

Chapter 3

Historical Approaches to
Information Security and

Information Assurance

Safety, reliability, and security concerns have existed as long as there have
been automated systems. The first standards for software safety* and software
security** were developed in the late 1970s; the first software reliability***
standards followed a decade later. These standards represented a starting point
for defining safety, security, and reliability design, development, assessment,
and certification techniques. Implementation, however, was fragmented
because safety, security, and reliability were handled by different communities
of interest and there was little communication or coordination between them.
These techniques were appropriate for the technology and operational envi-
ronments of their time. A time when computers and telecommunications were
separate entities; computer networks consisted of dedicated lines; and textual,
image, audio, and video data were isolated. Distributed processing had just
begun, but portable computers and media remained unknown. Many of these
techniques assumed that the computer was in one room or, at most, a few
local buildings.

This chapter reviews the historical approaches to information security and
information assurance, specifically the approaches to system security, safety, and

* MIL-STD-882A, System Safety Program Requirements, U.S. Department of Defense (DoD),
June 28, 1977.

** DoD 5200.28-M, ADP Computer Security Manual — Techniques and Procedures for Imple-
menting, Deactivating, Testing, and Evaluating Secure Resource-Sharing ADP Systems, with
1st Amendment, U.S. Department of Defense (DoD), June 25, 1979.

140

***IEEE Std. 982.1-1989, IEEE Standard Dictionary of Measures to Produce Reliable Software.

42

AU1163-ch03-Frame Page 27 Tuesday, September 11, 2001 7:48 AM

© 2002 by CRC Press LLC

reliability; what these approaches accomplished; and their limitations relative to
today’s technology. These historical approaches fall into seven main categories:

1. Physical security
2. Communications security (COMSEC)
3. Computer security (COMPUSEC)
4. Information security (INFOSEC)
5. Operations security (OPSEC)
6. System safety
7. System reliability

Many of these approaches originated in the defense and intelligence
communities. At the time, only national security information was considered
worth protecting. Gradually, these approaches spread to the financial com-
munity and others. The limitations of traditional security standards reflect their
origin. As Underwood

434

 notes:

�

They only assess products, not the development processes.

�

They evaluate components, not systems.

�

They required a specialized skill set by the assessor or the results were
invalid.

�

They focus on correct solutions, not necessarily cost-effective ones.

3.1 Physical Security

Physical security is defined as:

the protection of hardware, software, and data against physical threats
to reduce or prevent disruptions to operations and services and/or loss
of assets.

In summary, the purpose of physical security is to protect physical system
resources (as opposed to logical system resources) from (1) physical damage
that could impair operations and (2) theft.

Historically, physical security plans focused on four major challenges:

1. Protecting computer and communications resources from damage due
to fire, water, radiation, earthquake, or other natural disaster

2. Maintaining appropriate temperature, humidity, dust, and vibration levels
3. Providing sustained power levels despite transient spikes, brownouts,

and power failures
4. Controlling physical access to computer and communications resources

to known authorized personnel

The primary emphasis was on protecting the central computer facility or
computer center that housed the mainframe computer, operator console(s),
disk packs, tape drives, and high-speed printers. Secondary emphasis was

AU1163-ch03-Frame Page 28 Tuesday, September 11, 2001 7:48 AM

© 2002 by CRC Press LLC

placed on protecting remote “dumb” terminals, printers, and modems. Archives
and documentation relating to the design and operation of the mainframe were
generally protected in the same manner as the computer center (see Exhibit 1).

The computer center was located in a dedicated room, usually the first floor
or basement of a building because of the weight involved. The room was
constructed with flame-retardant raised floor panels and ceiling tiles, and water
sprinklers or chemical fire suppressants. Specialized heavy-duty cooling and air
filtering systems were installed to keep the computer center cool, usually 68°F.
Specialized flooring was installed to absorb vibration. Robust surge protection
and ambient power sources were provided by high-capacity uninterrupted
power supplies (UPS) and motor generators (MGs). In some circumstances,
computer equipment was designed to be resistant to radiation (Rad Hard). In
short, not much was left to chance in terms of the computer facility itself.

Likewise, a variety of measures were employed to control physical access
to computer and communications resources. Access to the computer center
and rooms containing remote equipment was restricted by badge readers,
combination locks, fingerprint scanners, and visual recognition to known
authorized operations staff, users, and maintenance staff. People without the

Exhibit 1 Traditional Physical Security Perimeters

AU1163-ch03-Frame Page 29 Tuesday, September 11, 2001 7:48 AM

© 2002 by CRC Press LLC

appropriate identification had to be escorted at all times. Some computer
centers activated a flashing red light to alert staff when an uncleared person
was in the room. Occasionally, the “two man rule” was implemented whereby
a minimum of two people had to staff the computer center at any time.
Depending on the classification level of printouts, they were sealed in opaque
plastic and had to be signed for. Equipment leaving the computer room had
to be signed for and accompanied by an authorized property pass. Video
surveillance cameras kept track of people and equipment entering and leaving
the computer center.

Communications traffic was isolated on different channels according to
classification level (red/black separation). Cables, and sometimes peripherals
and computer centers, were shielded (Tempest technology) to prevent ema-
nations that could be intercepted and interpreted. To prevent or at least
minimize wire tapping, dedicated lines connected remote floors and facilities
to the computer center and cable ducts were locked. DoD 5300.28-M

140

required that each remote physical device and location have a unique ID.
Prior to establishing a session, the CPU would verify that the device was
legitimate and had the proper authorization for the requested classification
level; if not, the connection was dropped.

Disk mirroring helped prevent the loss of critical data and the associated
downtime. During one phase, removable hard drives were in vogue. At the
end of a work day or shift, the hard drives were removed and locked in safes.
Locks of various types were used to prevent the theft of computers, disks,
tapes, archival media, and printouts. Off-site storage provided continuity of
operations in the event of a natural disaster or intentional sabotage.

The safe and reliable disposal of obsolete, unneeded, or inoperable clas-
sified resources remains a perennial problem. In the early days, elaborate
schemes were developed to erase, degauss, and destroy tapes, disks, hard
drives, and memory. For example, DoD 5200.28-M

140

 required:

�

Using a bulk tape degausser that performed a triple overwrite proce-
dure: first all binary 1’s, then all binary 0’s, followed by repeating a
single random alphanumeric character

�

Transitioning core memory from a binary 1 to 0 to 1 again, 1000 times

�

Exposing inoperable equipment to a magnetic field of 1500 Oersted
three times

Equivalent procedures were specified for destroying nondigital information,
such as an analog audio recording, that was recorded on magnetic media.
Paper resources were shredded and placed in burn bags. Today, volatile
memory should be overwritten before it is reused or powered down, much
like the above precautions taken to protect magnetic storage media, because
the contents can be reconstructed. As Gollmann

277

 notes, “The content loss
of volatile memory is neither instantaneous nor complete.”

In the past, significant emphasis was placed on physical security — protecting
the computer center. It was assumed that (1) an intruder had to be on the
premises; and (2) if a security perimeter were compromised, the system would

AU1163-ch03-Frame Page 30 Tuesday, September 11, 2001 7:48 AM

© 2002 by CRC Press LLC

quickly shut down or switch to only unclassified processing. Some historical
physical security paradigms are still valid; however, many are not. The computer
is no longer in one room. For example, in the client/server environment,
processing power, memory, and disk storage are distributed. Computer and
communications equipment are no longer separate; rather, they are integrated.
Remote access is the norm rather than the exception, whether through mobile
computing, telecommuting, home offices, or remote diagnostics/help. Although
some PC CPU chips and operating systems have unique identifiers, not all do;
nor is a user tied to a single desktop system. The days of dedicated lines are
gone, particularly with the advent of wireless and other high-bandwidth services.
Today, physical security must consider the ramifications of LANs, WANs, VPNs,
and the Internet. CD-R disks have created a new challenge for disposing of
obsolete sensitive material. Finally, intruders are rarely on the premises.

3.2 Communications Security (COMSEC)

Communications security, or COMSEC, is a collection of engineering activities
that are undertaken to protect the confidentiality, integrity, and availability
of sensitive data while it is being transmitted between systems and networks.
Confidentiality ensures that only the intended recipients receive and are able
to interpret the transmitted data. As a result, potential losses from theft of
information are minimized, including financial loss, loss of competitive
advantage, loss of public confidence, loss of privacy, character defamation,
national security compromises, and loss of intellectual property rights.

248

Integrity ensures that the data received is an accurate representation of the
data sent. In other words, the data has not been accidentally or intentionally
altered, corrupted, destroyed, or added to. Availability ensures that the data
is received within the specified transmission time(s), plus or minus a rea-
sonable tolerance factor. DoD 5200.28-M

140

 required that COMSEC principles
be applied to all: communications lines and links, multiplexers, message
switches, telecommunications networks and interfaces, and emanations con-
trol. In the past, COMSEC focused on protecting end-to-end data transmission
across dedicated lines from one secure facility to another, as shown in Exhibit 2.
Data leaving a computer center was multiplexed and encrypted, sometimes
more than once. A secret key system was used, and the keys were changed
simultaneously on both ends of the communications link on a regular basis.

Spectrum management and encryption were the primary means of provid-
ing confidentiality. Spectrum management attempted to prevent or at least
minimize the ability to intercept, interpret, or block data transmissions through
spectrum planning and interference and jamming countermeasures. In some
cases, this involved regular changing of call signs, words, suffixes, and fre-
quencies. In addition, switches that permitted users to access systems at
different security levels had to do so while ensuring that an electrical con-
nection did not exist between the two systems or networks.

Encryption, assuming that spectrum management and other security measures
are not 100 percent foolproof, makes data and messages unintelligible to all

AU1163-ch03-Frame Page 31 Tuesday, September 11, 2001 7:48 AM

© 2002 by CRC Press LLC

but the intended recipient(s). This is accomplished through a systematic method
of scrambling the information. A mathematically based encryption algorithm
specifies the steps involved in transforming the data. Encryption algorithms can
operate on a single bit or byte (stream ciphers) or a fixed number of bits of
data at a time (block ciphers). Encryption algorithms can be implemented in
hardware or software.

A key represents a specific instance of the encryption algorithm. Keys can
be public, private, or secret and are changed frequently. In contrast, the
algorithm remains constant. Both or all parties to a transaction must use the
same encryption algorithm and know which type of key scheme is being
used. With secret keys, the same key is used for encryption and decryption.
More recently, public/private key schemes were developed in which one key
is used for encryption and another for decryption. Public/private keys only
work in designated pairs. Historically, both the encryption algorithm and the
key were safeguarded. Today, a variety of encryption algorithms are publicly
available and only private and secret keys are protected. (This arrangement
assumes that the private key cannot be determined from the public key.)

Cryptography predates computers and probably has been around as long
as humans have had the need to send/receive secret messages.

