

Network Administration with
FreeBSD 7

Building, securing, and maintaining networks with the
FreeBSD operating system

Babak Farrokhi

 BIRMINGHAM - MUMBAI

Network Administration with FreeBSD 7

Copyright © 2008 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of
the information presented. However, the information contained in this book is sold
without warranty, either express or implied. Neither the author, Packt Publishing,
nor its dealers or distributors will be held liable for any damages caused or alleged to
be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: April 2008

Production Reference: 1070408

Published by Packt Publishing Ltd.
32 Lincoln Road
Olton
Birmingham, B27 6PA, UK.

ISBN 978-1-847192-64-6

www.packtpub.com

Cover Image by Nilesh Mohite (nilpreet2000@yahoo.co.in)

Credits

Author

Babak Farrokhi

Reviewer

Roman Bogorodskiy

Acquisition Editor

Rashmi Phadnis

Technical Editor

Della Pradeep

Editorial Team Leader

Mithil Kulkarni

Project Manager

Abhijeet Deobhakta

Project Coordinator

Abhijeet Deobhakta

Indexer

Hemangini Bari

Proofreader

Nina Hasso

Production Coordinator

Aparna Bhagat

Cover Work

Aparna Bhagat

About the Author

Babak Farrokhi is an experienced UNIX system administrator and Network
Engineer who worked for 12 years in the IT industry in carrier-level network service
providers. He discovered FreeBSD around 1997 and since then he has been using it
on a daily basis. He is also an experienced Solaris administrator and has extensive
experience in TCP/IP networks.

In his spare time, he contributes to the open source community and develops his
skills to keep himself in the cutting edge.

You may contact Babak at babak@farrokhi.net and his personal website at
http://farrokhi.net/

I would like to thank my wife, Hana, for being the source of
inspiration in my life. Without her support and patience I could not
finish this project.

Next I'd like to thank the Technical Reviewer of the book, Roman
Bogorodskiy (novel@FreeBSD.org) for his thorough review, great
suggestions, and excellent notes that helped me to come up with the
chapters even better.

I also want to thank PACKT and everyone I worked with, Priyanka
Baruah,Abhijeet Deobhakta, Rashmi Phadnis, Patricia Weir, Della
Pradeep and others for their patience and cooperation. Without
their help I could not turn my scattered notes into a professional
looking book.

 About the Reviewer

Roman Bogorodskiy lives in Russia, Saratov. He is a student of the Mechanics
and Mathematics faculty at the Saratov State University. At the time of writing, he
was working on a diploma project. He is working as a Software Engineer in the one
of the biggest ISPs of his hometown. He takes part in various open source projects
and got his FreeBSD commit bit back in 2005.

Table of Contents
Preface 1
Chapter 1: System Configuration—Disks 7

Partition Layout and Sizes 7
Swap 9

Adding More Swap Space 10
Swap Encryption 12

Softupdates 12
Snapshots 13
Quotas 15

Assigning Quotas 16
File System Backup 18

Dump and Restore 18
The tar, cpio, and pax Utilities 22
Snapshots 23

RAID-GEOM Framework 24
RAID0—Striping 24
RAID1—Mirroring 26
Disk Concatenation 27

Summary 28
Chapter 2: System Configuration—Keeping it Updated 29

CVSup—Synchronizing the Source Code 30
Tracking –STABLE 31
Tracking –CURRENT 33

Ports Collection 34
Tracking Ports 34
Portsnap 35

Security Advisories 36
VuXML—Vulnerability Database 37

Table of Contents

[ii]

CVS Branch Tag 37
Customizing and Rebuilding Kernel 38
Rebuilding World 40
Binary Update 42
Recovering from a Dead Kernel 43
Summary 45

Chapter 3: System Configuration—Software Package Management 47
Ports and Packages 48

The Legacy Method 48
Software Directories 49
Packages 49
Ports 51

Package Management Tools 55
Portupgrade 56

portinstall 56
pkg_deinstall 57
portversion 58
pkg_which 59
portsclean 59

Portmaster 60
Summary 60

Chapter 4: System Configuration—System Management 63
Process Management and Control 63

Processes and Daemons 64
Getting Information about Running Processes—ps, top, and pgrep 65
Sending Signals to Running Processes—kill, killall, and pkill 67
Prioritizing Running Processes—nice and renice 68

Resource Management and Control 69
System Resource Monitoring Tools—vmstat, iostat, pstat, and systat 69

Process Accounting 72
Summary 73

Chapter 5: System Configuration—Jails 75
Concept 75
Introduction 76
Setting Up a Jail 77
Configuring the Host System 78
Starting the Jail 80
Automatic Startup 81
Shutting Down Jails 82
Managing Jails 82

Table of Contents.

[iii]

Jail Security 84
Jail Limitations 85
Summary 85

Chapter 6: System Configuration—Tuning Performance 87
Tweaking Kernel Variables using SYSCTL 88
Kernel 89

SMP 91
Disk 92

File limits 92
I/O Performance 92
RAID 93

Network 94
TCP Delayed ACK 94
RFC 1323 Extensions 95
TCP Listen Queue Size 95
TCP Buffer Space 95
Network Interface Polling 96

The /etc/make.conf file 97
CPUTYPE 97
CFLAGS and COPTFLAGS 98

The /boot/loader.conf file 98
Summary 99

Chapter 7: Network Configuration—Basics 101
Ifconfig Utility 101

Configuring IP Address 106
Configuring Layer2 Address 107
Configuring IPX 107
Configuring AppleTalk 108
Configuring Secondary (alias) IP Addresses 109
Configuring Media Options 110
Configuring VLANs 112
Advanced ifconfig Options 113

Hardware Offloading 114
Promiscuous Mode 115
MTU 116
ARP 116
Static ARP 117
Monitor Mode 118

Configuring Fast EtherChannel 118
Default Routing 119
Name Resolution 120

Table of Contents

[iv]

Network Testing Tools 121
Ping 121
Traceroute 122
Sockstat 123
netstat 124
ARP 125
Tcpdump 126

Summary 131
Chapter 8: Network Configuration—Tunneling 133

Generic Routing Encapsulation (GRE) protocol 134
IPSEC 136

Operating Modes 137
Tunnel Mode 138

Summary 144
Chapter 9: Network Configuration—PPP 145

Setting up PPP Client 146
Setting up PPP Server 149
Setting up PPPoE Client 152
Setting up PPPoE Server 153
Summary 155

Chapter 10: Network Configuration—Routing and Bridging 157
Basic Routing—IP Forwarding 158
Static Routing 160
routed and route6d 162
Running OSPF—OpenOSPFD 163
Running BGP—OpenBGPD 166
Bridging 169

Filtering Bridges 171
Proxy ARP 172
Summary 173

Chapter 11: Network Configuration—IPv6 175
IPv6 Facts 176

Fact One—Addressing 176
Fact Two—Address Types 176
Fact Three—ARP 176
Fact Four—Interface Configuration 177

Using IPv6 177
Configuring Interfaces 177

Routing IPv6 179
RIP6 180

Table of Contents.

[v]

Multicast Routing 181
Tunneling 181

GIF Tunneling 181
Summary 182

Chapter 12: Network Configuration—Firewalls 183
Packet Filtering with IPFW 184

Basic Configuration 185
Ruleset Templates 187
Customized Rulesets 188
Logging 190
Network Address Translation (NAT) 191
Traffic Shaping 192

Packet Filtering with PF 193
PF Configuration Syntax 194
Controlling PF 197

Network Address Translation using PF and IPFW 199
Summary 201

Chapter 13: Network Services—Internet Servers 203
inetd Daemon 204

tcpd 206
SSH 207

Running a Command Remotely 208
SSH Keys 208

SSH Authentication Agent 210
SSH Tunneling or Port Forwarding 212

NTP 213
Syncing 213
NTP Server 214

DNS 215
BIND software 215
Operating Modes 215

Forwarding/Caching DNS Server 216
Authoritative 217
Monitoring 219
Optimizations 219

FTP 221
Anonymous FTP Server 221

Mail 223
Sendmail 224
Postfix 226

Table of Contents

[vi]

Web 227
Apache 228

Virtual Hosts 229
Alternative HTTP Servers 230

Proxy 230
Summary 233

Chapter 14: Network Services—Local Network Services 235
Dynamic Host Configuration Protocol (DHCP) 236

dhclient 236
ISC DHCPD 236

DHCPD Configuration 237
Trivial File Transfer Protocol (TFTP) 239
Network File System (NFS) 240

Server 240
Client 241
NFS Locking 243

Server Message Block (SMB) or CIFS 243
SMB Client 243
SMB Server 244

Authentication 246
Samba Web Administration Tool (SWAT) 246

Simple Network Management Protocol (SNMP) 248
bsnmpd 248
NET-SNMP 249

Client Tools 250
Printing 251

lpd—Print Spooler Daemon 252
Common UNIX Printing System (CUPS) 253

Network Information System (NIS) 254
NIS Server 255

Initializing NIS Server 255
Summary 258
Index 259

Preface
This book is supposed to help Network Administrators to understand how FreeBSD
can help them simplify the task of network administration and troubleshooting as
well as running various services on top of FreeBSD 7 Operation System. FreeBSD
is a proven Operating System for networked environments and FreeBSD 7 offers
superior performance to run network services, as well as great flexibility to integrate
into any network running IPv4, IPv6 or any other popular network protocol.

This book is divided into three segments—system configuration, network
configuration, and network services.

The first segment of the book covers system configuration topics and talks about
different aspects of system configuration and management, including disks
management, patching and keeping the system up to date, managing software
packages, system management and monitoring, jails and virtualization, and general
improvements to system performance.

Second segment of the book actually enters the networking world by introducing
basic network configuration in FreeBSD, network interface configuration for different
layer 3 protocols, Tunnelling protocols, PPP over serial and Ethernet and IPv6.
This segment also looks into bridging and routing in FreeBSD using various third
party softwares. At the end, there is an introduction to various firewall packages in
FreeBSD and details on how to configure them.

Third segment of the book deals with different daemons and network services that
can be run on top of FreeBSD, including Local network services such as DHCP,
TFTP, NFS, SMB as well as Internet services such as DNS, Web, Mail, FTP and NTP.

Preface

[2]

What This Book Covers
Chapter 1 looks into FreeBSD file system and disk I/O from a performance point
of view. Several methods to optimize the I/O performance on a FreeBSD host are
discussed in this chapter.

Chapter 2 discusses several methods and tools to keep a FreeBSD system up-to-
date, including CVSUP to update source and ports tree and also customizing and
updating system kernel and rebuilding the whole system from source.

Chapter 3 introduces FreeBSD ports collection, packages, and different methods to
install, remove, or upgrade software packages on FreeBSD.

Chapter 4 covers basic information about daemons, processes, and how to manage
them. You will also get familiar with various system tools to monitor and control
process behavior and manage system resources efficiently.

Chapter 5 discusses virtualization in FreeBSD and introduces Jails from ground up.
This chapter covers creating and maintaining Jails and scenarios in which you can
benefit from these built-in virtualization facilities in FreeBSD.

Chapter 6 discusses performance tuning from different perspectives, including Disk
I/O and Network, and how to get the most out of the modern hardware and
multi-processor systems. It discusses various tweaks that can make your FreeBSD
system perform much faster and more smoothly.

Chapter 7 deals with network configuration in FreeBSD in general, focusing mostly
on network interface configuration for different network protocols such as IPv4,
IPv6, IPX and AppleTalk. It also deals with basic network configuration and
related configuration files and finally introduces some network management and
testing tools.

Chapter 8 discusses tunneling in general and introduces various tunneling protocols,
and mostly concentrates on GRE and IPSec tunneling.

Chapter 9 covers PPP configuration in FreeBSD including PPP over Ethernet protocol
as both client and server.

Chapter 10 has a closer look at routing and bridging in FreeBSD using built-in
bridging features and also different routing protocols including OSPF and BGP using
third-party software.

Chapter 11 concentrates on IPv6 implementation in FreeBSD and gives more detail
on interface configuration, routing IPv6 using RIP6, Multicast routing, and
Tunneling protocols.

Preface

[3]

Chapter 12 introduces IPFW and PF tools for packet filtering and network address
translation as well as traffic management on FreeBSD.

Chapter 13 has a quick look at various important protocols such as SSH, NTP, DNS,
FTP, Mail, Web, and Proxying. It also introduces different pieces of software that you
can use to set up these services on a FreeBSD host.

Chapter 14 looks into some network protocols that are mostly used inside an
autonomous system or inside a datacenter or a local network, such as DHCP, TFTP,
NFS, SMB, SNMP, NIS and Printing and introduces various pieces of software and
setting them up on a FreeBSD host.

What You Need for This Book
Basically you need a host running FreeBSD 7 connected to your network. Your
host can be any hardware platform that FreeBSD supports, including i386, sparc64,
amd64, ia64, powerpc or pc98. You should download relevant FreeBSD installation
CD images from FreeBSD project's FTP server at ftp://ftp.freebsd.org/pub/

There you will find ISO images for various platforms under different subdirectories
(e.g. "ISO-IMAGES-i386" directory contains i386 platform ISO images). For a basic
installation, the ISO image for first CD will suffice.

Once you have installed FreeBSD, you should also configure your network
parameters to get connected to your existing network. This can be done during
installation or later by modifying the /etc/rc.conf configuration file (covered in
chapter 7).

Who is This Book for
For Network Administrators who would like to work with FreeBSD and are looking
for skills beyond Installation and configuration of FreeBSD.

Conventions
In this book, you will find a number of styles of text that distinguish between
different kinds of information. Here are some examples of these styles, and an
explanation of their meaning.

There are three styles for code. Code words in text are shown as follows: "And
finally, check the system's swap status using the following swapinfo(8) command."

Preface

[4]

A block of code will be set as follows:

flush
add check-state
add allow tcp from me to any setup keep-state
add allow tcp from 192.168.1.0/24 to me keep-state
add allow ip from 10.1.1.0/24 to me
add allow ip from any to any

When we wish to draw your attention to a particular part of a code block, the
relevant lines or items will be made bold:

/dev/ad0s1a on / (ufs, local, noatime, soft-updates)
devfs on /dev (devfs, local)
procfs on /proc (procfs, local)
/dev/md1 on /tmp (ufs, local)
/dev/md2 on /mnt (ufs, local, read-only)

Any command-line input and output is written as follows:

dd if=/dev/zero of=/swap0 bs=1024k count=256

New terms and important words are introduced in a bold-type font. Words that you
see on the screen, in menus or dialog boxes for example, appear in our text like this:
"Note that either the userquota or the groupquota can be specified for each partition
in the Options column.".

Important notes appear in a box like this.

Tips and tricks appear like this.

Reader Feedback
Feedback from our readers is always welcome. Let us know what you think about
this book, what you liked or may have disliked. Reader feedback is important for us
to develop titles that you really get the most out of.

To send us general feedback, simply drop an email to feedback@packtpub.com,
making sure to mention the book title in the subject of your message.

Preface

[5]

If there is a book that you need and would like to see us publish, please send us
a note in the SUGGEST A TITLE form on www.packtpub.com or email
suggest@packtpub.com.

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book, see our author guide on www.packtpub.com/authors.

Customer Support
Now that you are the proud owner of a Packt book, we have a number of things to
help you get the most from your purchase.

Errata
Although we have taken every care to ensure the accuracy of our contents, mistakes
do happen. If you find a mistake in one of our books—maybe a mistake in text or
code—we would be grateful if you would report this to us. By doing this you can
save other readers from frustration, and help to improve subsequent versions of
this book. If you find any errata, report them by visiting http://www.packtpub.
com/support, selecting your book, clicking on the Submit Errata link, and entering
the details of your errata. Once your errata are verified, your submission will be
accepted and the errata are added to the list of existing errata. The existing errata can
be viewed by selecting your title from http://www.packtpub.com/support.

Questions
You can contact us at questions@packtpub.com if you are having a problem with
any aspect of the book, and we will do our best to address it.

System Configuration—Disks
Disk I/O is one of the most important bottlenecks in the server's performance.
Default disk configuration in every operating system is optimally designed to fit the
general usage. However, you may need to reconfigure disks for your specific usage,
to get the best performance. This includes choosing multiple disks for different
partitions, choosing the right partition size for specific usage, and fine-tuning the
swap size. This chapter discusses how to use the right partition size and tuning file
system to gain better performance on your FreeBSD servers.

In this chapter, we will look into the following:

Partition layout and sizes
Swap, softupdates, and snapshots
Quotas
File system back up
RAID-GEOM framework.

Partition Layout and Sizes
When it comes to creating disk layout during installation, most system
administrators choose the default (system recommended) settings, or create a single
root partition that contains file system hierarchy.

However, while the recommended settings work for most simple configurations and
desktop use, it may not fit your special needs. For example, if you are deploying a
mail exchanger or a print server you may need to have a /var partition bigger than
the recommended size.

•

•

•

•

•

System Configuration—Disks

[8]

By default, FreeBSD installer recommends you to create five separate partitions as
shown in the following table:

Partition
Size

Description
Minimum Maximum

Swap RAM size / 8 2 * RAM size

Size of swap partition is recommended to be 2
or 3 times the size of the physical RAM. If you
have multiple disks, you may want to create
swap on a separate disk like other partitions.

/ 256 MB 512 MB
Root file system contains your FreeBSD
installation. All other partitions (except
swap) will be mounted under root partition.

/tmp 128 MB 512 MB

Temporary files will be placed under this
partition. This partition can be made either
on the disk or in the RAM for faster access.
Files under this partition are not guaranteed
to be retained after reboots.

/var 128 MB 1 GB + RAM
size

This partition contains files that are constantly
"varying", including log files and mailboxes.
Print spool files and other administrative files.
Creating this partition on a separate disk is
recommended for busy servers.

/usr 1536 MB Rest of disk
All other files, including home directories
and user installed applications, will be
installed under this partition.

These values could change in further releases. It is recommended that you refer to
the release notes of the version you are using, for more accurate information.

FreeBSD disklabel editor with automatically created partitions is shown in the
following screenshots:

Chapter 1

[9]

Depending on your system I/O load, partitions can be placed on different physical
disks. The benefit of this placement is better I/O performance, especially on /var
and /tmp partitions. You can also create /tmp in your system RAM by tweaking the
tmpmfs variable in /etc/rc.conf file. An example of such a configuration would
look like this:

tmpmfs="YES"
tmpsize="128m"

This will mount a 128 MB partition onto RAM using md(4) driver so that access
to /tmp would be dramatically faster, especially for programs which constantly
read/write temporary data into /tmp directory.

Swap
Swap space is a very important part of the virtual memory system. Despite the
fact that most servers are equipped with enough physical memory, having enough
swap space is still very important for servers with high and unexpected loads. It is
recommended that you distribute swap partitions across multiple physical disks or
create the swap partition on a separate disk, to gain better performance. FreeBSD
automatically uses multiple swap partitions (if available) in a round-robin fashion.

When installing a new FreeBSD system, you can use disklabel editor to create
appropriate swap partitions. Creating a swap partition, which is double the size of
the installed physical memory, is a good rule of thumb.

Using swapinfo(8) and pstat(8) commands, you can review your current swap
configuration and status. The swapinfo(8) command displays the system's current
swap statistics as follows:

swapinfo –h

Device 1K-blocks Used Avail Capacity
/dev/da0s1b 4194304 40K 4.0G 0%

The pstat(8) command has more capabilities as compared with the swapinfo(8)
command and shows the size of different system tables, under different load
conditions. This is shown in the following command line:

pstat –T

176/12328 files
0M/4096M swap space

System Configuration—Disks

[10]

Adding More Swap Space
There are times when your system runs out of swap space, and you need to add
more swap space for the system to run smoothly. You will have three options as
shown in the following list:

Adding a new hard disk.
Creating a swap file on an existing hard disk and partition.
Swapping over network (NFS).

Adding swap on a new physical hard disk will give better I/O performance, but
it requires you to take the server offline for adding new hardware. Once you have
installed a new hard disk, you should launch FreeBSD's disklabel editor and create
appropriate partitions on the newly installed hard disk.

To invoke the sysinstall's disklabel editor from the command line use
sysinstall diskLabelEditor command.

If, for any reason, you cannot add new hardware to your server, you can still use
the existing file system to create a swap file with the desired size and add it as swap
space. First of all, you should check to see where you have enough space to create the
swap file as shown as follows:

df –h

Filesystem Size Used Avail Capacity Mounted on
/dev/ad0s1a 27G 9.0G 16G 37% /
devfs 1.0K 1.0K 0B 100% /dev
procfs 4.0K 4.0K 0B 100% /proc
/dev/md0 496M 1.6M 454M 0% /tmp

Then create a swap file where you have enough space using the following
command line:

dd if=/dev/zero of=/swap0 bs=1024k count=256

256+0 records in
256+0 records out
268435456 bytes transferred in 8.192257 secs (32766972 bytes/sec)

•

•

•

Chapter 1

[11]

In the above example, I created a 256MB empty file (256 * 1024k blocks) named swap0
in the file system's root directory. Also remember to set the correct permission on the
file. Only the root user should have read/write permission on file. This is done using
the following command lines:

chown root:wheel /swap0

chmod 0600 /swap0

ls -l /swap0

-rw------- 1 root wheel 268435456 Apr 6 03:15 /swap0

Then add the following swapfile variable in the /etc/rc.conf file to enable swap
file on boot time:

swapfile="/swap0"

To make the new swap file active immediately, you should manually configure
md(4) device. First of all, let's see if there is any md(4) device configured, using
mdconfig(8) command as shown as follows:

mdconfig –l

md0

Then configure md(4) device as shown here:

mdconfig -a -t vnode -f /swap0

md1

You can also verify the new md(4) node as follows:

mdconfig -l -u 1

md1 vnode 256M /swap0

Please note that -u flag in the mdconfig(8) command takes the number of md
node (in this case, 1). In order to enable the swap file, you should use swapon(8)
command and specify the appropriate md(4) device as shown here:

swapon /dev/md1

And finally, check the system's swap status using the following swapinfo(8)
command:

swapinfo –h

Device 1K-blocks Used Avail Capacity
/dev/ad0s1b 1048576 0B 1.0G 0%
/dev/md1 262144 0B 256M 0%
Total 1310720 0B 1.3G 0%

System Configuration—Disks

[12]

Swap Encryption
Since swap space contains the contents of the memory, it would have sensitive
information like cleartext passwords. In order to prevent an intruder from extracting
such information from swap space, you can encrypt your swap space.

There are already two file system encryption methods that are implemented in
FreeBSD 7—gbde(8) and geli(8) commands. To enable encryption on the swap
partition, you need to add .eli or .bde to the device name in the /etc/fstab file
to enable the geli(8) command and the gbde(8) command, respectively. In the
following example, the /etc/fstab file shows a swap partition encrypted using
geli(8) command:

cat /etc/fstab

Device Mountpoint FStype Options Dump Pass#
/dev/ad0s1b.eli none swap sw 0 0
/dev/ad0s1a / ufs rw,noatime 1 1
/dev/acd0 /cdrom cd9660 ro,noauto 0 0

Then you have to reboot the system for the changes to take effect. You can verify the
proper operation using the following swapinfo(8) command:

swapinfo –h

Device 1K-blocks Used Avail Capacity
/dev/ad0s1b.eli 1048576 0B 1.0G 0%
/dev/md0 262144 0B 256M 0%
Total 1310720 0B 1.3G 0%

Softupdates
Softupdates is a feature to increase disk access speed and decrease I/O by caching
file system metadata updates into the memory. The softupdates feature decreases
disk I/O from 40% to 70% in the file-intensive environments like email servers.
While softupdates guarantees disk consistency, it is not recommended to enable it on
root partition.

The softupdates feature can be enabled during file system creation (using sysinstall's
disklabel editor) or using tunefs(8) command on an already created file system.

The best time to enable softupdates is before mounting partitions (that is in the
super-user mode).

Chapter 1

[13]

The following example shows softupdates enabled partitions:

mount

/dev/ad0s1a on / (ufs, local)
devfs on /dev (devfs, local)
/dev/ad0s1e on /tmp (ufs, local, soft-updates)
/dev/ad0s1f on /usr (ufs, local, soft-updates)
/dev/ad0s1d on /var (ufs, local, soft-updates)

In the above example, softupdates is enabled on /tmp, /usr, and /var partitions, but
not on the root partition. If you want to enable softupdates on the root partition, you
may use the tunefs(8) command as shown in the following example:

tunefs –n enable /

Please note that you cannot enable or disable softupdates on an active partition (that
is currently mounted partition). To do so, you should first unmount the partition
or change it to read-only mode. In case you want to enable softupdates on root
partition, it is recommended that you boot your system into single-user mode (in
which your root partition is mounted as read-only) and then enable softupdates
using the method mentioned in the above example.

Snapshots
A file system snapshot is a frozen image of a live file system. Snapshots are very
useful when backing up volatile data such as mail storage on a busy mail server.

Snapshots are created under the file system that you are making snapshots from. Up
to twenty snapshots can be created per file system.

The mksnap_ffs(8) command is used to create a snapshot from FFS partitions:

mksnap_ffs /var /var/snap1

Alternatively, you can use the mount(8) command to do the same:

mount –u –o snapshot /var/snap1 /var

Now that you have created the snapshot, you can:

take a backup of your snapshot by burning it on a CD/DVD, or transfer it to
another server using ftp(1) or sftp(1).
Use dump(8) utility to create a file system dump from your snapshot.

•

•

System Configuration—Disks

[14]

The fsck(8) command is used on a snapshot file to ensure the integrity of the
snapshot before taking backups:

fsck_ffs /var/snap1

** /var/snap1 (NO WRITE)
** Last Mounted on /var
** Phase 1 - Check Blocks and Sizes
** Phase 2 - Check Path names
** Phase 3 - Check Connectivity
** Phase 4 - Check Reference Counts
** Phase 5 - Check Cyl groups
464483 files, 5274310 used, 8753112 free (245920 frags, 1063399
blocks, 1.8% fragmentation)

Remember the following, when working with snapshots:

Snapshots will degrade the system's performance at the time of its creation
and removal, but not necessarily while running.
Remove snapshots as soon as you finish your work.
Snapshots can be removed in any order, irrespective of the order in which
they were created.

You can also mount a snapshot as a read-only partition to view or extract its
contents, using the mount(8) command. To mount a snapshot, you should first
create a md(4) node as follows:

mdconfig -a -t vnode -f /var/snap1

WARNING: opening backing store: /var/snap1 readonly
md2

In the above case, mdconfig(8) command has attached /var/snap1 to the first
available md(8) node and returned the name of the created node. Now you can
mount the md(8) node as a read-only file system:

mount -r /dev/md2 /mnt

And verify the operation using the mount(8) command:

mount

/dev/ad0s1a on / (ufs, local, noatime, soft-updates)
devfs on /dev (devfs, local)
procfs on /proc (procfs, local)
/dev/md1 on /tmp (ufs, local)

/dev/md2 on /mnt (ufs, local, read-only)

•

•

•

Chapter 1

[15]

To unmount the mounted snapshot, you should first use the umount(8) command,
and then remove md(4) node using mdconfig(8)as shown here:

umount /mnt

mdconfig -d -u 2

Note that mdconfig(8) takes the number of md(4) node (in this case, md2)
using -u parameter.

Finally, to remove a snapshot file, use rm(1) command. It may take a few seconds.

rm –f /var/snap1

Quotas
Quotas enable you to limit the number of files or disk space for each user or group of
users. This would be very useful on multiuser systems (like virtual web hosts, shell
access servers) on which the system administrator should limit disk space usage, on
a per-user basis.

Quota is available as an optional feature and is not enabled, by default, in
FreeBSD's GENERIC kernel. In order to enable quotas in FreeBSD, you should
reconfigure the kernel (explained in Chapter 2) and add the following line to the
kernel configuration file:

options QUOTA

You should also enable quotas in the /etc/rc.conf file by adding the following line:

enable_quotas="YES"

Quotas can be enabled, either for a user or a group of users, according to the file
system. To enable quotas on each partition, you should add the appropriate line in
the /etc/fstab file. Each partition may have its specific quota configuration. The
following example shows different quota settings in the /etc/fstab file:

cat /etc/fstab

Device Mountpoint FStype Options Dump Pass#
/dev/ad0s1b none swap sw 0 0
/dev/ad0s1a / ufs rw 1 1
/dev/ad0s1e /tmp ufs rw 2 2
/dev/ad0s1f /usr ufs rw, userquota 2 2
/dev/ad0s1d /var ufs rw, groupquota 2 2
/dev/acd0 /cdrom cd9660 ro,noauto 0 0

System Configuration—Disks

[16]

Note that either the userquota or the groupquota can be specified for each partition
in the Options column. You can also combine both userquota and groupquota on
one partition simultaneoulsy:

/dev/ad0s1f /usr ufs rw,userquota,groupquota 2 2

Partition quota information is kept in the quota.user and quota.group files, in the
root directories of their respective partitions.

Once you have performed the above steps, you need to reboot your system to load
new kernel, and initialize the quota for appropriate partitions. Make sure check_
quotas variable in the /etc/rc.conf file is not set to NO. Otherwise system will
not create the initial quota.user and quota.group files. This can also be done by
running the quotacheck(8) command, manually as follows:

quotacheck –a

quotacheck: creating quota file //quota.user

After rebooting, you can verify the quota activation by using the mount(8) command
or use quota(1) utility to see the current quota statistics for each mount point:

quota –v

Disk quotas for user root (uid 0):
Filesystem usage quota limit grace files quota limit grace
 / 5785696 0 0 464037 0 0

Now that you have enabled quotas on your partitions, you are ready to set quota
limits for each user or group.

Assigning Quotas
The edquota(8) utility is the quota editor. You can limit the disk space (block quota)
and the number of files (inode quota) using this utility, on quota enabled partitions.
Two types of quota limits can be set for both inode quota and block quota:

Hard limit is the implicit limit that cannot be exceeded. For example, if a user has a
quota limit of 200 files on a partition, an attempt to create even one additional file,
will fail.

Chapter 1

[17]

Soft limit is the conditional limit that may be exceeded for a limited period of time,
called grace period. If a user stays over the soft limit for more than the grace period
(which is one week by default), the soft limit will turn into hard limit and the user
will be unable to make any more allocations. However, if the user frees the disk
space down to a soft quota limit, the grace period will be reset.

Running the edquota(8) command invokes your default text editor (taken from
EDITOR environment variable), and loads current quota assignment status for the
specified user:

edquota jdoe

Quotas for user jdoe:
/: kbytes in use: 626, limits (soft = 0, hard = 0)
 inodes in use: 47, limits (soft = 0, hard = 0)

In the above case, user jdoe currently has forty seven files which use 626 kilobytes on
the disk. You can modify the soft and hard values for either the block (first line) or
the inode (second line). Once you finish setting quota limits, save and exit from your
editor, and the edquota(8) utility will take care of applying new quota limits to the
file system.

You can also change the default grace period using the edquota(8) utility. As in
the previous example, edquota(8) invokes the default text editor to edit the current
setting for the grace period:

edquota -t0

Time units may be: days, hours, minutes, or seconds
Grace period before enforcing soft limits for users:
/: block grace period: 0 days, file grace period: 0 days

The example, above, displays the current status of the grace period on a per-partition
basis. You can edit the value of the grace period, save it, and exit from the editor to
apply new grace period settings. For your new grace period settings to take effect,
you should also turn quota off, for the relevant file system, and then turn it back on.
This can be done using the quotaon(8) and quotaoff(8) commands.

And finally, repquota(8) is used to display the summary of quotas for a specified
file system. The repquota(8) command can be used to have an overview of the
current inode and block usage, as well as quota limits on a per-user or per-group
basis (if -g flag on command line is specified).

System Configuration—Disks

[18]

When using quotas, always remember the following important notes:

Setting a quota to zero means no quota limit to be enforced; this is the default
setting for all users.
Setting hard limit to one indicates that no more allocations should be allowed
to be made.
Setting hard limit to zero and soft limit to one indicates that all allocations
should be permitted only for a limited time (grace period).
Setting grace period to zero indicates that the default grace period (one week)
should be used.
Setting grace period to one second means that no grace period should
be allowed.
In order to use the edquota(8) utility to edit group quota setting, -g flag
is specified.

File System Backup
There are different utilities in the FreeBSD base system to help system's
administrators to take backups from their systems. But before starting to take
backups, you should define your backup strategy.

Backups can be taken at the file-system-level, from the whole partition or physical
disk, or on a higher-level. This enables you to select relevant files and directories t
o be archived and moved to a tape device or a remote server. In this chapter, we will
discuss different utilities and how to use them to create usable backups for
your needs.

Dump and Restore
The dump(8) utility is the most reliable and portable backup solution to take backups
on UNIX systems. The dump utility, in conjunction with restore(8), creates your
basic backup toolbox in FreeBSD. The dump command is able to create full and
incremental backups from the whole disk or any partition of your choice. Even if
your file system that you want to take backups from, is live (which in most cases is),
the dump utility creates a snapshot of your file system before the back up, to ensure
that your file system does not change during the process.

By default, dump creates backups on a tape drive unless you specify another file or a
special device.

•

•

•

•

•

•

Chapter 1

[19]

A typical full backup using dump may look like the following example:

dump -0auL -f /usr/dump1 /dev/ad0s1a

 DUMP: Date of this level 0 dump: Sat Apr 14 16:40:03 2007
 DUMP: Date of last level 0 dump: the epoch
 DUMP: Dumping snapshot of /dev/ad0s1a (/) to /usr/dump1
 DUMP: mapping (Pass I) [regular files]
 DUMP: mapping (Pass II) [directories]
 DUMP: estimated 66071 tape blocks.
 DUMP: dumping (Pass III) [directories]
 DUMP: dumping (Pass IV) [regular files]
 DUMP: DUMP: 66931 tape blocks on 1 volume
 DUMP: finished in 15 seconds, throughput 4462 KBytes/sec
 DUMP: level 0 dump on Sat Apr 14 16:40:03 2007
 DUMP: Closing /usr/dump1
 DUMP: DUMP IS DONE

In the above example, dump is used to take a full backup (note the -0 flag) of the
/dev/ad0s1a file, which is mounted onto the / mount point to a regular /usr/dump1
file. The -L flag indicates that the partition is a live file system; so dump will create a
consistent snapshot from the partition, before performing the backup operation.

In case -L flag is specified, dump creates a snapshot in .snap directory
in the root partition of the file system. The snapshot will be removed as
soon as the dump process is complete. Always remember to use -L on
your live file systems. This flag will be ignored in read-only and
unmounted partitions.

And finally -u flag tells dump to record dump information in the /etc/dumpdates
file. This information is used by dump for future backups.

The dump command can also create incremental backups using information recorded
in the /etc/dumpdates file. In order to create an incremental backup, you should
specify a higher backup-level from -1 to -9 in the command line. If backup-level is
not specified, dump will assume a full backup (that is -0) should be taken.

dump -1auL -f /usr/dump2 /dev/ad0s1a

 DUMP: Date of this level 1 dump: Sat Apr 14 15:00:36 2007
 DUMP: Date of last level 0 dump: Sat Apr 14 14:35:34 2007
 DUMP: Dumping snapshot of /dev/ad0s1a (/) to /usr/dump2
 DUMP: mapping (Pass I) [regular files]
 DUMP: mapping (Pass II) [directories]
 DUMP: estimated 53 tape blocks on 0.00 tape(s).
 DUMP: dumping (Pass III) [directories]

System Configuration—Disks

[20]

 DUMP: dumping (Pass IV) [regular files]
 DUMP: DUMP: 50 tape blocks on 1 volume
 DUMP: finished in less than a second
 DUMP: level 1 dump on Sat Apr 14 15:00:36 2007
 DUMP: Closing /usr/dump2
 DUMP: DUMP IS DONE

It also updates /etc/dumpdates with new backup dates:

cat /etc/dumpdates

/dev/ad0s1a 0 Sat Apr 14 14:35:34 2007
/dev/ad0s1a 1 Sat Apr 14 15:00:36 2007

Once you have created dumps from your file system as regular files, you may want
to move the dump file to another safe location (like a backup server), to protect
your backups in case of a hardware failure. You can also create dumps directly on a
remote server over SSH. This can be done by giving the following command:

dump -0auL -f - /dev/ad0s1a | bzip2 | ssh admin@bkserver dd of=/usr/
backup/server1.dump

This will create a level 0 (or full) backup from the /dev/ad0s1a device over network
using ssh(1) facility to host bkserver with username admin and uses dd(1) to
create a file using input stream. And as we create a full backup, which may be a huge
file, bzip2(1) is used to compress data stream to reduce the network load.

You can use your favourite compression program (for example, gzip(1),
compress(1)) with appropriate parameters, instead of bzip2.

Using a compression program will reduce the network load at the cost of
CPU usage during dump routine.

Now that you made your backup on a tape or a remote device, you may also have to
verify or restore your backup in future.

The restore(8) utility performs the inverse function of what dump does. Using
restore, you can simply restore a backup taken using the dump utility, or extract your
files, deleted accidentally. It can also be used to restore backups over the network.

A simple scenario for using restore is restoring a full backup. It is recommended
that you restore your backup to an empty partition. You have to format the
destination partition, using newfs(8), before restoring your backup. After you
restore the full backup, you can proceed to restore the incremental backups, in the
order in which they were created.

Chapter 1

[21]

A typical restore procedure would look like the following command lines:

newfs /dev/da0s1a

mount /dev/da0s1a /mnt

cd /mnt

restore -r -f /usr/dump1

The restore command fully extracts the dump file to your current directory. So you
have to change your current directory to wherever you want to restore the backup
using the cd command.

