the association/fusion process, as depicted in Figure 16.20. These factors include

• Alignment errors between sensors

• Sensor estimation errors

• Lack of fidelity in the a priori models of the sensed environment and of the collection process

• Restrictions in data availability caused by communications latencies, data compression, or data
removal

• Performance of the data association and fusion process.

Measurement and alignment errors can affect the statistics of hypothesis generation (e.g., the proba-
bility that an observation will fall within the validation gate of particular tracks) and of hypothesis
evaluation (e.g., the likelihood estimated for a set of observations to relate to a single entity). These
impacts will, in turn, affect

• Hypothesis selection performance (e.g., the probability that a given assignment hypothesis will be
selected for higher-level situation assessment or response, or the probability that a given hypothesis
will be pruned from the system).

• State estimation performance (e.g., the probabilities assigned to various entity classification, activ-
ity states or kinematic states).14

As described above, dependencies exist among MOPs for information fusion node functions, as well
as those relating to sensor, alignment, communications and response management performance, and
prior model fidelity. Covariance analytic techniques can be employed to predict performance relating to
hypothesis generation and evaluation. Markov chain techniques can be used to predict hypothesis selec-
tion, state estimation and cueing performance.29

16.4.4 Detailed Design and Development

The final phase determines the detailed design of the solution patterns for each subfunction of each node
in the fusion tree. There is a further flowdown of the requirements and evaluation criteria for each of
the subfunctions down to the pattern level. Each pattern contains the following:

1. Name and definition of the problem class it addresses (e.g., hypothesis evaluation of fused
MTI/ESM tracks).

2. Context of its application within the data fusion tree paradigm (node and function indices).
3. Requirements and any constraint violations in combining them.
4. The design rationale (prioritization of requirements and constraint relaxation rationale).
5. The design specification.
6. Performance prediction and assessment of requirements satisfaction.

The resulting pattern language can provide an online aid for rapid data fusion solution development.
Indeed, given the above higher-level design process, a nonexpert designer should be able to perform the
pattern application, if provided a sufficiently rich library of legacy patterns organized into directed graphs.

In an object-oriented system design process, this is the step in which the rapid prototyping executable
releases are planned and developed. In addition, the following are completed:

• Class-category diagrams

• Object-scenario diagrams

• Class specifications
©2001 CRC Press LLC



This paradigm-based software design and development process is compatible with an iterative enhance-
ment and rapid prototyping process at this point. The performance evaluation feedback drives the pattern
optimization process through multiple evolutionary stages of detailed development and evaluation. The
paradigm provides the structure above the applications interface (API) in the migration architecture over
which it is embedded.

The system development process can further ease this rapid prototyping development and test evolu-
tion. The first round of this process is usually performed using workstations driven by an open-loop,
non-real-time simulation of the operational environment. The resulting software can then progress
through the traditional testing stages: closed-loop, then real-time, followed by man-in-the-loop, and,
finally, operational environment test and evaluation.

Software developed at any cycle in the design process can be used in the corresponding hardware-in-
the-loop testing stage; ultimately leading to operational system testing. The results of the operational
environment and hardware-in-the-loop testing provide the verification and validation for each cycle.
Results are fed back to improve the simulations and for future iterations of limited data testing (e.g.,
against recorded scenarios).

References

1. Engineering Guidelines, SWC Talon-Command Operations Support Technical Report 96-11/4,
1997.

2. Alan N. Steinberg and Christopher L. Bowman, Development and application of data fusion
engineering guidelines, Proc. Tenth Nat'l. Symp. Sensor Fusion, 1997.

3. Engineering Guidelines for Data Correlation Algorithm Characterization, TENCAP SEDI Contractor
Report, SEDI-96-00233, 1997.

4. Christopher L. Bowman, The data fusion tree paradigm and its dual, Proc. 7th Nat'l. Symp. Sensor
Fusion, 1994.

5. Christopher L. Bowman, Affordable information fusion via an open, layered, paradigm-based
architecture, Proc. 9th Nat'l. Symp. Sensor Fusion, 1996.

6. Alan N. Steinberg, Approaches to problem-solving in multisensor fusion, forthcoming, 2001.
7. C4ISR Architecture Framework, Version 1.0, C4ISR ITF Integrated Architecture Panel, CISA-0000-

104-96, June 7, 1996.
8. Alan N. Steinberg, Data fusion system engineering, Proc. Third Internat'l. Symp. Information Fusion,

2000.
9. James C. Moore and Andrew B. Whinston, A model of decision-making with sequential informa-

tion acquisition, Decision Support Systems, 2, 1986: 285–307; 3, 1987: 47–72.
10. Alan N. Steinberg, Adaptive data acquisition and fusion, Proc. Sixth Joint Service Data Fusion Symp.,

1, 1993, 699–710.
11. Alan N. Steinberg, Sensor and data fusion, The Infrared and Electro-Optical Systems Handbook,

Vol. 8, 1993, 239–341.
12. Christopher L. Bowman, The Role of process management in a defensive avionics hierarchical

management tree, Tri-Service Data Fusion Symp. Proc., John Hopkins University, June 1993.
13. James Llinas, David Johnson and Louis Lome, Developing robust and formal automated approaches

to situation assessment, presented at Situation Awareness Workshop, Naval Research Laboratory,
September 1996.

14. Alan N. Steinberg, Sensitivities to reference system performance in multiple-aircraft sensor fusion,
Proc. 9th Nat'l. Symp. Sensor Fusion, 1996.

15. S. S. Blackman, Multiple Entity Tracking with Radar Applications, Artech House, Inc., Norwood,
MA, 1986.

16. Y. Bar-Shalom and X.-R. Li, Estimation and Tracking: Principles, Techniques, and Software, Artech
House Inc., Boston, 1993.
©2001 CRC Press LLC



17. Carl W. Clawson, On the choice of coordinate systems for fusion of passive tracking data, Proc.
Data Fusion Symp., 1990.

18. Edward Waltz and James Llinas, Multisensor Data Fusion, Artech House Inc., Boston, 1990.
19. Jay B. Jordan and How Hoe, A comparative analysis of statistical, fuzzy and artificial neural pattern

recognition techniques, Proc. SPIE Signal Processing, Sensor Fusion, and Entity Recognition, 1699,
1992.

20. David L. Hall, Mathematical Techniques in Multisensor Data Fusion, Artech House, Boston, 1992.
21. I.R. Goodman, H.T. Nguyen, H.T., and R. Mahler, Mathematics of Data Fusion (Theory and Decision

Library. Series B, Mathematical and Statistical Methods, Vol. 37), Kluwer Academic Press, Boston,
1998.

22. Alan N. Steinberg and Robert B. Washburn, Multi-level fusion for War Breaker intelligence corre-
lation, Proc. 8th NSSF, 1995, 137–156.

23. K. Kastella, Joint multitarget probabilities for detection and tracking, SPIE 3086, 1997, 122–128.
24. L. D. Stone, C. A. Barlow, and T. L. Corwin, Bayesian Multiple Target Tracking, Artech House Inc.,

Boston, 1999.
25. Y. Bar-Shalom and T.E. Fortman, Tracking and Data Association, Academic Press, San Diego, 1988.
26. Ronald Mahler, The random set approach to data fusion, Proc. SPIE, 2234, 1994.
27. Bowman, C. L., Possibilistic verses probabilistic trade-off for data association, Proc. SPIE, 1954,

April 1993.
28. Alan N. Steinberg, Christopher L. Bowman, and Franklin E., White, Revisions to the JDL Data

Fusion Model, Proc. Third NATO/IRIS Conf., 1998.
29. Judea Pearl, Probabilistic Reasoning in Intelligent Systems, Morgan Kaufman, 1988.
©2001 CRC Press LLC



                                            
17
Studies and Analyses

within Project
Correlation: An

In-Depth Assessment
of Correlation
Problems and

Solution Techniques*

17.1 Introduction
Background and Perspectives on This Study Effort

17.2 A Description of the Data Correlation (DC) Problem 
17.3 Hypothesis Generation

Characteristics of Hypothesis Generation Problem Space • 
Solution Techniques for Hypothesis Generation • HG Problem 
Space to Solution Space Map

17.4 Hypothesis Evaluation
Characterization of the HE Problem Space • Mapping of the 
HE Problem Space to HE Solution Techniques

17.5 Hypothesis Selection
The Assignment Problem • Comparisons of Hypothesis 
Selection Techniques • Engineering an HS Solution

17.6 Summary
References

17.1 Introduction

The “correlation” problem is one in which both measurements from multiple sensors and additional
inputs from multiple nonsensor sources must be optimally allocated to estimation processes that produce
(through data/information fusion techniques) fused parameter estimates associated with hypothetical

*This chapter is based on a paper by James Llinas et al., Studies and analyses within project correlation: an in-
depth assessment of correlation problems and solution techniques, in Proceedings of the 9th National Symposium on
Sensor Fusion, March 12–14, 1996, pp. 171–188.

James Llinas
State University of New York

Capt. Lori McConnell
USAF/Space Warfare Center

Christopher L. Bowman
Consultant

David L. Hall
The Pennsylvania State University

Paul Applegate
Consultant
©2001 CRC Press LLC



            
targets and events of interest. In the most general sense, this problem is one of combinatorial optimization,
and the solution strategies involve application and extension of existent methods of this type.

This chapter describes a study effort, “Project CORRELATION,” which involved stepping back from
the many application-specific and system-specific solutions and the extensively described theoretical
approaches to conduct an assessment and develop guidelines for moving from “problem space” to
“solution space.” In other words, the project’s purpose was to gain some understanding of the engineering
design approaches for solution development and assess the scaleability and reusability of solution methods
according to the nature of the problem.

Project CORRELATION was a project within the U.S. Air Force Tactical Exploitation of National
Capabilities (AFTENCAP) program. The charter of AFTENCAP was to “exploit all space and national
system capabilities for warfighter support.” It was not surprising therefore that the issue of how to cost-
effectively correlate such multiple sources of data/information is of considerable importance. Another
AFTENCAP charter tenet was to “influence new national system design and operations”; it was in the
context of this tenet that Project CORRELATION sought to obtain the generic/reusable engineering
guidelines for effective correlation problem solution.

17.1.1 Background and Perspectives on This Study Effort

The functions and processes of correlation are part of the functions and processes of data fusion. (See Waltz
and Llinas, 1990, and Hall, 1992, for reviews of data fusion concepts and mathematics.1,2) As a component
of data fusion processing, correlation suffers from some of the same problems as other parts of the overall
data fusion process (which has been maturing for approximately 20 years): a lack of an adequate, scientif-
ically based foundation of knowledge to serve as the basis for engineering guidelines with which to approach
and effectively solve problems. In part, this lack of this knowledge is the result of relatively few comparative
studies that assess and contrast multiple solution methodologies on an equitable basis. A search for modern
literature on correlation and related subjects, for example, revealed a small number of such comparative
studies and many singular efforts for specialized algorithms. In part, the goal of the effort described in this
chapter was to attempt to overlay or map onto these prior works an equitable basis for comparing and
assessing the problem spaces in which these (individually described) algorithms work reasonably well. The
lack of an adequate literature base of quantitative comparative studies forced such judgments to become
subjective, at least to some degree. As a result, an experienced team was assembled to cooperatively form
these judgments in the most objective way possible; none of the evaluators has a stake in, or has been in
the business of, correlation algorithm development. Moreover, as an augmentation of this overall study,
peer reviews of the findings were conducted via a conference and open session in January 1996 and a
workshop and presentation at the National Symposium on Sensor Fusion in April 1996.

Others have attempted such characterizations, at least to some degree. For example, Blackman describes
the Tracker-Correlator problem space with two parameters: sampling interval and intertarget spacing.3

This example is, as Blackman remarks, “simplified but instructive.” Figure 17.1, from Blackman, shows
three regions in this space:

• The upper region of “unambiguous correlation” — characterized by widely spaced targets and
sufficiently short sampling intervals.

• An “unstable region” — in which targets are relatively close (in relation to sensor resolution) and
miscorrelation occurs regardless of sampling rate.

• A region where miscorrelation occurs without track loss — consisting of very closely spaced targets
and where miscorrelation occurs, however, measurements are assigned to some track, resulting in
no track loss but degradations in accuracy.

As noted in Figure 17.1, the boundaries separating these regions are a function of the two parameters
and are also affected by other aspects of the processing. For example, detection probability (Pd) is known
to strongly affect correlation performance, so that alterations in Pd can alter the shape of these regions.
For the unstable region, Blackman cites some related studies that show that this region may occur for
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target angular separations of about two to five times the angular measurement standard deviation. Other
studies quoted by Blackman show that unambiguous tracking occurs for target separations of about five
times the measurement error standard deviation. These boundaries are also affected by the specifics of
correlation algorithms, all of which have several components.

17.2 A Description of the Data Correlation (DC) Problem

One way to effectively architect a data fusion process is to visualize the process as a tree-type structure
with each node of the fusion tree process having a configuration such as that shown in Figure 17.2. The
partitioning strategy for such a data fusion tree is beyond the scope of this chapter and is discussed by
Bowman.4

The processing in each data fusion node is partitioned into three distinguishable tasks:

• Data preparation (common referencing) — time and coordinate conversion of source data, and
the correction for known misalignments and data conflicts;

• Data correlation (association) — associates data to “objects”;

• State estimation and prediction — updates and predicts the “object” state (e.g., kinematics,
attributes, and ID).

This study focused on the processes in the shaded region in Figure 17.2 labeled “Data Correlation.”
Note data correlation is segmented into three parts, each involved with the association hypotheses that
cluster reports together to relate them to the “objects”:

FIGURE 17.1 Interpretation of MTT correlation in a closely spaced target environment.

FIGURE 17.2 Data fusion tree node.

Unambiguous�
Correlation�

Miscorrelation Occurs �
without Track Loss�

Improved�
Correlation�

Unstable�
Region�

Sampling Interval�

T
ar

g
et

 S
ep

a
ra

ti
o

n
 D

i
st

a
n

c
e�

Reduced�
Miscorrelation�
Effects�

Hypothesis�
Generation�

Hypothesis�
Evaluation�

Hypothesis�
Selection�

Prior Data�
Fusion Nodes�
and Sources�

Data�
Preparation�
(Common�

Referencing)�

State�
Estimation �

and�
Prediction�

User or�
Next Fusion�

Node�

Data Correlation�
©2001 CRC Press LLC



                     
• In hypothesis generation, the current data and prior selected hypotheses are used to generate the
current correlation hypotheses via feasibility gating, pruning, combining, clustering, and object
aggregation. That is, alternate hypotheses are defined which represent feasible associations of the
input data, including, for example, existing information (e.g., tracks, previous reports, or a priori
data). Feasibility is defined in a manner that effectively reduces the number of candidates for
evaluation and selection (e.g., by a region centered on a time normalized track hypothesis where
measurements that fall within that region are accepted as being possibly associated with that track).

• In hypothesis evaluation, each of these feasible correlation hypotheses are evaluated using kine-
matic, attribute, ID, and a priori data as needed to rank the hypotheses (with a score reflecting
“closeness” to a candidate object or hypothesis) for more efficient selection searching.5 Evaluation
techniques include numerical (Bayesian, possibilistic), logical (symbolic, nonmonotonic), and
neural (nonlinear pattern recognition) methods, as well as hybrids of these methods.6

• Hypothesis selection involves a (hopefully efficient) search algorithm that selects one or more
association hypotheses to support an improved state estimation process (e.g., to resolve “overlaps”
in the measurement/hypothesis matrix). This algorithm may also provide feedback to aid in the
generation and evaluation of new hypotheses to initiate the next search. The selection functions
include elimination, splitting, combining, retaining, and confirming correlation hypotheses in
order to maintain tracks and/or aggregated objects.

Most simply put, hypothesis generation nominates a set of hypotheses to which observations (based
on domain/problem insight) can be associated.  The hypothesis evaluation step develops and computes
a metric, which reflects the degree to which any observation is associable (accounting for various errors
and other domain effects) to that hypothesis.  In spite of the use of such metrics, ambiguities can remain
in deciding on how best to allocate the observations.  As a result, a hypothesis selection function (typically
an “assignment” problem solution algorithm) is used to achieve an optimal or near-optimal allocation
of the observations (e.g., maximum likelihood based).

Note that the “objects” discussed here are, first of all, hypothetical objects — on the basis of some
signal threshold being exceeded, an object, or perhaps more correctly, some “causal factor” is believed
to have produced the signal. Typically, the notion of an object’s existence is instantiated by starting, in
software, an estimation algorithm that attempts to compute (and predict) parameters of interest regarding
the hypothetical “object.” In the end, the goal is to correlate the “best” (according to some optimization
criteria) ensemble of measurements from multiple input sources to the estimation processes, so that, by
using this larger quantity of information, improved estimates result.

17.3 Hypothesis Generation

17.3.1 Characteristics of Hypothesis Generation Problem Space

The characterization of the hypothesis generation (HG) problem involves many of the same issues related
to hypothesis evaluation (HE) discussed in the next section. These issues include the nature of the input
data available, knowledge of target characteristics and behavior, target density, characteristics of the
sensors and our knowledge about their performance, the processing time frame, and characteristics of
the mission. These are summarized in Table 17.1.

17.3.2 Solution Techniques for Hypothesis Generation

The approach to developing a solution for hypothesis generation can be separated into two aspects: (1)
hypothesis enumeration, and (2) identification of feasible hypotheses. A summary of HG solution
techniques is provided in Table 17.2. Hypothesis enumeration involves developing a global set of possible
hypotheses based on physical, statistical, or explicit knowledge about the observed environment. Hypothesis
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feasibility assessment provides an initial screening of the total possible hypotheses to define the feasible
hypotheses of subsequent processing (i.e., for HE and hypothesis selection or HS processing). These
functions are described in the following two sections.

17.3.2.1 Hypothesis Enumeration

1. Physical models — Physical models can be used to assist in the definition of potential hypotheses.
Examples include intervisibility models to determine the possibility of a given sensor observing a
specified target (with specified target-sensor interrelationships, environmental conditions, etc.),
models for target motion (i.e., to “move” a target from one location in time to the time of a
received observation via dynamic equations of motion, terrain models, etc.), and models of
predicted target signature for specific types of sensors.

2. Syntactic models — Models can be developed to describe how targets or complex entities are
constructed. This is analogous to the manner in which syntactic rules are used to describe how
sentences can be correctly constructed in English. Syntactical models may be developed to identify

TABLE 17.1 Aspects of the Hypothesis Generation Problem Space

Problem 
Characteristics Impact on HG Comments

Input data 
available

Characteristics of the input data (e.g., availability of 
locational information, observed entity attributes, 
entity identity information, etc.) affect factors that 
can be used to distinguish among entities and, hence, 
define alternate hypotheses.

Reliability and availability of the input data 
impacts the hypothesis generation function.

Knowledge of 
target 
characteristics/
behavior

The extents to which the target characteristics are 
known to affect HG. In particular, if the target’s 
kinematic behavior is predictable, then the predicted 
positions of the target may be used to establish 
kinematic gates for eliminating unlikely observation-
entity pairings. Similarly, identity and attribute data 
can be used, if known, to reduce the combinatorics.

The definition of what constitutes a target (or 
entity), clearly affects the HG problem. 
Definition of complex targets, such as a 
military unit (e.g., a SAM entity), may entail 
observation of target components (e.g., an 
emitter) that must be linked hierarchically to 
the defined complex entity. Hence, 
hierarchical syntactic reasoning may be 
needed to generate a potential hypothesis.

Target density The target density (i.e., intertarget spacings) relative 
to sensor accuracy affects the level of ambiguity about 
potential observation-entity assignments.

If targets are widely spaced relative to sensor 
accuracy, identifying multiple hypotheses 
may not be necessary.

Sensor 
knowledge/ 
characteristics

The characteristics and knowledge of the sensor 
characteristics affect HG. Knowledge of sensor 
uncertainty may improve the predictability of the 
observation residuals (i.e., the difference between a 
predicted observation and actual observation, based 
on the hypothesis that a particular known object is 
the “cause” of an observation). The number and type 
of sensors affect viability of HG approaches.

The more accurately the sensor characteristics 
are known, the more accurately feasible 
hypotheses can be identified.

Processing time 
frame

The time available for hypothesis generation and 
evaluation affects HG. If the data can be processed 
in a batch mode (i.e., after all data are available), then 
an exhaustive technique can be used for HG/HE. 
Alternatively, hypotheses can be generated after sets 
of data are available. In extremely time-constrained 
situations, HG may be based on sequential evaluation 
of individual hypotheses.

The processing timeframe also affects the 
allowable sophistication of HG processing 
(e.g., multiple vs. single hypotheses) and the 
complexity of the HE metric (i.e., probability 
models, etc.).

Mission
characteristics

Mission requirements and constraints affect HG. 
Factors such as the effect (or penalties) for 
miscorrelations and required tracking accuracy affect 
which techniques may be used for HG.

Algorithm requirements for HG (and for any 
other data fusion technique) are driven and 
motivated by mission constraints and 
characteristics.
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the necessary components (e.g., emitters, platforms, sensors, etc.) that comprise more complex
entities, such as a surface-to-air (SAM) missile battalion.

3. Doctrine-based scenarios — Models or scenarios can also be developed to describe anticipated
conditions and actions for a tactical battlefield or battle space. Thus, anticipated targets, emitters,
relationships among entities, entity behavior (e.g., target motion, emitter operating anodes,
sequences of actions, etc.), engagement scenarios, and other information can be represented.

4. Probabilistic models — Probabilistic models can be developed to describe possible hypotheses.
These models can be developed based on a number of factors, such as a priori probability of the
existence of a target or entity, expected number of false correlations or false alarms, and the
probability of a track having a specified length.

5. Ad hoc models — In the absence of other knowledge, ad hoc methods may be used to enumerate
potential hypotheses, including (if all else fails) an exhaustive enumeration of all possible report-
to-report and report-to-track pairs.

The result of hypothesis enumeration is the definition or identification of possible hypotheses for sub-
sequent processing. This step is key to all subsequent processing. Failure to identify realistic possible causes
(or “interpretations”) for received data (e.g., such as countermeasures and signal propagation phenomena)
cannot be recovered in subsequent processing (i.e., the subsequent processing is aimed at reducing the
number of hypotheses and ultimately selecting the most likely or feasible hypotheses from the superset
produced at this step), at least in a deductive, or model-based approach. It may be possible, in association
processes involving learning-based methods, to adaptively create association hypotheses in real time.

TABLE 17.2 Solution Techniques for Hypothesis Generation

Processing 
Function

Solution 
Techniques Description References

Hypothesis 
enumeration

Physical models Models of sensor performance, signal propagation, target 
motion, intervisibility, etc., to identify possible hypotheses

2

Syntax-based 
models

Use of syntactical representations to describe the make-up 
(component entities, interrelationships, etc.) of complex 
entities such as military units

2

Doctrine-based 
models

Definition of tactical scenarios, enemy doctrine, anticipated 
targets, sensors, engagements, etc. to identify possible 
hypotheses

1

Probabilistic 
models

Probabilistic models of track initiation, track length, 
birth/death probabilities, etc. to describe possible 
hypotheses

3, 7

Ad hoc models Ad hoc descriptions of possible hypotheses to explain 
available data; may be based on exhaustive enumeration of 
hypotheses (e.g., in a batch processing approach)

Identification 
of feasible 
hypotheses

Pattern 
recognition

Use of pattern recognition techniques, such as cluster analysis, 
neural networks, or gestalt methods to identify “natural” 
groupings in input data

8, 9

Gating 
techniques

Use of a priori parametric boundaries to identify feasible 
observation pairings and eliminate unlikely pairs; 
techniques include kinematic gating, probabilistic gating, 
and parametric range gates

10, 11

Logical 
templating

Use of prespecified logical conditions, temporal conditions, 
causal relations, entity aggregations, etc. for feasible 
hypotheses

12, 13

Knowledge-
based methods

Establishment of explicit knowledge via rules, scripts, frames, 
fuzzy relationships, Bayesian belief networks, and neural 
networks

14, 15
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17.3.2.2 Identification of Feasible Hypotheses

The second function required for hypothesis generation involves reducing the set of possible hypotheses
to a set of feasible hypotheses. This involves eliminating unlikely report-to-report or report-to-track pairs
(hypotheses) based on physical, statistical, explicit knowledge, or ad hoc factors. The challenge is to
reduce the number of possible hypotheses to a limited set of feasible hypotheses, without eliminating
any viable alternatives that may be useful in subsequent HE and HS processing. A number of automated
techniques are used for performing this initial “pruning.” These are listed in Table 17.2; space limitations
prevent further elaboration.

17.3.3 HG Problem Space to Solution Space Map

A mapping between the hypothesis generation problem space and solution space is summarized in
Table 17.3. The matrix shows a relationship between characteristics of the hypothesis generation problem
(e.g., input data and output data) and the classes of solutions. Note that this matrix is not especially
prescriptive in the sense of allowing a clear selection of solution techniques based on the character of
the HG problem. Instead, an engineering design process,16 must be used to select the specific HG approach
applicable to a given problem.

TABLE 17.3 Mapping Between HG Problem Space and Solution Space

Problem Space

Solution Space

Hypothesis Enumeration I.D. of Feasible Hypothesis

PM SM DM PrM Ad Hoc PR GT LT KB

Input Data Categories

I.D. attributes N Y Y Y Y Y Y
Kinematic data Y Y Y Y Y Y
Parameter attributes Y Y Y Y Y Y Y
A priori sensor/scenario Y Y Y Y
Linguistic data Y Y N Y Y
Space-time patterns Y Y Y Y Y Y
High uncertainty Y Y Y N Y
Unknown structures N N Y Y N Y
Error PDF Y Y Y Y Y
Target characteristics Y Y Y Y Y Y
Signal propagation models Y Y Y

Output Data

Report-to-report Y N Y Y Y Y N N
Report-to-track Y N Y Y Y Y Y Y
Track-to-track Y Y Y Y Y Y Y
Spatio-temporal Y Y Y Y Y Y Y
Multi-spectral Y Y Y Y Y N N
Cross-level Y Y Y Y Y N Y Y Y
Multisite sources Y Y Y Y Y Y
Multiscenes Y Y Y Y Y Y Y
2-D set partitioning Y Y Y Y Y Y Y
N-D set partitioning Y Y Y Y Y Y Y

Requirements/Constraints

Single scan (N=1) Y N N Y Y Y Y N N
Multiple scans (N=n) Y Y Y Y Y Y Y Y Y
Batch (N=~) Y Y Y Y Y Y Y Y Y
Limited processing Y Y N Y Y Y Y N N
Short decision time Y Y N Y Y Y Y N N
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17.4 Hypothesis Evaluation

17.4.1 Characterization of the HE Problem Space

The HE problem space is described for each batch of data (i.e., fusion node) by the characteristics of the
data inputs, the type of score outputs, and the measures of desired performance. The selection of HE
techniques is based on these characteristics. This section gives a further description of each element of
the HE problem space.

17.4.1.1 Input Data Characteristics

The inputs to HE are the feasible associations with pointers to the corresponding input data parameters.
The input data are categorized according to the available data type, level of its certainty, and commonality
with the other data being associated, as shown in Table 17.4. Input data includes both recently sensed
data and a priori source data. All data types have a measure of certainty, albeit possibly highly ambiguous,
corresponding to each data type.

17.4.1.2 Output Data Characteristics

The characteristics of the HE outputs needed by hypothesis selection, HS, also drive the selection of the
HE techniques. Table 17.5 describes these HE output categories, which are partitioned according to the
output variable type: logical, integer, real, N-dimensional, functional, or none. Most HE outputs are real
valued scores reflecting the confidence in the hypothesized association. However, some output a discrete
confidence level (e.g., low, medium, or high), while others output multiple scores (e.g., one per data
category) or scores with higher order statistics (e.g., fuzzy, evidential, or random set). For some batches
of data, no HE scoring is performed, and only a yes/no decision on the feasibles is output for HS. “No
explicit association” refers to those rare cases where the data association function is not performed (i.e.,

TABLE 17.4 Input Data Characteristics

Input Data Categories Description Examples of Inputs

Identity (ID) Discrete/integer valued IFF, class, type of platform/emitter
Kinematics Continuous-geographical Position, velocity, angle, range
Attributes/features Continuous-non-geographical RF, PRI, PW, size, intensity, signature
A priori sensor/scenario data Association hypothesis stats PD, PFA, birth/death statistics, coverage
Linguistic Syntactic/semantic Language, HUMINT, message content
Object aggregation in space-time Scripts/frames/rules Observable sequences, object aggregations
High uncertainty-in-uncertainty Possibilistic (fuzzy, evidential) Free text, a priori and measured object ID
Unknown structure/patterns Analog/discrete signals Pixel intensities, RF signatures
Partially known error statistics Nonparametric data P(R|H) only partially known
Partial and conflicting data Missing, incompatible, incorrect Wildpoints, closed vs. open world, stale
Differing dimensions Multi-dim discrete/continuous 3-D and 2-D evaluated against N-D track
Differing resolutions Coarseness of discernability Sensor resolution differences: radar + IR
Differing data types Hybrid types and uncertainties Probabilistic, possibilistic, symbolic

TABLE 17.5 Output Data Characteristics

Score Output Categories Description Examples of Outputs

Yes/no association 0/1 logic (no scoring) High confidence only association
Discrete association levels Integer score Low/medium/high confidence levels
Numerical association score Continuous real-valued score Association probability/confidence
Multi-scores per association N-D (integer or real per dim) Separate score for each data group
Confidence function with score Score uncertainty functional Fuzzy membership or density function
No explicit association State estimates directly on data No association representation
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the data is only implicitly associated in performing state estimation directly on all of the data). An example
in image processing is the estimation of object centroid or other features, based on intensity patterns
without first clustering the pixel intensity data.

17.4.2 Mapping of the HE Problem Space to HE Solution Techniques

This section describes the types of problems for which the solution techniques are most applicable (i.e.,
mapping problem space to solution space). A preliminary mapping of this type is shown in Table 17.6;
final guidelines were developed by Llinas.16 The ad hoc techniques are used when the problem is easy
(i.e., performance requirements are easy to meet) or the input data errors are ill-defined. Probabilistic
techniques are selected according to the error statistics of the input data. Namely, maximum likelihood
(ML) techniques are applied when there is no useful a priori data; otherwise max a posteriori (MAP) are
considered. Chi-square (CHI) techniques are applied for data with Gaussian statistics (e.g., without useful
ID data), especially when there is data of differing dimensions where ML and MAP would have to use
expected values to maintain constant dimensionality. Neyman-Pearson techniques are statistically pow-
erful and are used as the basis for nonparametric techniques (e.g., sign test and Wilcoxon test). Condi-
tional event algebra (CAE) techniques are useful when the input data is given, conditioned on different
events (e.g., linguistic data). Rough sets (Rgh) are used to combine/score data of differing resolutions.
Information/entropy (Inf) techniques are used to select the density functions and score data whose error
statistics are not known. Further discussion of the various implications of problem-to-solution mappings
is provided by Llinas.16

17.5 Hypothesis Selection

When the initial clustering, gating, distance/closeness metric selection, and fundamental approach to
hypothesis evaluation have been completed, the overall correlation process has reached a point where
the “most feasible” set of both multisensor measurements and multisource inputs exist. The inputs have
been “filtered,” in essence, by the preprocessing operations and the remaining inputs will be allocated or
“assigned” to the appropriate estimation processes that can exploit them for improved computation and
prediction of the states of interest. This process is hypothesis selection, in which the hypothesis set
comprises all of the possible/feasible assignment “patterns” (set permutations) of the inputs to the
estimation processes; thus, any single hypothesis is one of the set of feasible assignment patterns. This
chapter focuses on position and identity estimation from such assigned inputs as the states of interest.
However, the hypothesis generation-evaluation-selection process is also relevant to the estimation pro-
cesses at higher levels of abstraction (e.g., wherein the states are “situational states” or “threat states”),
and the state estimation processes, unlike the highly numeric methods used for Level 1 estimates, are
reasoning processes embodied in symbolic computer-based operations.

So, what exists as input to the hypothesis selection process in effect is, at this point, a matrix (or matrices)
where the typical dimensions are the indexed input data/information/measurement set on one hand, and
the indexed state estimation systems or processes, along with the allowed ambiguity states, on the other
hand (i.e., the “other” states or conditions, beyond those state estimates being maintained, to which the
inputs may be assigned). Simply put, for the problems of interest described here, the two dimensions are
the indexed measurements and the indexed position or identity state estimation processes. (Note, however,
as discussed later in this chapter, that assignment problems can involve more than two dimensions.)

In any case, the matrix/matrices are populated with the closeness measures, which could be considered
“costs” of assigning any single measurement to any single estimator (resulting from the HE solution).
Despite all of the effort devoted to optimizing the HG and HE solutions, considerable ambiguity (many
feasible hypotheses) can still result. The costs in these matrices may directly be the values of the “distance”
or scoring metrics selected for a particular approach to correlation, or a newly-developed cost function
specifically defined for the hypothesis selection step. The usual strategy for defining the optimal assignment
©2001 CRC Press LLC
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TABLE 17.6 Mapping HE Problem Space to HE Solution Techniques

Solution Space Ad 
Hoc

Probabilistic Possibilistic Lo

Problem Space ML MAP NP CHI CAE RGH INF DS Fuzzy S/F NM

Input Data Categories

Identity (ID) Y Y Y N
Kinematics Y Y Y
Attributes/features Y Y Y
A priori sensor data N Y N
Linguistic Y Y Y Y
Object aggregation Y
High uncertainty Y Y
Unknown structure Y
Nonparametric data Y Y Y
Partial data
Differing dimension Y
Differing resolution Y
Differing data types

Score Output Categories

Yes/no association Y
Discrete scores Y
Numerical scores Y Y Y Y Y Y Y
Multi-scores per Y
Confidence functional Y
No explicit scores

Performance Measures

Low cost software Y Y Y Y Y N N N N N
Compute efficiency
Score accuracy N Y Y N Y Y
User adaptability Y
Self-trainable
Self-coding
Robustness to error Y
Result explanation Y Y
Solutions ML MAP NP CHI CAE RGH INF DS Fuzzy S/F NM

ML — Max. likelihood MAP — Max. a priori NP — Neyman-Pearson CHI — Chi-square CAE
INF — Information/entropy DS — Dempster-Shafer Fuzzy — Fuzzy set S/F — Scripts/frames/rules NM
C-B — Case-based PR — Partitioned representations PD — Power domains HC — Hard-coded Sup
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(i.e., selecting the optimal hypothesis) is to find that hypothesis with the lowest total cost of assignment.
Recall, however, that there are generally two conditions wherein such matrices develop: (1) when the
input systems (e.g., sensors) are initiated (turned on) and (2) when the dynamic state estimation processes
of interest is being maintained in a recursive or iterative mode.

As noted above, these assignment or association matrices, despite the careful preprocessing of the HG
and HE steps, may still involve ambiguities in how to best assign the inputs to the state estimators. That
is, the cost of assigning any given input to any of a few or several estimators may be reasonable or
allowable within the definition of the cost function and its associated thresholds of acceptable costs. If
this condition exists across many of the inputs, identifying the total-lowest-cost assignments of the inputs
becomes a complex problem. The central problem to be solved in hypothesis selection is that of defining
a way to select the hypothesis with minimum total cost from all feasible/permissible hypotheses for any
given case; often, this involves large combinations of possibilities and leads to a problem in combinatorial
optimization. In particular, this problem — called the assignment problem in the domain of combinatorial
optimization — is applicable to many cases other than the measurement assignment problem presented
in this chapter and has been well studied by the mathematical and operations research community, as
well as by the data fusion community.

17.5.1 The Assignment Problem

The goal of the assignment problem is to obtain an optimal way of assigning various available N resources
(in this case, typically measurements) to various N or M (M<> = N) “processes” that require them (in
our case estimation processes, typically). Each such feasible assignment of the N × N problem (a per-
mutation of the set N) has a cost associated with it, and the usual notion of optimality equates to minimum
cost as mentioned above. Although special cases allow for multiassignment (in which resources are
shared), for many problems, a typical constraint allows only one-to-one assignments; these problems are
sometimes called “bipartite matching” problems.

Solutions for the typical and special variations of these problems are provided by mathematical
programming and optimization techniques. (Historically, some of the earliest applications were to mul-
tiworker/multitask problems and many operations research and mathematical programming texts moti-
vate assignment problem discussions in this context.) This problem is also characterized in the related
literature according to the nature of the mathematical programming or optimization techniques used as
solutions applied for each special case. Not surprisingly, because the underlying problem model has broad
applicability to many specific and real problems, the literature describes certain variations of the assign-
ment problem and its solution in different (and sometimes confusing) ways. For example, assignment-
type problems also arise in analyzing flows in networks. Ahuja et al., in describing network flows, divide
their discussion into six topic areas:17

1. Applications
2. Basic properties of network flows
3. Shortest path problems
4. Maximum flow problems
5. Minimum cost flow problems
6. Assignment problems

In their presentation, they characterize the assignment problem as a “minimum cost flow problem on
a network.”17 This characterization, however, is exactly the same as asserted in other applications. In
network parlance, however, the assignment problem is now called a “variant of the shortest path problem”
(which involves determining directed paths of smallest cost from any node X to all other nodes). Thus,
“successive shortest path” algorithms solve the assignment problem as a sequence of N shortest path
problems (where N = number of resources = number of processes in the (“square”) assignment prob-
lems).17 In essence, this is the bipartite matching problem re-stated in a different way.
©2001 CRC Press LLC



                                   
17.5.2 Comparisons of Hypothesis Selection Techniques

Many technical, mathematical aspects comprise the assignment problem that, given space limitations,
are not described in this chapter. For example, there is the crucial issue of solution complexity in the
formal sense (i.e., in the sense of “big O” analyses), and there is the dilemma of choosing between
multidimensional solutions and two dimensional solutions and all that is involved in such choices; in
addition, many other topics remain for the process designer. The solution space of assignment problems
at Level 1 can be thought of as comprising: (a) linear and nonlinear mathematical programming (with
some emphasis on integer programming), (b) dynamic programming and branch-and-bound methods as
part of the family of methods employing implicit enumeration strategies, and (c) approximations and
heuristics. Although this generalization is reasonable, note that the assignment problems of the type
experienced for Level 1 data fusion problems arise in many different application areas; as a result, many
specific solution types have been developed over the years, making broad generalizations difficult.

Table 17.7 summarizes the conventional methods used for the most frequently structured versions of
assignment problems for data fusion Level 1 (i.e., deterministic, 2-D, set-partitioned problem formula-
tions). Furthermore, these are solutions for the linear case (i.e., linear objective or cost functions) and
linear constraints. Without doubt, this is the most frequently discussed case in the literature and the
solutions and characteristics cited in Table 17.7 represent a reasonable benchmark in the sense of applied
solutions (but not in the sense of improved optimality; see the ND solution descriptions below).

TABLE 17.7 Frequently Cited Level 1 Assignment Algorithms
(Generally: Deterministic, 2-D, Set Partitioned)

Algorithms
Applicability

(Problem Space) Processing Characteristics Runtime Performance*

Hungarian22 Square matrices; 
optimal pair-wise 
algorithm

Primal-dual; steepest descent O(nS(n,m,C)); or O([# 
trks + # msmts]**3)

Munkres23 Square matrices; 
optimal pair-wise 
algorithm

Bourgeois-Lassalle;24 
see also References 25 
and 26

Rectangular matrices; 
optimal pair-wise 
algorithm

B-L faster than squaring-off method 
of Kaufmann

Stephans-Krupa26,27 Sparse matrices; 
optimal pair-wise 
algorithm

JVC28,29 Sparse matrices; 
optimal pair-wise 
algorithm

Appears to be the fastest of the 
traditional methods; S-K second 
fastest to NC; sparse Munkres third; 
JV is augmenting cycle approach

Auction types32 Optimal pair-wise 
algorithm

Primal-dual, coordinate descent; 
among the fastest algorithms; 
parallelizable versions developed; 
appears much faster than N 
algorithm (as does JVC)

O(n**2mC); scaled 
version O(nmlognC); 
others show O(n** 
1/2mlogC)

Primal simplex/ 
alternating basis30

Applied to relatively 
large matrices 
(1000–4500 nodes); 
optimal pair-wise 
algorithm

Moderate speed for large problems

Signature methods31 Optional pair-wise 
algorithm

Dual simplex approach O(n**3)

* O = worst case, n = # of nodes, m = # of arcs, C = upper bound on costs, S = successive shortest path solution time
for given parameters.
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Note that certain formulations of the assignment problem can lead to nonlinear formulations, such
as the quadratic assignment. Additionally, the problem can be formulated as a “multiassignment” problem
as for a set-covering approach, although these structures usually result in linear multiassignment formu-
lations if the cost/objective function can be treated as separable. Otherwise, it, too, will typically be a
nonlinear, quadratic-type formulation.18 No explicitly related nonlinear formulations for Level 1 type
applications were observed in the literature; however, Finke et al. is a useful source for solutions to the
quadratic problem.19 The key work in multiassignment structures for relevant fusion type problems is
Tsaknakis, et al., who form a solution analogous to the auction-type approach.18

This chapter introduces additional material focused on comparative assessments of assignment algo-
rithms. These materials were drawn, in part, from works completed during the Strategic Defense Initiative,
or SDI (“Star Wars”), era and reported at the “SDI Tracking Panels” proceedings assembled by the Institute
for Defense Analysis, and, in part, from a variety of other sources. Generally, the material dates to about
1990 and is, therefore, reasonably recent but could benefit from updating.