316

 Knott

318

reports on the use of cryptography during the American Revolution:

Throughout the American Revolution, General Washington placed
great importance on learning British intentions and shielding his
own army’s activities. Elaborately coded communications were used
by the general to communicate with his spy network through a system
implemented by staff officers such as Alexander Hamilton. … In
1779, Tallmadge added to this layer of protection by developing a
cipher and code that used codebooks available only to himself,
Townsend, and Washington.

Exhibit 2 Historical COMSEC Architecture

AU1163-ch03-Frame Page 32 Tuesday, September 11, 2001 7:48 AM

© 2002 by CRC Press LLC

The following simple example, that of sending a secret message between
two parties, illustrates some of the basic principles involved in cryptography.
The first step is to determine what language and alphabet the message is to be
sent in. This is important because of the different number of letters in each
alphabet, the fact that some languages are written right to left while others are
written left to right, and the fact that in some alphabets the same character can
represent a letter and a number — they have a dual meaning. The second step
is to determine whether a block cipher or stream cipher will be used; if a block
cipher, define the blocksize of data that the encryption algorithm operates on;
that is, how many 8-bit bytes. The third step is to specify the shift/substitution/
manipulation algorithm. The fourth step is to define the key type and length.
The fifth step is to specify the code in which the data will be represented to
the computer, for example, ASCII. Exhibit 3 illustrates these principles.

This simple example starts out with an English language message: Happy
Birthday. This is the message the sender wants to send the recipient; it is
referred to as the plaintext message. First, the message is blocked to fit the
specified encryption block size of 16 bytes. Because the message is only 15
bytes long, it is padded with a blank space (^). (Note that some encryption
algorithms pad on the left, and others pad on the right.) Next, the message
goes through the four transformations specified by the encryption algorithm.
Note that x is the key and in this instance x = 2. The final transformation
results in the cipher text, which is transmitted to the recipient. To read or
decrypt the message, the recipient goes through the same steps in reverse
order using the same key. The sender and the receiver know the encryption
algorithm and the key; that information does not have to be transmitted. This
is how a secret key encryption system works.

In 1976, the U.S. National Bureau of Standards (NBS), now the National
Institute of Standards and Technology (NIST), published the Data Encryption

Exhibit 3 Simple Illustration of the Steps Involved in Encryption

Step 1: English language, Roman alphabet
Step 2: Block cipher, 128-bit, 16-byte block size
Step 3: a. Move blanks (x+1) spaces to the right.

b. Move vowels (x–1) spaces to the left.
c. Replace consonants with the consonant that is x places after it in the

alphabet. Loop around the alphabet if necessary.
d. Enter the message in reverse order.

Step 4: Secret key, (x) = 2
Step 5: ASCII

Plaintext message: Happy Birthday.
Blocked message: Happy Birthday.^
Intermediate messages: a. happybir thday.^

b. ahppyib rthady.^
c. ajqqzic tvjafz.^
d. ^.zfajvt cizqqja

Cipher text: ^.zfajvt cizqqja

AU1163-ch03-Frame Page 33 Tuesday, September 11, 2001 7:48 AM

© 2002 by CRC Press LLC

Standard (DES).

153

 DES was developed to protect the transmission of unclas-
sified data by government agencies. The algorithm operated on 64-bit blocks
of data with a 56-bit key. In summary, the algorithm consisted of two steps
that were repeated 16 times

409

:

1. Exchange the left half of the 64-bit message with the right half.
2. Replace the right half of the message with the bitwise exclusive OR of

the right half and a 32-bit word (a complicated function (f) of the left
half, the key, and the iteration number).

Since then, many publicly available encryption algorithms have been developed.
The concept of using a pair of keys — one to encrypt and the other to

decrypt — began in the late 1970s. This concept became known as public/
private keys. The two keys are mathematically related; however, in

theory

, it
is infeasible to derive one key from the other. RSA* was the first public key
encryption system sufficiently robust to use for both encryption and digital
signatures. The following steps summarize the RSA algorithm

409

:

1. Choose two, large random prime numbers (p, q) of equal length.
2. Compute n = p

∗

 q.
3. Choose a random prime number e, such that e has no factors in common

with ((p–1)(q–1)); e with n comprise the public key.
4. Compute the private key, d = e

–1

 mod ((p–1)(q–1)).
5. Choose a binary block size that equals the largest power of 2 that is less

than n.
6. Break the plaintext message into blocks (m

i

); pad if necessary.
7. Generate the cipher text, c

i

 = m

e
i

 mod n.
8. Recover the plaintext, m

i

 = c

d
i

 mod n.

Note that p and q are destroyed, only the public key (e, n) is distributed, and
the private key (d) is protected.

The key to the acceptance and widespread use of public key encryption
has been the public key infrastructure (PKI) made possible through a set of
public key cryptography standards known as PKCS.

179–191

 RSA Laboratories has
been the driving force behind the development and promulgation of the PKCS
suite since the early 1990s. They understood early on that the way to achieve
interoperability in a multi-vendor environment is through the use of commer-
cial consensus standards. Most PKCSs exhibit a reasonably high degree of
compatibility with the corresponding ISO/IEC standards. The current set of
PKCSs at the time of writing are listed below. The latest information on PKCS
developments can be found at: www.rsa.com

489

:

�

PKCS #1 v2.1 — RSA Cryptography Standard, (draft) September 17, 1999

�

PKCS #3 v1.4 — Diffie-Hellman Key Agreement Standard, November 1,
1993

* The algorithm is named for its three inventors: Ron Rivest, Adi Shamir, and Leonard Adleman.

AU1163-ch03-Frame Page 34 Tuesday, September 11, 2001 7:48 AM

© 2002 by CRC Press LLC

http://www.rsasecurity.com/

�

PKCS #5 v2.0 — Password-based Cryptography Standard, March 25,
1999

�

PKCS #6 v1.5 — Extended Certificate Syntax Standard, November 1,
1993

�

PKCS #7 v1.5 — Cryptographic Message Syntax Standard, November
1, 1993

�

PKCS #8 v1.2 — Private Key Information Syntax Standard, November
1, 1993

�

PKCS #9 v2.0 — Selected Object Classes and Attribute Types, February
25, 2000

�

PKCS #10 v1.7 — Certification Request Syntax Standard, May 26, 2000

�

PKCS #11 v2.11 — Cryptographic Token Interface Standard, (draft)
November 2000

�

PKCS #12 v1.0 — Personal Information Exchange Syntax, June 24, 1999

�

PKCS #13 (proposal) — Elliptic Curve Cryptography Standard, October
7, 1998

�

PKCS #15 v1.1 — Cryptographic Token Information Syntax Standard,
June 6, 2000

A newer type of public key cryptosystems is referred to as elliptic curve
cryptosystems (ECCs). Lee

330

 reports that:

Protocols based on ECCs are becoming the standard for the informa-
tion authentication step for wireless devices. … Breaking an ECC
requires determining the number of times that a seed value, a known
point on an elliptic curve, is multiplied to get to another point on the
same elliptic curve.

Encryption algorithms involve complex mathematical specifications of the
transformations performed on the data, such as hashing functions. Often, the
entire algorithm is repeated two, three, or more times. Key lengths range from
56 to 128 bits or higher. For a complete discussion of current cryptographic
algorithms, see Schneier,

409

 Menezes,

353

 Kippenhan,

316

 and Stallings.

419

Historically, the primary means of providing integrity was by implementing
error detection/correction algorithms on the communications links. This
included longitudal and vertical parity checks, cyclical redundancy checks,
Hamming codes, convolutional codes, recurrent codes, and checksums. These
algorithms verified that the data had not been accidently or intentionally
corrupted during transmission, including the deletion of data or insertion of
bogus data, and that the packets were reassembled in the correct order. When
errors were detected, they were corrected or a request was sent to retransmit
the packet.

Historically, the primary means of providing availability was through redun-
dant communications equipment (hot standby) and having alternative com-
munication paths available in case the primary path was not available. For
the data to be available when needed, the communications equipment and
links had to be engineered to meet reliability requirements.

AU1163-ch03-Frame Page 35 Tuesday, September 11, 2001 7:48 AM

© 2002 by CRC Press LLC

In the past, COMSEC principles were primarily applied to end-to-end com-
munication links that transmitted textual, voice (STU technology), and image data
separately. Today, COMSEC principles are applied to audio, video, image, and
textual data that are transmitted together across a variety of network types and
topologies, such as ISDN, ATM, SONET, Frame Relay, VPNs, and wireless. The
need for data confidentiality, integrity, and availability during transmission
remains; what has changed are the implementation strategies. Encryption is
applied to data that is stored (files, e-mail, voice mail) as well as data that is
transmitted (Internet and cell phone traffic). Data integrity concerns have been
expanded to include verifying the true sender of files or e-mail through the use
of digital signatures. Likewise, the distribution of public keys is verified. Because
dedicated lines are rarely used anymore, firewalls are employed to block unknown
and unauthorized people and processes from accessing network resources.

Encryption is not a perfect solution to data confidentiality; instead, it should
be considered a temporary solution. All cryptographic algorithms can be
broken just like shredder remnants can be pieced together; the variable is the
amount of time it takes. Schneier

411

 notes the limitations of commercial
encryption products:

Most cryptography products on the market are insecure. Some don’t work
as advertised. Some are obviously flawed. Others are more subtly flawed.

Schneier

410

 cites several common weaknesses in implementing encryption
algorithms, including:

�

Not destroying the plaintext after encryption

�

Use of temporary or virtual swapping files

�

Buffer overflows

�

Weak error detection/correction

�

Key escrow accounts

�

Use of default parameters

�

Ability to reverse-engineer the product

In short, cryptography should be considered only one component of an overall
comprehensive security program.

248,277,410

Three concerns must be addressed when implementing encryption:

1. The time and system resources consumed to perform encryption and
decryption

2. When to perform encryption; that is, what layer in the communications
protocol suite

3. What encryption algorithm to use or what encryption strength/level of
protection is needed

Encryption consumes time and processing power for both the sender and
receiver. The more complex the encryption algorithm, the more system
resources are consumed. To address the first item, Sandia National Laboratories
has developed an ASIC that implements the DES algorithm. It is targeted for
use in unclassified networks, digital cell phones, and high-definition television

AU1163-ch03-Frame Page 36 Tuesday, September 11, 2001 7:48 AM

© 2002 by CRC Press LLC

(HDTV). The ASIC can also support triple-DES. As reported by Hankins,

283

the nominal encryption rate is 6.7 billion bps with a theoretical limit of
9.28 billion bps. The next step is to commercialize the product.