Another interesting feature of the restore utility is the interactive mode. In this
mode, you can browse through files and directories inside the dump file, and also
mark the files and directories that should be restored. This feature is very useful in
restoring the files and directories, deleted accidentally.

There are a number of useful commands in the interactive restore shell to help users
choose what they want to extract. The ls, cd, and pwd commands are similar to their
equivalents, and are used to navigate through the dump file. Using add and delete
commands, you can mark and unmark files and directories that you want to extract.
Once you finish selecting the files, you can use the extract command to extract the
selected files.

restore -i -f /usr/dump1

restore > ls
.:
.cshrc bin/ dev/ home@ mnt/ sbin/ var/
.profile boot/ dist/ lib/ proc/ sys@
.snap/ cdrom/ entropy libexec/ rescue/ tmp/
COPYRIGHT compat@ etc/ media/ root/ usr/

restore > add sbin
restore > add rescue
restore > extract
restore > quit

The restore command is also used to extract dump information from the dump file
using the what command in the interactive mode:

restore > what
Dump date: Sat Apr 14 16:40:03 2007
Dumped from: the epoch
Level 0 dump of / on server.example.com:/dev/ad0s1a
Label: none

System Configuration—Disks

[22]

The tar, cpio, and pax Utilities
There may be scenarios when you may not have to take a full dump of your hard
disk or partition. Instead, you may want to archive a series of files and directories
to your backup tapes or regular files. This is where tar(1), cpio(1L), and pax(1)
utilities come into play.

The tar command is UNIX's original tape manipulation tool. It was created to
manipulate streaming archive files for backup tapes. It is not a compression utility
and is used in conjunction with an external compression utility such as gzip and
bzip2, and compressd, in case compression is required.

Besides tape drives, you can use tar to create regular archive files. The tar archive
files are called tarball.

Keep in mind that FreeBSD's tar utility, a.k.a bsdtar(1), is slightly
different from the GNU's tar. GNU tar or gtar is available in ports
collection. Only BSD tar is covered in this chapter.

A tarball can be created, updated, verified, and extracted using the tar(1) utility.

tar cvf backup.tar backup/

a backup
a backup/HOME.diff
a backup/make.conf
a backup/rc.conf

In the above example, tar is used to create a tarball called backup.tar from the
backup directory. The c flag indicates tar should create a tar ball, v flag tells tar to
be verbose and show a list of files on which the operation is being performed and f
flag indicates the name of the output tarball (backup.tar) in the command.

To update a tarball, u flag is used:

tar uvf backup.tar backup/

a backup
a backup/make.conf
a backup/sysctl.conf

And x flag to extract the files from a tarball:

tar xvf backup.tar

x backup
x backup/HOME.diff
x backup/make.conf
x backup/rc.conf

Chapter 1

[23]

In all the above examples, the tarball archive was created as a regular file indicated
by f flag. While omitting this flag, tar will use the default tape device on the
/dev/sa0 file. Other useful tar flags include z for gzip compression and j for
bzip2 compression.

You can create tarballs over network with SSH using piping technique
discussed in Dump and Restore section.

The cpio utility is another important archiving utility in the FreeBSD's base system.
It is similar to the tar utility in many ways. It was also a POSIX standard until
POSIX.1-2001 and was dropped due to the 8GB file size limitation.

The pax utility was created by IEEE STD 1003.2 (POSIX.2) to sort out
incompatibilities between tar and cpio. Pax does not depend on any specific file
format and supports a handful of different archive formats including tar, cpio,
and ustar (POSIX.2 standard). Despite being a POSIX standard that is widely
implemented, it is still not as popular as a tar utility.

The -w flag is used to create archive:

pax -w -f backup.pax backup/

And -r to extract (or read) the archive to current directory:

pax -r -f backup.pax

The pax utility is also able to read/write different archive types that can be specified
by -x flag. The supported parameters of pax are shown in the following list:

cpio: New POSIX.2 cpio format
bcpio: Old binary cpio format
sv4cpio: System V release 4 cpio format
sv4crc: System V release 4 cpio format with CRC checksums
tar: BSD tar format
ustar: New POSIX.2 tar format

Snapshots
Actually, taking snapshots from a file system isn't a backup method, but is very
helpful in restoring accidentally removed files. Snapshots can be mounted as regular
file systems (even over network) and the system administrator can use regular system
commands to browse the mounted file system and restore selected files and directories.

•

•

•

•

•

•

System Configuration—Disks

[24]

RAID-GEOM Framework
GEOM is an abstraction framework in FreeBSD that provides the infrastructure
required to perform transformation on disk I/O operations. Major RAID control
utilities in FreeBSD use this framework for configuration.

This section does not provide in-depth information about RAID and GEOM, but only
discusses RAID configuration and manipulation using GEOM.

Currently GEOM supports RAID0 (Striped Set without parity) and RAID1 (Mirrored
Set without parity) through geom(8) facility.

RAID0—Striping
Striping disks is a method to combine multiple physical hard disks into one big
logical volume. This is done mostly using relevant hardware RAID controllers, while
GEOM provides software support for RAID0 stripe sets.

RAID0 offers improved disk I/O performance, by splitting data into multiple blocks
and performing simultaneous disk writes on multiple physical disks, but offers no
fault tolerance for hard disk errors. Any disk failure could destroy the array, which is
more likely to happen when you have many disks in your set.

Appropriate kernel module should be loaded before creating a RAID0 volume using
the following command:

kldload geom_stripe

This can also be done through the /boot/loader.conf file, to automatically load the
module during system boot up, by adding this line:

geom_stripe_load="YES"

Normally, you will not need to load any GEOM module manually. GEOM related utilities
automatically detect all modules that are required to be loaded, and will load it manually.

The gstripe(8) utility has everything you need to control your RAID0 volume.
Using this utility you can create, remove, and query the status of your RAID0 volume.

There are two different methods to create a RAID0 volume using gstripe—manual
and automatic. In the manual method, the create parameter is used, and volumes
created using this method do not persist during reboots. The volumes should be
created at boot time, if persistence is required:

gstripe create stripe1 /dev/da1 /dev/da2

newfs /dev/stripe/stripe1

Chapter 1

[25]

The newly created and formatted device can now be mounted and used as
shown here:

mount /dev/stripe/stripe1 /mnt

In the automatic method, the metadata is stored on the last sector of every device, so
that they can be detected and automatically configured during boot time. In order to
create automatic RAID0 volume, you should use label parameter:

gstripe label stripe1 /dev/da1 /dev/da2

Just like manual volumes, you can now format /dev/stripe/stripe1 using newfs
and mount it.

To see a list of current GEOM stripe sets, gstripe has the list argument. Using this
command, you can see a detailed list of devices that form the stripe set, as well as the
current status of those devices :

gstripe list

Geom name: stripe1
State: UP
Status: Total=2, Online=2
Type: AUTOMATIC
Stripesize: 131072
ID: 1477809630
Providers:
1. Name: stripe/stripe1
 Mediasize: 17160732672 (16G)
 Sectorsize: 512
 Mode: r1w1e0
Consumers:
1. Name: da1s1d
 Mediasize: 8580481024 (8.0G)
 Sectorsize: 512
 Mode: r1w1e1
 Number: 1
2. Name: da0s1d
 Mediasize: 8580481024 (8.0G)
 Sectorsize: 512
 Mode: r1w1e1
 Number: 0

To stop a RAID0 volume, you should use the stop argument in the gstripe utility.
The stop argument will stop an existing striped set ,but does not remove the metadata
from the device, so that it can be detected and reconfigured after system reboots.

gstripe stop stripe1

System Configuration—Disks

[26]

To remove metadata from the device and permanently remove a stripe set, the clear
argument should be used;
gstripe clear stripe1

RAID1—Mirroring
This level of RAID provides fault tolerance from disk errors and increased READ
performance on multithreaded applications. But write performance is slightly lower
in this method. In fact, RAID1 is a live backup of your physical disk. Disks used in
this method should be of equal size.

The gmirror(8) facility is the control utility of RAID1 mirror sets. Unlike RAID0,
all RAID1 volumes are automatic and all components are detected and configured
automatically at boot time. The gmirror utility uses the last sector on each device to
store metadata needed for automatic reconfiguration. This utility also makes it easy
to place a root partition on a mirrored set.

It offers various commands to control mirror sets. Initializing a mirror is done using
the label argument as shown here:

gmirror label –b round-robin mirror1 da0 da1

In the above example, we created a mirror set named mirror1 and attached the /
dev/da0 and /dev/da1 disks to the mirror set.

The -b flag specifies the "balance algorithm" to be used in the mirror set. There are
four different methods used as balance algorithms, which are listed as follows:

load: Read from the device with the lowest load.
prefer: Read from the device with the highest priority.
round-robin: Use round-robin algorithm between devices.
split: Split read requests that are bigger than or equal to slice size, on all
active devices.

You may choose an appropriate algorithm depending on your hardware
configuration. For example, if one of your hard disks is slower than the others , you
can set higher priority on the fastest hard disk using gmirror's insert argument
and use the prefer method as the balance algorithm.

Once you finish initializing your mirror set, you should format the newly created
device using newfs command and mount it to relevant mount point:

newfs /dev/mirror/mirror1

mount /dev/mirror/mirror1 /mnt

The stop argument stops a given mirror.

•
•
•
•

Chapter 1

[27]

Using the activate and deactivate arguments you can active and deactivate a
device that is attached to a mirror, which would be useful in removing or replacing
a hot-swappable hard disk. When a device is deactivated inside a mirror set, it
will not attach itself to the mirror automatically, even after a reboot, unless you re-
activate the device using the activate argument.

To add a new device to the mirror set, or to remove a device permanently, the insert
and remove arguments can be used, respectively. The remove argument also clears
metadata from the given device. This is shown in the following command lines:

gmirror insert mirror1 da2

gmirror remove mirror1 da1

If you want to change the configuration of a mirrored volume (for example, changing
balance algorithm on the fly), the configure argument can be used:

gmirror configure –b load mirror1

In case of disk failure, when a device is faulty and cannot be reconnected to the
mirror, the forget argument will tell gmirror to remove all faulty components.
Once you replace the faulty disk with a brand new one, you can use the insert
argument to attach a new disk to the array, and start synchronizing data.

Disk Concatenation
This method is used to concatenate multiple physical hard disks to create bigger
volumes, beyond the capacity of one hard disk. The difference between this method
and RAID0 's is that, in this method, data is written to the disk sequentially. This
means that the system will fill the first device first, and the second device will be
used only when there is no space left on the first device. This method does not offer
any performance improvements or redundancy.

To create a concatenated volume, the gconcat(8) facility is available. As in RAID0,
there are two methods to create a concatenated volume—manual and automatic.

Using the create parameter, you can create a manual concatenated volume and
attach the desired physical disks. In this method, as no metadata will be written
on the disk, the system will not be able to detect and reconfigure the volume after
system reboots.

In order to create an automatic concatenated volume, the label parameter should
be used:# gconcat label concat1 da0 da1 da2

System Configuration—Disks

[28]

Once a volume is created using either the manual or the automatic method, it should
be formatted using newfs as shown as follows:

newfs /dev/concat/concat1

mount /dev/concat/concat1 /mnt

There is no way to remove a device from a concatenated volume. However, you
can add new disks to an existing volume, and grow the size of the file system on
the volume:

gconcat label concat1 da3 da4

growfs /dev/concat/concat1

To stop a concatenated volume, the stop argument is used. However this will not
remove the volume permanently. The clear argument will remove the concatenated
volume permanently, and also remove the GEOM metadata from the last sector of
the attached devices.

Summary
The impact of disk I/O should not be overlooked when performance is a concern. A
well configured storage will dramatically improve the system's overall performance.
This chapter introduces the necessary tips and information a system administrator
needs, to tweak the storage setup on a FreeBSD server. We have also seen how to
take backups, weed out system redundancy and improve performance using
RAID arrays, and ways and means of creating and managing virtual memory
partitions, effectively.

System Configuration—
Keeping it Updated

As a system administrator, you would definitely know the importance of keeping the
system up-to-date to work around the security holes and bug fixes while keeping the
highest service availability. Moreover, as FreeBSD gets upgraded round the clock, it
is very important to know the right time and the need for an update.

Upgrading a system requires updating the local source tree from a server and
compiling specific parts of a system such as a library, the FreeBSD kernel, or in some
cases, the whole operating system. For those who are not interested in dealing with
the source code and recompiling, there are other ways to perform the binary updates.
The professionals can customize the binary updates generated for their systems by
changing the source code and recompiling, to gain better performance.

For the developers and end users the source code is available on the project's CVS
servers. Hence, the FreeBSD system administrator must have a basic knowledge of
CVS. Developers use CVS to record the updates to the source tree and the end users
check out the latest changes to their system, to update it as required. This chapter
discusses different ways of tracking the security-related updates. Further, it discusses
rebuilding the kernel, and the world (except the kernel), for those who prefer to
create their customized and optimized systems from scratch.

In this chapter we will look into the following:

CVSup as the synchronizing source— tracking –STABLE and –CURRENT
Ports collection
Security advisories
Customizing and rebuilding kernel
Rebuilding world
Binary update
Recovering from a dead kernel

•
•
•
•
•
•
•

System Configuration—Keeping it Updated

[30]

CVSup—Synchronizing the Source Code
The FreeBSD project makes a heavy use of CVS to make the source tree available for
different releases of the operating system on the development servers. The FreeBSD
project also uses the Perforce version control system for various other (mostly
experimental) projects. However, as a system administrator, there is no need to deal
with the Perforce system. It is highly recommended that you keep track of the latest
changes by subscribing to the appropriate mailing lists and checking the CVS tree. A
list of FreeBSD project's mailing list is available at http://lists.freebsd.org/.

There are various tags available for different releases of FreeBSD, on the CVS
server. Depending on the revision tag that you are tracking, you may see different
volumes of traffic on the CVS server. There are two types of tags—the branch and
release tags.

The branch tags refer to a particular line of development, while the release tags
refer to the FreeBSD release in a specified time.

For example, the RELENG_7 tag indicates the line of development for FreeBSD - 7.x
(also known as FreeBSD 7-STABLE or –STABLE for short). Alternatively, RELENG_
7_1 is a release branch for FreeBSD-7.1, which will only be updated for the security
advisories and other critical updates.

An example of release tags is RELENG_7_0_0_RELEASE, which is the release point of
FreeBSD 7.0-RELEASE.

The HEAD tag is the main line of development and all new features are imported
to this tree. This tree contains the codes that are necessary for the test reasons and
may break your running system down, due to the library updates or changes in the
memory structure.

It is not advisable to track –CURRENT tree on a production server as
some of the new updates may render your system unstable.

It is important to choose the revision tag, which you want to track, to keep your
servers up-to-date and stable. It is also recommended to keep track of the release
tag of your currently installed FreeBSD version. For example, if your server is
running FreeBSD 7.0 (which was installed from 7.0-RELEASE CD-ROM), it is
advisable to keep it synchronized with RELENG_7_0 tag, which contains only the
critical updates. By tracking the –STABLE branch (in this case RELENG_7), you will
have all the features and updates made to your FreeBSD release development line
(FreeBSD 7.x in this case). This means that once the 7.1-RELEASE is released, you can
check it out on the RELENG_7 branch and update your system.

Chapter 2

[31]

After choosing to track the revision tag, you will need appropriate tools to update
your local source tree from the project's CVSup server. The most convenient way to
do this is to use the cvsup(1) or the csup(1) tool.

CVSup is a CVS file synchronization tool that is used in FreeBSD, to synchronize
source trees (including the system source codes and ports system) with the master
CVS repositories.

The CVSup, which is available from the source tree as net/cvsup or net/
cvsup-without-gui, is the standard tool for CVS synchronisation and has been
available for a long time. Despite being a crucial tool, it is never imported to the base
system because it was written in Modula-3 language. This is where the csup comes
into life. In fact csup is a rewrite of the original cvsup in C language, and being a
lightweight tool, was found suitable to be included in the FreeBSD base system
(as of FreeBSD 6.2). However, csup is not exactly the same as cvsup (currently csup
supports only the checkout-mode, while cvsup supports the cvs-mode also). But
they share the same command-line, syntax, and supfile format.

In most cases, you won't need to install CVSup on FreeBSD 7.0, unless you are
a CVSup fanatic or need a feature that is not available in csup (like CVSup
server mirroring).

If you install cvsup using the source code, it takes a long time. Instead, you can
add the cvsup-without-gui package using the pkg_add(1) utility from an online
repository as shown here:

pkg_add –r cvsup-without-gui

Tracking –STABLE
To synchronize your current source tree with –STABLE of the same branch, you need
to create a supfile. A supfile is a configuration file describing a collection of files to be
synchronized from the server. You need to create a supfile before running cvsup (or
csup). A sample supfile is shown in the following code:

*default host=cvsup7.freebsd.org
*default base=/var/db
*default prefix=/usr
*default release=cvs
*default delete use-rel-suffix compress
src-all tag=RELENG_7

System Configuration—Keeping it Updated

[32]

In the above supfile, we are tracking the src-all tree from the RELENG_7 branch tag.
This is the –STABLE for the 7.x line of development, which contains the latest code
of this release, including the critical fixes, security updates, and other new features
that are merged from –CURRENT branch. Merged from - Current (MFC) means that
the code that was committed to –CURRENT for testing is approved to be imported to
–STABLE branch.

In the above example, the server cvsup7.freebsd.org is used. There are numerous
CVSup mirrors available for the end users. So you don't have to spam the main
CVSup server.

The updated list of the CVSup mirrors is available in the FreeBSD handbook at
http://www.freebsd.org/doc/en_US.ISO8859-1/books/handbook/cvsup.html.
You may choose the geographically nearest mirror for a better performance. You can
also use the fastest_cvsup(7) utility (available under sysutils/fastest_cvsup
in ports collection), which helps you to find the fastest CVSup server depending on
your geographical location and network behavior:

fastest_cvsup -Q -r -c all

cvsup.uk.freebsd.org

In the above example, it fetches the list of CVSup mirrors from the handbook and
tries to connect to all servers (actually connects to server and does not rely on ping),
and makes decisions based on the servers' response time. In the case above, the
UK-based mirror of FreeBSD is the best. This could however be different for
your location.

The fastest_cvsup would take a few minutes to figure out which
mirror is most suitable. The time depends on your internet connection
speed. On a typical dsl internet connection, it would take up to
 ten minutes.

You can take the supfile samples from /usr/share/examples/cvsup, copy it to /
etc, and modify it to match your preferences.

After creating your first supfile, you can use CVSup or csup to synchronize your
local copy of repository with the latest online version. If you are using a narrow band
internet link, you can enable the compression, to gain better performance.

csup /etc/cvsupfile

Connected to cvsup.uk.freebsd.org
Updating collection src-all/cvs
 Edit src/Makefile.inc1

Chapter 2

[33]

 Edit src/UPDATING
 ...
Finished successfully

The csup maintains syntax similar to that of cvsup. For all the examples
in this book, csup and cvsup can be used interchangeably.

Tracking the –STABLE branch is a very good idea for the production systems, only if
you are aware of the latest changes in the branch. You should be aware of the minor
software upgrades and changes in the systems libraries that will affect the operation
of your server, in addition to the critical bug fixes and security updates.

As compression takes more CPU resources from the server, using
compression in CVSup is not recommended, unless you really need it.

There are a number of ways to know about the latest important changes made to the
branch. One of the methods is by reading the /usr/src/UPDATING file. This
file contains all the latest important changes made to the current branch in the
reverse chronological order. However, not all the changes are documented in
the UPDATING file. The FreeBSD -STABLE mailing list has the latest information
about the –STABLE branch including the users' experience, problem reports, and
developers announcements. You can subscribe to the list or view its archives at
http://lists.freebsd.org/mailman/listinfo/freebsd-stable.

Tracking –CURRENT
The HEAD tag on the CVS tree contains the latest development code. All the new
features, major library updates, and fundamental changes are tested in this branch.
This branch is mainly targeted for developers and enthusiasts who are interested
in using the cutting-edge features, testing the functionality, hunting bugs, and
developing software for FreeBSD. This branch, which is also known as –CURRENT,
is not recommended for the production environment and day to day usage. Hence
you don't track this branch, unless you need a new feature which is not available
in –STABLE.

An operating system built from –CURRENT code is not stable and may
break down frequently. Do not use this branch on your servers, unless
you know what you are doing and ready to face the consequences.

System Configuration—Keeping it Updated

[34]

The only difference between the supfiles from the –STABLE and –CURRENT branch
lies in the tag attribute:

*default host=cvsup7.freebsd.org
*default base=/var/db
*default prefix=/usr
*default release=cvs
*default delete use-rel-suffix compress
src-all tag=.

As there would be several major changes each time you synchronize your local
source repository, it would be a good idea to check the /usr/src/UPDATING file
more frequently.

There is also a mailing list dedicated to the –CURRENT issues where people
discuss the latest changes, bug reports, and possible fixes, which is called
freebsd-current and is available for subscription at http://lists.freebsd.org/
mailman/listinfo/freebsd-current..

Ports Collection
If you are relying on the ports collection (which is discussed in detail in the next
chapter) to install the new software and keep the existing software up-to-date, you
will need to keep your ports repository updated.

There are a number of ways to keep the ports tree updated, of which, the most
popular are, updating using cvsup(1) and portsnap(8).

Tracking Ports
Using CVSup to keep the ports tree up-to-date is like synchronizing with source tree,
with a few minor differences. The first difference is that you need to track ports-*
repository (where * is the ports collection names) instead of src-all. And the second
difference is that there is only one branch tag for ports collection which is always the
HEAD branch. It means that the ports collection is the same among different releases
of FreeBSD.

A sample ports supfile is shown as follows:

*default host=cvsup7.freebsd.org
*default base=/var/db
*default prefix=/usr
*default release=cvs
*default delete use-rel-suffix compress
ports-all tag=.

Chapter 2

[35]

Running CVSup brings your ports collection located at /usr/ports to the latest
available revision. This is shown here:

csup /etc/cvsupfile

Connected to cvsup7.freebsd.org
Updating collection ports-all/cvs
 Edit ports/devel/qt4/Makefile
 Edit ports/mail/thunderbird/Makefile
 Edit ports/mail/thunderbird/distinfo
 ...
Finished successfully

You can also run csup periodically, using cron to make sure that your ports tree is
always up-to-date. For this, you should run csup with appropriate arguments from
cron and redirect the output to a log file, for further inspection. The sample cron
line that runs csup everyday at 4:30 is shown as follows:

30 4 * * * root /usr/bin/csup /etc/cvsupfile 2>&1 > /var/log/csup.log

The csup updates the live /usr/ports directory. Hence, if you have
changed anything within the /usr/ports sub tree, your changes will be
overwritten by csup.

Portsnap
Although-using CVSup, to make the ports tree updated, is quite straightforward,
some people choose to use the portsnap. The portsnap is a relatively new system for
updating the ports tree, securely. It has been included in the FreeBSD's base system,
since FreeBSD 6.2. Hence, there is no need to install the software from the ports tree.

The snapshots from the ports tree are updated every hour. It is signed to prevent any
malicious modifications and can be downloaded using the HTTP protocol.

The portsnap has some advantages over the csup, which make life easier for the
system administrator. The advantages are listed as follows:

•	 All updates are cryptographically signed and are hence secure.
•	 It requires zero configuration, and takes a couple of commands to update the

whole ports tree.
•	 It is included in the FreeBSD's base system. No third-party software is

required to be installed.
It uses less network and disk I/O resources as compared to the
CVSup protocol.

•

System Configuration—Keeping it Updated

[36]

Just like csup, the portsnap updates are incremental, and there is no need to fetch the
whole ports tree every time you want to update it. When you run portsnap for the
first time, it downloads a compressed copy of a ports tree to /var/db/portsnap. The
next time you update the tree, one or more binary diffs of the tree will
be downloaded.

Binary diffs are created using Colin Percival's bsdiff tool. The bsdiff is
the same as the original diff(1) utility, except for the fact that it uses
sophisticated algorithms to compare two binary files and creates small
binary patch files that can be applied later, using bspatch utility. These
tools were created with the intention of providing security patches to the
FreeBSD binaries rather than for re-compiling the binaries from the source
code. The freebsd-update(8) utility also uses the same tools to apply
security patches to the system's binaries.

You should first download the ports tree. To do this, you should run portsnap with
the fetch argument as shown here:

portsnap fetch

Once the ports tree is downloaded, you can update the live ports tree (that lives
in /usr/ports) with recently downloaded ports snapshot, using the following
portsnap's update command:

portsnap update

If this is the first time you are updating the ports tree using the portsnap,
you should run the portsnap extract before running the portsnap
update. The portsnap cannot update the ports tree that was not created
using portsnap (for example, it cannot be updated using CVSup)

Security Advisories
An important part of the day to day life of a system administrator is to track the
latest security issues and bug fixes for the operating systems that he runs on his
servers. There are a number of well-known security related mailing lists in which
you can find the latest update of the security issues in different operating systems
and softwares. The FreeBSD project also has a mailing list dedicated to the security
updates and advisories for the end users. The freebsd-security-notifications
is a low traffic mailing list that contains the latest security information related to
the FreeBSD operating system and the included softwares. If you are concerned
about the security of your systems, you are strongly advised to subscribe to the
freebsd-security-notifications mailing list at http://lists.freebsd.org/
mailman/listinfo/freebsd-security-notifications.

Chapter 2

[37]

The FreeBSD security officer provides security advisories for several branches of
FreeBSD. A list of all the recent security advisories for different releases is available
at http://www.freebsd.org/security/.

VuXML—Vulnerability Database
Vulnerability and eXposure Markup Language (VuXML) is a method to document
the vulnerabilities and security issues that affect the FreeBSD operating system and
ports collection. The FreeBSD's VuXML is available online at http://www.vuxml.
org/freebsd/ as well as in ports collection (which you, hopefully, keep updated) in
the ports/security/vuxml/vuln.xml file.

Different software packages rely on the VuXML information to check the installed
software packages for security issues. The most important software in this area
is portaudit(1).

The portaudit utility should be installed from the security/portaudit
directory of the ports collection and helps the system administrator check the
installed packages for known security issues and vulnerabilities, based on the
VuXML information:

portaudit -Fda

auditfile.tbz 100% of 41 kB 26 kBps
New database installed.
Database created: Sat Apr 21 23:40:01 IRST 2007
0 problem(s) in your installed packages found.

In the above example, portaudit downloads the latest vulnerability database and
checks all installed packages against the VuXML database.

CVS Branch Tag
If you are not interested in tracking –STABLE, then you need to track the branch tags
that are used only for the security advisories and other critical fixes. When tracking the
branch tags, you don't need to worry about breaking a production system as there is
no major new software upgrade, or a major functionality change in this tree. A sample
release tag used in the supfile is like RELENG_7_1 which sticks to the FreeBSD 7.1
release and updates, only when a security advisory or a critical fix is issued.

System Configuration—Keeping it Updated

[38]

Customizing and Rebuilding Kernel
The default FreeBSD GENERIC kernel is good enough for a typical installation.
It contains support for the most commonly used hardware including network
interfaces, USB ports, SCSI disk, and other commonly used hardware that are most
likely to exist on any computer or server. However, there is no guarantee that all
your installed hardware is supported by this kernel. It is also not the ideal kernel for
the high performance servers. There is a lot of hardware support compiled into this
kernel that you probably won't ever need.

Creating a custom kernel for your server has many advantages that include (but not
limited to) the following:

Removing support for unnecessary hardware from the kernel will lead to
smaller memory footprint and faster system boot up process.
Custom kernel would only support your currently installed hardware that
was unavailable in the default GENERIC kernel.
Custom kernel may include support for some features that are not available
in GENERIC kernel, such as Firewall and NAT support.

Removing unnecessary modules from the statically built kernel does not
mean that you are completely removing the feature. Most modules can be
loaded dynamically during system run time when needed.

The kernel configuration files can be found under the /usr/src/sys/i386/conf
directory. This is the default directory for the i386 platform. However, if you are not
on i386 platform, you should use the relevant subdirectory to your platform as listed
in the following table:

Subdirectory in /usr/src/sys Platform
amd64 AMD's AMD64 and Intel 64 platform
i386 Intel 32bit Platform
ia64 Intel IA-64 (Itanium) Platform
pc98 NEC PC-98x1 Platform
powerpc PowerPC platform
sparc64 Sun Microsystems' UltraSPARC Platform

The configuration file is a text-based configuration file that contains information
about the modules and options that are supposed to be statically compiled into
the kernel.

•

•

•

Chapter 2

[39]

If there is no /usr/src/sys/i386/conf directory on your machine, you are unlikely
to have the FreeBSD source tree on your hard disk. You may want to install the
source tree from your installation media (most likely the CD-ROM from which you
install the FreeBSD) and then use CVSup to update the source tree to the
latest revision.

The system's default kernel configuration file is called GENERIC, which is found in the
same directory.

Reading the GENERIC file gives you a complete picture of what a kernel configuration
file would look like. However, the GENERIC file does not contain all the possible
options and modules.

There are two files that contain almost all the possible kernel modules and options
definitions. The file /usr/src/sys/i386/conf/NOTES contains machine-dependent
configuration notes (for the i386 architecture in this example) while the /usr/src/
sys/conf/NOTES file has machine-independent notes. It is recommended that you
have a thorough look at these two files before you create a new custom kernel file.

To create a custom kernel file, you can copy the GENERIC file to a new name and
make the appropriate modifications to the new file. Do not modify the GENERIC
kernel. You will need the GENERIC kernel in case of an emergency.

cd /usr/src/sys/i386/conf

cp GENERIC MYSERVER

This will make a copy of the default GENERIC kernel for the i386 platform with a new
name, so that you can create a new kernel based on the GENERIC configuration.

After removing the unnecessary modules and adding the appropriate ones to
support your hardware, and after tweaking the options according to your hardware
configuration, you should build and install the kernel.

To build a custom made kernel, a few steps should be taken. First, change the
directory to the sources directory:

cd /usr/src

Then build the new kernel as shown here:

make buildkernel KERNCONF=MYSERVER

It will take several minutes to compile a new kernel depending on your hardware.
Sometimes, if it breaks here, you should re-check your kernel configuration file for
a syntax error or missing module dependencies. Consult the appropriate NOTES file
when needed.

System Configuration—Keeping it Updated

[40]

After finishing the kernel building process, you are ready to install the new kernel.
This is shown in the following command:

make installkernel KERNCONF=MYSERVER

The recently compiled kernel and associated modules will be installed in the /boot/
kernel and /boot/modules respectively. You may notice that there is a /boot/
GENERIC directory, which is kept for the worst case scenario.

Rebooting the system will load your new customized kernel. You can verify this by
seeing the boot messages or uname(1) command after system boot up:

uname -v

FreeBSD 7.0-STABLE #2: Mon Jan 15 13:35:36 BST 2007 root@server.example.
net:/usr/obj/usr/src/sys/MYSERVER

Creating a custom kernel may look pretty straightforward, there are a few notes that
you should always consider, before building your new custom kernel. These notes
are listed here:

Make sure that you have read the /usr/src/UPDATING file. This file contains
important notes that may affect your system behavior.
Make sure that your source tree is up-to-date and has all the necessary
critical updates.
Revise your kernel configuration file. Missing modules may halt your system
during boot up process. Make sure that all the necessary modules are present
in the kernel configuration file.
Read the notes for modules that you use in the respective NOTES file. There
are a number of important notes that may have a major effect on your newly
compiled kernel.

Rebuilding World
Rebuilding the kernel does not mean that everything is made up-to-date. Rebuilding
world (mostly referred to as buildworld) is a method to recompile the whole system
(except the kernel part) using the source code. This includes all the system utilities
and libraries.

This would be useful when a major library is updated from the base system or when
you want to upgrade your system (for example, from 7.0 to 7.1).

Rebuilding world does not need any specific configuration and is possible by running
a few commands. However, sometimes, there could be unpredictable consequences.

•

•

•

•

Chapter 2

[41]

To avert such consequences, you could take the following precautions :

Take backups of your system.
Never do it on a production server unless you have already tested it on your
test box.
Try it on a trivial machine before deploying such an update on a
production server.

Now that you are given the boring warnings, you may proceed to rebuild the whole
operating system, ground up. Remember to update your source tree to get the latest
updates and critical fixes and read the /usr/src/UPDATING file.

To begin building the world, use the following commands:

cd /usr/src

make buildworld

make buildkernel

make installkernel

This would take a few hours to complete, depending upon your hardware. Now it's
time to sit back and enjoy your coffee. Most UNIX people love to watch the scrolling
lines while drinking their coffee.

When it is over, you should reboot your system into a single-user mode:

nextboot -o "-s" -k kernel

reboot

The system will boot using your recently compiled kernel. Now you should install
the compiled world and update the configuration files:

mergemaster -p

make installworld

mergemaster –Ui

reboot

The mergemaster(8) utility helps you update your configuration files. In the above
example, the configuration files that you have never modified are automatically
updated (-U flag), and you are also prompted for the configuration files that you
have changed (-i flag). You can merge your modifications into a new configuration
file using mergemaster's interactive shell and commit the merged configuration file.

When you have finished installing the world and merging the configuration files, it's
time to reboot into normal mode and enjoy your updated operating system.

•

•

•

System Configuration—Keeping it Updated

[42]

If everything goes fine, you can remove the stale remains of the build process from the
/usr/obj directory, as well as the unnecessary libraries from the previous version.

This can be achieved by running the make check-old command in the same
directory where you built the world. This will display a list of currently obsolete
files, directories, and shared libraries. In order to remove all the obsolete files, use the
make delete-old command.

Rebuilding the world is a lengthy process but you can reduce the build time using a
few tricks shown here:

If you have a SMP machine or a HyperThreading feature enabled, you can
take advantage of the parallel make. The -j flag in the make utility tells the
make to run n simultaneous processes to gain better performance. The n can
be equal to a number of installed processors. For example, the make –j2
buildworld makes the build process two times faster.
Rebuilding world in the single-user mode, instead of the normal mode,
will be faster (and safer) as the system has more resources available in the
single-user mode. You can turn off profiling, by adding NO_PROFILE=YES in
/etc/make.conf.

There are cases in which some ports may stop working after a system
upgrade. It is recommended that the ports should be rebuilt after
performing a major system upgrade.

Binary Update
Updating a system from the source is a time and resource consuming process. Many
system administrators prefer to use binary updates for faster and safer upgrades.
However, binary updates have their own disadvantages. You cannot customize your
system binaries for your specific hardware configuration.

There are two methods to get the binary updates. The first method is getting a
monthly snapshot of FreeBSD in the ISO CD-ROM image format. The snapshots
are available from http://www.freebsd.org/snapshots/ and are updated every
month. You can get –STABLE or –CURRENT snapshots for the latest releases, based
on your hardware architecture (for example. i386, sparc, amd64, and so on). However,
this method is not recommended if you want to update a production server.

The FreeBSD 6.2 imports a useful utility called freebsd-update(8) to the FreeBSD's
base system. This utility examines your currently installed binaries, and contacts
portsnap server mirror to fetch the latest binary update for your system components.

•

•

Chapter 2

[43]

The freebsd-update utility does not update –STABLE and –CURRENT.
It can be used only when you are tracking a release tag like 7.0-p9.

Updates are not actual binaries but are the binary diffs between original and updated
binaries. Consequently, the updates are smaller in size and take less bandwidth and
time to download. These updates are made by the FreeBSD's security team and are
cryptographically signed for more security. The digital signature is checked, once
they are downloaded. This is shown in the following code:

freebsd-update fetch

Fetching updates signature...
Fetching updates...
Fetching hash list signature...
Fetching hash list...
Examining local system...

Fetching updates...
/boot/kernel/sppp.ko...
Updates fetched

To install the updates, run the following commands:

freebsd-update install

Backing up /boot/kernel/sppp.ko...
Installing new /boot/kernel/sppp.ko...

The freebsd-update utility is a safe method to update the system's binaries. Always
make sure that you have the backup of your configuration files. However, if you
are not happy with the updates and they break or overwrite something that they
shouldn't, then you can find a friend in freebsd-update rollback.

Recovering from a Dead Kernel
There are occasions when your newly compiled kernel does not boot. This may
happen due to a driver mismatch (with a non-existing or wrong hardware). In
such cases, you can still boot your system with GENERIC kernel and fix the problem
with your customized kernel. In fact, when you install a new kernel (which will be
installed in the /boot/kernel subdirectory), the previous kernel will move to the
/boot/kernel.old directory. Hence, if the machine cannot boot with the new
kernel, it will likely to boot with the older one.

System Configuration—Keeping it Updated

[44]

The loader menu during the boot-up process of your current kernel is shown in the
following screenshot:

To load the previous kernel, you should stop the system from booting the current
kernel by choosing the Escape to loader prompt from the loader menu during the
boot up process. Once the loader prompt appears, you should unload the existing
modules and load the previous kernel, and then continue the boot process:

unload

load /boot/kernel.old/kernel

boot

Chapter 2

[45]

Summary
When it comes to keeping the production or test systems up-to-date, every system
administrator has his or her own strategy for upgradation. The FreeBSD gives a
fine-level of control over this process and covers almost every taste.

This chapter explains the different methods such as synchronizing the source code
using CVSup, so that you can selectively build and install or upgrade any part of
the FreeBSD. This includes rebuilding a single system binary from the source code,
to rebuilding the customized kernels, and even rebuilding all nuts and bolts of the
system from the source code. This will also let you perform major system upgrades
(for example, from 7.x to 8.x) on the same system, without re-installing from the
installation media or losing system configuration.