One of the better sources, in the sense of its focus on the same issues/problems of interest to this study,
is Washburn.20 In one segment of a larger report, Washburn surveys and summarizes various aspects of
what he calls “Data Partitioning,” “Gating,” and “Pairwise”; “Multiple Hypothesis”; and “Specialized”
Object Correlation algorithms. Data partitioning and gating equate to the terms hypothesis generation
and evaluation used here, and the term correlation equates to the term hypothesis selection (input data
set assignment) used here. Washburn’s assessments of multiple hypothesis class of correlation algorithms
he reviewed are presented in Table 17.8. Washburn repeats a critical remark related to comparisons of
these algorithms: for those cases where a multiscan or multiple data set approach is required to achieve
necessary performance levels (this was perhaps typical on SDI, especially for midcourse and terminal
engagements), the (exact) optimal solution is unable to be computed, and so comparisons to the true
solution are infeasible, and a “relaxed” approach to comparison and evaluation must be taken. This is,
of course, the issue of developing an optimal solution to the ND case, which is an NP-hard problem.
This raises again the key question of what to do if an exact solution is not feasible.

17.5.2.1 2-D vs. ND Performance

One of the only comparisons of 2-D vs. ND for a common problem that was captured in this study was
a reference in the Washburn, 1992 report to Allen, et al. (1988) that examined comparative performance
for a 10-target/3-passive sensor case.20,21 These results are shown in Figure 17.3 from Washburn.20 Essen-
tially, “pairwise” — 2-D — solutions performed considerably worse than the 3-D approaches; branch-
and-bound, RELAX, and backtrack all achieved average tracking of 8 of 10 targets — far below perfection.

FIGURE 17.3 Functional comparison of correlation algorithms.
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This effort involved examining several other comparison and survey studies. To summarize, the
research found that, among other factors, performance is affected by angular accuracy-to-angular target
separation, number of targets, and average target density in the HG process gates, coding language, degree
of parallelization, and available reaction time.

17.5.3 Engineering an HS Solution

As mentioned at the outset, this project sought to develop a set of engineering guidelines to guide data
fusion process engineers in correlation process design. Such guidelines have, in fact, been developed,16

and an example for the HS process is provided in this section. In the general case, a fairly complex feasible
hypothesis matrix exists. The decision tree guideline for engineering these cases is shown in Figure 17.4.
Although the order of the questions or criteria shown in the figure is believed to be correct in the sense
of maximal ordered partitioning of the problem/solution spaces, the decisions could possibly be deter-
mined by some other sequence. Because the approaches are so basically different and involve such different
philosophies, the first question is whether the selected methodology is deterministic or probabilistic. If it
is deterministic, then the engineering choices follow the top path, and vice versa. Some of the tradeoff

TABLE 17.8 Multiple Hypothesis Object Correlation Algorithms Summary

Algorithm Functional Performance Processing Requirements

Multidimensional 
Row-Column 
(MRC)33,34

Worst functional performance of multiple 
hypothesis algorithms.

O([ns – 1] · mG) operations. Selection process is 
sequential, but nonsequential approaches could 
be applied for parallel processing.

Multidimensional 
Maximum Marginal 
Return35,36

Performs better than pairwise correlation and 
better than MRC. Worse than MST or 
backtracking M3R approach, but may have 
acceptable performance in sparse scenarios.

O(ns – 1] · mG log mG) operations. Parallel 
algorithm has been developed for binary tree 
processor.

Backtracking and 
Lookahead M3R 
[36]

Performed significantly better than M3R by 
using backtracking heuristic to improve 
solutions.

O ([ns – 1] · mG log mG) operations. More 
complicated logic was found difficult to 
parallelize.

Monte Carlo M3R 
[36]

Uses randomization to change effect of branch 
ordering on M3R and improve solution. 
Annealing approach converges to optimal 
solution (as computed by Branch & Bound).

Has O (nMC [ns – 1] · mG log mG) processing 
requirements where nMC Monte Carlo iterations 
are required. This number may be very large and 
evaluations need to determine how small for 
adequate performance. Parallelizes completely 
over nMC Monte Carlo iterations.

Minimal Spanning 
Tree (MST)35 
Tsaknakis

Performance depends on bipartite assignment 
used. With optimal, MST obtained best 
performance in Reference 35 evaluations 
against alternative correlation algorithms 
(including Branch & Bound) for small 
scenarios.

Processing depends on assignment algorithm used. 
Optimal Auction algorithm (which can be 
parallelized), processing is O(ns

2 [nT + nM] · mG 
log[nT + nM] · C). Parallelizes over ns

2  factor, as 
well as over bipartite assignment algorithm.

Vlterbl 
Correlation34,37

Special cost structure gives limited 
applicability or poor performance if 
approximations are used. No evaluations for 
SDI tracking problems.

Processing requirement is unacceptably large for 
large scenarios.

Branch & 
Bound35,36,38,39,40

Optimal multiple hypothesis algorithm. 
Obtained best performance in Reference 35 
evaluations against alternative correlation 
algorithms with same scan depth ns.

Uses various backtracking heuristic to speed up 
search, but potentially searches all possible 
solutions. Has very large requirements for even 
small dense scenarios. May be feasible if data 
partitioning produces small groups of data. 
Parallel algorithm developed in Reference 39.

Relaxation41 Iterative algorithm that generates feasible 
solution at each iteration and approaches 
optimal solution. Little evaluation in realistic 
scenarios to determine convergence rate.

Processing depends on bipartite assignment 
algorithm used in each iteration and on the 
number of iterations required. O(nR [ns – 1] · [nT 
+ nM] · mG log[nT + nM] · C) operations using 
Auction with nR relaxation iterations.
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factors affecting this choice are shown in Table 17.9, which concentrates on the deterministic family of
methods.

17.5.3.1 Deterministic Approaches

If the approach is deterministic, the next crucial decision relates to the quantity of input data that will
be dealt with at any one time. In the tracking world, this usually reflects the number of scans or batches
of data that will be considered within a processing interval. As mentioned above, these issues reflect the
more complex case of correlating and assigning ensembles of data at a time rather than single contacts
at a time. In the typical cases where data ensembles are processed, they are frequently delineated by source
type — often implying the type of sensor — or they are grouped by scan time. In a multisensor or
multisource (or multitime) architecture, the, (near-globally optimal) “natural” formulation for assign-
ment processing would be “n-dimensional,” with n designating either the number of batch segments

FIGURE 17.4 Representative HS decision flow diagram.

TABLE 17.9 Tradeoff 1

Design Decision Positives Negatives

Deterministic Wide array of formal mathematical methods Potentially incorrect specific assignments

Probabilistic • Proven useful for few tracks plus high 
clutter

• “Finesses” specific assignments by 
probabilistically using all measurements in 
a gate (an “all-neighbors” approach)

• Not widely applied to other than special cases as 
noted

• Assignment processing not based on proven 
formalized methods; removes assignment from 
conventional correlation processing, embeds it in 
tracker

• For many problems, not conceptually correct; 
measurements truly only come from one source in 
most (but not all) cases
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from a single source, for example, or the specific-scan segments from each of n sources. In the strictest
sense of attempting to achieve near-global optimality, these data should be processed in an ND approach.
The ND solutions usually applied in practice, because they are computationally demanding, attempt to
process the most data possible but fall well short of an all-data (i.e., true batch), truly optimal approach.
The “window width” that such techniques can handle is yet another specific design choice to be made
in the ND case. Because of the computational aspects, in part, there are applications where the data are
segmented into source-specific sets, and a sequence of 2-D assignment solutions are applied to obtain a
satisficing (“good enough,” knee-of-the-curve performance), but strictly suboptimal result. The second
choice is depicted in Table 17.10. Obviously this design decision separates the assignment solutions into
quite different categories; the basic tradeoff is in the nature of the optimality sought versus the solution
complexity and runtime behavior.

For either the 2-D or ND cases, the next decision has to do with whether the problem formulation is
of the set-partitioning or set-covering type. This decision, as will be seen, also separates the potential
solution types into considerably different categories, because these formulations are entirely different
views of the problem. Recall that the set-partitioning scheme is one that divides the notional allocations
of inputs into mutually exclusive sets with single inputs eventually being assigned, exclusively, to a
particular state. The set-covering approach also divides the input data ensemble, but into nonexclusive
sets such that single inputs can be assigned to more than one state. Only in the sense of permitting
multiple assignments, does the set-covering construct have some similarity to the notion of probabilistic
assignment. However, the general set-covering approach makes assignments deterministically, as opposed
to probabilistically, and also takes a different approach to defining allocable sets. The probabilistic
approach permits multiassignment as determined largely by the gating process defined by HG; all
measurements in a gate are probabilistically assigned to the track, and to the degree that gates overlap,
multiassignment of specific measurements exists. Generalized set-covering would ideally consider a
number of factors on which to define its overlapping sets and is conceptually more robust than the
probabilistic approach. So what is at issue here is one’s “view of the world,” in the sense of how the data
should be grouped, which, in turn, affects the eventual structure of the assignment matrix or other
construct that provides the input to the assignment problem and its solution.

As noted in Table 17.11 and shown in Figure 17.4, the set-partitioning view of the problem leads to a
situation where there are many more known and researched solutions, so the fusion node designer will
have wider solution choices if the problem is set up this way.

The next design choice is whether to employ mathematical programming-type solutions or some type
of heuristic approach. The mathematical programming solution set includes linear programming (LP)

TABLE 17.10 Tradeoff 2

Design Decision Positives Negatives

2D- 
(~Single Scan)

• Each 2-D solution is optimal for the data 
processed (i.e., for the given assignment matrix)

• Most, if not all, traditional solutions exhibit 
cubic (in no. of inputs) polynomial-time, worst-
case runtime behavior

• Existing public-domain codes available; easier 
to code

• Requires less processing power and memory

• Primarily that optimality is local in the sense 
of a single-scans worth of data, and that 
more globally optimal result comes from 
processing WEI data (ideal is batch solution 
with all data)

• Not easy to retrospectively adjust for errors 
in processing; can require carrying 
alternative scenes

ND 
(~Multi-Scan)

• More globally optimal in the sense of multiple 
data sets considered

• Methods exist to permit self-evaluation of 
closeness to optimality, and many show good 
(near-optimal) performance

• ND problem is NP-hard so solutions an 
exponential in worst-case runtime behavior

• Apart from branch-and-bound methods or 
other explicit enumeration techniques, 
solutions are strictly suboptimal

• More difficult to code; some codes 
nonpublic; more demanding of computing 
resources
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methods, integer and dynamic programming, and a wide variety of variations of these types. While
mathematically elegant and formal, these methods can become computationally demanding for problems
of a large scale, whether they are 2-D or ND. So, in many practical situations, an approximation-based
or heuristic approach — which will develop a reasonably accurate solution and require considerably less
computing resources — is preferable. Often heuristics can be embedded as subroutines within otherwise
formal methods.

17.6 Summary

Data correlation can be viewed as a three-step process of hypothesis generation, hypothesis evaluation,
and hypothesis selection. The first step limits the number of possible associations by permitting or “gating
through” only those that are feasible. These potential associations are evaluated and quantitatively scored
in the second step and assigned in the third.

Each of these stages can be performed in a variety of ways, depending on the specific “nature” of the
data correlation problem. This “nature” has less to do with the specific military application than its
required characteristics, such as processing efficiency and types of input data and output data, knowledge
of how the characteristics relate to the statistics of the input data and the contents of the supporting
database. The data fusion systems engineer needs to consider the system’s user-supplied performance-
level requirements, implementation restrictions (if any), and characteristics of the system data. In this
way, the application can be considered as “encoded” into an engineering-level “problem space.” This
problem space is then mapped into a solution space via the guidelines of the type discussed in this chapter.

Beginning with hypothesis generation, the designer needs to consider how the input data gets batched
(e.g., single-input, single-sensor scan, multiple-sensor scan, or seconds between update “frames”) and
what metric(s) to use. The goal should be a process that is less computationally intensive than the
hypothesis evaluation step and coincides with available input data (position, attribute, ID), and the list
of possible hypotheses data (e.g., “old track,” “new track,” “false alarm,” “ECM/deception,” or “anomalous
propagation ghosting,”). Section 17.3 discusses these design factors and provides a preliminary mapping
of gating techniques to problem space.

The next function, hypothesis evaluation, considers much of the same material as hypothesis gener-
ation; however, where the previous function evaluated candidate hypotheses on a pass/fail basis, this
function must grade the goodness of unrejected hypotheses. Again, the type of input data must be
considered together with its uncertainty characteristics. Probabilistic, possibilistic, and script-based tech-
niques can be applied to generate scores that are, for example, real, integer, or discrete. These outputs
are then used by the selection stage to perform the final assignment.

The selection stage accepts the scores to determine an “optimum” allocation of the gated-through
subset of a batch of data to targets, other measurements, or other possible explanations for the data (e.g.,
false alarms). Optimum, in this case, means that the cost (value) of the set of associations (measurement-
track, measurement-measurement), when taken as a whole, is minimized (maximized). The tools that
handle ambiguous measurements are solutions to what is called the “assignment problem.” Solutions to

TABLE 17.11 Tradeoff 3

Design Decision Positives Negatives

Set-Partitioning • For many, if not most, cases, this is the true view of the world 
in that singular data truly associate to only one causal factor 
or object (see Tradeoff 1, Deterministic). This assertion is 
conditioned on several factors, including sensor resolution and 
target spacing, but represents a frequent case.

• Much larger set of researched and evaluated solution types

• Lacks flexibility in defining 
feasible data sets

• Does not solve multispectral 
or differing-resolution or 
crossing-object-type 
problems

Set-Covering More flexible in formulating feasible data groupings; often the 
true representation of real-world data sets

More complex formulation and 
solution approach
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this problem can be computationally intensive; therefore, efficient solutions that cover both the 2-D and
ND matrices of varying geometries are required. Section 17.5 provides a brief tutorial to the assignment
problem and lists the numerical characteristics of popular techniques.

As mentioned previously in this chapter, the evolving guidelines and mappings presented in Sections
17.3, 17.4, and 17.5 were presented to an open audience at the government-sponsored Combat Infor-
mation/Intelligence Symposium in January 1996 and at the (U.S.) National Symposium on Sensor Fusion
in April 1996; however, further peer review is encouraged. The basis of such reviews should be the version
of the Engineering Guidelines as presented in Llinas (1997).16 Further, this chapter has treated these three
individual processes as isolated parts, rather than part of a larger, integrated notion of correlation
processing. Thus, additional work remains to be performed in order to assess the interprocess sensitivities
in design choices, so that an effective, integrated solution result from the application of these guidelines.
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18.1 Introduction

Historically, data fusion automation directed at tactical situation awareness applications employed data-
base management systems (DBMS) primarily for storage and retrieval of sensor-derived parametric and
text-based data, fusion products, and algorithm components such as templates and exemplar sets. With
the increased emphasis over the last decade on multimedia data sources, such as imagery, video, and
graphic overlays, the role of database management systems has expanded dramatically. As a consequence,
DBMS are now widely recognized as a critical, and perhaps limiting component of the overall system
design.

To enhance situation awareness capability, fusion algorithms will increasingly seek to emulate the
problem-solving proficiency of human analysts by employing deep problem domain knowledge that is
sensitive to problem context. In tactical applications, such contextual knowledge includes existing weather
conditions, local natural domain features (e.g., terrain/elevation, surface materials, vegetation, rivers, and
drainage regions), and manmade features (e.g., roads, airfields, and mobility barriers). These data sets
represent largely a priori information. Thus, the vast majority of sensor-derived and a priori knowledge
bases consist of spatially organized information. For large-scale applications, these data sets must be

Richard Antony
VGS Inc.
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stored, searched, and manipulated to support a spectrum of real-time fusion algorithms. At present, such
capability is beyond the state of the art.

The objective of this chapter is to provide a brief description of the problem and indicate a feasible
development path. Section 18.2 introduces DBMS requirements. Section 18.3 discusses spatial, temporal,
and hierarchical reasoning that represent key underlying requirements of advanced data fusion automa-
tion. Section 18.4 discusses critical database design criteria. Section 18.5 presents the concept of an object-
oriented representation of space, showing that it is fully analogous to the traditional object representation
of entities that exist within a domain. Section 18.6 briefly describes a composite database system consisting
of an integrated representation of both spatial and nonspatial objects. Section 18.7 discusses reasoning
approaches and presents a comprehensive example to demonstrate the application of the proposed
architecture, and Section 18.8 offers a brief summary.

18.2 Database Management Systems

In general, data fusion applications can require access to data sets that are maintained in a variety of
forms, including

• Text

• Tables (e.g., track files, equipment characteristics, and logistical databases)

• Entity-relationship graphs (e.g., organizational charts, functional flow diagrams)

• Maps (e.g., natural and cultural features)

• Images (e.g., optical, forward-looking infrared radar, and synthetic aperture radar)

• Three-dimensional physical models (e.g., terrain, buildings, and vehicles).

Perhaps the simplest data representation form is the flat file, so named because it lacks an organizational
structure. With no access-specific organizational structure, data access normally requires some form of
exhaustive search. Database indexing seeks to overcome the inefficiency of the exhaustive search. A
database index is analogous to a book index in the sense that it affords direct access to information. Just
as a book might use multiple index dimensions, such as a subject index organized alphabetically and a
figure index organized numerically, a DBMS can provide multiple, distinct indexes for data sets. Numer-
ous data representation schemes exist, including hierarchical, network, and relational data models. Each
of these models support some form of indexing.

Following the development of the relational data model in 1970, relational database management
system (RDBMS) development experienced explosive growth for more than two decades. The relational
model maintains data sets in tables. Each row of a table stores one occurrence of an entity, and columns
maintain the values of an entity’s attributes. To facilitate rapid search, tables can be indexed with respect
to either a particular attribute or a linear combination of attributes. Multiple tables that share a primary
key (a unique attribute) can be viewed together as a composite table (e.g., linking personnel data and
corporate records through an employee’s social security number). Because the relational model funda-
mentally supports only linear search dimensions, it affords inefficient access to data that exhibit significant
dependencies across multiple dimensions. As a consequence, a RDBMS tends to be suboptimal for
managing two- (2-D) or three-dimensional (3-D) spatially organized information.

To overcome this limitation, commercial geographic information systems (GIS) were developed that
offered direct support to the management and manipulation of spatially-organized data. A GIS typically
employs vector and/or grid-based 2-D representations of points, lines, and regions, as well as 3-D
representations of surfaces stored in triangulated irregular networks (TIN).* A limited number of GIS
support 3-D spatial data structures such as octrees. As the utility of GIS systems became more evident,

*Although the discussions throughout this chapter focus on 2-D spatial representations, the concepts also apply
to 3-D.
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hybrid data management systems were built by combining a GIS and a RDBMS. Although well inten-
tioned, such approaches to data management tended to be both inefficient and difficult to maintain.

During the past decade, object-oriented reasoning became the dominant reasoning paradigm for large-
scale software development programs. In this paradigm, objects

• Contain data, knowledge bases, and procedures,

• Inherit properties from parent objects based on an explicitly represented object hierarchy,

• Communicate with and control other objects.

As a natural response to the widespread nature of the object-oriented development environment,
numerous commercial object-oriented database management systems (OODBMS) were developed to
offer enhanced support to object-oriented reasoning approaches. In general, OODBMS permit users to
define new data types as needed (extensibility), while hiding implementation details from the user
(encapsulation). In addition, such databases allow explicit relationships to be defined between objects.
As a result, the OODBMS offers more flexible data structures and more “semantic expressiveness” than
the strictly table-based relational data model.

To accommodate some of the desirable attributes of the object-oriented data model, numerous exten-
sions to the relational data model have been proposed and developed in recent years. Today, most
commercial RDBMS have been extended to support the object-relational model and are referred to as
object-relational database management systems (ORDBMS).

18.3 Spatial, Temporal, and Hierarchical Reasoning

To initiate the database requirements discussion, consider the following spatially-oriented query:

Find all roads west of River 1, south of Road 10, and not in Forest 11.

Given the data representation depicted in Figure 18.1, humans can readily identify all roads that lie within
the specified query window. However, if the data set were instead presented in a vector (i.e., tuple-based)
form, considerable analysis would be required to answer the query. Thus, although the two representations
might be technically “equivalent,” the representation in Figure 18.1 permits a human to readily perceive
all the relevant spatial relationships about the various features, while a vector representation does not.
In addition, because humans can perceive a boundary-only representation of a region as representing
the boundary plus the associated enclosed area, humans can perform a two-dimensional set operation
virtually “by inspection.” With a vector-based representation form, on the other hand, all spatial rela-
tionships among features must be discovered by computational means. Data representation also can
dramatically impact the efficiency of machine-based reasoning.

To capitalize on a human’s facility for spatial reasoning, military analysts have historically plotted
sensor reports and analysis products on clear acetates overlaid on appropriately scaled maps and map

FIGURE 18.1 Two-dimensional map-based representation supporting search for all roads that meet a set of spatial
constraints.
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products. The highly intuitive nature of such data representations supports spatial “focus of attention,”
effectively limiting the size of the search space. Because only those acetates containing features relevant
to a particular stage of analysis need be considered, the paradigm also supports search space reduction
along nonspatial dimensions. All analysis products generated are in a standard, fully registered form and,
thus, are directly usable in subsequent analysis. With its many virtues, the acetate overlay-reasoning
paradigm provides a natural metaphor for studying machine-based approaches to spatial reasoning.

In the tactical situation awareness problem domain, spatially organized information often possesses a
dynamic, time-varying character. As a result of the intimate relationship between the three spatial
dimensions and time, a DBMS that supports data fusion applications must provide a combined spatial
and temporal (spatio-temporal) representation.

The retrieval of data that is close in both space and time to new sensor-derived information, for
example, represents a key database search operation. If domain entity locations are maintained as discrete
3-tuples (xi, yi, ti), indexing or sorting along any individual dimension is straightforward.* Although a
traditional RDBMS proves to be inefficient when searching across multiple dependent search dimensions,
modern GIS and DBMS provide at least limited support to spatio-temporal data. However, these systems
tend to support rather myopic approaches to reasoning.

Considerable research into spatio-temporal representation and reasoning has been conducted during
the last two decades primarily under university and government sponsorship and also by GIS and database
system vendors. Rather than reviewing the literature, this chapter focuses on a conceptual level view of
the problem and related issues. Figure 18.2 offers temporal sensitivity taxonomy for spatial data, and
Figure 18.3 maps the three classes of temporal sensitivity to a human memory metaphor. Later discussions
will focus on a potential implementation strategy based on Figure 18.3.

FIGURE 18.2 Three general classes of spatio-temporal data.

FIGURE 18.3 Possible implementation strategy for temporally sensitive spatial data.

*In order to simplify the discussion, only 2-D spatial data structures are addressed throughout this chapter.
Extensions to 3-D are straightforward.
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On the surface, treating time as an independent variable or dimension seems reasonable; after all, time
advances independently. However, treating time as an independent variable requires that the spatial
dimensions of a spatio-temporal representation be treated as dependent dimensions. Because we seek a
representation that supports object-oriented reasoning, and objects are typically associated with physical
or aggregate entities that exist within a 2-D or 3-D “world,” such an arrangement is unacceptable.
Certainly in tactical data fusion applications, the spatial attributes of physical objects (e.g., location,
shape, velocity, and path) represent key problem dimensions, with time playing a more subordinate role.

The benefits of treating time as a dependent variable and employing a true n-dimensional spatial data
structure* can be illustrated by the following simple example. Suppose an existing fusion database
contains the temporally-sorted entity locations:

(xa, ya, ta) = (1, 1, 1)

(xc, yc, tc) = (3, 3, 5)

(xb, yb, tb) = (5, 2, 10)

Assume a new sensor report, indicating a target detection at (xd, yd, td) = (3, 1.5, 5), must be fused
with the existing data set. Direct comparison of this new report with the existing database suggests that
query point d is “near” point c (i.e., tc = td) and “not near” either points a or b. If the database was sorted
by all three dimensions, with the y-coordinate selected as the primary index dimension, point d would
appear to be “near” point a and “not near” either points b or c. Suppose that the detections occurring
at points a and b represent successive detections of the same entity (i.e., the endpoints of a track segment).
As illustrated in Figure 18.4, which depicts the existing data set and all new detections in a true 2-D
spatial representation (rather than a list-oriented, tuple-based representation), query point d is readily
discovered to be “spatially distant” from all three points, but “spatially close” to the line segment a-b.

To accommodate the temporal dimension, the distance between (xd, yd) and the interpolated target
position along the line segment a-b (at time td) can be readily computed. If the target under track is
known to be a wheeled vehicle moving along a road network, data associations can be based on a road-
constrained trajectory, rather than a linear trajectory.

Although target reports are typically collected at discrete times (e.g., at radar revisit rates), the actual
trajectory of any physical object is a continuous function in both space and time. Despite the fact that
the closest line segment to an arbitrary point in space can be derived from tuple-based data, much more
efficient data retrieval is possible if all spatial features are explicitly represented within the database. Thus,
by employing a time-coded, explicit spatial representation (and not just preserving line segment end-
points), a database can effectively support a search along continuous dimensions in both space and time.

FIGURE 18.4 Two-dimensional depiction of data set showing the spatial relationships between the various features.

*A structure that preserves both the natural spatial search dimensions and the true character of the data (e.g.,
area for image-like data, volume for 3-D data).
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With such a representation, candidate track segments can be found through highly localized (true 2-D)
spatial searches about point d.

Representing moving targets by continuous, time-referenced spatially organized trajectories not only
match the characteristics of the physical phenomenon, it also supports highly effective database search
dimensions. Equally important, such representations preserve spatial relationships between dynamic
objects and other static and dynamic spatially organized database entities. Thus, multiple justifications
exist for subordinating temporal indexing to spatial indexing.

Both semantic and spatial reasoning are intrinsically hierarchical. Semantic object reasoning relies
heavily on explicitly represented object hierarchies; similarly, spatial reasoning can benefit from multiple
resolution spatial representations. Time is a monotonically increasing function; therefore, temporal
phenomena possess a natural sequential ordering which can be treated as a specialized hierarchical
representation. These considerations attest to the appropriateness of subordinating hierarchical reasoning
to both semantic and spatial reasoning and, in turn, subordinating temporal reasoning to hierarchical
reasoning.

Figure 18.5 depicts the hierarchical relationship that exists between the three reasoning classes. At the
highest level of abstraction, reasoning can be treated as either spatial or semantic (nonspatial). Each of
these reasoning classes can be handled using either hierarchical or nonhierarchical approaches. Hierar-
chical spatial reasoning employs multiple resolution spatial representations and hierarchical nonspatial
reasoning uses tree-structured semantic representations. Each of these classes, in turn, may or may not
be temporally sensitive.

If we refer to temporal reasoning as dynamic reasoning and nontemporal reasoning as static reasoning,
there exist four classes of spatial reasoning and four classes of nonspatial reasoning: (1) dynamic, hierar-
chical; (2) static, hierarchical; (3) dynamic, nonhierarchical; and (4) static, nonhierarchical. To support
effectively data fusion automation, a database must accommodate each of these reasoning classes. Because
nonhierarchical reasoning is effectively a special case of hierarchical reasoning, and static reasoning is
just a special case of dynamic reasoning, data fusion applications are adequately served by a DBMS that
provides dynamic hierarchical spatial representations and dynamic hierarchical semantic representations.
Thus, supporting these two key reasoning classes is the primary database design criterion.

18.4 Database Design Criteria

This section addresses key database design criteria to support advanced algorithm development. Data
representation can have a profound impact on algorithm development. The preceding discussion regard-
ing spatial, temporal, and hierarchical reasoning highlighted the benefit of representations that provide
natural search dimensions and that preserve significant relationships among domain objects. In addition
to supporting key database operations, such as search efficiency, highly intuitive data representations can
facilitate the development of sophisticated algorithms that emulate the top-down reasoning process of
human analysts.

FIGURE 18.5 Taxonomy of the three principal reasoning classes.
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18.4.1 Intuitive Algorithm Development

In analyzing personnel data, for example, table-based representations are much more natural (and useful)
than tree-based data structures. Hierarchical data structures are generally more appropriate for repre-
senting the organization of a large company than a purely spatially organized representation. Raster
representations of imagery tend to support more intuitive image processing algorithms than do vector-
based representations of point, line, and region boundary-based features.

The development of sophisticated machine-based reasoning benefits from full integration of both the
semantic and spatial data representations, as well as integration among multiple representations of a
given data type. For example, a river possesses both semantic attributes (class, nominal width, and flow-
rate) and spatial attributes (beginning location, ending location, shape description, and depth profile).
At a reasonably low resolution, a river’s shape might be best represented as a lineal feature; at a higher
resolution, a region-based representation could be more appropriate.

18.4.2 Efficient Algorithm Performance

For algorithms that require large supporting databases, data representation form can significantly affect
algorithm performance efficiency. For business applications that demand access to massive table-based
data sets, the relational data model supports more efficient algorithm performance than a semantic
network model. Two-dimensional template matching algorithm efficiency tends to be higher if true 2-D
(map-like) spatial representations are used rather than vector-based data structures. Multiple level-of-
abstraction semantic representations and multiple resolution spatial representations tend to support more
efficient problem solving than do nonhierarchical representations.

18.4.3 Data Representation Accuracy

In general, data representation accuracy must be adequate to support the widest possible range of data
fusion applications. For finite resolution spatially-organized representations, accuracy depends on the
data sampling method. In general, data sampling can be either uniform or nonuniform. Uniformly sampled
spatial data are typically maintained as integers, while nonuniformly sampled spatial data are typically
represented using floating-point numbers. Although the pixel-based representation of a region boundary
is an integer-based representation, a vector-based representation of the same boundary maintains the
vertices of the piecewise linear approximation of the boundary as a floating-point list. For a given memory
size, nonuniformly sampled representations tend to provide higher accuracy than uniformly sampled
representations.

18.4.4 Database Performance Efficiency

Algorithm performance efficiency relies on the six key database efficiency classes described in the fol-
lowing paragraphs.

18.4.4.1 Storage Efficiency

Storage efficiency refers to the relative storage requirements among alternative data representations.
Figure 18.6 depicts two similar polygons and their associated vector, raster, pixel boundary, and quadtree
representations. With a raster representation (Figures 18.6(c) and (d)), A/∆2 nodes are required to store
the region, where A is the area of the region, and ∆ is the spatial width of a (square) resolution cell (or
pixel). Accurate replication of the region shown in Figure 18.6(a) requires a resolution cell size four times
smaller than that required to replicate the region in Figure 18.6(b). Because the pixel boundary repre-
sentation (Figures 18.6(e) and (f)) maintains only the boundary nodes of the region, the required node
count is proportional to P/∆, where P is the perimeter of the region. For fixed ∆, the ratio of the node
count for the raster representation relative to the pixel boundary representation is A/(∆P). Although a
quadtree representation (Figures 18.6(g) and (h)) stores both the region boundary and its interior, the
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required node count, for large regions, is proportional to the region perimeter rather than its area.1 Thus,
for grid-based spatial decompositions, the region node count depends on the maximum resolution cell
size and the overall size of the region (either its area or perimeter).

Whereas storage requirements for grid-based representations tend to be dependent on the size of the
region, storage requirements for nonuniform decompositions are sensitive to the small-scale feature
details. Consequently, for nonuniform representations, no simple relationship exists between a region’s
size and its storage requirements. For example, two regions of the same physical size possessing nearly
identical uniform decomposition storage requirements might have dramatically different storage require-
ments under a nonuniform decomposition representation. Vector-based polygon representations are
perhaps the most common nonuniform decomposition. In general, when the level of detail in the region
boundary is high, the polygon tuple count will be high; when the level of detail is low, few vertices are
required to represent accurately the boundary. Because the level of detail of the boundaries in both
Figures 18.6(a) and (b) are identical, both require the same number of vertices. In general, for a given
accuracy, nonuniform decompositions have significantly lower storage requirements than uniform
decompositions.

FIGURE 18.6 Storage requirements for four spatial data representations of two similarly-shaped regions.
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18.4.4.2 Search Efficiency

Achieving search efficiency requires effective control of the search space size for the range of typical
database queries. In general, search efficiency can be improved by storing or indexing data sets along
effective search dimensions. For example, for vector-represented spatial data sets, associating a bounding
box (i.e., vertices of the rectangle that forms the smallest outer boundary of a line or region) with the
representation provides a simple indexing scheme that affords significant search reduction potential.
Many kinds of data possess natural representation forms that, if preserved, facilitate the search. 2-D
representations that preserve the essential character of maps, images, and topographic information permit
direct access to data along very natural 2-D search dimensions. Multiple resolution spatial representations
potentially support highly efficient top-down spatial search and reasoning.

18.4.4.3 Overhead Efficiency

Database overhead efficiency includes both indexing efficiency and data maintenance efficiency. Indexing
efficiency refers to the cost of creating data set indices, while data maintenance efficiency refers to the
efficiency of re-indexing and reorganization operations, including tree-balancing required following data
insertions or deletions. Because natural data representations do not require separate indexing structures,
such representations tend to support overhead efficiency. Although relatively insignificant for static
databases, database maintenance efficiency can become a significant factor in highly dynamic data sets.

18.4.4.4 Association Efficiency

Association efficiency refers to the efficient determination of relationships among data sets (e.g., inclusion,
proximity). “Natural” data representations tend to enhance significantly association efficiency over vector-
based spatial representations because they tend to preserve the inherent organizational characteristics of
data. Although relational database tables can be joined (via a static, single-dimension explicit key), the
relational model does not support efficient data set association for data that possess correlated attributes
(e.g., combined spatial and temporal proximity).

18.4.4.5 Complex Query Efficiency

Complex query efficiency includes both set operation efficiency and complex clause evaluation efficiency.
Set operation efficiency demands efficient Boolean and fuzzy set operations among point, line, and region
features. Complex clause evaluation efficiency requires query optimization for compound query clauses,
including those with mixed spatial and semantic constraints.

18.4.4.6 Implementation Efficiency

Implementation efficiency is enhanced by a database architecture and associated data structures that
support the effective distribution of data, processing, and control. Figure 18.7 summarizes these 12 key
design considerations.

18.4.5 Spatial Data Representation Characteristics

Many spatial data structures and numerous variants exist. The taxonomy depicted in Figure 18.8 provides
an organizational structure that is useful for comparing and contrasting spatial data structures. At the
highest level-of-abstraction, sampled representations of 2-D space can employ either uniform (regular)
or nonuniform (nonregular) decompositions. Uniform decompositions generate data-independent rep-
resentations, while nonuniform decompositions produce data-dependent representations.

With the exception of fractal-like data, low-resolution representations of spatial features tend to be
uniformly distributed and high-resolution representations of spatial data tend to be nonuniformly dis-
tributed. Consequently, uniform decompositions tend to be most appropriate for storing relatively low-
resolution spatial representations, as well as supporting both data registration and efficient spatial index-
ing. Conversely, nonuniform decompositions support memory-efficient high-resolution spatial data
representations.
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Hierarchical decompositions of 2-D spatial data support the continuum from highly global to highly
local spatial reasoning. Global analysis typically begins with relatively low-resolution data representations
and relatively global constraints. The resulting analysis products are then progressively refined through
higher-resolution analysis and the application of successively more local constraints. For example, a U.S.
Interstate road map provides a low-resolution representation that supports the first stage of a route-
planning strategy. Once a coarse resolution plan is established, various state, county, and city maps can
be used to refine appropriate portions of the plan to support excursions from the Interstate highway to
visit tourist attractions or to find lodging and restaurants. Humans routinely employ such top-down
reasoning, permitting relatively global (often near-optimal) solutions to a wide range of complex tasks.

Data decompositions that preserve the inherent 2-D character of spatial data are defined to be 2-D
data structures. 2-D data structures provide natural spatial search dimensions, eliminating the need to
maintain separate search indices. In addition, such representations preserve Euclidean distance metrics
and other spatial relationships. Thus, a raster representation is considered a 2-D data structure, while
tuple-based representations of lines and region boundaries are non-2-D data structures.

Explicit data representations literally depict a set of data, while implicit data representations maintain
information that permits reconstruction of the data set. Thus, a raster representation is an explicit data
representation because it explicitly depicts line and region features. A vector representation, which
maintains only the end-point pairs of piecewise continuous lines and region boundaries, is considered
an implicit representation. In general, implicit representations tend to be more memory-efficient than
explicit representations.

Specific feature spatial representations maintain individual point, line, and region features, and com-
posite feature spatial representations store the presence or absence of multiple features. A raster repre-
sentation that maintains a code describing all features in a given cell is a composite spatial representation;
the pixels associated with the boundary list of a particular region is a specific spatial representation.
Specific spatial representations are most effective for performing spatial operations with respect to
individual features; composite representations are most effective for representing classes of spatial
features.

Areal-based representations maintain a region’s boundary and interior. Nonareal-based representations
explicitly store only a region’s boundary. Boolean set operations among 2-D spatially organized data sets
inherently involve both boundaries and region interiors. As a result, areal-based representations tend to
support more efficient set operation generation than nonareal-based representations among all classes
of spatial features.

Data representations that are both regular and hierarchical support efficient tree-oriented spatial
search. Regular decompositions utilize a fixed grid size at each decomposition level and provide a fixed
resolution relationship between levels, enabling registered data sets to be readily associated at all resolution

FIGURE 18.7 High-level summary of the database design criteria.

Effective algorithms�

Database requirements�

Database �
�efficiency�

Implementation�
� efficiency�

Association�
�efficiency�

Overhead�
�efficiency�

Complex�
�query�

�efficiency�

Search�
�efficiency�

Memory�
�efficiency�

Intuititive�
�algorithm�
�development�

Repre-�
�sentation�

�accuracy�

Algorithm�
�efficiency�

Robust� Efficient�
Context�
�sensitive�

Algorithm requirements�

Algorithm�
�support�
©2001 CRC Press LLC



levels. Registered data representations that are both regular and areal-based support efficient set opera-
tions among all classes of 2-D spatial features. Because raster representations are both regular and areal-
based, set intersection generation requires only simple Boolean AND operations between respective raster
cells. Similarly, set union can be generated by computing the Boolean OR between the respective cells.

Spatial representations that are both regular and 2-D preserve spatial adjacency among all classes of
spatial features. They employ a data-independent, regular decomposition and, therefore, do not require
extensive database rebuilding operations following insertions and deletions. In addition, because no
separate spatial index is required, re-indexing operations are unnecessary. Spatially local changes tend to
have highly localized effects on the representation; as a result, spatial decompositions that are both regular

FIGURE 18.8 Spatial data structure taxonomies with the recommended representation branches outlined in bold
gray lines.
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and 2-D are relatively dynamic data structures. Consequently, database maintenance efficiency is generally
enhanced by regular 2-D spatial representations.

Data fusion involves the composition of both dynamic (sensor data, existing fusion products) and
static (tables of equipment, natural and cultural features) data sets; consequently, data fusion algorithm
efficiency is enhanced by employing compatible data representation forms for both dynamic and static
data. For example, suppose the (static) road network was maintained in a nonregular vector-based
representation, while the (dynamic) target track file database was maintained in a regular 2-D data
structure. The disparate nature of the representations would make the fusion of these data sets both
cumbersome and inefficient. Thus, maintaining static and dynamic information with identical spatial
data structures potentially enhances both database association efficiency and maintenance efficiency.

Spatial representations that are explicit, regular, areal, and 2-D support efficient set operation gener-
ation, offer natural search dimensions for fully registered spatial data, and represent relatively dynamic
data structures. Because they possess key characteristics of analog 2-D spatial representations (e.g., paper
maps and images), the representations are defined to be true 2-D spatial representations. Spatial repre-
sentations possessing one or more of the following properties violate the requirements of true 2-D spatial
representations:

• Spatial data is not stored along 2-D search dimensions (i.e., spatial data stored as list or table-
based representations).

• Region representations are nonareal-based (i.e., bounding polygons).

• Nonregular decompositions are employed (e.g., vector representations and R-trees).

True 2-D spatial representations tend to support both intuitive algorithm development and efficient
spatial reasoning. Such representations preserve key 2-D spatial relationships, thereby supporting highly
intuitive spatial search operations (e.g., “Northwest of point A,” “beyond the city limits,” or “inside a
staging area”). Because grid-based representations store both the boundary and interior of a region,
intersection and union operations among such data can be generated using straightforward cell-by-cell
operations. The associated computational requirements scale linearly with data set size independent of
the complexity of the region data sets (e.g., embedded holes or multiple disjoint regions). Conversely,
set operation generation among regions based on non-true-2-D spatial representations tend to require
combinatorial computational requirements.

Computational geometry approaches to set intersection generation require the determination of all
line segment intersection points; therefore, computational complexity is of order m × n, where m and
n are the number of vertices associated with the two polygons. When one or both regions contain
embedded holes, dramatic increases in computational complexity can result. For analysis and fusion
algorithms that rely on set intersections among large complex regions, algorithm performance can be
adversely impacted. Although the use of bounding rectangles (bounding boxes) can significantly enhance
search and problem solving efficiency for vector-represented spatial features, they provide limited benefit
for multiple-connected regions, extended lineal features (e.g., roads, rivers, and topographic contour
lines), and directional and proximity-based searches.