The level of encryption strength needed will depend on what type of
information is being protected, for example, national security information,
financial transactions, corporate research, or general-purpose e-mail. To address
the third item, in 1997, NIST made a formal announcement of its intent to
sponsor the development of an advanced encryption standard (AES). NIST
chose to engage the resources of the international cryptographic community
to develop the new AES algorithm, rather than develop it in-house as had been
done with other cryptographic algorithms in the past. The goal of the AES
project was to develop a replacement for DES, which is no longer considered
sufficiently robust. The basic requirements were that AES support a block size
of 128 bits, and key lengths of 128, 192, and 256 bits. Fifteen algorithms from
twelve countries were submitted for the initial selection process. In October
2000, Rijndael was selected “as the best overall algorithm for AES”.

173

 The next
step is to issue Rijndael as the approved AES federal (U.S.) information pro-
cessing standard (FIPS); this is scheduled to occur in the summer/fall of 2001.
Commercial products will follow thereafter. For a complete discussion of the
new algorithm and the selection process, see Reference 173.

The second item must be addressed on a case-by-case basis within the
context of the overall security program, network, system, and application
architectures. Chapter 6 provides guidance in this area.

3.3 Computer Security (COMPUSEC)

Computer security is defined as:

preventing, detecting, and minimizing the consequences of unauthorized
actions by users (authorized and unauthorized) of a computer system.

In this case, the term “users” includes authorized users, or insiders, who are
attempting to do something for which they lack permission, as well as unautho-
rized users, or outsiders, who are attempting to break into a system. The term
“computer system” applies to any type or configuration of hardware and software,
including distributed processing, client/server applications, embedded software,
and Internet applications. COMSEC is primarily concerned with protecting data
during transmission. COMPUSEC is primarily concerned with protecting data
while it is processed and stored. Some of the threats to stored data include

249

:

Active Threats Passive Threats

Overwriting Browsing
Modifying Aggregation and inference
Inserting Replaying
Deleting Leakage
Blocking access to Copying and distributing

AU1163-ch03-Frame Page 37 Tuesday, September 11, 2001 7:48 AM

© 2002 by CRC Press LLC

Primarily defense and intelligence systems employed COMPUSEC in the past.
The intent was to prevent deliberate or inadvertent access to classified material
by unauthorized personnel, or the unauthorized manipulation of the computer
and its associated peripheral devices that could lead to the compromise of
classified information.

140

 COMPUSEC principles were applied to the design,
development, implementation, evaluation, operation, decommissioning, and san-
itization of a system.

A secure system operated in one of four modes: controlled, dedicated,
multilevel, or system high. Occasionally, a system was designed so that it
could be shut down and restarted in a different security mode. These four
modes are defined as follows

140

:

1. Controlled security mode. Some users with access to the system have
neither a security clearance nor a need-to-know for all classified material
contained in the system. The separation and control of users and
classified material on the basis of security clearance and security clas-
sification are not under operating system control.

2. Dedicated security mode. The computer system and all of its peripherals
are exclusively used and controlled by specific users or groups of users
who have a security clearance and need-to-know for the processing of
a particular category and type of classified material.

3. Multi-level security mode. The system permits various categories and
types of classified materials to be concurrently stored and processed
and selective access to such material concurrently by uncleared users
and users having differing security clearances and need-to-know. Sep-
aration of personnel and material on the basis of security clearance
and need-to-know is accomplished by the operating system and related
system software.

4. System high security mode. All system components are protected in
accordance with the requirements for the highest classification category
and type of material contained in the system. All personnel having
access to the system have a security clearance but not necessarily a
needs-to-know for all material contained in the system. The design and
operation of the system must provide for the control of concurrently
available classified material on the basis of need-to-know.

Each of these four security modes represented a different approach to the
control and separation of dissimilar combinations of user clearances, needs-
to-know, and level(s) of classified material handled by the system.

DoD 5200.28-M*, one of the first COMPUSEC standards, levied the following
requirements on computer systems

140

:

* DoD 5200.28-M, ADP Security Manual — Techniques and Procedures for Implementing,
Deactivating, Testing, and Evaluating Secure Resource-Sharing ADP Systems, with first amend-
ment, U.S. Department of Defense (DoD), June 25, 1979.

AU1163-ch03-Frame Page 38 Tuesday, September 11, 2001 7:48 AM

© 2002 by CRC Press LLC

1. Ensuring that two or more independent controls would have to mal-
function simultaneously for a breach of system security to occur
(defense in depth)

2. Monitoring protection state variables to control execution of operations
and prevent illegal operations

3. Controlling access to memory locations
4. Ensuring predictable translation into object code
5. Protecting registers through error detection and redundancy checks
6. Performing parity checks and address bound checks of all operands/

operators
7. Using interrupts to control operator malfunction
8. Verifying read, write, edit, and delete privileges
9. Labeling classified material

10. Clearing memory residue, overwriting memory before reuse
11. Logging attempts to circumvent system security measures
12. Implementing security safeguards during scheduled and unscheduled

system shutdown, restart, and start-up
13. Maintaining an audit trail of security-related transactions, such as log

on/log off attempts and times, information about resources accessed,
created, changed, deleted, outputs generated, etc.

14. Employing user and terminal IDs as part of the access control and
authentication system

15. Controlling access to system resources, utilities, and data through the
operating system

The purpose of these measures was to prevent accidental or malicious inten-
tional violations of system security and provide historical records of such
transactions.

DoD 5200.28-M specified the implementation of COMPUSEC features. The
next logical development was a standard that specified how to evaluate the
effectiveness of the implementation of these features. The result was CSC-
STD-001-83, the Trusted Computer System Evaluation Criteria (TCSEC)*, com-
monly known as the

Orange Book

, issued by the U.S. DoD in 1983. A second
version of this standard was issued in 1985**.

The

Orange Book

 proposed a layered approach for rating the strength of
COMPUSEC features, similar to the layered approach used by the Software
Engineering Institute (SEI) Capability Maturity Model (CMM) to rate the robust-
ness of software engineering processes. As shown in Exhibit 4, four evaluation
divisions composed of seven classes were defined. Division A class A1 was
the highest rating, while division D class D1 was the lowest. The divisions
measured the extent of security protection provided, with each class and
division building upon and strengthening the provisions of its predecessors.

* CSC-STD-001-83, Trusted Computer System Evaluation Criteria (TCSEC), National Computer
Security Center, U.S. Department of Defense (DoD), August 15, 1983.

** DoD-5200.28-STD, Trusted Computer System Evaluation Criteria (TCSEC), National Computer
Security Center, U.S. Department of Defense (DoD), December 1985.

AU1163-ch03-Frame Page 39 Tuesday, September 11, 2001 7:48 AM

© 2002 by CRC Press LLC

Twenty-seven specific criteria were evaluated. These criteria were grouped
into four categories: security policy, accountability, assurance, and documen-
tation, as shown in Exhibit 5.

Most often, a basic capability was established at C1, and then new require-
ments were added at each of the seven layers. Security testing is a good
example of this, as illustrated in Exhibit 6. (It is interesting to note that although
the Orange Book was published in the early 1980s, it required security testing
to evaluate the ability of a system to withstand denial-of-service attacks at
level B1.) In other cases, a criterion was only required at the higher layers,
such as trusted recovery.

The Orange Book introduced the concepts of a trusted computing base (TCB)
and security kernel or reference monitor. A TCB represents the combination of
hardware, firmware, and software that is responsible for enforcing a security
policy. A security kernel or reference monitor is the combination of hardware,
firmware, and software that mediates all access to system resources while pro-
tecting itself from modification. A security kernel enforced the access control
portion of a system security policy. The Orange Book required that a security
model be verified through a formal mathematical proof at class A1. Today, formal
mathematical proofs are also used to verify the correctness of requirements and
designs for safety-critical systems.

The Honeywell Secure Communications Processor (SCOMP) Trusted Oper-
ating Program (STOP) Release 2.1 was the first product to be rated A1/B3. The
final evaluation report,138 issued September 28, 1985, noted that product ratings
had to be tied to operational missions and environments. By October 1997,
106 commercial products appeared on the National Computer Security Center
TCSEC evaluated products list, including three at A1 and three at B3.248

Access control, authentication, and audit trail were the three cornerstones
of COMPUSEC in the early days. For example, the majority of the features
listed in Exhibit 5 relate to access control and authentication, especially those
listed under Security policy and Accountability. The assurance features corre-
spond to software integrity — ensuring that the software not only functions
correctly but that it correctly and reliably enforces the security policy. This
differs from COMSEC, which promoted data confidentiality.

Exhibit 4 Summary of Orange Book Trusted Computer System Evaluation
Criteria (TCSEC) Divisions

Evaluation Division Evaluation Class
Degree of

Trust

A - Verified protection A1 - Verified design Highest
B - Mandatory protection B3 - Security domains

B2 - Structured protection
B1 - Labeled security protection

C - Discretionary protection C2 - Controlled access protection
C1 - Discretionary security protection

D - Minimal protection D1 - Minimal protection Lowest

AU1163-ch03-Frame Page 40 Tuesday, September 11, 2001 7:48 AM

© 2002 by CRC Press LLC

Access control is defined as:

design features that protect IA-critical and IA-related systems, applica-
tions, and data by preventing unauthorized and unwarranted access to
these resources.

Access control can be implemented to control access to networks, computer
systems, individual software applications, data, utilities, and shared resources
such as printers. Access control consists of two main components: (1) access
control rights that define which people and processes can access which system
resources, and (2) access control privileges that define what these people and
processes can do with or to the resources accessed.248,357 Examples of access
privileges include: read, write, edit, delete, execute, copy, print, move, forward,

Exhibit 5 Summary of Orange Book Trusted Computer System Evaluation
Criteria (TCSEC)

Category Feature Evaluated A1 B3 B2 B1 C2 C1

Security policy Discretionary access control x + x x + +
Sanitize storage before reuse x x x x +
Security labels x x + +
Label integrity x x x +
Export labeled information x x x +
Export to multi-level secure devices x x x +
Export to single-level secure devices x x x +
Labeling human-readable output x x x +
Mandatory access controls x x + +
Subject sensitivity labels x x +
Device labels x x +

Accountability Identification and authentication x x x + + +
Audit trail x + + + +
Trusted communications path x + +

Assurance System architecture x + + + + +
System integrity x x x x x +
Security testing + + + + + +
Design specification verification + + + +
Covert channel analysis + + +
Trusted facility management x + +
Configuration management + x +
Trusted recovery x +
Trusted distribution x

Documentation Security features users’ guide x x x x x +
Trusted facility manual x + + + + +
Testing documentation + x + x x +
Design documentation + + + + x +

Note: x, no additional requirements for this class; +, new or enhanced requirements for
this class; (blank), no requirements for this class.

AU1163-ch03-Frame Page 41 Tuesday, September 11, 2001 7:48 AM

© 2002 by CRC Press LLC

distribute, etc. Access control rights and privileges can be defined on a need-
to-know basis or a security classification scheme. Access control rights and
privileges are generally defined in a matrix format by user name, user roles,
local or global user groups. Access control is usually implemented through a

Exhibit 6 Orange Book Testing Requirements

Class Reqt. Type Requirement

C1 New The security mechanisms shall be tested and found to work as
claimed in the system documentation. Testing shall be done to
ensure that there are no obvious ways for an unauthorized user
to bypass or otherwise defeat the security protection
mechanisms.