You can also keep your ports tree up-to-date, by using the same technique that is
used to keep the source tree updated.

As you have also seen the binary update methods, you do not need to go through
the lengthy process of rebuilding the different parts of the system from the source
code. The binary updates let you download and apply the binary patches against the
running system.

System Configuration—
Software Package

Management
FreeBSD is well-known for its efficient package management system. From a system
administrator's point of view, these features are extremely time-saving. Using the
FreeBSD ports and package management tools, system administrators do not have to
deal with the manual software installation and hence avoid the dependency pitfall.
Using software package management facilities available in FreeBSD, installing and
upgrading software has turned from a painful process into an entertaining task.

FreeBSD also has a rich library of available software applications and utilities. With
these ready–to-install software packages (about 17,000 (and counting)), you will
hardly find a *nix-based software which is not available in the FreeBSD's
ports system.

Basically, FreeBSD offers two different ways to install a package. Package system
offers an easy way to get and install precompiled software packages in the binary
form. Ports system is a method to download the software source code and build the
final package from the source on your computer. Each method has its pros and cons,
which are discussed in this chapter.

In this chapter, we will cover the following:

Ports and packages
Packet management tools—portupgrade and portmaster

•

•

System Configuration—Software Package Management

[48]

Ports and Packages
Almost every modern *nix distribution supports its own definition for software
packaging. However, the goal of all distributions is to simplify the process of
software installation for that specific platform.

Different platforms are bundled with various versions of the common libraries and
build tools. Each of those libraries and build tools uses its own directory hierarchy
and philosophy of the software package management. FreeBSD also has its own
rules and philosophy. For example, all user software should be installed relative to
the /usr/local directory.

Using the FreeBSD's built-in tools, the system administrator doesn't have to worry
about the details. The software is built using the right libraries, and installed at the
proper location along with the documentation and configuration files. You can also
remove the software that is not needed, or even upgrade it without harming the
other installed applications.

The Legacy Method
There is a common method to install an application from the source code in Unix-like
operation systems—fetching tarball, extracting, running configure, running make to
compile the program, and finally installing it. An example of such a scenario is given
as follows:

tar zxvf tcpreplay-3.0.0.tar.gz

x tcpreplay-3.0.0/
x tcpreplay-3.0.0/aclocal.m4
x tcpreplay-3.0.0/autogen.sh
x tcpreplay-3.0.0/config/
[…]

cd tcpreplay-3.0.0

./configure

checking whether to enable maintainer-specific portions of
Makefiles... no
checking if malloc debugging is wanted... no
checking build system type... i386-unknown-freebsd7.0
[…]

Chapter 3

[49]

make

Making all in scripts
gcc -DHAVE_CONFIG_H -I. -I../src -Wall -O3 -std=gnu99 -Wextra -
I/usr/include -MT man2html.o -MD -MP -MF .deps/man2html.Tpo -c -o
man2html.o man2html.c
mv -f .deps/man2html.Tpo .deps/man2html.Po
[…]

Finally run the make install command to install the software. This is a simple
example as it has no dependencies and hence does not complain about anything.
Now if this package had dependencies upon other packages that are not installed,
then the build process will face problems. Therefore you must find the appropriate
version for each package and go through the same process for each library.

This method may work for small applications, but is definitely not suitable for larger
applications with more dependencies and complexities. It is also not recommended
to install the applications in FreeBSD as the program may not respect the FreeBSD
rules for compilation and installation.

Software Directories
As you have decided now to install your application as a native package or from
the FreeBSD ports system, you have to find out if that specific application is already
ported to FreeBSD. There are various resources available to search your application:

FreshPorts: It is a website (available online at www.freshports.org)
maintained by Dan Langille as an online directory of the FreeBSD ports and
the latest changes made to each port.
You can search for the available software by name, description, or other
properties.
FreeBSD website: There is a list of available software ports on this website
located at http://www.freebsd.org/ports. Just like FreshPorts, this is also
able to list the ports in each category, and search based on different criteria.
Local ports repository: If you have a local ports repository, you can search
the repository using make search command running from /usr/ports
directory. This feature will be discussed in detail, later in this chapter.

Packages
A package is an archive file (mostly with .tgz or .tbz extension) that contains
precompiled binaries of a specific software application, documentation, sample
configurations files, and other related files. It also contains a few other metafiles that
contain information describing how the software is installed or removed.

•

•

•

System Configuration—Software Package Management

[50]

Metafiles also include information about dependencies, and where each file or folder
is installed. The package may optionally include any script that is needed during the
installation and the removal of the package.

The pkg_add(1) command takes a package, extracts the contents, and installs the
package according to the instruction in the bundled metafiles. Optionally, if the
package is not available in the current directory, you can specify -r argument in
the command line to tell pkg_add to download the appropriate package from the
package repository on the FreeBSD project's FTP server:

pkg_add -r tcpreplay

Fetching ftp://ftp.freebsd.org/pub/FreeBSD/ports/i386/packages-7-
stable/Latest/tcpreplay.tbz... Done.

You can see how to install a package with a single command. The pkg_add command
uses the metafiles to find out the packages that are needed for the dependency of this
package and install them if they are not already installed.

Note that using -r switch tells pkg_add to download a package from an online
FreeBSD package repository. The pkg_add utility connects to the FreeBSD project's
FTP server and downloads the latest available package based on the currently
installed version of FreeBSD.

You can also download any third-party FreeBSD packages and use the pkg_add to
install the downloaded package files. While most of the packages are available online
from the public repositories, there are certain packages that are not available due to
licensing restrictions. Such software should be installed using the ports system that
instructs users to retrieve software, manually, for installation.

Packages that are available on the FreeBSD online repository have passed
several tests to ensure that they are compatible with the FreeBSD's
guidelines. It is always recommended that you download packages from
the FreeBSD's repository instead of any third-party sources.

In order to remove an installed package, you can use pkg_delete(1). This is shown
in the following command:

pkg_delete -ix tcpreplay

delete tcpreplay-2.3.5_1? Y

Chapter 3

[51]

The pkg_delete(1) needs the exact name of the installed package including
the version number. You can find the exact name of the installed package using
pkg_info(1) utility. However, to make your life easier, you can use the -x argument
which treats the given package name parameter as a regular expression, and deletes
all the packages that match the expression. This would obviously be dangerous.
So use of the -i argument to prompt for your input, before actually removing
anything, is highly recommended.

When the packages are installed, they are registered on the packages database. You
can look through the registered package database using the pkg_info(1) utility.
Using the pkg_info utility, you can see a complete list of all the installed packages,
and also search in the database using regular expressions. The most popular usage of
pkg_info is, grepping its output to find out whether a package is installed or not:

pkg_info | grep -i ssl

openssl-0.9.8e SSL and crypto library
php5-openssl-5.2.1_3 The openssl shared extension for php

Ports
Unlike the packages that come in a precompiled binary form, ports are a set of
metafiles that describe how a specific application should be built for FreeBSD. In fact,
packages are built from ports.

A port contains instructions needed to download, patch, compile, and install
according to the FreeBSD's guidelines. Using the ports system, the system
administrator does not need to worry about the specific build issues and
dependencies for each application.

Besides, the user can specify build-time options to customize the application. This
may include adding or removing features, as well as compiler options for your
specific hardware.

The ports collection is a set of directories and files located under /usr/ports. There
are several categories listed under the ports collection. Each of them contains a
number of ports related to that category.

If there is no ports collection in /usr/ports, you probably haven't
installed the collection during installation. Please refer to Chapter 2,
System Configuration—Keeping it Updated, for more information about
updating the local ports collection repository using cvsup.

A category is a directory that contains several ports that are directories themselves.
For example, sjitter is located under net-mgmt/sjitter.

System Configuration—Software Package Management

[52]

To find a specific port in ports collection, you can use make search facility as
shown here:

cd /usr/ports

make search name=sjitter

Port: sjitter-0.14b
Path: /usr/ports/net-mgmt/sjitter
Info: A client/server jitter measurement utility
Maint: farrokhi@FreeBSD.org
B-deps: gettext-0.16.1_1 gmake-3.81_1 libiconv-1.9.2_2
R-deps:
WWW: http://www.alcasat.net/dev/sjitter/

The search result gives all basic information about the port—the port's full name,
version, and the path is found under the ports tree. A brief description of the port,
email address of the port's maintainer, dependencies which are required to build and
run this port, and finally the URL where you can find more information about the
port, are also thrown up in the search.

The search facility in ports system uses the /usr/ports/INDEX-7 (as in FreeBSD
7) file as its reference. You should always make sure that your INDEX file is up-to-
date in order to get an accurate result. The INDEX file can be downloaded using make
fetchindex command or automatically rebuilt using make index commands.

Almost everything you can do with ports is possible using the make utility. A list of
make targets with description for each is found in the following table:

Target Description
config Asks user for port-specific build options, if available.
config-recursive Runs config for all dependencies of a specific port.
fetch Downloads necessary files and patches.
checksum Verifies checksum for the downloaded files.
depends Builds and installs dependencies for a specific port.
extract Extracts the downloaded files into a work directory.
patch Applies patches to the extracted files, if available.
configure Runs configure script for the port, if available.
build Builds the port.
install Installs the port and registers the installation in the

packages database.
showconfig Shows the current configuration for the port.
showconfig-recursive Shows the configuration for the port and its dependencies.

Chapter 3

[53]

Target Description
rmconfig Removes any configuration saved by the config option.
rmconfig-recursive Runs rmconfig for the port and its dependencies.
config-conditional Runs config only if the port is not already configured

(save the configured that does not exist).
fetch-list Shows a list of files that needs to be downloaded for the

port.
fetch-recurisve Runs fetch for the port and all dependencies.
fetch-recursive-list Runs fetch-list for the port and its dependencies.
missing Prints a list of missing dependencies that should be

installed.
clean Cleans up the work directory.
distclean Cleans the downloaded files for the port.
deinstall Removes and installs port and unregisters it from the

packages database
package Creates a package tarball from the build port.
package-recursive Creates a package of the port and all its dependencies.
search Finds the ports based on specific criteria.
quicksearch Runs search but shows reduced output (only portname

and path is shown).

Once you find the port you want to install, you should change the current directory
to the ports directory and run the make install command:

cd /usr/ports/net-mgmt/sjitter/

make install

=> sjitter-0.14b.tgz doesn't seem to exist in /usr/ports/distfiles/.
=> Attempting to fetch from http://www.alcasat.net/dev/sjitter
 sjitter-0.14b.tgz 100% of 8070 B 5910 Bps
===> Extracting for sjitter-0.14b
=> MD5 Checksum OK for sjitter-0.14b.tgz.
=> SHA256 Checksum OK for sjitter-0.14b.tgz.
===> Patching for sjitter-0.14b
===> sjitter-0.14b depends on executable in : gmake - found
===> Configuring for sjitter-0.14b
===> Building for sjitter-0.14b
[…]

System Configuration—Software Package Management

[54]

That is all you need to do, to install a port. In the above example, the ports system
looked for the required files, downloaded the files which were not available locally,
checked the downloaded files against the local checksums, extracted tarball into
the work directory, looked for required dependencies, and finally built the software
from the source code. Once the build process is done, the ports system installs the
application in the appropriate path under the /usr/local hierarchy.

When you run make install, the ports system automatically runs all
steps required to install the port, including fetch, extract, patch, and
so on. In fact you do not need to run all the steps every time you install
a port. In most cases, running make install will be enough to install
a port.

When you install a port, the ports system creates a directory called work under the
port directory, where all the build processes are done. Once the port is installed, you
do not need this directory anymore. You should run make clean in order to cleanup
the work directory.

You can combine several different arguments into a single command, like
make install clean, which installs the package and then removes the
stale work directory after installation.

Removing an installed package is possible using make deinstall command. You
should change your current directory to the port's directory that you want to remove
and run make deinstall:

cd /usr/ports/net-mgmt/sjitter/

make deinstall

===> Deinstalling for net-mgmt/sjitter
===> Deinstalling sjitter-0.14b

Using make deinstall, you can remove all the files that are installed
by the application during the installation, excluding the files that were
created by the application after the installation. You may want to get a
backup from the configuration, or the data files of a specific port, before
actually removing that port for your future reference.

Some ports may let you choose various build-time options, before it is built. In this
case, you will be presented a dialog box that offers you a few items to choose from.
Once you finish selecting the options, the port will start the build procedure based
on the options you have specified. These options will also be saved and used the next
time you want to install this port (perhaps for upgrade reasons). If for any reason

Chapter 3

[55]

you decide to change the options, you can do this by running the make config
command. This will actually ignore any saved option for the port and present the
port configuration dialog again.

In order to see what options (if available) are specified for a port, use the make
showconfig command to give you a list of the options configuration:

cd /usr/ports/irc/irssi

make showconfig

===> The following configuration options are available for irssi-
0.8.11:
 PERL=on "Enable perl support"
 PROXY=off "Enable proxy support"
 SOCKS=off "Enable socks proxy support"
 IPV6=on "Enable IPv6"
 BOT=off "Enable bot"
===> Use 'make config' to modify these settings

Package Management Tools
While FreeBSD comes bundled with all the necessary tools that you need to manage
packages, there are several other third-party tools too. These tools aim to make life
easier with ports, especially while upgrading the installed packages.

Without the third-party tools, you may have to remove the packages manually,
and install a newer version, to upgrade an installed package. You may also need
to upgrade the other packages that are needed for the new package. While being
straightforward for smaller applications, it leads to headaches for larger packages
with more dependencies and dependants. Package management tools are created to
solve this issue, as well as other deficiencies and missing features in the native ports
and package tools.

The two most important tools in this area include portupgrade and portmaster. Each
of these comes with its own set of unique features.

This chapter is not supposed to go into the details of package management utilities.
It is recommended to refer the FreeBSD Handbook and appropriate management
pages for more in-depth information about the package management tools.

System Configuration—Software Package Management

[56]

Portupgrade
The portupgrade (can be found at ports-mgmt/portupgrade in ports system) is a
widely used set of twelve utilities that are designed to overcome some deficiencies in
native package management utilities. A list of the utilities, and a short description of
what they do, can be found in the following table:

Utility Description
portinstall A useful utility to install ports.
portcvsweb Lets users browse online CVS history on web.
portupgrade A handy utility to upgrade the installed packages.
portversion A fast replacement for pkg_version(1) utility.
portsclean Cleans unnecessary work directories and distfiles.
portsdb Manages a binary database of ports INDEX file.
ports_glob Expands the ports globs.
pkg_deinstall A wrapper to pkg_delete(1) utility with more features.
pkg_fetch A utility to download the package files.
pkg_glob Expands the package globs.
pkg_which Checks packages contents for a specific file.
pkgdb Manages binary database of the installed packages.

portinstall
The portinstall(1) utility offers an easy way to install a software from the ports
collection. While using portinstall, you do not need to know where a port is
actually located.

portinstall -i sjitter

---> Session started at: Tue, 01 May 2007 23:21:36 +0330
Install 'net-mgmt/sjitter'? [yes] y
---> Fresh installation of net-mgmt/sjitter started at: Tue, 01 May
2007 23:21:41 +0330
---> Installing 'sjitter-0.14b' from a port (net-mgmt/sjitter)
---> Build of net-mgmt/sjitter started at: Tue, 01 May 2007 23:21:46
+0330
---> Building '/usr/ports/net-mgmt/sjitter'
[…]
---> ** Install tasks 1: 1 done, 0 ignored, 0 skipped and 0 failed
---> Listing the results (+:done / -:ignored / *:skipped / !:failed)
 + net-mgmt/sjitter
---> Packages processed: 1 done, 0 ignored, 0 skipped and 0 failed
---> Session ended at: Tue, 01 May 2007 23:21:58 +0330 (consumed
00:00:22)

Chapter 3

[57]

In the above example, the sjitter utility is installed with a single command. The
-i switch turns on the interactive mode, in which the user will be prompted before
building and installing the package.

If you prefer to install a package instead of building an application from the source
code, you can use the -P flag to tell portinstall to look for a package file in the
local repository. If a package is not locally available, portinstall will try to fetch the
package from the online package repository. And finally if a package file cannot be
fetched for some reason, portinstall will build it from the source (the port method).

The portinstall utility (which is the same as portupgrade utility) is a complicated
tool with many different arguments that are not covered in this chapter. It is highly
recommended to take a look at the management pages to review all the possibilities
while using this utility.

pkg_deinstall
Basically, the pkg_deinstall utility is a wrapper for the original pkg_delete utility
with two advantages. They are:

The utility understands wildcards. So you do not have to know the full
package name.
The utility supports recursion through dependencies.

pkg_deinstall -ri wget

---> Deinstalling 'rkhunter-1.2.9'

delete rkhunter-1.2.9? y
---> Deinstalling 'wget-1.10.2_1'
[Updating the pkgdb <format:bdb_btree> in /var/db/pkg ... - 427
packages found (-1 +0) (...) done]

delete wget-1.10.2_1? y
[Updating the pkgdb <format:bdb_btree> in /var/db/pkg ... - 426
packages found (-1 +0) (...) done]
---> Listing the results (+:done / -:ignored / *:skipped / !:failed)
 + rkhunter-1.2.9
 + wget-1.10.2_1
---> Packages processed: 2 done, 0 ignored, 0 skipped and 0 failed

In the above example, pkg_deinstall was called to remove wget and all the
packages that depend on it (note that -r switch is for recursion). It goes through the
package database and finds that the rkhunter package depends on wget and asks if
it should be removed.

•

•

System Configuration—Software Package Management

[58]

portupgrade

The main utility in this collection is portupgrade(1). As the name suggests, it
is used to upgrade the installed packages. Using portupgrade, you can simply
upgrade a package as well as its dependencies (the packages that this package
depends upon) and dependent packages (the packages that depend upon this
package). You can upgrade single or multiple packages based on the criteria you
specify:

portupgrade –r sjitter

This command will upgrade the sjitter port to the latest available version that it
can find in the ports system.

portupgrade –ri 'php*'

This command will upgrade all the installed packages whose name starts with "php"
as well as all the dependant ports, that need to be upgraded. You will also be asked
before each upgrade, thanks to the -i parameter.

You can also choose to update from the packages rather than rebuild the port from
the source code, which might be less time consuming in some cases. This may
include upgrading KDE, which takes hours while building from the source, but only
a few minutes to upgrade using the packages.

portupgrade –rP 'mysql*'

This command tries to upgrade all the installed packages whose name starts with
"mysql" and their dependent ports using packages. The portugprade tries to find
relevant packages locally or from the online repository. However, if a package is not
available, portupgrade proceeds to build the package from source. You can override
this behavior by specifying -PP. In this case, the upgrade process will fail, if a pre-
built package is not available.

portupgrade –a

Using -a parameter, you can upgrade all the installed packages to the latest version.
This is time consuming but it would be a very good idea to give it a try, once in a
while. You may also want to specify the -i parameter, so that you will be asked
before any package is being upgraded.

portversion
The portversion(1) utility is used to compare the version of installed packages
with the ports available in the ports repository. By running portversion after
synchronizing your local ports repository, you can find out, which of the installed
packages is out-of-date and needs to be updated.

Chapter 3

[59]

portversion -voL =

thunderbird-1.5.0.10 < needs updating (port has 2.0.0.0)
vlc-0.8.5_12 < needs updating (port has 0.8.6.b,2)

The above command checks all the installed packages against the equivalent ports
available in the repository. Only the packages, whose version is not equal to the
version available in the ports, are shown (-o –L = argument). The latest available
version is also shown for your reference (-v argument).

pkg_which
The pkg_which(1) utility is very useful in finding out which package has installed a
specific file. If the given file is installed by any of the installed packages, the name of
the package will be returned:

pkg_which visudo

sudo-1.6.9.14

portsclean
The portsclean(1) helps a system administrator to clean the garbage remaining
from the ports build process, stale package files, and duplicated or orphaned, shared
libraries. It is good practice to run portsclean once in a while to clean up the
garbage and free some disk space.

portsclean -CDL

Cleaning out /usr/ports/*/*/work...
Delete /usr/ports/databases/mysql50-client/work
Delete /usr/ports/devel/t1lib/work
Delete /usr/ports/www/eventum/work
done.
Detecting unreferenced distfiles...
Delete /usr/ports/distfiles/asterisk-1.4.2.tar.gz
Delete /usr/ports/distfiles/avahi-0.6.17.tar.gz
Delete /usr/ports/distfiles/dnspython-1.4.0.tar.gz

Portsclean does not actually remove the orphaned and duplicated,
shared, libraries but moves them to /usr/local/lib/compat/pkg,
just in case you want to restore them.

System Configuration—Software Package Management

[60]

Portmaster
The portmaster(8) utility (available in ports-mgmt/portmaster in ports tree) has
been created to address some deficiencies in the portupgrade. The benefits are
listed here:

portmaster does not depend on the external languages, unlike portupgrade
that heavily depends on Ruby and Perl languages. It relies only on the
system shell. In fact portmaster is a huge shell script.
Unlike portupgrade, portmaster does not rely on external databases. Rather,
it relies on the system's package database that is available in /var/db/pkg.
portmaster downloads distfiles in the background, while updating
packages in the foreground, which saves a lot of time.

 # portmaster vlc

 ===>>> Gathering distinfo list for installed ports
 ===>>> Update vlc-0.8.5_12? [n] y
 ===>>> Port to upgrade: vlc-0.8.5_12
 ===>>> Port directory: /usr/ports/multimedia/vlc
 ===>>> Launching 'make checksum' for multimedia/vlc in background
 ===>>> Gathering dependency list for multimedia/vlc from ports
 ===>>> Starting recursive 'make config' check
 […]

Summary
In this chapter you have learnt how to install and update software packages using
systems native tools, and third-party tools such as the portupgrade and portmaster.

The system administrator can choose to use any of the package management tools. If
you are already happy with portupgrade, you won't need to switch to portmaster
or any other management tool, and vice versa. Basically all of the package
management tools are doing the same job but using different methods.

Before you use any set of tools to manage your software packages, just make sure
that you have already been through the available documentation and man pages. It
gives you more insight on how your favorite utility is working, and how it can make
your life easier.

•

•

•

Chapter 3

[61]

Another thing to remember is that, not all package updates are trivial. I've seen many
system administrators who do not bother to update their installed software, even
when faced with security issues. The portaudit tool would be a great help in this
subject. It will help you find which of the installed packages has security advisory,
and is awaiting updation.

It is recommended that you keep your ports tree up-to-date with your preferred
method, which is explained in Chapter 2. With the updated ports repository, you can
easily upgrade the installed packages to the latest version, using the tools explained
earlier in this chapter.

Finally, always consult /usr/ports/UPDATING before carrying out any major
upgrade on your package installation. Doing massive updates may lead to a break
down in a running system. The UPDATING file will keep you aware of the latest
important changes to any single port or the entire ports infrastructure.

System Configuration—
System Management

In this chapter, you will learn how to deal with processes as well as manage and
monitor system resources. Knowing how the system resources are being allocated
and how each process is performing will help you tune the system to get the most
out of it. To run an efficient server is only possible by doing efficient resource
management. FreeBSD comes with a complete set of resource monitoring and
management tools that let the system administrators get the most out of their
systems, when used wisely.

In this chapter, we will look into the following:

Process management and control
Resource management and control
Process accounting.

Process Management and Control
This chapter goes through some basic (but necessary) information about processes
and daemons and will tell you in a nutshell, what a system administrator should
know. You need to spend some time knowing your system's running processes and
see how they are performing and how much resource each of them needs. Knowing
this information will help you figure out whether your system is running efficiently
and smoothly. It is also important to detect any abnormal system behavior, by
looking at the output of any relevant process management utility output.

•

•

•

System Configuration—System Management

[64]

Processes and Daemons
Each running program is called a process. Your server has a number of processes
running all the time, including the other background processes that keep your
system running. Each process has a unique Process ID (PID) that is assigned by the
system. The first system process, init, always has PID 1. This process is launched by
the system kernel during boot process. Any other process that is launched after init
has a unique PID between 2 to 99999. Once a process gets completed, the PID will
be returned to the system. When the system reaches PID 99999, it starts assigning
available PIDs starting from 2 over and over again. The processes are identified by
their PIDs.

A daemon is a process that runs in the background, detached from the terminal, and
waits for a system or a network event to act upon. For example, a web server (That is
httpd) is a daemon that runs in the background and listens on TCP port 80 for any
incoming connection. As soon as it receives a request to serve a page, it performs the
necessary steps to load the object from the disk and transfer it via network to
the client. Another example of a daemon is the cron scheduler. The cron daemon
is always running in the background waiting for the specific time to run
appropriate commands.

Many daemons have a trailing "d" in their name that means the process is
a daemon. This includes httpd, snmpd, pop3d, moused, sshd, and so on.

There are several tools available in the base system that gives you full control over
processes. Using these tools, you can see which processes are running and how much
CPU time or memory they are using, what their PID number is, and so on. You can
also control the behavior of the running processes by sending them signals.

A signal is a message that is sent to a running process by the system. Processes have
different reactions based on the received signals. A list of the most commonly used
signals are found in the following table:

Signal Signal name Description
1 HUP Causes process to reload its configuration
2 INT Interrupt
3 QUIT Quit
6 ABRT Abort
9 KILL Non-catchable, non-ignorable, implicit kill
15 TERM Software termination signal

Sending signals to processes are explained later in this chapter.

Chapter 4

[65]

Getting Information about Running Processes—ps,
top, and pgrep
To see a list of currently running processes, you can use the ps(1) command. The
ps utility shows a list containing information about the running processes, their
PIDs, current process status, the process owner, and other information based on the
command line arguments you specify.

ps

 PID TT STAT TIME COMMAND
 893 v0 Is+ 0:00.00 /usr/libexec/getty Pc ttyv0
 894 v1 Is+ 0:00.00 /usr/libexec/getty Pc ttyv1
 895 v2 Is+ 0:00.00 /usr/libexec/getty Pc ttyv2
 896 v3 Is+ 0:00.00 /usr/libexec/getty Pc ttyv3
 908 p0 I 0:00.01 su -
 909 p0 S 0:00.14 -su (csh)0 S 0:00.14 -su (csh)
 5638 p0 R+ 0:00.00 ps

The above output shows a list of currently running processes, which are owned by
the current user. To see a list of all the processes running on the system, you can use
-a flag. The popular combination of argument for ps is -auxww. The -u argument
shows the owner, the name for each process, -x shows processes that are not
attached to any terminals (mostly daemons), and -ww shows the output
in wide format, including the complete command line with arguments of the
running process.

Using the ps command, you can see only the process list and its status, the moment
you invoke the ps command. Instead, top(1) command shows an interactive and
live list of running processes, sorted by their PID. The top can be used to identify
the active processes and see how much of the system resources they use. The top(1)
also shows the current memory allocation and processor(s) status for the system and
each process.

System Configuration—System Management

[66]

The output generated by the top command is shown in the following screenshot:

The pgrep(1) helps you to find PID(s) of running processes by their names. It takes
a pattern in the command line and returns PID for any match of the process. The
output of pgrep can be used in conjunction with the other utilities to perform batch
tasks on running processes:

pgrep httpd

1755
1754
1753
1752
1751
1750

The above example returns any PIDs for processes whose names matches with the
httpd string.

Chapter 4

[67]

The pgrep command can also return process names in addition to the PIDs as
shown here:

pgrep -l sh

1719 csh
1716 tcsh
1715 sshd
1713 sshd
839 sshd
768 sh

Sending Signals to Running Processes—kill, killall,
and pkill
The kill(1) command is used to send signals to a running process by the PID
specified on the command line. Obviously the PID of a running process can be found
using ps(1) command. The default signal, if nothing is specified, is TERM signal. The
TERM signal causes the process to terminate gracefully:

ps ax | grep vim

95934 p1 T 0:00.08 vim
kill 95934

There are cases when the software is unable to process a TERM signal, or does not
terminate normally. The KILL signal can be used to implicitly kill a process and free
the allocated resources back to the system as shown here:

kill -KILL 95934

The kill(1) can also be used to send any other signal to a process. A good example
of the non-killing actions would be the HUP signal. The hang-up (HUP) signal will
cause a process to reload its configuration as follows:

ps ax | grep sshd

837 ?? Ss 0:00.02 /usr/sbin/sshd

kill -HUP 837

The kill(1) utility takes PID in the command line. Hence you need to find out the
PID for each process that you want to send a signal to ,using the ps(1) command.
Instead, killall(1) takes the process name instead of PID. Using killall you can
send a signal to one or more running process:

killall httpd

System Configuration—System Management

[68]

There might be more than one process running with the same name. For example,
multiple getty processes or multiple httpd processes. Using killall will send the
specified signal to all these processes, which may not be what you had intended to do.

The pkill(1) is another variant of the kill family that kills or sends signals to one or
more processes that match the pattern given on the following command line:

pkill -KILL tcsh

Use pkill(1) with even more care as you kill the processes that you
don't actually intend to kill.

Prioritizing Running Processes—nice and renice
Running processes may have different scheduler priorities and consequently have
more CPU time assigned. The priority-level is called nice. You can see the nice-level
of the current process using the ps(1) or top(1) commands as follows:

ps -l

UID PID PPID CPU PRI NI VSZ RSS MWCHAN STAT TT TIME COMMAND
1001 61737 61736 0 20 0 4172 2500 pause Is p0 0:00.03 -tcsh (tcsh
1001 98391 98390 0 20 0 4176 2604 pause Ss p1 0:00.03 -tcsh (tcsh
1001 98479 98391 0 96 0 3256 804 - R+ p1 0:00.00 ps -l

The default nice-level for programs that you run is set to zero. The nice(1) utility
will let you run a program with altered scheduling priority.

nice –n 5 gzip file

In the above example, the command gzip file is called using nice with the default
nice value incremented by 5. This means that if the current shell is running with
nice value 0 (which is the default), the nice value for the called utility will be 5.

If you are running csh or tcsh, calling nice will actually invoke shell's
built-in nice function. In order to run the actual nice utility, you should
call it using the actual path: /usr/bin/nice

In order to change the nice value for an already running process, you may use the
renice(8) utility. The renice(8) utility lets you to change the nice value of a
process by its PID or a group of processes that are owned by a specific user:

renice –n 5 335

Chapter 4

[69]

The above example will increase the nice-level of PID 335 by 5.

renice –n 5 –u 101

The above example will increase the nice-level of all programs owned by
UID(extracted from /etc/passwd file)101.

To decrease the nice value of a process, you can use renice with a negative value:

renice –n -3 335

Any user can increase the nice value of his own processes, but only the
root user can decrease the nice-level of any process, even if he was the
one who had increased the nice value.

Resource Management and Control
FreeBSD offers various utilities to monitor the current status of the resources and
how they are used. You saw a few of these utilities earlier in this chapter that were
mostly process related. There are also other utilities that monitor the other behaviors
of the system—disk I/O, network, virtual memory, buffers, and so on.

System Resource Monitoring Tools—vmstat, iostat,
pstat, and systat
The vmstat(8) is a utility used to report various system statistics. It shows statistics
about process, virtual memory, disk, and CPU activity. This utility is very useful in
gathering live statistics on a running server. The following example shows the live
statistics on a FreeBSD server, every five seconds:

vmstat -w 5

procs memory page disk faults cpu

r b w avm fre flt re pi po fr sr ad0 in sy cs us sy id

1 1 0 166740 217276 7 0 0 0 7 0 0 4 49 266 0 0 100
1 0 0 166740 217204 4852 0 0 0 4521 0 79 81 10755 798 69 8 23
1 0 0 166740 237948 3653 0 0 0 6092 0 240 243 8197 1484 38 19 42

1 0 0 167120 236952 4801 0 0 0 4359 0 77 79 10741 789 58 15 27
1 0 0 166740 236184 4743 0 0 0 4338 0 82 84 10732 814 69 15 15
1 0 0 169368 235184 4649 0 0 0 4225 0 77 79 10485 784 62 19 19

By default, vmstat shows the detailed information about the processes (procs
column), system memory (memory column), page faults and paging activity (page
column), disk operations (disk column), trap and interrupt rates (faults column), and
the processor activity (cpu column).

System Configuration—System Management

[70]

While some statistics are updated every five seconds, running any of the
utilities mentioned above, with a faster than five seconds (-w5) update,
will be ineffective.

The iostat(8) specifically reports the I/O statistics in the sense of KB/t (Kilobytes
per transfer), Tps (Transaction per second), and MB/s (Megabytes per second) as
per the storage device. The iostat also shows tty statistics including "tin" and "tout"
(which are characters read from or write to terminals, respectively).

iostat -w 5

 tty ad0 cpu
 tin tout KB/t tps MB/s us ni sy in id
 0 5 5.86 3 0.02 2 0 0 0 97
 0 26 63.12 29 1.80 88 0 9 3 0
 0 9 63.89 30 1.84 89 0 6 5 0
 0 9 46.60 42 1.89 85 0 8 8 0

The above examples show the statistics for ad0 (the only available physical disk on
the sample platform).

The pstat(8) utility displays information about open files, swap utilization, and
terminals status.

To see the current swap utilization you may use -s argument:

pstat -s

Device 1K-blocks Used Avail Capacity
/dev/ad0s1b.eli 1048576 0 1048576 0%

The pstat command also displays the open files table status by using the -f
argument:

pstat -f

227/16424 open files
 LOC TYPE FLG CNT MSG DATA OFFSET
c4032dc8 inode RW 28 0 c4286600 1b6e2
c4032dc8 inode RW 28 0 c4286600 1b6e2
c4032dc8 inode RW 28 0 c4286600 1b6e2
[…]

In the above example, the system has 227 open files out of the maximum 16424
(maximum possible open files in this case).

Chapter 4

[71]

Moreover, to see the brief status of the current system swap and file table usage, the
-T argument is helpful:

pstat -T

 93/16424 files
0M/1024M swap space

And finally the systat(1) is the all-in-one tool for the system resource monitoring.
It does almost anything that the other utilities, mentioned so far in this chapter, can
do. The systat command can display information about network—icmp, icmp6, ip,
ip6, and tcp as well as the netstat and ifstat that show network socket activity status
and network interface statistics, respectively.

To display any of the statistics information mentioned above, systat takes a
command line argument. For example, systat –tcp command shows the detailed
information about any tcp packet that was sent or received by the system every
5 seconds. The example output of the systat -tcp command is shown in the
following screenshot:

System Configuration—System Management

[72]

Process Accounting
Process accounting is a method to control the systems's resource allocation as well as
tracking users' commands and system monitoring.

Once you enable process accounting functionality in FreeBSD, all the information
about the processes launched by different users will be logged into an accounting
file. The log database can be used later for statistical and administrative reasons.

To enable security accounting, you need to add the following variable to the
/etc/rc.conf file:

accounting_enable = "yes"

After the system reboots, it creates a log file called /var/account/acct (if it does
not already exist) and updates the log file on every process executed. The process
accounting functionality will be enabled after the system reboots.

If you do not want to reboot the system, you can create the log file and enable the
process accounting manually as follows:

touch /var/account/acct

accton /var/account/acct

The accton(8) utility is used to enable or disable the process accounting. The
accton(8) accepts only one argument and that is the log file that you want to record
the accounting information. If no parameter is given, the process accounting will
be disabled.

As soon as the system starts to record the process accounting information, you can
use the lastcomm(1) or sa(8) utilities to examine the accounting records.

The lastcomm(1) displays the list of recently executed processes in the reverse
order. In addition to the process name, it also displays the name of the user who
executed the process, the amount of CPU time used, and when the time process has
started and exited.

The sa(8) utility is used to manipulate the process accounting log file. Using sa(8),
you can extract a summary of the executed commands, the number of times the
process was called, CPU time taken in minutes, average number of I/O operations,
and other statistics:

sa

 132 16.11re 0.01cp 0avio 6882k
 3 0.01re 0.01cp 0avio 2155k perl5.8.8
 2 0.05re 0.00cp 0avio 8987k php

Chapter 4

[73]

 2 0.00re 0.00cp 14avio 5440k troff
 6 0.04re 0.00cp 0avio 41300k ***other
 2 0.00re 0.00cp 0avio 12400k col
 2 0.04re 0.00cp 0avio 0k ron*
 15 0.00re 0.00cp 0avio 0k cut15 0.00re 0.00cp 0avio 0k cut
 3 0.00re 0.00cp 0avio 14000k fmt
 2 0.00re 0.00cp 2avio 6100k groff
 2 0.00re 0.00cp 0avio 0k grotty
 3 0.01re 0.00cp 0avio 27200k head
 5 0.00re 0.00cp 0avio 15600k lastcomm
 2 3.29re 0.00cp 9avio 21000k man
 2 3.29re 0.00cp 0avio 0k more
 2 0.00re 0.00cp 0avio 0k sa2 0.00re 0.00cp 0avio 0k sa
 8 3.34re 0.00cp 0avio 30800k sh
 62 0.03re 0.00cp 0avio 0k sh*
 3 6.00re 0.00cp 0avio 0k sleep
 2 0.00re 0.00cp 0avio 0k tbl
 4 0.00re 0.00cp 0avio 25000k zcat4 0.00re 0.00cp 0avio 25000k zcat

You can modify the sa(8) output using different command line arguments,
like -c to sort by the number of times each process was called, or -b to sort by
the sum of CPU time taken for each process.

Summary
With more information about your current system resource usage, you can improve
the system's performance and identify the bottlenecks in your server. Experienced
UNIX administrators use such tools to constantly monitor server behavior and
optimize its performance.

In this chapter, you were introduced to the basic toolbox for monitoring the system's
performance and security. By combining these tools, you will have a better control
over your processes and users.