Specific spatial representations that are explicit, regular, areal, 2-D, and hierarchical (or hierarchical
true 2-D) support highly efficient top-down spatial search and top-down areal-based set operations
among specific spatial features. With a quadtree-based region representation, for example, set intersection
can be performed using an efficient top-down, multiple resolution process that capitalizes on two key
characteristics of Boolean set operations. First, the intersection product is a proper subset of the smallest
region being intersected. Second, the intersection product is both commutative and associative and,
therefore, independent of the order in which the regions are composed. Thus, rather than exhaustively
ANDing all nodes in all regions, intersection generation can be reformulated as a search problem where
the smallest region is selected as a variable resolution spatial search “window” for interrogating the
representation of the next larger region.1 Nodes in the second smallest region that are determined to be
within this search window are known to be in the intersection product. Consequently, the balance of the
nodes in the larger region need not be tested.
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If three or more regions are intersected, the product that results from the previous intersection product
becomes the search window for interrogating the next larger region. Consequently, while the computa-
tional complexity of polygon intersection is a function of the product of the number of vertices in each
polygon, the computational complexity for region intersection using a regular grid-based representation
is related to the number of tuples that occur within cells of the physically smallest region. Composite
spatial representations that are explicit, regular, areal, 2-D, and hierarchical support efficient top-down
spatial search among classes of spatial features.

Based on the relationships between spatial data decomposition classes and key database efficiency
classes, a number of generalizations can be formulated:

• Hierarchical, true 2-D spatial representations support the development of highly intuitive algorithms.

• For tasks that require relatively low-resolution spatial reasoning, algorithm efficiency is enhanced
by hierarchical, true 2-D spatial representations.

• Implicit, nonregular spatial representations support representation accuracy.

• Specific spatial representations are most appropriate for reasoning about specific spatial features;
conversely, composite spatial representations are preferable for reasoning about classes of spatial
features. For example, a true 2-D composite road network representation would support more
efficient determination of the closest road to a given point in space than a representation main-
taining individual named roads. With the latter representation, a sizable portion of the road
database would have to be interrogated.

• Finite resolution data decompositions that are implicit, nonregular, nonhierarchical, nonareal,
and non-2-D tend to be highly storage-efficient.

• Spatial indexing efficiency is enhanced by hierarchical, true 2-D representations that support
natural, top-down search dimensions.

• Spatially local changes require only relatively local changes to the underlying representation; there-
fore, database maintenance efficiency is enhanced by regular, dynamic, 2-D spatial representations.

• For individual spatial features, database search efficiency is enhanced by spatial representations
that are specific, hierarchical, and true 2-D, and that support distributed search.

• Search efficiency for classes of spatial features is enhanced by composite hierarchical spatial feature
representations.

• True 2-D spatial representations preserve spatial relationships among data sets; therefore, for
individual spatial features, database association efficiency is enhanced by hierarchical true 2-D
spatial representations of specific spatial features. For classes of spatial features, association effi-
ciency is enhanced by hierarchical, true 2-D composite feature representations.

• For specific spatial features, complex query efficiency is enhanced by hierarchical, true 2-D rep-
resentations of individual features; for classes of spatial features, complex query efficiency is
enhanced by hierarchical, composite, true 2-D spatial representations.

• Finally, database implementation efficiency is enhanced by data structures that support the dis-
tribution of data, processing, and control.

These general observations are summarized in Table 18.1.

18.4.6 Database Design Tradeoffs
Object-oriented reasoning potentially supports the construction of robust, context-sensitive fusion algo-
rithms, enabling data fusion automation to benefit from the development of an effective OODBMS. This
section explores design tradeoffs for an object-oriented database that seek to achieve an effective compromise
among the algorithm support and database efficiency issues listed in Table 18.1. As previously discussed,
the principal database design requirement is support for dynamic, hierarchical spatial reasoning and dynamic,
hierarchical semantic reasoning. Consequently, an optimal database must provide data structures that facil-
itate storage and access to both temporally and hierarchically organized spatial and nonspatial information.
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Nonspatial (or semantic) declarative knowledge can be represented as n-tuples, arrays, tables, transfer
functions, frames, trees, and graphs. Modern semantic object databases provide effective support to
complex, multiple level-of-abstraction problems that (1) possess extensive parent/child relationships, (2)
benefit from problem decomposition, and/or (3) demand global solutions. Because object-oriented
representations permit the use of very general internal data structures, and the associated reasoning
paradigm fully embraces hierarchical representations at the semantic object level, conventional object
databases intrinsically support hierarchical semantic reasoning. Semantic objects can be considered
relatively dynamic data structures because temporal changes associated with a specific object tend to
affect only that object or closely related objects.

The character and capabilities of a spatial object database are analogous to those of a semantic object
database. A spatial object database must support top-down, multiple level-of-abstraction (i.e., multiple
resolution) reasoning with respect to classes of spatial objects, as well as permit efficient reasoning with
specific spatial objects. Just as the semantic object paradigm requires an explicitly represented semantic
object hierarchy, a spatial object database requires an equivalent spatial object hierarchy. Finally, just as
specific entities in conventional semantic object databases possess individual semantic object represen-
tations, specific spatial objects require individual spatial object representations.

18.5 Object Representation of Space

Consider the query:

Determine the class-1 road closest to query point (x1, y1).

In a database that maintains only implicit representations of individual spatial features, the above feature-
class query could potentially require the interrogation of all class-1 road representations. Just as a hierarchical

TABLE 18.1 Spatial Representation Attributes Supporting Nine Spatial Database Requirements
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representation of semantic objects permits efficient class-oriented queries, a hierarchical representation
of space supports efficient queries with respect to classes of spatial objects. At the highest level-of-
abstraction, an object representation of space consists of a single object that characterizes the entire area
of interest (Asia, a single map sheet, a division’s area of interest). At each successively lower level of the
spatial object hierarchy, space is decomposed into progressively smaller regions that identify spatial objects
(specific entities or entity classes) associated with that region. Just as higher-order semantic objects possess
more general properties than their offspring, higher-order object representations of space characterize
the general properties of 2-D space.

Based on the principles outlined in the last section, an object representation of 2-D space must satisfy
the properties summarized in Table 18.2. As previously mentioned, a true 2-D spatial representation
possesses the first five characteristics listed in Table 18.2. With the addition of the sixth property, the
spatial object hierarchy provides a uniform hierarchical spatial representation for classes of point, line,
and region features. The pyramid data structure fully satisfies these first six properties. Because multiple
classes of spatial objects (e.g., roads, waterways, and soil-type) can be maintained within each cell, a
pyramid representation is well suited to maintain a composite feature representation. In a pyramid
representation, all the following are true:

1. Spatially local changes require only relatively local changes to the data structure.
2. Limited re-indexing is required following updates.
3. Extensive tree-balancing operations are not required following insertions or deletions.

As a result, the pyramid is a relatively dynamic data structure. In addition, the hierarchical and grid-based
character of the pyramid data structure enables it to readily accommodate data distribution. Therefore,
a pyramid data structure fully satisfies all nine requirements for an object representation of 2-D space.

18.5.1 Low-Resolution Spatial Representation
As summarized in Table 18.2, an effective low-resolution spatial representation must possess ten key
properties. With the exception of the composite feature representation property, the low-resolution spatial
representation requirements are identical to those of the object representation of 2-D space. Whereas a
composite-feature-based representation supports efficient spatial search with respect to classes of spatial
features, a specific feature-based representation supports effective search and manipulation of specific
point, line, and region features. A regular region quadtree possesses all of the properties presented in
Table 18.2, column 3.

18.5.2 High-Resolution Spatial Representation
An effective high-resolution spatial representation must possess the ten properties indicated in the last
column of Table 18.2. Vector-based spatial representations clearly meet the first four criteria. Because

TABLE 18.2 Key Representation Characteristics Required by the Three Distinct Spatial Data 
Representation Classes

Key spatial data types Object 
representation 
of 2-D space

Low-resolution 
spatial 

representation

High-resolution 
spatial 

resolution
Representation 
characteristics

1 Finite resolution c c c
2 Regular/Nonregular Regular Regular Nonregular
3 Areal/Nonareal Areal Areal Nonareal
4 2-D/Non-2-D 2-D 2-D Non-2-D
5 Explicit/Implicit Explicit Explicit Implicit
6 Hierarchical/Nonhierarchical Hierarchical Hierarchical Nonhierarchical
7 Specific features/Composite features Composite features Specific features Specific features
8 Relatively dynamic data structure c c c
9 Distributed reprsentation potential c c c

10 Low/high precision Low Low High
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they use nonhierarchical representations of specific features and employ implicit piecewise linear repre-
sentations of lines and region boundaries, vector representations also satisfy properties 5 through 7.
Changes to a feature require a modification of the property list of a single feature; therefore, vector
representations tend to be relatively dynamic data structures. A representation of individual features is
self contained, so vector representations can be processed in a highly distributed manner. Finally, vector-
based representations inherently provide high precision. Thus, vector-based representations satisfy all of
the requirements of the high-resolution spatial representation.

18.5.3 Hybrid Spatial Feature Representation

Traditionally, spatial database design has involved the selection of either a single spatial data structure
or two or more alternative, but substantially independent, data structures (e.g., vector and quadtree).
Because of the additional degrees of freedom it adds to the design process, the use of a hybrid spatial
representation offers the potential for achieving a near-optimal compromise across the spectrum of design
requirements. Perhaps the most straightforward design approach for such a hybrid data structure is to
directly integrate a multiple-resolution, low-resolution spatial representation and a memory-efficient,
high-resolution spatial representation.

As indicated in Figure 18.9, the quadtree data structure can form the basis of an effective hybrid data
structure, serving the role of both a low-resolution spatial data representation and an efficient spatial
index into high accuracy vector representations of point, line, and region boundaries. Table 18.3 offers
a coarse-grain evaluation of the effectiveness of the vector, raster, pixel boundary, region quadtree, and
the recommended hybrid spatial representation based on the database design criteria. Table 18.4 sum-
marizes the key characteristics of the recommended spatial object representation and demonstrates that
it addresses the full spectrum of spatial data design issues.

18.6 Integrated Spatial/Nonspatial Data Representation

To effectively support data fusion applications, spatial and nonspatial data classes must be fully integrated.
Figure 18.10 depicts a high level view of the resultant semantic/spatial database kernel depicting both
explicit and implicit links between the various data structures. Because a pyramid data structure can be
viewed as a complete quadtree, the pyramid and the low-resolution spatial representation offer a unified
structure, with the latter effectively an extension to the former. Therefore, the quadtree data structure

FIGURE 18.9 Quadtree-indexed vector spatial representation for points, lines, and regions.
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serves as the link between the pyramid and the individual spatial feature representations and provides a
hierarchical spatial index to high-resolution vector-represented point, line, and region features.

The integrated spatial and semantic object representation permits efficient top-down search for domain
objects based on a combination of semantic and spatial constraints. The fully integrated data structures
support efficient and effective manipulation of spatial and nonspatial relations, and the computation of
spatial and semantic distance metrics among domain objects. The quadtree-indexed data structure
preserves the precision of the highest fidelity spatial data without compromising the memory efficiency
of the overall system.

18.7 Sample Application

Using a reasonably simple, easily visualized path-planning application, this section illustrates key benefits
of the database system design just presented. Humans routinely plan simple tasks in a nearly subconscious
manner (e.g., walking from one room to another and picking up a glass of water); however, other tasks
require considerable deliberation. Consider, for instance, planning an automobile trip from Washington,

TABLE 18.3 Comparison of Spatial Data Representations Based on Their Ability to Support Database 
Design Criteria

Representations
Vector 
based*

Raster 
based

Pixel 
boundary

Region 
quadtree

Hybrid 
spatial 

representationDesign criteria
• Intuitive algorithm development Poor Good Moderate Good Good
• Computationally efficient algorithms Poor Moderate Poor Good Good
• Representation accuracy Good Poor Poor Poor Good
• Data storage efficiency Good Poor Moderate Moderate Moderate
• DB overhead efficiency Good Good Good Moderate Moderate
• Spatial search efficiency

Specific features
Feature classes

Moderate
Poor

Good
Good

Moderate
Poor

Good
Moderate

Good
Good

• Complex Boolean query efficiency
Specific features
Feature classes

Moderate
Poor

Good
Moderate

Moderate
Poor

Good
Moderate

Good
Good

• DB implementation efficiency Good Good Good Good Good

* Assumes the use of bounding boxes.

TABLE 18.4 Summary Characteristics of the Three Spatial Representation Classes
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D.C. to Portland, OR. Adding constraints to the problem, such as stops at nearby national parks and
other attractions along the way, can greatly complicate the task of generating an optimal plan. One
approach to planning such a trip would be to accumulate all the county road maps through which such
a route might pass; however, the amount of data would be overwhelming. The task would be much less
daunting if the planner first acquired a map of the U.S. Interstate highway system and used this map to
select a coarse resolution plan. Then, a small collection of state maps would probably suffice for planning
routes to specific attractions located some distance from an interstate highway. Finally, for locating a
friend’s residence, a particular historical landmark, or some other point of interest, detailed county or
even city maps could be used to refine the details of the overall plan.

Clearly, the top-down path development approach is both more natural and much more efficient than
a single level of abstraction approach, accommodating the continuum from global to highly local objec-
tives and evaluation metrics. Given time and resource constraints, there will likely be a need to apply
weighted values to indicate the relative importance of competing subtasks: travelers with different interests
and background would probably rate attractions such as the Grand Tetons and the Eisenhower Library
quite differently.

In path planning, as with virtually all decision making, effective evaluation criteria are needed to select
among large numbers of candidate solutions. Path selection metrics could be as simple as seeking to
minimize the overall path length, minimize travel time, or maximize travel speed. On the other hand,
the planner may want to minimize or maximize a weighted combination of several individual metrics
or to apply fuzzier (more subjective) measures of performance. Whereas crisp metrics can be treated as
absolute metrics (e.g., the shortest path length or the fastest speed), fuzzy metrics are most appropriate
for representing relative metrics or constraints (e.g., selecting a moderately scenic route that is not much
longer than the shortest route). In addition to selection criteria, various problem constraints could be
appropriate at the different levels of the planning process. These might include regular stops for fuel,
meals, and nightly motel stays.

In addition to developing effective a priori plans, real-world tasks often require the ability to perform
real-time replanning. Replanning can span the spectrum from global modifications to highly local

FIGURE 18.10 High-level view of the integrated semantic/spatial object database.

Semantic objects

Spatial objects

Pyramid�

Object 
representation 
of 2-D space

River 1�

River 1�
Regular �
�region �
�quadtree�

Hybrid spatial feature representation

V�ector �
�represen-�

� tation�

x�1�, y�1��
�x�2�, y�2��
�•�

�•�
�•�
�

River�

River 1�

River�

River�
©2001 CRC Press LLC



changes. As an illustration of the latter, suppose a detailed plan called for travel in the right-hand lane
of Route 32, a four-lane divided highway. During plan execution, an accident is encountered blocking
further movement in the right-most lane requiring the initial plan to be locally adjusted to avoid this
impasse. More global modifications would be required if, prior to reaching Route 32, the driver learned
of a recent water main break that was expected to keep the road closed to traffic the entire day.

In general, top-down planning begins by establishing a coarse-grain skeletal solution that is then
recursively refined to the appropriate level of detail. Multiple level-of-abstraction planning tends to
minimize the size of both the search and decision spaces, making it highly effective. Based on both its
efficacy and efficiency, top-down planning readily accommodates replanning, a critical component in
complex, dynamic problem domains.

18.7.1 Problem-Solving Approach

This section outlines a hierarchical path-planning algorithm that seeks to develop one or more routes
between two selected locations for a wheeled military vehicle capable of both “on-road” and “off-road”
movement. Rather than seeking a mathematically optimal solution, we strive for a near-optimal global
solution by emulating a human-oriented approach to path selection and evaluation.

In general, path selection is potentially sensitive to a wide range of geographical features (i.e., terrain,
elevation changes, soil type, surface roughness, and vegetation), environmental features (i.e., temperature,
time of day, precipitation rate, visibility, snow depth, and wind speed), and cultural features (i.e., roads,
bridges, the location of supply caches, and cities). Ordering the applicable domain constraints from the
most to the least significant effectively treats path development as a top-down, constraint-satisfaction task.

In general, achieving “high quality” global solutions requires that global constraints be applied before
more local constraints. Thus, in Stage 1 (the highest level of abstraction), path development focuses on
route development, considering only extended barriers to ground travel. Extended barriers are those
cultural and manmade features that cannot be readily circumnavigated. As a natural consequence, they
tend to have a more profound impact on route selection than smaller-scale features. Examples of extended
features include rivers, canyons, neutral zones, ridges, and the Great Wall in China. Thus, in terms of
the supporting database, first stage analysis involves searching for extended barriers that lie between the
path’s start and goal state.

If an extended barrier is discovered, candidate barrier crossing locations (e.g., bridges or fording
locations for a river or passes for a mountain range) must be sought. One or more of these barrier-
crossing sites must be selected as candidate high-level path subgoals. As with all stages of the analysis,
an evaluation metric is required to either “prune” or rank candidate subgoals. For example, the selected
metric might retain the n closest bridges possessing adequate weight-carrying capacity. For each subgoal
that satisfies the selection metric, the high-level barrier-crossing strategy is reapplied, searching for
extended barriers and locating candidate barrier crossing options until the final goal state is reached.
The product of Stage 1 analysis is a set of coarse resolution candidate paths represented as a set of subgoals
that satisfy the high-level path evaluation metrics and global domain constraints.

Because the route is planned for a wheeled vehicle, the existing road network has the next most
significant impact on route selection. Thus, in Stage 2, road connectivity is established between all subgoal
pairs identified in Stage 1. For example, the shortest road path or the shortest m road paths are generated
for those subgoals discovered to be on or near a road. When the subgoal is not near a road or when path
evaluation indicates that all candidate paths provide only low-confidence solutions, overland travel
between the subgoals would be indicated. Upon completion of Stage 2 analysis, the coarse resolution
path sets developed during Stage 1 will have been refined with the appropriate road-following segments.

In Stage 3, overland paths are developed between all subgoal pairs not already linked by high-confi-
dence, road-following paths. Whereas extended barriers were associated with the most global constraints
on mobility, nonextended barriers (e.g., hills, small lakes, drainage ditches, fenced fields, or forests)
represent the most significant mobility constraints for overland travel. Ordering relevant nonextended
barriers from stronger constraints (i.e., larger barriers and no-go regions) to weaker constraints (i.e.,
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smaller barriers and slow-go regions) will extend the top-down analysis process. At each successive level
of refinement, a selection metric, sensitive to progressively more local path evaluation constraints, is
applied to the candidate path sets. The path refinement process terminates when one or more candidate
paths have been generated that satisfy all path evaluation constraints. Individual paths are then rank-
ordered against selected evaluation metrics.

While traditional path development algorithms generate plans based on brute force optimization by
minimizing “path resistance” or other similar metric, the hierarchical constraint-satisfaction-based
approach just outlined emulates a more human-like approach to path development. Rather than using
simple, single level-of-abstraction evaluation metrics (path resistance minimization), the proposed
approach supports more powerful reasoning, including concatenated metrics (e.g., “maximal conceal-
ment from one or more vantage points” plus “minimal travel time to a goal state”). A path that meets
both of these requirements might consist of a set of road segments not visible from specified vantage
points, as well as high mobility off-road path segments for those sections of the roadway that are visible
from those vantage points. Hierarchical constraint-based reasoning captures the character of human
problem-solving approaches, achieving the spectrum from global to more local subgoals, producing
intuitively satisfying solutions. In addition, top-down, recursive refinement tends to be more efficient
than approaches that attempt to directly generate high-resolution solutions.

18.7.2 Detailed Example

This section uses a detailed example of the top-down path-planning process to illustrate the potential
benefits of the integrated semantic and spatial database discussed in Section 18.6. Because the database
provides both natural and efficient access to both hierarchical semantic information and multiple-
resolution spatial data, it is well suited to problems that are best treated at multiple levels of abstraction.
The tight integration between semantic and spatial representation allows effective control of both the
search space and the solution set size.

The posed problem is to determine one or more “good” routes for a wheeled vehicle from the start
to the goal state depicted in Figure 18.11. Stage 1 begins by performing a spatially anchored search (i.e.,
anchored by both the start and goal states) for extended mobility barriers associated with both the cultural
and geographic feature database. As shown in Figure 18.12, the highest level-of-abstraction representation

FIGURE 18.11 Domain mobility map for path development algorithm.
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of the object representation of space (i.e., the top-level of the pyramid) indicates that a river, which
represents an extended ground-mobility barrier, exists in the vicinity of both the start and the goal states.
At this level of abstraction, it cannot be determined whether the extended barrier lies between the two
points.

The pyramid data structure supports highly focused, top-down searching to determine whether ground
travel between the start and goal states is blocked by a river. At the next higher resolution level, however,
ambiguity remains. Finally, at the third level of the pyramid, it can be confirmed that a river lies between
the start and goal states. Therefore, an efficient, global path strategy can be pursued that requires breaching
the identified barrier. Consequently, bridges, suitable fording locations, or bridging operations become
candidate subgoals.

If, on the other hand, no extended barrier had been discovered in the cells shared by the start and
goal states (or in any intervening cells) at the outset of Stage 1 analysis, processing would terminate
without generating any intervening subgoals. In this case, Stage 1 analysis would indicate that a direct
path to the goal is feasible.

While conventional path planning algorithms operate strictly in the spatial domain, a flexible top-
down path-planning algorithm supported by an effectively integrated semantic and spatial database can
operate across both the semantic and spatial domains. For example, suppose nearby bridges are selected
as the primary subgoals. Rather than perform spatial search, direct search of the semantic object (River 1)
could determine nearby bridges. Figure 18.13 depicts attributes associated with that semantic object,
including the location of a number of bridges that cross the river. To simplify the example, only the
closest bridge (Bridge 1) will be selected as a candidate subgoal (denoted SG1,1). Although this bridge
could have been located via spatial search in both directions along the river (from the point at which a
line from the start to the goal state intersects River 1), a semantic-based search is more efficient.

To determine if one or more extended barriers lie between SG1,1 and the goal state, a spatial search is
reinitiated from the subgoal in the direction of the goal state. High-level spatial search within the pyramid
data structure reveals another potential river barrier. Top-down spatial search once again verifies the

FIGURE 18.12 Top-down multiple resolution spatial search, from the start toward the goal node, reveals the
existence of a river barrier.
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existence of a second extended barrier (River 2). Just as before, the closest bridging location, denoted as
SG1,2, is identified by evaluating the bridge locations maintained by the semantic object (River 2). Spatial
search from Bridge 2 toward the goal state reveals no extended barriers that would interfere with ground
travel between SG1,2 and the goal state.

As depicted in Figure 18.14, the first stage of the path development algorithm generates a single path
consisting of the three subgoal pairs (start, SG1,1), (SG1,1, SG1,2), (SG1,2, goal) satisfying the global objective
of reaching the goal state by breaching all extended barriers. Thus, at the conclusion of Stage 1, the
primary alternatives to path flow have been identified.

In Stage 2, road segments connecting adjacent subgoals that are on or near the road network must be
identified. The semantic object representation of the bridges identified as subgoals during the Stage 1
analysis also identify their road association; therefore, a road network solution potentially exists for the
subgoal pair (SG1,1, SG1,2). Algorithms are widely available for efficiently generating minimum distance
paths within a road network. As a result of this analysis, the appropriate segments of Road 1 and Road 2
are identified as members of the candidate solution set (shown in bold lines in Figure 18.14).

Next, the paths between the start state and SG1,1 are investigated. SG1,1 is known to be on a road and
the start state is not; therefore, determining whether the start state is near a road is the next objective.

FIGURE 18.13 Semantic object database for the path development algorithm.

FIGURE 18.14 Sub-goals associated with all three stages of the path development algorithm.
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Suppose the assessment is based on the fuzzy qualifier near shown in Figure 18.15. Because the detailed
spatial relations between features cannot be economically maintained with a semantic representation,
spatial search must be used. Based on the top-down, multiple-resolution object representation of space,
a road is determined to exist within the vicinity of the start node. A top-down spatially localized search
within the pyramid efficiently reveals the closest road segment to the start node. Computing the Euclidean
distance from that segment to the start node, the state node is determined to be near a road with degree
of membership 0.8.

Because the start node has been determined to be near a road, in addition to direct overland travel
toward Bridge 1 (start, SG1,1), an alternative route exists based on overland travel to the nearest road
(subgoal SG2,1) followed by road travel to Bridge 1 (SG2,1, SG1,1). Although a spectrum of variants exists
between direct travel to the bridge and direct travel to the closest road segment, at this level of abstraction
only the primary alternatives must be identified. Repeating the analysis for the path segment (SG1,2, goal),
the goal node is determined to be not near any road. Consequently, overland route travel is required for
the final leg of the route.

In Stage 3, all existing nonroad path segments are refined based on more local evaluation criteria and
mobility constraints. First, large barriers, such as lakes, marshes, and forests are considered. Straight-line
search from the start node to SG1,1 reveals the existence of a large lake. Because circumnavigation of the
lake is required, two subgoals are generated (SG3,1 and SG3,2) as shown in Figure 18.14, one representing
clockwise travel and the other counter-clockwise travel around the barrier. In a similar manner, spatial
search from the start state toward SG2,1 reveals a large marsh, generating, in turn, two additional subgoals
(SG3,3 and SG3,4).

Spatial search from both SG3,3 toward SG2,1 reveals a forest obstacle (Forest 1). Assuming that the forest
density precludes wheeled vehicle travel, two more subgoals are generated representing a northern route
(SG3,5) and a southern route (SG3,6) around the forest. Because a road might pass through the forest, a
third strategy must be explored (road travel through the forest). The possibility of a road through the
forest can be investigated by testing containment or generating the intersection between Forest 1 and the
road database.

The integrated spatial/semantic database discussed in Section 18.6 provides direct support to contain-
ment testing and intersection operations. With a strictly vector-based representation of roads and regions,
intersection generation might require interrogation of a significant portion of the road database; however,
the quadtree-indexed vector spatial representation presented permits direct spatial search of that portion
of the road database that is within Forest 1.1 Suppose a dirt road is discovered to intersect the forest.
Since no objective criterion exists for evaluating the “best” subpath(s) at this level of analysis, an additional
subgoal (SG3,7) is established. To illustrate the benefits of deferring decision making, consider the fact
that although the length of the road through the forest could be shorter than the travel distance around
the forest, the road may not enter and exit the forest at locations that satisfy the overall path selection
criteria.

FIGURE 18.15 Membership function for fuzzy metric “near.”
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Continuing with the last leg of the path, spatial search from SG1,2 to the goal state identifies a mountain
obstacle. Because of the inherent flexibility of a constraint-satisfaction-based problem-solving paradigm,
a wide range of local path development strategies can be considered. For example, the path could be
constrained to employ one or more of the following strategies:

1. Circumnavigate the obstacle (SG3,8).
2. Remain below a specified elevation (SG3,9).
3. Follow a minimum terrain gradient SG3,10.

Figure 18.16 shows the path-plan subgoal graph following Stage 1, Stage 2, and Stage 3. Proceeding
in a top-down fashion, detailed paths between all sets of subgoals can be recursively refined based on
the evaluation of progressively more local evaluation criteria and domain constraints. Path evaluation
criteria at this level of abstraction might include (1) the minimum mobility resistance, (2) minimum
terrain gradient, or (3) maximal speed paths.

Traditional path planning algorithms generate global solutions by using highly local nearest-neighbor
path extension strategies (e.g., gradient descent), requiring the generation of a combinatorial number of
paths. Global optimization is typically achieved by rank ordering all generated paths against an evaluation
metric (e.g., shortest distance or maximum speed). Supported by the semantic/spatial database kernel,
the top-down path-planning algorithm just outlined requires significantly smaller search spaces when
compared to traditional, single-resolution algorithms. Applying a single high-level constraint that elim-
inates the interrogation of a single 1 km × 1 km resolution cell, for example, could potentially eliminate
search-and-test of as many as 10,000 10 m × 10 m resolution cells. In addition to efficiency gains, due
to its reliance on a hierarchy of constraints, a top-down approach potentially supports the generation of
more robust solutions. Finally, because it emulates the problem-solving character of humans, the
approach lends itself to the development of sophisticated algorithms capable of generating intuitively
appealing solutions.

FIGURE 18.16 Path development graph following (a) stage 1, (b) stage 2, and (c) stage 3.
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In summary, the hierarchical path development algorithm

1. Employs a reasoning approach that effectively emulates manual approaches,
2. Can be highly robust because constraint sets are tailored to a specific vehicle class,
3. Is dynamically sensitive to the current domain context, and
4. Generates efficient global solutions.

The example outlined in this section demonstrates the utility of the database kernel presented in
Section 18.6. By facilitating the efficient, top-down, spatially anchored search and fully integrated seman-
tic and the spatial object search, the spatial/semantic database provides direct support to a wide range
of demanding, real-world problems.

18.8 Summary and Conclusions

Situation awareness development for remote sensing applications relies on the effective combination of
a wide range of data and knowledge sources, including the maximal use of relevant sensor-derived (e.g.,
imagery, overlays, and video) and nonsensor-derived information (e.g., topographic features; cultural
features; and past, present, and future weather conditions). Sensor-supplied information provides
dynamic information that feeds the analysis process; however, relatively static domain-context knowledge
provides equally valuable information that constrains the interpretation of sensor-derived information.
Due to the potentially large volume of both sensor and nonsensor-derived databases, the character and
capability of the supporting database management system can significantly impact both the effectiveness
and the efficiency of machine-based reasoning.

This chapter outlined a number of top-down design considerations for an object database kernel that
supports the development of both effective and efficient data fusion algorithms. At the highest level of
abstraction, the near-optimal database kernel consists of two classes of objects: semantic and spatial.
Because conventional OODBMS provide adequate support to semantic object representations, the chapter
focused on the design for the spatial object representation.

A spatial object realization consisting of an object representation of 2-D space integrated with a hybrid
spatial representation of individual point, line, and region features was shown to achieve an effective
compromise across all design criteria. An object representation of 2-D space provides a spatial object
hierarchy metaphorically similar to a conventional semantic object hierarchy. Just as a semantic object
hierarchy supports top-down semantic reasoning, a spatial object hierarchy supports top-down spatial
reasoning. A hybrid spatial representation, the quadtree-indexed vector representation, supports an
efficient top-down search and analysis and high-precision refined analysis of individual spatial features.
Both the object representation of 2-D space and the multiple-resolution representation of individual
spatial features employ the identical quadtree decomposition. Therefore, the quadtree-indexed vector
representation is a natural extension of the object representation of 2-D space.
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19.1 Introduction

During the past two decades, an enormous amount of effort has focused on the development of automated
multisensor data systems.1-3 These systems seek to combine data from multiple sensors to improve the
ability to detect, locate, characterize, and identify targets. Since the early 1970s, numerous data fusion
systems have been developed for a wide variety of applications, such as automatic target recognition,
identification-friend-foe-neutral (IFFN), situation assessment, and threat assessment.4 At this time, an
extensive legacy exists for department of defense (DoD) applications. That legacy includes a hierarchical
process model produced by the Joint Directors of Laboratories (shown in Figure 19.1), a taxonomy of
algorithms,5 training material,6 and engineering guidelines for algorithm selection.7

The traditional approach for fusion of data progresses from the sensor data (shown on the left side
of Figure 19.1) toward the human user (on the right side of Figure 19.1). Conceptually, sensor data are
preprocessed using signal processing or image processing algorithms. The sensor data are input to a Level
1 fusion process that involves data association and correlation, state vector estimation, and identity

*This chapter is based on a paper by Mary Jane Hall et al., Removing the HCI bottleneck: How the human
computer interface (HCI) affects the performance of data fusion systems, Proceedings of the 2000 MSS National
Symposium on Sensor and Data Fusion, Vol. II, June 2000, pp. 89–104.
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estimation. The Level 1 process results in an evolving database that contains estimates of the position,
velocity, attributes, and identities of physically constrained entities (e.g., targets and emitters). Subse-
quently, automated reasoning methods are applied in an attempt to perform automated situation assess-
ment and threat assessment. These automated reasoning methods are drawn from the discipline of
artificial intelligence.

Ultimately, the results of this dynamic process are displayed for a human user or analyst (via a human-
computer interface (HCI) function). Note that this description of the data fusion process has been greatly
simplified for conceptual purposes. Actual data fusion processing is much more complicated and involves
an interleaving of the Level 1 through Level 3 (and Level 4) processes. Nevertheless, this basic orientation
is often used in developing data fusion systems: the sensors are viewed as the information source and
the human is viewed as the information user or sink. In one sense, the rich information from the sensors
(e.g., the radio frequency time series and imagery) is compressed for display on a small, two-dimensional
computer screen.

Bram Ferran, the vice president of research and development at Disney Imagineering Company, recently
pointed out to a government agency that this approach is a problem for the intelligence community. Ferran8

argues that the broadband sensor data are funneled through a very narrow channel (i.e., the computer
screen on a typical workstation) to be processed by a broadband human analyst. In his view, the HCI
becomes a bottleneck or very narrow filter that prohibits the analyst from using his extensive pattern
recognition and analytical capability. Ferran suggests that the computer bottleneck effectively defeats one
million years of evolution that have made humans excellent data gatherers and processors. Interestingly,
Clifford Stoll9,10 makes a similar argument about personal computers and the multimedia misnomer.

Researchers in the data fusion community have not ignored this problem. Waltz and Llinas3 noted that
the overall effectiveness of a data fusion system (from sensing to decisions) is affected by the efficacy of
the HCI. Llinas and his colleagues11 investigated the effects of human trust in aided adversarial decision
support systems, and Hall and Llinas12 identified the HCI area as a key research need for data fusion.
Indeed, in the past decade, numerous efforts have been made to design visual environments, special
displays, HCI toolkits, and multimedia concepts to improve the information display and analysis process.
Examples can be found in the papers by Neal and Shapiro,13 Morgan and Nauda,14 Nelson,15 Marchak and
Whitney,16 Pagel,17 Clifton,18 Hall and Wise,19 Kerr et al.,20 Brendle,21 and Steele, Marzen, and Corona.22

A particularly interesting antisubmarine warfare (ASW) experiment was reported by Wohl et al.23 Wohl
and his colleagues developed some simple tools to assist ASW analysts in interpreting sensor data. The
tools were designed to overcome known limitations in human decision making and perception. Although
very basic, the support tools provided a significant increase in the effectiveness of the ASW analysis. The
experiment suggested that cognitive-based tools might provide the basis for significant improvements in
the effectiveness of a data fusion system.

FIGURE 19.1 Joint directors of laboratories (JDL) data fusion process model.
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In recent years, there have been enormous advances in the technology of human computer interfaces.
Advanced HCI devices include environments such as:

• A  three-dimensional full immersion NCSA CAVE™, illustrated in Figure 19.2, which was developed
at the University of Illinois, Champaign-Urbana campus (http://www.ncsa.uiuc.edu/VEG/ncsa-
CAVE.html).

• Haptic interfaces to allow a person to touch and feel a computer display.24

• Wearable computers for augmented reality.25

The technology exists to provide very realistic displays and interaction with a computer. Such realism
can even be achieved in field conditions using wearable computers, heads-up displays, and eye-safe laser
devices that paint images directly on the retina.

Unfortunately, advances in understanding of human information needs and how information is
processed have not progressed as rapidly. There is still much to learn about cognitive models and how
humans access, reason with, and are affected by information.26-29 That lack of understanding of cognitive-
based information access and the potential for improving the effectiveness of data fusion systems moti-
vated the research described in this chapter.

19.2 A Multimedia Experiment

19.2.1 SBIR Objective
Under a Phase II SBIR effort (Contract No. N00024-97-C-4172), Tech Reach, Inc. (a small company
located in State College, PA) designed and conducted an experiment to determine if a multimode
information access approach improves learning efficacy. The basic concept involved the research hypoth-
esis that computer-assisted training, which adapts to the information access needs of individual students,
significantly improves training effectiveness while reducing training time and costs.

The Phase II effort included

• Designing, implementing, testing, and evaluating a prototype computer-based training (CBT)
system that presents material in three formats (emphasizing aural, visual, and kinesthetic presen-
tations of subject material);

• Selecting and testing an instrument to assess a student’s most effective learning mode;

• Developing an experimental design to test the hypothesis;

• Conducting a statistical analysis to affirm or refute the research hypothesis;

• Documenting the results.

FIGURE 19.2 Example of a full immersion 3-D (HCI).
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19.2.2 Experimental Design and Test Approach
The basic testing concept for this project is shown in Figure 19.3 and described in detail by M. J. Hall.30

The selected sample consisted of approximately 100 Penn State ROTC students, 22 selected adult learners
(i.e., post-secondary adult education students), and 120 U.S. Navy (USN) enlisted personnel at the USN
Atlantic Fleet Training Center at DAM NECK (Virginia Beach, VA). This sample was selected to be
representative of the population of interest to the U.S. Navy sponsor.

As shown in Figure 19.3, the testing was conducted using the following steps:

1. Initial Data Collection: Data were collected to characterize the students in the sample (including
demographic information, a pretest of the students’ knowledge of the subject matter, and a learning
style assessment using standard test instruments).

2. Test Group Assignment: The students were randomly assigned to one of three test groups. The
first group used the CBT that provided training in a mode that matched their learning preference
mode as determined by the CAPSOL learning styles inventory instrument.31 The second group
trained using the CBT that emphasized their learning preference mode as determined by the
student’s self-selection. Finally, the third group was trained using the CBT that emphasized a
learning preference mode that was deliberately mismatched with the student’s preferred mode
(e.g., utilization of aural emphasis for a student whose learning preference is known to be visual).

3. CBT Training: Each student was trained on the subject matter using the interactive computer-
based training module (utilizing one of the three information presentation modes: visual, aural,
or kinesthetic).

4. Post-testing: Post-testing was conducted to determine how well the students mastered the training
material. Three post-tests were conducted: (a) an immediate post-test after completion of the training
material, (b) an identical comprehension test administered one hour after the training session, and
(c) an identical comprehensive test administered one week after the initial training session.

The test subjects were provided with a written explanation of the object of the experiment and its
value to the DoD. Testing was conducted in four locations, as summarized in Table 19.1. Test conditions

FIGURE 19.3 Overview of a test concept.
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were controlled to minimize extraneous variations (e.g., the use of different rooms for pre- and post-
tests, different time of day for learning versus the one-week post-test, or different instructions provided
to test subjects).

19.2.3 CBT Implementation

The computer-based training (CBT) module for this experiment was a training module that described
the functions and use of an oscilloscope. The training module was implemented using interactive mul-
timedia software for operation on personal computers. The commercial authoring shell, Toolbook, devel-
oped by Asymetrix Corporation, was used for the implementation. DoD standards were followed for the
design and implementation of the CBT module. An example of the CBT display screens is shown in
Figures 19.4, 19.5, and 19.6.

The subject matter selected — operation and functions of an oscilloscope — was chosen for several
reasons. First, the subject matter is typical of the training requirements for military personnel involved
in equipment operation, maintenance, and repair. Second, the subject could be trained in a coherent,
yet small, CBT module. Third, the likelihood that a significant number of test participants would have
a priori knowledge of the subject matter was small. Finally, the subject matter was amenable to imple-
mentation with varied emphasis on aural, visual, and kinesthetic presentation styles. All of the CBT
screens, aural scripts, and logic for the implemented CBT modules are described by M. J. Hall.32

19.3 Summary of Results

The details of the analysis and the results of the multimedia experiment are provided by M. J. Hall33 and
S. A. Hall.34 For brevity, this chapter contains only a brief summary focusing on the results for the Penn
State ROTC students.

During February 1998, 101 Pennsylvania State University USAF and USN enlisted personnel were tested
at the Wagner Building, University Park, PA. In particular, 54 USN ROTC students were tested on February
5 and 12. Similarly, 47 USAF ROTC students were tested on February 17 and 24. During the first session,
demographic data were collected, along with information on learning preference (via the CAPSOL and

TABLE 19.1 Summary of Conducted Tests

Test Objective Test Subjects Date/Location

Benchmark Correlate learning style inventories 
to determine whether the CAP-SOL 
is sufficiently reliable and valid in 
comparison to the Canfield LSI

50 Penn State University 
U.S. Navy (USN) ROTC 
Cadets

22 Jan. 1998 /
Wagner Building
The Pennsylvania State Univ. (PSU)
University Park, PA

Concept 
Testing

Determine if the use of alternative 
modes of information access (i.e., 
aural, visual, and kinethestic 
emphasized presentation styles) 
provides enhanced learning using a 
computer-based training (CBT) 
delivery system

54 PSU USN ROTC Cadets
47 PSU U.S. Air Force ROTC 

Cadets
12 Altoona Career and 

Technology Center 
students

5 South Hills Business 
School students

5 and 12 Feb. 1998 / Wagner 
Building, PSU

17 and 24 Feb. 1998 / Wagner 
Building, PSU

21 and 28 April 1998 / Altoona 
Career and Technology Center, 
Altoona, PA

11 and 18 May 1998 / FCTLANT, 
DAM NECK Virginia Beach, VA

Operational 
Testing

Determine if the use of alternative 
modes of information access (i.e., 
aural, visual, and kinethestic 
emphasized presentation styles) 
provides enhanced learning using a 
computer based training (CBT) 
delivery system

87 U.S. Navy enlistees 3 and 10 August 1998 / 
FCTCLANT, DAM NECK 
Virginia Beach, VA
©2001 CRC Press LLC



        
the self-assessment preference statements). During the initial session, a subject matter pretest was admin-
istered and followed by the CBT. Immediately after the training, the subject matter test was given, followed
by the one-hour test. One week later, another post-test was administered.