C2 Add Testing shall include a search for obvious flaws that would allow
violation of resource allocation, or that would permit
unauthorized access to the audit trail or authentication data.

B1 Add A team of individuals who thoroughly understand the specific
implementation of the security protection mechanisms shall
subject its design, documentation, source code, and object code
to thorough analysis and testing. Their objectives shall be: to
uncover all design and implementation flaws that would permit
a subject external to the security protection mechanism to read,
change, or delete data normally denied under the mandatory or
discretionary security policy; as well as to ensure that no subject
(without authorization to do so) is able to cause the system to
enter a state such that it is unable to respond to communications
initiated by other users. All discovered flaws shall be removed
or neutralized, and the system retested to demonstrate that they
have been eliminated and that new flaws have not been
introduced.

B2 Change

Add

All discovered flaws shall be corrected and the system retested to
demonstrate that they have been eliminated and that new flaws
have not been introduced.

The security protection mechanism shall be found relatively
resistant to penetration. Testing shall demonstrate that the
security protection mechanism implementation is consistent
with the descriptive top-level specification.

B3 Change

Add

The security protection mechanism shall be found resistant to
penetration.

No design flaws and no more than a few correctable
implementation flaws may be found during testing and there
shall be reasonable confidence that few remain.

A1 Change

Add

Testing shall demonstrate that the security protection mechanism
implementation is consistent with the formal top-level
specification.

Manual or other mapping of the formal top-level specification to
the source code may form a basis for penetration testing.

Source: From CSC-STD-001-83, Trusted Computer System Evaluation Criteria (TCSEC),
National Computer Security Center, U.S. Department of Defense, August 15, 1983; DOD-
5200.28-STD, Trusted Computer System Evaluation (TCSEC), National Computer Security
Center, U.S. Department of Defense, December 1985.

AU1163-ch03-Frame Page 42 Tuesday, September 11, 2001 7:48 AM

© 2002 by CRC Press LLC

combination of commercial operating system utilities and custom code. Access
control provides a first layer of defense in protecting IA-critical and IA-related
system resources; it enforces authorization policies.248 Effective implementation
of access control depends on:

1. Taking the time to define a comprehensive set of access control rights
and privileges, including permissions to create/change these definitions

2. Protecting the table containing these definitions from unauthorized
manipulation and corruption

3. A robust authentication capability

As Denning248 points out, “Access controls are no better than the authen-
tication mechanism on which they are based.”

One area that is often overlooked, to the detriment of security, is inferred
access control privileges. Inferred access control privileges are implied subsets
or extensions to discrete access control privileges. For example, if someone
has the discrete privilege to edit a file, that person also has the inferred
privilege to read the file. In contrast, does someone who has the discrete
privilege to read a file have the inferred privilege to print it? Perhaps not.
Inferred access control privileges can occur by accident if sufficient care is
not taken in defining discrete access control rights and privileges. Inferred
access control privileges apply to processes as well as data. A determination
should be made whether or not a user or process should inherit the privileges
of an invoked process.277 This needs to be decided on a case-by-case basis;
however, the operating system should always be protected. Users should rarely
have direct access to the operating system. In fact, Gollmann277 recommends:
(1) using status flags to distinguish between user, administrative, and operating
system function calls; and (2) applying access controls to specific memory
locations to prevent illegal modification of the operating system, application
programs, and data. He gives a good illustration of the latter — the need to
remove the NT registry editor from all user PCs.277

Authentication is defined as:

establishing, verifying, or proving the validity of a claimed identity of
a user, process, or system.

Authentication is a design feature that permits the claimed identity of a user,
process, or system to be proven to and confirmed by a second party. Authen-
tication is invoked prior to access control rights and privileges. A combination
of parameters can be used to establish an identity, such as user name,
password, biometric information, and traffic source. There are weaknesses
associated with each of these parameters; thus, it is best to use a combination
of parameters and not rely on any one of them alone. For example, Gollmann277

cites common password vulnerabilities, including:

� Password guessing
� Password spoofing
� Use of default passwords

AU1163-ch03-Frame Page 43 Tuesday, September 11, 2001 7:48 AM

© 2002 by CRC Press LLC

� Compromised password file
� Web browsers that store previous screens which contain user name

and password

Chapter 6 discusses the strengths and weaknesses of different authentication
methods.

To protect the user and the system, authentication should be bidirectional;
that is, the user should be authenticated to a system and a system should be
authenticated to a user. The latter is an important step in preventing site
switching and other security compromises while connected to the Internet. A
strong authentication strategy is essential for implementing effective access
control rights and privileges. The effectiveness of an authentication strategy is
determined by: (1) the selection of parameters to be verified, and (2) how
stringent the verification process is. The goal is to minimize the number of
false positives and false negatives.

An audit trail is defined as:

a set of records that collectively provide documentary evidence of
system resources accessed by a user or process to aid in tracing from
original transactions forward and backward from records and reports
to their component source transactions.

An audit trail is a design feature that provides an ongoing system monitoring
and logging function. An audit trail serves four purposes. First, it captures
information about what people and processes accessed what system resources
and when they did so. Second, it captures information about system state
transitions, the availability and loading of system resources, and the general
“health” of the system. When abnormal events are logged, they trigger warnings
and alarms so that action can be taken to prevent or minimize the effects of
hazardous events. For example, an alarm may trigger the shutdown of an
unstable nuclear power plant or the blocking of an intrusion attempt. The
alarms may trigger a combination of automatic processes and operator alerts.
Third, audit trail data is used to develop normal system and user profiles as
well as attack profiles for intrusion detection systems. Fourth, audit trails are
used to reconstruct events during accident/incident investigations.

An audit trail provides real-time and historical logs of system states,
transitions, and usage. It is essential for safe, secure, and reliable system
operation and for performing trend analysis and pattern recognition of
anomalous events. The completeness of the events/states recorded and the
timeliness in responding to the anomalous events determines the effectiveness
of the audit trail. An audit trail consumes system resources; thus, care should
be exercised when determining what events to record and how frequently
to record them. A determination must also be made about the interval at
which audit trails should be archived and overwritten.

Historically, COMPUSEC focused on protecting defense or national security
information that was stored, processed, and generated on mainframe computers.

AU1163-ch03-Frame Page 44 Tuesday, September 11, 2001 7:48 AM

© 2002 by CRC Press LLC

Today, COMPUSEC principles have been extended to a wide range of applica-
tions and system architectures, including client/server applications operating
across LANs, WANs, VPNs, and the Internet. The rapid expansion of and interest
in computer security is due to the sensitivity and volume of legal, financial,
medical, business, and government data that is stored and processed today. In
addition, as Denning248 notes:

Almost any illegal activity that can be committed can be accom-
plished through the use of a computer, or at a minimum, with the
computer as a willing accomplice.

In the past, access control features were concerned with mediating access
to a single system and its resources. Today, firewalls are used to mediate access
between networks and the multiple systems and processors connected to them,
while intrusion detection systems help prevent attempts to bypass security
mechanisms. The audit trail now serves a new purpose — the development of
normal system and user profiles as well as attack profiles for use by intrusion
detection systems.

3.4 Information Security (INFOSEC)
The Orange Book was oriented toward custom software, particularly defense
and intelligence applications, operating on a mainframe computer that was
the predominant technology of the time. Guidance documents were issued*;
however, it was difficult to interpret or apply the Orange Book to networks
or database management systems. When distributed processing became the
norm, additional standards were issued to supplement the Orange Book, such
as the Trusted Network Interpretation** and the Trusted Database Management
System Interpretation***. Each standard had a different color cover and collec-
tively they became known as the rainbow series.

* (a) CSC-STD-003-85, Guidance for Applying the Trusted Computer System Evaluation Criteria
(TCSEC) in Specific Environments, National Computer Security Center, U.S. Department of
Defense (DoD), June 1985.136

(b) CSC-STD-004-85, Technical Rationale Behind CSC-STD-003-83, National Computer Security
Center, U.S. Department of Defense (DoD), 1985.137

(c) NCSC-TG-025 version 2, A Guide to Understanding Data Remembrance in Automated
Information Systems (AIS), National Computer Security Center, U.S. Department of Defense
(DoD), September 1991.147

** (a) NCSC-TG-005 version 1, Trusted Network Interpretation of the TCSEC, National Computer
Security Center, U.S. Department of Defense (DoD), July 1987.144

(b) NCSC-TG-011 version 1, Trusted Network Interpretation of the TCSEC, National Computer
Security Center, U.S. Department of Defense (DoD), August 1, 1990.145

***NCSC-TG-021 version 1, Trusted DBMS Interpretation of the TCSEC, National Computer
Security Center, U.S. Department of Defense (DoD), April 1991.146

AU1163-ch03-Frame Page 45 Tuesday, September 11, 2001 7:48 AM

© 2002 by CRC Press LLC

At the same time, similar developments were proceeding outside the United
States Between 1990 and 1993, the Commission of the European Communities*,
the European Computer Manufacturers Association (ECMA)**, the Organization
for Economic Cooperation and Development (OECD)***, and the Canadian System
Security Centre**** all issued computer standards or technical reports. These
efforts and the evolution of the rainbow series were driven by three main factors:

1. The rapid change in technology, which led to the need to merge
COMSEC and COMPUSEC

2. The more universal use of information technology (IT) outside the
defense and intelligence communities

3. The desire to foster a cost-effective commercial approach to IT security
that would be applicable to multiple industrial sectors

The new paradigm combines COMSEC and COMPUSEC and is known as
INFOSEC. INFOSEC is defined as:

the protection of information against unauthorized disclosure, transfer,
or destruction, whether accidental or intentional.

The emphasis is on protecting information, which is more refined than data,
from accidental and intentional malicious actions. This is a broader scope
than either COMSEC or COMPUSEC. INFOSEC can be applied to any type of
software application, system architecture, or security need.

The current internationally recognized approach to INFOSEC is known as
the Common Criteria*****. The Common Criteria are the result of a cooperative
effort by Canada, France, Germany, the Netherlands, the United Kingdom, and
the United States. The first version was published in January 1996, the second
in May 1998. The next step was to promulgate the criteria via an international
standard, ISO/IEC 15408 (Parts 1–3), which was approved in 1999******. The
goal was to develop a standard by which the security of IT products, systems,
and networks could be evaluated such that the evaluation would receive mutual

* (a) Information Technology Security Evaluation Criteria (ITSEC), Commission of the European
Communities, Provisional Harmonised Criteria, version 1.2, June 1991.
(b) Information Technology Security Evaluation Manual (ITSEM), Commission of the European
Communities, 1992.