To get the most out of these basic but powerful system utilities, it is recommended
that you have a look over the manual pages for the commands discussed in
this chapter.

System Configuration—Jails
FreeBSD offers built-in virtualization features that cannot be found in most other
operating systems. Jails let the system administrator create one or more isolated
environments on a host FreeBSD system to run different services and applications.
There are many scenarios where jails can help improve the security and scalability
of the system, which are discussed in this chapter. Jails also provide valuable
opportunities for service providers to minimize their hardware expenses and get
the best out of their hardware by running multiple instances of FreeBSD
operating environment on the same hardware.

In this chapter, we will look at the following:

Concept
Introduction
Setting up a jail
Configuring the host system
Starting the jail
Automatic startup
Shutting down and managing jails
Jail security and limitations

Concept
The concept of chroot environment has been in BSD-like operating systems since the
4.2BSD version. Using the chroot(8) utility, the system administrator can change
the root directory from the point of view of the specific processes. This will make the
application assume the specified directory as the root directory of the system. System
administrator needs to replicate the required directory hierarchy (for example, /etc
or /lib) under the specified chroot directory in order to make the application work.

•

•

•

•

•

•

•

•

System Configuration—Jails

[76]

This helps to limit the scope of file system of the process. The process cannot access
files and directories outside the chrooted environment and consequently keeps the
other parts of the system safe from potential security compromises. However, when
it was introduced, several security vulnerabilities were found (and fixed) that would
let an attacker escape from the chrooted environment and get access to the host
file system. While chroot(8) only limits the scope of the file system visibility, the
processes will still pretty much share everything else in the operating environment.

Introduction
Jails were introduced with several security and functionality improvements over
the traditional chroot. While chroot was used to limit the scope of the file system for
processes, jail is used to develop more complex virtualization scenarios, including
running an almost full operating system inside a jail. This type of jail is commonly
referred to as the Virtual Server. You can set up multiple jails on a host system (the
actual operating system you installed on the physical hardware) that runs multiple,
complete, FreeBSD systems running different software.

A virtual server is used when you want to test a new software or service in a test
environment, without actually engaging the physical hardware. Another scenario
is to set up jails for other people who want to have root access to the system. Giving
root access of a jail, gives super-user power to users, without giving them full access
to the host system. For example, different web hosting companies create jails and
virtual dedicated servers, and give full access of the jails to their customers.

Each jail has its own files, processes, and users (including its own root user).
However, there are also certain limitations in using jails. For example, they prevent
you from doing low-level system operations. These are discussed later in this chapter.

There is another type of jail, called the Service Jail. A service jail does not have all
the components of the operating system (including all the libraries, manuals, and
configurations). Rather, it contains only the required components that are needed
to run a specific service such as a web server. However, if you want to run only one
or two services in a jail environment, then service jails are much smaller in size and
offer more security.

Jails are lightweight, have low overheads, and are easy to deploy and manage. A
system administrator may have several jails running on a single host system with
minimum headache, offering different network services, which is similar to running
multiple physical servers.

Jails do not offer complete virtualization which the VMWare or other virtualization
software do. There are several limitations in jails that would be discussed later in
this chapter.

Chapter 5

[77]

Setting Up a Jail
Creating a jail is almost as easy as doing a buildworld, as explained in Chapter 2,
(System Configuration—Keeping it updated), and installing it in a different directory
other than the system's actual root directory.

First you need to decide where you want to deploy the jail directory. A good place
to do so would be the /usr/jail subdirectory as there is always plenty of free
space available on the /usr partition. You may want to choose a different directory
based on your system's disk configuration. Define a variable that contains your jail
subdirectory address. If you are running C shell or its variants, run the command
shown here:

setenv D /usr/jails/webserver1

If you are using bourne shell, run the following command:

export D=/usr/jails/webserver1

In the above example, we chose webserver1 as the jail's home directory name. This
is also used as the jails' hostname.

Then you should rebuild the whole system (assuming you already have system
sources installed in /usr/src) and install it in the jails subdirectory:

mkdir –p $D
cd /usr/src
make buildworld
make installworld DESTDIR=$D
make distribution DESTDIR=$D

In the above example, we have created the jail subdirectory and built a complete
system from the source code and installed the result in the jail's subdirectory. This
process would take a few hours, depending on your host hardware.

If you have already built the world, replace you can skip the make buildworld part
to save a lot of time. This would also be a good idea when you are creating multiple
jails and you don't want to rebuild the whole system for each jail.

The make installworld installs the whole system except for /etc subdirectory.
This is actually what make distribution does for you. Use this command with
caution—any typing error may lead to overwriting the host system's /etc directory
and will cause loss of your system configuration.

You do not need to compile a kernel for your jails as they will use the
running system's kernel.

System Configuration—Jails

[78]

If you plan to set up multiple jails, you may repeat the process for the other jail
directory hierarchies, except the buildworld part. For example, to install a new jail
under the /usr/jails/anotherjail directory, run the following commands:

setenv D /usr/jails/anotherjail

mkdir –p $D

cd /usr/src

make installworld DESTDIR=$D

make distribution DESTDIR=$D

You can set up as many jails depending on how many resources your host hardware
can handle.

You should also manually mount devfs under the jail before configuring the jail
as follows:

mount –t devfs devfs $D/dev

Once the initial setup of the jail is finished, there are several steps to be taken in order
to make the jail usable.

Configuring the Host System
Jails make use of the host systems network stack, for their network subsystem.
The IP address that you use for the jail should be already configured on the host
system's network interface.

For example, if your system uses 10.0.0.1 as IP address on bge0 network interface,
and you want to use 10.0.0.2 on the jail, you should add the following line to your
/etc/rc.conf:

ifconfig_bge0_alias0="inet 10.0.0.2/32"

You may run /etc/rc.d/netif start command to apply the changes to the
network interface.

Then you should look for the network services running on the host system and
bound to all IP addresses:

sockstat -4l

USER COMMAND PID FD PROTO LOCAL ADDRESS FOREIGN ADDRESS
root inetd 1450 5 tcp4 *:21 *:*
root inetd 1450 6 udp4 *:69 *:*
root sendmail 1031 3 tcp4 *:25 *:*
root sshd 1025 3 tcp4 *:22 *:*
root syslogd 970 6 udp4 *:514 *:*

Chapter 5

[79]

The local address field has *:[port number] which means the service is listening
on all the available IP addresses. All these services should be modified so that they
only listen to the host's IP address. All the above programs have their own method to
change the IP address binding.

To force inetd to listen to a specific IP address, you should modify the inetd_flags
variable in /etc/rc.conf:

inetd_flags="-wW -C 60 -a 10.0.0.1"

You should run /etc/rc.d/inetd reload for the changes to take effect.

The next process that you should look into is sendmail. If your host system is not
a mail server, you can modify the sendmail_enable in /etc/rc.conf so that the
sendmail process listens only to the localhost:

sendmail_enable="NO"

Then you should run /etc/rc.d/sendmail restart in order to apply the changes.

The next process you should look into is sshd. To force the ssh daemon to listen to a
specific IP address, you should modify the sshd configuration file located at /etc/
ssh/sshd_config:

ListenAddress 10.0.0.1

In order to enforce the changes to take place, you should run /etc/rc.d/sshd
reload. Use this command with caution if you are connected to your server via SSH.
This may cause you to lock yourself out of the server. If you don't want to take a trip
to your data center to restart sshd from the system's console, double-check
your configuration!

Finally, the daemon to look into is syslogd. Unless you are logging into the syslog
messages over the network, you don't want the syslog daemon to listen to a
network socket. In this case, you may disable remote logging by adding this line to
/etc/rc.conf:

syslogd_flags="-ss"

Running the /etc/rc.d/syslogd restart will enforce the changes to take
effect immediately.

If there is any other process that is listening on all interfaces for the
incoming connections, consult the appropriate manual pages for
instructions to change the interface binding.

System Configuration—Jails

[80]

The big exception is the RPC portmapper, which is used for the NFS protocol. Since
there is no easy way to enforce portmapper to listen only on one IP address, this
protocol should be completely disabled on the host server. This means that your host
operating system cannot act as the NFS server or the client. In order to disable the
RPC portmapper, the following line should be added to /etc/rc.conf:

rpcbind_enable="NO"

Once you finish modifying daemon configuration, you should verify the network
daemons are bound to a single address using the sockstat(1) utility:

sockstat -4l

USER COMMAND PID FD PROTO LOCAL ADDRESS FOREIGN ADDRESS
root sendmail 1611 3 tcp4 127.0.0.1 *:*
root inetd 1562 5 tcp4 10.0.0.1:21 *:*
root inetd 1562 6 udp4 10.0.0.1:69 *:*
root sshd 832 3 tcp4 10.0.0.1:22 *:*

Starting the Jail
Now your system is ready to perform the initial configuration of jail. This can be
done using the jail(8) utility. The jail(8) utility requires at least four parameters
in the command line—jail path on file system, jail's hostname, jail's IP address, and
the command that you want to run in jail.

In order to start the jail manually the first time, you should run the
following command:

jail /usr/jails/webserver1 webserver1 10.0.0.2 /bin/sh

This command runs the bourne shell inside your jail. From here, whatever you do
affects your jail only. To verify that you are actually inside the new jail, use the
following command:

uname –a

webserver1

There are a few steps that should be taken before the jail is ready to roll:

Set up /etc/rc.conf so the jail does not configure the network interface. The
following line should be added to /etc/rc.conf:
network_interfaces=""

Set up your DNS servers in /etc/resolve.conf to name resolution works
correctly inside the jail.
Set the time zone using the tzsetup(8) utility.

•

•

•

Chapter 5

[81]

Set root password using the passwd(1) utility.
Create an empty /etc/fstab file.
Enable basic network services in /etc/rc.conf for remote access. You may
want to add sshd_enable="YES" to /etc/rc.conf file.
Create user accounts.
Perform other tunings that you do on your new servers.

Many of the initial tasks can be done by running the sysinstall(8) utility from
inside the jail.

Once you have finished the basic setup, you may use the exit command to return to
the host OS.

Automatic Startup
Now you are almost ready to start the jail. You can run the jail using the jail(8)
utility as mentioned earlier. However, you can set up /etc/rc.conf on the host
system and let the system start and stop jails automatically. First of all you should
enable the jails and also tell the name of your jails in /etc/rc.conf:

jail_enable="YES"
jail_list="webserver1 theotherjail anotherone"

In the above example, you can define multiple jails in the jail_list variable,
separated by space.

There is also a short configuration for each jail to be specified in the jail_list
variable that should be added to /etc/rc.conf:

jail_webserver1_rootdir="/usr/jails/webserver1"
jail_webserver1_hostname="webserver1"
jail_webserver1_ip="10.0.0.2"
jail_webserver1_exec="/bin/sh /etc/rc"
jail_webserver1_devfs_enable="YES"
jail_webserver1_fdescfs_enable="YES"
jail_webserver1_procfs_enable="YES"

So we have introduced all the necessary information about each jail in the /etc/
rc.conf file. Note the jail_webserver1_exec variable that tells the command to be
invoked when jail starts. Running the /etc/rc script will simulate a system boot up
for jail.

Now, in order to start the jail, you may use the /etc/rc.d/jail script:

/etc/rc.d/jail start webserver1

•
•
•

•
•

System Configuration—Jails

[82]

This command will start the jail named webserver1. In order to start all the jails that
are specified in /etc/rc.conf, you should run the following command:

/etc/rc.d/jail start

This command will start all the jails.

Note that all the jails you specified in /etc/rc.conf will be automatically started at
system boot up.

Shutting Down Jails
The typical system commands that you use, to shutdown or reboot the system—
shutdown(8), halt(8), and reboot(8) are not jail-friendly and cannot be used from
inside a jail. In fact, shutting down or rebooting the jail cannot be done from inside
the jail and should be done by the system administrator on the host system. The best
way to stop a jail is to use jail rc script:

/etc/rc.d/jail stop webserver1

This command will stop (or shutdown) the jail named webserver1.

To restart a jail, you can invoke the jail rc script with the restart argument as
shown here:

/etc/rc.d/jail restart webserver1

Running the /etc/rc.shutdown rc script from inside the jail may
simulate a system shutdown. This should be used as the last resort
to restrain access, to stop the jail from the host system. However, this
may lead to leaving some jailed processes running. Also, this is not a
technically clean method to shutdown a jail.

Managing Jails
In addition to the standard utilities that you use to control the processes (ps, kill,
and so on), there are two more utilities available for jails.

The jls(8) utility displays a list of currently running jails. This is shown as the
following command:

jls

 JID IP Address Hostname Path
 1 10.0.0.2 webserver1 /usr/jails/webserver1

Chapter 5

[83]

As you have noticed from the above example, each active jail is identified by a Jail
Identifier (JID) number. The JID number is used to refer to the running jails in the
various utilities.

As the host system's administrator, you don't need to log into each jail to run a
specific command. This is possible using the jexec(8) utility. This utility lets the
host system's administrator run any command in an active jail (identified by JID)
from the host.

jexec 1 ls

.cshrc bin etc libexec proc sbin usr

.profile boot home media rescue sys var
COPYRIGHT dev lib mnt root tmp

While running jails on a system, you may see different outputs in various process
management utilities. Using ps(1), the most important change you will see is
J flag in the STAT column of the imprisoned processes. You can easily identify
whether a process is running in jail using the ps command. This is shown in the
following command:

ps ax | grep ssh

 821 ?? Is 0:00.00 /usr/sbin/sshd
 1044 ?? IsJ 0:00.00 /usr/sbin/sshd

In the above example, the process with PID 821 is sshd that is running on the host
system while the second instance (PID 1044) is the one running inside a jail.

You can also send signals to the imprisoned processes using pkill(1) and
killall(1) commands. In order to signal an imprisoned process, the JID of jail
should be specified by the -j argument:

pkill -HUP -j 1 sshd

This will send the HUP signal to the sshd process, which is running, to the jail
with JID 1.

pkill –HUP –j any sshd

The above example sends the HUP signal to the imprisoned sshd processes in any
running jail.

And to kill any process running inside a specific jail, you may use the
following command:

killall –j 1

System Configuration—Jails

[84]

Jail Security
Security is one of the main concerns while running the jails. A jail is supposed to
be limited and completely harmless for the host system as well as the other jails. If
an attacker gains access to a jail, he should not be able to escape from the jail and
the scope of vulnerability has to be limited to the compromised jail. The system
administrator should take special care, while running the jails. Also, as all the jails
share the same running kernel with the host system, having uncontrolled access
from inside a jail to the kernel will cause major security problems. For example,
a misconfigured jail can be used to access the resources on the other jails (or host
system), or interfere with the operations of the other jails.

While the jail's infrastructure does not let the imprisoned process access outside the
scope of jails, a misconfigured system may unintentionally provide direct access
to the devices (via /dev device nodes), which could affect the whole system (for
example, network interface or memory).

The devfs(5) mount is the jail's achilles heel. Jails should have a /dev mount
point which contains device nodes from the device file system. The major security
issues are caused due to the full access to the host system's devfs(5) namespace.
For example, a user inside a jail can read the console's message buffer or access the
physical hardware connected to the host system, which is not desirable in most cases.

Luckily, devfs supports rulesets that can control the attributes of the device nodes
in each devfs mount point. A devfs ruleset is a set of rules that specifies access
permissions as well as visibility of each and every device node that lives in the devfs
namespace. For example, you can hide certain device nodes (such as disk nodes,
console, or terminals) from being shown in the /dev mount point inside a jail.

If you are starting a jail using /etc/rc.d/jail rc script, a default devfs ruleset is
applied to the /dev mount point of the jail. The /dev mount inside the jail will look
like the following:

ls /dev

fd null ptyp1 random stdin ttyp0 ttyp2 zero
log ptyp0 ptyp2 stderr stdout ttyp1 urandom

You can define your own devfs ruleset in the /etc/devfs.rules file. However, if
nothing is specified, settings from the /etc/defaults/devfs.rules will be used.
You can find default jails ruleset under the devfsruleset_jail section.

Revealing inappropriate device nodes under a jail environment may
lead to major security issues for your host system, when a jail is being
compromised. Reveal device nodes with caution.

Chapter 5

[85]

Jail Limitations
The FreeBSD jails do not provide true virtualization as all the jails running on a host
system are using the same kernel and sharing a lot of resources. This will lead to
some security issues that may affect all the jails on a system. For example, if a root
user in a jail has the ability to put the network interface in the promiscuous mode,
the user will be able to tap the network traffic for all the other jails running on
the system.

Also, due to the fact that all the jails as well as the host system are sharing the
same kernel, the root user inside a jail cannot load or unload any kernel module.
Moreover, it has very limited access to sysctl variables. The administrator cannot
modify network configuration such as the IP address, or any other network interface
configuration, or the routing table. The imprisoned root user also has no access to the
firewall rules and always obeys the host system's firewall setup.

There are also a few limitations from the perspective of the file system, such as the
prohibition of mounting or unmounting the file system inside a jail, because the
environment is chrooted. Moreover, a root user inside a jail cannot create the device
nodes, as we had discussed earlier in the section—Jails security.

Summary
Jails offer very low overheads, lightweight virtualization features for FreeBSD.
You may run multiple jails on a host system, creating multiple virtual servers, each
of which acts almost like a real server with a few limitations. Jails can be used for
content hosting, software development, and testing new features without harming
the host system.

Jails can be installed in a few steps, and removed by simply removing the
jail's directory.

Like other features, jail subsystem is under constant development. The best resource
available on the latest updates on jail subsystem is jail(8) manual pages. It is
recommended that a system administrator, who plans to make serious use of jails,
reads through this.

System Configuration—
Tuning Performance

FreeBSD was designed and is being developed, with performance in mind. It has
proved to be a very high performance operating system for the network applications
as well. There are millions of sites running FreeBSD as their hosting platform
(according to Netcraft). Many users use FreeBSD as their gateway router and
firewall, while many others run their network services (for example, WWW, Mail,
FTP, and so on) over FreeBSD.

When you set up a new installation of FreeBSD on your server, the default
configuration is designed to be conservative to offer more stability over various
hardware configurations. However, you may want to tweak a few parameters to
get the most out of your powerful hardware and advanced FreeBSD features. This
chapter helps you to tweak many of the important parameters required to run a high
performance FreeBSD server.

In this chapter, we will look at the following:

Tweaking Kernel variable using SYSCTL
Kernel
SMP
Disk
Network
The /etc/make.conf file
The /boot/loader.conf file.

•

•

•

•

•

•

•

System Configuration—Tuning Performance

[88]

Tweaking Kernel Variables using SYSCTL
The sysctl(8) utility allows system administrator to read or modify certain kernel
variables during system run time. There are more than a thousand variables out
of which, some of them are read-only and cannot be changed during the run time,
while some others can be modified to change the kernel's behavior.

Some variables are read-only while the system is running, but can be set
up during system boot from /boot/loader.conf or by hard coding
the variable into the kernel configuration, which is discussed later in
this chapter.

All the variables are divided into different categories. The most important
categories include:

dev: This catogory contains device node related variables.
hw:This category contains hardware related variables.
kern: This category contains kernel related variables.
net: This category contains network stack related variables.
security: This category contains security related variables.
vfs: This category contains file system related variables.
vm: This category contains virtual memory related variables.

You can see a complete list of sysctl variables by running the sysctl –a command.
However, the output of this command can be very long. Combining the grep(1) to
search for certain variables can be very useful:

sysctl -a | grep recvspace

net.local.stream.recvspace: 8192
net.local.dgram.recvspace: 4096
net.inet.tcp.recvspace: 65536
net.inet.udp.recvspace: 42080
net.inet.raw.recvspace: 8192

The current value of a sysctl variable can be examined by using the following
sysctl(8) command:

sysctl net.inet.ip.forwarding

net.inet.ip.forwarding: 0

•

•

•

•

•

•

•

Chapter 6

[89]

If you are curious to know what a specific variable is, you can use sysctl with -d
argument and sysctl will show a short description for the variable as follows:

sysctl -d net.inet.ip.forwarding

net.inet.ip.forwarding: Enable IP forwarding between interfaces

And finally, to modify a variable run the following command:

sysctl net.inet.ip.forwarding=1

net.inet.ip.forwarding: 0 -> 1

You may want to modify a few variables permanently. To achieve this, you should
add variable definitions to the /etc/sysctl.conf file, and the system will load your
variables upon boot up process.

It is recommended that you do not play with sysctl variables on a
production system. Applying inappropriate modifications may render
your system unstable or pave the way for other unprecedented behaviors.
Use this utility with caution. Always try your changes on a test machine
before rolling out the actual changes on a production server.

There are a few variables that cannot be set during system run time. A good example
of this is kern.maxusers variable:

sysctl kern.maxusers=512

sysctl: oid 'kern.maxusers' is a read only tunable
sysctl: Tunable values are set in /boot/loader.conf

Adding this variable to the /etc/sysctl.conf file also won't help. These types of
variables should either be added to the /boot/loader.conf file or hardcoded in the
kernel configuration file.

Later is this chapter, only a few of the important sysctl that would be useful in
tweaking your system's performance variables are introduced. You may use the
combination of grep and sysctl to find many interesting variables that may help
you get more information about your system or identify change in its behavior.

Kernel
As discussed in Chapter 2, you can recompile the systems kernel from source to add
or remove certain features. Beside adding or removing modules, you can optimize
your kernel performance in several ways.

System Configuration—Tuning Performance

[90]

The first is to reduce the size of the kernel by removing any unnecessary stuff.
Since the kernel should be completely loaded into the memory during boot process,
reducing kernel size will reduce memory usage and consequently more memory
will be available for other processes. This will also result in a faster system boot up
process.

You can remove many unnecessary hardware support entries as well as debug
information from your kernel to reduce its size.

As good practice, you can make a copy of the stock kernel (can be found at /sys/
i386/conf/GENERIC) and remove (or comment out) all unnecessary hardware
support. Depending on your hardware, this may include unnecessary SCSI, RAID,
Network Card, etc.

Depending on the hardware architecture you use to run FreeBSD, your
kernel configuration file may be located at a different location such as
/sys/sparc64/conf or /sys/amd64/conf.

Another important tweak is to remove all debugging options from kernel
configuration. Kernel configuration file is well documented so that these entries can
be easily spotted:

makeoptions DEBUG=-g

Alternatively, if you are tracking the –current CVS tag, you may have these lines in
the kernel configuration file as well:

Debugging for use in -current
options KDB
options DDB
options GDB
options INVARIANTS
options INVARIANT_SUPPORT
options WITNESS
options WITNESS_SKIPSPIN

You may need to edit the kernel configuration file and recompile the kernel to find
your optimized kernel configuration. During optimization, pay special attention to
the comments in the kernel configuration file. There are some modules that cannot be
removed from the kernel.

When you recompile the kernel, the system does not use compiler optimizations for
various reasons. You may want to try compiler optimizations which, in most cases,
result in faster binary code. However, depending on which compiler optimization
you use, the kernel's binary size may also increase.

Chapter 6

[91]

To enable compiler optimizations, you should add the following line or a similar
line, depending on your preferences, to the kernel configuration file:

makeoptions COPTFLAGS="-O2 -pipe -funroll-loops -ffast-math"

Always use these types of modifications with caution, as it may render your system
unstable. It is advised that you don't use the -O3 flag, as it has proven to result in an
unstable binary output.

SMP
If you are using a multi-processor (SMP) hardware, you should know that the SMP
features are optional in the FreeBSD 7 stock kernel. However, as the SMP is enabled
(by default) in the GENERIC kernel, you need to always ensure that you have the
following lines in your kernel configuration when building a new kernel:

options SMP
device apic

Once you have compiled and rebooted with a new kernel, you would see multiple
processors being detected during boot time. Alternatively, you can read the
dmesg(8) output:

dmesg | grep -i cpu

CPU: Intel(R) Xeon(TM) CPU 3.20GHz (3200.14-MHz 686-class CPU)
 Logical CPUs per core: 2
FreeBSD/SMP: Multiprocessor System Detected: 4 CPUs
 cpu0 (BSP): APIC ID: 0
 cpu1 (AP): APIC ID: 1
 cpu2 (AP): APIC ID: 6
 cpu3 (AP): APIC ID: 7
cpu0: <ACPI CPU> on acpi0
cpu1: <ACPI CPU> on acpi0
cpu2: <ACPI CPU> on acpi0
cpu3: <ACPI CPU> on acpi0
SMP: AP CPU #2 Launched!
SMP: AP CPU #1 Launched!
SMP: AP CPU #3 Launched!

You can also take advantage of SMP, while building world from the source. The
make(1) utility lets you run multiple simultaneous jobs. Using this feature will save
tons of time while rebuilding world. For example in a quad-processor environment
you may use:

make –j4 buildworld

System Configuration—Tuning Performance

[92]

This will run a maximum of four simultaneous processes, which is most likely to use
all available CPU resources, and consequently speed up the build process.

It is advised that you do not to use this feature while building a kernel as
it could break the build procedure.

Traditionally FreeBSD uses 4BSD scheduler as the default scheduler. However, an
alternative scheduler called ULE has been also available since FreeBSD 5 and it has
improved tremendously since then. It is now recommended to use ULE scheduler
instead of 4BSD scheduler in FreeBSD 7, and it will be the default scheduler in the
next release of FreeBSD. To use ULE scheduler, you should replace the SCHED_4BSD
option in your configuration file with following line:

options SCHED_ULE

Disk
In some cases, you may find the kernel's default limits very annoying. Especially
when you are running a busy server, you are likely to run out of "file descriptors" or
face I/O limits.

File limits
Infact everything, including actual files, network sockets, and so on, is treated as
a file in UNIX. On a busy server, which has many network sockets or disk files
open, the file descriptor tables will be exhausted and you will see file: table is
full in system's message buffer. The kern.maxfiles kernel variable contains the
maximum number of file descriptor limit.

sysctl kern.maxfiles

kern.maxfiles: 8192

sysctl kern.maxfiles=16384

kern.maxfiles: 8192 -> 16384

I/O Performance
The new UFS2 file system which is available in FreeBSD 7 offers higher performance
as compared to the legacy UFS file system. However, you can still tweak your file
system by using different mount options.

Chapter 6

[93]

There are actually four different modes that you can use to mount a UFS file system:

Sync: In this mode all I/O to file will be done synchronously. This means
that both data and metadata will be written synchronously to the disk.
Although this will slow down the disk I/O performance, this makes the
system immune to crashes.
Noasync: In this mode, data is written to disk asynchronously while meta-
data is written synchronously. This will greatly enhance performance, as
compared to the sync mode, and is also almost safe from system crashes.
Softupdates: This method properly orders the metadata writes and ensures
consistency of data on disk. The performance in this mode is somewhat like
noasync mode. This feature has been explained in Chapter 1.
Async: This is the fastest, but the most dangerous method. All writes in this
mode are done asynchronously and there is a high risk of data loss in case of
power failure.

Noasync is the default mode, if nothing else is specified.

Modes can be set by using mount(8)'s -o option . You should also update the
"options" column in the /etc/fstab file, for the changes take effect upon a system
boot up.

Do not use async mode for root partition. Corrupting of this partition may
prevent your system from booting up correctly.

By default, the system updates the last access time of any file that is being accessed.
This will produce I/O overhead on the busy file systems. If you do not want to
know when a file was accessed the last time, you may want to turn this feature off, to
improve the disk I/O performance. To turn this feature off, you should set the noatime
option on any partition. During run time, you must use the following command:

mount –u –o noatime /usr

This will turn the noatime flag on, on the /usr partition. To make these changes
permanent, the /etc/fstab file must be updated accordingly.

RAID
RAID (explained in Chapter 1, System Configuration—Disks), will also help you
reduce I/O overheads and improve the disk read/write times. You should select
a RAID strategy based on your application and the performance or redundancy
your application requires. Different levels of RAID offer different levels of
I/O performance.

•

•

•

•

System Configuration—Tuning Performance

[94]

The various levels of RAID are described in the following list:

RAID 0 (Striped Set): This method will improve the read and write speed
slightly, as read and writes span across multiple physical disks.
RAID 1 (Mirrored set): This method improves the read performance as
data will be read from multiple physical disks, but the write performance is
almost the same as non-RAID scenario.
RAID 5 (Striped set with Parity): This method improves both read and write
performance, especially on the SMP hardware, if the software RAID is in use.

You should choose a good RAID strategy that will help you improve the I/O
performance as well as the system's reliability for I/O intensive applications.

Network
Despite having performance in mind, FreeBSD has conservative defaults for the
TCP/IP network stack that can be tuned to get a performance better than from the
default configuration.

There are a few sysctl variables that can be changed in order to gain better network
performance. However, you should examine each feature to see whether it is suitable
for your environment, before deploying it on a production machine.

The network related sysctl variables are stored under the net category. You can
collect the complete list of these variables along with a short description using
sysctl(8) utility:

sysctl –d net

A number of important variables are explained in this chapter.

TCP Delayed ACK
By default, the network stack applies 10-100 milliseconds delay before sending TCP
ACK message. This may lead to low performance on busy file servers (SMB protocol)
or busy web servers. You can override this delay by turning off the net.inet.tcp.
delayed_ack using sysctl variables:

sysctl net.inet.tcp.delayed_ack=0

net.inet.tcp.delayed_ack: 1 -> 0

•

•

•

Chapter 6

[95]

Disabling TCP delayed ACK will greatly improve TCP performance,
especially when using SAMBA. But this violates RFC1122 guidelines
(RFC1122—"Requirements for Internet Hosts – Communication layers"
can be found at http://tools.ietf.org/html/rfc1122). You may
not want to disable this feature unless you really have to.

RFC 1323 Extensions
RFC 1323 specifies guidelines (specifically, TCP window scaling) for gaining high
TCP/IP performance over large bandwidth*delay paths. This extension is enabled in
FreeBSD 7 by default. However, you may want to disable these extensions in some
cases to experience network connection stalls.

sysctl net.inet.tcp.rfc1323=0

net.inet.tcp.rfc1323: 1 -> 0

TCP Listen Queue Size
The incoming connection queue size is limited to 128 connections by default. This is
very low for busy servers that may need to handle some thousand new connections
per second. The default value can be changed by modifying the kern.ipc.
somaxconn variable:

sysctl kern.ipc.somaxconn=1024

kern.ipc.somaxconn: 128 -> 1024

TCP Buffer Space
The net.inet.tcp.sendspace and net.inet.tcp.recvspace variables control the
send and receive buffer size allowed for any TCP connection.

sysctl net.inet.tcp.sendspace=65536

net.inet.tcp.sendspace: 32768 -> 65536

The default value for sendspace and recvspace are 32768 and 65536 respectively.
It is advised not to increase the default buffer sizes, if you are running a busy
server that is serving many network connections simultaneously. Increasing
buffer sizes will cause more kernel memory usage. In the case of too many
concurrent connections, your system may end up out of memory, due to inactive
TCP connections. However, if you were serving a server with a few clients and
high-speed network connectivities, increasing buffer sizes would lead to great
performance improvements.

System Configuration—Tuning Performance

[96]

If you are increasing the buffer spaces to a number larger than 65536,
make sure the other ends of connection also support TCP window scaling
options according to the RFC1323. Otherwise, you will not see any
performance improvement over your connections.

Network Interface Polling
Device polling lets system poll devices, instead of waiting for hardware devices,
to generate hardware interrupts. Device polling will greatly enhance the NIC
performance on FreeBSD. However, this feature is not enabled in the FreeBSD's
GENERIC kernel and needs manual kernel reconfiguration, to be enabled.

To enable device polling support to kernel, the following two lines should be added
to your kernel configuration file:

options DEVICE_POLLING
options HZ=1000

Please note that we have also slowed down the system clock ticks to prevent the
system from spending a lot of time on poll devices.

Once you have recompiled the kernel with the above options in your kernel
configuration files, the device polling feature will be enabled in your kernel. The
polling behavior can be controlled by the kern.polling set of variables. To see a list
of available variables along with a short description, you may use:

sysctl –d kern.polling

The ifconfig(8) utility offers a few options to control the polling feature on
network interfaces. To enable polling on a specific interface, you may use the
following command:

ifconfig bge0 polling

This will enable polling on the bge0 network interface. This can be verified by using
ifconfig again:

ifconfig bge0

bge0: flags=8843<UP,BROADCAST,RUNNING,SIMPLEX,MULTICAST> metric
0 mtu 1500
 options=48<VLAN_MTU,POLLING>
 ether 00:0c:6e:7b:74:42
 inet 192.168.0.5 netmask 0xffffff00 broadcast 192.168.0.255
 media: Ethernet autoselect (100baseTX <full-duplex>)
 status: active

Chapter 6

[97]

You do not have to enable the kern.polling.enable sysctl variable
that is obsolete. Setting this variable to 1 will enable polling on all
capable interfaces.

The /etc/make.conf file
When you compile something from the source code in FreeBSD, the default set
of parameters will be passed to the compiler. As you can change some of these
parameters globally, they can be applied to most applications that you compile on
your machine.

A good example of this would be the CPU optimizations and hardware specific
parameters that may lead your compiler to produce more efficient and optimized
binary code. This is especially useful when using ports or rebuilding world.

Most of these settings can be controlled from the /etc/make.conf file. There are
a few variables that can be set in this file, which have a direct effect on your
compiler behavior.

CPUTYPE
The CPUTYPE variable specifies your processor type so that the compiler will produce
the optimized binary code for your specific processor. A list of supported processors
can be found in the /usr/share/examples/etc/make.conf file.

If you are using an Intel Core Duo processor, you will want to set this variable to
"core2" in the /etc/make.conf file:

CPUTYPE?=core2

Make sure you choose the correct processor type by reviewing boot messages (or
dmesg(8) output). Otherwise, the binary code may not run properly on your system.

A list of currently supported processor optimizations that are available can be found
in the following table:

Processor Family CPUTYPE value
Intel IA32 core2, core, Nocona, pentium4m, pentium4, prescott,

pentium3m, pentium3, Pentium-m, pentium2
Intel IA64 itanium, itanium2
AMD opteron, athlon64, athlon-mp, athlon-xp, athlon-4,

athlon-tbird, athlon, k8, k6-3, k6-2, k6, k5

System Configuration—Tuning Performance

[98]

CFLAGS and COPTFLAGS
The CFLAGS variable specifies any additional compiler options that you want to pass
to the compilers. These additional settings mostly deal with the performance of the
compiling process or that of the output binary code. A typical CFLAGS variable would
look like this:

CFLAGS= -O2 -pipe

In the above example, two parameters are passed to the compiler. The -O2 flag
sets the optimization-level to 2, which is acceptable for most applications. Another
optimization flag that you will use is -Os that optimizes the output binary for
smaller size.

It is advisable not to use the -O3 option (the highest level of gcc binary
optimization) as it is likely to break the output binary code.

Ports system also respects the variables you set in the /etc/make.conf file.
However, some of the ports need to have the WITH_OPTIMIZED_CFLAGS variable set
in order to enable optimization during compile process.

Another important variable that you may want to set in your make.conf is
WITHOUT_DEBUG variable. Some ports build with the debug information, unless this
variable is set. It is recommended that you set this variable in your make.conf in
order to ensure that these ports are not compiled with debug information:

WITHOUT_DEBUG = yes

The /boot/loader.conf file
Some variables cannot be modified during the system run time and consequently
in the sysctl.conf file. These variables can either be compiled in a kernel or set
from the /boot/loader.conf file. A list of such variables is listed in the /boot/
defaults/loader.conf file.

Do not modify the /boot/defaults/loader.conf file. This file
contains some default values. You may modify the /boot/loader.
conf file instead.

A good example of these variables is the kern.maxusers variable. Setting this
variable magically scales up some other kernel variables, including the number of
maximum open files, sizing of network buffers, and so on.

Chapter 6

[99]

If nothing is specified, FreeBSD automatically tunes this variable during boot up,
based on the system's physical memory.

In order to compile this variable statically into a kernel, the following line should be
added to the kernel configuration file:

maxusers 512

Alternatively, you can set this variable in the /boot/loader.conf file:

kern.maxusers="512"

Summary
There are many parameters that you can tweak to get better performance on your
server. Depending on the services that you are running on your server, you may
need to overcome different bottlenecks. For example, mail server deals with a large
number of open files as well as a high I/O rate. Busy web servers are very network
intensive and tweaking network parameters will greatly enhance performance on a
web server.

The freeBSD-performance mailing list (located at http://lists.freebsd.org/
mailman/listinfo/freebsd-performance) is a good place to discuss performance
issues and the different methods to improve your system's performance.

Network Configuration—
Basics

FreeBSD gives you an in-depth control over your network configuration. This is done
using a few simple but powerful tools such as ifconfig(8).

This chapter explains interface configuration using ifconfig(8) utility and
a number of related configuration files, as well as some connectivity test and
debugging tools.

In this chapter, we will look at the following:

Ifconfig utility
Advanced ifconfig options
Network testing tools.

Ifconfig Utility
The ifconfig(8) utility is your all-in-one utility to configure a network interface's
layer2 and layer3 characteristics.

From an operating system's point of view, your system has a number of physical and
logical network interfaces attached.

Physical network interfaces include the following:

Ethernet interfaces with different physical ports (that is electrical or optical)
Wireless network interface (802.11 a/b/g/n)
Bluetooth interface
Printer (PLIP) interface.

•

•

•

•

•

•

•

Network Configuration—Basics

[102]

Logical network interfaces include the following:

Loopback interface
Tunnel interfaces (for example GRE, PPP, GIF, and FAITH,)
VLAN interfaces
Bridge interfaces.