The Penn State ROTC students represented a relatively homogeneous and highly motivated group (as
judged by direct observation and by the anonymous questionnaire completed by each student). This
group of undergraduate students was closely grouped in age, consisted primarily of Caucasian males,
and was heavily oriented toward scientific and technical disciplines. The students were also highly
computer literate. These students seemed to enjoy participating in an educational experiment and were
pleased to be diverted from their usual leadership laboratory assignments.

A sample of the test results is shown in Figure 19.7. The figure shows the average number of correct
answers obtained from students based on the subject matter pretest (presumably demonstrating the
student’s a priori knowledge of the subject), followed by the immediate post-test (demonstrating the
amount learned based on the CBT), followed by the one-hour post-test and, finally, the one-week post-
test. The latter two tests sought to measure the retention of the learned subject matter. Figure 19.7 shows

FIGURE 19.4 Example of an aural CBT display screen.

FIGURE 19.5 Example of an kinesthetic CBT display screen.
©2001 CRC Press LLC



      
four histograms: (1) the overall test results in the upper left side of the figure, (2) results for users who
preferred the aural mode in the upper right corner, (3) results of students who preferred the kinesthetic
mode, in the lower right corner, and finally, (4) students who preferred the visual mode of presentation.

FIGURE 19.6 Example of a visual CBT display screen.

FIGURE 19.7 Sample test results for ROTC students — presentation mode.
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Penn State ROTC - Aural User Preference (10)
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Penn State ROTC - Kinesthetic User Preference 
(44)
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Penn State ROTC - Visual User Preference 
(47)
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Although these results show only a small difference in learning and learning retention based on
presentation style, the aural user preference appears to provide better retention of information over a
one-week period. An issue yet to be investigated is whether this effect is caused by an unintended
secondary mode re-enforcement (i.e., whether the material is emphasized because the subject both sees
the material and hears it presented).

Prior to conducting this experiment, a working hypothesis was that CBT that matched learners’
preferred learning styles would be more effective than CBT that deliberately mismatched learning style
preferences. Figure 19.8 shows a comparison of learning and learning retention in two cases. The case
shown on the right side of the figure is the situation in which the CBT presentation style is matched to
the student’s learning preference (as determined by both self-assessment and by the CAPSOL instrument).
The case shown on the left-hand side of the figure is the situation in which the CBT presentation style
is mismatched to the student’s learning preference. At first glance, there appears to be little difference in
the effect of the matched versus the mismatched cases. However, long-term retention seems to be better
for matched training.

Before concluding that match versus mismatch of learning style has little effect on training efficacy, a
number of factors need to be investigated. First, note that the CBT module implemented for this
experiment exhibited only a limited separation of presentation styles. For example, the aural presentation
style was not solely aural but provided a number of graphic displays for the students. Hence, the visual
and aural modes (as implemented in the CBT) were not mutually exclusive. Thus, a visually oriented
student who was provided with aurally emphasized training could still receive a significant amount of
information via the graphic displays. A similar factor was involved in the kinesthetic style. A more extreme
separation of presentation styles would likely show a greater effect on the learning efficacy.

Second, a number of other factors had a significant effect on learning efficacy. Surprisingly, these
unanticipated factors overshadowed the effect of learning style match versus mismatch. One factor in
particular has significant implications for the design of data fusion systems: whether a user considers
himself a group or individual learner. Group learners prefer to learn in a group setting, while individual
learners prefer to learn in an exploratory mode as an individual. Figure 19.9 shows a comparison of the
learning retention results by individual versus group learning styles. The figure shows the change in score
from the pretest to the post-test. The figure also shows the change from the pretest to the one-hour post-
test, and to the one-week post-test. These values are shown for group learners, individual learners, and
learners who have no strong preference between group or individual learning. The figure shows that
individual learners (and students who have no strong preference) exhibited a significant increase in both
learning and learning retention over students who consider themselves group learners. In effect, students
who consider themselves to be group learners gain very little from the CBT training. This is simply one
of the personal factors that affect the efficacy of computer-based training. M. J. Hall33 and S. A. Hall34

provide a more complete discussion of these factors.

FIGURE 19.8 Matched vs. mismatched learning (ROTC).
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19.4 Implications for Data Fusion Systems

The experiment described in this chapter was a very basic experiment using a homogeneous, highly
motivated group of ROTC students. All of these students were highly computer literate. Although
preliminary, the results indicate that factors such as group versus individual learning style can significantly
affect the ability of an individual to comprehend and obtain information from a computer. This suggests
that efforts to create increasingly sophisticated computer displays may have little or no effect on the
ability of some users to understand and use the presented data. Many other factors, such as user stress,
the user’s trust in the decision-support system, and preferences for information access style, also affect
the efficacy of the human-computer interface.

Extensive research is required in this area. Instead of allowing the HCI for a data fusion system to be
driven by the latest and greatest display technology, researchers should examine this subject more fully
to develop adaptive interfaces that encourage human-centered data fusion. This theme is echoed by Hall
and Garga.35 This approach could break the HCI bottleneck (especially for nonvisual, group-oriented
individuals) and leverage the human cognitive abilities for wide-band data access and processing. This
area should be explicitly recognized by creating a Level 5 process in the JDL data fusion process model.
This concept is illustrated in Figure 19.10.

In this concept, HCI processing functions are explicitly augmented by functions to provide a cognitive-
based interface. What functions should be included in the new Level 5 process? The following are examples
of new types of algorithms and functions for Level 5 processing (based on discussions with D. L. Hall):36

• Deliberate synesthesia: Synesthesia is a neurological disorder in humans in which the senses are
cross-wired.37 For example, one might associate a particular taste with the color red. Typically,
this disorder is associated with schizophrenia or drug abuse. However, such a concept could be
deliberately exploited for normal humans to translate visual information into other types of
representations, such as sounds (including direction of the sound) or haptic cues. For example,
sound might offer a better means of distinguishing between closely spaced emitters than overlap-
ping volumes in feature space. Algorithms could be implemented to perform sensory cross-
translation to improve understanding.

• Time compression/expansion: Human senses are especially oriented to detecting change. Devel-
opment of time compression and time expansion replay techniques could assist the understanding
of an evolving tactical situation.

FIGURE 19.9 Learning retention by individual vs. group learning styles.
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• Negative reasoning enhancement: For many types of diagnosis, such as mechanical fault diagnosis
or medical pathology, experts explicitly rely on negative reasoning.38 This approach explicitly
considers what information is not present which would confirm or refute a hypothesis. Unfortu-
nately, however, humans have a tendency to ignore negative information and only seek information
that confirms a hypothesis (see Piattelli-Palmarini’s description of the three-card problem39).
Negative reasoning techniques could be developed to overcome the tendency to seek confirmatory
evidence.

• Focus/defocus of attention: Methods could be developed to systematically assist in directing the
attention of an analyst to consider different aspects of data. In addition, methods might be
developed to allow a user to de-focus his attention in order to comprehend a broader picture.
This is analogous to how experienced Aikido masters deliberately blur their vision in order to
avoid distraction by an opponent’s feints.40

• Pattern morphing methods: Methods could be developed to translate patterns of data into forms
that are more amenable for human interpretation (e.g., the use of Chernoff faces to represent
varying conditions or the use of Gabor-type transformations to leverage our natural vision process.41

• Cognitive aids: Numerous cognitive aids could be developed to assist human understanding and
exploitation of data. Experiments should be conducted along the lines initiated by Wohl et al.23

Tools could also be developed along the lines suggested by Rheingold.29

• Uncertainty representation: Finally, visual and oral techniques could be developed to improve
the representation of uncertainty. An example would be the use of three-dimensional icons to
represent the identity of a target. The uncertainty in the identification could be represented by
blurring or transparency of the icon.

These areas only touch the surface of the human-computer interface improvements. By rethinking the
HCI for data fusion, we may be able to re-engage the human in the data fusion process and leverage our
evolutionary heritage.
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FIGURE 19.10 Revised joint directors of laboratories (JDL) fusion process model.

Sources
Human

Computer
Interaction

DATA FUSION DOMAIN

Source
Pre-Processing

Level One
Object

Refinement

Level Two
Situation

Refinement

Level Three
Threat

Refinement

Level Four
Process

Refinement

Database Management System

Support
Database

Fusion
Database

Level Five�
Cognitive�

Refinement �
©2001 CRC Press LLC



                                                     
References

1. Hall, D.L. and Llinas, J., An introduction to multisensor data fusion, in Proc. IEEE, Vol. 85, No. 1,
January 1997.

2. Hall, D.L., Mathematical Techniques in Multisensor Data Fusion, Artech House Inc., Norwood, MA,
1992.

3. Waltz, E. and Llinas, J., Multisensor Data Fusion, Artech House Inc., Norwood, MA, 1990.
4. Hall, D.L., Linn, R.J., and Llinas, J., A survey of data fusion systems, in Proc. SPIE Conf. on Data

Structures and Target Classification, 1490, SPIE, 1991, 13.
5. Hall, D.L. and Linn, R.J., A taxonomy of algorithms for multisensor data fusion, in Proc. 1990 Joint

Service Data Fusion Symp., Johns Hopkins Applied Research Laboratory, Laurel, MD, 1990, 593.
6. Hall, D.L., Lectures in Multisensor Data Fusion, Artech House, Inc., Norwood, MA, 2000.
7. Hall, D.L. and R.J. Linn, Algorithm selection for data fusion systems, in Proc. of the 1987 Tri-Service

Data Fusion Symp., Johns Hopkins Applied Physics Laboratory, Laurel, MD, 1987, 100.
8. Ferran, B., presentation to the U.S. Government, Spring 1999 (available on videotape).
9. Stoll, C., Silicon Snake Oil: Second Thoughts on the Information Highway, Doubleday, New York,

1995.
10. Stoll, C., High Tech Heretic: Why Computers Don’t Belong in the Classroom and Other Reflections

by a Computer Contrarian, Doubleday, New York, 1999.
11. Llinas, J. et al., Studies and analyses of vulnerabilities in aided adversarial decision-making, tech-

nical report, State University of New York at Buffalo, Dept. of Industrial Engineering, February
1997.

12. Hall, D.L and Llinas, J., A challenge for the data fusion community I: research imperatives for
improved processing, in Proc. 7th Nat. Symp. on Sensor Fusion, Albuquerque, NM, 1994.

13. Neal, J.G. and Shapiro, S.C., Intelligent integrated interface technology, in Proc. 1987 Tri-Service
Data Fusion Symp., Johns Hopkins University, Applied Physics Laboratory, Laurel, MD, 1987, 428.

14. Morgan, S.L. and Nauda, A., A user-system interface design tool, in Proc. 1988 Tri-Service Data
Fusion Symp., Johns Hopkins University, Applied Physics Laboratory, Laurel, MD, 1988, 377.

15. Nelson, J.B., Rapid prototyping for intelligence analyst interfaces, in Proc. 1989 Tri-Service Data
Fusion Symp., Johns Hopkins University, Applied Physics Laboratory, Laurel, MD, 1989, 329.

16. Marchak, F.M. and Whitney, D.A., Rapid prototyping in the design of an integrated sonar process-
ing workstation, in Proc. 1991 Joint Service Data Fusion Symp., 1, Johns Hopkins University, Applied
Physics Laboratory, Laurel, MD, 1991, 606.

17. Pagel, K., Lessons learned from HYPRION, JNIDS Hypermedia authoring project, in Proc. Sixth
Joint Service Data Fusion Symp., 1, Johns Hopkins University, Applied Physics Laboratory, Laurel,
MD, 1993, 555.

18. Clifton III, T.E., ENVOY: An analyst’s tool for multiple heterogeneous data source access, in Proc.
Sixth Joint Service Data Fusion Symposium, 1, Johns Hopkins University, Applied Physics Labora-
tory, Laurel, MD, 1993, 565.

19. Hall, D.L. and Wise, J.H., The use of multimedia technology for multisensor data fusion training,
Proc. Sixth Joint Service Data Fusion Symp., 1, Johns Hopkins University, Applied Physics Labora-
tory, Laurel, MD, 1993, 243.

20. Kerr, R. K. et al., TEIA: Tactical environmental information agent, in Proc. Intelligent Ships Symp.
II, The American Society of Naval Engineers Delaware Valley Section, Philadelphia, PA, 1996, 173.

21. Brendle Jr., B. E., Crewman’s associate: interfacing to the digitized battlefield, in Proc. SPIE: Digi-
tization of the Battlefield II, 3080, Orlando, FL, 1997, 195.

22. Steele, A., V. Marzen, and B. Corona, Army Research Laboratory advanced displays and interactive
displays Fedlab technology transitions, in Proc. SPIE: Digitization of the Battlespace IV, 3709,
Orlando, Florida, 1999, 205.

23. Wohl, J.G. et al., Human cognitive performance in ASW data fusion, in Proc. 1987 Tri-Service Data
Fusion Symp., Johns Hopkins University, Applied Physics Laboratory, Laurel, MD, 1987, 465.
©2001 CRC Press LLC



                              
24. Ellis, R.E., Ismaeil, O.M., and Lipsett, M., Design and evaluation of a high-performance haptic
interface, Robotica, 14, 321, 1996.

25. Gemperle, F. et al., Design for wearability, in Proc. Second International Symp. on Wearable Com-
puters, Pittsburgh, PA, 1998, 116.

26. Pinker, S., How the Mind Works, Penguin Books Ltd., London, 1997.
27. Claxton, G., Hare Brain Tortoise Mind: Why Intelligence Increases When You Think Less, The Ecco

Press, Hopewell, NJ, 1997.
28. J. St. B. T. Evans, S. E. Newstead, and R. M. J. Byrne, Human Reasoning: The Psychology of Deduction,

Lawrence Erlbaum Associates, 1993.
29. Rheingold, H., Tools for Thought: The History and Future of Mind-Expanding Technology, 2nd ed.,

MIT Press, Cambridge, MA, 2000.
30. Hall, M.J., R&D test and acceptance plan, SBIR Project N95-171, Report Number A009, Contract

Number N00024-97-C-4172, prepared for the Naval Sea Systems Command, December 1998.
31. CAP-WARE: Computerized Assessment Program, Process Associates, Mansfield, OH, 1987.
32. Hall, M.J., Product drawings and associated lists, SBIR Project N95-171, Report Number A012,

Contract Number N00024-97-C-4172, prepared for the Naval Sea Systems Command, September
1998.

33. Hall, M.J., Adaptive human computer interface (HCI) for improved learning in the electronic
classroom, final report, Phase II SBIR Project N95-171, Contract No. N00024-97-C-4172, NAVSEA,
Arlington, VA, September 1998c.

34. Hall, S.A., An investigation of factors that affect the efficacy of human-computer interaction for
military applications, MS thesis, Aeronautical Science Department, Embry-Riddle University,
December 2000.

35. Hall, D.L. and Garga, A.K., Pitfalls in data fusion (and how to avoid them), in Proc. 2nd Int. Conf.
on Information Fusion (Fusion 99), Sunnyvale, CA, 1999.

36. Hall, D.L., Private communication to M.J. Hall, April 23, 2000.
37. Bailey, D., Hideaway: ongoing experiments in synthesia, Research Initiative Grant (SRIS), Univer-

sity of Maryland, Baltimore, Graduate School, 1992, http://www.research.umbc.edu/~bailey/fil-
mography.htm.

38. Hall, D.L., Hansen, R.J., and Lang, D.C., The negative information problem in mechanical diag-
nostics, Transactions of the ASME, 119, 1997, 370.

39. Piattelli-Palmarini, M., Inevitable Illusions: How Mistakes of Reason Rule over Minds, John Wiley &
Sons, New York, 1994.

40. Dobson, T. and Miller, V. (Contributor), Aikido in Everyday Life: Giving in to Get Your Way, North
Atlantic Books, reprint edition, March 1993.

41. Olshausen, B.A. and Field, D.J., Vision and coding of natural images, American Scientist, 88, 2000,
238.
©2001 CRC Press LLC



                             
20
Assessing the

Performance of
Multisensor

Fusion Processes

20.1 Introduction 
20.2 Test and Evaluation of the Data Fusion Process

Establishing the Context for Evaluation • T&E 
Philosophies • T&E Criteria • Approach to T&E • The 
T&E Process — A Summary

20.3 Tools for Evaluation: Testbeds, Simulations, and 
Standard Data Sets

20.4 Relating Fusion Performance to Military 
Effectiveness — Measures of Merit

20.5 Summary
References

20.1 Introduction

In recent years, numerous prototypical systems have been developed for multisensor data fusion. A paper
by Hall, Linn, and Llinas1 describes over 50 such systems developed for DoD applications even some 10
years ago. Such systems have become ever more sophisticated. Indeed, many of the prototypical systems
summarized by Hall, Linn, and Llinas1 utilize advanced identification techniques such as knowledge-
based or expert systems, Dempster-Shafer interface techniques, adaptive neural networks, and sophisti-
cated tracking algorithms.

While much research is being performed to develop and apply new algorithms and techniques, much
less work has been performed to formalize the techniques for determining how well such methods work
or to compare alternative methods against a common problem. The issues of system performance and
system effectiveness are keys to establishing, first, how well an algorithm, technique, or collection of
techniques performs in a technical sense and, second, the extent to which these techniques, as part of a
system, contribute to the probability of success when that system is employed on an operational mission.
An important point to remember in considering the evaluation of data fusion processes is that those
processes are either a component of a system (if they were designed-in at the beginning) or they are
enhancements to a system (if they have been incorporated with the intention of performance enhance-
ment). Said otherwise, it is not usual that the data fusion processes are “the” system under test; data
fusion processes are said to be designed into systems rather than being systems in their own right. What
is important to understand in this sense is that the data fusion processes contribute a marginal or piecewise

James Llinas
State University of New York
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improvement to the overall system, and if the contribution of the DF process per se wants to be calculated,
it must be done while holding other factors fixed. If the DF processes under examination are enhance-
ments, another important point is that such performance must be evaluated in comparison to an agreed-
to baseline (e.g., without DF capability, or presumably a “lesser” DF capability). More will be said on
these points later.

Another early point to be made is that our discussion here is largely about automated DF processing
(although we will make some comments about human-in-the-loop aspects later), and by and large such
processes are enabled through software. Thus, it should be no surprise that remarks made herein draw
on or are similar to concerns for test and evaluation of complex software processes.

System performance at Level 1, for example, focuses on establishing how well a system of sensors and
data fusion algorithms may be utilized to achieve estimates of or inferences about location, attributes,
and identity of platforms or emitters. Particular measures of performance (MOPs) may characterize a
fusion system by computing one or more of the following:

• Detection probability — probability of detecting entities as a function of range, signal-to-noise
ratio, etc.

• False alarm rate — rate at which noisy or spurious signals are incorrectly identified as valid targets.

• Location estimate accuracy — the accuracy with which the position of an entity is determined.

• Identification probability — probability of correctly identifying an entity as a target.

• Identification range — the range between a sensing system and target at which the probability of
correct identification exceeds an established threshold.

• Time from transmission to detect — time delay between a signal emitted by a target (or by an
active sensor) and the detection by a fusion system.

• Target classification accuracy — ability of a sensor suite and fusion system to correctly identify a
target as a member of a general (or particular) class or category.

These MOPs measure the ability of the fusion process as an information process to transform signal
energy either emitted by or reflected from a target, to infer the location, attributes, or identity of the
target. MOPs are often functions of several dimensional parameters used to quantify, in a single variable,
a measure of operational performance.

Conversely, measures of effectiveness (MOEs) seek to provide a measure of the ability of a fusion
system to assist in completion of an operational mission. MOEs may include

• Target nomination rate — the rate at which the system identifies and nominates targets for
consideration by weapon systems.

• Timeliness of information — timeline of availability of information to support command decisions.

• Warning time — time provided to warn a user of impending danger or enemy activity.

• Target leakage — percent of enemy units or targets that evade detection.

• Countermeasure immunity — ability of a fusion system to avoid degradation by enemy counter-
measures.

At an even higher level, measures of force effectiveness (MOFE) quantify the ability of the total military
force (including the systems having data fusion capabilities) to complete its mission. Typical MOFEs
include rates and ratios of attrition, outcomes of engagement, and functions of these variables. In the
overall mission definition other factors such as cost, size of force, force composition, etc. may also be
included in the MOFE.

This chapter presents both top-down, conceptual and methodological ideas on the test and evaluation
of data fusion processes and systems, describes some of the tools available and needed to support such
evaluations, and discusses the spectrum of measures of merit useful for quantification of evaluation
results.
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20.2 Test and Evaluation of the Data Fusion Process

Although, as has been mentioned above, the DF process is frequently part of a larger system process (i.e.,
DF is often a “subsystem” or “infrastructure” process to a larger whole) and thereby would be subjected
to an organized set of system-level test procedures, this section develops a stand-alone, top-level model
of the test and evaluation (T&E) activity for a general DF process. This characterization is considered
the proper starting point for the subsequent detailed discussions on metrics and evaluation because it
establishes a viewpoint or framework (a context) for those discussions, and also because it challenges
the DF process architect to formulate a global and defendable approach to T&E.

In this discussion, it is important to understand the difference between the terms “test” and “evalua-
tion.” One distinction (according to Webster’s dictionary) is that testing forms a basis for evaluation.
Alternately, testing is a process of conducting trials in order to prove or disprove a hypothesis — here,
a hypothesis regarding the characteristics of a procedure within the DF process. Testing is essentially
laboratory experimentation regarding the active functionality of DF procedures and, ultimately, the
overall process (active meaning during their execution — not statically analyzed).

On the other hand, evaluation takes its definition from its root word: value. Evaluation is thus a process
by which the value of DF procedures is determined. Value is something measured in context; it is because
of this that a context must be established.

The view taken here is that the T&E activities will both be characterized as having the following
components:

• A philosophy that establishes or emphasizes a particular point of view for the tests and/or evalu-
ations that follow. The simplest example of this notion is reflected in the so-called “black box” or
“white box” viewpoints for T&E, from which either external (I/O behaviors) or internal (procedure
execution behaviors) are examined (a similar concern for software processes in general, as noted
above). Another point of view revolves about the research or development goals established for
the program. The philosophy establishes the high-level statement the context mentioned above
and is closely intertwined with the program goals and objectives, as discussed below.

• A set of criteria according to which the quality and correctness of the T&E results or inferences
will be judged.

• A set of measures through which judgments on criteria can be made, and a set of metrics upon
which the measures depend and, importantly, which can be measured during T&E experiments.

• An approach through which tests and/or analyses can be defined and conducted that

• Are consistent with the philosophy, and

• Produce results (measures and metrics) that can be effectively judged against the criteria.

20.2.1 Establishing the Context for Evaluation

Assessments of delivered value for defense systems must be judged in light of system or program goals
and objectives. In the design and development of such systems, many translations of the stated goals and
objectives occur as a result of the systems engineering process, which both analyses (decomposes) the
goals into functional and performance requirements and synthesizes (reassembles) system components
intended to perform in accordance with these requirements. Throughout this process, however, the
program goals and objectives must be kept in view because they establish the context in which value will
be judged.

Context therefore reflects what the program and the DF process or system within it are trying to
achieve — i.e., what the research or developmental goals (the purposes of building the system at hand)
are. Such goals are typically reflected in the program name, such as a “Proof of Concept” program or
“Production Prototype” program. Many recent programs involve “demonstrations” or “experiments” of
some type or other, with these words reflecting in part the nature of such program goals or objectives.
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Several translations must occur for the T&E activities themselves. The first of these is the translation
of goals and objectives into T&E philosophies; i.e., philosophies follow from statements about goals and
objectives. Philosophies primarily establish points of view or perspectives for T&E that are consistent
with, and can be traced to, the goals and objectives: they establish the purpose of investing in the T&E
process. Philosophies also provide guidelines for the development of T&E criteria, for the definition of
meaningful T&E cases and conditions, and, importantly, a sense of a “satisfaction scale” for test results
and value judgments that guides the overall investment of precious resources in the T&E process. That
is, T&E philosophies, while generally stated in nonfinancial terms, do in fact establish economic philos-
ophies for the commitment of funds and resources to the T&E process. In today’s environment (it makes
sense categorically in any case), notions of affordability must be considered for any part of the overall
systems engineering approach and for system development, to include certainly the degree of investment
to be made in T&E functions.

20.2.2 T&E Philosophies

Establishing a philosophy for T&E of a DF process is also tightly coupled to the establishment of what
the DF process boundaries are. In general, it can argued that the T&E of any process within a system
should attempt the longest extrapolation possible in relating process behavior to program goals; i.e., the
evaluation should endeavor to relate process test results to program goals to the extent possible. This
entails first understanding the DF process boundary, and then assessing the degree to which DF process
results can be related to superordinate processes; for defense systems, this means assessing the degree to
which DF results can be related to mission goals. Philosophies aside, certain “acid tests” should always
be conducted:

• Results with and without fusion (e.g., multisensor vs. single sensor or some “best” sensor).

• Results as a function of the number of sensors or sources involved (e.g., single sensor, 2, 3,…,N
sensor results for a common problem).

These last two points are associated with defining some type of baseline against which the candidate
fusion process is being evaluated. Said otherwise, these points address the question, “Fusion as compared
to what?” If it is agreed that data fusion processing provides a marginal benefit, then that gain must be
evaluated in comparison to the “unenhanced” or baseline system. That comparison also provides the
basis for the cost-effectiveness tradeoff in that the relative costs of the baseline and fusion-enhanced
systems can be compared to the relative performance of each.

Other philosophies could be established, however, such as

• Organizational: A philosophy that examines the benefits of DF products accruing to the system-
owning organization and, in turn, subsequent superordinate organizations in the context of
organizational purposes, goals, and objectives (no “platform” or “mission” may be involved; the
benefits may accrue to an organization).

• Economic: A philosophy that is explicitly focused on some sense of economic value of the DF
results (weight, power, volume, etc.) or cost in a larger sense, such as the cost of weapons expended,
etc.

• Informal: The class of philosophies in which DF results are measured against some human results
or expectations.

• Formal: The class of philosophies in which the evaluation is carried out according to appropriate
formal techniques that prove or otherwise rigorously validate the program results or internal
behaviors (e.g., proofs of correctness, formal logic tests. formal evaluations of complexity).

The list is not presented as complete but as representative; further consideration would no doubt
uncover still other perspectives.
©2001 CRC Press LLC



                               
20.2.3 T&E Criteria

Once having espoused one or another of the philosophies, there exists a perspective from which to select
various criteria, which will collectively provide a basis for evaluation. It is important at this step to realize
the full meaning and subsequent relationships impacted by the selection of such criteria.

There should be a functionally complete hierarchy that emanates from each criterion as follows:

• Criterion — a standard, rule, or test upon which a judgment or decision can be made (this is a
formal dictionary definition),

which leads to the definition of

• Measures — the “dimensions” of a criterion, i.e., the factors into which a criterion can be divided

and, finally,

• Metrics — those attributes of the DF process or its parameters or processing results which are
considered easily and straightforwardly quantifiable or able to be defined categorically, which are
relatable to the measures, and which are observable.

Thus, there is, in the most general case, a functional relationship as:

Criterion = fct [(Measurei = fct (Metrici, Metricj…), Measurej = fct (Metrick, Metrici…), etc.]

Each metric, measure, and criterion also has a scale that must be considered. Moreover, the scales are
often incongruent so that some type of normalized figure of merit approach may be necessary in order
to integrate metrics on disparate scales and construct a unified, quantitative parameter for making
judgments.

One reason to establish these relationships is to provide for traceability of the logic applied in the T&E
process. Another rationale, which argues for the establishment of these relationships, is in part derived
from the requirement or desire to estimate, even roughly, predicted system behaviors against which to
compare actual results. Such prediction must occur at the metric level; predicted and actual metrics
subsequently form the basis for comparison and evaluation. The prediction process must be functionally
consistent with this hierarchy. For Level 1 numeric processes, prediction of performance expectations
can often be done, to a degree, on an analytical basis. (It is assumed here that in many T&E frameworks
the “truth” state is known; this is certainly true for simulation-based experimentation but may not be
true during operational tests, in which case comparisons are often done against consensus opinions of
experts.) For Level 2 and 3 processes, which generally employ heuristics and relatively complex lines of
reasoning, the ability to predict the metrics with acceptable accuracy must usually be developed from a
sequence of exploratory experiments. Failure to do so may in fact invalidate the overall approach to the
T&E process because the fundamental traceability requirement being described here would be
confounded.

Representative criteria focused on the DF process per se are listed below for the numerically dominated
Level 1 processes, and the symbolic-oriented Level 2 and 3 processes.

Level 1 Criteria Level 2, 3 Criteria 
• Accuracy • Correctness in reasoning
• Repeatability/consistency • Quality or relevance of decisions/advice/recommendations
• Robustness • Intelligent behavior
• Computational complexity • Adaptability in reasoning (robustness)

Criteria such as computational efficiency, time-critical performance, and adaptability are applicable
to all levels whereas certain criteria reflect either the largely numeric or largely symbolic processes which
distinguish these fusion-processing levels.
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Additional conceptual and philosophical issues regarding what constitutes “goodness” for software of
any type can, more or less, alter the complexity of the T&E issue. For example, there is the issue of
reliability versus trustworthiness. Testing oriented toward measuring reliability is often “classless”; i.e., it
occurs without distinction of the type of failure encountered. Thus, reliability testing often derives an
unweighted likelihood of failure, without defining the class or, perhaps more importantly, a measure of
the severity of the failure. This perspective derives from a philosophy oriented to the unweighted con-
formance of the software with the software specifications, a common practice within the DoD and its
contractors.

It can be asserted, based on the argument that exhaustive path testing is infeasible for complex software,
that trustworthiness of software is a more desirable goal to achieve via the T&E process. Trustworthiness
can be defined as a measure of the software’s likelihood of failing catastrophically. Thus, the trustwor-
thiness characteristic can be described by a function that yields the probability of occurrence for all
significant levels of severe failures. This probabilistic function provides the basis for the estimation of a
confidence interval for trustworthiness. The system designer/developer (or customer) can thus have a
basis for assuring that the level of failures will not, within specified probabilistic limits, exceed certain
levels of severity.

20.2.4 Approach to T&E

The final element of this framework is called the approach element of the T&E process. In this sense,
approach means a set of activities, which are both procedural and analytical, that generates the “measure”
results of interest (via analytical operations on the observed metrics) as well as provides the mechanics
by which decisions are made based on those measures and in relation to the criteria. The approach
consists of two components as described below:

• A procedure, which is a metric-gathering paradigm; it is an experimental procedure.

• An experimental design, which defines (1) the test cases, (2) the standards for evaluation, and
(3) the analytical framework for assessing the results.

Aspects of experimental design include the formal methods of classical, statistical experimental,
design.2 Few if any DF research efforts in the literature have applied this type of formal strategy, presum-
ably as a result of cost limitations. Nevertheless, there are the serious questions of sample size and
confidence intervals for estimates, among others, to deal with in the formulation of any T&E program,
since simple comparisons of mean values, etc. under unstructured test conditions may not have very
much statistical significance in comparison to the formal requirements of a rigorous experimental design.
Such DF efforts should at least recognize the risks associated with such analyses.

This latter point relates to a fundamental viewpoint taken here about the T&E of DF processes: the
DF process can be considered a function that operates on random variables (the noise-corrupted mea-
surements or other uncertain inputs, i.e., those which have a statistical uncertainty) to produce estimates
which are themselves random variables and therefore which have a distribution. Most would agree that
the inputs to the DF process are stochastic in nature (sensor observation models are nearly always based
on statistical models); if this is agreed, then any operation on those random variables produces random
variables. It could be argued that the data fusion processes, separated from the sensor systems (and their
noise effects), are deterministic “probability calculators”; in other words, processes which, given the same
input — the same random variable — produce the same output — the same output random variable.3

In this constrained context, we would certainly want and expect a data fusion algorithm, if no other
internal stochastic aspects are involved, to generate the same output when given a fixed input. It could
therefore be argued that some portion of the T&E process should examine such repeatability. But DeWitt3

also agrees that the proper approach for a “probabilistic predictor” involves stochastic methods such as
those that examine the closeness of distributions. (DeWitt raises some interesting epistemological views
about evaluating such processes, but, as in his report, we also do not wish to “plow new ground in that
area,” although recognizing its importance.) Thus, we argue here for T&E techniques that somehow
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account for and consider the stochastic nature of the DF results when exposed to “appropriately repre-
sentative” input, such as by employment of Monte Carlo-based experiments, analysis of variance methods,
distributional closeness, and statistically designed experiments.

20.2.5 The T&E Process — A Summary

This section has suggested a framework for the definition and discussion of the T&E process for the DF
process and DF-enhanced systems; this framework is summarized in Figure 20.1. Much of the rationale
and many of the issues raised are derived from good systems engineering concepts but are intended to
sensitize DF researchers to the need for formalized T&E methods to quantify or otherwise evaluate the
marginal contributions of the DF process to program/system goals. This formal framework is consistent
with the formal and structured methods for the T&E of C3 systems in general — see, for example
References 4 and 5. Additionally, since fusion processes at Levels 2 and 3 typically involve the application
of knowledge-based systems, further difficulties involving the T&E of such systems or processes can also
complicate the approach to evaluation since, in effect, human reasoning strategies (implemented in
software), not mathematical algorithms, are the subject of the tests. Improved formality of the T&E
process for knowledge-based systems, using a framework similar to that proposed here, is described in
Reference 6. Little, if any, formal T&E work of this type, with statistically qualified results, appears in the
DF literature. As DF procedures, algorithms, and technology mature, the issues raised here will have to
be dealt with, and the development of guidelines and standards for DF process T&E undertaken. The
starting point for such efforts is an integrated view of the T&E domain — the proposed process is one
such view, providing a framework for discussion among DF researchers.

20.3 Tools for Evaluation: Testbeds, Simulations, 
and Standard Data Sets

Part of the overall T&E process just described involves the decision regarding the means for conducting
the evaluation of the DF process at hand. Generally, there is a cost vs. quality/fidelity tradeoff in making
this choice, as is depicted in Figure 20.2.7 Another characterization of the overall spectrum of possible
tools is shown in Table 20.1.

Over the last several years, the defense community has built up a degree of testbed capability for
studying various components of the DF process. In general, these testbeds have been associated with a
particular program and its range of problems, and — except in one or two instances — the testbeds have
permitted parametric-level experimentation but not algorithm-level experimentation. That is, these test-
beds, as software systems, were built from “point” designs for a given application wherein normal control
parameters could be altered to study attendant effects, but these testbeds could not (at least easily) permit
replacement of such components as a tracking algorithm. Recently, some new testbed designs are moving
in this direction. One important consequence of building testbeds that permit algorithm-level test and
replacement is of course that such testbeds provide a consistent basis for system evolution over time, and
in principle such testbeds, in certain cases, could be shared by a community of researcher-developers. In
an era of tight defense research budgets, algorithm-level shareable testbeds, it is suspected and hoped,
will become the norm for the DF community. A snapshot of some representative testbeds and experi-
mental capabilities is shown in Table 20.2.

An inherent difficulty (or at least an issue) in testing data fusion algorithms warrants discussion because
it fundamentally results from the inherent complexity of the DF process: the complexity of the DF process
may make it infeasible or unaffordable to evolve, through experimentation, DF processing strategies that
are optimal for other than Level 1 applications. This issue depends on the philosophy with which one
approaches testbed design. Consider that even in algorithmic-replaceable testbeds, the “test article” (a
term for the algorithm under test) will be tested in the framework of the surrounding algorithms available
from the testbed “library.”  Hence, a tracking algorithm will be tested while using a separate detection
algorithm, a particular strategy for track initiation, etc. Table 20.3 shows some of the testable (replaceable)
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DF functions for the SDI Surveillance Testbed developed during the SDI program. Deciding on the
granularity of the test articles (i.e., the plug-replaceable level of fidelity of algorithms to be tested) is a
significant design decision for a DF testbed designer. Even if the testbed has, for example, multiple
detection algorithms in its inventory, cost constraints will probably not permit combinatorial testing for
optimality. The importance therefore of clearly thinking about and expressing the T&E philosophy, goals,
and objectives, as described in Section 20.2, becomes evident relative to this issue. In many real-world
situations, it is likely therefore that T&E of DF processes will espouse a “satisficing” philosophy, i.e., be
based on developing solutions that are good enough because cost and other practical constraints will
likely prohibit extensive testing of wide varieties of algorithmic combinations.

FIGURE 20.2 Applicability of modeling technique (see Reference 7).

TABLE 20.1 Generic Spectrum of Evaluation Tools

Toolset Characteristics
I Digital Simulations

• Level 1: Engineering models
• Level 2: 1 vs N
• Level 3: M vs N
• Level 4: Organizaitonal Level
• Level 5: Theatre Level
• Numberous DF Process Models

• Relatively high fidelity; explore physics and 1 vs. 1 problem
Explore engagement effects

Engagement models Fidelity decreases with Level
Engagement complexity increases with Level

• Individualized, ad hoc simulations for tracking, ID, detection
Statistical qualification usually feasible

II Hybrid simulations
Man-in-the-loop and/or 
equipment-in-the-loop

Important effects of real humans and equipment; more costly; statistical 
qualification often unaffordable

III Specialized field data 
collection/calibration

Real-world physics, phenomenology; relatively costly; often used to 
verify/validate digital simulations; good for phenomenological modeling but 
not for behavior modeling; statistically controlled in most cases

IV Test range data collection Real-world physics, humans, equipment; relatively costly; can do limited 
engagement effects studies; some behavioral effected modeled; statistically 
uncontrolled

V Military exercises Real-world physics, humans, equipment, and tactics/doctrine; costly; data 
difficult to collect/analyze; extended engagement effects studies at least 
feasible; extended behavioral effects modeled; statistically uncontrolled

VI Combat operations For example, Desert Storm; actual combat effects with real adversaries; data 
difficult to collect/analyze; high fidelity enemy behavioral data; statistically 
uncontrolled
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Standardized challenge problems and associated data sets are another goal that the DF community
should be seeking. To this date, very little calibrated and simultaneously collected data on targets of
interest with known truth conditions exist. Some contractors have invested in the collection of such data,
but those data often become proprietary. Alternatives to this situation include artificially synthesizing
multisensor data from individual sensor data collected under nonstandard conditions (not easy to do in
a convincing manner), or employing high-fidelity sensor and phenomenological simulators.

TABLE 20.2 Representative Multisensor Data Fusion Testbeds

Testbed General Purpose Characteristics

(1) Multisensor, Multitarget 
Data Fusion Testbed 
(Rome Lab, Air Force, 
Ref. 8)

Compare the performance of various 
“Level 1” fusion algorithms 
(association, tracking, identification).

Three major components: Scenario generator, 
platform simulator, data analysis and display. 
Monte Carlo capability.

(2) Advanced Sensor 
Exploitation Testbed 
(“ASET”) (Rome Lab, 
Air Force, Ref. 9)

Large testbed to study “Level 2” fusion 
algorithms primarily for order of 
battle estimation.

Six major components: Scenario generator, 
Sensor Simulators, C3I Simulator, Fusion 
Element, Timing and Control, Evaluation, 
Nominal man-in-the-loop capability, 
Parametric flexibility.

(3) National Testbed 
(SDIO, Ref. 10)

Evaluate candidate fusion concepts for 
SDI/“Level 1” tracking and 
discrimination functions. Study 
effects of inter-element 
communication links.

Large-scale, multi-Cray (plus other large 
computers) type environment to simulate 
broad range of functions in SDI problem. 
Purposeful man-in-the-loop capability.

(4) Surveillance Testbed 
(SDIO, Ref. 11)

High fidelity background and sensor 
(radar, optical) simulator for broad 
range of SDI “Level 1” fusion 
algorithm testing.

Algorithm-level test and replacement design. 
“Framework” and “Driver” concept which 
separates simulation and analysis activities.

(5) NATO Data Fusion 
Demonstrator 
(NATO, Ref. 12)

Initial configuration is to study “Level 
1-2-3” fusion processes for airland 
battle (Initially Army) applications.

“Client-Server” design concept to permit 
algorithm-level test and replacement.

(6) All-Source Systems 
evaluation Testbed 
(“ASSET”) (Univ. of Va., 
Ref. 13)

To evaluate data association and 
correlation algorithms for ASAS-type 
airland battle applications.

Algorithm-level test and replacement deisgn; 
standardized metrics; connected to Army 
C2SW.

(7) AWACS Fusion 
Evaluation Testbed 
(“FET”) (Mitre, Ref. 14)

Provide analysis and evaluation 
support of multisensor integration 
(MSI) algorithms for AWACS Level 1 
applications.