** Secure Information Processing versus the Concept of Product Evaluation, Technical Report
ECMA TR/64, European Computer Manufacturers Association (ECMA), December 1993.

***Guidelines for the Security of Information Systems, Organization for Economic Cooperation
and Development (OECD), November 1992.54

****The Canadian Trusted Computer Product Evaluation Criteria, Canadian System Security
Centre, version 3.0e, 1993.

*****Common Criteria for Information Technology (IT) Security Evaluation, version 2.0, Common
Criteria Editing Board (CCEB), May 1998.52

******(a) ISO/IEC 15408-1(1999-12) Information Technology — Security Techniques — Common
Criteria for IT Security Evaluation (CCITSE) — Part 1: General Model.120

(b) ISO/IEC 15408-2(1999-12) Information Technology — Security Techniques — Common
Criteria for IT Security Evaluation (CCITSE) — Part 2: Security Functional Requirements.121

(c) ISO/IEC 15408-3(1999-12) Information Technology — Security Techniques — Common
Criteria for IT Security Evaluation (CCITSE) — Part 3: Security Assurance Requirements.122

AU1163-ch03-Frame Page 46 Tuesday, September 11, 2001 7:48 AM

© 2002 by CRC Press LLC

recognition across national borders. At the same time, system developers gain
insight into what features and techniques are important through the publication
of the evaluation criteria.

The Common Criteria separate functional security requirements from secu-
rity assurance requirements.248 As Caplan and Sanders238 point out:

Functional requirements represent a statement of the security func-
tionality or features a product is intended to provide. Satisfying
assurance requirements gives you confidence that the functional
requirements have been met.

This is similar to the distinction between functional safety requirements and
safety integrity requirements found in many international standards, for
example, IEC 61508-3.65

ISO/IEC 15408 is written for use by three different communities: customers,
developers, and evaluators. Customers define their IT security requirements, in
an implementation-independent fashion, in what is referred to as a protection
profile (PP). Developers respond to the PP with an implementation-dependent
design, referred to as a security target (ST). Evaluators assess the conformance
of the as-built system or product, referred to as the target of evaluation (TOE),
to requirements stated in the PP*. Many U.S. government agencies are required
to follow the Common Criteria methodology; PPs are often included in pro-
curement announcements and offerors are required to submit an ST in response
as part of their proposal.

ISO/IEC 15408 defines a standard set of functional security classes, families,
and components, as shown in Exhibit 7. A customer selects the appropriate
items from this set to define their functional security requirements.

Likewise, a standard set of security assurance classes, families, and compo-
nents are defined, as shown in Exhibit 8. Security assurance requirements are
grouped according to evaluation assurance levels (EALs). A customer specifies
the required EAL.

Security assurance provides grounds for confidence that an IT product or
system meets its security objectives. The Common Criteria philosophy is to
provide assurance based on an evaluation (active investigation) of the IT
product or system that is to be trusted. Evaluation techniques can include,
but are not limited to120–122:

� Analysis and checking of processes and procedures
� Checking that processes and procedures are being applied
� Analysis of the correspondence between TOE design representations
� Analysis of the TOE design representation against the requirements
� Verification of proofs
� Analysis of guidance documents
� Analysis of functional tests developed and the results provided
� Independent functional testing

* Sample PPs are posted on the NIAP and IATF Web sites.451,471

AU1163-ch03-Frame Page 47 Tuesday, September 11, 2001 7:48 AM

© 2002 by CRC Press LLC

� Analysis for vulnerabilities (including flaw hypothesis)
� Penetration testing

The validity of documentation and the resulting IT product or system is
measured by expert evaluators with increasing emphasis on scope, depth, and
rigor. Greater assurance results from the application of greater evaluation

Exhibit 7 ISO/IEC 15408-2 Functional Security Classes and Families

Class Family

Security audit (FAU) Security audit automatic response (FAU_ARP)
Security audit data generation (FAU_GEN)
Security audit analysis (FAU_SAA)
Security audit review (FAU_SAR)
Security audit event selection (FAU_SEL)
Security audit event storage (FAU_STG)

Communication (FCO) Nonrepudiation of origin (FCO_NRO)
Nonrepudiation of receipt (FCO_NRR)

Cryptographic support
(FCS)

Cryptographic key management (FCS_CKM)
Cryptographic operation (FCS_COP)

User data protection (FDP) Access control policy (FDP_ACC)
Access control functions (FDP_ACF)
Data authentication (FDP_DAU)
Export to outside TSF control (FDP_DAU)
Information flow control policy (FDP_ITC)
Information flow control functions (FDP_IFF)
Import from outside TSF control (FDP_ITC)
Internal TOE transfer (FDP_ITT)
Residual information protection (FDP_RIP)
Rollback (FDP_ROL)
Stored data integrity (FDP_SDI)
Inter-TSF user data confidentiality transfer protection

(FDP_UCT)
Inter-TSF user data integrity transfer protection

(FDP_UIT)
Identification and

authentication (FIA)
Authentication failures (FIA_AFL)
User attribute definition (FIA_ATD)
Specification of secrets (FIA_SOS)
User authentication (FIA_UAU)
User identification (FIA_UID)
User-subject binding(FIA_USB)

Security management (FMT) Management of functions in TSF (FMT_MOF)
Management of security attributes (FMT_MSA)
Management of TSF data (FMT_MTD)
Revocation (FMT_REV)
Security attribute expiration (FMT_SAE)
Security management roles (FMT_SMR)

Privacy (FPR) Anonymity (FPR_ANO)
Pseudonymity (FPR_PSE)
Unlinkability (FPR_UNL)
Unobservability (FPR_UNO)

AU1163-ch03-Frame Page 48 Tuesday, September 11, 2001 7:48 AM

© 2002 by CRC Press LLC

effort, and the goal is to apply the minimum effort required to provide the
necessary level of assurance. This increasing level of effort is based on120–122:

1. Scope: the portion of the IT product or system included in the eval-
uation

2. Depth: the level of design and implementation detail evaluated
3. Rigor: the application of effort in a structured, formal manner

ISO/IEC 15408 defines seven evaluation assurance levels (EALs), as shown
in Exhibit 9. EALs represent the degree of confidence that functional security
requirements have been met, with EAL 7 being the highest rating and EAL 1
the lowest. Depending on how a product or system is designed, built, and
evaluated, it could be rated anywhere from EAL 1 to EAL 7. However, it is
unlikely that a product or system could be rated EAL 4 or higher without prior
planning and preparation to receive such a rating. It is possible for variations
of a product, targeted for diverse customers, to receive different ratings.

Exhibit 7 ISO/IEC 15408-2 Functional Security Classes and Families
(continued)

Class Family

Protection of the TSF (FPT) Underlying abstract machine test (FPT_AMT)
Fail secure (FPT_FLS)
Availability of exported TSF data (FPT_ITA)
Confidentiality of exported TSF data (FPT_ITC)
Integrity of exported TSF data (FPT_ITI)
Internal TOE TSF data transfer (FPT_ITT)
TSF physical protection (FPT_PHP)
Trusted recovery (FPT_RCV)
Replay detection (FPT_RPL)
Reference mediation (FPT_RVM)
Domain separation (FPT_SEP)
State synchrony protocol (FPT_SSP)
Timestamps (FPT_STM)
Inter-TSF TSF data consistency (FPT_TDC)
Internal TOE TSF data replication consistency

(FPT_TRC)
TSF self-test (FPT_TST)

Resource utilization (FRU) Fault tolerance (FRU_FLT)
Priority of service (FRU_PRS)
Resource allocation (FRU_RSA)

TOE access (FTA) Limitation on scope of selectable attributes (FTA_LSA)
Limitation on multiple concurrent sessions (FTA_MCS)
Session locking (FTA_SSL)
TOE access banners (FTA_TAB)
TOE access history (FTA_TAH)
TOE session establishment (FTA_TSE)

Trusted path/channels (FTP) Inter-TSF trusted channel (FTP_ITC)
Trusted path (FTP_TRP)

AU1163-ch03-Frame Page 49 Tuesday, September 11, 2001 7:48 AM

© 2002 by CRC Press LLC

Exhibit 8 ISO/IEC 15408 Security Assurance Classes and Families

Class Family

Protection profile evaluation
(APE)

TOE description (APE_DES)
Security environment (APE_ENV)
PP introduction (APE_INT)
Security objectives (APE_OBJ)
IT security requirements (APE_REQ)
Explicitly stated IT security requirements (APE_SRE)

Security target evaluation (ASE) TOE description (ASE_DES)
Security environment (ASE_ENV)
ST introduction (ASE_INT)
Security objectives (ASE_OBJ)
PP claims (ASE_PPC)
IT security requirements (ASE_REQ)
Explicitly stated IT security requirements (ASE_SRE)
TOE summary specification (ASE_TSS)

Configuration management
(ACM)

CM automation (ACM_AUT)
CM capabilities (ACM_CAP)
CM scope (ACM_SCP)

Delivery and operation (ADO) Delivery (ADO_DEL)
Installation, generation, and start-up (ADO_IGS)

Development (ADV) Functional specification (ADV_FSP)
High-level design (ADV_HLD)
Implementation representation (ADV_IMP)
TSF internals (ADV_INT)
Low-level design (ADV_LLD)
Representation correspondence (ADV_RCR)
Security policy modeling (ADV_SPM)

Guidance documents (AGD) Administrator guidance (AGD_ADM)
User guidance (AGD_USR)

Life-cycle support (ALC) Development security (ALC_DVS)
Flaw remediation (ALC_FLR)
Life-cycle definition (ALC_LCD)
Tools and techniques (ALC_TAT)

Tests (ATE) Coverage (ATE_COV)
Depth (ATE_DPT)
Functional tests (ATE_FUN)
Independent testing (ATE_IND)

Vulnerability assessment (AVA) Covert channel analysis (AVA_CCA)
Misuse (AVA_MSU)
Strength of TOE security functions (AVA_SOF)
Vulnerability analysis (AVA_VLA)

Maintenance of assurance
(AMA)

Assurance maintenance plan (AMA_AMP)
TOE component categorization report (AMA_CAT)
Evidence of assurance of maintenance (AMA_EVD)
Security impact analysis (AMA_SIA)

AU1163-ch03-Frame Page 50 Tuesday, September 11, 2001 7:48 AM

© 2002 by CRC Press LLC

ISO/IEC 15408120–122 permits tailoring of functional security and security
assurance requirements through a standard three-step process. This is the
decision-making process a customer or developer will follow when developing
their proposed approach:

1. Standard classes, components, and activities are identified. This infor-
mation is derived from ISO/IEC 15408 Parts 2 and 3.121,122

2. Each of these classes, components, and activities is examined to deter-
mine if they are directly applicable to the specific project. This analysis
is strictly a yes/no function. The project team may decide that a com-
ponent or an activity is not applicable because of the nature of the
project. If so, an adequate rationale for deleting a component or activity
should be provided. In summary, this step analyzes how explicit require-
ments could be satisfied using standard components and activities.