The Ifconfig utility is used to display the current status of any interface that is
installed on the system. For example, to figure out what interfaces are available on
your system, you may use the following command:

ifconfig -l

fxp0 xl0 plip0 lo0

The system in the above example has four network interfaces, out of which two
(fxp0 and xl0) are physical while the other two (plip0 and lo0) are
logical interfaces.

In FreeBSD, network interfaces are named after their driver. For example,
Intel NICs are identified as fxp, Broadcom Gigabit NICs as bge, and
so on.

The Ifconfig utility can also be used to display the detailed status of an interface as
shown here:

ifconfig fxp0

fxp0: flags=8843<UP,BROADCAST,RUNNING,SIMPLEX,MULTICAST> mtu 1500
 options=b<RXCSUM,TXCSUM,VLAN_MTU>
 inet6 fe80::20c:29ff:fefd:f61d%em0 prefixlen 64 scopeid 0x1
 inet 198.168.0.5 netmask 0xffffff00 broadcast 198.18.0.255
 ether 00:0c:29:fd:f6:1d
 media: Ethernet autoselect (100baseTX <full-duplex>)
 status: active

The above interface summary displays an fxp (Intel family) network interface
that has both IPv4 (inet) and IPv6 (inet6) addresses configured. Other information
including MAC address (ether) and media specific options are also displayed.

A list of important interface flags is listed in the following table:

Flag name Description
UP Indicates that the interface's Layer3 protocol is up.
BROADCAST Indicates that the broadcast address is valid. Not used for

point-to-point interfaces.

•

•

•

•

Chapter 7

[103]

Flag name Description
LOOPBACK Indicates that this interface is a loopback interface.
POINTTOPOINT Indicates that this is a point-to-point (for example tunnel) interface.
RUNNING Indicates that the resources are allocated for this interface and

driver is running.
NOARP Indicates that ARP is disabled on this interface

(inet family specific).
PROMISC Indicates that the interface is in the promiscuous mode. In this

mode, interface receives all packets, regardless of whether the
packets are destined for this host or not.

ALLMULTI Indicates that this interface receives all multicast traffic.
ACTIVE Indicates that TX hardware queue is full.
SIMPLEX Indicates that the interface cannot hear its own transmissions.
SMART Indicates that this interface automatically manages its own routes.
LINK0 , LINK1 ,
LINK2

Per link layer defined attribute.

MULTICAST Indicates that this interface supports multicast.
PPROMISC Indicates that the user-requested promiscuous mode has been

enabled on this interface.
MONITOR Indicates that this interface is in monitor mode and does not

transmit anything on the wire. In this mode the interface drops
packets after being processed by bpf(4).

STATICARP Indicates that this interface only replies to requests from statically
defined ARP entries and does not send any ARP request.

DEBUG Indicates that the debugging code is enabled and extra error logs
will be displayed on the console.

Besides the interface flags, there are also a few interface options (capabilities) that are
specific to the installed NIC hardware. A list of available NIC options can be found
in the following table:

Option Name Description
RXCSUM NIC can offload checksum on RX
TXCSUM NIC can offload checksum on TX
HWCSUM NIC can offload checksum on both TX and RX
NETCONS Can be used as network console
VLAN_MTU VLAN-compatible MTU is supported
VLAN_HWTAGGING Hardware VLAN tagging support
JUMBO_MTU Jumbo frames (9000 bytes MTU) are supported

Network Configuration—Basics

[104]

Option Name Description
POLLING Drivers supports POLLING (explained in chapter 6)
VLAN_HWCSUM RX and TX checksum offloading on VLANs is supported
TSO4 TCP Segmentation Offloading is supported
TSO6 TCP6 Segmentation Offloading is supported
TSO Both TSO4 and TSO6 are supported
LRO TCP Large Receive Offloading is supported

In ifconfig(8) output, the media field displays the current media options for the
network interface card. In the previous example, the NIC was set to autoselect and
has negotiated 100Base-TX full-duplex with the switch that it was connected to.

Your NIC may support different media options depending on its hardware
capabilities. These capabilities may differ from one NIC to other. To see a list of NIC
capabilities you may consult driver's manual pages (for example man fxp) or use
ifconfig with -m flag and ifconfig displays a list of supported media options after
the interface status:

ifconfig fxp0

fxp0: flags=8843<UP,BROADCAST,RUNNING,SIMPLEX,MULTICAST> mtu 1500
 options=b<RXCSUM,TXCSUM,VLAN_MTU>
 inet6 fe80::20c:29ff:fefd:f61d%em0 prefixlen 64 scopeid 0x1
 inet 198.168.0.5 netmask 0xffffff00 broadcast 198.18.0.255
 ether 00:0c:29:fd:f6:1d
 media: Ethernet autoselect (100baseTX <full-duplex>)
 status: active
 supported media:
 media autoselect
 media 100baseTX mediaopt full-duplex
 media 100baseTX
 media 10baseT/UTP mediaopt full-duplex
 media 10baseT/UTP
 media 100baseTX mediaopt hw-loopback

Once you configure a network interface with an IP, IPX, or AppleTalk address,
the interface will be automatically marked as up, the routing entry will be added
to the routing table, and system starts transmitting and receiving traffic on the
configured interface.

The interface can be disabled using the ifconfig's down option:

ifconfig bge0 down

Chapter 7

[105]

When an interface is marked as down, the system stops transmitting traffic on the
interface. If possible, the system also resets the interface so that it does not receive
any incoming traffic.

You can bring an interface up again with the ifconfig's up option:

ifconfig bge0 up

Marking an interface down does not necessarily deactivate the physical
layer. This is why you will see your switch port active, even when the
interface is down. On the other hand, after seeing an interface status as up
does not indicate that the physical layer link is active. The status field in
ifconfig output indicates the actual physical layer status.

In order to make the interface configuration persistent and configure network
interfaces automatically after system reboot, you should add appropriate lines
to the /etc/rc.conf configuration file. Your rc.conf file may contain several
interface configuration lines for each physical interface installed on your system and
in accordance with the address you configure on an interface. A typical interface
configuration line looks like the following sample:

ifconfig_fxp0="inet 10.2.0.1 netmask 255.255.255.192"
ifconfig_fxp0_alias0="inet 10.2.0.5 netmask 255.255.255.255"

The first part of the parameter is ifconfig_fxp0 which indicates that this is an
ifconfig statement for the fxp0 interface. You should replace this with the interface
name that you want to configure. The second part of the statement inside the double
quotation mark indicates the ifconfig configuration parameters you want to use for
that specific interface. For example, the first configuration line assigns IPv4 address
10.2.0.1 with subnet mask 255.255.255.192 to interface fxp0.

The second line is the same as the first line, but it assigns a secondary address (alias)
to the same interface. Assigning secondary addresses to an interface is explained
later in this chapter.

During system start up, the /etc/rc.d/netif script takes care of network interface
configuration. This rc script is also useful in loading network configuration without
actually rebooting the server. For example, if you've added a few aliases to an
existing interface or configured a new interface in the /etc/rc.conf file, you can
apply the new settings by calling the netif rc script:

/etc/rc.d/netif restart

This will reload the network configuration and apply your changes. However,
you may want to verify this to see whether all changes are applied, or not, using the
ifconfig utility.

Network Configuration—Basics

[106]

Once you run the netif rc script, you should then run the routing rc script to
tell the system to install appropriate routing entries into the system's routing table
as follows:

/etc/rc.d/routing restart

The netif rc script may remove default route (and other routes) from the
routing table. Based on this fact, manually running these rc scripts over a
network connection (For example SSH and Telnet) is not recommended as
you may lose your remote access to the device. However, there is less risk
of losing connectivity to the host if you are on the same subnet as
the server.

Configuring IP Address
To assign an IP address to a network interface, you may use ifconfig with the
following syntax:

ifconfig fxp0 inet 192.168.0.10 netmask 255.255.255.0

This will assign IPv4 address 192.168.0.10 with netmask 255.255.255.0 to
network interface fxp0. The ifconfig utility also supports CIDR notation while
assigning IP addresses to an interface. For example, you may use the following
command which has the same result as the previous example:

ifconfig fxp0 inet 192.168.0.10/24

The inet keyword (called address family) indicates that we want to assign an IPv4
address to the interface. The ifconfig utility supports different address families as
shown in the following list:

inet for IPv4 address family.
inet6 for IPv6 address family.
atalk for AppleTalk protocol.
ipx for Novell IPX/SPX protocol suite.
link, ether, and lladdr for Layer2 (Ethernet) protocol.

If no address family is defined, the ifconfig assumes the inet address family
by default.

To assign an IPv6 address to the interface, you may use the following syntax:

ifconfig fxp0 inet6 2001:db8:bdbd::123 prefixlen 48

•

•

•

•

•

Chapter 7

[107]

You can also shorten the syntax by using CIDR notations instead of using the
prefixlen keyword. The equivalent of the previous example, using CIDR notation,
would look like the following command line:

ifconfig fxp0 inet6 2001:db8:bdbd::123/48

Configuring Layer2 Address
You may want to modify the MAC address on your network interface for any
reason. This is possible using ifconfig with the ether address family to modify
the layer2 addresses.

For example, you can set the MAC address on xl0 interface to 00:01:02:ae:13:57
using the following command:

ifconfig xl0 ether 00:01:02:ae:13:57

Changing Ethernet address will briefly reset the interface in order
to ensure that the MAC address is correctly set. If you are remotely
connected to the server, changing the MAC address on the interface that
you are connected to, may result in your connection getting dropped.

Configuring IPX
The support for IPX protocol is not enabled by default in GENERIC kernel, and a
custom kernel with IPX option should be compiled (explained in Chapter 2) to
support the IPX address family.

To enable IPX support, the following line should be added to the kernel
configuration file:

options IPX

The IPX protocol functionality will be available after the system is rebooted with
newly compiled custom kernel.

In order to assign an IPX address to a network interface card, you may use
ifconfig(8) with ipx as the address family parameter as shown here:

ifconfig xl0 ipx 0x101

The above example assigns IPX address 0x101 to xl0 interface.

The IPX address can be assigned in the netnum[.nodenum] format, where netnum is
one to eight hexadecimal digit IPX network number and optional nodenum parameter
is twelve hexadecimal digit link-level address.

Network Configuration—Basics

[108]

To make the above changes permanent, you should add the following line to /etc/
rc.conf, so that the address is assigned to the interface after system bootup:

ifconfig_xl0="ipx 0x101"

You can also verify the IPX address assignment using ifconfig and specifying the
IPX address family. This will omit display of information about other protocols that
are enabled on this interface:

ifconfig xl0 ipx

xl0: flags=8843<UP,BROADCAST,RUNNING,SIMPLEX,MULTICAST> metric 0
mtu 1500
 options=9<RXCSUM,VLAN_MTU>
 ipx 101H.102ae1357

The system does not act as the IPX gateway by default and does not forward the IPX
traffic between interfaces. In order to enable this functionality, you may want to add
the following line to the /etc/rc.conf file:

ipxgateway_enable="YES"

If you do not want to reboot the system to give effect to the changes, you can enable
IPX forwarding using the sysctl utility:

sysctl net.ipx.ipx.ipxforwarding=1

net.ipx.ipx.ipxforwarding: 0 -> 1

FreeBSD also has IPX routing daemon in the base system. The IPXrouted(8)
command is a Routing Information Protocol (RIP) daemon for IPX protocol. To
enable this daemon, you should add the following line to your /etc/rc.conf file, so
that daemon will be automatically started upon system reboot:

ipxrouted_enable="YES"

To start the IPX routing daemon manually, you should run the appropriate rc script:

/etc/rc.d/ipxrouted start

Starting ipxrouted.

Configuring AppleTalk
Like IPX protocol, the AppleTalk protocol is not enabled in the default system kernel.
The support for this protocol should be compiled into a custom kernel by adding
the following line to the kernel configuration file and rebooting the system with a
new kernel:

options NETATALK

Chapter 7

[109]

Once your new kernel with AppleTalk protocol is running, you can assign
AppleTalk addresses to your interface using the ifconfig(8) utility:

ifconfig fxp0 atalk 725.40 range 725-727

 atalk 725.40 range 725-727 phase 2

You have to add the following line to your /etc/rc.conf file to make the changes
permanent, and to automatically assign the address to interface after system bootup:

ifconfig_fxp0="atalk 725.40 range 725-727"

To verify AppleTalk address assignment, you should use ifconfig again:

ifconfig fxp0 atalk

fxp0: flags=8843<UP,BROADCAST,RUNNING,SIMPLEX,MULTICAST> metric
0 mtu 1500
 options=9<RXCSUM,VLAN_MTU>
 atalk 725.40 range 725-727 phase 2 broadcast 0.255

For "File and Printer Sharing" using AppleTalk protocol, you should use
netatalk software, which is available from ports system and is located
under the /usr/ports/net/netatalk subdirectory.

Configuring Secondary (alias) IP Addresses
There are different scenarios where you need multiple IP addresses (called aliases)
on the same network interface. These may include running virtual web hosts on a
single machine using different IP addresses, or being a gateway for different subnets.
Theoretically, you may have an unlimited number of alias addresses on an interface.

Aliases can be added and removed using the ifconfig(8) utility.

The following example shows assigning an IP address to the fxp0 interface and then
adding multiple aliases to the same interface:

ifconfig fxp0 192.168.0.11/24

ifconfig fxp0 10.0.1.33/24 alias

ifconfig fxp0 10.0.21.1/25 alias

In the above example, three IP addresses are assigned to the fxp0 interface. The first
IP address, 192.168.0.11/24 is assigned as the primary IP address while
two others are added as aliases or secondary addresses. In order to make these
changes permanent, you should add the following lines (Note the _alias suffix) to
the /etc/rc.conf file:

ifconfig_fxp0="inet 192.168.0.5/24"

Network Configuration—Basics

[110]

ifconfig_fxp0_alias0="inet 10.0.1.33/24"
ifconfig_fxp0_alias1="inet 10.0.21.1/25"

To remove an alias, the -alias flag is used. You can remove aliases in any order
using the ifconfig utility. For example, to remove the second address in the
previous example, you may use the following command:

ifconfig xl0 10.0.1.33/24 –alias

The above command removes a specific address from the interface, regardless of the
order in which the aliases were added.

There is one thing you must take care of while adding aliases to an interface—the
calculation of the subnet mask for the aliases that are from the same subnet.

If you are adding aliases from the same subnet to an interface (for example
192.168.10.1, 192.168.10.2 and 192.168.10.3 from a /24 subnet), you should assign the
correct netmask to one of the IP addresses of this subnet, and the other addresses
should take the /32 subnet masks.

The following example shows how to add multiple IPs from the same subnet to
a network interface, and also adding addresses from other networks to the same
interface:

ifconfig bge0 192.168.10.1/25

ifconfig bge0 192.168.10.2/32 alias

ifconfig bge0 192.168.10.3/32 alias

ifconfig bge0 172.16.31.12/24 alias

As you may have noted, the first IP address has the correct subnet mask for its
network, but the secondary addresses which are from the same subnet are using the
/32 (or 255.255.255.255) subnet mask. And the last alias uses the correct subnet mask
as it is from a different subnet.

Configuring Media Options
Different network interfaces have different capabilities based on hardware features
and driver implementation. A list of currently supported network interface cards
with their corresponding driver name can be found in the /sys/i386/conf/GENERIC
kernel configuration file.

Chapter 7

[111]

To find out the capabilities of an interface, you may either read related manual pages
(for example, man fxp) or use ifconfig with -m flag:

ifconfig -m xl0

xl0: flags=8843<UP,BROADCAST,RUNNING,SIMPLEX,MULTICAST> metric
0 mtu 1500
 options=9<RXCSUM,VLAN_MTU>

 capabilities=49<RXCSUM,VLAN_MTU,POLLING>
 ether 00:01:02:ae:13:57
 inet 192.168.14.1 netmask 0xffffff00 broadcast 192.168.14.255
 media: Ethernet autoselect (100baseTX <full-duplex>)
 status: active

 supported media:
 media autoselect
 media 100baseTX mediaopt full-duplex
 media 100baseTX
 media 10baseT/UTP mediaopt full-duplex
 media 10baseT/UTP
 media 100baseTX mediaopt hw-loopback

In the above example, the hardware capabilities of xl0 interface are shown. The
interface is able to offload RX checksums, support VLAN MTUs, and interface
polling. It is also capable of supporting 10baseT and 100baseT in both half-duplex
and full-duplex modes. Configuring certain interface capabilities and options is
explained later in this chapter.

By default, if no media type is specified, system sets media type for network
interfaces to autoselect. This setting would be fine for interface speed, but there are
certain cases where the media duplex is not correctly negotiated. Generally, it is not
advisable to configure ports to auto-negotiate in production environment. Port speed
and duplex should be explicitly configured on both host and switch sides.

To configure xl0 interface for 100baseT full-duplex, the following command should
be used:

ifconfig xl0 media 100baseTX mediaopt full-duplex

Changing interface media options when you are connected through a
network connection, for example ssh, may lock you out of the host. It is
recommended that you use physical console or any other non-network
method to change these network settings.

Network Configuration—Basics

[112]

Configuring VLANs
FreeBSD supports IEEE 802.1Q VLAN protocol. This means that you can configure
VLAN tagging on network interfaces.

In order to configure VLANs, you must create VLAN pseudo-interfaces first as
shown here:

ifconfig vlan0 create

This will create a virtual interface called vlan0. Note that the interface name
should begin with the vlan keyword and should have an arbitrary number attached.
If you do not specify the interface number, the ifconfig will create a VLAN
device, automatically assigns first free device number and prints the name of the
created device.

Once the VLAN pseudo-interface is created, you should assign two parameters to the
interface at the same time—VLAN number and Parent Interface.

VLAN number is actually the VLAN ID that will be inserted into the 802.1q frame
header. Parent Interface is the name of the physical interface that is supposed to act
as the trunk port. This is shown in the following command:

ifconfig vlan0 vlan 10 vlandev fxp0

Then you should configure layer3 parameters on the VLAN configuration, just like a
normal physical interface, as shown here:

ifconfig vlan0 10.0.2.1/24

Since you do not assign IP address to the physical trunk interface (parent interface),
the system does not bring the interface up and you should do this step manually:

ifconfig fxp0 up

The above example configures the vlan0 device with vlan tag 10 and assigns it to
the fxp0 interface. Since the VLAN interface is a virtual interface, it makes a copy of
the parent interface's attribute, including hardware address and device capabilities
as shown here:

ifconfig vlan0

vlan0: flags=8842<BROADCAST,RUNNING,SIMPLEX,MULTICAST> metric
0 mtu 1500
 ether 00:01:02:ae:13:57
 media: Ethernet 100baseTX <full-duplex>
 status: active
 vlan: 10 parent interface: fxp0

Chapter 7

[113]

From now on, the parent interface (in this case, fxp0) is the trunk port, and you can
initialize and configure more VLAN interfaces and assign them to the trunk interface.

Once you finish the VLAN port configuration, the trunk port (parent interface)
accepts the 802.1q frames and forwards the frames to the appropriate VLAN
interface based on the VLAN tag number from frame header. On the other side,
every packet that is transmitted via VLAN interface, will encapsulate in the 802.1q
frame and divert it to the parent interface for transmission on the wire.

If you want to change the interface binding of a VLAN interface from one physical
interface to another, you should remove the binding from the first interface manually
using ifconfig's -vlandev option. Then assign it to another interface with the
vlandev option.

ifconfig vlan0 –vlandev

The above command will disassociate vlan0 interface from its parent interface. And
to re-assign VLAN port to another interface, you should go through the same process
that you did while configuring the VLAN interface:

ifconfig vlan0 vlan 10 vlandev bge1

If you do not need the VLAN interface anymore, you can completely remove the
interface using the ifconfig's destroy option:

ifconfig vlan0 destory

To initialize the VLAN interfaces and assign them to physical interfaces during
system boot time, you should add appropriate configurations to the /etc/rc.conf
file. To create VLAN interfaces, the following lines should be added:

cloned_interfaces="vlan0 vlan1 vlan2"
ifconfig_vlan0="inet 10.0.2.1/24 vlan 10 vlandev fxp0"
ifconfig_vlan1="inet 192.168.3.1/24 vlan 20 vlandev fxp0"
ifconfig_vlan2="inet 172.16.0.1/24 vlan 30 vlandev fxp0"
ifconfig_fxp0="up"

The first line tells the system to create three virtual interfaces called vlan0, vlan1,
and vlan2. The next three lines configure the VLAN pseudo-interface, assign IP
address to each interface, as well as define VLAN tag number and parent interface
(trunk port). The last line in the configuration brings the trunk port up manually.

Advanced ifconfig Options
The Ifconfig utility has a few options to fine tune some advanced setting on
network interfaces.

Network Configuration—Basics

[114]

Hardware Offloading
You can offload some processor-intensive tasks to your network interface cards, if
your network interface can support it. Offloading increases the network performance
by releasing more CPU resources for applications and performs some network tasks
in the network interface hardware-level.

This includes offloading TCP/IP checksum calculations, TCP segmentation, VLAN
tagging, and TCP Large Receive offloading.

You can use ifconfig –m to find out which options are supported by your
network interface.

For example, on a bge interface, it would look like following:

ifconfig -m bge0 | grep cap

capabilities=9b<RXCSUM,TXCSUM,VLAN_MTU,VLAN_HWTAGGING,VLAN_
HWCSUM>

In the above example, the bge supports RXCSUM and TXCSUM, that are checksum
offloading for RX and TX traffic respectively. To enable RXCSUM on this interface
you may use the following command:

ifconfig bge0 rxcsum

Or to disable RXCSUM you may use the following command:

ifconfig bge0 –rxcsum

The same applies to TXCSUM. You can also enable or disable both RXCSUM and
TXCSUM, together, using the hwcsum flag. For example, the following command
enables both RXCSUM and TXCSUM on the bge0 interface:

ifconfig bge0 hwcsum

TCP Segmentation Offloading (TSO) and Large Receive Offloading (LRO) are also
two Intel-specific hardware offloading features that allow some layer4 segmentation
to be offloaded to the network interface hardware. Currently only the em(4) driver
supports these features. In order to enable TSO and LRO on an interface, you may
use the following commands respectively:

ifconfig em0 tso

ifconfig em0 lro

Chapter 7

[115]

You have to use the tso4 and tso6 options for offloading TCPv4 and
TCPv6 segmentations, respectively, as some cards do not support tso for
both IPv4 and IPv6. You can also use these options when you do not want
to enable offloading for a certain protocol stack.

If your hardware supports it, you can also offload VLAN tagging to your network
interface card, if your physical interface is associated with a vlan(4) interface. To
enable hardware VLAN tagging, you may use the following command:

ifconfig bge0 vlanhwtag

This enables VLAN tagging on the physical interface-level. To disable hardware-
based VLAN tagging, you may use the following command:

ifconfig bge0 –vlanhwtag

Promiscuous Mode
By enabling the promiscuous mode, interface does not filter incoming Ethernet
frames based on the destination MAC address. It actually passes all incoming traffic
to the upper layer in the TCP/IP stack, regardless of the destination address in layer2
and layer3 headers.

This feature is especially useful while wiretapping on a network interface. Certain
software such as tcpdump, enable this mode on the network interface to allow us to
see the passing traffic on the interface. For example, while running tcpdump(1) on
xl0 interface, you may see the interface status, which looks like this:

ifconfig xl0

xl0: flags=8843<UP,BROADCAST,RUNNING,PROMISC,SIMPLEX,MULTICAST> metric
0 mtu 1500
 options=9<RXCSUM,VLAN_MTU>
 capabilities=49<RXCSUM,VLAN_MTU,POLLING>
 ether 00:01:02:ae:13:57
 inet 192.168.14.1 netmask 0xffffff00 broadcast 192.168.14.255
 media: Ethernet autoselect (100baseTX <full-duplex>)
 status: active

There are certain cases where you want to manually disable the promiscuous mode
on a physical interface. In this case, you may use the following command:

ifconfig xl0 -promisc

Network Configuration—Basics

[116]

MTU
You can adjust MTU size on network interfaces using ifconfig. Default MTU for an
interface depends on your interface characteristics and varies in different interfaces,
but the default MTU size on an Ethernet interface is 1500 bytes.

MTU is used to limit the size of frames that are transmitted on a physical interface.
Packets larger than the MTU size will be fragmented into smaller frames if allowed
according to the df bit in the packet's header.

In a gigabit network, you may want to increase the default MTU size to a larger
number to gain better performance.

Before enabling jumbo-frames, make sure all the hosts on the subnet are
able to receive packets with large MTUs.

For example, to set MTU size on ti0 interface to 9000 (jumbo frame), you may use
the following command:

ifconfig ti0 mtu 9000

Once you change the MTU on an interface, it is recommended that you reset the
interface by using ifconfig's down and up commands. This will ensure that all
connections use the new MTU settings.

ARP
The default behavior of an Ethernet interface is to use arp(4) for mapping between
layer2 (Ethernet) and layer3 (IP) addresses. The mapping is kept in the "ARP table".
If an entry does not exist for a specific destination address, the system broadcasts an
arp query to find the Ethernet address of the host.

To disable talking Address Resolution Protocol (ARP) on an interface, you may use
the following command:

ifconfig fxp0 –arp

This will completely disable ARP on the xl0 interface and you will see the NOARP flag
on the interface when ARP is disabled:

ifconfig xl0 | grep flag

xl0: flags=88c3<UP,BROADCAST,RUNNING,NOARP,SIMPLEX,MULTICAST> metric 0
mtu 1500

Chapter 7

[117]

There may be some rare circumstances when you want to disable ARP
on an interface- for example when a special device is connected to your
network that cannot handle ARP requests. Otherwise, it is advised that
you do not disable ARP on Ethernet interfaces.

Static ARP
There are several methods by which a host can poison the ARP tables of other hosts
on the network by transmitting fake arp advertisements. When this happens, other
hosts are disabled from receiving traffic, or worse, traffic is redirected to another host
instead of the actual network gateway.

In order to prevent such attacks on an untrusted Ethernet network, you may want
to change the default behavior of ARP and prevent the host from learning ARP
information from network.

In this case you have to manually set up an ARP table for trusted hosts on your
network and instruct the system to not learn ARP advertisement from the wire. This
method is known as setting up static ARP.

In order to set up static ARP entries, you should use the arp(8) utility. This utility is
covered in more detail later in this chapter. However, in order to simply add a static
arp entry to the system's ARP table, you may use the following command:
arp -s 192.168.0.151 00:c0:91:30:ab:cd

The above example shows how to statically map the IP address 192.168.0.151 to
MAC address 00:c0:91:30:ab:cd.

Once you finish setting up your trusted MAC address table, you should configure
your network interface to exclusively permit traffic for static ARP entries as
shown here:
ifconfig xl0 staticarp

This will disable sending ARP requests to unknown addresses on the xl0 interface
and relies on static ARP entries in the ARP table.

To verify the operation, you should check the interface flags using ifconfig as
shown in the following command:

ifconfig xl0 | grep flags

xl0: flags=88843<UP,BROADCAST,RUNNING,SIMPLEX,MULTICAST,STATICARP>
metric 0 mtu 1500

To disable Static ARP on an interface, you may use ifconfig with the
-staticarp option.

Network Configuration—Basics

[118]

Monitor Mode
Putting an interface in monitor mode means that the interface should not transmit
anything over the physical interface. This is mostly the case on the passive sniffing
port. You do not want anything to be transmitted and the host to be stealth on
the network.

Enabling monitor mode on an interface prevents transmitting traffic on the interface.
Consequently the interface cannot be used to transmit or forward traffic as long as
the monitor option is enabled.

To enable monitor option on an interface, you may use ifconfig with the
monitor flag:

ifconfig fxp0 monitor

This command puts the fxp0 interface into the monitor mode. To verify if an interface
is in monitor mode, you should look for the monitor flag in the interface flags:

ifconfig xl0 | grep flags

xl0: flags=48843<UP,BROADCAST,RUNNING,SIMPLEX,MULTICAST,MONITOR>
metric 0 mtu 1500

Configuring Fast EtherChannel
Fast EtherChannel (FEC) allows grouping of multiple (up to eight) interfaces to
create a high capacity virtual interface. Creating FEC interfaces can be done through
the netgraph(4) subsystem, and you can easily create and maintain interfaces using
the /etc/rc.conf configuration file.

A sample configuration of a FEC interface, which is created by bonding two physical
interfaces (bge0 and bge1), is shown in the configuration here:

fec_interfaces="fec0"
fecconfig_fec0="bge0 bge1"
ifconfig_fec0="inet 192.168.21.4/24"

The first line in the example tells the system to initialize a virtual interface called
fec0. You can specify multiple fec interfaces by separating the interface names
using space. In the above example, FEC members are specified in the second line.
You do not need to configure the IP address on the physical interface, and configure
the address on fec virtual interface instead.

Chapter 7

[119]

Default Routing
If an outgoing packet is not destined for a local subnet (that is taken from the IP
address and subnet mark configured on network interfaces), the packet will be
forwarded to a default router (gateway) for further routing decision making
and delivery.

The default gateway address should be installed in the host's routing table. This can
be done manually using the route(8) utility. You can add the default route entry in
the routing table by using the following command:

route add default 192.168.0.1

add net default: gateway 192.168.0.1

In the above example 192.168.0.1 is the IP address (or hostname) of your gateway.
Obviously, the default gateway should be in the same IP subnet as your host.

If a routing entry for default gateway is already installed in your routing table and
you want to modify the entry, you should use the route change command instead:

route change default 192.168.0.21

change net default: gateway 192.168.0.21

And to verify the installation of the default route in the routing table, the route get
command will be used as shown in the following commands:

route get default

 route to: default
destination: default
 mask: default
 gateway: 192.168.0.21
 interface: fxp0
 flags: <UP,GATEWAY,DONE,STATIC>
 recvpipe sendpipe ssthresh rtt,msec rttvar hopcount mtu
expire
 0 0 0 0 0 0 1500 0

The route(8) command and FreeBSD's routing capabilities are explained in more
detail in Chapter 10, Network Configuration—Routing and Bridging.

Network Configuration—Basics

[120]

Name Resolution
There are various sources that a host may use to translate hostnames to IP addresses.
The most common methods are the DNS and hosts file. FreeBSD looks in the /etc/
host.conf configuration file to find out which method(s) should be used to resolve
the hostnames.

A typical host.conf file would look like following:

cat /etc/host.conf

hosts
dns

This is how a typical system translates host names to IP addresses:

1. The system looks for matching host names in the /etc/hosts file. If a
matching pattern was found, it will use the returned IP address.

2. If the host cannot be resolved using the hosts file, the system then queries the
DNS servers as defined in the /etc/resolv.conf configuration file.

You can change the order of lines in this file or remove any of them, if
necessary. For example, if you want to disable DNS lookups and rely on
the /etc/hosts file, you should remove (or comment out) the DNS line
in this file.

The /etc/hosts file contains a few default entries that are created during system
setup. A typical host file may look like the following command:

cat /etc/hosts

::1 localhost.example.net localhost
127.0.0.1 localhost.example.net localhost
192.168.0.1 myhost.example.net myhost
192.168.0.1 myhost.example.net.

You can add your own host to the IP mapping entries to the file or modify existing
mappings. It is also recommended that you update this file after changing your
hostname or IP address in order to reflect the correct information.

FreeBSD's DNS resolver client uses the /etc/resolv.conf configuration file to
determine which DNS servers should be used and in what order. You can define
as many DNS servers as you require, in this file, and they will be used in the same
order as configured in the resolv.conf file. As soon as one of the servers returns the
answer to the DNS query, the search will stop.

Chapter 7

[121]

The following is a sample resolv.conf file that contains several DNS servers:
cat /etc/resolv.conf

search example.net
nameserver 192.168.21.3
nameserver 192.168.21.4
nameserver 172.18.9.21

The first line of resolv.conf in the above example indicates the search domain
using the "search" keyword. Basically, this indicates the local domain name of
our host. When looking up a host name which is not found, this domain name is
appended to the hostname and turns it into a Fully Qualified Domain Name (FQDN)
and tries looking up the FQDN.

The next three lines indicate the three different name servers. System queries each
name server in the order they are listed in resolv.conf. A maximum of three
nameserver lines can be defined in this file.

If resolv.conf is not present, or no nameserver field is set in
resolv.conf, the system will automatically look for a nameserver
running on localhost.

Network Testing Tools
FreeBSD has a number of important network test and troubleshooting tools in
the base system. Hence, you have most of the necessary tools that you need to
troubleshoot network connectivity issues. These tools can perform very simple
connectivity tests as well as very complicated traffic capture and analysis, to help the
administrator spot the potential network issues in the minimum timeframe.

Ping
Ping is the most widely used tool to test network connectivity that can be found in
almost every operating system that contains a TCP/IP network stack. While looking
simple, the ping(8) command is actually a very advanced network test tool that can
be used to solve complex network problems.

The simplest usage of the ping command is to transmit ICMP echo-request packets
to a host and show connectivity status to the host, based on the received ICMP echo-
reply packets from the host:
ping -c3 192.168.0.20

PING 192.168.0.20 (192.168.0.20): 56 data bytes
64 bytes from 192.168.0.20: icmp_seq=0 ttl=64 time=0.794 ms

Network Configuration—Basics

[122]

64 bytes from 192.168.0.20: icmp_seq=1 ttl=64 time=0.990 ms
64 bytes from 192.168.0.20: icmp_seq=2 ttl=64 time=0.972 ms

--- 192.168.0.20 ping statistics ---
3 packets transmitted, 3 packets received, 0.0% packet loss
round-trip min/avg/max/stddev = 0.794/0.919/0.990/0.088 ms

In the above example, the ping utility is used to transmit 3 ICMP packets (note -c3
option) to host the IP address 192.168.0.20. If the packet count is not specified,
ping will continue to transmit ICMP packets until it receives a TERM signal (or
simply the CONTROL-C key combination on the console).

Once it finishes, ping prints two lines of statistics including the number of packets
transmitted, the number of packets received, which should normally be equal to the
number of packets that were sent and the percentage of lost packets. In the second
line, the packet round-trip time is minimum, average, and maximum. Finally the
standard deviation is printed.

The default ICMP packet size that ping transmits is 56 bytes data (which will become
64 bytes when lower layer headers are inserted).

Using these statistics, you can simply find out the connectivity quality to the
destination host from delay, packet loss, and the jitter point of view.

Despite the simplicity, ping has several options that can be combined to
get different types of results. It is recommended that you see the ping(8)
manual page for more detailed information.

Traceroute
While the ping(8) utility can be used for end-to-end connectivity test, the
traceroute(8) is used to find out the route between source host and destination
host and discover all the layer3 hosts between two nodes.

The traceroute utility uses the TTL feature to discover routers between two nodes.
It transmits packets (UDP or ICMP) towards destination host with a TTL of 1. Once
the first router in path receives the packet, it decrements the TTL and returns an
ICMP TIME_EXCEEDED message back to the source host. The traceroute command
sends as many packets as it discovers, to all interim hosts and reaches the
destination host.

traceroute freebsd.org

traceroute to freebsd.org (69.147.83.40), 64 hops max, 40 byte packets
 1 208.79.80.97 (208.79.80.97) 1.831 ms 1.976 ms 2.000 ms

Chapter 7

[123]

 2 8.14.32.209 (8.14.32.209) 3.006 ms 2.992 ms 2.992 ms
 3 208.79.80.1 (208.79.80.1) 13.000 ms 7.983 ms 10.005 ms
 4 ge-6-3-224.car2.Raleigh1.Level3.net (64.158.228.13) 134.997 ms
199.983 ms 36.009 ms
 5 ae-6-6.ebr2.Washington1.Level3.net (4.69.132.178) 10.965 ms
16.013 ms 17.955 ms
 6 ae-72-72.csw2.Washington1.Level3.net (4.69.134.150) 13.026 ms
15.972 ms 17.020 ms
 7 ae-21-79.car1.Washington1.Level3.net (4.68.17.67) 8.967 ms 8.983
ms 8.988 ms
 8 4.79.228.2 (4.79.228.2) 8.990 ms 9.040 ms 8.971 ms
 9 so-0-0-0.pat1.dax.yahoo.com (216.115.101.145) 65.955 ms 54.982
ms 55.074 ms
10 so-1-0-0.pat1.pao.yahoo.com (216.115.101.132) 98.964 ms 99.129
ms 98.824 ms
11 ge-0-1-0-p300.pat1.sjc.yahoo.com (216.115.106.145) 98.989 ms
99.016 ms 98.952 ms
12 g-0-0-0-p160.msr1.sp1.yahoo.com (216.115.107.57) 100.006 ms
13 ge-1-45.bas-b2.sp1.yahoo.com (209.131.32.49) 98.981 ms
14 freebsd.org (69.147.83.40) 99.978 ms 99.007 ms 99.975 ms

Sockstat
The sockstat(1) command is a useful utility that displays the list of open sockets.
Using sockstat, you can find out which processes are listening and on what sockets,
or see a list of currently connected sockets.

You may see a list of currently listening sockets and the process behind each socket
using the -l option:

sockstat -l

USER COMMAND PID FD PROTO LOCAL ADDRESS FOREIGN ADDRESS
mysql mysqld 35726 10 tcp4 *:3306 *:*
mysql mysqld 35726 12 stream /tmp/mysql.sock
www httpd 93848 20 tcp4 *:80 *:*
www httpd 93838 20 tcp4 *:80 *:*
root httpd 93837 20 tcp4 *:80 *:*
cvsup cvsupd 95113 3 tcp4 *:5999 *:*
root sshd 627 3 tcp6 *:22 *:*
root sshd 627 4 tcp4 *:22 *:*
root syslogd 520 4 dgram /var/run/log
root syslogd 520 5 dgram /var/run/logpriv
root syslogd 520 6 udp6 *:514 *:*
root syslogd 520 7 udp4 *:514 *:*
root devd 461 4 stream /var/run/devd.pipe

Network Configuration—Basics

[124]

In the above example, the httpd process that is running as user www with PID
93848, is listening on the TCP port 80 and is bound to all available interfaces (note
the "*:80").