Algorithm-level test and replacement design; 
permits live and simulate data as driver; 
standardized MOE’s; part of Air Defense C2 
(ADC2) Lab.

TABLE 20.3 SDI Surveillance Testbed: Testable Level 1 Fusion Functions

Test Article Function

Bulk Filter Reject measurement data from nonlethal objects
Track Initialization Data association and filters for starting tracks from measurement data only
Track Continuation Data association and filters to improve existing track information using new 

measurement data
Differential Initialization Data association and filters for starting new tracks using measurement data and 

existing track information
Cluster Track Data association and filters that maintain group information for multiple objects
Track Fusion Data association and filters for combining track information from multiple sources
Track File Editing Reject improbable measurements from a sequence of measurements
Feature Calculation Calculate discrimination features from measurement data
Classification Provide an estimate of an object’s lethality
Discrimination Data Fusion Combine discrimination information from multiple sources
Radar Search and Acquisition Search of a handover volume
Sensor Tasking/Radar Scheduling Scheduling of sensor resources
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Some attempts have been made to collect such data for community-wide application. One of the
earliest of such activities was the 1987 DARPA HI-CAMP experiments that collected pulse Doppler radar
and long wavelength infrared data on fairly large U.S. aircraft platforms under a limited set of observation
conditions. The Army (Night Vision Laboratory) has also collected data (ground-based sensors, ground
targets) for community use under a 1989 program called Multisensor Fusion Demonstration, which
collected carefully ground-truthed and calibrated multisensor data for DF community use. More recently,
DARPA, in combination with the Air Force Research Laboratory Sensors Directorate, made available a
broad set of synthetic aperture radar (SAR) data for ground targets under a program known as MSTAR.8

Nevertheless, the availability of such data to support algorithm development and DF system prototypes
is extremely limited and represents a serious detriment and cost driver to the DF community.

However, similar to the DF process and its algorithms, the tool sets and data sets for supporting DF
research and development are just beginning to mature. Modern designs of true testbeds permitting
flexible algorithm-level test-and-replace capability for scientific experimentation are beginning to appear
and are at least usable within certain subsets of the DF community; it would be encouraging to at least
see plans to share such facilities on a broader basis as short-term, prioritized program needs are satisfied —
i.e., in the long term, these facilities should enter a national inventory. The need for data sets from real
sensors and targets, even though such sensor-target pairs may be representative for only a variety of
applications, is a more urgent need of the community. Programs whose focus is on algorithm development
are having to incur redundant costs of data collection for algorithm demonstrations with real data when,
in many cases, representative real data would suffice. Importantly, the availability of such data sets
provides a natural framework for comparative analyses when various techniques are applied against a
common or baseline problem as represented by the data. Comparative analyses set the foundation for
developing deeper understanding of what methods work where, for what reasons, and for what cost.

20.4 Relating Fusion Performance to Military 
Effectiveness — Measures of Merit

Because sensors and fusion processes are contributors to improved information accuracy, timeliness, and
content, a major objective of many fusion analyses is to determine the effect of these contributions to
military effectiveness. This effectiveness must be quantified, and numerous quantifiable measures of merit
can be envisioned; for conventional warfare such measures might be engagement outcomes, exchange
ratios (the ratio of blue-red targets killed), total targets serviced, and so on as previously mentioned. The
ability to relate data fusion performance to military effectiveness is difficult because of the many factors
that relate improved information to improved combat effectiveness and the uncertainty in modeling
them. These factors include

• Cumulative effects of measurement errors that result in targeting errors

• Relations between marginal improvements in data and improvements in human decision making

• Effects of improved threat assessment on survivability of own forces.

These factors and the hierarchy of relationships between data fusion performance and military effec-
tiveness must be properly understood in order for researchers to develop measures and models that relate
them. Said otherwise, there is a large conceptual distance between the value of improved information
quality, as provided by data fusion techniques, and its effects on military effectiveness; this large distance
is what makes such evaluations difficult. The Military Operations Research Society9 has recommended
a hierarchy of measures that relate performance characteristics of C3 systems (including fusion) to
military effectiveness (see Table 20.4).

Dimensional parameters are the typical properties or characteristics that directly define the elements
of the data fusion system elements, such as sensors, processors, communication channels, etc. (These are
equivalent to the “metrics” defined in Section 20.2.) They directly describe the behavior or structure of
the system and should be considered to be typical measurable specification values (bandwidth, bit-error
rates, physical dimensions, etc.).
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Measures of performance (MOPS) are measures that describe the important behavioral attributes of
the system. MOPs are often functions of several dimensional parameters to quantify, in a single variable,
a significant measure of operational performance. Intercept and detection probabilities, for example, are
important MOPS that are functions of several dimensional parameters of both the sensors and detailed
signal processing operations, data fusion processes, and the characteristics of the targets being detected.

Measures of effectiveness (MOEs) gauge the degree to which a system or militarily significant function
was successfully performed. Typical examples, as shown in Table 20.4, are target leakage and target
nomination rate.

Measures of force effectiveness (MOFEs) are the highest-level measures that quantify the ability of the
total military force (including the data fusion system) to complete its mission. Typical MOFEs include
rates and ratios of attrition, outcome of engagements, and functions of these variables. To evaluate the
overall mission, factors other than outcome of the conflict (e.g., cost, size of force, composition of force)
may also be included in the MOFE.

Figure 20.3 depicts the relationship between a set of surveillance measures for a two-sensor system,
showing the typical functions that relate lower-level dimensional parameters upward to higher level
measures. In this example, sensor coverages (spatial and frequency), received signal-to-noise ratios, and
detection thresholds define sensor-specific detection and false alarm rate MOPs labeled “Measures of
Detection Processing Performance (MODPP)” on the figure.

TABLE 20.4 Four Categories of Measures of Merit9

Measure Definition Typical Examples

Measure of Force 
Effectiveness (MOFE)

Measure of how a C3 system and 
the force (sensors, weapons, 
C3 system) of which it is a part 
perform military missions

Outcome of battle
Cost of system
Survivability
Attrition rate
Exchange ratio
Weapons on targets

Measures of Effectiveness 
(MOE)

Measure of how a C3 system 
performs its functions within an 
operational environment

Target nomination rate
Timeliness of information
Accuracy of information
Warning time
Target leakage
Countermeasure immunity
Communications survivability

Measures of 
Performance (MOP)

Measures closely related to 
dimensional parameters (both 
physical and structural) but 
measure attributes of behavior

Detection probability
False alarm rate
Location estimate accuracy
Identification probability
Identification range
Time from detect to transmission
Communication time delay
Sensor spatial coverage
Target classification accuracy

Dimensional Parameters The properties or characteristics 
inherent in the physical entities 
whose values determine system 
behavior and the structure 
under question, even when not 
operating

Signal-to-noise ratio
Operations per second
Operations per second
Aperture dimensions
Bit error rates
Resolution
Sample rates
Antijamming margins
Cost
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Alternately, the highest level measures are those that relate PD (or other detection-specific parameters)
to mission effectiveness. Some representative metrics are shown at the top of Figure 20.3, such as PKill,
Cost/Kill, Miss Distance, etc. These metrics could be developed using various computer models to
simulate end-game activities, while driving the detection processes with actual sensor data. As mentioned

FIGURE 20.3 Hierarchical relationship among fusion measures.
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earlier, there is a large “conceptual distance” between the lowest-level and highest-level measures. Forming
the computations linking one to the other requires extensive analyses, data and parameters, simulation
tools, etc., collectively requiring possibly significant investments.

The next level down the hierarchy represents the viewpoint of studying surveillance site effectiveness;
these measures are labeled “MOSSE” in Figure 20.3. Note, too, that at this level there is a human role
that can enter the evaluation; of frequent concern is the workload level to which an operator is subjected.
That is, human factors-related measures enter most analyses that range over this evaluation space, adding
yet other metrics and measures into the evaluation process; these are not elaborated on here, but they
are recognized as important and possibly critical.

Lower levels measure the effectiveness of employing multiple sensors in generating target information
(labeled “MOMSE-measures” in Figure 20.3), the effectiveness of data combining or fusing per se (labeled
“MODSFP-measures”), and the effectiveness of sensor-specific detection processes (labeled “MODPP-
measures”), as mentioned above.

In studying the literature on surveillance and detection processes, it is interesting to see analogous
varying perspectives for evaluation. Table 20.5 shows a summary of some of the works examined, where
a hierarchical progression can be seen, and compares favorably with the hierarchy of Figure 20.3; the
correspondence is shown in the “Level in Hierarchy” column in Table 20.5.

Metrics a and b in Table 20.5 reflect a surveillance system-level viewpoint; these two metrics are clearly
dependent on detection process performance, and such interactive effects could be studied.10 Track purity,
metric c, a concept coined by Mori, et al.,11 assesses the percentage of correctly associated measurements
in a given track, and so it evaluates the association/tracking boundary (MOSSE/MOMSE of Figure 20.3).
As commented in the table, this metric is not explicitly dependent on detection performance but the
setting of association gates (and thus the average innovations standard deviation, which depends on PD),
so a track purity-to-detection process connection is clear.

Metrics d and e, the system operating characteristic (SOC) and tracker operating characteristic (TOC),
developed by Bar-Shalom and others,12,13 form quantitative bases for connecting track initiation, SOC,
and tracker performance, TOC, with PD, and thus detection threshold strategy performance (the
MOSSE/MOMSE boundary in Figure 20.3). SOC evaluates a composite track initiation logic, whereas
TOC evaluates the state error covariance, each as connected to, or a function of, single-look PD.

Metric f is presented by Kurniawan et al.14 as a means to formulate optimum energy management or
pulse management strategies for radar sensors. The work develops a semiempirical expression for the
mean square error (MSE) as a function of controllable parameters (including the detection threshold),
thereby establishing a framework for optimum control in the sense of MSE. Nagarajan and others15

formulate a similar but more formally developed basis for sensor parameter control, employing several
metrics. Relationships between the metrics and PD /threshold levels are established in both cases, so the
performance of the detection strategy can be related to, among other things, MSE for the tracker process
in a fashion not unlike the TOC approach. Note that these metrics evaluate the interrelationships across
two hierarchical levels, relating MOSSE to MODFSP.

Metric h, developed by Hashlamoun and Varshney16 for a distributed binary decision fusion system,
is based on developing expressions for the Min (probability of error, POE) at the global (fusion) level.
Employing the Blackwell theorem, this work then formulates expressions for optimum decision making
(detection threshold setting) by relating Min (POE) to various statistical distance metrics (distance
between H0, H1 conditional densities), which directly affect the detection process.

The lowest levels of metrics, as mentioned above, are those intimately related to the detection process.
These are the standard probabilistic measures PD and Pfa and, for problems involving clutter backgrounds,
the metrics that comprise the set known as “clutter filter performance measures.” This latter group has
a standard set of IEEE definitions and has been the subject of study of the Surface Radar Group of the
AES Radar Panel.17 The set comprises

• MTI improvement factor

• Signal-to-clutter ratio improvement
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• Subclutter visibility

• Interclutter visibility

• Filter mismatch loss

• Clutter visibility factor

In the context of the DF process, it has been those researchers working at Level 1 who have been most
active in the definition and nomination of measures and metrics for evaluation. In particular, the tracking
research community has offered numerous measures for evaluation of both tracking, association, and
assignment functions.18-22 In the U.S., the Automatic Target Recognizer Working Group (ATRWG),
involved with Level 1 classification processing, has also been active in recommending standards for various
measures.23

TABLE 20.5 Alternative Concepts and Metrics for Evaluation

Evaluation Point of View Metric Name Level in Hierarchy Calculation Remarks Ref.

(a) Tracking Accuracy/
Reliability/Survivability

Avg. Track 
(Target) 
“Exposure”

MOSSE Average time during 
which N Surv. 
system signals are 
on target

Simulation-
based, scenario-
dependent 
analysis

10

(b) Site and System 
Computational 
Workload

Signal Loading MOSSE Compute sampling 
distribution for 
received signal 
density at (site, 
system)

Simulation-based 
scenario-
dependent 
analysis

10

(c) Track Continuity Track Purity MOSSE/MOMSE Percent correctly 
associated msmts. 
in a given track; fct 
(avg. innov. std. 
dev., target density)

Deterministic 
target dynamics

11

(d) Composite (M/N) 
Track Init. Logic

System Operating 
Characteristic 
(SOC)

MOSSE/MOMSE Compute
~
PDt, target 

track detection 
probability over 
several scans

Markov chain 
model, includes 
effects of FA

12

(e) Steady-State RMS 
Position Error

Tracker 
Operating 
Characteristic 
(TOC)

MOSSE/MOMSE Compute 
numerically 
steady-state

~
P 

(PD, PF)

PDA tracker 
(Poisson clutter)

13

(f) “Energy management” 
for optimum target 
tracking (optimal pulse 
sharing, sampling/
integration periods)

Steady-State MSE MOSSE/MODFSP Compute MSE as fct 
(parameters)

Empirical 
formulation, 
square-law 
detector, 
Swerling II 
(Single Sensor)

14

(g) Optimum Threshold 
Management (track 
init, delete, 
continuation)

“Nagarajan” MOSSE/MODFSP Various Metrics CFAR assumed 
(Single Sensor)

15

(h) Detection Error 
Control (threshold 
control)

Min Prob. (Error) 
(global)

MODPP Relate MinPOE to 
interhypothesis 
distance matric

Distributed 
(binary) 
decision fusion; 
Blackwell 
Theorem

16
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The challenges in defining measures to have a reasonably complete set across the DF process clearly
lie in the Level 2–Level 3 areas. Exactly how to assess the “goodness” of a situation or threat assessment
is admittedly difficult but certainly not intractable; for example, analogous concepts employed for assess-
ing the quality of images come to mind as possible candidates. A complicating factor for evaluation at
these levels is that the “final” determinations of situations or threats typically involve human data fusion —
i.e., final interpretation of the automated data fusion products by a human analyst. The human is therefore
the final interpreter and effecter/decision maker in many data fusion systems, and understanding the
interrelationship of MOEs will require understanding a group of “transfer functions” which characterize
the translation of information about situation and threat elements into eventual engagement outcomes;
one depiction of these interrelationships is shown in Figure 20.4. This figure begins, at the top, with the
final product of the automated data fusion process; all algorithmic and symbolic processing associated
with fusion has occurred by this point. That product is communicated to a human through an HCI for
both Levels 2 and 3 as shown. Given this cognitive interpretation (of the displayed automated results),
the human must “transfer” this interpretation, via considerations of

FIGURE 20.4 Interrelationships between human data fusion and system and mission effectiveness.
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• Decision elements associated with decisions for the given mission (transfer function 1), and

• Considerations of the effectiveness of the C3 system, and communications coordination aspects,
to influence the power distribution of his forces on the battlefield (transfer functions 2 and 3).

The implemented decisions (via the C3 and communications systems) result in revisions to force
deployment, which then (stochastically) yield an engagement outcome, and the consequent force-effec-
tiveness measures and results. Thus, if all the aspects of human decision making are to be formally
accounted for, the conceptual distance mentioned earlier is extended even further, as described in
Figure 20.4.

There is yet one more, and important, aspect to think about in all this: ideally, the data fusion process
is implemented as a dynamic (i.e., runtime dynamic) adaptive feedback process — that is, we have Level
4, process refinement, at work during runtime, in some way. Such adaptation could involve adaptive
sensor management, enabling some intelligent logic to dynamically improve the quality of data input,
or it could involve adaptive algorithm management, enabling a logic that switches algorithms in some
optimal or near-optimal way. Hence, the overall fusion process is not fixed during runtime execution,
so that temporal effects need to be considered. Control theorists talk about evaluating alternative control
trajectories when discussing evaluation of specific control laws that enable some type of adaptive logic
or equations. Data fusion process analysts will therefore have to think in a similar way and evaluate
performance and effectiveness as a function of time. This hints at an evaluation approach that focuses
on different phases of a mission and the prioritized objectives at each time-phase point or region.
Combined with the stochastic aspects of fusion process evaluation, this temporal dependency only further
complicates the formulation of a reasonable approach.

20.5 Summary

Developing an understanding of the relationships among these various measures is a difficult problem,
labeled here the “interconnectivity of MOEs” problem. The toolkit/testbed needed to generate, compare,
and evaluate such measures can be quite broad in scope and itself represent a development challenge as
described in Section 20.3.

Motivated in part by the need for continuing maturation of the DF process and the amalgam of
techniques employed, and in part by expected reductions in defense research budgets, the data fusion
community must consider strategies for the sharing of resources for research and development. Part of
the spectrum of such resources includes standardized (i.e., with approved models) testbed environments,
which will offer an economical basis not only for testing of DF techniques and algorithms, but, impor-
tantly, a means to achieve optimality or at least properly satisfying performance of candidate methods
under test. However, an important adjunct to shareable testbeds is the standardization of both the overall
approach to evaluation and the family of measures involved. This chapter has attempted to offer some
ideas for discussion on several of these very important matters.
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21.1 Introduction

Over the past two decades, an enormous amount of Department of Defense (DoD) funding has been
applied to the problem of data fusion systems, and a large number of prototype systems have been
implemented.1 The data fusion community has developed a data fusion process model,2 a data fusion
lexicon,3 and engineering guidelines for system development.4 Although a significant amount of progress
has been made,5,6 much work remains to be done. Hall and Garga,7 for example, identified a number of
pitfalls or problem areas in implementing data fusion systems. Hall and Llinas8 described some short-
comings in the use of data fusion systems to support individual soldiers, and M. J. Hall, S. A. Hall, and
Tate9 addressed issues related to the effectiveness of human-computer interfaces for data fusion systems.

This chapter summarizes recent progress in multisensor data fusion research and identifies areas in
which additional research is needed. In addition, it describes some issues — or dirty secrets — in the
current practice of data fusion systems.

*This chapter is based on a paper by David L. Hall and Alan N. Steinberg, Dirty secrets of multisensor data fusion,
Proceedings of the 2000 MSS National Symposium on Sensor Data Fusion, Vol. 1, pp. 1–16, June 2000, San Antonio, TX.

David L. Hall
The Pennsylvania State University

Alan N. Steinberg
Utah State University
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21.2 The JDL Data Fusion Process Model

The Joint Directors of Laboratories (JDL) Data Fusion Working Group was established in 1986 to assist
in coordinating DoD activities in data fusion and to improve communications among different DoD
research and development groups. Led by Frank White NOSC, the JDL working group performed a
number of activities, including (1) development of a data fusion process model,2 (2) creation of a lexicon
for data fusion, 3 (3) development of engineering guidelines for building data fusion systems,4 and (4)
organization and sponsorship of the Tri-Service Data Fusion Conference from 1987 to 1992. The JDL
Data Fusion Working Group has continued to support community efforts in data fusion, leading to the
annual National Symposium on Sensor Data Fusion and the initiation of a Fusion Information Analysis
Center (FUSIAC).10

The JDL Data Fusion Process Model2,6,11 was introduced in Chapter 1 and was described in detail in
Chapter 2. A top-level view of the model is illustrated in Figure 21.1, and a summary of the processes is
shown in Table 21.1.

The JDL model is a two-layer hierarchical model that identifies fusion processes, processing functions,
and processing techniques to accomplish the primary data fusion functions. The model was intended to
facilitate communications among data fusion researchers and implementation engineers, rather than to
serve as a prescription for implementing a fusion system or an exhaustive enumeration of fusion functions
and techniques. The model has evolved since its original exposition to the data fusion community.
Steinberg and Bowman,12 for example, have recommended the inclusion of a new Level 0 processing to
account for processing such as predetection fusion and coherent signal processing of multisensor data.
In addition, they suggest renaming and re-interpreting the Level 2 and Level 3 processes to focus on
understanding the external world environment (rather than a military-oriented situation and threat
focus). Morefield13 has suggested that the distinction between Level 2 and Level 3 is artificial, and that
these processes should be considered a single process. Bowman has suggested that the JDL model can be
detrimental to communications if systems engineers focus on the model rather than take a systematic
architecture analysis and decomposition approach. Many of these comments have merit. However, this
chapter utilizes the JDL model as a middle ground for describing the current state of practice and
limitations.

21.3 Current Practices and Limitations in Data Fusion

A summary of the current state and limitations of data fusion is provided in Table 21.2. It is an update
of a similar figure originally introduced by Hall and Llinas in 19935 and subsequently updated by them
in 1997.6 For each of the key components of the JDL process, the figure summarizes the current practices
and limitations.

FIGURE 21.1 Top-level view of the JDL data fusion process model.
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21.3.1 Level 1: Object Refinement

Level 1 processing seeks to combine information about the location and attributes of entities (such as
tanks or aircraft) to detect, locate, characterize, track, and identify the entities. Level 1 processing involves
data assignment/correlation, estimation of the state of an entity, and an estimate of the entity’s identity.
The typical data fusion system partitions the object refinement problem into three basic components:
(1) data assignment/correlation, (2) estimate of a state vector (e.g., for target tracking), and (3) estimation
of a target’s identity.

Object refinement is relatively easy when there are relatively few, widely separated targets moving in
predictable paths. Target identity classification can generally be performed when there are observable
target attributes (e.g., size, shape, and spectral signature) that can be uniquely mapped to target class or
identity. This requires either an accurate model to link attributes with target identity, or a very large set
of training data to train a pattern classification algorithm.

However, when these observing conditions are violated, the problem becomes much more challenging.
Closely spaced, rapidly maneuvering targets, for example, are difficult to track because sensor measure-
ments cannot be easily associated to the appropriate targets. Furthermore, because acceleration cannot
be observed directly, maneuvering targets cause a potential loss of track, because the future position of
the targets cannot accurately be predicted. Complex observing environments, involving multipath signal
propagation clutter, dispersion, or other effects on signal-to-noise, can cause difficulties in data associ-

TABLE 21.1 Summary of JDL Processes and Functions

Process Components Process Description Functions

Sources of information Local and remote sensors accessible to the data 
fusion system

Information from reference systems and human 
inputs

Local and distributed sensors
External data sources
Human inputs

HCI Provides an interface to allow a human to interact 
with the fusion system

Graphical displays
Natural language processing

Source preprocessing Processing of individual sensor data to extract 
information, improve signal to noise, and prepare 
the data for subsequent fusion processing

Signal and image processing
Canonical transformations
Feature extraction and data modeling

Level 1 processing: 
Object refinement

Association, correlation, and combination of 
information to detect, characterize, locate, track, 
and identify objects (e.g., tanks, aircraft, emitters)

Data alignment
Correlation
Position, kinematic, attribute estimation
Object identity estimation 

Level 2 processing: 
Situation refinement

Development of a description of the current 
relationships among objects and events in the 
context of their environment

Object aggregation
Event and activity interpretation
Context-based reasoning

Level 3 processing: 
Threat refinement

Projection of the current situation into the future to 
draw inferences about enemy threats, friendly and 
enemy vulnerabilities, and opportunities for 
operations

Aggregate force estimation
Intent prediction
Multiperspective analysis
Temporal projections

Level 4 processing: 
Process refinement

A metaprocess that seeks to optimize the ongoing 
data fusion process (e.g., to improve accuracy of 
inferences, utilization of communication and 
computer resources)

Performance evaluation
Process control
Source requirement determination
Mission management

Data management Provide access to and management of dynamic data 
including sensor data, target state vectors, 
environmental information, doctrine, and physical 
models

Data storage and retrieval
Data mining
Archiving
Compression
Relational queries and updates
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ation and state estimation (because often no accurate model is available that can link the value of a target
state vector to predicted observations). Combining data from sensors that are codependent (i.e., for
which the sensor data are not statistically independent) is also difficult. Finally, complex targets without
distinguishing attributes are difficult to classify or identify.

Current Level 1 processing is dominated by estimation techniques such as Kalman filters,11 multiple-
hypothesis tracking (MHT),22 joint probabilistic data association (JPDA) filters,23 or related techniques.
The problem of identity declaration is generally performed using a feature-based, pattern recognition
approach.11,24 This involves representing the sensor data using extracted features (e.g., spectral peaks in

TABLE 21.2 Summary of Current State of Multisensor Data Fusion

JDL Process Current Practices Limitations and Challenges

Level 1: Object 
refinement

Sensor preprocessing using standard signal and 
image processing methods

Explicit separation of correlation and estimation 
problem

Multiple target tracking using MHT,22 JPDA,23 etc.
Use of ad hoc maneuver models
Object ID dominated by feature-based methods24

Pattern recognition using ANN25

Emerging guidelines for selection of correlation 
algorithms4,26

Promising work by Poore,14 Mahler,27 Barlow et al.28

Dense target environments
Rapidly maneuvering targets
Complex signal propagation
Codependent sensor observations
Background clutter
Context-based reasoning
Integration of identity and kinematic data
Lack of available ANN training data (for target 

identification)25

No true fusion of image and nonimage data 
(at the data level)

Level 2: Situation 
refinement

Numerous prototype systems1

Dominance of rule-based KBS
Variations include blackboard systems,29 logical 

templating,30 and case-based reasoning31

Emerging use of fuzzy logic32 and agent-based 
systems33

Very limited operational systems
No experience in scaling up prototypes to 

operational systems
Very limited cognitive models9

Perfunctory test and evaluation against toy 
problems1

No proven technique for knowledge 
engineering11

Level 3: Threat 
refinement

Same as Level 2 processing
Limited advisory status
Limited deployment experience
Dominated by ad hoc methods
Doctrine-specific, fragile implementations

Same as Level 2
Difficult to quantify intent34

Models require established enemy doctrine
Difficult to model rapidly evolving situations

Level 4: Process 
refinement

Robust methods for single-sensor systems
Formulations based on operations research11

Limited context-based reasoning
Focus on measures of performance (MOP) versus 

measures of effectiveness (MOE)35

Difficult to incorporate mission constraints
Scaling problem when many sensors (10N) and 

adaptive systems37

Difficult to optimally use noncommensurate 
sensors

Very difficult to link human information 
needs to sensor control37

HCI HCI dominated by the technology of the week
Focus on ergonomic versus cognitive-based design
Numerous graphics-based displays and systems38,39

Advanced, 3-D full immersion HCI available40 and 
haptic interfaces41,42

Very little research has been performed to 
understand how human analysts’ process 
data and make accurate inferences

Creative HCI is needed to adapt to individual 
users and to provide mitigation of known 
cognitive biases and illusions9,43 

Database 
management

Extensive use of 4th and 5th generation COTS DBMS
DBMS individually optimized for text, signal data, 

imagery, or symbolic information (but not the 
intersection of any two)

DBMS requires extensive tailoring for individual 
data fusion systems

Need a generalized DBMS capability for text, 
signal data, images, and symbolic 
information

Need a software solution to multilevel security
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a radar cross-section observation) and mapping the feature vector to a location in feature-space that can
be uniquely identified with a target class or identity. Typical techniques include artificial neural networks
(ANN) or cluster algorithms.24 This identification process works well when there is a unique map between
the observed features and the target class but requires a significant amount of training data. However,
the methods fail when training data is lacking25 or there is ambiguity in the feature-to-target class
mapping. Emerging methods include both model-based techniques and syntactic methods that develop
descriptions of a target in terms of its elementary components.

Poore14 and Mahler27 developed two promising methods for Level 1 fusion. Poore revisited the approach
of separating the problems of object correlation, target tracking, and identity estimation. Poore relinks
these problems into a single optimization problem with multiple constraints (e.g., find the set of state
vectors — including the association between observations and tracks — that best fits the observational
data). While this larger problem is even more difficult than the original subproblems, Poore has developed
approximation methods to improve the computational feasibility. By contrast, Mahler developed appli-
cations of random set theory to address the joint problem of data association and state estimation. In
addition, Barlow, Stone, and Finn28 used a unified method based on Bayesian inference to simultaneously
estimate target state, identity, and association of the data. Finally, an extensive survey of methods for
data correlation has been performed by Llinas et al.26

21.3.2 Level 2: Situation Refinement

Level 2 processing seeks to understand the entities’ relationships with other entities and with their
environment. This process involves recognition of patterns, context-based reasoning, and understanding
of spatial, temporal, causal, and functional relationships. Although this is a difficult problem, numerous
prototype systems have been developed for DoD applications.1 The predominant methods involve knowl-
edge-based systems utilizing production rules,11 fuzzy logic,32 logical templates,30 or case-based reason-
ing.23 Emerging systems are beginning to utilize agent-based approaches31 and blackboard architectures.29

While this is a very active area of research, the results to date are relatively disappointing. Very few
operational systems have been deployed. Many of the prototype systems have addressed limited or toy
problems with little or no test and evaluation. There is little experience on how to scale these small
prototype systems to larger scale operational systems. A key problem for Level 2 and Level 3 processing
is the lack of cognitive models for performing situation assessment. Current cognitive models are pathetic.
Researchers simply do not know how to model the reasoning process to perform a Gestalt-type of situation
assessment. Numerous ad hoc methods (e.g., rules, frames, fuzzy logic, decision trees, scripts, and tem-
plates) have been applied. One difficulty pertains to how knowledge engineering can be performed to
identify key information, interrelationships, and associated uncertainty information. Again, Mahler’s
random set theory27 provides a basis for a unified calculus of uncertainty. However, the application to
realistic problems is far from routine. A general implementation approach has not yet been developed.

Improvements to Level 2 processing likely will emerge from an improved understanding of how to
select and use existing methods for knowledge representation (e.g., rules, frames, scripts, and fuzzy logic),
coupled with a better understanding of the strengths and weaknesses of human cognition for these types
of tasks. One example would be the incorporation of negative information in reasoning. Negative
information involves reasoning about information that has not been observed but would be expected
for a hypothesized situation. The use of negative reasoning appears to be a key element of successful
diagnosis and inference in many areas, such as medical diagnosis or diagnosis of mechanical faults.15

Another promising area for research involves the development of aids that are capable of compensating
for known human cognitive biases and shortcomings (e.g., confirmation bias in which humans seek
information that confirms a proposed hypothesis, rather than evidence that refutes the hypothesis).9,35

Research by Wohl16 and his associates focused on the development of tools for assisting antisubmarine
warfare (ASW) analysts. The results suggest that some fairly simple cognitive aids could be developed
that are capable of significantly improving the data fusion/analysis process.
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21.3.3 Level 3: Threat Refinement

Level 3 processing involves interpreting a situation from a consequences point of view — assessing the
meaning of the situation in terms of potential opportunities and threats. Alternative hypotheses are
generated and projected into the future to determine the likely courses of action for engagements, and
the consequences of those courses of action. The state of Level 3 processing is similar to that of Level 2.
A number of prototype systems have been developed, but few have been deployed. The main focus of
Level 3 processing has been the application of automated reasoning systems and techniques from the
discipline of artificial intelligence. A special challenge for Level 3 processing is the determination of enemy
intent. Conceptually, the determination of an enemy’s intent involves a mind-reading exercise to deter-
mine what the enemy will do, under what circumstances, and with what motivation. When a well-known
enemy doctrine exists, this problem can be modeled using a variety of techniques. However, in modern
conflict situations, this doctrine is often unknown. Hence, automating the process of threat refinement
is challenging. Another problem related to threat refinement is the role of adaptive intelligence opponents.
How can engagements be modeled in which an opponent adapts to the actions of a protagonist? Much
research has been performed in game theory to address this issue, but limited success has been realized
in applying this work to realistic tactical situations.

21.3.4 Level 4: Process Refinement

The Level 4 process is a metaprocess — a process that monitors the overall data fusion process and seeks
to optimize the data fusion within operational and physical constraints.11,37 Functions within Level 4
processing include generation of sensor look angles (to indicate where to point the sensors to track targets),
computation of measures of performance (MOP) and measures of effectiveness (MOE), determination
of information needs and sources, and process optimization. Level 4 processing is relatively mature for
single sensor environments. For one sensor or a few commensurate sensors, Level 4 processing is a routine
problem of multiobjective optimization. This area has been researched extensively for applications such
as industrial process control.

The Level 4 process becomes more challenging under a number of circumstances. These include use
of a large number of sensors, use of codependent sensors, utilization of noncommensurate sensors (e.g.,
measuring very diverse physical phenomena on greatly different time scales), and use of sensors in a
geographically distributed environment. Modern data fusion systems often involve geographically dis-
tributed collection and processing with adaptive systems that self-adjust for system failures and other
problems.36 Under these circumstances, developing global MOE and MOP models and optimizing overall
system performance are difficult. Another challenge involves modeling sensor performance in realistic
data collection environments. Finally, the most effective Level 4 process would link the information needs
of a human decision maker to the sensor and source tasking in real time.

Much research remains to be performed in the Level 4 area. However, the improved intelligence and
agility of modern sensors make this an area in which major improvements can be obtained with relatively
modest effort. Current research by Nixon,17 which uses economic theory to model resource utilization,
is very intriguing.

21.3.5 Human-Computer Interface (HCI)

The human-computer interface (HCI) area in data fusion appears to be technology-rich and theory-
poor. M. J. Hall, S. A. Hall, and Tate9 point out the rapidly evolving HCI technology, which includes full-
immersion, three-dimensional displays,40 haptic interfaces,41,42 three-dimensional sound, and other types
of interfaces for accessing and analyzing data. However, they note that these interfaces reflect the tech-
nology du jour and have not been applied with a solid theoretical understanding of how humans access
and respond to information displays. Many of the existing HCI for data fusion systems involve geograph-
ical information system (GIS) type displays and data access.38,39 Although such displays are useful, no
hard evidence exists to prove or disprove that they truly provide increased understanding of information
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from a data fusion system. Feran has argued that the HCI for intelligence systems can actually act as a
bottleneck that limits the ability of a user to access and analyze data. Other studies have investigated the
issue of trust in decision support systems (Llinas et al.19), and how the HCI affects the extent to which
a user believes and trusts the results.

21.3.6 Database Management

Database management is important for data fusion systems for several reasons. First, the majority of
software that must be developed for a data fusion system is database management software — even if a
sophisticated commercial, off-the-shelf database management system (DBMS) package is used.11 Data
required for fusion systems range from sensor data (e.g., scalars, vectors, time series, and images) to
information input by human users, environmental data, textual information, and knowledge such as
doctrine. The database management for a data fusion system must simultaneously accept data at the rate
provided by the contributing sensors and allow algorithms and users to rapidly retrieve large amounts
of data using general Boolean queries. The combination of the complexity of the data sets and the need
for real-time data storage and retrieval complicates database management for data fusion. In addition,
the data associated with fusion systems often involve multiple levels of security — a challenge to do via
a software approach. For all of these reasons, extensive special software must be implemented for data
fusion systems.

21.4 Research Needs

A number of research areas could prove valuable to the data fusion community and improve the ability
to develop robust systems. A summary of these research areas is shown in Figure 21.2 and described below.

FIGURE 21.2 Technology needs in data fusion.
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21.4.1 Data Sources

New sensor types and sources are always sought for data fusion applications. The rapid evolution of
microprocessors and nanofabrication techniques provides a basis for rapid evolution of sensors. New
smart, self-calibrating and wide-band sensors would benefit many DoD applications. In addition, accu-
rate, physics-based models of sensor performance could be used to improve the downstream data fusion
processing.

21.4.2 Source Preprocessing

Recent advances in digital signal processing and image processing have been based on new algorithms and
improvements in computer processing speeds and data storage. Advances in source preprocessing likely
will result from the application of new wide-band digital signal processing, which incorporates coherent
processing (of multisensor data) and automated algorithm selection and utilization. For target classification
and identification, the ability to perform automated feature extraction would be particularly useful.

21.4.3 Level 1: Object Refinement

Improvements in Level 1 processing are needed in several areas. These include data-level fusion of
noncommensurate sensor data (e.g., fusion of image and nonimage data) using physics-based target and
sensor models, and improved target identification using hybrid methods that incorporate target models,
human-analyst information, and implicit information learned from the sensor data. Areas that are lacking
include a better understanding of multiple methods of representing uncertainty and the means for
selecting appropriate ways to represent information. One approach that could be fruitful involves inves-
tigating techniques that operate in a hierarchical manner at varying levels of fidelity (e.g., tracking of
individual targets, target groups, and general target populations or classification methods that provide
varying levels of target identity on demand).

21.4.4 Level 2: Situation Refinement and Level 3: Threat Refinement

Much work is needed in the Level 2 and Level 3 areas. Basic cognitive models for making inferences and
decisions about a situation and threat are needed. A unified and practical theory (or calculus) of
uncertainty is needed. Automated methods for selecting appropriate knowledge representation techniques
are needed. New methods and tools are required to perform knowledge representation for automated
reasoning. Techniques must be developed that are more robust and less fragile than current methods.
Attempting both a drill-down approach and a thin covering approach could be helpful. In the drill-down
method, investigators could select a very well-bounded problem in situation assessment and attempt to
completely solve it using a combination of physical models, multiple automated reasoning methods, and
ad hoc algorithms (i.e., drill down to obtain a complete solution to a narrow problem). In the thin
covering approach, a broader problem would be selected and addressed, and a lesser level of fidelity
would be possible than with the drill-down approach. The results of these approaches could provide
valuable insight as to the optimal manner for approaching general Level 2 and Level 3 problems.

21.4.5 Human-Computer Interface (HCI)

The rapid evolution of HCI technologies should continue to be applied to data fusion systems. However,
much more creativity is needed to improve the link between the fusion system and the human. The
suggestions by M. J. Hall, S. A. Hall, and Tate9 (e.g., deliberate synesthesia, time compression/expansion,
negative reasoning enhancement, focus/de-focus, pattern morphing, and new uncertainty representation
methods) provide an excellent starting point for new HCI research. In addition, more research is needed
to understand human cognitive deficiencies and information access preferences. Based on this research,
new tools should be developed to enhance the link between a data fusion system and effective human
cognition. The focus of this research should be human-centered fusion.
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21.4.6 Database Management

New DBMS models are needed for data fusion systems. The practice of combining existing techniques
for representing images, signals, text, knowledge, and other data has been only mildly successful when
applied to data fusion. New models should be developed that begin with the requirement for an integrated
representation scheme. Software-based solutions are also required for multilevel security. Ongoing
research in areas such as distributed data storage and retrieval, data compression, natural-language
interfaces to DBMS, improved access and storage schemes, data mining, and related areas should be
monitored and applied to the data fusion problem. This is an area in which the commercial market (e.g.,
for electronic commerce and business) will provide an impetus for significant improvement.

21.4.7 Level 4: Processing

Improvements in Level 4 processing could have a profound impact on the effectiveness of data fusion
systems. The rapid advances in sensors and the ability to utilize hundreds or thousands of sensors provide
both an opportunity and challenge for data fusion systems. New multiobjective, multiconstraint optimiza-
tion methods are needed to effectively use these sensors. Special areas of research include the effective use
of highly noncommensurate sensors (particularly those that operate on a greatly different time scale). The
link between sensors and the human user must be strengthened to provide an information-based optimi-
zation. Research is needed to develop general measures of performance and measures of effectiveness.

21.4.8 Infrastructure Needs

To support the evolving research, a strong infrastructure is required for the data fusion community. The
data fusion information access center (FUSIAC) could play a strong role in this infrastructure. Key
elements that are needed include (1) a set of standard algorithms and software, (2) one or more test beds
to provide a gold standard for algorithm evaluation, (3) warehouses of models for sensors and the
environment, and (4) a communication forum. Of particular value would be a universal test case for
evaluating algorithms. The image processing community, for example, has used a standard picture for
evaluating and comparing algorithms. They have also made effective use of a visual programming toolkit
(Khoros), funded by the Defense Advanced Research Projects Agency (DARPA), to perform rapid proto-
typing of image processing techniques. Such a toolkit would benefit the data fusion community.

21.5 Pitfalls in Data Fusion

After reviewing the state of data fusion technology and recommendations for future research, a practi-
tioner might ask, “So what do I do tomorrow to implement a system? What problems and challenges
must be addressed?” Several issues and resources are worth noting. First, Steinberg and Bowman4 provide
an overview of the general systems engineering approach for implementing data fusion systems. Engi-
neering guidelines for selecting correlation algorithms are described by Llinas et al.26 Several texts, such
as those of Hall11 and Waltz and Llinas,35 provide detailed information on data fusion algorithms. Antony20

describes issues in DBMS, and other texts focus on specific applications to target tracking (e.g.,
Blackman22) and signal processing techniques.21

Hall and Garga37 have discussed the problem of implementing data fusion systems and identified a
number of problems or pitfalls. These include the following dicta, which must be considered and
addressed in order to implement an effective data fusion system.

• There is no substitute for a good sensor. No amount of data fusion can substitute for a single,
accurate sensor that measures the phenomena that you want to observe.

• Downstream processing cannot make up for errors (or failures) in upstream processing. Data fusion
processing cannot correct for errors in processing (or lack of preprocessing) of individual sensor
data.
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• Sensor fusion can result in poor performance if incorrect information about sensor performance is
used. A common failure in data fusion is to characterize the sensor performance in an ad hoc or
convenient way. Failure to accurately model sensor performance will result in corruption of the
fused results.

• There is no such thing as a magic or golden data fusion algorithm. Despite claims to the contrary,
there is no perfect algorithm that is optimal under all conditions. Often, real applications do not
meet the underlying assumptions required by data fusion algorithms (e.g., available prior proba-
bilities or statistically independent sources).

• There will never be enough training data. In general, there will never be sufficient training data to
effectively support pattern recognition algorithms used for automatic target recognition or IFFN.
Hence, hybrid methods must be used (e.g., model-based methods, syntax representations, or
combinations of methods).