3. Potential areas for augmenting or extending standard requirements are
analyzed. The customer or developer may propose additional compo-
nents or activities to meet project specific requirements. Augmentation
refers to adding standard components to an EAL that are normally
associated with a higher EAL. Extension refers to adding new project-
specific components to a standard functional security or security assur-
ance class. This step focuses on meeting implied requirements, which
unfortunately are often overlooked.

Exhibit 9 Summary of Common Criteria for IT Security Evaluation
Assurance Levels (EALs)

Level Evaluation Mode Use Scenario
Degree of

Confidence

EAL 7 Formal design verification
and testing

Suitable for extremely high-risk
scenarios; highest security

Highest

EAL 6 Semi-formal design
verification and testing

Suitable for high-risk loss
scenarios; very high security

EAL 5 Semi-formal design and
testing process

High security

EAL 4 Methodical design, testing,
and review process;
independent security
evaluation

Medium security

EAL 3 Methodical testing Moderate security
EAL 2 Structural testing Minimal security
EAL 1 Functional testing;

no security evaluation
No security Lowest

Sources: Adapted from Caplan, K. and Sanders, J., IT Professional, 1(2), 29–34, 1999; Denning,
Information Warfare and Security, Addison-Wesley, 1999; ISO/IEC 15408-1, 15408-2, 15408-3
(1999-12), Information Technology — Security Techniques — Common Criteria for IT Security
Evaluation (CCITSE) — Parts 1, 2, and 3.

AU1163-ch03-Frame Page 51 Tuesday, September 11, 2001 7:48 AM

© 2002 by CRC Press LLC

A parallel effort, known as the systems security engineering capability matu-
rity model or SSE-CMM*,**, was initiated by the U.S. National Security Agency
(NSA), Office of the (U.S.) Secretary of Defense (OSD), and the Communications
Security Establishment (Canada) in April 1993. ISO/IEC 15408 is primarily an
assessment of a product’s (or system’s) functional security. In contrast, SSE-CMM
is primarily an assessment of the security engineering process used to develop
a product or system. The intent is to provide a standardized assessment that
assists customers, such as NSA, DoD, and CSA, determine the ability of a vendor
to perform well on security engineering projects.

SSE-CMM was derived from the systems engineering capability maturity
model (SE-CMM). Additional specialized security engineering needs were
added to the model so that it incorporates the best-known security engineering
practices.148 SSE-CMM follows the same philosophy as other CMMs, by iden-
tifying key process areas (KPAs) and five increasing capability levels:

0 — not performed
1 — performed informally
2 — planned and tracked
3 — well defined
4 — quantitatively controlled
5 — continuously improving

SSE-CMM identifies eleven security engineering key process areas, as sum-
marized below. Each process area is further subdivided into base practices.

In summary, a potential vendor is rated 0 to 5 in each of the eleven security
engineering KPAs. An overall rating is given based on the security engineering
KPAs and other organizational and project management factors. The customer
then determines if the vendor’s rating is appropriate for their specific project.

* Systems Security Engineering Capability Maturity Model (SSE-CMM) Model Description Document,
version 2.0, April 1, 1999.148

** Systems Security Engineering Capability Maturity Model (SSE-CMM) Appraisal Method, version 2.0,
April 16, 1999.149

Security Engineering KPAs

PA01 — administer security controls
PA02 — assess impact
PA03 — assess security risk
PA04 — assess threat
PA05 — assess vulnerability
PA06 — build assurance argument
PA07 — coordinate security
PA08 — monitor security posture
PA09 — provide security input
PA010 — specify security needs
PA011 — verify and validate security

Method, version 2.0, April 16, 1999.149

AU1163-ch03-Frame Page 52 Tuesday, September 11, 2001 7:48 AM

© 2002 by CRC Press LLC

Version 2.0 of the SSE-CMM and the associated appraisal method were issued
in April 1999. The next step is to promulgate SSE-CMM as an ISO/IEC standard.
The latest information about the SSE-CMM can be found at www.sse-cmm.org
or www.issea.org.500,501

3.5 Operations Security (OPSEC)
Operations security or OPSEC is defined as:

the implementation of standardized operational procedures that define
the nature and frequency of interaction between users, systems, and
system resources, the purpose of which is to: (1) maintain a system in
a known secure state at all times, and (2) prevent accidental or inten-
tional theft, destruction, alteration, or sabotage of system resources.

As the name implies, OPSEC addresses security concerns related to the operation
of a system. OPSEC is more involved with personnel issues, staff responsibilities,
and duties than other security measures. OPSEC considers both insider and outsider
threats. To illustrate, one historical OPSEC requirement was known as “man-in-
the-loop.” This operational requirement stated that electronic messages (and some-
times hardcopy printouts) had to be reviewed by a person, to verify that security
markings were correct, before they could be released or forwarded. The infor-
mation was considered too sensitive to rely on automatic processing alone.

Exhibit 10 lists examples of items that should be considered when devel-
oping OPSEC procedures. These items fall into three categories: personnel
operations, software/data operations, and administrative operations. These
procedures should be well-defined, communicated to all stakeholders, and in
place before a system is initialized. Note that this list is not exhaustive; there
are also many site-specific issues to consider.

In addition to security clearances and background checks, it is important to
ensure that staff members have the appropriate education and experience to
perform their assigned duties. A person who has little or no understanding of
security is unlikely to take it seriously, recognize or respond to potential security
problems correctly. This need was recognized in the Orange Book, which
specified requirements for personnel who conducted security testing. Increasing
requirements were specified for each division. For example, the requirements
for Division B were135:

The security testing team shall consist of at least two individuals with
Bachelor degrees in Computer Science and at least one individual with
a Master’s degree in Computer Science. Team members shall be able
to follow test plans prepared by the system developer and suggest
additions, shall be conversant with the flow hypothesis or equivalent
security testing methodologies, shall be fluent in the TCB implementa-
tion language(s), and shall have assembly-level programming experi-
ence. Before testing begins, the team members shall have functional
knowledge of, and shall have completed the system developer’s inter-
nals course for the system being evaluated. At least one team member
shall have previously completed a security test on another system.

AU1163-ch03-Frame Page 53 Tuesday, September 11, 2001 7:48 AM

© 2002 by CRC Press LLC

http://www.sse-cmm.org
http://www.issea.org

Exhibit 10 Examples of Items to Address in OPSEC Procedures

1. Personnel Operations (user, system administrator, trainee, maintenance staff,
visitors, etc.)

a. Security clearances, background checks, badges
b. Proof of staff competence
c. Searching briefcases, purses, backpacks, etc. when entering/leaving building
d. Training staff on security features and responsibilities
e. Defining policy on working alone, after hours, from home, or while traveling

(remote access)
f. Defining policy for taking computers, reports, electronic files out of the office

2. Software/Data Operations (text, image, audio, video)
a. Schedule for performing system and data integrity checks, backups, generating

archives
b. Schedule and procedures for deleting and disposing of sensitive material,

electronic and hardcopy
c. Procedures for off-site storage
d. Labeling classified or sensitive data while it is stored, processed, displayed,

transmitted, or printed
e. Defining policy for storing diskettes and other media
f. Controlling access to archives
g. Defining audit trail archival and overwrite procedures and schedule
h. Defining policy for reusing electronic storage media
i. Procedures and schedule for executing virus scan software on servers and user

workstations
j. Procedures and schedule for updating virus scan software
k. Site and application specific software and data operations

3. Administrative Operations
a. Defining hours system can be accessed, and types of transactions that can be

done during those hours
b. Scheduling preventive maintenance
c. Defining conditions that should trigger an emergency shutdown, automatic or

operator assisted, of a communications node, system resource, or the entire
system

d. Defining policy on whether or not PCs should be turned off while someone is
away from their desk, at lunch, overnight, and the use of screen savers and
privacy screens

e. Defining how often passwords and other authentication data should be
changed and verified

f. Defining how often access control rights and privileges should be reviewed and
updated

g. Defining procedure for terminating user accounts normally and on an
emergency basis

h. Schedule and procedures for performing security inspections, security
assessments, and safe checks

i. Schedule and procedures for changing combinations
j. Property pass procedures
k. Schedule and procedures for managing the distribution, generation, update,

storage, replacement, and revocation of cryptographic material and other
security tokens

AU1163-ch03-Frame Page 54 Tuesday, September 11, 2001 7:48 AM

© 2002 by CRC Press LLC

In other words, general-purpose software engineering skills alone were con-
sidered inadequate.

OPSEC was relatively straightforward in the days of mainframes and computer
centers; it has become much more complex today given mobile computing,
telecommuting, client/server applications, and Internet applications.

3.6 System Safety
System safety is defined as143:

the application of engineering and management principles, criteria,
and techniques to achieve acceptable mishap risk, within the con-
straints of operational effectiveness, time, and cost, throughout all
phases of the system life cycle.

The term “mishap risk” is used to distinguish between type of risk of concern
to system safety and that of schedule or cost risk. Mishap risk is defined as143:

an expression of the possibility and impact of an unplanned event
or series of events resulting in death, injury, occupational illness,
damage to or loss of equipment or property (physical or cyber), or
damage to the environment in terms of potential severity and prob-
ability of occurrence.

As shown in Exhibit 11, system safety is composed of several components.
The exact combination of components will vary from system to system. For
this book, software safety is the primary component of concern. Software
safety is defined as288:

design features and operational procedures which ensure that a
product performs predictably under normal and abnormal condi-
tions, and the likelihood of an unplanned event occurring is mini-
mized and its consequences controlled and contained; thereby
preventing accidental injury or death, environmental or property
damage, whether intentional or accidental.

Software is generally categorized as being safety-critical, safety-related, or
nonsafety-related. These terms are defined as follows288:

� Safety-critical software: Software that performs or controls functions
which, if executed erroneously or if they failed to execute properly,
could directly inflict serious injury to people, property, and/or the
environment or cause loss of life.

� Safety-related software: Software that performs or controls functions
which are activated to prevent or minimize the effect of a failure of a
safety-critical system.

� Nonsafety-related software: Software that performs or controls func-
tions which are not related to safety.

AU1163-ch03-Frame Page 55 Tuesday, September 11, 2001 7:48 AM

© 2002 by CRC Press LLC

To illustrate, a software-controlled automobile braking system is classified as
safety-critical. A software-controlled air bag deployment system is classified
as safety-related. And a software-controlled automobile sound system is clas-
sified as nonsafety-related.