You can also use the sockstat(1) utility to see a list of currently connected sockets
as well:

sockstat -c

USER COMMAND PID FD PROTO LOCAL ADDRESS FOREIGN ADDRESS
farrokhi sshd 41221 3 tcp4 10.0.11.2:22 172.16.31.9:1175
farrokhi sshd 41221 4 stream -> ??
root sshd 41219 3 tcp4 10.0.11.2:22 172.16.31.9:1175
root sshd 41219 5 stream -> ??
cvsup cvsupd 95113 6 dgram -> ??
root login 686 3 dgram -> ??
root cron 646 5 dgram -> ??

netstat
The netstat(1) utility is another all-in-one utility that displays various sorts of
network related information. Using various netstat parameters, you can see the
statistics of the network subsystem. The following table contains a list of netstat
parameters and describes what they would display:

Parameter Description
No Parameters Displays list of active network sockets per protocol
-i Network interface statistics
-s Protocol statistics
-si Protocol statistics per interface
-m Memory buffers (mbuf(9)) statistics
-B bpf(4) interface statistics
-r Displays routing table contents
-rs Routing statistics

Combination of different netstat parameters can be used to display very useful
information that would come in handy, while troubleshooting network. One
example is that, you can see the statistics of a specific the network interface from
different perspectives as shown in the following command:

netstat -i -I bge1

Name Mtu Network Address Ipkts Ierrs
Opkts Oerrs Coll

Chapter 7

[125]

bge1 1500 <Link#2> 00:16:35:80:ac:52 19972917 52791 22219879
0 0
bge1 1500 81.91.129.64/ devbox 19755146 -
22207004 - -

This example shows the statistics for the bge1 network interface. There are two lines
of statistics, one for the layer2 protocol (Ethernet in this example) information and
another for layer3 protocol (IP in this example).

The first (after the header) indicates the interface name, current MTU size, Network
information (which is not available in layer2), address (which is MAC address
in layer2), number of Input Packets, number of Input Errors , Number of output
packets, Number of output errors and finally the number of detected collisions on
the interface. The next line displays the same information (if applicable) for layer3.
The information that is useful for troubleshooting is the number of packets, and
more importantly, the number of errors that might be caused due to faulty hardware.

ARP
FreeBSD maintains a layer2-to-layer3 address mapping database called ARP table.
ARP is thoroughly explained in RFC 826. The arp(8) utility is used to manipulate
the system's ARP table.

While the system automatically takes care of updating and refreshing the ARP
database, the systems administrator can manipulate (add or remove) the ARP
database entries, when needed. The arp(8) utility is used to display the contents of
the system's ARP table:

arp -an

? (172.21.0.13) at 00:10:db:58:4d:49 on bge1 [ethernet]
? (172.21.0.1) at 00:11:0a:9c:fe:c5 on bge1 [ethernet]
? (192.168.2.133) at 00:02:b3:8c:9f:c2 on bge1 [ethernet]

If you want to remove a specific ARP entry from the table, you may use the
arp –d command:

arp -d 172.21.0.1

172.21.0.1 (172.21.0.1) deleted

You can also use the arp –d –a command to clean up the ARP table by removing all
existing entries.

Network Configuration—Basics

[126]

There may be cases where you need to disable the ARP discovery on your network
(for example. to prevent ARP poisoning attack) and you should manually update
the ARP database. In this case, you can use the arp –s command to add static ARP
entries to ARP table. The following is an example of adding a static entry to the
ARP table:

arp -s 172.21.0.50 00:04:aa:bb:cc:dd

The static entries are marked with the permanent tag, which means the entries will
not be expired and automatically removed. To verify the result, you should check the
ARP database:

arp -an

? (172.21.0.13) at 00:10:db:58:4d:49 on bge1 [ethernet]
? (172.21.0.1) at 00:11:0a:9c:fe:c5 on bge1 [ethernet]

? (172.21.0.50) at 00:04:aa:bb:cc:dd on bge1 permanent [ethernet]

A static ARP entry can also be "published", which means that the host will act as an
ARP server and answer ARP queries for the address you specify, even if the address
does not belong to the host. Basically, this is the ARP proxy behavior and the host
can selectively perform as an ARP proxy for specific addresses:

arp -s 172.21.0.50 00:04:aa:bb:cc:dd pub

The arp(8) utility can be used to selectively respond to ARP requests for
published ARP entries. However, if you want your host to act as an ARP
Proxy for all addresses, you should set the net.link.ether.inet.
proxyall sysctl variable to one.

Tcpdump
The tcpdump(1) utility is an advanced network troubleshooting tool that is
integrated into the FreeBSD's base system. It uses the libpcap library to listen on
a specific network interface and sniffs for all packets that are passing through the
network interface. If the network interface is in promiscuous mode, the tcpdump will
receive any traffic that is passing from the network adapter, regardless of its source
or the destination address.

The output of tcpdump can be simply printed on stdout (in different levels of
verbosity) in real-time or can be saved in a file for later analysis.

Chapter 7

[127]

There are several tools available to analyse the pcap dump files. The most
popular application is Wireshark (formerly Ethereal) that is available in
ports tree at /usr/ports/net/wireshark.

A sample tcpdump output on STDOUT taking 10 packets (note -c 10) from bge1
interface (note -i bge1) would look like the following:

tcpdump -i bge1 -c 10 -n

tcpdump: verbose output suppressed, use -v or -vv for full protocol
decode
listening on bge1, link-type EN10MB (Ethernet), capture size 96 bytes
22:02:51.906888 IP 10.0.21.3.22 > 172.16.214.125.2423: P
975531592:975531788(196) ack 959264752 win 256
22:02:52.145987 IP 172.16.214.125.2423 > 10.0.21.3.22: . ack
4294967140 win 8572
22:02:52.421072 IP 172.16.214.125.2423 > 10.0.21.3.22: . ack
4294967244 win 8468
22:02:52.536168 STP 802.1d, Config, Flags [none], bridge-id
8034.00:0e:83:ba:78:00.8026, length 43
22:02:52.557813 IP 172.16.214.125.2423 > 10.0.21.3.22: . ack 196 win
8760
22:02:52.906661 IP 10.0.21.3.22 > 172.16.214.125.2423: P 196:344(148)
ack 1 win 256
22:02:52.906703 IP 10.0.21.3.22 > 172.16.214.125.2423: P 344:668(324)
ack 1 win 256
22:02:52.906731 IP 10.0.21.3.22 > 172.16.214.125.2423: P 668:800(132)
ack 1 win 256
22:02:53.633585 IP 172.16.214.125.2423 > 10.0.21.3.22: . ack 668 win
8288
22:02:53.636802 IP 172.16.214.125.2423 > 10.0.21.3.22: P 1:53(52) ack
668 win 8288
10 packets captured
12 packets received by filter
0 packets dropped by kernel

In the above example, a very short network conversation is shown, that contains
some SSH and STP (802.1d) traffic. From the above conversation, the system
administrator can figure out a SSH session between 10.0.21.3 (the host that capture
was taken from) and 172.16.214.125 (a host that is connected to server via SSH)
is ongoing. There is also a network switch that is talking STP on the port that is
connected to the host.

Network Configuration—Basics

[128]

Note that when you are running the tcpdump on an interface, it puts the network
interface into promiscuous mode (explained earlier in this chapter) in order to
receive all traffic passing from the interface. This will show all packets that are
received by your network hardware, regardless of the source and destination
hardware. This would be more interesting if you are connected to a network hub
(so you will see packets for all connected nodes) or to a network tap (or an SPAN
switch port). If this is not what you want, and you only want to sniff the traffic that is
actually for your host, you can disable this mode by using the tcpdump's -p options.

You can filter out the packet capture by using expressions you specify on the
command line. For example, to see last 5 UDP packets, you may use the
following command:

tcpdump -i bge1 -c 5 -n udp

Or to capture traffic that is going to or coming from network 172.21.3.0/24, you
may use:

tcpdump -i bge1 net 172.21.3.0/24

The expression can match any rule from layer2 packets to layer4 packets.
It is also capable of capturing and decoding complex protocols such
as MPLS and IPv6 protocol set. For more information, please refer to
tcpdump(1) man pages.

Using tcpdump you can set up a stealth network capture device that is passively
capturing network traffic. In order to achieve this, you should put your interface in
monitor mode. Hence your sniffing network interface does not transmit any packets
and only diverts packets to bpf(4) packet filter, so there will be no trace (no packets
with your source IP or MAC address) from your system on the wire.

Before enabling the monitor mode on the interface that you want to sniff,
make sure this is not the interface that you have connected to your box via
SSH. Otherwise, you will lock yourself out of your box.

It would be wise to have a host with multiple NICs, so one NIC would be dedicated
for traffic sniffing and the other for typical network connection, on which you can
SSH or run a web interface.

The tcpdump utility can fully decode packets in real-time. If you use the-vvvv
options (that gives the most verbosity-level) as well as -s0 (that captures whole
packet payload off the wire), you will have the complete packet decoded
on STDOUT.

Chapter 7

[129]

For example, the following command tells tcpdump to take one STP packet off the
wire (on bge1 interface) and completely decode it:

tcpdump -i bge1 -c1 -n -s0 -vvvv stp

tcpdump: listening on bge1, link-type EN10MB (Ethernet), capture size
65535 bytes
23:10:07.513554 STP 802.1d, Config, Flags [none], bridge-id
8034.00:0e:83:ba:78:00.8026, length 43
 message-age 0.00s, max-age 20.00s, hello-time 2.00s,
forwarding-delay 15.00s
 root-id 8034.00:0e:83:ba:78:00, root-pathcost 0
1 packets captured
3 packets received by filter
0 packets dropped by kernel

As mentioned earlier, tcpdump can be used to capture traffic to a file in the
pcap format.

Pcap is a standard packet capture API that is used by many applications
to capture packets from network interfaces. In fact, tcpdump uses
libpcap as its packet capture facilities. Pcap is supported by various
open-source and commercial packet analysis applications. Hence, the
output of tcpdump can also be analysed by many different graphical
packet analyzers such as the open-source Wireshark (http://www.
wireshark.org) or commercial applications such as WildPacket's
OmniPeek (http://www.wildpackets.com).

Since it is not always possible to analyse traffic in a real-time manner, especially
when a high amount of traffic is passing through the interface, you may want to save
the captured packets and analyse them with different criteria sometime later. It is
possible to capture traffic based on the expression defined in the command line and
save it to a pcap file for further analysis. Here is an example of such a setup:

tcpdump -c 1000 -w sample1.pcap -s0 -i bge1

tcpdump: listening on bge1, link-type EN10MB (Ethernet), capture size
65535 bytes
1000 packets captured
1025 packets received by filter
0 packets dropped by kernel

Network Configuration—Basics

[130]

This will capture 1000 packets (note -c 1000) from the bge1 interface (note -i bge1)
and save the capture to a pcap file called sample1.pcap. This file can be read later
by tcpdump's -r option and information extracted using expressions, or can be
processed using Wireshark. The following screenshot shows Wireshark in action:

The tcpdump utility is also capable of decrypting IPSEC ESP packets if the ESP secret
key is known. This is possible using tcpdump's -E option:

tcpdump -E des3:b1dd0bfffee -n -i bge1

tcpdump: verbose output suppressed, use -v or -vv for full protocol
decode
listening on bge1, link-type EN10MB (Ethernet), capture size 96 bytes
09:42:26.855518 esp 11.11.11.11 > 9.9.9.9 spi 0x00000305 seq 426 len
92 [|esp] [tos 0x1 (C)]
09:42:26.876694 esp 9.9.9.9 > 11.11.11.11 spi 0x00000305 seq 942078
len 92 [|esp] [tos 0x21 (C)]
09:42:27.860240 esp 11.11.11.11 > 9.9.9.9 spi 0x00000305 seq 427 len
92 [|esp] [tos 0x21 (C)]
09:42:27.880190 esp 9.9.9.9 > 11.11.11.11 spi 0x00000305 seq 942079
len 92 [|esp] [tos 0x21 (C)]

Chapter 7

[131]

Summary
FreeBSD has most of the network configuration and test utilities already installed
with the base system. The ifconfig(8) utility that was explained earlier in this
chapter is the all-in-one tool used to configure network interfaces with different
layer3 protocols. While most of the features were explained in this chapter, there
are also some major parts of the interface configuration. This will be covered in the
next chapters, which include Bridging, IPv6, and Point-to-Point interfaces including
tunnels and PPP.

The base system also includes almost any tool that you would need to troubleshoot
your network connectivity, ranging from the classic ping and traceroute to more
modern and complex tcpdump utilities. All these are supposed to help the system
administrator in configuring the FreeBSD's network connectivity.

Network Configuration—
Tunneling

When talking about tunneling, different definitions come to people's minds.
Basically, tunneling is transmitting data that is encapsulated into a pipe, over a
public network (for example, the Internet).

However, there are different methods to tunnel data over a public network for
different approaches. For example, when security is a concern, tunnel protocols
with cryptography are more favorable. But when performance has higher priority,
protocols with lower packet overheads will be chosen.

FreeBSD 7 has a built-in support for a number of important tunneling protocols,
although there are also many third-party applications in FreeBSD packages that
support more tunneling protocols.

A list of supported tunneling protocols is shown in the following table:

Tunneling protocol Description
GRE RFC 1701 and 1702—Generic Routing Encapsulation
IPSEC RFC 4301—Cryptographically-based security for IPv4 and IPv6
NOS Cisco compatible IP-in-IP tunneling—also known as KA9Q
GIF Generic tunnel interface from WIDE project to tunnel IPv[46]

over IPv[46]

This chapter introduces the manipulation of tunnel interfaces in the FreeBSD 7
operating system.

Network Configuration—Tunneling

[134]

In this chapter, we will look into the following:

GRE
IPSEC

Generic Routing Encapsulation (GRE)
protocol
GRE creates a virtual end-to-end network link between network nodes (that is
routers), over a public network.

GRE can be used to create simple VPN networks for customers that are connected
to a service provider network, or between edge routers in a service provider
environment, to exchange routing table updates. As this simple GRE interface
does not support encryption, you may want to reconsider using GRE, if security
is a priority.

FreeBSD 7 natively supports creating and manipulating standard GRE tunnels.

GRE support should be available in the FreeBSD's kernel. If you have
not compiled GRE support into kernel, the GRE kernel module will be
dynamically loaded into memory upon first usage.

Creating gre(4) interface in a simple way using ifconfig(8) utility is shown here:

ifconfig gre0 create

Note that if you do not specify the device node number, ifconfig takes the first
available number and returns the new interface name, after creating the interface
as follows:

ifconfig gre create

gre1

You can also remove unnecessary gre(4) interface using ifconfig's
destroy option:

ifconfig gre1 destroy

Now that you have created a GRE interface, you should configure both sides of the
GRE interface (on both hosts). This is basically done using the ifconfig utility.

•

•

Chapter 8

[135]

Consider the following scenario in the figure to establish a GRE tunnel between Host
A and Host B:

To configure Host A, you should first create a gre0 interface and then specify both
ends of the link on the interface.

ifconfig gre0 create

ifconfig gre0 192.168.10.1 192.168.10.2 netmask 255.255.255.0

ifconfig gre0 tunnel 10.0.2.1 10.0.1.1

On Host B, you should do the same; but remember not to swap the source or
destination addresses:

ifconfig gre0 create

ifconfig gre0 192.168.10.2 192.168.10.1 netmask 255.255.255.0

ifconfig gre0 tunnel 10.0.1.1 10.0.2.1

The first line in the above procedure, a virtual tunnel interface (gre0) is created. The
second line configures the tunnel IP address on gre0 interface and also specifies the
tunnel IP address of the other endpoint (connected tunnel interface). And finally the
third line establishes the tunnel between two hosts.This time, you need the real IP
addresses on your physical interfaces.

Now you can verify the tunnel setup on Host A:

ifconfig gre0

gre0: flags=9051<UP,POINTOPOINT,RUNNING,LINK0,MULTICAST> metric
0 mtu 1476
 tunnel inet 10.0.2.1 --> 10.0.1.1
 inet 192.168.10.1 --> 192.168.10.2 netmask 0xffffff00

The MTU size will be automatically calculated and configured on interface
(in this case, 1476 byte) to compensate the GRE protocol overhead.

Network Configuration—Tunneling

[136]

Now that the tunnel interface seems to be up, you should verify the tunnel
connectivity using the ping command by pinging the tunnel IP address of Host B
from Host A and vice versa:

ping -c3 192.168.10.2

PING 192.168.10.2 (192.168.10.2): 56 data bytes
64 bytes from 192.168.10.2: icmp_seq=0 ttl=128 time=0.359 ms
64 bytes from 192.168.10.2: icmp_seq=1 ttl=128 time=2.512 ms
64 bytes from 192.168.10.2: icmp_seq=2 ttl=128 time=0.196 ms

--- 192.168.10.2 ping statistics ---
3 packets transmitted, 3 packets received, 0.0% packet loss
round-trip min/avg/max/stddev = 0.196/1.022/2.512/1.055 ms

It would be pretty straightforward to set up the GRE tunnel between two hosts so
that both support the GRE tunneling protocol. This is also possible using a Cisco or
Juniper Router to peer with a FreeBSD host using the GRE tunnel.

So far we did the entire configuration manually, which is good for testing the
tunnel setup in the lab. In order to make the changes permanent, you need to
add appropriate configuration to the /etc/rc.conf configuration file. Tunnel
configuration for Host A in the /etc/rc.conf file looks like the following code:

cloned_interfaces="gre0"
ifconfig_gre0="inet inet 192.168.10.1 192.168.10.2 netmask
255.255.255.0 tunnel 10.0.2.1 10.0.1.1"

Note that you can specify multiple GRE interfaces using the cloned_interfaces
variable, separated by spaces. On the second line, you can see that, we have merged
the whole interface configuration in one line, which is also possible when you set up
using the command line.

IPSEC
FreeBSD's IPSec stack is based on IPSec implementation from the KAME project (see
http://www.kame.net). The IPSec feature is not available in stock GENERIC kernel
and a new customized kernel should be built with the following options added to the
kernel configuration file:

options IPSEC
options IPSEC_ESP

Once you reboot your host with the customized kernel, the IPSec protocol is
available for implementation.

Chapter 8

[137]

FreeBSD's IPSec implementation supports both Authenticated Header (AH) and
Encapsulated Security Payload (ESP) protocols, which can be used either together,
or separately.

The AH protocol protects the packets to be modified on their way to their
destination, by cryptographically hashing the IP header. Consequently, when a
packet is modified by an attacker in a man-in-the-middle scenario, this will be easily
detected and discarded by the receiving host. AH does not encrypt the actual packet
payload and is not protected against sniffing and wiretapping.

On the other hand, ESP offers a method to encrypt the packet payload using
symmetric algorithms, including 3des and blowfish. When ESP encryption is in
effect, sniffing traffic does not reveal the actual contents of the packets.

There is no conflict between ESP and AH, and they can be used together.
Consequently, the packet content can be encrypted while the header is also hashed to
prevent modification of packet on the wire.

Operating Modes
IPSec can operate in two modes—Tunnel mode and Transport mode.

In the Tunnel mode, the packet will be completely encrypted and encapsulated
into another IP packet before being sent to the destination host. In fact, the packets
are actually being tunneled over another IP packet. This mode is suitable to get
connected to another host over an untrusted public network (for example, the
Internet). This mode is mostly referred to as IPSec Tunneling or IPSec VPN.

The Transport mode offers another method of communication without modifying
the routing (the source and destination address in IP packet header are not
modified). Instead it encrypts the packet payload or hashes the header to ensure that
the packet does not get modified in the path between source and destination. This
mode is more suitable for host-to-host communications.

Transport mode does not basically work behind a NAT router. Since
NAT needs to modify layer3 or layer4 addressing, this cannot be done
when the packet is encrypted. Nevertheless, there are some NAT-T (NAT
Traversal) methods available as per RFC 3715. However, the Tunnel mode
is safe to be used with NAT.

Network Configuration—Tunneling

[138]

Tunnel Mode
There are a few steps involved in creating an IPSec tunnel between two hosts. Now,
suppose you have two networks in two different places that are connected to the
Internet and you now want to interconnect both sites using the IPSec tunnel.

The first step is to create a simple tunnel between the two sites.

The gif(4) virtual interface offers basic IP over IP tunneling which is compatible
with both the IPv4 and IPv6 protocol stacks. A gif(4) interface can be deployed like
a gre(4) interface, as described earlier in this chapter.

For example, on Router A, you may use this setup:

ifconfig gif0 create

ifconfig gif0 tunnel 4.4.4.1 5.5.5.1

ifconfig gif0 192.168.4.1 192.168.5.1 netmask 255.255.255.0

On the Router B, you should deploy the same configuration, but the source and
destination IP addresses should be swapped:

ifconfig gif0 create

ifconfig gif0 tunnel 5.5.5.1 4.4.4.1

ifconfig gif0 192.168.5.1 192.168.4.1 netmask 255.255.255.0

The tunneling with the gif(4) interface without encryption should be up and
running. You may verify this by using the ping utility and test the reach ability of
the IP address on gif interface of the opposite site:

ping -o 192.168.5.1

PING 192.168.5.1 (192.168.5.1): 56 data bytes
64 bytes from 192.168.5.1: icmp_seq=0 ttl=64 time=7.200 ms

Chapter 8

[139]

--- 192.168.5.1 ping statistics ---
1 packets transmitted, 1 packets received, 0.0% packet loss
round-trip min/avg/max/stddev = 7.200/7.200/7.200/0.000 ms

Once the tunnel is up and running, you should add static routes (unless you are
already running a dynamic routing protocol) to route each network's traffic towards
the tunnel interface. For example, to reach the network behind Router B from
Network A, you must add the following route command to Router A:

route add 192.168.5.0/24 192.168.5.1

add net 192.168.5.0: gateway 192.168.5.1

You can verify the routing table updates using the route get command as follows:

route get 192.168.5.0/24

 route to: 192.168.5.0
destination: 192.168.5.0
 mask: 255.255.255.0
 gateway: 192.168.5.1
 interface: gif0
 flags: <UP,GATEWAY,DONE,STATIC>
 recvpipe sendpipe ssthresh rtt,msec rttvar hopcount mtu
expire
 0 0 0 0 0 0 1280 0

Now the first part of the VPN setup is ready. The next step is to apply an encryption
on the packets that are going through the tunnel interface.

There are different components involved in setting up the encryption. They are
as follows:

The setkey(8) utility is the kernel's "Security Policy" manipulation utility.
An IPSec key management utility such as the ipsec-tools or racoon2.

Since you do not want to encrypt any outgoing packet or decrypt any incoming
traffic, you need to specify which packets should be encrypted or decrypted. Kernel
keeps a Security Policy Database (SPD) which holds the security policies you specify
using the setkey(8) utility. This is where you can actually specify which traffic you
want to encrypt.

On the other hand, the system needs an IPSec key management utility to manage
the Security Association (SA) between two IPSec endpoints. SA is the mechanism for
hosts to agree on encryption methods. To achieve this, you should run an Internet
Key Exchange (IKE) daemon. IKE daemon takes care of key management as well as
SAs between hosts.

•

•

Network Configuration—Tunneling

[140]

The racoon2 utility (available online at http://www.racoon2.wide.ad.jp/) is an
advanced IKE daemon that supports IKEv1 (defined in RFC 2407, 2408, 2409, and
4109), IKEv2 (defined in RFC 4306), and Kerberized Internet Negotiation of Keys
(KINK, defined in RFC 4430) key exchange protocols. It can be installed from ports
collection and is located at /usr/ports/security/racoon2.

However, there is another IKE daemon that does not support IKEv2 and newer
protocols, but is very easy to set up and configure, which is called ipsec-tools
(/usr/ports/security/ipsec-tools). The ipsec-tools utility, which is
basically a fork from the original racoon project, offers basic key exchange using
IKEv1 protocols and shares the same configuration syntax with the original
racoon daemon.

In order to configure the racoon daemon, you should first set up ipsec-tools and
create appropriate configuration files as follows:

cd /usr/ports/security/ipsec-tools && make install clean

Once the software is installed, you should create a configuration file based on the
installed sample configuration files:

mkdir /usr/local/etc/racoon

cp /usr/local/share/examples/ipsec-tools/racoon.conf.sample /usr/local/
etc/racoon/racoon.conf

Now you should edit the configuration file to fit your specific requirements. A
sample racoon.conf file looks like the following code:

path pre_shared_key "/usr/local/etc/racoon/psk.txt" ;
remote anonymous
{
 exchange_mode aggressive;
 lifetime time 24 hour ;
 proposal
 {
 encryption_algorithm 3des;
 hash_algorithm sha1;
 authentication_method pre_shared_key ;
 dh_group 2 ;
 }
}

sainfo anonymous
{
 pfs_group 2;
 lifetime time 12 hour ;

Chapter 8

[141]

 encryption_algorithm 3des, cast128, blowfish 448, des, rijndael ;
 authentication_algorithm hmac_sha1, hmac_md5 ;
 compression_algorithm deflate ;
}

This is actually a generic configuration for racoon that should simply work for any
source and destination address (note remote anonymous tag). You may want to
modify the configuration to fit your needs. However, when changing IKE setup,
make sure you are applying change on both hosts. A comprehensive guide to racoon
configuration can be found online at http://ipsec-tools.sourceforge.net/.

To enable racoon daemon to launch at system start-up, make sure you add the
following line to the /etc/rc.conf file:

racoon_enable="yes"

To manually start racoon, run the appropriate rc script as follows:

/usr/local/etc/rc.d/racoon start

Starting racoon.

The racoon daemon will take care of setting up SA between two endpoints based on
the security policies (SP) you specify, using the setkey(8) utility.

The policies should be added to the setkey configuration file which is usually
located in the /etc/ipsec.conf file.

In order to encrypt the tunneled traffic between two hosts, you may create a setkey
configuration file that contains the following lines:

flush;
spdflush;
spdadd 0.0.0.0/0 0.0.0.0/0 ipencap -P out ipsec esp/transport//
require;
spdadd 0.0.0.0/0 0.0.0.0/0 ipencap -P in ipsec esp/transport//require;

The first two lines of the file actually flush SAD and SPD entries from the kernel's
SPD. The third line specifies encryption policy for the outgoing traffic (note -P out
flag), that has a protocol number four in their layer3 header (note ipencap which
is actually IP encapsulated in IP packets on GIF interface), from source 0.0.0.0/0
(any) to 0.0.0.0/0 (any). As the encapsulation type is ESP, the packet payload is
encrypted. And the last line specifies decryption for the incoming packets.

The ipsec.conf file should be configured on both hosts, considering that the
outgoing policy on each host should match the incoming policy on the other host
and vice versa.

Network Configuration—Tunneling

[142]

Once the policies are configured, you may enable automatic IPSec setup from the
/etc/rc.conf file by adding the following lines:

ipsec_enable="YES"
ipsec_file="/etc/ipsec.conf"

Note that you do not have to specify the second line, as it points to /etc/ipsec.
conf, by default. It is only needed if you have chosen a different name for your
setkey configuration file.

You should manually load security policies by running the following ipsec rc script:

/etc/rc.d/ipsec start

Installing ipsec manual keys/policies.

You are almost done. You should check the following three steps to make sure
everything is in place:

1. Check the status if gif tunnel is using the ifconfig utility.
2. Check whether racoon daemon is running and is listening on udp 500, using

the sockstat –l4 command.
3. Check whether the setkey policies that you defined are actually installed

using the setkey –DP command.

If appropriate policies are installed, the output of the setkey –DP command should
look like the following command line:

setkey -DP

0.0.0.0/0[any] 0.0.0.0/0[any] ip4
 in ipsec
 esp/transport//require
 created: Jun 23 23:41:41 2007 lastused: Jun 23 23:41:41 2007
 lifetime: 0(s) validtime: 0(s)
 spid=16435 seq=1 pid=1534
 refcnt=1
0.0.0.0/0[any] 0.0.0.0/0[any] ip4
 out ipsec
 esp/transport//require
 created: Jun 23 23:41:41 2007 lastused: Jun 23 23:41:41 2007
 lifetime: 0(s) validtime: 0(s)
 spid=16434 seq=0 pid=1534
 refcnt=1

Chapter 8

[143]

At this point, there is no SA established between two hosts, as there has been no
traffic between the hosts, so far. This can be verified using the setkey –D command
as follows:

setkey -D

No SAD entries.

Once you ping the other side of the tunnel, the IKE daemons should exchange
encryption keys and establish SA:

ping -oq 10.10.6.1

PING 10.10.6.1 (10.10.6.1): 56 data bytes

--- 10.10.6.1 ping statistics ---
1 packets transmitted, 1 packets received, 0.0% packet loss
round-trip min/avg/max/stddev = 87.537/87.537/87.537/0.000 ms

Now that the host is reachable, it means the SA is established and the keys
are installed.

setkey -D

192.168.0.5 192.168.0.6
 esp mode=transport spi=85769720(0x051cbdf8)
reqid=0(0x00000000)
 E: 3des-cbc 26715dcd c77affd3 39165b39 073637a1 ee8b979d
eebd8368
 A: hmac-sha1 6eb62659 5058e91e e36b19ab abec245c 76bd67bd
 seq=0x00000007 replay=4 flags=0x00000000 state=mature
 created: Jun 23 23:50:09 2007 current: Jun 23 23:51:49 2007
 diff: 100(s) hard: 43200(s) soft: 34560(s)
 last: Jun 23 23:51:10 2007 hard: 0(s) soft: 0(s)
 current: 952(bytes) hard: 0(bytes) soft: 0(bytes)
 allocated: 7 hard: 0 soft: 0
 sadb_seq=1 pid=1554 refcnt=2
192.168.0.6 192.168.0.5
 esp mode=transport spi=61669162(0x03acff2a)
reqid=0(0x00000000)
 E: 3des-cbc 99792546 3c0e0a2c 9cde2a3b be503817 4efc7422
573d7014
 A: hmac-sha1 f3da6e46 10bec5b7 0e21f167 2387136e 656da322
 seq=0x00000006 replay=4 flags=0x00000000 state=mature
 created: Jun 23 23:50:09 2007 current: Jun 23 23:51:49 2007
 diff: 100(s) hard: 43200(s) soft: 34560(s)
 last: Jun 23 23:51:10 2007 hard: 0(s) soft: 0(s)
 current: 624(bytes) hard: 0(bytes) soft: 0(bytes)
 allocated: 6 hard: 0 soft: 0
 sadb_seq=0 pid=1554 refcnt=1

Network Configuration—Tunneling

[144]

To make sure that the traffic is actually being encrypted, it is a good idea
to run tcpdump(1) on one host, send ICMP packets from the other host
(ping), and see the incoming packets. If the traffic is being encrypted, you
should see ESP packets in tcpdump output on the other end.

Summary
Tunnels are different scenarios when you may want to set up a tunnel between two
hosts on a network. For example, tunneling is used to exchange routing updates
between edge routers, or to create a site-to-site VPN over a public network.

Before choosing a tunneling method, you should decide whether the encryption is
important or not.

If data encryption is not a concern while setting up GRE or GIF tunnels, using
FreeBSD is quite straightforward. GRE is an established protocol that is also
supported by different vendors. So if you are establishing a tunnel between a
FreeBSD gateway and a Cisco or Juniper router, you can simply go with GRE.

If security is a concern, you can use the industry standard IPSec protocol
between your FreeBSD gateway with other FreeBSD gateways or gateways from
different vendors.

Setting up an IPSec is also very straightforward, especially when setting up the
site-to-site IPSec tunnels. However this may get more complex depending on your
network architecture and specific needs.

Network Configuration—PPP
Point-to-Point Protocol (PPP) is a layer2 protocol used to encapsulate layer3 traffic
(that is IP) over a point-to-point physical medium, such as an asynchronous serial
interface. PPP was introduced in 1989 based on HDLC protocol and was extended
subsequently, based on the need to support more protocols and extensions. The
latest standard (RFC 1661) was updated in 1994. Numerous extensions have become
available for the protocol since then, including authentication, compression, and
control protocols as well as some vendor-specific extensions.

FreeBSD 7 supports PPP protocol in the base system (which means no third-party
software should be installed for normal usage).

There are two implementations of PPP stack in FreeBSD which are known as User
PPP and Kernel PPP.

As the names suggest, the User PPP does not engage kernel in the process of inbound
and outbound traffic encapsulation. It uses an external process and a generic tunnel
driver for PPP encapsulation. This implies lower performance as compared to Kernel
PPP, which uses codes in kernel for PPP encapsulation, but offers more features and
flexibility over Kernel PPP.

Another difference between these two implementations is that User PPP uses tun(4)
device, while Kernel PPP uses the ppp(4) interface between lower layers and
the network.

There are also two special (and important) implementations of PPP protocol that are
supported in FreeBSD—PPPoE and PPPoA.

PPP over Ethernet (PPPoE, defined in RFC 2516) is a special version of PPP
protocols that encapsulates PPP frames inside Ethernet frames. It is mostly used on
broadband access networks (for example ADSL and Wireless) to provide a method to
authenticate and authorize users.

Network Configuration—PPP

[146]

PPP over ATM (PPPoA, RFC 2364) offers encapsulating PPP frames on ATM AAL5
frames. This protocol is used on some ATM-based broadband access services, such
as ADSL.

In this chapter we will look into the following:

Setting up PPP client
Setting up PPP server
Setting up PPPoE client
Setting up PPPoE server

Setting up PPP Client
There are two methods to set up a PPP client on a FreeBSD host: either by using User
PPP or by using Kernel PPP.

Using ppp(8) and a configuration file that is typically located at /etc/ppp directory,
you can set up a PPP connection over a serial line or other media types that
are supported.

There are also a few examples for different PPP scenarios located at /usr/share/
examples/ppp that can be taken as a reference when trying to set up complex
PPP configurations.

To set up a PPP session using the ppp(8) daemon, you need to create a new
entry in the /etc/ppp/ppp.conf file. A typical PPP configuration file looks like
the following:

default:
 set log Phase Chat LCP IPCP CCP tun command
 ident user-ppp VERSION (built COMPILATIONDATE)
 set device /dev/cuad1
 set speed 115200
 set dial "ABORT BUSY ABORT NO\\sCARRIER TIMEOUT 5 \
 \"\" AT OK-AT-OK ATE1Q0 OK \\dATDT\\T TIMEOUT 40 CONNECT"
 set timeout 180
 enable dns

myisp:

 set phone 333 456 7890
 set authname USERNAME
 set authkey PASSWORD
 set ifaddr 10.0.0.1/0 10.0.0.2/0 255.255.255.0 0.0.0.0
 add default HISADDR

•

•

•

•

Chapter 9

[147]

There are various tags in the configuration file that are identified with a trailing ":"
character. Each of these tags specifies an entry in the configuration file. The above
example has two tags—default and myisp.

The ppp(8) utility always reads the default tag upon start up, so the global default
settings should be placed under this tag.

As you noticed, there are a few dial-up related settings under this tag which specify
different logging options, serial port device (in this case /dev/cuad1, which is
equivalent to COM2), serial line communication speed, and finally the dialing string.

The first serial port (COM1) is identified as /dev/cuad0 and COM2 is
identified as /dev/cuad2.

These settings would be working fine on a simple dial-up scenario in which you
should specify your modem port, based on your hardware configuration.

Note that these configurations are specified under the default tag, which is used for
any specific connection that you may want to use. If, for any reason, you want to use
a specific serial port or dial string in different connection entries, you should move
these lines under the appropriate tags.

As mentioned earlier, each connection is defined under its own entry that is
identified by a name. In the previous example, myisp tag contains specific
configuration for an ISP, such as the dialing number, username, password, default
gateway setting, and static interface IP address, if applicable. This is a simple
scenario that you may use to connect to another host using a dial-up modem.

There are seven different ways in which you can use ppp(8) to establish a PPP
connection, each specified by a command line option. The option name and its
description are listed in the following table:

Option Description
-auto The Dial-on-demand mode. The ppp(8) utility goes to background

and establishes connection upon detecting outgoing traffic on the
tun interface.

-background Establishes the connection and then goes to into the background,
once the connection is up.

-foreground Establishes the connection and stays in the foreground.
-direct Uses STDIN and STDOUT instead of network interface. This method

is useful while running PPP over TCP/UDP for tunneling.

Network Configuration—PPP

[148]

Option Description
-dedicated PPP assumes the link is always connected and that there is no

need to establish the physical link. This mode is mostly used for
PPPoE/PPPoA.

-ddial Dial-on-demand mode (just like –auto) with auto redialing, when
the line is dropped.

-interactive Enters the interactive prompt mode, where the user can manually
control the PPP connection establishment.

To establish a PPP connection to myisp in the previous example, you may run
ppp(8) as follows:

ppp -ddial myisp

Loading /lib/libalias_cuseeme.so
Loading /lib/libalias_ftp.so
Loading /lib/libalias_irc.so
Loading /lib/libalias_nbt.so
Loading /lib/libalias_pptp.so
Loading /lib/libalias_skinny.so
Loading /lib/libalias_smedia.so
Working in ddial mode
Using interface: tun0

This runs the user PPP daemon in the background (note -ddial option), and
establishes a PPP connection as configured under myisp tag in the /etc/ppp/ppp.
conf file. It also tries to re-establish the connection if it drops.