• Quantifying the value of a data fusion system is difficult. A challenge in data fusion systems is to
quantify the utility of the system at a mission level. Although measures of performance can be
obtained for sensors or processing algorithms, measures of mission effectiveness are difficult to
define.35

• Fusion is not a static process. The data fusion process is not static; it is an iterative dynamic process
that seeks to refine continually the estimates about an observed situation or threat environment.

21.6 Summary

The technology of multisensor data fusion has made major strides in the past two decades. Extensive
research has been performed on data fusion algorithms, distributed architectures, automated reasoning
techniques, and new resource allocation and optimization techniques. There is an emerging consensus
in the data fusion community concerning basic terminology and engineering guidelines. Recent activities
to initiate a data fusion information analysis center (FUSIAC) promise to accelerate the development of
data fusion technology by increasing the communications among researchers and system implementers.
However, despite these rapid advances, much research is needed to overcome current limitations and
challenges in data fusion.
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22.1 Introduction

During the past two decades, extensive research and development on multisensor data fusion has been
performed for the Department of Defense (DoD). By the early 1990s, an extensive set of fusion systems
had been reported for a variety of applications ranging from automated target recognition (ATR) and
identification-friend-foe-neutral (IFFN) systems to systems for battlefield surveillance. Hall, Linn, and
Llinas1 provided a description of 54 such systems and an analysis of the types of fusion processing, the
applications, the algorithms, and the level of maturity of the reported systems. Subsequent to that survey,
Llinas and Antony2 described 13 data fusion systems that performed automated reasoning (e.g., for
situation assessment) using the blackboard reasoning architecture. By the mid-1990s, extensive commer-
cial off-the-shelf (COTS) software was becoming available for different data fusion techniques and for
decision support. Hall and Linn3 described a survey of COTS software for data fusion and Buede4,5

performed surveys and analyses of COTS software for decision support.
This chapter presents a new survey of data fusion systems for DoD applications. The survey was part

of an extensive effort to identify and assess DoD fusion systems and activities. This chapter summarizes
79 systems and provides an assessment of the types of fusion processing performed and their operational
status.

22.2 Recent Survey of Data Fusion Activities

A survey of DoD operational, prototype, and planned data fusion activities was performed in 1999–2000.
The data fusion activities that were surveyed had disparate missions and provided a broad range of fusion
capabilities. They represented all military services. The survey emphasized the level of fusion provided
(according to the JDL model described in Chapter 2 of this book) and the capability to fuse different
types of intelligence data. A summary of the survey results is provided here.

In the survey, a data fusion system was considered to be more than a mathematical algorithm used to
automatically achieve the levels of data fusion described in Chapter 2. In military applications, data fusion
is frequently accomplished by a combination of the mathematical algorithms (or “fusion engines”) and

Mary L. Nichols
The Aerospace Corporation
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display capabilities with which a human interacts. Hence, the activities range from relatively small-scale
algorithms to large-scale Command, Control, Intelligence, Surveillance, and Reconnaissance (C4I) sys-
tems, which use specific algorithms — such as trackers — in conjunction with a sophisticated display of
data from multiple intelligence (Multi-INT) data types.

The objective in identifying the unique data fusion activities was to isolate the unique capabilities,
both mathematical and display-related, of the activity. A master list was initiated, and the researcher
applied expert judgment in eliminating activities for any of several reasons: (1) obsolete systems,
(2) systems that were subsumed by other systems, (3) systems that did not provide unique fusion capa-
bilities, (4) systems that were only data fusion enablers, and (5) systems that emphasized visualization.

Table 22.1 lists the resulting 79 unique DoD activities with their primary sponsoring service or
organization. The list is intended to be a representative, rather than exhaustive, survey of all extant DoD
fusion activities. The research and development activities, as well as the prototypical systems, are shown
in bold type.

22.3 Assessment of System Capabilities

A primary goal of the survey was to understand the JDL fusion capabilities of the current operational
fusion activities, as well as the emphasis of research and development activities. Recognizing that the
activities often provided more than one level of fusion, all of the activities were assigned one or more
levels. For instance, a typical operational fusion activity, such as the Global Command and Control
System (GCCS), provides specialized algorithms for tracking to achieve Level 1 (object refinement) in
addition to specific display capabilities aimed at providing the necessary information from which the
analyst can draw Level 2 (situation refinement) inferences.

The capabilities were then counted for both the operational and non-operational activities, and a
histogram was generated (see Figure 22.1). Note that Level 2 fusion was divided into two components,
given that many operational military data fusion systems are said to facilitate Level 2 fusion through the
display fusion of various INTs from which an analyst can draw Level 2 inferences.

The majority of operational data fusion activities provide Level 1 fusion. These activities include
weapon systems, such as the Advanced Tomahawk Weapons Control System (ATWCS), and trackers,
such as the Processor Independent Correlation and Exploitation System (PICES). A less common oper-
ational capability is algorithmic Level 2 fusion, which is provided by some operational systems such as
the All Source Analysis System (ASAS).

The majority of the operational systems that are geared toward intelligence analysis have emerged
from a basic algorithm to track entities of interest. In most cases, the trackers have operated from signals
intelligence, or SIGINT. Gradually, these systems evolved by adding a display not only to resolve ambi-
guities in the tracking, but also to bring in additional INTs. As a result, most of the systems provide an
underlying algorithmic fusion, in addition to a display that accommodates multi-INT data.

Algorithmic fusion to achieve Level 3 fusion is uncommon among the operational systems, and none
of the operational systems provide Level 4 fusion. These capabilities, however, are being developed within
the research and development (R&D) community and do exist in prototypical systems. In addition, R&D
efforts are also focusing on Level 1 fusion, but generally with new intelligence data types or new
combinations of intelligence data types.

The activities were also analyzed for their capability to fuse data algorithmically from multiple intelligence
types. The use of more than one intelligence data type is becoming increasingly critical to solving difficult
military problems. Multiple intelligence data types collected on a single entity can increase the dimension-
ality of that entity. Common intelligence data types that are in use today include SIGINT, infrared intelli-
gence (IR), imagery intelligence (IMINT), moving target indicator (MTI), measurement and signatures
intelligence (MASINT), and a combination of two or more of the above or multi-INT data types.

The pie charts in Figure 22.2 illustrate the capabilities to fuse data algorithmically from multi-INT
data types for the surveyed activities. There are two pie charts (operational and non-operational) for
each of four JDL levels of fusion. The pie chart in the upper left corner of the figure is interpreted as
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TABLE 22.1 Recent Survey of DoD Data Fusion Activities

Activity 
Acronym Data Fusion Activity

Primary 
Service

ABI AWACS Broadcast Intelligence USAF
ADSI Air Defense Systems Integrator Joint
AEGIS AEGIS Weapon System USN
AEPDS Advanced Electronic Processing and Dissemination System USA
AMSTE Affordable Moving Surface Target Engagement DARPA
ANSFP Artificial Neural System Fusion Prototype USAF
ARTDF Automated Real-Time Data Fusion USMC
ASAS All Source Analysis System USA
ATW Advanced Tactical Workstation USN
ATWCS Automated Tomahawk Weapons Control System USN USN
CAMDMUU Connectionist Approach to Multi Attribute Decision Making under Uncertainty USAF
CEC Cooperative Engagement Capability USN
CEE Conditional Events and Entropy USN
CV Constant Vision USAF
DADFA Dynamic Adaptation of Data Fusion Algorithms USAF
DADS Deployable Autonomous Distributed System USN
DDB Dynamic Database DARPA
E2C MCU E2C Mission Computer Upgrade USN
EASF Enhanced All Source Fusion USAF
EAT Enhanced Analytical Tools USAF
ECS Shield Engagement Coordination System USAF
ENT Enhancements to NEAT Templates USAF
ESAI Expanded Situation Assessment & Insertion USAF
FAST Forward Area Support Terminal USA
GALE-Lite Generic Area Limitation Environment Lite Joint
GCCS Global Command and Control System Joint
GCCS A Global Command and Control System Army USA
GCCS I3 Global Command and Control System Integrated Imagery and Intelligence Joint 
GCCS M Global Command and Control System Maritime USN
GDFS Graphical Display Fusion System USN
GISRC Global Intelligence, Surveillance, and Reconnaissance Capability USN
Hercules  Joint
IAS Intelligence Analysis System USMC
IDAS Interactive Defense Avionics System USAF
IFAMP Intelligent Fusion and Asset Management Processor USAF 
ISA Intelligence Situation Analyst USAF
ISAT Integrated Situation Awareness and Targeting USA 
IT Information Trustworthiness USA 
ITAP Intelligent Threat Assessment Processor USAF 
JIVA Joint Intelligence Virtual Architecture Joint
JSTARS CGS Joint Surveillance Target Attack Radar Subsystem Common Ground Station Joint
JTAGS Joint Tactical Ground Station Joint
KBS4TCT Knowledge-Based Support for Time Critical Targets USAF 
LOCE Linked Operational Intelligence Centers Europe Coalition
LSS Littoral Surveillance System USN
MDBI&U Multiple Database Integration & Update USAF 
MITT Mobile Integrated Tactical Terminal USA
Moonlight Moonlight Coalition
MSCS Multiple Source Correlation System USAF
MSFE Multisource Fusion Engine USAF
MSI [E2C] Multisensor Integration USN
MSTS Multisource Tactical System USAF
NCIF Network Centric Information Fusion USAF
NEAT Nodal Exploitation and Analysis Tool USAF 
OBATS Off-Board Augmented Theater Surveillance USAF
OED Ocean Surveillance Information System Evolutionary Development USN
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follows. All systems that provide algorithmic fusion to achieve Level 1 fusion (object refinement) were
tallied according to the intelligence data type(s) used to achieve the fusion. The chart shows that the
majority of operational systems use only SIGINT to achieve Level 1 fusion. By contrast, the pie chart in
the upper right corner shows, for non-operational systems, a greater variety in the usage of other
intelligence data types.

Other conclusions from this figure are that Level 2 fusion, which is achieved by operational systems,
is primarily achieved using multi-INT data according to the pie chart in the lower left column, second
row. All non-operational activities use multi-INT data to achieve Level 2 fusion. Few operational systems
automatically integrate multi-INT data. Most data fusion systems display multi-INT data — sometimes
on a common screen. Selected R&D systems are tackling the algorithmic integration of multi-INT data.

TABLE 22.1 (continued) Recent Survey of DoD Data Fusion Activities

Activity 
Acronym Data Fusion Activity

Primary 
Service

Patriot Patriot Weapon System Joint
PICES Processor Independent Correlation Exploitation System USN
QIFS Quarterback Information Fusion System USAF 
SAFETI Situation Awareness From Enhanced Threat Information USAF
SCTT SAR Contextual Target Tracking USA 
SMF SIGINT/MTI Fusion USA 
Story Teller EP3 Story Teller USN
TADMUS Tactical Decision Making under Stress USN
TAS Timeline Analysis System USAF 
TBMCS Theater Battle Management Core Systems USAF
TCAC Technical Control and Analysis Center USMC
TCR Terrain Contextual Reasoning USA 
TDPS Tactical Data Processing Suites USAF
TEAMS Tactical EA-6B Mission Support USN
TERPES Tactical Electronic Reconnaissance Processing Evaluation System USMC
TES Tactical Exploitation System USA 
TIPOFF TIBS Integrated Processor and Online Fusion Function Joint
TMBR Truth Maintenance Belief Revision USAF
TRAIT Tactical Registration of Airborne Imagery for Targeting USAF
TSA Theater Situation Awareness USAF
UGBADFT Unified Generalized Bayesian Adaptive Data Fusion Techniques USAF
VF Visual Fusion USA
WECM Warfighter Electronic Collection and Mapping USA 

FIGURE 22.1 Comparison of fusion capabilities.
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A common belief is that the realm of military data fusion is marked by numerous duplicative activities,
which seems to imply a lack of organization and coordination. In reality, the 79 activities in this study
reflect various relationships and migration plans. A close examination of the pedigree, current relation-
ships, and progeny demonstrates some commonality and a greater degree of coordination than is often
apparent. In addition, the DoD has established several migration systems to which existing fusion systems
must evolve. Examples of these are the Global Command and Control System (GCCS) and the distributed
common ground station (DCGS).

Specific operational intelligence systems have been identified as migration systems; others are viewed as
legacy systems that will eventually be subsumed by a migration system. For nonintelligence systems, the fusion
capabilities are frequently highly specialized and tailored to the overall mission of the system, such as weapon
cueing. In addition, the non-operational systems are generally highly specialized in that they are developing
specific technologies, but they also frequently leverage other operational and non-operational activities.

Table 22.2 shows the division of these activities into several categories:

1. Migration systems that are converging to a common baseline to facilitate interoperability with
other systems

2. Legacy systems that will be subsumed by a migration system
3. Government-sponsored research and development and prototypes
4. Highly specialized capabilities that are not duplicated by any other system

The research and development activities, as well as the prototypical systems, are shown in boldface type.
In conclusion, the recent survey of DoD data fusion activities provides a snapshot of current and

emerging fusion capabilities in terms of their level of fusion and their usage of various types of intelligence
data. The survey also reflects a greater degree of coordination among military data fusion activities than
was recognized by previous surveys.

FIGURE 22.2 Algorithmic fusion by intelligence data type.
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TABLE 22.2 Status of Data Fusion Activities

Activity 
Acronym Data Fusion Activity

Migration 
System

Legacy
System

R&D /
Prototype

Specialized 
Functions 

and Others

ABI AWACS Broadcast Intelligence X
ADSI Air Defense Systems Integrator X
AEGIS AEGIS Weapon System X
AEPDS Advanced Electronic Processing and Dissemination 

System 
X

AMSTE Affordable Moving Surface Target Engagement X
ANSFP Artificial Neural System Fusion Prototype X
ARTDF Automated Real Time Data Fusion X
ASAS All Source Analysis System X
ASF Adaptive Sensor Fusion X
ATW Advanced Tactical Workstation X
ATWCS Automated Tomahawk Weapons Control System 

USN
X

CAMDMUU Connectionist Approach to Multi Attribute 
Decision Making under Uncertainty

X

CEC Cooperative Engagement Capability X
CEE Conditional Events and Entropy X
CV Constant Vision X
DADFA Dynamic Adaptation of Data Fusion Algorithms X
DADS Deployable Autonomous Distributed System X
DDB Dynamic Database X
E2C MCU E2C Mission Computer Upgrade X
EASF Enhanced All Source Fusion X
EAT Enhanced Analytical Tools X
ECS Shield Engagement Coordination System X
ENT Enhancements to NEAT Templates X
ESAI Expanded Situation Assessment and Insertion X
FAST Forward Area Support Terminal X
GALE-Lite Generic Area Limitation Environment Lite X
GCCS Global Command and Control System X
GCCS A Global Command and Control System Army X
GCCS I3 Global Command and Control System Integrated 

Imagery and Intelligence
X

GCCS M Global Command and Control System Maritime X
GDFS Graphical Display Fusion System X
GISRC Global Intelligence, Surveillance, and 

Reconnaissance Capability 
X

Hercules  X
IAS Intelligence Analysis System X
IDAS Interactive Defense Avionics System X
IFAMP Intelligent Fusion and Asset Management Processor X
ISA Intelligence Situation Analyst X
ISAT Integrated Situation Awareness and Targeting X
IT Information Trustworthiness X
ITAP Intelligent Threat Assessment Processor X
JIVA Joint Intelligence Virtual Architecture X
JSTARS CGS Joint Surveillance Target Attack Radar Subsystem 

Common Ground Station
X

JTAGS Joint Tactical Ground Station X
KBS4TCT Knowledge-Based Support for Time Critical Targets X
LOCE Linked Operational Intelligence Centers Europe X
LSS Littoral Surveillance System X
MDBI&U Multiple Database Integration and Update X
MITT Mobile Integrated Tactical Terminal X
Moonlight  X
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TABLE 22.2 (continued) Status of Data Fusion Activities

Activity 
Acronym Data Fusion Activity

Migration 
System

Legacy
System

R&D /
Prototype

Specialized 
Functions 

and Others

MSCS Multiple Source Correlation System X
MSFE Multisource Fusion Engine X
MSI [E2C] Multisensor Integration X
MSTS Multisource Tactical System X
NCIF Network Centric Information Fusion X
NEAT Nodal Exploitation and Analysis Tool X
OBATS Off-Board Augmented Theater Surveillance X
OED Ocean Surveillance Information System 

Evolutionary Development 
X

Patriot Patriot Weapon System X
PICES Processor Independent Correlation Exploitation 

System 
X

QIFS Quarterback Information Fusion System X
SAFETI Situation Awareness From Enhanced Threat 

Information 
X

SCTT SAR Contextual Target Tracking X
SMF SIGINT/MTI Fusion X
Story Teller EP3 Story Teller X
TADMUS Tactical Decision Making under Stress X
TAS Timeline Analysis System
TBMCS Theater Battle Management Core Systems X
TCAC Technical Control and Analysis Center X
TCR Terrain Contextual Reasoning X
TDPS Tactical Data Processing Suites X
TEAMS Tactical EA-6B Mission Support X
TERPES Tactical Electronic Reconnaissance Processing 

Evaluation System 
X

TES Tactical Exploitation System X
TIPOFF TIBS Integrated Processor and Online Fusion 

Function 
X

TMBR Truth Maintenance Belief Revision X
TRAIT Tactical Registration of Airborne Imagery for 

Targeting
X

TSA Theater Situation Awareness X
UGBADFT Unified Generalized Bayesian Adaptive Data Fusion 

Techniques 
X

VF Visual Fusion X
WECM Warfighter Electronic Collection and Mapping X
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23.1 Introduction

Condition-based maintenance (CBM) is a philosophy of performing maintenance on a machine or system
only when there is objective evidence of need or impending failure. By contrast, time-based or use-based
maintenance involves performing periodic maintenance after specified periods of time or hours of
operation. CBM has the potential to decrease life-cycle maintenance costs (by reducing unnecessary
maintenance actions), increase operational readiness, and improve safety.

Implementation of condition-based maintenance involves predictive diagnostics (i.e., diagnosing the
current state or health of a machine and predicting time to failure based on an assumed model of
anticipated use). CBM and predictive diagnostics depend on multisensor data — such as vibration,
temperature, pressure, and presence of oil debris — which must be effectively fused to determine
machinery health. Indeed, Hansen et al. suggested that predictive diagnostics involves many of the same
functions and challenges demonstrated in more traditional Department of Defense (DoD) applications
of data fusion (e.g., signal processing, pattern recognition, estimation, and automated reasoning).1 This
chapter demonstrates the potential for technology transfer from the study of CBM to DoD fusion
applications.

Carl S. Byington
The Pennsylvania State University

Amulya K. Garga
The Pennsylvania State University
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23.1.1 Condition-Based Maintenance Motivation

CBM is an emerging concept enabled by the evolution of key technologies, including improvements in
sensors, microprocessors, digital signal processing, simulation modeling, multisensor data fusion, and
automated reasoning. CBM involves monitoring the health or status of a component or system and
performing maintenance based on that observed health and some predicted remaining useful life (RUL).2-5

This predictive maintenance philosophy contrasts with earlier ideologies, such as corrective maintenance —
in which action is taken after a component or system fails — and preventive maintenance — which is based
on event or time milestones. Each involves a cost tradeoff. Corrective maintenance incurs low maintenance
cost (minimal preventative actions), but high performance costs caused by operational failures. Conversely,
preventative maintenance produces low operational costs, but greater maintenance department costs.
Moreover, the application of statistical safe-life methods (which are common with preventative mainte-
nance) usually leads to very conservative estimates of the probability of failure. The result is the additional
hidden cost associated with disposing of components that still retain significant remaining useful life.

Another important consideration in most applications is the operational availability (a metric that is
popular in military applications) or equipment effectiveness (more popular in industrial applications).
Figure 23.1 illustrates regions of high total cost when overly corrective or overly preventive maintenance
dominate. These regions also provide a lower total availability of the equipment. On the corrective side,
equipment neglect typically leads to more operational failures during which time the equipment is
unavailable. On the preventive side, the equipment is typically unavailable because it is being maintained
much of the time. An additional concern that affects availability and cost in this region is the greater
likelihood of maintenance-induced failures.

The development of better maintenance practices is driven by the desire to reduce the risk of cata-
strophic failures, minimize maintenance costs, maximize system availability, and increase platform reli-
ability. These goals are desirable from the application arenas of aircraft, ships, and tanks to industrial
manufacturing of all types. Moreover, given that maintenance is a key cost driver in military and
commercial applications, it is an important area in which to focus research and development efforts. At
nuclear power plants, for example, the operations and maintenance portion of the direct operating costs
(DOC) grew by more than 120 percent between 1981 and 1991 — a level more than twice as great as
the fuel cost component.6

A more explicit cost savings can be seen in Figure 23.2 derived from an Electric Power Research Institute
study to estimate the costs associated with different maintenance practices in the utility industry. The
first three columns were taken directly from the study and the fourth is estimated from some unpublished

FIGURE 23.1 CBM provides the best range of operational availability or equipment effectiveness.
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cost studies. Clearly, predictive practices provide cost benefit. The estimated 50 percent additional cost
savings derived from predictive condition monitoring to automated CBM is manifested by the manpower
cost focused on data collection/analysis efforts and cost avoidances associated with continuous monitor-
ing and fault prediction.7

Such cost savings have motivated the development of CBM systems; furthermore, substantially more
benefit can be realized by automating a number of the functions to achieve improved screening and
robustness. This knowledge has driven CBM research and development efforts.

23.2 Aspects of a CBM System

CBM uses sensor systems to diagnose emerging equipment problems and to predict how long equipment
can effectively serve its operational purpose. The sensors collect and evaluate real-time data using signal
processing algorithms. These algorithms correlate the unique signals to their causes — for example,
vibrational sideband energy created by developing gear-tooth wear. The system alerts maintenance
personnel to the problem, enabling maintenance activities to be scheduled and performed before oper-
ational effectiveness is compromised.

The key to effectively implementing CBM is the ability to detect, classify, and predict the evolution of
a failure mechanism with sufficient robustness — and at a low enough cost — to use that information
as a basis to plan maintenance for mission- or safety-critical systems. “Mission critical” refers to those
activities that, if interrupted, would prohibit the organization from meeting its primary objectives (e.g.,
completion and delivery of 2500 control panels to meet an OEM’s assembly schedule). Safety critical
functions must remain operational to ensure the safety of humans (e.g., airline passengers).

Thus, a CBM system must be capable of

• Detecting the start of a failure evolution,

• Classifying the failure evolution,

• Predicting remaining useful life with a high degree of certainty,

• Recommending a remedial action to the operator,

• Taking the indicated action through the control system,

• Aiding the technician in making the repair,

• Providing feedback for the design process.

These activities represent a closed-loop process with several levels of feedback, which differentiates CBM
from preventive or time-directed maintenance. In a preventive maintenance system, time between overhaul

FIGURE 23.2 Moving toward condition monitoring and the optimal level of maintenance provided dramatic cost
savings in the electric industry.
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(TBO) is set at design, based on failure mode effects, criticality analyses (FMECA), and experience with
like machines’ mortality statistics. The general concept of a CBM system is shown in Figure 23.3.

23.3 The Diagnosis Problem

Multisensor data fusion has been recognized as an enabling technology for both military and nonmilitary
applications. However, improved diagnosis and increased performance do not result automatically from
increased data collection. The data must be contextually filtered to extract information that is relevant
to the task at hand. Another key requirement that justifies the use of data fusion is low false alarms. In
general, there is a tradeoff between missed detections and false alarms, which is greatly influenced by the
mission or operation profile. If a diagnostic system produces excessive false alarms, personnel will likely
ignore it, resulting in an unacceptably high number of missed detections. However, presently data fusion
is rarely employed in monitoring systems, and, when it is used, it is usually an afterthought. Data fusion
can most readily be employed at the feature or decision levels.

23.3.1 Feature-Level Fusion

Diagnosis is most commonly performed as classification using feature-based techniques.9 Machinery data
are processed to extract features that can be used to identify specific failure modes. Discriminant trans-
formations are often utilized to map the data characteristic of different failure mode effects into distinct
regions in the feature subspace. Multisensor systems frequently use this approach because each sensor
may contribute a unique set of features with varying degrees of correlation with the failure to be

FIGURE 23.3 The success of CBM systems depends on: (1) The ability to design or use robust sensors for measuring
relevant phenomena, (2) real-time processing of the sensor data to extract useful information (e.g., features or data
characteristics) in a noisy environment, and to detect parametric changes that could indicate impending failure
conditions, (3) fusion of multisensor data to obtain improved information (beyond what is available from a single
sensor), (4) micro- and macro-level models that predict the temporal evolution of failure phenomena, and
(5) automated approximate reasoning capable of interpreting the results of the sensor measurements, processed data,
and model prediction in the context of an operational environment.8
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diagnosed. These features, when combined, provide a better estimate of the object’s identity. Examples
of this approach will be illustrated in the applications section.

23.3.2 Decision-Level Fusion

Following the classification stage, decision-level fusion can be used to fuse identity. Several decision-level
fusion techniques exist, including voting, weighted decision, and Bayesian inference.10 Other techniques,
such as Dempster-Shafer’s method11,12 and generalized evidential processing theory,13 are described in
this text and in other publications.14,15

23.3.2.1 Voting

Voting, as a decision-level fusion method, is the simplest approach to fusing the outputs from multiple
estimates or predictions by emulating the way humans reach some group agreement.10 The fused output
decision is based on the majority rule (i.e., maximum number of votes wins). Variations of voting
techniques include weighted voting (in which sensors are given relative weights), plurality, consensus
methods, and other techniques.

For implementation of this structure, each classification or prediction, i, outputs a binary vector, xi,
with D elements, where D is the number of hypothesized output decisions. The binary vectors are
combined into a matrix X, with row i representing the input from sensor i. The voting fusion structure
sums the elements in each column as described by Equation 23.1.

(23.1)

The output, y(j), is a vector of length D, where each element indicates the total number of votes for
output class j. At time k, the decision rule selects the output, d(k), as the class that carries the majority
vote, according to Equation 23.2 .

(23.2)

23.3.2.2 Weighted Decision Fusion

A weighted decision method for data fusion generates the fused decision by weighting and combining
the outputs from multiple sensors. A priori assumptions of sensor reliability and confidence in the
classifier performance contribute to determining the weights used in a given scenario. Expert knowledge
or models regarding the sensor reliability can be used to implement this method. In the absence of such
knowledge, an assumption of equal reliability for each sensor can be made. This assumption reduces the
weighted decision method to voting. Note that at the other extreme, a weighted decision process could
selectively weight sensors so that, at a particular time, only one sensor is deemed to be credible (i.e.,
weight = 1), while all other sensors are ignored (i.e., weight = 0).

Several methods can be used for implementing a weighted decision fusion structure. Essentially, each
sensor, i, outputs a binary vector, xi, with D elements, where D is the number of hypothesized output
decisions. A binary one, in position j, indicates that the data was identified by the classifier as belonging
to class j. The classification vector from sensor i becomes the ith row of an array, X, that is passed to the
weighted decision fusion structure. Each row is weighted, using the a priori assumption of the sensor
reliability. Subsequently, the elements of the array are summed along each column. Equation 23.3
describes this process mathematically.
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The output, y(j), is a row vector of length D, where each element indicates the confidence that the
input data from the multiple sensor set has membership in a particular class. At time k, the output
decision, d(k), is the class that satisfies the maximum confidence criteria of Equation 23.4.

(23.4)

This implementation of weighted decision fusion permits future extension in two ways. First, it
provides a path to the use of confidence as an input from each sensor. This would allow the fusion process
to utilize fuzzy logic within the structure. Second, it enables an adaptive mechanism to be incorporated
that can modify the sensor weights as data are processed through the system.

23.3.2.3 Bayesian Inference

Bayes’ theorem16-18 serves as the basis for the Bayesian inference technique for identity fusion. This
technique provides a method for computing the a posteriori probability of a particular outcome, based
on previous estimates of the likelihood and additional evidence. Bayesian inference assumes that a set of
D mutually exclusive (and exhaustive) hypotheses or outcomes exists to explain a given situation.

In the decision-level, multisensor fusion problem, Bayesian inference is implemented as follows. A system
exists with N sensors that provide decisions on membership to one of D possible classes. The Bayesian fusion
structure uses a priori information on the probability that a particular hypothesis exists and the likelihood
that a particular sensor is able to classify the data to the correct hypothesis. The inputs to the structure are
(1) P(Oj), the a priori probabilities that object j exists (or equivalently that a fault condition exists), (2)
P(Dk,i|Oj), the likelihood that each sensor, k, will classify the data as belonging to any one of the D hypotheses,
and (3) Dk, the input decisions from the K sensors. Equation 23.5 describes the Bayesian combination rule.

(23.5)

The output is a vector with element j representing the a posteriori probability that the data belong to
hypothesis j. The fused decision is made based on the maximum a posteriori probability criteria given in
Equation 23.6.

(23.6)

A basic issue with the use of Bayesian inference techniques involves the selection of the a priori
probabilities and the likelihood values. The choice of this information has a significant impact on
performance. Expert knowledge can be used to determine these inputs. In the case where the a priori
probabilities are unknown, the user can resort to the principle of indifference, where the prior probabil-
ities are set to be equal, as in Equation 23.7.

(23.7)

The a priori probabilities are updated in the recursive implementation as described by Equation 23.8.
This update sets the value for the a priori probability in iteration t equal to the value of the a posteriori
probability from iteration (t – 1).

(23.8)
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23.3.3 Model-Based Development

Diagnostics model development can proceed down a purely data-driven, empirical path or model-based
path that uses physical and causal models to drive the diagnosis. Model-based diagnostics can provide
optimal damage detection and condition assessment because empirically verified mathematical models
at many state conditions are the most appropriate knowledge bases.19 The Pennsylvania State University
Applied Research Laboratory (Penn State ARL) has taken a model-based diagnostic approach towards
achieving CBM that has proven appropriate for fault detection, failure mode diagnosis, and, ultimately,
prognosis.20

The key modeling area for CBM is to develop models that can capture the salient effects of faults and
relate them to virtual or external observables. Some fundamental questions arise from this desired
modeling. How can mathematical models of physical systems be adapted or augmented with separate
damage models to capture symptoms? Moreover, how can model-based diagnostics approaches be used
for design in CBM requirements such as sensor type, location, and processing requirements?

In the model-based approach, the physical system is captured mathematically in the form of empirically
validated computational or functional models. The models possess or are augmented with damage
association models that can simulate a failure mode of given severity to produce a symptom that can be
compared to measured features. The failure mode symptoms are used to construct the appropriate
classification algorithms for diagnosis. The sensitivity of the failure modes to specific sensor processing
can be compared for various failure modes and evaluated over the entire system to aid in the determi-
nation of the most effective CBM approach.

23.3.3.1 Model-Based Identification and Damage Estimation

Figure 23.4 illustrates a conceptual method for identifying the type and amount of degradation using a
validated system model. The actual system output response (event and performance variables) is the
result of nominal system response plus fault effects and uncertainty. The model-based analysis and
identification of faults can be viewed as an optimization problem that produces the minimum residual
between the predicted and actual response.

23.4 Multisensor Fusion Toolkit

A multisensor data fusion toolkit was developed at the Penn State ARL to provide the user with a
standardized visual programming environment for data fusion (see Figure 23.5).21 With this toolkit, the
user can develop and compare techniques that combine data from actual and virtual sensors. Detection
performance and the number of false alarms are two of the metrics that can be used for such a comparison.

The outputs of one or more state/damage estimates can be combined with available usage information,
based on feature vector classification. This type of a tool is an asset because it utilizes key information
from multiple sensors for robustness and presents the results of the fusion assessment, rather than just a
data stream. Furthermore, the tool is very useful for rapid prototyping and evaluation of data analysis and
data fusion algorithms. The toolkit was written in Visual C++ using an object-oriented design approach.

FIGURE 23.4 Adaptive concept for deterministic damage estimation.
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23.5 Application Examples

This section presents several examples to illustrate the development of a data fusion approach and its
application to condition-based maintenance of real-world engineered systems. The topics chosen repre-
sent a range of machinery with different fundamental mechanisms and potential CBM strategies. The
first example is a mechanical (gear/shaft/bearing) power transmission that has been tested extensively at
Penn State ARL. The second example uses fluid systems (fuel/lubrication/hydraulic), and the third
example focuses on energy storage devices (battery/fuel cells). All are critical subsystems that address
fundamental CBM needs in the DoD and industry. Developers of data fusion solutions must carefully
select among the options that are applicable to the problem. Several pitfalls in using data fusion were
identified recently and suggestions were provided about how to avoid them.22

23.5.1 Mechanical Power Transmission

Individual components and systems, where a few critical components are coupled together in rotor power
generation and transmission machinery, are relatively well understood as a result of extensive research
that has been conducted over the past few decades. Many notable contributions have been made in the
analysis and design, in increasing the performance of rotor systems, and in the fundamental understand-
ing of different aspects of rotor system dynamics. More recently, many commercial and defense efforts
have focused on vibration/noise analysis and prediction for fault diagnostics. Many employ improved
modeling methods to understand the transmission phenomena more thoroughly,23-26 while others have
focused on detection techniques and experimental analysis of fault conditions.27-33

23.5.1.1 Industrial Gearbox Example

Well-documented transitional failure data from rotating machinery is critical for developing machinery
prognostics. However, such data is not readily or widely available to researchers and developers. Conse-
quently, a mechanical diagnostics test bed (MDTB) was constructed at the Penn State ARL for detecting
faults and tracking damage on an industrial gearbox (see Figure 23.6).

FIGURE 23.5 The Penn State ARL multisensor fusion toolkit is used to combine data from multiple sensors,
improving the ability to characterize the current state of a system.
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23.5.1.1.1 System and Data Description
The MDTB is a motor-drivetrain-generator test stand. (A complete description of the MDTB can be
found in Byington and Kozlowski.34) The gearbox is driven at a set input speed using a 30 Hp, 1750 rpm
AC (drive) motor, and the torque is applied by a 75 Hp, 1750 rpm AC (absorption) motor. The MDTB
can test single and double reduction industrial gearboxes with ratios from about 1.2:1 to 6:1. The
gearboxes are nominally in the 5 to 20 Hp range. The motors provide about 2 to 5 times the rated torque
of the selected gearboxes; thus, the system can provide good overload capability for accelerated failure
testing.

The gearbox is instrumented with accelerometers, acoustic emission sensors, thermocouples, and oil
quality sensors. Torque and speed (load inputs) are measured within 1% on the rig. Borescope images
are taken during the failure process to correlate degree of damage with measured sensor data. Given a
low contamination level in the oil, drive speed and load torque are the two major factors in gear failure.
Different values of torque and speed will cause different types of wear and faults. Figure 23.7 illustrates
potential regions of failures.

FIGURE 23.6 The Penn State ARL mechanical diagnostics testbed is used to collect transitional failure data, study
sensor optimization for fault detection, and to evaluate failure models.

FIGURE 23.7 Regions of gear failures.35

ScoringGeneral
Wear Area 3

Area 1

To
rq

ue
 L

oa
d

Speed

B
re

ak
ag

e

Minimal Wear
(w/ Clean Oil)

P
itt

in
g

Area 2

Area 5

Area 4
©2001 CRC Press LLC



                                
23.5.1.1.2 Gearbox Failure Conditions
In Area 1, the gear is operating too slowly to develop an oil film, so adhesive wear occurs. In Area 2, the
speed is sufficiently fast to develop an oil film. The gears should be able to run with minimal wear. In Area
3, scoring is likely, because the load and speed are high enough to break down the existing oil film. Area 4
illustrates the dominance of pitting caused by high surface stresses that result from higher torque loads. As
the torque is increased further, tooth breakage will result from overload and stress fatigue, as shown in Area 5.

Based on the above discussion, the MDTB test plan includes test runs that set the operating drive
speed and load torque deep into each area to generate transitional data for each of the faults. These limits,
of course, are not known exactly a priori. Areas 4 and 5 are the primary focal points because they contain
critical and difficult-to-predict faults. Being able to control (to a degree) the conditions that affect the
type of failure that occurs allows some control over the amount of data for each fault, while still allowing
the fault to develop naturally (i.e., the fault is not seeded). If a particular type of fault requires more
transitional data for analysis, adjustment of the operating conditions can increase the likelihood of
producing the desired fault.

23.5.1.1.3 Oil Debris Analysis
Roylance and Raadnui36 examined the morphology of wear particles in circulating oil and correlated
their occurrences with wear characteristics and failure modes of gears and other components of rotating
machinery. Wear particles build up over time even under normal operating conditions. However, the
particles generated by benign wear differ markedly from those generated by the active wear associated
with pitting, abrasion, scuffing, fracturing, and other abnormal conditions that lead to failure. Roylance
and Raadnui36 correlated particle features (quantity, size, composition, and morphology) with wear
characteristics (severity, rate, type, and source).

Particle composition can be an important clue to the source of abnormal wear particles when com-
ponents are made of different materials. The relationship of particle type to size and morphology has
been well characterized by Roylance,36 and is summarized in Table 23.1.

23.5.1.1.4 Vibration Analysis
Vibration analysis is extremely useful for gearbox analysis and gear failures because the unsteady com-
ponent of relative angular motion of the meshing gears provides the major source of vibratory excitation.37

This effect is largely caused by a change in compliance of the gear teeth and deviation from perfect shape.
Such a modulated gear meshing vibration, y(t), is given by:

(23.9)

TABLE 23.1 Wear Particle Morphology – Ferrography Descriptors

Particle Description

Rubbing Particles, 20 µm chord dimension and approx. 1 µm thick. Results from flaking of pieces from mixed 
shear layer-mainly benign.

Cutting Swarf-like chops of fine wire coils, caused by abrasive cutting action.
Laminar Thin, bright, free-metal particles, typically 1 µm thick, 20–50 µm chord width. Holes in surface and 

uneven edge profile. Gear-rolling element bearing wear.
Fatigue Chunky, several microns thick from, e.g., gear wear, 20–50 µm chord width.
Spheres Typically ferrous, 1 to 2 µm diameter, generated when micro-cracks occur under rolling contact fatigue 

condition.
Severe Sliding Large/50 µm chord width, several microns thick. Surfaces heavily striated with long straight edges. 

Typically found in gear wear.
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where an(t) and bn(t) are the amplitude and phase modulation functions. Amplitude modulation produces
sidebands around the carrier (gear-meshing and harmonics) frequencies and is often associated with
eccentricity, uneven wear, or profile errors. As can be seen from the equation, frequency modulation will
produce a family of sidebands. These will both typically occur in gear systems, and the sidebands may
either combine or subtract to produce an asymmetrical family of sidebands.

Much of the analysis has focused on the use of the appropriate statistical processing and transform to
capture these effects. A number of figures of merit or features have been used to correlate mechanical
faults. Moreover, short-time Fourier, Hilbert, and wavelet transforms have also been used to develop
vibration features.38,39

23.5.1.1.5 Description of Features
Various signal and spectral modeling techniques have been used to characterize machinery data and
develop features indicative of various faults in the machinery. Such techniques include statistical modeling
(e.g., mean, rms, kurtosis), spectral modeling (e.g., Fourier transform, cepstral transform, autoregressive
modeling), and time frequency modeling (e.g., short-time Fourier transform, wavelet transform, wide-
band ambiguity functions). Several oil and vibration features are now well described. These can be fused
and integrated with knowledge of the system and history to provide indication of gearbox condition. In
addition to the obvious corroboration and increased confidence that can be gained, this approach to
using multiple sensors also aids in establishing the existence of sensor faults.

Features tend to organize into subspaces in feature space, as shown in Figure 23.8. Such subspaces can
be used to classify the failure mode. Multiple estimates of a specific failure mode can be produced through
the classification of each feature subspace. Other failure mode estimates can be processed at the same
time as well. Note that a gearbox may deteriorate into more than one failure mode with several critical
faults competing.

During 20+ run-to-failure transitional tests conducted on the MDTB, data were collected from accel-
erometer, temperature, torque, speed, and oil quality/debris measurements. This discussion pertains only
to Test 14. Borescope imaging was performed at periodic intervals to provide damage estimates as ground
truth for the collected data. Small oil samples of approximately 25 ml were taken from the gearbox during

FIGURE 23.8 Oil/vibration data fusion process.40
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the inspection periods. Post-run oil samples were also sent to the DoD Joint Oil Analysis Program (JOAP)
to determine particle composition, oil viscosity, and particle wear type.

The break-in and design load time for Test 14 ran for 96 hours. The 3.33 ratio gearbox was then loaded
at three times the design load to accelerate its failure, which occurred approximately 20 hours later
(including inspection times). This load transition time was at approximately 1200 (noon), and no visible
signs of deterioration were noted. The run was stopped every two hours for internal inspection and oil
sampling. At 0200 (2:00 a.m.), the inspection indicated no visible signs of wear or cracks. After 0300,
accelerometer data and a noticeable change in the sound of the gearbox were noted. Upon inspection,
one of the teeth on the follower gear had separated from the gear. The tooth had failed at the root on
the input side of the gear with the crack rising to the top of the gear on the load side (refer to Figure 23.9).
The gearbox was stopped again at 0330, and an inspection showed no observable increase in damage. At
0500, the tooth from the downstream broken tooth had suffered surface pitting, and there were small
cracks a millimeter in from the front and rear face of the tooth, parallel to the faces. The 0700 inspection
showed that two teeth had broken and the pitting had increased, but not excessively, even at three times
design load. Neighboring teeth now had small pits at the top-motor side corners.