The discipline of system safety and software safety originated in the defense
and aerospace industries. MIL-STD-882 has been the foundation of system safety
for the U.S. military. The original standard was issued in 1969. Revision A was
published in 1977, revision B in 1984, and revision C in 1993. MIL-STD-882D,143

the current version, was adopted in 1999. MIL-STD-882D and its predecessors
focus on mishap risks associated with the development, test, acquisition, use,
and disposal of DoD weapon systems, subsystems, equipment, and facilities.143

These standards assigned three types of tasks and activities: safety program
management, risk analysis, and risk control, as shown in Exhibit 12.

MIL-STD-1574A (USAF)*, a tailored version of MIL-STD-882A, was devel-
oped especially for space and missile systems. Although issued in 1979, MIL-
STD-1574A made some observations that are equally applicable today:

Accident prevention is of major concern throughout the life cycle of a
system. Planning and implementation of an effective system safety
program, commensurate with the requirements of each phase in the
acquisition process, is of prime importance in minimizing risk of acci-
dents and their associated cost impacts during the systems test and

Data Software System
safety ---------> safety ---------------> safety

|
Electrical |
safety --------|

|
Mechanical |
safety --------|

|
Chemical |
safety --------|

|
Materials |
safety --------|

|
Radiation |
safety --------|

|
Operational |
safety --------|

Exhibit 11 Software as a Component of System Safety. (Source: Herrmann, D.,
Software Safety: The Medical Perspective, Invited Tutorial, 16th International
System Safety Society Conference, September 14–19, 1998, Seattle, WA.)

* MIL-STD-1574A, System Safety Program for Space and Missile Systems, U.S. Air Force (USAF),
August 15, 1979.

AU1163-ch03-Frame Page 56 Tuesday, September 11, 2001 7:48 AM

© 2002 by CRC Press LLC

operational phases. System safety responsibilities shall be an inherent
part of every program and the implementation of the complete system
program requires extensive participation and support by many disci-
plines and functional areas.

In other words, prior planning is necessary if safety is to be achieved. Second,
safety tasks and activities are ongoing throughout the system life cycle. Third,
safety engineering should be an integral part of the system engineering process.
Finally, effective safety engineering requires an interdisciplinary approach.
These four principles are true for reliability engineering and security engineer-
ing as well.

The purpose of safety engineering is to manage mishap risks. This is
accomplished through a combination of analysis, design, and verification
activities, such as those discussed in Annex B, as well as operational proce-
dures. A series of hazard analyses are performed throughout the life cycle to
identify risks, their causes, the severity of the consequences should they occur,
and the likelihood of them occurring. Risks are then eliminated or controlled
through inherent safe (re)design features, risk mitigation or protective functions,
system alarms and warnings, and comprehensive instructions for use and
training that explain safety features, safety procedures, and the residual risk.

As the quote above stated, the first step is to develop a system safety plan
and a corresponding software safety plan. The plan explains the tasks and
activities to be performed, the schedule with key milestones and decision
points, and the roles and responsibilities of the different stakeholders and the

Exhibit 12 System Safety Tasks and Activities
Required by MIL-STD-882D

Safety Program Management
102 System Safety Program Plan
104 Safety Reviews and Audits
105 Safety Working Group
106 Hazard Tracking

Risk Analysis
201 Preliminary Hazard List
202 Preliminary Hazard Analysis, Functional FMECA
204 Subsystem Hazard Analysis, Design FMECA
205 System Hazard Analysis, Interface FMECA
206 HAZOP Studies

Risk Control
203 Safety Requirements
301 Safety Assessments
302 Safety Testing
303 Safety Review of ECRs and SPRs
401 Safety Verification
402 Safety Compliance Assessment

Source: From MIL-STD-882D, Mishap Risk Management
(System Safety), U.S. Department of Defense (DoD) Standard
Practice (draft), October 20, 1998.

AU1163-ch03-Frame Page 57 Tuesday, September 11, 2001 7:48 AM

© 2002 by CRC Press LLC

coordination of their efforts. At the same time, a system safety case and a
software safety case are begun. A safety case is a systematic means of gathering
and reporting the data needed by contractual, regulatory, and certification
authorities to certify that a system has met specified safety requirements and
is safe for use in the intended operational environment. Assumptions, claims,
evidence, and arguments form the basis of a safety case. A safety plan and a
safety case complement each other; the plan states what is intended to be
done while the case proves that it was done. A safety case is a living document
throughout the system life cycle.

To be achieved, safety requirements must be specified — both the func-
tional safety requirements and the safety integrity requirements. These require-
ments explain how a system should prevent, detect, respond to, contain, and
recover from hazards so that the system remains in a known safe state at all
times. This involves specifying must work functions (MWFs) and must not
work functions (MNWFs),126,127 under what conditions a system should fail
safe or fail operational, and the time required to safe or shutdown a system
before corrective action can be taken.439

Since its beginning in the defense and aerospace industries, the need for
software safety has expanded to most industrial sectors, including the railway,
automotive, power generation, commercial aircraft, air traffic control systems,
process control, and biomedical industries. A new application is intelligent
transportation systems (ITS). As Jesty308 points out, software will play a major
role in:

� Providing pre-trip information
� Providing route guidance
� Performing demand management and traffic control functions
� Assisting emergency vehicle management
� Monitoring the transportation of HAZMAT

Another reasonably new application is marine navigation systems in which
software is responsible for integrating and supplying correct, current, and
understandable real-time information from multiple sources. Mills356 notes
the concomitant challenges:

In safety-critical situations, the information must be correct and
readily available in an instantaneously understandable form. … this
is not always the case if cycling through screens is necessary or
information such as symbols has to be interpreted. However, there is
another problem in that when information is integrated the choice
of which information is redundant is often made at the system/chip
level so that the user has no idea what has been discarded.

There are many parallels between safety and security engineering. Security
engineering speaks in terms of vulnerabilities and threats, while safety engi-
neering speaks in terms of risks and hazards. In both instances, the intent is
to: (1) prevent accidental or malicious intentional actions that could have

AU1163-ch03-Frame Page 58 Tuesday, September 11, 2001 7:48 AM

© 2002 by CRC Press LLC

negative consequences; (2) minimize or eliminate the probability of unintended
or unspecified functionality; and (3) keep the system in a known safe or
secure state at all times. Many of the same techniques are used for both safety
and security engineering, as shown in Annex B; the difference is the perspec-
tive from which the techniques are applied and the results interpreted. For
example, access control can be employed to restrict access to sensitive
information and to prevent unauthorized users from initiating safety-critical
functions.333,422 The concept of defense in depth is employed in both safety
and security engineering. The dual usage of Formal Methods was mentioned
earlier. There are also many parallels between physical security and physical
safety; operational security and operational safety.

3.7 System Reliability
System reliability is the composite of hardware and software reliability pre-
dictions or estimations for a specified operational environment. Hardware
reliability is defined as:

the ability of an item to correctly perform a required function under
certain conditions in a specified operational environment for a stated
period of time.

Software reliability is defined as288:

a measure of confidence that the software produces accurate and
consistent results that are repeatable, under low, normal, and peak
loads, in the intended operational environment.

Hardware is primarily subject to random failures, failures that result from
physical degradation over time and variability introduced during the manufac-
turing process. Hardware reliability is generally measured quantitatively. Soft-
ware is subject to systematic failures, failures that result from an error of omission,
an error of commission, or an operational error during a life-cycle activity.288

Software reliability is measured both quantitatively and qualitatively. To illustrate,
a failure due to a design error in a memory chip is a systematic failure. If the
same chip failed because it was old, that would be considered a random failure.
A software failure due to a design or specification error is a systematic failure.
Hence, system reliability measurements combine quantitative and qualitative
product and process assessments.

Reliability engineering emerged as an engineering discipline in earnest
following World War II. The defense and aerospace industries led this devel-
opment; other industries such as the automotive, telecommunications, and
consumer electronics became involved shortly thereafter. Initial efforts were
focused on components, then subsystems, and systems. A variety of statistical
techniques were developed to predict and estimate system reliability. Failure
data was collected, analyzed, and shared over the years so that the techniques

AU1163-ch03-Frame Page 59 Tuesday, September 11, 2001 7:48 AM

© 2002 by CRC Press LLC

could be improved. The notion of software reliability did not begin until the
late 1970s.

Early software reliability models tried to adapt hardware reliability models.
They applied statistical techniques to the number of errors found during testing
and the time it took to find them to predict the number of errors remaining
in the software and the time that would be required to find them. Given the
difference in hardware and software failures, the usefulness of these models
was mixed. The limitations of early software reliability models can be sum-
marized as follows288:

1. They do not distinguish between the type of errors found or predicted
to be remaining in the software (functional, performance, safety, reli-
ability, etc.).

2. They do not distinguish between the severity of the consequences of
errors (insignificant, marginal, critical, catastrophic) found or predicted
to be remaining in the software.

3. They do not take into account errors found by techniques other than
testing (e.g., static analysis) or before the testing phase.

These limitations led to the development of new software reliability models
and the joint use of qualitative and quantitative assessments.

The purpose of reliability engineering is to ensure that a system and all of
its components exhibit accurate, consistent, repeatable, and predictable perfor-
mance under specified conditions. A variety of analysis, design, and verification
techniques, like those discussed in Annex B, are employed throughout the life
cycle to accomplish this goal. Current and thorough user documentation is an
important part of this process because it will explain the correct operation of
a system, applications for which the system should and should not be used,
and procedures for preventive, adaptive, and corrective maintenance.

As in safety engineering, the first step is to develop a system reliability
plan and a corresponding software reliability plan. Similarly, a system reliability
case and a software reliability case are begun. A reliability case demonstrates
that a system has met specified reliability requirements and is fit for use in
the intended operational environment.

Reliability requirements are specified at the system level, then allocated to
system components such as software. A series of analyses, feasibility studies,
and trade-off studies are performed to determine the optimum system archi-
tecture that will meet the reliability requirements. A determination is made
about how a system should prevent, detect, respond to, contain, and recover
from errors, including provisions for degraded mode operations. Progress
toward meeting reliability goals is monitored during each life-cycle phase.

One of the more interesting and promising new developments in this field
is the application of Bayesian Belief networks (BBNs) to model system and
software dependability. BBNs are graphical networks that represent probabilistic
relationships among events or propositions. Bouissou, Martin, and Ourghanlian221;
Niel, Littlewood, and Fenton361; and Neil and Fenton360 describe several advan-
tages of BBNs:

AU1163-ch03-Frame Page 60 Tuesday, September 11, 2001 7:48 AM

© 2002 by CRC Press LLC

1. They can be used as a decision aid in the context of uncertainty.
2. They have the ability to combine different types of information: infer-

ence, evidence, and expert judgment.
3. They improve communication among different stakeholders.
4. They address known risks, unexpected and unknown results and

effects.
5. The probabilities are updated as new knowledge or uncertainty is

propagated through the network.