PPP also has built-in support for Network Address Translation (NAT) without
involving third-party applications. This can be achieved by using the -nat option in
the command line.

For example, to enable NAT in the previous example, you may use the
following command:

ppp –ddial –nat myisp

By enabling the NAT function, PPP will masquerade all packets with private IP
addresses (as per RFC 1918) as the source address.

A typical scenario of using NAT is to set up a LAN interface with private IP
addresses (for example 172.16.10.0/24) and use it as the default gateway of your
network. So when clients with the source IP address within the 172.16.10.0/24
network send their packets towards Internet using their gateway, PPP daemon will
automatically pick up and translate the traffic using its established PPP interface. So
you do not need to set up NAT using the traditional natd and ipfw combination.

Chapter 9

[149]

Since ppp(8) runs in the background (except in the foreground and
interactive modes), you have no information about what is actually
happening, unless you take a look at the ppp log file that is located at /
var/log/ppp.log. This is especially useful while troubleshooting
link failures.

To run user PPP on system boot-up, in the previous example, you should add the
following lines to your /etc/rc.conf file:

ppp_enable="YES"
ppp_profiles="myisp"
ppp_mode="ddial"
ppp_nat="YES"

Setting up PPP Server
In this mode, ppp(8) can be used to accept incoming PPP connections on stdin
or stdout.

There are several steps involved in setting up a PPP dial-in server. These are
listed here:

1. Create a ppplogin script.
2. Configure the /etc/gettytab file.
3. Configure serial device.
4. Configure the /etc/ppp/ppp.conf file.
5. Add users to the /etc/ppp/ppp.secret file.

The first step is to create a typical ppplogin file in the /etc/ppp directory. This file
is a simple shell script file that runs upon receiving an incoming call. The file should
contain the following lines:

#!/bin/sh

exec /usr/sbin/ppp -direct incoming

The incoming parameter used here will be configured, later on, in the PPP
configuration file as a configuration tag.

You should also adjust the permissions on this file so that the PPP program has
necessary access to this file by running the following commands:

chgrp network ppplogin

chmod 0650 ppplogin

Network Configuration—PPP

[150]

The next step is to modify the /etc/gettytab file, telling it to run the ppplogin
script in case you detect a point-to-point connection on the line. The default clause
should be modified to look like this:

default:\
 :cb:ce:ck:lc:fd#1000:im=\r\n%s/%m (%h) (%t)\r\n\r\n:sp#1200:\
 :if=/etc/issue:\
 :pp=/etc/ppp/ppplogin:

Now you should make your system accept incoming dial-in requests on the serial
ports. This should be done by modifying the /etc/ttys file. This file contains a few
lines defining the serial port behavior. The following is the default configuration that
you will see in /etc/ttys:

Serial terminals

The 'dialup' keyword identifies dialin lines to login, fingerd etc.

ttyd0 "/usr/libexec/getty std.9600" dialup off secure
ttyd1 "/usr/libexec/getty std.9600" dialup off secure
ttyd2 "/usr/libexec/getty std.9600" dialup off secure
ttyd3 "/usr/libexec/getty std.9600" dialup off secure

There are four lines, each of which belongs to a serial port. In FreeBSD, ttyd0 is
equal to the first serial port (COM1), ttyd1 to the second serial port (COM2), and
so on. Depending on which port you have connected the modems to, you should
enable serial ports by modifying relevant lines of configuration. For example, if you
have connected two modems to ttyd0 and ttyd1, your configuration file should be
modified to look like this:

ttyd0 "/usr/libexec/getty std.115200" dialup on secure
ttyd1 "/usr/libexec/getty std.115200" dialup on secure

You may also want to change the serial connection speed. The default is
set to 9600 baud, which is not enough in most cases. It is recommended to
set it to the maximum (115200). If you are experiencing any problems with
the maximum speed, it would be a good idea to reduce the connection
speed to 57600 baud which would be sufficient for a 56kbps connection.

Once you finish editing the /etc/ttys file, you should reload the tty configuration:

init q

This command will reload the tty configuration information from the /etc/ttys file,
and from this moment, the incoming calls to your modems should be answered.

Chapter 9

[151]

The next step is to modify the PPP server configuration parameters, so the clients
can establish a PPP connection after they establish the serial line connection (using
modem). This is done by adding an incoming tag to the PPP configuration file
located at /etc/ppp/ppp.conf:

incoming:

enable pap
allow users *
enable dns

set ifaddr 10.1.1.2 10.1.1.5 255.255.255.248

This is the typical PPP configuration that authenticates users using the Password
Authentication Protocol (PAP) against the /etc/ppp/ppp.secret file. This also
allows all authenticated users to log in (hence the allow users * statement). There
may be cases where you want to authenticate only some specific users that you have
defined in the ppp.secret file, using this profile. In such cases you should change
this line to the following:

allow user john

This will allow only user john to login using PPP protocol.

The enable dns statement tells PPP to return system's DNS server addresses to the
client, if requested.

And the last line, which is the most important line, configures the IP address pool
that will be used to assign IP address to users. In our example, an IP address between
10.1.1.2 and 10.1.1.5 with subnet mask 255.255.255.248 will be assigned to
the user.

Do not forget to enable IP routing on your server, if you want to route
traffic between your PPP client interfaces and the LAN interface.

There is one last note—when you want to change the default gateway of your client,
you should also add the following line to the incoming tag:

add default HISADDR

This will set the address of the client's default gateway to the IP address of the
PPP link.

Now that you finished tweaking the ppp.conf file, there is one more step that you
should take, to make things work, and that is setting up the users database.

Network Configuration—PPP

[152]

As we have configured PPP daemon, it reads the usernames and passwords from the
/etc/ppp/ppp.secret file. The format of this file is pretty straightforward and the
passwords are kept in a cleartext format. A typical ppp.secret file looks like this:

john MyPa$$word
babak 3ecRe+

 The first parameter in each line specifies the username, and right after that,
separated with a space or tab, is the password.

Setting up PPPoE Client
There may be certain circumstances when you have to run PPP over a packet-
switched network (for example Ethernet), instead of a circuit-switched network (for
example PSTN), as in the case of broadband access services such asADSL.

Basically, service providers need to authenticate or authorize users, and also
calculate their usage statistics for billing or other uses. PPPoE is very suitable for
this scenario, as there is an Ethernet network extended from your workstation to the
service provider edge, using broadband access technologies. In a PPPoE scenario,
you are like a dial-up user from a service provider's point of view except the fact that
you are using a broadband connection instead of serial connection.

The provider will terminate PPP connection on a Broadband Remote Access Server
(BRAS) platform to perform the per-user Authentication, Authorization and
Accounting (AAA) as well as routing traffic towards external networks.

From a user's point of view, PPPoE seems like a normal PPP connection, except when
you do not have to actually dial a destination number. The PPPoE client discovers
PPPoE server by broadcasting PPPoE Active Discovery Initiation (PADI) message
over available (or specified) Ethernet links.

Setting up a PPPoE client session in FreeBSD 7 is almost as simple as initiating a
dial-up connection. A sample /etc/ppp/ppp.conf file for PPPoE looks like the
following code:

default:
 set log Phase tun command
 enable dns

yourprovider:
 set device PPPoE:fxp0
 set authname YOURUSERNAME
 set authkey YOURPASSWORD
 set dial
 set login
 add default HISADDR

Chapter 9

[153]

The above code is a generic configuration for a PPPoE client connection. You just
need to set up the correct network interface name that is connected to your modem
(in this case, fxp0), and the login information.

Some providers require a service name tag to be transmitted, in addition to your
login information. In this case, if the service tag is yourtag, you should modify the
set device line to look like following code:

 set device PPPoE:fxp0:yourtag

Setting up PPPoE Server
Now that you are on the side of the service provider, you may want to set up a basic
PPPoE BRAS for your broadband customers. The logic behind setting up a PPPoE
server is pretty much the same for the PPP server over the serial line, unless there is
no serial line involved in this process, and Ethernet media is used instead.

Since the incoming PPPoE requests come over Ethernet media, a special daemon
called pppoed(8) handles these requests. The pppoed(8) daemon listens for the
PPPoE discovery requests and launches ppp(8) to handle the PPP protocol upon
receiving an incoming request.

In order to run a PPPoE server, you should customize your kernel and add necessary
NETGRAPH modules to the kernel. At least the following three lines should be added
to your kernel configuration:

options NETGRAPH
options NETGRAPH_PPPOE
options NETGRAPH_SOCKET

Once you have successfully built your kernel and rebooted your host with the new
kernel, you can set up pppoed(8) to accept the connection. To enable pppoed, the
following line should be added to the /etc/rc.conf file:

pppoed_enable="YES"
pppoed_interface="bge0"
pppoed_provider="*"
pppoed_flags="-P /var/run/pppoed.pid -a "server1" -l "pppoe-in" "

This configuration will enable pppoed to automatically start upon system boot up.
It will listen on bge0 Ethernet interface for the incoming PPPoE requests. As the
pppoe_provider variable is set to "*", pppoed does not care about the provider
name that is sent in the PPPoE request.

Network Configuration—PPP

[154]

There may be certain cases when you are running multiple PPPoE servers, each for
a specific group of clients, and each group is distinguished using a provider name
tag. This can be set in the PPPoE client settings. Your PPPoE server then picks only
the incoming requests whose provider name tag matches with the one you specified
in your configuration.

And finally the last line in your configuration specifies some parameters such as
the PID file location (using -P parameter), and the name of the PPPoE server that
is returned to the clients (in this case server1 using the -a parameter), and finally
the relevant tag name in the ppp.conf configuration file is specified using the -l
parameter (in this example, pppoe-in tag is used). You can change this information
to reflect your setup.

Final step is to modify the ppp.conf configuration file and then create a ppp.secret
file as the user database.

In our example, we specified the pppoe-in tag in the PPP configuration file to be
used (hence the -l parameter). So your ppp.conf file looks like this:

pppoe-in:
enable pap
enable chap
allow mode direct
enable proxy
disable ipv6cp
set mru 1492
set mtu 1492

 set ifaddr 10.0.0.1 10.0.0.100-10.0.0.199
 set speed sync
 set timeout 0
 enable lqr
 accept dns
 allow users *

There are some magical parameters in this configuration file, which if missed will
lead to major issues with your PPPoE server deployment. Two of the most important
parameters to be configured correctly would be MTU and Maximum Receive Unit
(MRU). The default frame size (and therefore the MTU and MRU) of a typical
Ethernet frame is 1500 bytes. PPPoE introduces 8 bytes of protocol overhead in
addition to Ethernet frames. This is where you should reduce the MTU and MRU
size in order to compensate the overhead. The specified MTU and MRU size is in
fact 1500 – 8 =1492.

Chapter 9

[155]

If you are experiencing weird behavior on your established PPPoE
connections, such as problems with HTTP or FTP not working, (although
ICMP packets are flowing very well) they can be attributed to MTU or
MRU problems that cause packets to fragment. In such cases, you should
check the MTU size on both the client and server and ensure that the
correct MTU or MRU is being used.

Another important parameter is "proxy", which is in fact the Proxy ARP feature. By
enabling this feature, your PPPoE server acts as the ARP proxy server for
the clients and responds to ARP requests on behalf of the connected clients,
whenever necessary.

You may also have noted that we are assigning the IP addresses from 10.0.0.100 to
10.0.0.199 to the users, and use 10.0.0.1 as the virtual IP address of the gateway
from the client's perspective.

The only thing remaining is setting up the ppp.secret file, as in the example you
have seen in the section on dial-in server.

Once all the necessary configuration is in place, you should now either reboot your
server or manually start pppoed daemon by running the following command, and
test connectivity from your clients:

/etc/rc.d/pppoed start

Summary
Establishing a PPP connection under FreeBSD 7 is more or less similar to establishing
other forms of tunnels, unless there is a daemon (or the kernel module) that
takes care of encapsulation and hence, there is no need to perform manual
ifconfig configuration.

While using user PPP (the stand-alone PPP process), almost all the configuration is
done through the /etc/ppp/ppp.conf file. Once you have configured one or more
connection entries under ppp.conf, you can use the ppp(8) utility to control the
establishment of the PPP tunnel.

Network Configuration—
Routing and Bridging

Your FreeBSD host can be used as a router. In fact, some vendors such as Juniper
Networks use FreeBSD as the base operating system for their high-end routers. Since
a router is an important and vital node in every network, using FreeBSD as a router
is a good choice. It is already stable and supports many cutting edge standards and
protocols, out of the box.

In this chapter, you will get familiar with basic IP forwarding in FreeBSD, as well
as routed and route6d daemons, the built-in routing daemons that support RIPv1,
RIPv2, RIPng (for IPv6) and RDISC.

There are plenty of IP routing related software that you can find in FreeBSD's ports
system. Two of them —OpenOSPFD and OpenBGPD—are covered in this chapter.
As their name suggests, they both support a major routing protocol that almost every
network incorporates—OSPF and BGP.

Other routing software include Zebra, Quagga, and XORP, which are not covered
in this chapter. But they are worth looking into, as they might fit into your network
infrastructure.

Using these tools, you can turn your FreeBSD 7 host into a routing powerhouse.

In this chapter, we will look into the following:

Basic routing–IP forwarding
Running OSPF—OpenOSPFD
Running BGP—OpenBGPD
Bridging
Proxy ARP.

•

•

•

•

•

Network Configuration—Routing and Bridging

[158]

Basic Routing—IP Forwarding
The default behavior of a FreeBSD host is only to pick up packets that are destined
for the same host. In case there are multiple network interfaces installed on the host,
the system does not forward traffic between interfaces by default.

This behavior is changed by enabling IP forwarding using the sysctl(8) utility:

sysctl net.inet.ip.forwarding=1

sysctl net.inet6.ip6.forwarding=1

The above commands will enable forwarding for IPv4 and IPv6 respectively.

To make these changes permanent, you can also add the following lines to the
/etc/rc.conf file:

gateway_enable="YES"
ipv6_gateway_enable="YES"

By enabling IP Forwarding (routing) between interfaces, the system will pick up all
the packets that have the layer2 destination, (MAC) address of the same host, and
will forward it to an appropriate network interface, according to the system's
routing table.

Once the forwarding is enabled, the forwarding behavior can be controlled by
modifying the routing table. This is done using three methods of routing:

Automatic: The system updates routing tables automatically. For example,
a route for each "directly connected" network (taken from IP Address and
Subnet mask of each interface) will be added to the routing table.
Manual: You can update the routing table using the route(8) utility.
Dynamic: A dynamic routing daemon (e.g. RIP, OSPF, etc)
learns routes from peers over the network and updates local routing
table accordingly.

The current status and content of the routing table is displayed using either
route(8) or netstat(1) utilities.

In the IPv4 routing table, the following command line displays its status and content:

netstat -rn -finet

Routing tables

Internet:
Destination Gateway Flags Refs Use Netif Expire
default 192.168.129.65 UGS 1 2162458 bge1

•

•

•

Chapter 10

[159]

192.168.129.64 ff:ff:ff:ff:ff:ff UHLWb 1 2 bge1 =>
192.168.129.64/26 link#2 UC 0 0 bge1
192.168.129.65 00:10:db:58:4d:49 UHLW 2 192400 bge1 1025
192.168.129.95 00:16:35:80:ac:52 UHLW 1 87134 lo0
192.168.129.127 ff:ff:ff:ff:ff:ff UHLWb 1 2 bge1
127.0.0.1 127.0.0.1 UH 0 69621 lo0

And to display the current status of the IPv6 routing table use the following
command line:

netstat -rn -finet6

Routing tables

Internet6:
Destination Gateway Flags Netif Expire
default gif0 ULS gif0
::1 ::1 UHL lo0
2001:618:400::515b:815f link#4 UHL lo0
fe80::%lo0/64 fe80::1%lo0 U lo0
fe80::1%lo0 link#3 UHL lo0
ff01:3::/32 fe80::1%lo0 UC lo0
ff01:4::/32 link#4 UC gif0
ff02::%lo0/32 fe80::1%lo0 UC lo0
ff02::%gif0/32 link#4 UC gif0

Each routing entry has four important fields—Destination, Gateway, Flags,
and Netif.

Kernel will route the traffic destined for "Destination" to "Gateway" via "Netif".

Flags are special bits associated to each route. A table of valid flags and a description
for each, is listed in the following table:

Flag Description
 1 Protocol specific routing flag #1
 2 Protocol specific routing flag #2
 3 Protocol specific routing flag #3
 B Just discard pkts (during updates)
 b Broadcast address
 C Generate new routes on use
 c Protocol-specified generates new routes on use
 D Dynamic route (created by redirect)
 G Gateway

Network Configuration—Routing and Bridging

[160]

Flag Description
 H Host entry (represents network entry if flag is not present)
 L Valid protocol to link address translation
 M Modified dynamically (by redirect)
 R Host or network unreachable
 S Static route (manual entry)
 U Usable
 W Generated from cloning
 X External daemon translates proto to link address

Static Routing
You can manipulate the routing table manually using the route(8) utility. Using
this utility, you can add static routes, modify an existing routing entry, remove a
route, display routing table information and monitor the routing table changes.

To add a static routing entry to a routing table, you should use the route add
command, as given in the following example:

route add 172.21.30.0/24 10.1.1.5

add net 172.21.30.0: gateway 10.1.1.5

The above command adds an entry to the routing table that makes the system route
packets for destination 172.21.30.0/24 subnet to 10.1.1.5.

The next-hop (in the above example: 10.1.1.5) should be on the same
subnet with your FreeBSD router. In fact, the next-hop cannot be multiple
hops away from your host, and the MAC address for this host should be
discoverable using ARP. Otherwise, the route cannot install the entry in
the routing table.

To add a default gateway to your routing table, you can add either 0.0.0.0/0
subnet or use the default keyword:

route add default 10.1.1.2

This will add 10.1.1.2 as the default gateway to the routing table.

Chapter 10

[161]

You can add a route to the routing table, only if it does not already exist in the table.
In case you want to modify an existing route, you should use the route change
command as shown:

route change 172.21.30.0/24 10.1.1.5

change net 172.21.30.0: gateway 10.1.1.5

This will update the routing table with a new gateway address (that is next-hop) for
network 172.21.30.0, which in this example is 10.1.1.5.

And to remove an existing route from the routing table, you may use the route
delete command as shown here:

route delete 172.21.30.0/24

delete net 172.21.30.0

The add, change, and delete commands are three basic commands that you need to
maintain a routing table. However, you will also need to see the current routing table
status for a specific route or for all existing routes.

To view the routing table entries, you may use the route get command:

route get 172.21.30.0/24

 route to: 172.21.30.0
destination: 172.21.30.0
 mask: 255.255.255.0
 gateway: 10.1.1.5
 interface: bge1
 flags: <UP,GATEWAY,DONE,STATIC>
 recvpipe sendpipe ssthresh rtt,msec rttvar hopcount mtu
expire
 0 0 0 0 0 0 1500 0

This will show you the routing table entry for a specific route (in this example,
172.21.30.0/24). For example, this subnet is routed to 10.1.1.5 via the bge1
network interface.

You can also use netstat –r to see the status of all routing entries in the
routing table.

To clean up the routing table, the route flush command is used. This will remove
all the existing routing table entries.

Network Configuration—Routing and Bridging

[162]

If you are connected to a FreeBSD host via a network (For example SSH)
and you are not on the same subnet as the host, you may lose network
connectivity upon using the route flush command, as the default
gateway will also be removed from the routing table. Make sure you
are not locking yourself out of the host and not making the host lose its
network connectivity.

To make the static routes permanent, and to add them to the routing table when
system starts up, you should add the appropriate entries to the /etc/rc.conf file.
The following is a sample that adds two static routes to the routing table:

static_routes="sample1 sample2"
route_sample1="172.21.30.0/24 10.1.1.5"
route_sample2="192.168.0.0/16 10.1.1.6"

Alternatively, in an IPv6 environment:

ipv6_static_routes="sample3"
ipv6_route_sample3="2a01:3c8::/64 –interface gif0"

In the first example, two static routes are added (loaded from route_sample1 and
route_sample2 variables). You may have multiple route_XXXX variables in /etc/
rc.conf, but only those that are specified in the static_routes variables
are picked.

In the second example, the same static routing for IPv6 addresses is shown. The IPv6
routing will be discussed later, in Chapter 12.

To manually load the routes from /etc/rc.conf without rebooting the system, use
the following command:

/etc/rc.d/routing static

Manipulating the FreeBSD's routing table manually, using the route(8) utility,
is quite straightforward. However, it is highly recommended that you consult the
relevant man pages as well as FreeBSD handbook, for more information about
this utility.

routed and route6d
FreeBSD has two built-in dynamic routing daemons that support RIP
protocol family:

routed(8): It supports RIPv1 (RFC1058), RIPv2 (RFC2453) and RDISC
(RFC1256).
route6d(8):It supports RIPng or RIP6 (RFC2080).

•

•

Chapter 10

[163]

These daemons update the kernel's routing table based on the routes they learn from
the updates they receive from other routing daemons over the network.

In fact, the routing daemon keeps its own routing table,which may contain different
destinations for a subnet. But it installs only the best route for each destination,
calculated using the distance vector algorithm.

You may not want to use RIPv1 in your network, because it is not a
classless protocol and hence does not respect the subnet mask, and
assumes the obsolete concept of "classes" instead of subnets. New
generations of the protocol (that is RIPv2) have solved this issue by
transmitting subnet masks in routing update messages. Due to this fact,
RIPv1 is not covered in this chapter. However, the routed(8) manual
pages contain useful information, in case you are interested in running
RIPv1, using routed on your network.

To enable the routing daemon, you should modify your /etc/rc.conf file:

router_enable="YES"
ipv6_router_enable="YES"

The above lines enable routed and route6d respectively. You can also manually run
the routing daemons by running the following rc scripts:

/etc/rc.d/routed start

/etc/rc.d/route6d start

Once the routed daemon is launched, it looks for all available (up and running)
interfaces, creates appropriate routing entries in the kernel's routing table and
removes all non-static routes from it. After that, the routing daemon starts sending
routing updates to all active interfaces, every thirty seconds.

When only one active interface is present (or when -q parameter is passed to
routed), it does not transmit any routing information on the interface, and only
listens for incoming routing advertisements.

Running OSPF—OpenOSPFD
OpenOSPFD is an open-source implementation of the IETF standard Open
Shortest-Path First (OSPF) protocol, a widely used link-state IGP protocol. OSPF
protocol uses Dijkstra's algorithm to find the shortest path between two hosts.

Unlike many other protocols, OSPF does not rely on TCP or UDP to talk to other
routers. Instead, it encapsulates its messages directly on top of the IP (protocol 89).

Network Configuration—Routing and Bridging

[164]

OpenOSPFD can be installed using FreeBSD's ports system from the /usr/ports/
net/openospfd directory.

OpenOSPFD runs as a daemon on your FreeBSD host and talks to other OSPF talking
routers on your network, calculates the best path for each destination and installs the
best route in FIB (that is, the kernel's routing table).

The following figure shows a typical OSPF network:

This is actually what a typical /usr/local/etc/ospfd.conf file looks like:

redistribute static
router-id 10.0.0.1

area 0.0.0.0
{

Chapter 10

[165]

 interface fxp0
 {
 auth-key "tHeKeY"
 auth-type simple
 }
 interface fxp1
 {
 hello-interval 5
 }
 interface bge0
 {
 passive
 }
}

This sample configuration shows a router, which has three network interfaces.
The router-id for this router is manually set to 10.0.0.1. If it is not set, the
OpenOSPFD will take the lowest IP address assigned to your interfaces to be the
router-id. This router also redistributes (announces) the routes for the directly
connected networks over OSPF, to other routers (note the redistribute statement).

Each of the three interfaces is configured differently. The first interface, fxp0, is
configured with the OSPF authentication. The fxp1 interface has no authentication
but is configured to transmit hello packets every five seconds instead of the default,
ten seconds, for faster convergence at the cost of more network overhead. And the
last interface, bge0, is set to passive mode in which, the OSPF hello packets are
not transmitted over this interface, and the network connected to this interface is
advertised as a stub network over the OSPF protocol.

When you have configured your OpenOSPFD preferences, you should start the
daemon by enabling the appropriate variable in the /etc/rc.conf file,first:

openospfd_enable="YES"

And then run the rc script, manually:

/usr/local/etc/rc.d/openospfd start

Once the daemon is started, you can control the behavior of OSPF daemon using the
ospfctl(8) utility.

Network Configuration—Routing and Bridging

[166]

Running BGP—OpenBGPD
Border Gateway Protocol version 4(BGP4) is one of the most important protocols
in the today's Internet that glues networks together. Internet is a complex set of
interconnected networks, each called an Autonomous System. An Autonomous
System (AS) is a network that is controlled by an administrative entity, such as an
ISP. Each AS has at least one unique AS number that is assigned by the Regional
Internet Registry (RIR) as well as a few network prefixes.

BGP Protocol (RFC 4271) is used to exchange routing information between ASs. It
uses permanents TCP connections (typically on port 179) to send routing updates to
the directly connected peers. Each BGP router makes routing decisions based on its
own view of the network, and installs appropriate routes in the routing table.

OpenBGPD is a secure and open-source implementation for BGP4 protocol which
comes from OpenBSD project. It is available in ports system under /usr/ports/
net/openbgpd.

Before running OpenBGPD, you should have the following information:

AS number
Network prefixes

Once you have installed the software, you should create a configuration file to
specify your environment, such as your AS number, peers, which routes should be
advertised to each peer, and which routes should be permitted to be imported (that
is route filters).

A sample network representing the bgpd.conf example is shown in the
following figure:

•

•

Chapter 10

[167]

A sample bgpd.conf file looks like the following command lines:

BGP Configuration

AS 65001
router-id 10.3.0.1

Address of networks we advertise to peers

network 10.3.0.0/23
network 172.17.8.0/21

Peering with ISP A with TCP MD5 signatures enabled

neighbor 10.0.0.2 {
 remote-as 65002
 descr "ISP A"
 tcp md5sig password changethis
}

Peering with ISP B that is not directly connected

neighbor 192.168.0.21 {
 remote-as 65003
 descr "ISP B"
 multihop 5
}

We have assumed our AS number to be 65001 (That is a valid AS number for private
use, as AS numbers 64512 to 65535 are reserved by IANA for this reason), and set the
router-id to 10.3.0.1.

If nothing is specified, router-id is automatically set to the highest IP address that
is assigned to your host interfaces. While setting the router-id manually, make sure
that the IP address is already assigned to an interface on your host.

In the above example there are also two lines that specify the networks that we want
to advertise to our peers. There are two networks in this example: 10.3.0.0/23 and
172.17.8.0/21

These networks have literally originated from AS65001, and are advertised to our
peers. They may in turn advertise the routes they learned from our router to their
peers (depending on their policy).

There are two neighbors in this example, each with its unique AS number and
policies—ISP A and ISP B. ISP A, with IP 10.0.0.2 on its BGP speaking router,
requires TCP MD5 security for peering. Whereas ISP B is not directly connected to
our router and is a few hops away.

Network Configuration—Routing and Bridging

[168]

OpenBGPD supports TCP MD5 signatures (RFC2385) that are required for some
peers to avoid session spoofing.

In order to use this feature, your network stack should provide this feature. You
need to reconfigure your system kernel to enable TCP MD5 Signatures capabilities.

The following lines should be added to your kernel configuration file before the
kernel is compiled:

device crypto
options IPSEC
options TCP_SIGNATURE

BGP protocol assumes that the peering routers are connected directly, and there
are no multiple hops (layer3 network nodes) between the routers. However, this
assumption is not always correct, and in certain cases the BGP speaking routers may
be multiple hops away from each other. This can be achieved by enabling EBGP
multi-hop on this peer. The keyword multihop defines how many hops
(the maximum) away from the hosts (in this case, 5), these peers are.

Please see the bgpd.conf(5) manual pages for a complete set of configuration options.

The following line should be added to /etc/rc.conf to enable an automatic start-up
of bgpd:

openbgpd_enable="YES"

You can also start the openBGP daemon manually, by running its rc script:

/usr/local/etc/rc.d/openbgpd start

Once the daemon is running, you can control its behavior using the bgpctl(8)
utility. This utility provides a few commands that are used to display the current
status of bgpd as well as to modify the parameters on the fly.

The five main commands of bgpctl include:

reload: This command forces the daemon to reload the configuration file.
show: This command displays various information about the daemon.
fib: This command manipulates fib (Forwarding Information Base), which is
actually the kernel's routing table.
neighbor: This command manipulates per-neighbor peering.
network: This command manipulates advertised network prefixes.

•

•

•

•

•

Chapter 10

[169]

The term Forwarding Information Base (FIB) points to the kernel's routing
table, while the term Routing Information Base (RIB) actually means
routing daemon's internal routing table.

The most used feature of bgpctl is the show command that displays information
about the current status of peers as shown here:

bgpctl show

Neighbor AS MsgRcvd MsgSent OutQ Up/Down State/PrefixRcvd
ISP B 65003 38700 141 0 01:09:02 182394
ISP A 65002 38620 137 0 01:08:41 182322

You can also manipulate sessions with peering routers using the bgpctl neighbor
command. For example, you may use the following syntax to temporarily disable
peering with a specific peer:

bgpctl neighbor 10.0.0.2 down

To enable the same peer, you can use the same command, this time with the
up command:

bgpctl neighbor 10.0.0.2 up

There may be certain times when you want to clear a session (force a reset on the
connection). This is achievable by using the neighbor clear file:

bgpctl neighbor 10.0.0.2 clear

You can also dynamically add a network prefix to your advertised networks on the
fly, using bgpctl:

bgpctl network add 10.10.32.0/20

And to remove the network, you can use the network delete command.

Bridging
Using the ifconfig(8) utility, which we've discussed in Chapter 7, and the multiple
network interfaces installed on your host, you can create a network bridge.

Network bridges are used to separate different segments of a network in layer2 of
the OSI model (for example Ethernet). Unlike routers, a bridge makes forwarding
decisions based on the layer2 (MAC) addresses. In fact, a typical bridge does not
understand higher levels of the OSI model. A good example of a network bridge is,
layer2 network switches. You can consider your bridge a layer2 switch if it had
fewer ports.

Network Configuration—Routing and Bridging

[170]

To create a bridge, your host should have at least two network cards installed.

Creating a bridge is very straightforward as shown here:

ifconfig bridge0 create

This will automatically load appropriate bridging modules into the memory, if
not compiled in the kernel, and create a virtual bridge interface. Once the interface
is created, you can add several interfaces into the bridge group, again, using the
ifconfig utility as follows:

ifconfig bridge0 addm fxp0

ifconfig bridge0 addm fxp1

To verify bridge interface configuration and interface membership, ifconfig is used:

ifconfig bridge0

bridge0: flags=8802<BROADCAST,SIMPLEX,MULTICAST> metric 0 mtu 1500
 ether e2:72:9e:1e:de:5b
 id 00:00:00:00:00:00 priority 32768 hellotime 2 fwddelay 15
 maxage 20 holdcnt 6 proto rstp maxaddr 100 timeout 1200
 root id 00:00:00:00:00:00 priority 0 ifcost 0 port 0
 member: fxp0 flags=143<LEARNING,DISCOVER,AUTOEDGE,AUTOPTP>
 member: fxp1 flags=143<LEARNING,DISCOVER,AUTOEDGE,AUTOPTP>

You can assign an IP address to the bridge interface for remote
management reasons. However, it is not advisable to assign IP addresses
to bridge members.

You can add as many interfaces as you like to a bridge group. However, only
interfaces with the same MTU size can be assigned to the same group.

To remove an interface from a bridge group, you may use deletem instead of
addm parameter.

Each bridge keeps a table of addresses. It learns from each interface, in order to make
the right forwarding decision. You can display the contents of this table using the
addr command. This is shown in the following command:

ifconfig bridge0 addr

00:0b:5f:af:ca:00 fxp1 1073 flags=0<>
03:00:00:00:00:0d 0 flags=46<STICKY>
00:00:00:1d:02:00 ?? 0 flags=0<>
00:00:00:00:00:00 0 flags=0<>
00:00:00:00:00:00 828729186 flags=0<>

Chapter 10

[171]

67:65:31:00:00:00 1 flags=62<STICKY>
00:00:00:62:67:65 3159772 flags=1<STATIC>
59:80:00:01:00:00 2516844544 flags=10<>
00:04:96:10:5b:90 fxp1 1173 flags=0<>
04:00:00:00:00:04 0 flags=17<STATIC,STICKY>
00:00:00:a6:04:00 ?? 0 flags=0<>

As you can see in the ifconfig output, Bridge-member interfaces have different
flags, each having its own meaning, which is given in the following table:

Flag Ifconfig switch Description
DISCOVER discover Interface forwards packets to all interfaces for

unknown destinations.
LEARNING learn Learns host addresses from incoming packet headers.
STICKY sticky Does not expire address entries and keeps them in tact.
SPAN span Puts interface into monitor mode. The interface

transmits a copy of all bridge packets. Used for sniffing
on bridge interfaces.

STP stp Enables 802.1d Spanning Tree protocol to prevent
loops.

EDGE edge Edge ports are connected directly to hosts and hence,
cannot create loops. Interface starts forwarding packets
as soon as it is up.

AUTOEDGE autoedge Automatically detects edge status.
PTP ptp Point-to-point link that starts forwarding immediately.

This is used for connection to other switches that
support RSTP protocol.

AUTOPTP autoptp Automatically detects ptp mode.

Filtering Bridges
A bridge is used as a firewall in situations where you do not want to segment your
network. Since a typical firewall is also a router (a layer3 node), you actually need to
place it as your network gateway. In such case, you will have to justify your subnets.
But when a firewall acts as a layer2 host (a bridge), there is no need to reconfigure
your network and the firewall can be deployed ad-hoc.

To enable IPFW to filter traffic between bridged interfaces, you should enable the
appropriate sysctl variable:

sysctl net.link.ether.bridge.ipfw=1

Network Configuration—Routing and Bridging

[172]

More detail about firewalling functionality in FreeBSD 7 is covered in
Chapter 12. Here, basically we learn how to configure an ipfw-based
firewall as a bridge.

To configure a filtering bridge, you need to enable the native firewall functionality of
FreeBSD (that is ipfw) in kernel. However, your bridge should pass all ARP traffic
between interfaces. You should instruct your firewall to pass ARP traffic using one of
these scenarios:

To pass all traffic by default by adding options IPFIREWALL_DEFAULT_TO_
ACCPET in the kernel configuration file and then block all inappropriate traffic.
Block all traffic by default, except the ARP traffic, using a simple rule like
this—ipfw add pass mac-type arp layer2.

Using this trick, your firewall seems almost transparent. Now you can define
appropriate rules to filter out or pass traffic based on your security policies.

Proxy ARP
When a host wants to transmit a packet to another host on the same subnet, it will
look up for the Ethernet address of the destination host in the local MAC address
mapping (ARP) table. If a mapping entry does not exist, the host broadcasts an ARP
discovery request. All the hosts on the same subnet pick up the request from the
wire, and the host in question will answer the request.

In normal circumstances, only the host that has the requested address on its interface
will answer with an ARP reply packet. But there may be cases where hosts on the
same subnet are not on the same physical network, and typically, a layer3 host
(for example router) is in between. A good example for this could be the dial-in
or VPN gateways.

In this situation, the hosts behind the router do not see the ARP requests, and the
requests fail. The router should answer the ARP requests on behalf of these hosts.
This is called Proxy ARP.

Proxy ARP should not be confused with bridging, as the host in between
is actually a router (layer3 host) instead of a bridge (layer2 host).

This can be achieved by manually adding static ARP entries, for each individual
host, to the ARP proxying router:

arp -s 10.0.21.14 00:11:de:ad:be:ef pub

•

•

Chapter 10

[173]

The keyword pub tells ARP that the host should act as an ARP server for the
specified host, even though the address is not assigned to the host. This way, you
should manually add all hosts to the ARP table on the ARP proxy server.

You can also tell the kernel to automatically act as an ARP server, whenever
appropriate. This can be achieved by tweaking the sysctl variables:

sysctl net.link.ether.inet.proxyall=1

Or by adding the following variable to the /etc/rc.conf file, which makes this
behavior permanent:

arpproxy_all="YES"

Summary
FreeBSD 7 offers a stable platform to act as router or bridge in a network. Built-in
tools plus a few software, which you can install from ports collection, will help you
set up a reliable network router that supports all the important protocols that you
need in a modern network. All major routing protocols including RIPv2, OSPF, and
BGP are supported using the routed, openbgpd, and openospfd utilities. There
is also an excellent routing toolkit called Quagga in the ports tree that supports
these protocols, and also offers a CLI interface and a Juniper Networks JUNOS like
configuration syntax. Using some advanced network interface cards (those which
support hardware offloading), you can set up a high throughput routing platform for
your network.

Network Configuration—IPv6
Today, everyone knows that the internet is running out of IP addresses. In fact, the
current infrastructure of the internet is running over legacy IP (aka IPv4) protocol
that was not designed for such wide-spread and complicated use (for example,
IPv4 was not designed to run in a refrigerator).

The original design of Internet Protocol (IPv4) is not efficient for today's networks.
And even worse, we are running out of IPv4 addresses in a few years!

Several methods were introduced to reduce the usage of IP addresses in the
internet including:

Classless Interdomain Routing (CIDR): This introduced the death of classful
addressing (for example Class A, B, C) by a new subnetting method which is
not limited, unlike the classful method.
Network Address Translation (NAT): Using NAT you do not need to use
public IP addresses on your internal hosts.