On shutdown at 0815, with a significant increase in vibration (over 150% RMS), the test was concluded,
and eight teeth had suffered damage. The damaged teeth were dispersed in clusters around the gear.
There appeared to be independent clusters of failure processes. Within each cluster a tooth that had failed
as a result of root cracking was surrounded by teeth that had failed due to pitting. On both clusters, the
upstream tooth had failed by cracking at the root, and the follower tooth had experienced pitting.

Figure 23.9 shows the time sequence of three types of particle concentrations observed during this test
run: fatigue wear, cutting wear, and severe sliding wear. Initial increases in particle counts observed at
1200 reflect debris accumulations during break-in. Fatigue particles manifested the most dramatic change
in concentration of the three detectable wear particle types, nearly doubling between 1400 and 1800,
suggesting the onset of some fault that would give rise to this type of debris. This data is consistent with
the inspections that indicated pitting was occurring throughout this time period. No significant sliding
or cutting wear was found after break-in.

Figure 23.10 illustrates the breakdown of these fatigue particle concentrations by three different micron
size ranges. Between 1400 and 1800, particle concentrations increased for all three ranges with onset
occurring later for each larger size category. The smallest size range rose to over 1400 particles/ml by

FIGURE 23.9 Number of particles/ml for fatigue, cutting, and sliding wear modes (larger than 15 microns) collected
at various times.
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1800, while the particles in the midrange began to increase consistently after 1400 until the end of the
run. The largest particle size shows a gradual upward trend starting at 1600, though the concentration
variation is affected by sampling/measurement error. The observed trends could be explained by hypoth-
esizing the onset of a surface fatigue fault condition sometime before 1600, followed by steadily generated
fatigue wear debris.

Figures 23.11 and 23.12 show different features of the accelerometer data developed at Penn State ARL.
The results with a Penn State ARL enveloping technique, Figure 23.11, clearly show evidence of some
activity around 0200. The dashed line represents the approximate time the feature showed a notable
change. This corresponds to the time when tooth cracking is believed to have initiated/propagated. The
wavelet transform40 is shown in Figure 23.12. It is believed to be sensitive to the impact events during
breakage, and shows evidence of this type of failure after 0300. The processed indicators seem to indicate
activity well before RMS levels provided any indication.

During each stop, the internal components appeared normal until after 0300, when the borescope
verified a broken gear tooth. This information clearly supports the RMS and wavelet changes. The changes
in the interstitial enveloping that occurred around 0200 (almost one hour earlier) could be considered
as an early indicator of the witnessed tooth crack. Note that the indication is sensitive to threshold setting,
and the MDTB online wavelet detection threshold triggered about an hour (around the same time as
the interstitial) before that shown in Figure 23.12.

23.5.1.1.6 Feature Fusion41

Although the primary failure modes on MDTB gearboxes have been gear tooth and shaft breakage, pitting
has also been witnessed. Based on the previous vibration and oil debris figures in this section, a good
overlap of candidate features appears for both commensurate and noncommensurate data fusion. The
data from the vibration features in Figure 23.13 show potential clustering as the gearbox progresses towards
failure. Note from the borescope images that the damage progresses in clusters, which increase on both
scales. The features in this subspace were obtained from the same type of sensor (i.e., they are commen-
surate). Often two noncommensurate features — such as oil debris and vibration — are more desirable.

Figure 23.14 shows a subspace example using a vibration feature and an oil debris (fatigue particle
count) feature. There are fewer data points than in the previous example because the MDTB had to be
shut down to extract an oil sample as opposed to using on-demand, DAQ collection of accelerometer
data. During the progression of the run, the features seemed to cluster into regions that are discernible

FIGURE 23.10 Number of fatigue-wear particles/ml by bin size collected at various times.
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and trackable. Subspaces using multiple features from both commensurate and noncommensurate
sources would provide better information for classification, as would the inclusion of running conditions,
system knowledge, and history. This type of association of data is a necessary step toward accomplishing
more robust state estimation and higher levels of data fusion.

FIGURE 23.11 Interstitial enveloping of accelerometer.

FIGURE 23.12 Continuous wavelet transform (IIR count).
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23.5.1.1.7 Decision Fusion Analysis
Decision fusion is often performed as a part of reasoning in CBM systems. Automated reasoning and
data fusion are important for CBM. Because the monitored systems exhibit complex behavior, there is
generally no simple relationship between observable conditions and system health. Furthermore, sensor
data can be very unreliable, producing a high false alarm rate. Hence, data fusion and automated reasoning
must be used to contextually interpret the sensor data and model predictions. In this section, three
automated reasoning techniques, neural networks, fuzzy logic, and expert/rule-based systems, are com-
pared and evaluated for their ability to predict system failure.42 In addition, these system outputs are
compared to the output of a hybrid system that combines all three systems to realize the advantages of
each. Such a quantitative comparison is essential in producing high quality, reliable solutions for CBM
problems; however, it is rarely performed in practice.

Although expert systems, fuzzy logic systems, and neural networks are used in machinery diagnostics,
they are rarely used simultaneously or in combination. A comparison of these techniques and decision
fusion of their outputs was performed using the MDTB data. In particular, three systems were developed
(expert system, fuzzy logic, and neural network) to estimate the remaining useful life of the gearbox
during accelerated failure runs (see Figure 23.15). The inputs to the systems consisted of speed, torque,
temperature, and vibration RMS in several frequency bands.

A graphical tool was developed to provide a quick visual comparison of the outputs of the different
types of systems (see Figure 23.16). In this tool, colors are used to represent the relative levels of the
inputs and outputs and a confidence value is provided with each output. The time to failure curves for
the three systems and the hybrid system are shown in Figure 23.17. In this example, the fuzzy logic system
provided the earliest warning, but the hybrid system gave the best combination of early warning and
robustness.

FIGURE 23.13 Feature subspace classification example.
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FIGURE 23.14 Non-commensurate feature subspace.

FIGURE 23.15 Flow diagram for comparison of three reasoning methods with MDTB data.
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FIGURE 23.16 Graphical viewer for comparing the outputs of the reasoning systems.

FIGURE 23.17 Time-to-failure curves for the reasoning systems with MDTB data.
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23.5.2 Fluid Systems

Fluid systems comprise lubrication,43 fuel,44 and hydraulic power application examples. Some efforts at
evaluating a model-based, data fusion approach for fluid systems are discussed in the following sections.
Such fluid systems are critical to many Navy engine and power systems and clearly must be part of the
CBM solution.

23.5.2.1 Lubrication System Function

A pressure-fed lubrication system is designed to deliver a specific amount of lubricant to critical, oil-
wetted components in engines, transmissions, and like equipment. The primary function of a lubricant
is to reduce friction through the formation of film coatings on loaded surfaces. It also transports heat
from the load site and prevents corrosion. The lubricating oil in mechanical systems, however, can be
contaminated by wear particles, internal and external debris, foreign fluids, and even internal component
(additive) breakdown. All of these contaminants affect the ability of the fluid to accomplish its mission
of producing a lubricious (hydrodynamic, elastohydrodynamic, boundary, or mixed) layer between
mechanical parts with relative motion.45,46

Lubricant contamination can be caused by many mechanisms. Water ingestion through seals (common
in marine environments) or condensation will cause significant viscosity effects and corrosion. Fuel
leakage through the (turbine fuel-lube oil) heat exchanger will also adversely affect lubricity. Moreover,
fuel soot, dirt, and dust can increase viscosity and decrease the oil penetration into the loaded surface
of the gears or bearings.47 An often overlooked, but sometimes significant, source of contamination is
the addition of incorrect or old oil to the system. Table 23.2 provides a list of relevant faults that can
occur in oil lubrication systems and some wetted components’ faults.

Many offline, spectroscopic and ferrographic techniques exist to analyze lubricant condition and wear-
metal debris.48-52 These methods, while time-proven for their effectiveness at detecting many types of
evolving failures, are performed at specified time intervals through offline sampling.53 The sampling
interval is driven by the cost to perform the preventive maintenance versus the perceived degradation
window over an operational time scale. The use of intermittent condition assessment will miss some
lubricant failures. Moreover, the use of such offline methods is inconvenient and increases the preventive
maintenance cost and workload associated with operating the platform.

23.5.2.2 Lubrication System Test Bench

A lubrication system test bench (LSTB) was designed to emulate the lubrication system of a typical gas
turbine engine.54,55 The flow rate relates to typical turbine speeds, and flow resistance can be changed in
each of the three legs to simulate bearing heating and/or differences between various turbine systems.
To simplify operation, the LSTB uses facility water, rather than jet fuel in the oil heat exchanger. The
LSTB is also capable of adding a measured amount of foreign matter through a fixed-volume, dispensing
pump, which is used to inject known amounts of metallic and nonmetallic debris, dirty oil, fuel, and
water into the system. Contaminants are injected into a mixing block and pass through the debris sensors,
upstream of the filter. The LSTB provides a way to correlate known amounts of contaminants with the

TABLE 23.2 Lubricant and Wetted Component Faults

Lubricant Faults Gear Faults Bearing Faults

Viscosity breakdown Plastic deformation Surface wiping
Oxidation Pitting Fatigue
Emulsification Heavy scuffing Fretting
Additive depletion Chipping and tooth crack Foreign debris
Sludge formation Tooth breakage Spalling
Fluid contamination Case cracking Inadequate oil film
External debris contam. Surface fatigue Overheating
Internal debris contam. Abrasive wear Corrosion
System leakage Chemical wear Cavitation erosion
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system parameters and, thus, establishes a relationship between machinery wear levels, percentage of
filter clogged, and viscosity of the lubricant.

The failure effects are in the areas of lubricant degradation, contamination, debris generated internally
or externally, flow blockage, and leakage. These effects can be simulated or directly produced on the
LSTB. Both degradation and contamination will result in changes in the oil transport properties. Water,
incorrect oil, and sludge can be introduced in known amounts. Debris can be focused on metallic particles
of 100-micron mean diameter, as would be produced by bearing or gear wear. Flow blockage can be
emulated by restricting the flow through the control valves. Similarly, leakage effects can be produced
by actual leaks or by opening the leg valves. Alternatively, seal leakage effects can cause air to flow into
the lube system. This dramatically affects performance and is measurable. In addition, the LSTB can be
used to seed mechanical faults in the pump, relief valve, and instrumentation. In the case of mechanical
component failure, vibration sensors could be added.

23.5.2.3 TELSS Model and Metasensors

Note that association of failure modes to sensor and fused data signatures remains a hurdle in such CBM
work. Evaluation of operational data gathered on the gas turbine engine provided some association to
believed faults, but insufficient data on key parameters prevented the implementation of a fault tree or
even an implicit association. Given the lack of failure test data and the limited data available on the actual
engine, a simulation model was developed. The turbine engine lubrication system simulation (TELSS)
output was used to generate virtual or metasensor outputs. This data was evaluated in the data fusion
and automated reasoning modules.

The TELSS consists of a procedural program and a display interface. The procedural program is written
in C code and uses the analog of electrical impedances to model the oil flow circuit. The model contains
analytical expressions of mass, momentum, and energy equations, as well as empirical relationships. The
interface displays state parameters using an object-oriented development environment. Both scripted
and real system data can be run through the simulation. A great deal of effort was expended to properly
characterize the Reynolds number and temperature-dependent properties and characteristics in the
model. TELSS requires the geometry of the network, the gas generator speed, and a bulk oil temperature
to estimate the pressures and flows throughout.56

23.5.2.4 Data Fusion Construct

The initial approach for lubrication system data fusion is summarized in Figure 23.18. This example
follows the previous methodology of reviewing the data fusion steps within the context of the application.
There are five levels in the data fusion process:

1. Observation: This level involves the collection of measured signals from the lubrication system
being monitored (e.g., pressures, flow rates, pump speed, temperatures, debris sensors, and oil
quality measurements).

2. Feature extraction: At this level, modeling and signal processing begins to play a role. From the models
and signal processing, features (e.g., virtual sensor signals) are extracted; features are more informative
than the raw sensor data. The modeling provides additional physical and historical information.

3. Data association: In this level, the extracted features are mapped into commensurate and non-
commensurate failure mode spaces. In other words, the feature data is associated with other feature
data based on how they reveal the development of different faults.

4. System state estimation: In this level, classification of feature subspaces is performed to estimate
specific failure modes of the lubricant or oil-wetted components in the form of a state estimate
vector. The vector represents a confidence level that the system is in a particular failure mode; the
classification also includes information about the system and history of the lubrication system.

5. Fault condition and health assessment: For this level, system health decisions are made based on
the agreement, disagreement, or lack of information that the failure mode estimates indicate. The
decision processing should consider which estimates come from commensurate feature spaces and
which features map to other failure mode feature subspaces, as well as the historical trend of the
failure mode state estimate.
©2001 CRC Press LLC



23.5.2.5 Data Analysis Results

23.5.2.5.1 Engine Test Cell Correlation
Engine test cell data was collected to verify the performance of the system. The lubrication system
measurements were processed using the Data Fusion Toolkit to produce continuous data through inter-
polation. Typical data is seen in Figure 23.19. This data provided the opportunity to trend variables against

FIGURE 23.18 Lubrication system diagnostics/prognostics data fusion structure.

FIGURE 23.19 Processing of test stand data and correlation in the ARL data fusion toolkit.
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the fuel flow rate to the engine, gas generator speed and torque, and the power turbine speed and torque.
Ultimately, through various correlation analysis methods, the gas generator was deemed the most suitable
regression (independent) variable for the other parameters. It was used to develop three-dimensional
maps and regressions with a measured temperature to provide guidelines for normal operation.

23.5.2.5.2 Operational Data with Metasensor Processing
Operational data was made available by a Navy unit that uses the gas turbine engines. The operational
data was limited to the production engine variables, which consisted of one pressure and temperature.
The TELSS model was embedded within the Multisensor Fusion Toolkit. The TELSS interface for an
LPAS run is shown in Figure 23.20. Because the condition of the oil and filter was unknown for these
runs, the type of oil and a specified amount of clogging was assumed. The variation of oil and types of
filters can vary the results significantly. Different MIL-L-23699E oils, for many of which the model
possesses regressions, can vary the flow rate predictions by up to 5 percent. Similar variation is seen when
trying to apply the filter clogging to different vendors’ filter products.

The TELSS simulation model can be used to simulate different fault conditions to allow data association
and system state estimation. Figure 23.21 illustrates the output of the metasensor under simulated fault
conditions of filter clogging with debris. Filter clogging is typically monitored through a differential
pressure measurement or switch. This method does not account for other variables that affect the
differential pressure. The other variables are the viscosity, or the fluid resistance to flow, which is
dependent on temperature and the flow rate through the filter.

With this additional knowledge, the T-P-mdot relationship can be exploited in a predictive fashion.
Toward the mid to latter portion of the curves, the pressure increases slightly, but steadily, as the flow
rate remains constant or decreases. Meanwhile, the temperature increases around 1000 seconds and then
decreases steadily from 1500 until the engine is shut off. Let us investigate these effects more closely. The
increasing pressure drop from about 1200 to 1500 seconds occurs while the temperature and flow are
approximately constant. This is one indication of a clogging effect. From 1500 through 2100, the flow

FIGURE 23.20 TELSS processing of operational data to produce metasensors. Massflow in pounds per hour is
shown in bar scaled objects. Pressure throughout the circuit in pounds per square inch is illustrated by pressure
gauge objects.
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rate is at a lower level, but the pressure drop rises above its previous level at the higher oil flow rate.
Looking only at these two variables could suffice; however, deeper analysis reveals that during the same
timeframe, the temperature decreases, which means the viscosity (or resistance to flow) of the oil
increases. This lower temperature would indicate that higher pressure drops could be expected for the
same flow rate. This effect (increased viscosity due to lower temperature) is the reason why the pressure
drop is so high at the beginning of the run. Consequently, this consideration actually adds some ambiguity
to an otherwise crisp indication. The model analysis indicates, though, that the additional pressure drop
caused by higher viscosity does not comprise the entire difference. Thus, the diagnosis of filter clogging
is confirmed in light of all of the knowledge about the effects.

23.5.2.6 Health Assessment Example

The output from the TELSS model and Multisensor Toolkit was processed using an automated reasoning
shell tool. The output of a shell that could be used to detect filter-clogging fractions is shown in the
figures below. An expert system (ES), a fuzzy logic (FL) association, and a neural network (NN) perform
the evaluations of filter clogging. The flow, temperature, and differential pressure were divided into three
operational ranges. The ES was provided set values for fraction clogged. The FL was modeled with
trapezoidal membership functions. The NN was trained using the fuzzy logic outputs.56,57 For the first
case shown, the combination of 4.6 gpm, 175°F, and 12 psid, the reasoning techniques all predict relatively
low clogging. In the next case, the flow is slightly less, whereas the pressure is slightly higher at 12.5 psid.
The NN evaluation quickly leans toward a clogged filter, but the other techniques lag in fraction clogged.
The expert system is not sensitive enough to the relationships between the variables and the significance
of the pressure differential increasing while the flow decreases markedly. This study and others conducted
at ARL indicated that a hybrid approach based on decision fusion methods would allow the greatest
flexibility in such assessments.

23.5.2.7 Summary

The objective of this fluid systems research was to demonstrate an improved method of diagnosing
anomalies and maintaining oil lubrication systems for gas turbine engines. Virtual metasensors from the
TELSS program and operational engine data sets were used in a hybrid reasoning shell. A simple module
for the current-limited sensor suite on the test engine was proposed and recommendations for enhanced
sensor suites and modules were provided. The results and tools, while developed for the test engine, are

FIGURE 23.21 TELSS run illustrating the relationship between the system variables that can be fused to produce
filter clogging association and estimates.
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applicable to all gas turbine engines and mechanical transmissions with similar pressure-fed lubrication
systems.

As mentioned in a previous section, the ability to associate faulted conditions with measurable param-
eters is tantamount for developing predictive diagnostics. In the current example, metasensors were
generated using model knowledge and measured inputs that could be associated to estimate condition.
Development of diagnostic models results from the fusion of the system measurements as they are
correlated to an assessed damage state.

23.5.3 Electrochemical Systems

Batteries are an integral part of many operational environments and are critical backup systems for many
power and computer networks. Failure of the battery can lead to loss of operation, reduced capability,
and downtime. A method to accurately assess the condition (state of charge), capacity (amp-hr), and
remaining charge cycles (remaining useful life) of primary and secondary batteries could provide signif-
icant benefit. Accurate modeling characterization requires electrochemical and thermal elements. Data
from virtual (parametric system information) and available sensors can be combined using data fusion.
In particular, information from the data fusion feature vectors can be processed to achieve inferences
about the state of the system.

This section describes the process of computing battery state of charge (SOC) — a process that involves
model identification, feature extraction, and data fusion of the measured and virtual sensor data. In
addition to modeling the primary electrochemical and thermal processes, it incorporates the identifica-
tion of competing failure mechanisms. These mechanisms dictate the remaining useful life of the battery,
and their proper identification is a critical step for predictive diagnostics.

Figure 23.23 illustrates the model-based prognostics and control approach that the battery predictive
diagnostics project addresses. The modeling approach to prognostics requires the development of elec-
trical, chemical, and thermal model modules that are linked with coupled parameters. The output of the

FIGURE 23.22 Hybrid reasoning shell evaluation (Cases 1 and 2).
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models is then combined in a data fusion architecture that derives observational synergy, while reducing
the false alarm rate. The reasoning system provides the outputs shown at the bottom right of the figure.
Developments will be applicable to the eventual migration of the diagnosis and health monitoring to an
electronic chip embedded into the battery (i.e., intelligent battery health monitor).

23.5.3.1 The Battery As a System

A battery is an arrangement of electrochemical cells configured to produce a certain terminal voltage
and discharge capacity. Each cell in the battery is comprised of two electrodes where charge transfer
reactions occur. The anode is the electrode at which an oxidation (O) reaction occurs. The cathode is
the electrode at which a reduction (R) reaction occurs. The electrolyte provides a supply of chemical
species required to complete the charge transfer reactions and a medium through which the species (ions)
can move between the electrodes. Figure 23.24 illustrates the pathway ion transfer that takes place during
the reaction of the cell. A separator is generally placed between the electrodes to maintain proper electrode
separation despite deposition of corrosion products.58 The electrochemical reactions that occur at the
electrodes can generally be reversed by applying a higher potential that reverses the current through the
cell. In situations where the reverse reaction occurs at a lower potential than any collateral reaction, a
rechargeable or secondary cell can potentially be produced. A cell that cannot be recharged because of an
undesired reaction or an undesirable physical effect of cycling on the electrodes is called a primary cell.58

Changes in the electrode surface, diffusion layer, and solution are not directly observable without
disassembling the battery cell. Other variables such as potential, current, and temperature are observable
and can be used to indirectly determine the performance of physical processes. For overall performance,
the capacity and voltage of a cell are the primary specifications required for an application. The capacity
is defined as the time integral of current delivered to a specified load before the terminal voltage drops
below a predetermined cut-off voltage. The present condition of a cell is described nominally with the
state-of-charge (SOC), which is defined as the ratio of the remaining capacity and the capacity. Secondary
cells are observed to have a capacity that deteriorates over the service life of the cell. The term state-of-
health (SOH) is used to describe the physical condition of the battery, which can rang from external
behavior, such as loss of rate capacity, to internal behavior, such as severe corrosion. The remaining life
of the battery (i.e., how many cycles remain or the usable charge) is termed the state-of-life (SOL).

23.5.3.2 Mathematical Model

An impedance model called the Randles circuit, shown in Figure 23.25, is useful in assessing battery
condition. Impedance data can be collected online during discharge and charge to capture the full change

FIGURE 23.24 Electrode reaction process.58,59
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of battery impedance and identify the model parameters at various stages of SOC, as well as over multiple
cycles of the battery for SOH identification. Some of the identified model parameters of the nickel
cadmium battery are shown in Figure 23.26 as the batteries proceed from a fully charged to a discharged
state. Identification of these model-based parameters provides insight and observation into the physical
processes occurring in the electrochemical cell.60,61

23.5.3.3 Data Fusion of Sensor and Virtual Sensor Data

The approach for battery feature data fusion is summarized in Figure 23.27. There are five levels in the
data fusion processes: observation (data collection), feature extraction (computation of model parameters
and virtual sensor features), data association (mapping features into commensurate and noncommensu-
rate feature spaces), system state estimation (estimation of failure modes and confidence level), and fault
condition and health assessment (making system health decisions).

Figure 23.28 illustrates the sensor and virtual sensor input to the data fusion processing. The outputs
of the processing are the SOC, SOH, and SOL estimates that are fed into the automated reasoning
processing. After the data association processing, an estimate of the failure mechanism is determined.

Two approaches for SOC prediction are described in the following sections. Each performs a kind of
data fusion to utilize physically meaningful parameters to predict SOC. The definition of SOC is the
amount of useful capacity remaining in a battery during a discharge. Thus, 100% SOC indicates full
capacity and 0% SOC indicates that no useful capacity remains.

23.5.3.3.1 ARMA Prediction of SOC 62

An effective way to predict SOC of a battery has been developed using ARMA model methodology. This
model has performed well on batteries of various size and chemistry, as well as at different temperatures
and loading conditions. ARMA models are a very common system identification technique because they
are linear and easy to implement. The model used in this application is represented by the equation

FIGURE 23.25 Two-electrode randles circuit model with wiring inductance.

FIGURE 23.26 Nickel cadmium model parameters over discharge cycle.
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(23.10)

where y represents SOC, X represents a matrix of model inputs, and a, b, and c0 represent the ARMA
coefficients. Careful consideration was exercised in determining the inputs. These were determined to
be VD, ID, RΩ, θ, CDL, and Ts, and output is SOC. The inputs were smoothed and normalized to reduce
the dependence on noise and to prevent domination of the model by parameters with the largest
magnitudes.

FIGURE 23.27 Battery diagnostics/prognostics data fusion structure.

FIGURE 23.28 Generalized feature vector for battery predictive diagnostics.
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The model was determined by using one of the runs and then tested with the remaining runs.
Figure 23.29 shows the results for all eight size-C batteries. The average prediction error for lithium
batteries was less than 3%, for NiCad less than 5%, and for lead acid less than 10%. These results are
summarized in Table 23.3 below.

23.5.3.3.2 Neural Networks Prediction of SOC 62

Artificial neural networks have been used successfully in both classification and function approximation
tasks. One type of function approximation task is system identification. Although neural networks very
effectively model linear systems, their main strength is the ability to model nonlinear systems using
examples of input-output pairs. This was the basis for choosing neural networks for SOC estimation.
Neural network SOC estimators were trained for lithium batteries of sizes C and 2/3 A under different
loading conditions. For each type of battery, a subset (typically 3 to 6) of the available parameter vectors
was chosen as the model input. Networks were trained to produce either a direct prediction of battery
SOC or, alternatively, an estimation of initial battery capacity during the first few minutes of the run.

All networks used for battery SOC estimation had one hidden layer. The back propagation, gradient-
descent learning algorithm is used, which utilizes the error signal to optimize the weights and biases of
both network layers. The inputs to the network were a subset of ID, VD, RΩ θ, and CDL. As for the ARMA
case, the inputs were smoothed and normalized. This led to smaller networks, which tend to be better
at generalization. For time-delay neural networks, the selection of the number of delays and the length
of the delays is crucial to the performance of the networks. Both short and long delays were tried during
different training runs. The short delays gave better performance, which indicates that the battery SOC
does not involve long time constants. This is also evident from the ARMA examples. Several types of
neural networks were trained with battery data and extracted impedance parameters to directly predict
the battery state-of-charge. Among the several training methods that were used, the Levenburg-Marquadt
(L-M) provided the best results. The size of the network was also important in training. An excessively

FIGURE 23.29 ARMA SOC prediction results for size-C lithium (CF)x batteries.

TABLE 23.3 Results of ARMA Model SOC Predictions

Chemistry Size # Cells Type
Prediction
Error (%)

Lithium1 C 1 Primary 2.18
Lithium1 2/3 A 1 Primary 2.87
NiCad2 D 1 Secondary 3.17
NiCad2 C 1 Secondary 4.50
Lead-Acid 12-Volt 6 Secondary 9.13

1 Poly carbonmonofluoride lithium (spiral-type).
2 Nickel-Cadmium.
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small network size results in inadequate training and a larger than necessary network size leads to over-
training and poorer generalization.

Neural networks trained to directly provide the battery SOC provided consistently good performance.
However, the performance was much better when the battery’s initial capacity was first estimated. These
networks were also trained to estimate the initial capacity of the battery during the first few minutes of
the test. Then, the measured load current could easily be used to predict SOC because the current is the
rate of change of charge. This is even more useful for SOH and SOL prediction because as the secondary
batteries are reused they start at different initial capacity each time.

This method can also be used as a powerful tool in mission planning. Hypothetical load profiles can
be used to predict whether a battery would survive or fail a given mission, thus preventing the high cost
and risk of batteries failing in the field. The networks tend to slightly underestimate the battery SOC.
This is a very important practical feature, since it results in a conservative estimate and avoids unscheduled
downtime.

The results using radial basis function (RBF) neural networks were the best and are summarized in
Table 23.4. The SOC plots are shown for size-C lithium batteries in Figure 23.30. The results are quite
remarkable, considering that very little training data are required to produce the predictors. As more
data are collected and several runs of each of level of initial battery SOC become available, the robustness
of the predictors will likely improve. In addition, the neural network predictors have smaller error on
outliers and provide a conservative prediction (i.e., they do not over-predict the SOC). Both of these
advantages are very important in practical systems where certification and low false alarms are not just
requirements, but can make the difference between a system that is actually used or shelved.

23.6 Concluding Remarks

The application of data fusion in the field of CBM and predictive diagnostics for engineered systems is
rich with opportunity. The authors fully acknowledge that only a small amount of what is possible to
accomplish with data fusion was presented in this chapter. The predictive diagnostics application domain

TABLE 23.4 Error Rates for SOC Prediction Based on Initial Capacity Estimation 
with RBF Neural Networks

Battery Size
[# Hidden Neurons]

Average Training Error
[Training Set]

Average 
Testing Error

Maximum Testing 
Error [Run #]

Size C6

Size 2/3 A12

0.6%13,14,16

0.8%17,18,20

2.9%
2.9%

6.8%15

8.2%23

FIGURE 23.30 SOC prediction for size-C Lithium batteries using initial SOC estimation with RBF neural networks.
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is relatively new for data fusion, but the future is bright with the many analogies that can be drawn
between more mature data fusion applications and the current one. The authors anticipate that continu-
ing developments in actual and virtual feature fusion, as well as hybrid decision fusion of condition
assessments, will tend to dominate the research field for some time.
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24.1 Introduction

The future of NASA is critically dependent on the development and implementation of new tools and
methods from the information technology research community. A few examples are worth noting. The
sophisticated unmanned exploration of Mars and other parts of the solar system, which will be aimed
at answering fundamental science questions, such as the existence of early life forms in these environ-
ments, will require a new generation of automated reasoning tools. In addition, NASA’s role in the
development of new air traffic management tools and methods to be evaluated and deployed by the
Federal Aviation Administration must involve new approaches to optimizing the combined performance
of experts on the ground (air traffic controllers) and in the air (pilots) and the supporting information
systems. Ongoing safe operation of the Space Shuttle depends on new capabilities for early identification
of the precursors to failure of safety-critical system components from maintenance data and sensors
distributed throughout the system. Use of the mountains of data generated by the Earth-observing
satellites and next-generation space telescopes fielded by NASA demands fundamentally new methods
of data interpretation and understanding. In addition, new aircraft and spacecraft designs depend on
new high performance computing capabilities.

The complexity and diversity of such critical needs for the future has motivated NASA to develop an
expanded information technology (IT) research and development (R&D) portfolio. The first step toward
this end was an extensive strategic planning process for Computer Science/Information Technology R&D
for the Agency. Beginning in 1996, NASA’s Ames Research Center, located in the heart of Silicon Valley,
assembled teams from the research community and the user communities served by the Agency to address
two fundamental questions. First, what are those NASA applications domains for which revolutionary
advances in information technology are the critical enabler for the future? Second, in light of the
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investments being made by the private sector and other parts of the public sector, how must NASA invest
its IT research dollars to address these key applications domains?

Five critical applications domains were identified in which advances in IT are the critical “force
multiplier” for NASA’s future: (1) unmanned space exploration, (2) manned space exploration, (3) Earth
observation, (4) air traffic management, and (5) design methodologies for complex vehicles and systems.
On this basis NASA, working with its own computer scientists as well as those in academia and industry,
determined that the critical areas for NASA investment in advanced computer science/IT research
included: (1) automated reasoning, both for system autonomy and intelligent data understanding;
(2) human-centered computing; and (3) high performance computing and networking. The following
sections describe in detail both the challenges of the five applications domains and the resulting research
agenda in the three investment areas.

24.2 NASA Applications

This section describes the five application areas introduced earlier: unmanned space exploration, manned
space exploration, earth observation, air traffic management, and next generation system design.

24.2.1 Unmanned Space Exploration
The future of space science is tied to the ability to autonomously explore the solar system and beyond,
and such unmanned missions are the necessary precursor to subsequent manned missions. Future
unmanned space explorers must be capable of navigation, onboard interpretation of data collected by
sensors on the spacecraft or its rovers, and real-time reconfiguration in response to failures of system
components during the mission. The capability to perform this suite of tasks simultaneously and reliably
on an extended deep space exploration mission is well beyond current capabilities in autonomous
operation. In fact, NASA conducted its first in-space experiment in spacecraft autonomy only in 1999.
This experiment demonstrated the capability of model-based reasoning to perform real-time system
reconfiguration in response to simulated faults in spacecraft operation. This was a tremendous accom-
plishment, but it represents only the first step in the development and validation of the capabilities
required for 21st century space exploration.

24.2.2 Manned Space Exploration
As currently envisioned, manned space missions will be a complex combination of human and robotic
capabilities. The design and functioning of this unique human-system “team” presents challenging
questions about how to optimize the team performance. Moreover, the duration of such missions imposes
stringent requirements on system reliability well beyond what is presently achievable in complex hard-
ware/software/human systems. Finally, today’s concepts of manned exploration depend on the in-situ
manufacture of fuel for the return trip from elements available on the planet by unmanned platforms
prior to the launch of the manned mission. This will require a similar level of sophisticated autonomous
capability to that associated with unmanned exploration.

24.2.3 Earth Observation
Earth-observing satellites deployed by NASA have successfully identified such important phenomena as
ozone depletion in the vicinity of the South Pole and the influence of El Nino-La Nina phenomena on
global weather patterns. The Agency is now in the midst of deploying a more sophisticated network of
satellites with hyperspectral imaging capabilities. This new capability is expected to greatly enrich our
understanding of Earth processes and lay the groundwork for applications such as improved weather
forecasting, precision agricultural practices, and detection of conditions that are likely to lead to outbreaks
of devastating diseases such as cholera.

Beyond the current era of satellite deployment, a complex sensor web made up of a large number of
smaller satellites operating in a coordinated fashion is envisioned to provide more sophisticated predictive
©2001 CRC Press LLC



          
capabilities. This vision for enhanced Earth observation embodies the need for revolutionary IT advances
of several types. For example, data understanding methodologies capable of operating on geographically
distributed data sets will be required to identify previously unknown critical features and cause-effect
relationships. A sophisticated form of onboard automated reasoning must coordinate the actions of the
satellites in the sensor web and make real-time decisions concerning which data are critical to download
for archival purposes. Very significant advances in high performance computing will be required to
execute models of regional and global phenomena to merge with the data being collected to provide
high-value, high-fidelity predictions of patterns and events.

24.2.4 Air Traffic Management
Behind the headlines about long flight delays at major airports is the sobering reality that air traffic is
projected to grow more rapidly than the ability of the current air traffic management system, despite the
new capabilities being deployed by the FAA as a part of the Free Flight initiative. In response to these
projections and in partnership with the FAA, NASA has set a ten-year goal of developing the technology
base to reduce accident rates per passenger mile by a factor of five, while increasing the capacity of the
U.S. air transportation system by a factor of three. Realization of these national goals will depend on the
development of fundamentally new models of air traffic management, which are rooted in IT advances
such as (1) new simulation methods that provide the ability to evaluate the relative merit of candidate
air traffic management architectures, accounting for the attendant complexities of interactions among
humans, software, and hardware; (2) new approaches to achieving optimal “system” performance, where
the system is understood as the combination of human experts and advanced intelligent agents embedded
in the supporting information system; and (3) new human-computer interfaces that communicate
complex information about the system in an intuitive, readily understood way.

24.2.5 Next Generation System Design
In recent years a broad realization has developed that fundamentally new system design methodologies are
required. This realization resulted from the need to determine — a priori and in a virtual environment —
optimal design/cost tradeoffs, the impact of design decisions on total lifecycle cost or performance, and the
risks of component-level failures on system performance. This represents an extremely difficult set of
modeling, simulation, and data management challenges. For example, methods are needed to assess per-
formance at the system level, based on component-level simulations of varying fidelity ranging from
fundamental physics simulations to simple statements of functionality. Another challenge of system design
is the need to capture the underlying rationale employed by the best designers and its reuse as appropriate
in all phases of the design of a new system. Similarly, means to identify and effectively reuse relevant data
from past experiments, located in geographically distributed data sets of various formats, is a critical element.

24.3 Critical Research Investment Areas for NASA

Detailed analyses of these needs and the investments made within the private sector and other parts of
the public sector, including the Departments of Defense, Energy, and Transportation, and the National
Science Foundation made clear that NASA should emphasize research in three primary areas:

1. Automated reasoning, both in support of spacecraft autonomy and intelligent data understanding.
2. Human-centered computing, a relatively new interdisciplinary field associated with performance

enhancement of individuals and teams through the synergistic application of emerging computer
science, cognitive science, and perceptual science concepts.

3. High-performance computing and networking, focusing on both evolutionary and revolutionary
advances in single site and distributed computing and data analysis.

Major NASA programs (such as the High-Performance Computing and Communication Program and
the Aeronautics and Space Transportation IT Base Program) were redirected to best serve these goals,
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and a new Intelligent Systems Program was initiated to address shortfalls in longer term research in
automated reasoning, intelligent data understanding, human-centered computing, and revolutionary
computing concepts for the space environment. The following sections describe the three areas required
to address NASA’s needs. (Note that in this discussion a distinction is made between automated reasoning
for system autonomy and for intelligent data understanding.)

24.3.1 Automated Reasoning

As previously noted, NASA must increasingly depend on the autonomous operation of highly capable
spacecraft for deep space exploration. Moreover, the software embodiment of these capabilities requires
high reliability software generation and test methods. Practical operational considerations dictate the
need for increased system autonomy provided by automated reasoning. For example, communication
delays will impact longer distance human and robotic missions. These delays will force future mission
planners to face the reality that their missions will not be able to rely upon the ground-based remote
control that has benefited past missions — whether the missions involve humans or robots. Greater
autonomy for both types of missions must be a major characteristic of missions to Mars and beyond.

Given the lack of ground-based input, future autonomous systems for missions must accommodate
uncertainty to a much greater extent than in the past. Whereas uncertain situations previously could
default to humans on earth, the distances involved with future missions will reduce the reliance on earth-
based remote control. Therefore, greater autonomy will be required in human and robotic missions.

The autonomous nature of past systems has been based on a systematic approach where scientists
attempted to predict every eventuality that could occur and program a system response or action for
each. If an event occurred that the system was not programmed to handle, earth-based controllers took
over. These types of systems will not be adequate for future missions. Given the uncertainties involved
in exploration, condition-response systems become fragile without the ground-based safety nets.

For example, the programming of past systems could be viewed in terms of a parent’s instructions to
a child. The child could be asked to react in the following ways:

• If someone hits you, do not hit back.

• Under no circumstance should you start a fight.

• Under no circumstance should you throw rocks at another, etc.

Raising a child in this manner would be difficult. Not every event or situation the child would encounter
could be planned for in advance. Given the uncertainty of future events, the child is likely to encounter
a situation where the system fails him or her. A better approach is to raise the child by instilling guiding
principles such as: “Treat others the way you wish to be treated.” This type of principle will better prepare
the child to handle unforeseen situations. Likewise, autonomous systems of the future must accommodate
guiding principles. A number of promising, model-based reasoning approaches — not to be confused
with expert systems (e.g., Bayesian decision models, extended logic programming, neural network, and
hybrid approaches) — produce more robust autonomous systems that can deal much more effectively
with uncertainty.

24.3.2 Intelligent Data Understanding

NASA’s present and future missions place a premium on the intelligent use of very large data sets. For
example, satellites have recently been deployed for Earth science measurements (e.g., Landsat 7 and
Terra.) When these elements of the Earth Observing System are fully deployed, they will generate more
data per month than currently resides in all NASA databases on all topics. Another example is the
Stratospheric Observatory for Infrared Astronomy (SOFIA.) This observatory will be deployed aboard
a Boeing 747 in approximately two years to collect large data sets over the subsequent decade. A third
example involves the large databases containing maintenance information on critical and complex systems
as the Space Shuttle.
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A new generation of data-understanding methodologies is required to allow scientists and engineers
to make full use of these rich data sets. One can view these vast data sets as experimental or observed
data. Empirical observations are typically reduced to concise theories, which explain the observations.
In addition to data mining and knowledge discovery research, new data understanding methodologies
are required to provide approaches that will better enable scientists to construct theories based on the
data acquired. Beyond these efforts, a major result would be the reduction of these data sets into much
smaller algorithmic units. These algorithms could be viewed as concise statements of the data — which
provide more manageable, more easily understood representations of the data and potential reproduction
of the data sets — thus resulting in much more significant data compression.

24.3.3 Human-Centered Computing

At the heart of research to improve air traffic management methodologies is the need to optimize the
performance of geographically distributed teams of experts (e.g., pilots and air traffic controllers) and
the supporting information system. Likewise, in the emerging reality of complex system design by teams
of experts and in supporting data distributed around the globe there is a critical challenge to take a
“system” view that is distinguished from current views of design. Specifically, formal approaches are
called for — approaches that provide a more holistic view which includes the cognitive and perceptual
abilities of humans, computational assets, and other intelligent agents and knowledge sources. In both
of these cases, initiative resides both with the human experts and with the information system. Under-
standing and improving the performance of such “mixed-initiative” systems is a primary research focus
of Human-Centered Computing within NASA. Enhancing the performance of a single expert rather than
a team is of primary importance in some applications domains, and NASA is addressing this need as
well as a part of its Human-Centered Computing thrust, where “system” refers to the individual and the
supporting information system.