Agena, Ltd., has reported several successful BBN projects. In one project,
BBNs were used to predict software defects in consumer digital electronic
products387:

The defect prediction BBN models the process of defect insertion and
discovery at the software module level. It will be used to predict the
number of residual defects, and defect densities, at various life-cycle
phases and with various different types of assumptions about the design
and testing process.

A second project involved assessing the reliability of military vehicles during
all life-cycle phases. A tool composed of five modular BBNs was developed
for this project431:

1. A Bayesian updating BBN to predict the reliability of subsystems using
failure data from historically similar subsystems

2. A recursive BBN used to combine subsystem reliability probability
distributions together to achieve a vehicle-level prediction

3. A design-quality BBN used to estimate design unreliability caused by
a variety of design process factors

4. A manufacturing-quality BBN used to estimate unreliability caused by
poor-quality manufacturing processes

5. A vehicle testing BBN that uses failure data gained from vehicle testing
to infer vehicle reliability

Other applications of BBNs reported by Agena, Ltd., include431:

1. Assessing risks associated with specific new programmable electronic
system components for the transportation industry

2. Modeling risk in air traffic control systems
3. Automated test case generation and software reliability forecasting for

the telecommunications industry
4. Operational risk forecasting for the financial and insurance industries
5. Modeling expected jury reasoning for criminal trials

In addition, research is underway to determine if BBNs can be used effectively
to predict intrusion-detection profiles prior to an attack.

There are several parallels between reliability engineering and safety or
security engineering. Reliability engineering speaks in terms of failure modes
and failure rates. In this instance, the term “failure” encompasses all types of

AU1163-ch03-Frame Page 61 Tuesday, September 11, 2001 7:48 AM

© 2002 by CRC Press LLC

failures, including security compromises and safety violations. The goal of all
three disciplines is to prevent, detect, contain, and recover from erroneous
system states and conditions. However, reliability engineering does not place
as much emphasis on intentional malicious actions as safety or security engi-
neering. Integrity and availability are major concerns of reliability engineering,
just as they are for safety and security engineering. Reliability engineering
activities are performed throughout the life cycle at the system and software
level. As shown in Annex B, many of the same analysis, design, and verification
techniques are used by safety, reliability, and security engineering. For example,
a combined FTA/FMECA can be used by a reliability engineer to determine
failure modes and rates. A safety engineer can use the same analysis to identify
potential hazardous failures and the risk mitigation/control measures needed.
A security engineer can use the same analysis to identify potential failures that
could lead to security compromises. Again, the difference is the perspective
from which the techniques are applied and the results interpreted. This concept
is developed further in Chapters 4 through 8.

3.8 Summary
This chapter reviewed the seven historical approaches to information security/
IA: physical security, communications security (COMSEC), computer security (COM-
PUSEC), information security (INFOSEC), operations security (OPSEC), system
safety, and system reliability. Each of these seven approaches served a different
purpose, as summarized in Exhibit 13. A variety of techniques were used by
these historical approaches to achieve and maintain information confidentiality,
data and system integrity and availability. Some techniques were used by
multiple approaches, as shown in Exhibit 14. Although many parallels existed
between these approaches, there was a lack of formal coordination and
communication among them. For the most part, these activities were performed
in isolation; at best, there was limited ad hoc coordination.

All of the approaches have had to evolve and need to continue evolving
to correspond to changes in technology and operational environments, pro-
files, and missions. In the early days, physical security, COMSEC, COMPUSEC,
and OPSEC were designed around the concept of a mainframe computer in
a secure computer center. The advent of distributed processing, PCs, and LANs
led to the initiation of INFOSEC, which merged/superseded COMSEC and
COMPUSEC. Originally, system safety and system reliability gave nominal
consideration to software. Today, software is a major component of safety
engineering and reliability engineering.

At present, almost all systems, particularly infrastructure systems, mission-
critical systems, and business-critical systems, have a combination of safety,
reliability, and security requirements. A system may have high security, medium
reliability, and no safety requirements, or a system may have high safety, high
reliability, and medium security requirements. To illustrate:

AU1163-ch03-Frame Page 62 Tuesday, September 11, 2001 7:48 AM

© 2002 by CRC Press LLC

� A financial system has high security, medium reliability, and no safety
requirements.

� A database of medical records has medium safety, reliability, and
security requirements.

� A spy satellite has high security and reliability requirements and low
safety requirements. (It should not be able to malfunction and crash
in an inhabited area.)

� An air traffic control system has high safety and reliability requirements
and medium security requirements.

� An automobile has high safety, high reliability, and low security require-
ments. (An unauthorized person should not be able to tamper with the
onboard PLCs or embedded software.)

Hence, it is essential that safety, reliability, and security engineering efforts
be systematically coordinated and integrated. This is the realm of information
security/IA.

Next, Chapter 4 explains how to identify what systems and data need to
be protected and why.

Exhibit 13 Summary of the Different Roles Played by Historical Approaches
to Information Security/IA

Type of IA Activity Role or Purpose

Physical security Protect system resources from physical damage that could
impair operations and services. Protect physical system
resources from theft.

Communications
security (COMSEC)

Protect the confidentiality, integrity, and availability of sensitive
data while it is being transmitted between systems and
networks.

Computer security
(COMPUSEC)

Prevent, detect, and minimize the consequences of
unauthorized actions by users (authorized and unauthorized)
of a computer system.

Information
security (INFOSEC)

Protect information against unauthorized disclosure, transfer,
or destruction, whether accidental or intentional.

Operations security
(OPSEC)

Implement standardized operational procedures that define
the nature and frequency of interaction between users,
systems, and system resources; the purpose of which is to:
(1) maintain a system in a known secure state at all times, and
(2) prevent accidental or intentional theft, destruction,
alteration, or sabotage of system resources.

System safety Achieve acceptable mishap risk, within the constraints of
operational effectiveness, time, and cost throughout all phases
of the system lifecycle.143

System reliability Achieve correct functional performance under certain
conditions in a specified operational environment for a stated
period of time.

AU1163-ch03-Frame Page 63 Tuesday, September 11, 2001 7:48 AM

© 2002 by CRC Press LLC

Exhibit 14 Summary of the Techniques Used by Historical Approaches to
Information Security/IA

Type of IA Activity Confidentiality Measures Integrity Measures Availability Measures

Physical security Isolating data of
different classification
levels on different
channels

Shielding equipment
and cables

Controlling physical
access to equipment

Remote equipment
identified by location

Specialized HVAC
UPS
Protecting

equipment from
natural disasters

Disk mirroring
Off-site storage

Communications
security
(COMSEC)

Encryption
Spectrum management
Secure switch isolation

Error detection/
correction
algorithms

Formal proofs of
correctness

Redundant
communication
equipment

Alternate
communication
paths

Computer
security
(COMPUSEC)

Access control
Authentication
Audit trail
Process isolation
Labeling

Partitioning
Information hiding

Trusted recovery

Information
security
(INFOSEC)

Encryption
Spectrum management
Secure switch isolation
Access control
Authentication
Audit trail
Process isolation
Labeling
Protection against

accidental and
intentional actions

Error detection/
correction
algorithms

Formal proofs of
correctness

Partitioning
Information hiding
Protection against

accidental and
intentional actions

EALs

Redundant
communication
equipment

Alternate
communication
paths

Trusted recovery

Operations
security
(OPSEC)

Personnel operations
Data operations
Administrative

operations

Data operations
Administrative

operations

Data operations
Administrative

operations

System safety Access control Error detection/
correction
algorithms

Plausibility checks
Defensive

programming
Hazard analyses
Formal proofs of

correctness
Partitioning
Information hiding
SILs

Defense in depth
Block recovery
Fail safe or fail

operational

AU1163-ch03-Frame Page 64 Tuesday, September 11, 2001 7:48 AM

© 2002 by CRC Press LLC

3.9 Discussion Problems

1. What role does intrusion detection play in physical security?
2. Describe the role software reliability serves in protecting data confi-

dentiality and availability.
3. Develop a physical security plan for a home-based online business.

The business has three mini-tower computers in two different geo-
graphic locations, one printer, and a notebook computer that is taken
to trade shows. There are five employees, two of which live in the
house. The house has two phone lines. The online business is run out
of the lower level of the house.

4. What different or additional physical security measures, if any, should
be taken for home offices and mobile computing compared to a
business office, and vice versa?

5. The XYZ company uses online e-forms to capture, update, and store
personnel records, such as address, title, salary, bonuses, and perfor-
mance appraisals. Develop an access control strategy that accommo-
dates these five user groups: employee, first level supervisor, second
level supervisor, personnel officer, and marketing manager.

6. How is the strength of an encryption algorithm measured?
7. What kind of authentication is needed for the following scenarios:

remote access, mobile computing, distributed work groups, remote
help/diagnostics?

8. What is the difference, if any, between security classification schemes
based on security levels and those based on need-to-know? Which of
these two approaches accommodates compartmentalization?

9. Describe the role encryption serves in protecting data integrity.
10. Why should or should not access control features be implemented for

safety-critical software? For reliability-critical software?
11. What role does an audit trail play in protecting: (a) security-critical

software, (b) safety-critical software, and (c) reliability-critical software?
What role does an audit trail play in investigating an incident related

Exhibit 14 Summary of the Techniques Used by Historical Approaches to
Information Security/IA (continued)

Type of IA Activity Confidentiality Measures Integrity Measures Availability Measures

System reliability Error detection/
recovery
algorithms

Fault tolerance
FTA/FMECA
Reliability

allocation

Reliability block
diagrams

Reliability
estimation and
prediction

Block recovery
Degraded mode

operations

AU1163-ch03-Frame Page 65 Tuesday, September 11, 2001 7:48 AM

© 2002 by CRC Press LLC

to the failure or compromise of: (a) security-critical software, (b) safety-
critical software, and (c) reliability-critical software?

12. What are the major components of an OPSEC plan? What does each
address?

13. What parallels exist between: (a) safety and reliability engineering,
(b) safety and security engineering, and (c) security and reliability
engineering?

14. Which of the seven historical approaches to IA considered: (a) acci-
dental actions, and (b) malicious intentional actions?

15. Describe the differences and similarities between the Common Criteria
and the SSE-CMM.

16. What benefit does a customer gain by requiring a vendor to be rated
at a specific SSE-CMM level? What competitive advantage or disadvan-
tage does a vendor gain by obtaining an SSE-CMM rating?

AU1163-ch03-Frame Page 66 Tuesday, September 11, 2001 7:48 AM

© 2002 by CRC Press LLC

	A PRACTICAL GUIDE TO Security Engineering and Information Assurance
	Table of Contents
	Chapter 3
	Historical Approaches to Information Security and Information Assurance
	3.1 Physical Security
	3.2 Communications Security (COMSEC)
	3.3 Computer Security (COMPUSEC)
	3.4 Information Security (INFOSEC)
	3.5 Operations Security (OPSEC)
	3.6 System Safety
	3.7 System Reliability
	3.8 Summary
	3.9 Discussion Problems