To better understand this revolutionary approach to systems design, consider past epochs of human
experience. In the agrarian society of the past, humans equaled physical labor. Because humans spent
the majority of their time performing labor, they had very little time to perform advanced problem
solving, theory formulation, and the creative activities required for invention and discovery. In the
industrial society, machines began performing physical labor and the humans equaled the brains of these
machines. Humans had more freedom to perform advanced cognitive activities during this epoch, and
science made great strides. In the information age, the brain of the human is extended and enhanced by
a machine — the computer. Even trivial applications significantly extend human capabilities. Knowledge
and the application of knowledge is embodied in software. For example, many people now prepare their
taxes with the help of software tools that embody much of the skill and knowledge possessed by tax
preparers. As the intelligence of systems increases, the more mundane and lower level reasoning activities
can be delegated to computers, freeing the humans to perform the more advanced and creative cognitive
activities. Results in this area will affect not only human exploration of distant planets, but also the
abilities of humans to perform mission operations, air traffic control, and other high-level cognitive
activities.

24.4 High-Performance Computing and Networking

Within NASA, three complementary approaches to high-performance computing are being pursued in
parallel. First, working with industry partners, NASA is prototyping progressively larger, single system
image machines based on commodity processors, and a new programming paradigm for such machines
called multilevel parallelism. This combination of architecture and programming model has already
shown extraordinary promise for complex numerical simulations. Typical results on production fluid
dynamics and molecular dynamics codes have shown linear increases in sustained throughput with
increasing processor count. These results extend to 512 processors, the largest machine tested to date.
Moreover, the alterations in the vector version of the code to achieve these results with multilevel
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parallelism are a small fraction of that required to implement the Message Passing Interface (MPI).
Evaluation of this combined architecture and programming paradigm is now underway for other types
of simulations.

Second, in partnership with the National Science Foundation, NASA is performing the computer
science research and demonstrations required to realize distributed, heterogeneous computing. Compu-
tations of the future are expected to require more computational capability than resides at any single
site, necessitating the use of geographically distributed assets (e.g., computers and databases) connected
over high-speed networks.

Third, research on new approaches to in-space computing are being studied. Size, weight, energy
consumption, and space hazards are all problematical in this unique environment. Quantum and molec-
ular computing may have the potential to overcome some of NASA’s concerns about computing in space.
The radiation and solar effects on computing could be offset by the massive parallelisms these approaches
may offer. The size, weight, and power consumption concerns are also positively affected by these newer
computing architectures. Perhaps the most important benefit is the new computational models and
computer languages that may be implied by these approaches. Revolutionary computing approaches are
radically different from the traditional von Neumann and the more conventional non-von Neumann
approaches to architecture. As such, the computational models implied may provide radically new insights
into problem solving — possibly helping scientists to find tractable solutions to problems for which only
intractable algorithms are currently known. These algorithms may allow for feasible algorithms within
the constraints of current technologies. More straightforward solutions to problems may result. (Cur-
rently, solutions to these problems are approximate solutions — given the intractability of the problems
— making them much more complex to develop.) This space computing element is focused not on
building quantum or molecular computers, but on the computational models and languages implied by
these approaches, as well as in the development of specific NASA-relevant algorithms that would allow
for the immediate exploitation of these technologies when they become available.

24.5 Conclusions

NASA’s understanding of the importance of advanced IT to its future has grown dramatically in recent
years, and this realization has resulted in careful strategic planning of IT R&D. To address shortfalls and
opportunities identified, programs have been redirected to support new approaches to high performance
computing, and a new Intelligent Systems Program has been initiated which focuses on automated
reasoning for autonomy and data understanding, human-centered computing, and revolutionary com-
puting concepts. These redirections and new activities are expected to position NASA to carry out the
variety of difficult space exploration and earth science missions of the future, as well as serve as a critical
contributor to enhanced air traffic management.
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25.1 Introduction

Sensor Information Technology (SenseIT) is a program of the U. S. Department of Defense Advanced
Research Projects Agency (DARPA) that began in fiscal year 1999. A number of research groups are
exploring networking and organizational problems posed by large networks of unmanned, intelligent,
battery-powered, wireless sensors.

The use of distributed sensor networks is of great interest to the Department of Defense (DoD). The
work performed by this project is applicable to a number of heterogeneous unmanned sensing platforms.
The deployment of large numbers of sensing nodes poses several new technical problems. Sensor networks
resemble other wireless networks (such as cellular telephones) but have unique aspects, which are
introduced in this chapter.

Several applications exist for this technology within the DoD, the most obvious being in the realm of
intelligence, surveillance, and reconnaissance (ISR): automating deployment of heterogeneous sensor
networks and interpretation of their readings. SenseIT could protect troops in the field as effectively as
land mines, without many undesirable side effects. Civilian applications include law enforcement, agri-
culture, traffic monitoring, security, and environmental monitoring.

SenseIT provides a new perspective to programming embedded systems. It considers revolutionary
approaches to coordination of multiple computers with power, time, bandwidth, and storage constraints.
A chaotic network of small, inexpensive, unreliable systems form a large, powerful, dependable system.

Richard R. Brooks
The Pennsylvania State University
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An extreme example of this idea is a network made up of “smart dust.”1 SenseIT is defining the interface
between cyberspace and the real world.

In the SenseIT framework, sensor fusion is a type of collaborative signal processing. SenseIT is both
an application of sensor fusion, and a context for collaborative processing in evolving information
infrastructures.

25.2 Problem Domain

Sensors return information about their environment. This requires physical interaction with the real
world. Sensors may be passive or active. Passive sensors simply record emissions already present in the
environment. Active sensors emit a signal and measure how the environment modifies the signal. Several
sources describe sensor design in depth.2-4

The quality of sensor readings often depends on the proximity of the sensor to the event being observed.
For events in hazardous environments, this places sensors where they can be easily detected and/or
destroyed. This has a number of immediate consequences:

• Remotely operated, unmanned sensors are attractive.

• Sensor nodes should be autonomous with internal power supplies.

• Multiple nodes are needed to tolerate component failures.

• Sensor nodes should be inexpensive.

• Wireless communications increase deployment flexibility.

Hazardous sensing applications require networks of inexpensive, battery powered, autonomous, wireless,
intelligent sensors.

For large numbers of electronic devices in hazardous terrain to be a reality, the devices must be very
inexpensive. To keep expenses down, individual components will have severe constraints. The most
obvious constraints are

• Power

• Communications bandwidth

• Sensor precision

• Local data storage

• CPU bandwidth

None of these constraints exist in isolation. For example, computation and communication use power.
Additional operational constraints exist, such as

• Information latency

• Accuracy of results obtained

• Ability of the system to be reprogrammed

• System longevity

All of these constraints are tradeoffs. Increased system bandwidth reduces response latency. It also
increases the power drain on the system, reducing system longevity. Increased accuracy may be achieved
through massive redundancy, which increases system cost.

These tradeoffs are context dependent. Sometimes information is required promptly and accuracy can
be sacrificed. Other times, the most important factor will be power conservation to increase system
longevity. The tradeoffs need to be quantified. They will change as technology advances. Moore’s law5

promises that CPU bandwidth will become increasingly inexpensive and require less power. The power
required to transmit data will likely remain almost constant. This implies that, in the future, as much
processing as possible should take place local to the sensor in order to save battery power. One goal of
SenseIT is to develop technology for working within equipment constraints. The sensor network must
be flexible enough to adapt automatically to the dynamic environment it monitors.
©2001 CRC Press LLC



        
Another issue considered by SenseIT is system configuration and tasking. Configuring a system con-
taining thousands of nodes is not trivial. Similarly, assigning duties to thousands of individual machines
at run-time is an onerous task. Networks should configure themselves and adapt to changing conditions.
Operators should be able to program the system by declaring the types of information required. They
should not be required to assign lower-level tasks to individual nodes.

Many advances have been made in wireless networking. Up to now, wireless infrastructures were
designed as extensions of the telephone network. Cellular telephone network traffic is symmetrical,
supporting conversations between two individual communications devices. Connections are maintained
for relatively long periods. Routing seeks a network path that can be maintained. Contrary to the
telephone network, wireless devices are usually mobile. Communications devices are tracked as they
move through the infrastructure. In most applications, routing tables are dynamically updated, or mod-
ified on the fly. The wireless infrastructure strives to keep an uninterrupted dialog between two or more
parties.

Sensor networks require a radically different approach. Many, if not all, sensors have fixed positions.
Tracking motion is not of primary importance. Communication is not between two individuals. In
general, a user poses a query about a region. Sensors in the region return data. Figure 25.1 shows this
asymmetry. A request is sent over the network. Data is returned. Connections are not maintained for
long periods. Asymptotically optimal routing is irrelevant. Transient effects are very important. The
network address of a sensor node will be less important than its physical location. Routing tables and
network addresses may not be required at all.

Effective sensor networks will require advances in ad hoc wireless networking. The network must be
able to configure itself and distribute tasks. Configuration and tasking will vary with the operational
context. The network will consist of a large number of inexpensive components, which are individually
unreliable and severely constrained. By coordinating activities, a reliable adaptive infrastructure will
emerge. This represents a new application area and revolutionary approach to embedded systems
programming.

25.3 Existing Systems

SenseIT takes place in the context of an evolving technology infrastructure. This section reviews systems
that are precursors to SenseIT and their role in the current DoD infrastructure. An essential building
block of SenseIT is wireless communications infrastructure. Since 1990, the military has had a Single
Channel Ground and Airborne Radio System (SINCGARS), which provides connectivity to the armed
forces via a common receiver and transmitter platform. It supplies large-scale networking connectivity
but does not have the autonomy and adaptability required by sensor networks.

FIGURE 25.1 Cellular telephone wireless networks are symmetrical with voice traveling in both directions. Sensor
network communication is asymmetric.

User with�
communicat�ions�

device�

User with�
communicat�ions�

device�

User with�
communicat�ions�

device�

User with�
communicat�ions�

device�

Wireless�
infrastruct�ure�

Wireless�
infrastruct�ure�

User with�
communicat�ions�

device�

User with�
communicat�ions�

device�

Wireless�
infrastruct�ure�

Wireless�
infrastruct�ure�

Wireless�
infrastruct�ure�

Wireless�
infrastruct�ure�

Sensor�
node�

Sensor�
node�

Voice� Voice�

Request� Request�

Data�Data�
©2001 CRC Press LLC



      
Similarly, unattended ground sensors (UGS) have been used by the military since the Vietnam War.
The current generation of UGSs is the Improved Remotely Monitored Battlefield Sensor System
(I-REMBASS), which remotely detects and classifies movements of enemy vehicles and personnel. The
system supports magnetic, seismic, acoustic, infrared, and meteorological sensors. Unfortunately, these
UGSs have limited processing capabilities and do not work cooperatively. I-REMBASS devices must be
configured and monitored by a trained operator. One operator station can simultaneously display infor-
mation from a number of sensors.

Other ISR equipment includes Unmanned Aerial Vehicles (UAVs) and Remotely Piloted Vehicles
(RPVs) that perform aerial surveillance. Networked cooperation is very limited. Enemy forces easily
detect these vehicles. UAVs require sophisticated onboard processing. This intelligence is currently
devoted almost entirely to navigation.

Remote ISR can be provided either by satellite surveillance or the Joint Surveillance Target Attack
Radar System (JSTARS). JSTARS is an airborne platform with advanced multi-mode radar. It is capable
of viewing wide swaths of a battlefield. Ground reception of JSTARS information generally requires a
large and expensive ground station. Satellite surveillance and JSTARS both provide invaluable ISR infor-
mation from a distance, making them less vulnerable to attack. On the other hand, they are expensive
centralized systems with potential single points of failure. Atmospheric effects can also obscure the
battlefield from surveillance.

SenseIT has the potential to unite these existing technologies into a single framework. Furthermore,
adding inexpensive sensor nodes to these systems will greatly extend their functionality with little addi-
tional cost.

25.4 Prototype Sensors for SenseIT

The current SenseIT program uses prototype intelligent sensor nodes developed by Sensoria. The nodes
provide the capabilities necessary for this research, in an adaptable framework. Wireless communications,
multiple sensing modalities, and modern computing facilities are combined in a compact battery-
powered system.

Two processors provide computation support. The primary processor is a commercially available
personal data assistant running Microsoft Windows CE. Most processing is done on this node. It has
four megabytes of memory, which serves as main memory and file storage. Windows CE can be pro-
grammed using Microsoft visual programming languages. A second processor is used for real-time
processing. It is the interface between the main processor and the wireless network, the sensors and the
battery power supply. This processor uses a real-time executive and can also be reprogrammed.

FIGURE 25.2 Prototype sensor used for SenseIT proof-of-concept demonstrations.
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In order to conserve power, the system has a power-saving mode capable of powering off the Windows
CE processor. The preprocessor can shut down and reboot the Windows CE processor as necessary.

Three sensing modalities are supported by the prototype. Commercial microphones are used for
acoustic sensing. Geophones measure seismic vibrations. Two-pixel infrared imagers detect motion. Seven
different sensing configurations are possible, with any combination of the three. Fielded nodes would
usually have a single sensing modality per node.

Two types of communications are available. IP wireline communications use an ethernet adapter
attached to the Windows CE device for development support and system metrology. Documented
pathologies of TCP/IP for wireless communications have prompted the developments of new protocols
for wireless communications in the field.6 Fielded systems will have a small number of gateway nodes
connected to the sensor network (via a low-power radio) and the Internet (via a higher-power radio).
As a result, sensor readings could be accessible from anywhere in the world.

The primary mode of communications in the field is an internal wireless transceiver, which uses time
division multiplexing (TDMA) and frequency hopping (“blue tooth”) to control communications
between nodes. A master node establishes the frequencies used by nodes in its neighborhood for com-
munications. In most situations, all nodes will be placed on the ground. The communications range of
the nodes will be very limited, primarily due to reflections of communication signals from the ground
known as “fading.” This requires long-range communications to pass through multiple nodes on the way
to their final destination.

Each node is equipped with a Global Positioning System (GPS). When nodes locate three satellites,
they can accurately determine their position and the current time through triangulation. Position infor-
mation is needed for data routing and querying. Just as important is the ability of GPS to provide a
universal time stamp, which automatically solves many difficult coordination problems. Unfortunately,
GPS’s utility can be limited in urban environments, where obtaining a clear line-of-sight to satellites is
difficult.

A large network of these nodes will be scalable and flexible. It will need to partition itself into a set
of neighboring clusters. A number of multihop paths will exist between any two sensor nodes. New
ad hoc networking methods are needed for organizing and routing data packets in this type of network.

25.5 Software Architecture

Figure 25.3 shows a functional decomposition of the system. In the figure, each component is labeled
with the section that discusses it in this chapter. This section provides a brief overview of the components
and how they interact.

Note that the majority of the system is autonomous. Users interact only with the declarative front end
(described in Section 25.6). Network tasking is driven by the user expressing the type of information
desired. This is translated into processes to be performed either by the network as a whole or by individual
nodes.

A system of services and subscriptions has been developed to distribute tasks among nodes. Nodes
are aware of their position and capabilities. They advertise the services they can provide to the network.
Interested parties may subscribe to the services. This simple concept is a flexible way of matching needs
to abilities. It is described in Section 25.7.

Mobile code (Section 25.8) is used to describe two approaches that cooperate to provide a flexible
infrastructure for network operations. Mobile code can be downloaded and executed on any node when
required. This capability allows any node to be dynamically reconfigured, reprogrammed, and retasked.
Mobile code interacts with an active network language, which allows network routing protocols to be
modified at run-time.

Section 25.9 describes some of the network routing innovations. Requests are made for data, rather
than specific nodes. In addition, multihop routing provides a large number of routes through the network.
Centralized coordination is inappropriate; therefore, determining how to make globally desirable routing
decisions locally is very important.
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Collaborative signal processing is described in Section 25.10. Collaboration is integrated into the
routing protocols effectively combining data routing and sensor fusion. Constructing a large network of
individually unreliable components adds many new constraints. Any approach must be an asynchronous
algorithm. No assumptions can be made as to which inputs will be available and when they will arrive.
Similarly, algorithms that can provide estimates quickly are desirable. Estimates should quickly converge
to precise answers as more time is available for processing.

The final function shown in the diagram is information security. Section 25.11 discusses information
security concerns. Sensor networks have mobile code and data. Transmission must be reliable. Corrupted
programs may have catastrophic effects. The source of code and data must be verified. These problems
are universal for networked systems. They are even more difficult for a system with limited bandwidth,
power, storage, and computation.

25.6 Declarative Language Front-End

The user does not interface directly with sensor nodes or the network. Network configuration and tasking
is done autonomously in response to user requests. Users interface with the network through a declarative
front end located on a workstation on the Internet. The front-end communicates with the SenseIT
network through a small number of gateway nodes with long-range radios. These nodes transfer tasks
from the front-end to sensor nodes, and data from sensor-nodes to the user.

Front-end design is divided into three subtasks: graphical user interface, task generation, and execution.
The graphical user interface is being developed cooperatively by USC ISI East and the Virginia Institute
of Technology. Java applets present a graphical view of the region. Users can indicate regions of interest
and the types of data desired. Data types include specific target types, movement direction, etc.

These declarations are passed to an agent-based system developed at the University of Maryland, which
decomposes requests into specific tasks.7 The tasks are passed to a distributed device database, Cougar,
developed at Cornell.8 The subscription method discussed in Section 25.7 maps information require-
ments to information providers. This meta-information is absolutely necessary. In general, transmitting
housekeeping information needs to be avoided since it consumes system resources. Parts of Cougar are
resident on the user workstation; other parts are query proxies that are resident on every SenseIT node.8

25.7 Subscriptions

Lincoln Laboratory proposed the use of a subscription service for data routing. The concept is simple
and elegant. A similar concept for this type of application can be found in Marzullo.9 Every node is aware

FIGURE 25.3 Functional decomposition of the SenseIT software architecture. Numbers refer to chapter sections
describing the functionality.
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of its physical configuration and position. As part of the network initialization process, each node
advertises its position and capabilities. These advertisements are propagated through the network to the
user workstation, where they are stored as metadata.

When users pose questions, the front-end uses the metadata to determine those nodes that are capable
of providing the information desired. Among other things, the system can inform the user immediately
when no relevant information sources exist.

25.8 Mobile Code

The SenseIT network is a chaotic system. Individual elements are unreliable. Each node has limited
storage and power available. In some cases, deploying a network and waiting years to use it is desirable.
During that time, system software and targets of interest can change. Two research groups are looking
at how code mobility can create a more adaptable infrastructure.

The Pennsylvania State University Applied Research Laboratory is implementing mobile code software
that allows legacy code to be downloaded and executed on demand. This has a number of advantages.
Nodes can be implicitly reprogrammed. If a new target type is found in the field, the relevant classification
programs can be downloaded for use. If local storage is not sufficient for all the tasks required by a node,
tasks could be downloaded as needed. Programs not in use can be deleted. Halls10 gives more information
on applications of mobile code.

In addition, an active network system is being built on the mobile code infrastructure. The Network
Flow Language (NFL), developed at Columbia University, allows network routing protocols to be mod-
ified at run-time. Extended markup language (XML) packets contain code defining new routing protocols.
As they pass through the network, global network behavior can be reprogrammed.

25.9 Diffusion Network Routing

The SenseIT network was not designed for interpersonal communication. It was built for information
retrieval. Because of this, addressing is not based on the recipient of the call; it is based on the geographical
position of nodes. In addition, the recipient may not be unique. A query may concern a region simul-
taneously surveyed by multiple nodes.

Subsequently, researchers at the University of Southern California Information Sciences Institute11 and
UCLA have proposed routing algorithms based on information gradients and data diffusion. Requests
and data flow through the network in a manner reminiscent of fluid flowing through a solid. An important
part of these routing protocols is collaborative signal processing and data fusion. As data flows through
the network, it can also be compressed. By combining individual readings and extracting salient obser-
vations, data integrity is increased. In this manner, the network becomes a data fusion and interpretation
processing system.

25.10 Collaborative Signal Processing

The use of multiple sensors can increase data dependability. Just as repeating a single experiment a
number of times provides statistics allowing more accurate determination of a parameter value.12 When
multiple sensors have readings of an area of interest, their data can be combined to derive a more accurate
value. Of particular interest is the use of multiple readings for increased accuracy in target recognition.

Current work focuses on integrating information fusion into the diffusion routing algorithms. Read-
ings from sensors in a neighborhood are combined to provide a more accurate reading. The initial
approach uses a weighted voting algorithm13 to provide a decision-in, decision-out level of fusion.14 This
will be a baseline for later work.

The distributed nature of the problem and unreliable nature of individual nodes renders many com-
mon methods, such as the Kalman filter, inappropriate. These approaches need to be extended. They
need to be asynchronous algorithms,15 accepting data as it arrives and tolerating failures of individual
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nodes. They should also be anytime algorithms16 that provide accurate approximations at any time. The
quality of the answer should quickly converge to the correct value.

25.11 Information Security

SenseIT considers several data security problems in developing a unique networking infrastructure.
Adaptability and reconfiguration occurs at many different levels in the system. These capabilities are
needed to guarantee that the system is immune to both accidental and intentional corruption.

Data and programs passing through the network must be reliable, but some information redundancy
is required to guarantee against accidental corruption. On the other hand, compressing information
reduces power consumption. These requirements are at odds. In addition, the system needs to be
insensitive to jamming and interference.

The mobile code used in this program depends on a trusted code model. No attempt is made to verify
that code does what it is intended to do. The source of the code is verified. If the code comes from a
known provider, it will be executed. This is appropriate for SenseIT because the mode of delivery of
programs does not add a new danger. The execution of Applets over the Internet is different, and a
sandbox is required to protect systems using Internet browsers.

In addition to these factors, only authorized users should be able to interpret data from the SenseIT
network. This implies that some type of data encryption is necessary. Data encryption can also be used
to verify the source of programs and data on the network. An open problem is how to best distribute
keys to the network before deployment. Another problem is the power required for data encryption.

In addition, automated target recognition (ATR) should be performed as close to the sensor as possible.
This reduces the amount of data to a few bits, which reduces the power required for data transmission.
Securely encrypting messages that consist of a very small number of bits is challenging.

25.12 Summary

This chapter provided a brief overview of the DARPA Sensor Information Technology (SenseIT) program,
which is developing technologies required for large networks of intelligent sensors. These networks can
be cost-effective for a number of military and civilian applications. To be effective, new approaches are
needed for distributed systems and cooperative processing.

Acknowledgments and Disclaimers

Efforts sponsored by the Defense Advance Research Projects Agency (DARPA) and Air Force Research
Laboratory, Air Force Materiel Command, USAF, under agreement number F30602-99-2-0520 (Reactive
Sensor Network). The U.S. Government is authorized to reproduce and distribute reprints for Govern-
mental purposes notwithstanding any copyright annotation thereon. The views and conclusions con-
tained herein are those of the authors and should not be interpreted as necessarily representing the official
policies or endorsements, either expressed or implied, of the Defense Advanced Research Projects Agency
(DARPA), the Air Force Research Laboratory, or the U.S. Government

References

1. Wylie, M., Scientists develop a new breed of dust, http://www.msnbc.com/news/321983.asp?cp1 = 1,
October 13, 1999.

2. Brooks, R.R. and Iyengar, S.S., Multi-Sensor Fusion: Fundamentals and Applications with Software.
Prentice-Hall PTR, Upper Saddle River, NJ, 1998.

3. Hovanessian, S.A., Introduction to Sensor Systems, Artech House, Norwood, MA, 1988.
4. Fraden, J., AIP Handbook of Modern Sensors: Physics, Designs, and Applications, American Institute

of Physics, New York, 1993.
©2001 CRC Press LLC



                            
5. Hwang, K., Advanced Computer Architecture, McGraw Hill, New York, NY, 1993.
6. Chaskar, H.M., Lakshman, T.V., and Madhow, U., TCP over wireless with link level error control:

analysis and design methodology, IEEE/ACM Trans. Networking, Vol. 7, No. 5, 605–615, October
1999.

7. Subrahamian, V.A. et al., Heterogeneous Agent Systems, MIT Press, Cambridge, MA, 2000.
8. Bonnet, P. et al., Query Processing in a Device Database System, Ncstrl.cornell/TR99-1775,

http://www.ncstrl.org, 1999.
9. Marzullo, K. and Wood, M.D., Tools for Constructing Distributed Reactive Systems, Ncstrl.cor-

nell/TR-91-1193, http://www.ncstrl.org, 1991.
10. Halls, D.A., Applying Mobile Code to Distributed Systems, Ph.D. Dissertation in Computer Science,

University of Cambridge, UK, June 1997.
11. Estrind, D. et al., Next century challenges: scalable coordination in sensor networks, ACM MobiCom

99, Seattle, WA, August 1999.
12. Montgomery, D.C., Design and Analysis of Experiments, Wiley, New York, 1984.
13. Saari, D.G., Geometry of voting: a unifying perspective, Proc. Workshop on Foundations of Infor-

mation/Decision Fusion with Applications to Engineering Problems, DOE/ONR/NSF, Washington,
DC, August 1996.

14. Dasarathy, B.V., Decision Fusion, IEEE Computer Society Press, Los Alamitos, CA, 1993.
15. Bertsekas, D.P. and Tsitsiklis, J.N., Parallel and Distributed Computation: Numerical Methods, Pren-

tice Hall, Englewood Cliffs, NJ, 1989.
16. Zilberstein, S., Operational Rationality Through Compilation of Anytime Algorithms, Ph.D. Disser-

tation, Dept. of Computer Science, University of California at Berkeley, 1993.
©2001 CRC Press LLC



                       
26
An Evaluation

Methodology for
Fusion Processes Based
on Information Needs

26.1 Introduction
26.2 Information Needs

Database Analysis

26.3 Key Concept
26.4 Evaluation Methodology
References

26.1 Introduction

Fusion is a part of a larger Department of Defense (DoD) context — command, control, communication,
computers, intelligence, surveillance and reconnaissance (C4ISR). C4ISR capabilities are enablers for the even
larger context of information superiority. A key question that is asked at decision-making levels of the DoD
is how C4ISR supports the military commander in the efficient execution of military operations. The question
is germane at budget levels where, for example, C4ISR competes with weapons platforms for funding.

The Joint C4ISR Decision Support Center (DSC)* in DoD has performed numerous studies to deter-
mine the value of C4ISR in general and for fusion in particular. The DSC view is that value does not refer
to measures of the technical merits of alternative ISR approaches; it refers instead to the value of C4ISR
to support military command and control (C2). Increasingly, the C2 process has become a near-real-time
decision based on perceived information. Obviously better ISR improves the data and information, but
can it do so in a timely manner with high confidence? And what is the value of that information?

Fusion of information across several intelligence disciplines in the DoD context plays an essential role
in producing the knowledge provided by C4ISR systems. The problem addressed by the DSC is to attempt
to quantify this statement by directly evaluating the value of fusion in the satisfaction of “information
needs,” as defined by the DoD community. This chapter gives an overview of the methodology used to
perform this type of evaluation.1

*The DSC is a part of the Office of the Secretary of Defense, C3I Directorate and has performed for 4 years studies
and analyses for both OSD/C3I and the Joint Staff.

Hans Keithley
Office of the Secretary of Defense 
Decision Support Center
©2001 CRC Press LLC



                   
26.2 Information Needs

The initial question is, “What are DoD Information Needs?” The approach used was to gather a number
of published sources from various segments of the DoD community. The sources are shown in Table 26.1.

These sources contain information needs (i.e., user questions) that are not C4ISR oriented. In other
words, the questions are asked without considering the mechanism used to provide the requested data
or information. They, therefore, form a basis to evaluate multi-intelligence (INT) ISR systems. In general,
different people with different terminology and objectives wrote each information need. To provide rigor
in evaluation, these sources must be structured to rationalize the terminology describing requested
information needs and associated quality requirements. They are, therefore, “mapped” to a canonical
structure that fits the great majority of the information needs. The objective of this process is to facilitate
evaluation of the satisfaction of these needs by ISR and fusion alternatives. The canonical information-
needs structure contains the following four classes:

1. Actions  — specifically requested data/information. Note that “detect” is implicitly included in
location. Table 26.2 summarizes the action category.

2. Objects — information needs are expressed in terms of objects on the battlefield. These objects
have different sizes, ranging from Corps to individual tank companies. Each object can have a
different movement policy and different “signature” characteristics. The DSC has classified each
object class in Table 26.3 into five size categories. For example, the OB class categories are: Corps,
Unit, Battalion, Brigade, and Company objects. Each information need is associated with a specific
object category.

TABLE 26.1 Sources of DoD Information Needs

Sources of Information Needs

Army Tactical Needs Database
Customer Information Needs Assessment
Community Information Needs Forecast
Assured Support to Operational Commanders
Ground Information Requirements Handbook
U.S. Forces Korea Indication and Warning Requirements

TABLE 26.2 Description of Actions

Action Description

Location Where is it?
Track How is it moving?
Identity Who is it?
Status/Activity What is it doing?
Capability What can it do?
Intent Who, what, when, where, how, why?

TABLE 26.3 Description of Objects

Object Class Description

Order of Battle (OB) Military (specifically mobile elements)
Infrastructure Stationary (e.g., bridges)
Geospatial Terrain, weather
Networks Integrated air defense systems, computer
Political Leaders, terrorists, etc.
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3. Functions  — the standard intelligence functions that support military operations; definitions for
each function can be found in DoD joint publications. 

4. Missions — intelligence needs are usually expressed in the context of specific military missions.
Three important missions used for evaluation are

• Precision engagement — (e.g., air strikes against fixed and moving targets, including time
critical targets)

• Dominant maneuver — ground maneuver (ground maneuver and halt phase)

• SEAD — suppression of enemy air defenses.

The information needs (i.e., questions) surveyed usually imply a level of “quality” questions. For
example “locate a tank to within 1000 meters to an implied confidence level.” Timeliness requirements
are occasionally included, but a scenario context usually provides this data. The canonical structure that
includes quality requirements (QR) with actions is given in Figure 26.1. This is a “knowledge matrix”
that allows the mapping of diverse information needs onto a single structure, which will be used for
evaluation. 

Each cell in Figure 26.1 has specific definitions that define the technical meaning of the amount of
knowledge implied. In the analysis procedures, numbers are associated with each cell that reflect the
probability that knowledge at that level can be achieved. The advantage of this structure is that all aspects
of the C4ISR problem can be expressed on this matrix. Each object on the battlefield has an associated
knowledge matrix. Both intelligence preparation of battlespace (IPB) knowledge and the capability of ISR
sensors can be mapped onto this structure. The knowledge gain of fusion can also be shown in this same
structure. In general, fusion will improve the accuracy and confidence of information (Level 1 of the
Joint Directors of Laboratory (JDL) data fusion process model) and will also allow inference to capability
and intent (Levels 2 and 3). The significance of this construct is that the information needs and the
performance of C4ISR + fusion systems are expressed in the same matrix, which facilitates calculation
of metrics that show the satisfaction of information needs. 

A more detailed description of each cell in the knowledge matrix is available at www.dsc.osd.mil.

FIGURE 26.1 Knowledge matrix.

QR Location Track Identity Activity/State Capability Intent 

5 5 meters Vectors and
prediction 

Specify 
object and 
hierarchy 

Many actions, 
states, and 
linkages 

Many 
factors and 
influence 

Desired end state and intent 
for future ops known  

4 10 
meters Vectors Specify 

object 

Many actions
and states;
several linkages 

Several 
factors and 
influence 

Desired end state known
and intent for future ops 
determined 

3 20 
meters 

General 
speed and 
direction 

Type object  
Several actions 
and states; one 
linkage 

Few factors 
and influence 

Desired end state and intent 
for future ops determined 

2 100 
meters 

Toward or 
away 

Distinguish 
object 

Few actions and 
states; no 
linkages 

Few factors 
and no 
influence 

Desired end state 
determined and intent for 
future ops inferable 

1 1 Km Stationary 
or not 

Discriminate 
object 

Single action or 
state 

One factor 
and no 
influence 

Desired end state inferable 
and intent for future ops 
inferable 

0 10 Km Detect Detect Detect Detect 
Desired end state inferable 
and intent for future ops 
unknown 

Data Knowledge
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26.2.1 Database Analysis

The DSC database on information needs contains approximately 3500 specific questions or needs for
the three missions evaluated. An analysis of this data provides quantification of the exact military
information needs. Two types of analysis are presented here.

Figure 26.2 gives the distribution of the intelligence functions, see Table 26.4 for an explanation of the
acronyms with respect to each of the missions. IPB is more important for dominant maneuver, while
targeting and identification are strongly associated with precision engagement.

The distribution of actions and associated quality requirements are given in Figure 26.3. The figure shows
the distribution of the information needs actions with respect to each mission. Note that intent is a question
associated primarily with dominant maneuver, while track is primarily a precision engagement question.

TABLE 26.4 Description of Intelligence Functions

Function Description

I&W Indications and warning
IPB Intelligence preparation of the battlespace
SD Situation development
TGT Targeting
FP Force protection
BDA Battle damage assessment

FIGURE 26.2 Distribution of information needs functions with respect to missions.

FIGURE 26.3 Distribution of information needs actions with respect to missions.
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A second type of analysis involves the generation of statistics for each cell of the knowledge matrix.
The total number of times an information need was stated for a particular action at a particular quality
requirement was aggregated for comparison with other actions and quality requirements. Table 26.5
represents a summary of the actions and associated quality requirements of information needs for a
composite of the three combat missions mentioned above. Table entries are in percentages. See Figure 26.1
for a description of the quality requirements. Note that Quality Level 0 does not mean “no information,”
it indicates “very poor information.” The action “detect” is associated with a location QR of 0.

Examination indicates that the majority of the location information needs were for 1 km and some
needs were for 5 meters. Remember that these numbers represent only the operational questions and do
not reflect the total number of times in a warfighting scenario that the question was asked. Thus, although
the number of 5-meter questions is small, it may have been asked many times and may be for very
important targets. These dynamic effects are reflected in the evaluation phase by a detailed scenario that
contains this data. With this proviso in mind, other observations can be stated: the most common tracking
requirements are for general speed and direction. The numbers for identification (ID) indicate that
operational information needs require a high level of ID (specify an object, such as an a T-72 tank). The
highest level of ID in the knowledge matrix requires not only good physical ID, but also knowledge on
the military hierarchy of the object. Requirements for status and activity do not reflect high quality
requirements; the most frequently asked single question is for activity information to support Battle
Damage Assessment (BDA). Capability information needs reflect higher quality requirements to know
several to many factors that make up capability. Finally, intent requirements tend to be at the low end
of the quality scale. This implies that intent be inferable from the perceived knowledge — users are not
asking for a definitive statement on intent. This certainly does not mean that knowledge about intent is
less important but that either (1) users prefer to infer this themselves (i.e., in the human mind), or (2)
users may not be aware of the capability of current technology to provide automated support to intent
estimation.

The analysis of the database is directed toward the generation of a metric to measure information
needs satisfaction by ISR + fusion. The metric (see Section 26.4) is oriented around the intelligence
functions and actions. Table 26.6 shows the distribution of 3229 individual information needs in the
form to evaluate the metric. Individual needs for each function shown are aggregated over all quality
levels and all three of the study missions. Analysis indicates the following:

TABLE 26.5 Distribution of Actions to Support Operational Information Needs

Quality 
Requirement

Locate 
(%)

Track 
(%)

Identify 
(%)

Status/Act 
(%)

Capability 
(%)

Intent 
(%)

5 2 2 16 12 29 5
4 2 18 80 10 40 15
3 6 42 3 14 28 7
2 28 27 1 28 1 19
1 47 11 0 36 2 27
0 15 0 0 0 0 27

Totals 100 100 100 100 100 100

TABLE 26.6 Distribution of 3229 Information Needs (Actions vs. Functions)

Functions vs. Actions Location Track Identity Activity Capability Intent Total

Bomb damage assessment 0 0 9 144 13 0 166
Force protection 17 1 12 59 7 1 97
Indications and warning 83 1 68 177 21 20 370
Intel prep. of the battlefield 218 0 324 391 237 100 1270
Situation development 228 58 210 211 30 27 764
Targeting 150 69 161 141 41 0 562
Totals 696 129 784 1123 349 148 3229
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1. Targeting is driven primarily by location, tracking, and identification, but not intent. Level 1 fusion
to support these actions must be near real time.

2. IPB is strongly driven by the actions’ capabilities and intents. These are Levels 2-3 fusion products
and need not be near real time, since IPB is a planning function.

3. BDA satisfaction is driven primarily by determining activity. This is a Levels 1-2 fusion function
and supports a planning function.

The final analytic thread given here is the DSC mapping between the knowledge matrix structure and
the three fusion Levels 1-3 in Figure 26.4. This mapping is subjective, but can be used to show the
percentage of user information needs that are satisfied by the various fusion levels. The summary data
indicates that about half of combat information needs are met with Level 1 fusion and that 8% require
Level 3 fusion for satisfaction.

26.3 Key Concept

The knowledge matrix structure is essential to the process that measures the satisfaction of information
needs. As shown in Figure 26.5, all parts of the problem can be expressed on the same matrix. The
information needs are mapped to a specific set of cells in the matrix using the process suggested in
Section 26.1. Mapped information needs are assumed to imply a 90% confidence requirement on the
part of the user. Similarly, the performance of IPB and ISR can also be shown (also at 90% confidence)
on the same matrix. Finally, the information gain resulting from fusion can be expressed on the knowledge
matrix. Mathematically, all computations compute (i.e., estimate) the probability of knowledge at the
implied action and quality level.

26.4 Evaluation Methodology

The evaluation process seeks to answer the question of the value of C4ISR in general and fusion in
particular to the operational commander. This is accomplished by calculating the commander’s information

FIGURE 26.4 Distribution of information needs with respect to fusion levels.
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needs satisfaction and then determining the value of this satisfaction to the military outcome. Only the
first part of this process (needs satisfaction) is covered in this chapter. Steps in the process are

1. Choose an appropriate operational scenario. This should have hundreds to thousands of objects,
each with one or multiple “signatures” that can be detected by ISR. This scenario is the basis for
a Force-on-Force model that simulates the specified operational missions. The DSC uses a number
of Force-on-Force models that have been validated on previous studies.

2. Map the appropriate operational information need to a set of knowledge matrices associated with
that scenario object. Table 26.5 gives a cumulative count of this mapping for all objects included
in a DSC scenario for operational missions.

3. Model the appropriate ISR suite. Prefusion ISR performance can be represented as a cell in the
knowledge matrix at a 90% confidence level. Many ISR platforms perform multiple actions (e.g.,
a JSTARS will perform both tracking and some level of ID). In this case, entries are made in both
action columns of the knowledge matrix.

4. Using ISR-generated observations, model fusion at all levels by predicting the performance of each
fusion function. The DSC has created a fusion “process” model that shows the function of fusion
to convert data to knowledge. This model calculates the probability that fusion will achieve knowl-
edge at the appropriate quality level.2 In the process model, Level 1 fusion acts to improve the
accuracy or confidence for location, tracking, and identification actions. Levels 2 and 3 allow
inference to activity, capability, and intent. See Figure 26.4 for the estimated mapping of fusion
levels to knowledge.

5. Calculate an information needs “satisfaction” score for that object. The DSC fusion calculations
in item 4 above represent probabilities of knowledge. The scoring uses the fact that the information
need and the probability of satisfaction are expressed on the same knowledge matrix. This allows
a linear summation calculation to obtain the needs satisfaction score.

6. Transform aggregate scores over the operational scenario into a metric.

The DSC metric was at a high enough level to provide senior decision makers information to decide
on investment decisions. The format of the metric is shown in Figure 26.6 (numbers are representative

FIGURE 26.5 Key concept for evaluation.
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only). Each score is a number between 0 and 1 that is proportional to a quantity measure. It is calculated
as double sum of information needs satisfaction for a single object (in the scenario) and then over all
the appropriate objects in the scenario. The summation over objects was carried out for each of the
intelligence functions. Timeliness considerations are addressed implicitly in the scenario and warfighting
calculations. Because the DSC scenarios have thousands of objects, averaging with Monte Carlo tech-
niques is not necessary. Monte Carlo methods, however, would be appropriate for smaller scenarios
having fewer objects.

The final metric represents the operational information needs satisfaction for a particular ISR config-
uration and a particular fusion configuration and processing topology. Other configurations and options
yield a different score in the metric form. Comparison of the two (or more) metrics provides the required
investment decision information.

Figure 26.7 shows a schematic of the overall process, in terms of the major steps leading to the
computation of the Mission Score. The process involves objective, quantitative input and evaluations,
and also a degree of subjective judgment. Part of the core of this process involves the knowledge matrices
(see Figure 26.1) and, in turn, the probabilities assigned to the various cells of those matrices according
to the capability of any given fusion process.

FIGURE 26.6 Form of the information needs satisfaction metric (notional numbers).

FIGURE 26.7 Notional depiction of the overall scoring and evaluation process.
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The total evaluation method outlined here is complex. It is intrinsically multi-INT and fusion itself
is only a part of the process. In general, most aspects of the problem must be addressed simultaneously
before an overview can be obtained. However, focusing on individual cells of the metric to show particular
fusion aspects is also possible. For instance, one could focus on tracking to support precision engagement.
The scenario could be abstracted to a smaller target set. Performing the evaluation across all INTs and
all platforms is, however, essential. To do otherwise would generate a metric with too narrow of a focus.

The results of this process can be used to measure the value of fusion and more generally ISR. This
type of analysis is required in the DoD to evaluate investment decisions between fusion processes and
other aspects of military systems. Future developments involve using these techniques to directly evaluate
information superiority in the context of realistic operational scenarios.
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