Using CIDR subnets and NAT only helped IPv4 to live a few years longer, but was
not the ultimate cure to the problem. Besides the addressing issues, there were other
problems with IPv4 which could not be easily solved. These issues include
the following:

The size of internet routing tables was growing rapidly and this forced
backbone providers to upgrade their networking gears.
The IPv4 was very inefficient for high throughput links and did not support
QoS by nature.

Back in the early 90s, IETF had started a workgroup to solve the deficiencies of the IP
protocol. In 1995, the IETF published the initial drafts of IPv6 as the next generation
IP. Since then, the protocol has matured enormously and been implemented in many
operating systems.

•

•

•

•

Network Configuration—IPv6

[176]

FreeBSD uses the IPv6 code from the KAME project. The KAME project
(see www.kame.net) has been inactive since 2005, and FreeBSD developers have
eversince maintained the IPv6 protocol stack.

In this chapter, we will look into the following:

IPv6 facts
Using IPv6
Routing IPv6
RIP6
Multicast routing
Tunnelling

IPv6 Facts
If you are not familiar with IPv6, here is a very quick look at the difference between
IPv4 and IPv6. (For a more detailed insight into IPv6 and its configuration in various
operating systems, it is recommended that you read Running IPv6 book by Iljitsch
van Beijnum).

Fact One—Addressing
Addressing in IPv6 is quite different from legacy IPv4 addresses. IPv6 uses 128-bit
address space unlike the 32-bit addressing system in IPv4. A typical IPv6 address
would look like—2002:a00:1:5353:20a:95ff:fef5:246e

Fact Two—Address Types
There are 4 types of addresses in IPv6:

Unicast: A typical IPv6 address you use on a host.
Multicast: Addresses that start with ff:: are equivalent to IPv4 multicast.
Anycast: A typical IPv6 address that is used on a router.
Reserved: Includes loopback, link-local, site-local, and so on.

Fact Three—ARP
There is no ARP! MAC to IP mapping is no longer needed as MAC addresses are
embedded into IPv6 addresses. Instead, ND is born. ND is used to auto-configure
addresses on hosts, duplicated detection, and so on.

•

•

•

•

•

•

•

•

•

•

Chapter 11

[177]

Fact Four—Interface Configuration
If you are new to IPv6, you will be shocked to see an IPv6 address, telling yourself
that you are in trouble assigning addresses to interfaces or remembering the
addresses. However, it is not all that hard. In most cases, you can have your host
autoconfigure IPv6 address on its interfaces. Typically, you should set this up only
on your network gateway (router) manually.

Using IPv6
Running FreeBSD 7, the kernel is already IPv6 enabled. However, you should
manually enable IPv6 in the UserLand, by adding the following line to the
/etc/rc.conf configuration file:

ipv6_enable="YES"

And manually start the appropriate rc script (or reboot the system) for the changes to
take effect:

/etc/rc.d/network_ipv6 start

This will enable IPv6 on all interfaces that are IPv6 capable. This behavior is changed
by modifying the following variable in the /etc/rc.conf file:

ipv6_network_interfaces="fxp0 bge0"

This will enable IPv6 support on specified interfaces. The default value for this
variable is auto.

Once you enable IPv6, interfaces will discover the IPv6 enabled routers on the
network and build their own IPv6 addresses based on the network prefix they
receive from the router.

Configuring Interfaces
In a typical scenario, IPv6 network stack will automatically look for an IPv6 enabled
router on the same network for each interface and try to automatically configure the
IPv6 address on the interface.

The following is an example of an automatically configured interface:

ifconfig ed0

ed0: flags=8843<UP,BROADCAST,RUNNING,SIMPLEX,MULTICAST> metric
0 mtu 1500
 ether 00:1c:42:8d:5d:bf

Network Configuration—IPv6

[178]

 inet6 fe80::21c:42ff:fe8d:5dbf%ed0 prefixlen 64 scopeid 0x1
 inet 192.168.0.225 netmask 0xffffff00 broadcast 192.168.0.255
 inet6 2a01:3c8::21c:42ff:fe8d:5dbf prefixlen 64 autoconf
 media: Ethernet autoselect (10baseT/UTP)

Beside the IPv4 address, there are two IPv6 addresses on the interface. One address
begins with fe80:: and identified with the scopeid 0x1 tag, which is called a
link-local address. Another address begins with 2a01:3c8::, which is the unicast
address of this interface.

The unicast address prefix is obtained from the IPv6 router on the network. The
whole address is created using the 64 bits Extended Unique Identifier (EUI-64)
algorithm, which consists of the hosts MAC address with some minor modifications.

The link-local address (that is from the reserved address pool) always starts with
fe80:: and is used for local network usage. This can be compared with RFC1819
private addresses that are suitable for local use. The network stack will automatically
assign a link-local address to each IPv6 enabled interface, regardless whether an IPv6
router is discovered on the network. This means that in a scenario of a home network
or a lab network, you do not need to run an IPv6 router or have a valid IPv6 prefix
in order to establish an IPv6 network. All the hosts will be automatically provisioned
with a link-local address, so they can exchange IPv6 traffic.

The network discovery protocol (NDP) helps the host find the router on the network
and then create a unicast address for the interface. NDP is known as the equivalent
to ARP protocol in IPv6. The ndp(8) utility is used to control the behavior of
this protocol:

ndp -a

Neighbor Linklayer Address Netif Expire S Flags
2a01:3c8:: 0:16:cb:98:d4:bf ed0 20s R R
2a01:3c8::21c:42ff:fe8d:5dbf 0:1c:42:8d:5d:bf ed0 permanent R
fe80::216:cbff:fe98:d4bf%ed0 0:16:cb:98:d4:bf ed0 23h58m48s S R
fe80::21c:42ff:fe8d:5dbf%ed0 0:1c:42:8d:5d:bf ed0 permanent R
fe80::1%lo0 (incomplete) lo0 permanent R

The above example shows the discovered IPv6 hosts. The ed0 interface is connected
to an IPv6 enabled network and receives a valid prefix via a router (the first entry of
the list). The second entry is the unicast address of the ed0. The third and the fourth
entries are link-local address for the router and our host. And the last entry belongs
to the local host.

Chapter 11

[179]

As you have seen so far, there are some special (reserved) IPv6 addresses. The
following table shows a list of reserved addresses:

Address Name Description
 :: Unspecified Equivalent to 0.0.0.0 in IPv4
 ::1 Loopback address Equivalent to 127.0.0.1 in IPv4
fe80:: Link-local

fec0:: Site-local

ff00:: Multicast

In case you want to configure the static IPv6 address on an interface, it can be done
as in a typical IPv4 scenario:

ifconfig vr0 inet6 2a01:3c8::21c:42ff:dead:beef prefixlen 64

This will manually configure an IP address on the specified interface. Note the
prefixlen keyword that is equivalent to subnet mask in IPv4.

Routing IPv6
Similar to IPv4, your host does not automatically forward IPv6 traffic between
interfaces, by default. In order to enable packet forwarding between the two
IPv6 enabled interfaces, you should modify the net.inet6.ip6.forwarding
sysctl variable:

sysctl net.inet6.ip6.forwarding=1

This can also be achieved by adding the following variable to the /etc/rc.conf file:

ipv6_gateway_enable="YES"

After enabling IPv6 forwarding in the /etc/rc.conf file, you should reboot your
system or run relevant rc script:

/etc/rc.d/network_ipv6 restart

The rtadvd(8) daemon is another component that you may want to enable on
a IPv6 router. As mentioned earlier, the hosts automatically configure the IPv6
addresses on their interface, based on the advertisements they receive from the
IPv6 enabled routers on the same subnet. These advertisements are called Router
Advertisement (RA) packets. The rtadvd(8) daemon sends router advertisements
on the specified network interfaces, helping hosts to automatically configure IPv6
address on their interfaces. This is done based on the IPv6 prefix it advertises, as well
as identifying itself as the gateway for the network.

Network Configuration—IPv6

[180]

To enable rtadvd(8), add the following lines to /etc/rc.conf (ensuring that your
host is also configured to forward IPv6 traffic):

rtadvd_enable="YES"
rtadvd_interfaces="bge0"

Make sure that you only enable transmission of RA packets on interfaces
that you need to do. This can be done using the rtadvd_interfaces
variable.

Now you should create a configuration file for the rtadvd(8) daemon. This file
controls the behavior of the rtadvd(8) daemon. The rtadvd daemon reads
/etc/rtadvd.conf upon start up, to find out how it should send RA packets. A
sample rtadvd.conf file looks like the following:

bge0:\
 :addr="3ca1:511:ffff:4000::":prefixlen#64:

This tells rtadvd daemon to advertise itself as a router for subnet 3ca1:511:
ffff:4000::/64.

Please see the rtadvd.conf(5) manual pages for more information about various
options that you can use in this configuration file.

It would be a good idea to use the tcpdump(1) utility to see how the RA
packets are being sent.

Please note that in this case your machine is configured as a router and not a host,
which has a special meaning in IPv6. In IPv6 terminology, a host is a machine that
sends Router Solicitation messages or listens for RA packets to figure out its IPv6
address configuration as well as its gateway. On the other hand, a router is a machine
that sends RA packets and is able to forward packets to the correct destination.

RIP6
FreeBSD 7 has built-in routing daemons that support RIPv1 and RIPv2 for IPv4
and RIPng or RIP6 (RFC 2080) for IPv6. The routing daemon that supports RIP6 is
routed6d(8).

The route6d(8) daemon is almost equivalent to its IPv4 counterpart and can be
enabled by setting the following variable in the /etc/rc.conf file:

 ipv6_router_enable="YES"

Chapter 11

[181]

Multicast Routing
The ability to route multicast traffic in FreeBSD 7 is available using third-party
software that can be used from ports collection. The net/mcast-tools port allows
Protocol Independent Multicast Sparse-Mode (PIM-SM Version 2), PIM-Source-
Specific Multicast (SSM using PIM-SM), and Protocol Independent Multicast
Dense-Mode (PIM-DM Version 2) routing.

Once installed, the functionality is enabled by adding this line to /etc/rc.conf:

mroute6d_enable="YES"

This will automatically enable the pim6dd(8) (dense mode) daemon. If you are
planning to use pim6sd(8) (sparse mode), you should also add the following line to
/etc/rc.conf:

mroute6d_program="/usr/local/sbin/pim6sd"

Tunneling
There are certain cases where you want to set up a tunnel to transport IPv6 traffic
over your existing IPv4 network. This can be a site-to-site VPN between two IPv6
enabled networks, or getting IPv6 connectivity to an IPv6 service provider. There are
different methods by which you can set up such tunnels. The most popular methods
are gif(4), faith(4), and stf(4).

GIF Tunneling
There are chances that you do not have native IPv6 connectivity to the internet. In
that case, you can still set up a non-native (tunneled) IPv6 connection to the internet.

There are several services that offer tunneling to IPv6 networks, such as
www.sixxs.net. The only thing you should do is to sign up for such a service
and set up a tunnel internet according to their instructions.

This is mostly done by encapsulating IPv6 traffic over a gif(4) tunnel that is
established over IPv4 to the other end. In most cases, setting up such connectivity is
pretty straightforward.

Network Configuration—IPv6

[182]

A sample tunnel setup would look like this:

ifconfig gif0 create

ifconfig gif0 tunnel x.x.x.x y.y.y.y

ifconfig gif0 inet6 2001:470:1F03:26c::2 2001:470:1F03:26c::1
prefixlen 128

route -n add -inet6 default 2001:470:1F03:26c::1

ifconfig gif0 up

In the above example, a gif interface is created and established between x.x.x.x
(your IPv4 address) and y.y.y.y (your tunnel broker's IPv4 address). Then you
should assign IPv6 addresses to the tunnel. In this case, 2001:470:1F03:26c::2 is
assigned to your side of the tunnel and 2001:470:1F03:26c::1 to the other side of
the tunnel. The latter is used as your IPv6 gateway as well.

The tricky part is setting up a default gateway for all IPv6 traffic to the other side of
the tunnel, which is done using the route command (note the -inet6 flag).

Once you have finished setting up the tunnel, you may want to test your connectivity
by pinging the other side of the tunnel using the ping6(8) utility.

Summary
FreeBSD has had IPv6 support in the base operating system since its early versions.
This support has become more mature in recent releases. Since we covered basic
configuration for IPv6 in this chapter, you may want to do more complex things that
are not covered here. There are a few useful and up-to-date resources that you can
find on the net—one of them being the FreeBSD handbook section on IPv6 and IPv6
internals in the developer's handbook. It is also recommended that you read Running
IPv6 book, which contains detailed explanations of deploying the IPv6 network, with
examples involving various operating systems, including the FreeBSD.

Network Configuration—
Firewalls

According to FreeBSD's CVS commits history, FreeBSD has had built-in firewall
capability since 1994. Obviously, the built-in firewall has improved a lot to meet
today's needs. There are two main firewall technologies available in FreeBSD
7—IPFW and PF, each of which offers almost similar functionalities, but with
different rule-set syntax.

IPFW is a FreeBSD firewall utility which has been in the source tree since 1994. It
offers basic firewall capabilities such as stateless and stateful packet inspection, as
well as DUMMYNET pipes, ALTQ for traffic shaping, and DIVERT sockets.

PF is a new firewall utility ported from the OpenBSD project, back in 2003. PF is a
full-featured firewall utility with optional QoS support using ALTQ framework.

This chapter will explain the basic and intermediate setup and configuration of both
IPFW and PF. IPFW and PF are both in active development and more features will be
added later. There are plenty of valuable resources, on both these powerful firewall
programs, available on the internet.

In this chapter, we will look into the following:

Packet filtering with IPFW
Packet filtering with PF
Network address translation.

•

•

•

Network Configuration—Firewalls

[184]

Packet Filtering with IPFW
IPFW (IPFIREWALL) is the oldest firewall package in FreeBSD. However, it has
evolved since its initial import in 1994, although it is still widely used on FreeBSD
installations. It is also natively available on Apple Mac OS X (which is itself based on
FreeBSD code).

IPFW is a complicated firewall package. We will discuss the basics of
its functionalities in this chapter. It is highly recommended that you read
ipfw(8) manual pages for detailed information about this
firewall package.

IPFW is not statically linked into the system's default GENERIC kernel, but will be
automatically loaded if IPFW is enabled in the rc.conf configuration file.

To enable IPFW, you should add the following line to the /etc/rc.conf file:

firewall_enable="YES"

Upon system boot up process, the system will automatically load the ipfw.ko
module and dynamically link it to the kernel.

The default policy for IPFW is to deny all IP traffic. Be careful while
enabling IPFW from a remote network session (for example SSH) or on a
production server, as it may completely lock you out of the box and block
all outgoing and incoming network traffic.

You may also prefer to re-build a customized kernel with built-in IPFW module for
better performance and more control. To do so, you will need to create a customized
kernel configuration file and add the following line to it (for more information on
how to build a customized kernel, please refer to Chapter 2):

options IPFIREWALL

This will statically link IPFIREWALL module into the kernel. Statically linking the
IPFIREWALL module offers better performance as compared to the dynamically
loaded module.

IPFW blocks all traffic by default. To change this behavior, you should also add the
following line to your kernel configuration file:

options IPFIREWALL_DEFAULT_TO_ACCEPT

As the name suggests, this will change the default behavior to accepting all traffic
instead of blocking it.

Chapter 12

[185]

There are also a few more options that you can add to the kernel configuration file
that affects the ipfw behavior. This includes enabling the syslogd(8) logging feature:

options IPFIREWALL_VERBOSE
options IPFIREWALL_VERBOSE_LIMIT

This can also be done by adding the following line to the /etc/rc.conf file:

firewall_logging="YES"

Once you have finished enabling the firewall, either by rebuilding the kernel or by
loading the kernel module dynamically, you should create your own firewall ruleset.
The ruleset is then saved to any custom configuration file and loaded by ipfw during
boot time (or manually).

Obviously, you should have a clear plan on which packets you are going
to permit or block. You are advised not to start writing firewall rules
without having a well thought-out firewall plan. Otherwise you may
create a big mess rather than securing your network or host.

Basic Configuration
The good news is that ipfw(8) has a very clear and readable rule syntax. A simple
ipfw(8) rule looks like the following:

add 100 permit ip from 192.168.1.0/24 to any

The first keyword in the above example is a command that tells ipfw that you are
actually "adding" a new rule, and the rule number you selected is 100, which is
optional. If you do not specify a rule number, ipfw will choose the first free number
(starting from 100) and increments the number by 100 for further rules (for example
200, 300 and so on). This is very useful, when you want to actually "insert" a firewall
rule in a specific location into an existing ruleset (we will come back to this, later in
this chapter).

IPFW evaluates the rules sorted by the rule number. A packet is tested
against first rule in the list and action will be taken once packet matches
with a rule in the list. Once matched, no further check will be performed
on the packet, and the specified action (for example permit, deny, forward,
and so on) will be taken before IPFW proceeds to the next packet.

Network Configuration—Firewalls

[186]

The very last rule in a ruleset is either a DENY ALL (default behavior), or a PERMIT
ALL rule. In normal mode, if a packet does not match with any of the rules, it will
be matched with the last rule in the ruleset. Depending on your configuration, the
packet may be permitted (or be allowed) to pass.

The next keyword in the rule (in this case permit) is the "action" that you want to
perform on the matching packet. If you want to actually permit the packet, you
should choose either allow, or accept, or pass, or permit keyword. Use the one you
are more comfortable with, as they are all the same. If you want to drop the matching
packet, you should use either the drop or deny keyword. We will discuss more
keywords later in this chapter.

After the "action", the actual packet-matching pattern is placed. In this case—permit
ip from 192.168.1.0/24 to any—we are trying to match all IP traffic coming
from subnet 192.168.1.0/24 to any host on the network.

In this case, only IP headers are looked into, hence we should use the ip keyword.
IPFW can look into layer2 (for MAC addresses), layer3 (for IPv4 and IPv6 addresses),
and layer4 (for TCP/UDP port numbers) to match the packet.

After the from keyword, the source address should be specified. This can be done
by specifying the subnet, or host information (since we are looking into layer3
header) using a very flexible syntax. You can use a CIDR notation (like we did in this
example) or use traditional subnet mask style (for example 192.168.1.0:255.255.2
55.0, note the colon character between the address and the mask).

There are also a few special keywords that are used instead of the actual address, like
the keyword any that we used after the to keyword, to specify the
destination address.

The keyword, any, matches any IP address, while the me keyword matches
IP addresses that are configured on any of the interfaces of our host.

To add this sample rule to active firewall configuration from command line, the
following syntax is used:

ipfw add 100 permit ip from 192.168.1.0/24 to any

Chapter 12

[187]

You can then verify the change by using the ipfw show command:

ipfw show

00100 0 0 allow ip from 192.168.1.0/24 to any
65535 8465 888556 deny ip from any to any

The ipfw show command shows the current "static" ruleset, and does not show any
dynamically created rules, by default. The static ruleset is the ruleset that you have
created. On the other hand, IPFW also adds "dynamic" rules to your ruleset, which
we will discuss later in this chapter.

As you may have noticed, the last line of the ipfw show command output is the
default firewall action. In any case, if the packet going through the firewall rules
does not match any of the rules, this rule is applied to the packet. In this case, the
default behavior of the firewall is to "deny" any packet that did not match any rule
in the ruleset. This rule is always the last rule (number 65535), and cannot be
manually modified.

Another note about the ipfw show command is that it shows the number of packets
matched with each rule, (second column) and the traffic volume in bytes (third
column), which is very useful while troubleshooting your firewall configuration.

To change the default firewall behavior, you should reconfigure your kernel by
adding the IPFIREWALL_DEFAULT_TO_ACCEPT option, or by simply adding another
rule right before the last statement:

ipfw add 65000 allow ip from any to any

Though it is not recommended to have a default permit rule in your
firewall configuration, this is needed in some configurations.

Ruleset Templates
Now that you know the basic configuration syntax for ipfw, you can create a
simple firewall ruleset for your host. Your FreeBSD 7 system also includes several
configuration templates defined in the /etc/rc.firewall configuration file that are
quite useful in some scenarios.

Network Configuration—Firewalls

[188]

You can use one of the following five templates (or create your own
customized ruleset):

Ruleset name Description
open Simply permits all IP traffic from any interface.
closed Disallows all traffic except on the loopback interface.
client Protects the host with some basic firewall rules and prevents all

incoming connections, as this host is a client(tweak the /etc/
rc.firewall file to set up your network information).

simple Considers your host to be a router with two interfaces, and installs
some basic firewall rules to prevent IP spoofing and also blocks
inappropriate traffic such as RFC 1918 and other reserved addresses
on the outside interface. Also permits HTTP, DNS and SMTP traffic
from the outside world to the host. (tweak /etc/rc.firewall for
appropriate network setup)..

workstation Typical workstation setup where a connection from the host to the
outside world is allowed and a few types of incoming traffic (such as
icmp) are permitted. This template can be customized by setting up
appropriate variables in the /etc/rc.conf file.

Using any of the above templates is achieved by adding appropriate variables in
/etc/rc.conf. For example, in order to use the open template, you should add the
firewall_type variable to the /etc/rc.conf file:

firewall_enable="YES"
firewall_type="open"

This will load and apply the open profile from /etc/rc.firewall.

Customized Rulesets
In case you want to create your own ruleset, disregarding the default system firewall
templates, you should create a configuration file containing your ruleset. After this,
load it from rc.conf by specifying the ruleset filename, instead of the template
name. For example, if you have created a configuration file called /etc/myrules.
conf, you should add the following line to /etc/rc.conf:

firewall_type="/etc/myrules.conf"

This will load your firewall ruleset when the /etc/rc.d/ipfw script is called (either
manually or during system startup).

The file should contain one or more lines each containing a single IPFW rule, just like
the command line syntax.

Chapter 12

[189]

It is always a good idea to clear all existing firewall rules by specifying the
flush command in the first line of the configuration file.

A sample ruleset file looks like the following code:

flush
add check-state
add allow tcp from me to any setup keep-state
add allow tcp from 192.168.1.0/24 to me keep-state
add allow ip from 10.1.1.0/24 to me
add allow ip from any to any

The above example shows a typical ruleset file that is loaded from the command line
or from rc.conf, upon system startup, as mentioned earlier.

This sample also illustrates a stateful ruleset. A stateful ruleset is a set that contains
one or more keep-state keywords. Once a packet matches a rule with a keep-state
keyword, a "dynamic rule" with the exact information about the matched packet, and
a limited lifetime, is created automatically. This will let the firewall pass the traffic
for this specific traffic flow, without checking further rules in the ruleset.

To make this happen, you should add a check-state rule before any other stateful
statement (the first line in your ruleset would be a good idea; but you can relocate it
to any place of your choice depending on your firewall configuration).

Once a check-state is seen in a firewall ruleset, the packet will be checked against
all dynamic rules.

To see a list of existing dynamic rules, you should use -d in conjunction with the
ipfw show command as shown here:

ipfw -d show

00010 0 0 check-state
00020 9562 4123 allow tcp from me to any setup keep-state
00030 718 9965 allow tcp from 192.168.1.0/24 to me keep-state
00040 618 6565 allow ip from 10.1.1.0/24 to me
00100 1671 2734 allow ip from any to any
65535 465 4556 deny ip from any to any
Dynamic rules (4):
00020 1024 53913 (242s) STATE tcp 192.168.1.2 63142 <->
210.21.10.239 443
00020 0 734 (239s) STATE tcp 192.168.1.2 49313 <-> 209.216.195.2 80
00020 12032 495902 (177s) STATE tcp 192.168.1.2 56770 <-> 72.14.215.99
80
00020 10752 571074 (287s) STATE tcp 192.168.1.2 55407 <-> 84.241.58.34
443

Network Configuration—Firewalls

[190]

Dynamic rules have a limited lifetime. The default lifetime for a dynamic
rule is 300 seconds, and this can be changed using variables under the
net.inet.ip.fw sysctl subtree.

Logging
There may be times when you have to have a deeper look into your firewall rules,
and get more details on what is being matched by a rule. This is possible using the
IPFW's built-in logging facility. Logging can be enabled for each rule in a firewall
ruleset as follows:

add 200 allow log tcp from 192.168.0.0/24 to any

The above rule tells ipfw to log every matching packet with this rule (hence the log
keyword right after the action keyword, in this case allow) into the LOG_SECURITY
facility of syslogd(8).

In order to enable logging feature in IPFW, you should either add the
IPFIREWALL_VERBOSE option to kernel or set the net.inet.ip.fw.
verbose sysctl variable to 1.

Once a packet is matched with a firewall rule with the log keyword, a message will
be logged to syslog. In a normal system configuration, you can find these messages
in the /var/log/security file as shown here:

tail /var/log/security

Oct 9 19:43:33 home kernel: ipfw: 60 Accept TCP 192.168.0.5:22
192.168.0.222:52195 out via fxp0
Oct 9 19:43:33 home kernel: ipfw: 60 Accept TCP 192.168.0.5:22
192.168.0.222:52195 out via fxp0
Oct 9 19:43:33 home kernel: ipfw: 60 Accept TCP 192.168.0.222:52195
192.168.0.5:22 in via fxp0
Oct 9 19:43:33 home kernel: ipfw: 60 Accept TCP 192.168.0.222:52195
192.168.0.5:22 in via fxp0
Oct 9 19:43:33 home kernel: ipfw: 60 Accept TCP 192.168.0.5:22
192.168.0.222:52195 out via fxp0
Oct 9 19:43:33 home kernel: ipfw: 60 Accept TCP 192.168.0.5:22
192.168.0.222:52195 out via fxp0
Oct 9 19:43:33 home kernel: ipfw: 60 Accept TCP 192.168.0.222:52195
192.168.0.5:22 in via fxp0
Oct 9 19:43:34 home kernel: ipfw: 60 Accept TCP 192.168.0.5:22
192.168.0.222:52195 out via fxp0
Oct 9 19:43:34 home kernel: ipfw: 60 Accept TCP 192.168.0.5:22
192.168.0.222:52195 out via fxp0

Chapter 12

[191]

Oct 9 19:43:34 home kernel: ipfw: 60 Accept TCP 192.168.0.222:52195
192.168.0.5:22 in via fxp0

In the above example you can see the SSH traffic (TCP port 22) between
192.168.0.222 and 192.168.0.5 being transmitted and received on the fxp0
interface. The log entry includes the date and time, as well as the direction of
the packet.

Network Address Translation (NAT)
IPFW has built-in support for NAT function that can be enabled using the
nat keyword.

IPFW's NAT support would be available, only if kernel is configured with
following options:

options IPFIREWALL_NAT
options LIBALIAS

To add a NAT rule, a firewall rule for matching traffic should be added:

add nat 100 ip from any to any

This will create a new NAT instance (in this case the instance number is 100) that
matches all IP traffic. Then you should add another rule that contains more detailed
configuration about this NAT instance:

nat 100 config ip 81.20.55.1 deny_in unreg_only

This configuration statement indicates the NAT behavior. In this case, the matched
packets will be translated to the IP address 81.20.55.1 (which is obviously already
configured on an interface). There are also two other options used in this sample.
The deny_in keyword indicates that all incoming connections are denied. And the
other keyword, unreg_only, tells IPFW that only packets coming from unregistered
IP address space (RFC1719) should be translated (which is what we use NAT for in
most cases).

The following is a list of acceptable keywords in NAT configuration with a
short description:

Keyword Description
ip Indicates the IP address that should be used for aliasing. An IP address

should be specified after this keyword.
if Indicates an Interface to be used for aliasing, instead of an IP address.

An interface name should be used after this keyword.

Network Configuration—Firewalls

[192]

Keyword Description
log Enables syslog logging for the NAT instance.
deny_in Denies all incoming connections.
same_port Does not translate port numbers but keeps the same port number on the

alias IP address.
unreg_only Performs translation only on RFC 1719 (unregistered) addresses.
reset Resets NAT translation table, when the IP address on the interface

changes.
reverse Reverses NAT (swap inside and outside).
proxy_only Does not actually translate packets. Is used for transparent proxying.

Traffic Shaping
Basically, IPFW supports traffic shaping, with dummynet(4) pipes and queues , using
WFQ2+ algorithm. In fact, IPFW is the user interface to dummynet(4) traffic shaper
framework. In order to shape (or limit) traffic flow, the flow should be passed from
two objects—a pipe and a queue.

A pipe is basically a virtual path that emulates a connection with a specified
bandwidth, propagation delay, and packet loss pattern. On the other hand, a queue
is actually a buffer object to enforce the WFQ2+ queuing strategy on the traffic.

Using IPFW's traffic shaping facilities, you can define pipes with specific bandwidth,
packet-loss rate, propagation delay, and assign a queue with specific size to the pipe.

For example, here we can create two pipes, each of them with different behavior:

pipe 1 config bw 512kbps delay 10 plr 0.01
pipe 2 config bw 256kbps delay 10

This will simply configure the first pipe to limit matching traffic to 512kbps with
10ms propagation delay, and one percent packet-loss. It also configures the second
pipe to limit matching traffic to 256kbps, with 10 milliseconds propagation delay,
and no packet-loss rate configured.

Pipes are ineffective unless they are assigned to policies. So here we've assigned
them with traffic-matching policies:

add pipe 1 ip from any to any in via xl0
add pipe 2 ip from any to any out via xl0

This will assign rules to pipes. The first pipe matches all incoming IP traffic on interface
xl0, and the second pipe matches all outgoing IP traffic on interface xl0.

Chapter 12

[193]

The pipe configuration can be verified later using the ipfw pipe show command:

ipfw pipe show

00001: 512.000 Kbit/s 10 ms 50 sl.plr 0.010000 0 queues (1 buckets)
droptail
00002: 256.000 Kbit/s = 10 ms 50 sl. 0 queues (1 buckets) droptail

Possible configuration parameters for pipes are listed in the following table:

Parameter Description
bw Indicates bandwidth limit in kbps, mbps, or their equivalents, to given

network device name.
delay Indicates propagation delay in milliseconds.
plr (Packet Loss Rate) A floating-point number between 0 and 1 that causes

packets to be randomly dropped, simulating an unstable network link.
queue Specifies the size of each pipe's queue. A queue holds packets before

forwarding them. If a queue has no space left for more packets, it starts
dropping packets.

Packet Filtering with PF
Compared to IPFW, that has been in FreeBSD for a long time, PF is a newcomer.
It was imported from the OpenBSD project, in 2003 as a third-party software and
found its way to the base system in 2004. Since then, PF has been a very popular and
a powerful firewall package that many FreeBSD users prefer to use.

PF is not statically linked to the GENERIC kernel, and should be enabled either
by loading the kernel module dynamically, or by statically linking it into a
customized kernel.

In order to create a new kernel with PF support, you should add at least one line to
your kernel configuration file, recompile it, and install the new kernel:

device pf

You should then enable PF in the rc.conf file by adding the following line:
pf_enable-="YES"

PF kernel module will be automatically loaded if it is not statically
compiled into the kernel. You can choose to use either the in-kernel or the
dynamic module.

By default, PF reads its configuration from the /etc/pf.conf file. So make sure that
the file exists before you can make PF start automatically on system startup.

Network Configuration—Firewalls

[194]

PF Configuration Syntax
Compared to the IPFW, PF has a complex syntax. However, with greater complexity
comes greater flexibility. Creating a PF configuration file is very similar to writing
shell scripts. This is because, PF takes advantage of Macros, Tables, and many other
advanced features that we will learn in this chapter.

PF has many configuration options and advanced features that we will
not cover in this chapter. It is recommended that you read the official PF
FAQ at http://www.openbsd.org/faq/pf for more up-to-date and
in-depth information about PF.

We will create a typical PF configuration sample in this chapter and discuss the
anatomy and syntax of the configuration file:

Macros

ext_if="fxp0"
int_if="bge0"
internal_net="192.168.10.0/24"
external_addr="192.168.1.1"

Tables

table <trusted> { 192.168.32.0/19, !192.168.35.0/24, 192.168.0.0/24,
192.168.1.18 }

Options

set loginterface $ext_if
set block-policy drop

Scrub

scrub in all

Queueing

altq on $ext_if bandwidth 8Mb cbq queue { other, datacenter, sales }
queue other bandwidth 5% cbq(default)
queue sales bandwidth 15%
queue datacenter bandwidth 80%

Translation

nat on $ext_if from $internal_net to any -> ($ext_if)
rdr on $ext_if proto tcp from any to $external_addr/32 port 1234 ->
10.1.1.1 port 5678

Chapter 12

[195]

Filtering

pass out all
block in log all

pass in quick on $ext_if proto tcp from any to $ext_if port 22
pass out on $ext_if proto { tcp, udp } all

pass in on $ext_if proto { tcp, udp } from any to <truested> port 80

pass out on $ext_if from 192.168.0.0/24 to any queue datacenter
pass out on $ext_if from 192.168.1.0/24 to any queue sales

A typical PF configuration file consists of several sections, which are listed here:

1. Macros
2. Tables
3. Options
4. Scrub
5. Queuing
6. Translation
7. Filter Rules

Note that you should keep the same order of sections (if that section exists at all)
within your configuration file.

Macros
A Macro is actually a variable that you would use several times in your configuration
file. The macros are meant to simplify the task of administration. A typical example
of using macro is for interface names and frequently used IP addresses and port
numbers as you saw in the above example. A macro is referenced later in the
configuration with a leading "$" character. There is also the concept of "list" in the
configuration, which is a list of items enclosed in "{" and "}" brackets. The list is then
expanded into separate items when PF interprets the configuration files. You can use
the lists to simplify the configuration file and make it more compact. In the example
above, the line that contains a "list" is shown in the following code:

pass out on $ext_if proto { tcp, udp } all

The above code is expanded into the following codes:

pass out on $ext_if proto tcp all
pass out on $ext_if proto udp all

Network Configuration—Firewalls

[196]

The keyword all is the short version of from any to any. In the above example,
the rule will ultimately translate to the following code:

pass out on fxp0 proto tcp from any to any
pass out on fxp0 proto udp from any to any

Tables
A Table is a list of IP addresses. You can also keep the list of IP addresses in Macros.
However, the main difference between tables and Marcos is the speed of lookup
in tables. You can keep a large number of IP addresses in a table with very low
overhead and very fast lookup. A table can be marked persistent, which means, it
will not be removed from memory if it is empty.

As you see in the sample configuration, a table name is always enclosed within "<"
and ">" signs.

Options
There are a number of global options that PF uses internally. These options start with
the set keyword and have global effects on PF behavior. As you saw in our sample
configuration file, we have used two options. also in our example, we are using
two options:

set loginterface $ext_if
set block-policy drop

The first option enables statistics logging on the $ext_if interface which is in fact
the fxp0 interface while the second option defines the default behavior of the block
keyword. Using this option, we can specify whether the "block" action should simply
"drop" a packet or return a message to the sender (such as ICMP unreachable message
or TCP RST) which indicates that the packet has not reached its ultimate destination.

Scrub
Scrub or Normalization is an important feature of PF. Scrubbing means receiving
a full packet, reassembling it, if it's fragmented, and checking it for any abnormal
patterns. This process will help identify and then drop abnormal packets (for
example orphan fragments). The single rule under the scrub section in our
configuration sample indicates that all incoming packets on any interface should be
passed through a scrub sanity check.

Queuing
This section contains necessary rules for managing traffic using the
ALTQ framework.

Chapter 12

[197]

Translation
The NAT (nat, binat) as well as redirection and port forwarding rules (rdr) are
placed in this section. NAT is discussed later in this chapter.

Filter Rules
This is the most important part of the configuration file where most of the actual
packet-filtering rules reside. All the lines starting with block and pass actions are
placed under this section.

There are a number of things that you should remember while dealing with PF
configuration. First of all, remember that unlike IPFW, in which the first matching
rule wins, in PF, the last matching rule wins. This means that the packet is evaluated
against rules and it would match different rules within the ruleset. But the last match
is always taken into account, and the action specified by the last match is enforced.
However, the quick keyword is an exception to the rule. When a packet matches
a rule with a quick keyword, no more rules are evaluated and an action is
enforced immediately.

Unlike the IPFW, that had an explicit deny or pass rule at the end of our ruleset, here
we have the explicit rule at the beginning of the ruleset.

Each filter rule has an action and criteria that if a packet matches with the criteria, it
will be processed with associated action:

pass in quick on $ext_if proto tcp from any to $ext_if port 22

This line from our configuration sample has a pass action for any packet that
matches its criteria. The criteria states that the action should be enforced on packets
coming inside (hence the in keyword) from outside, on the interface fxp0 (extracted
from $ext_if variable).Their layer4 protocol is TCP, layer4 destination is port 22,
and their layer3 destination is the address that we have on fxp0 interface. Once this
criteria is met, the action is immediately enforced; hence the quick keyword. In case,
there is no quick keyword in the rule, the packet is evaluated against all remaining
rules until it reaches the end of ruleset.

Controlling PF
The pfctl(8) utility is the universal control utility for the PF firewall. It is used to
communicate with PF driver to send commands or query for information.

You can disable PF filtering engine by running pfctl -d and enabling it by using
the pfctl -e commands. This is useful when you want to temporarily disable
your firewall.

Network Configuration—Firewalls

[198]

You can also see the current PF configuration and statistics using the
pfctl command:

pfctl –s rules

No ALTQ support in kernel
ALTQ related functions disabled
scrub in all fragment reassemble
pass out all flags S/SA keep state
pass in log all flags S/SA keep state
pass in quick on msk0 inet6 proto tcp from any to fe80::215:f2ff:
fe6f:5468 port = ssh flags S/SA keep state
pass out on msk0 proto tcp all flags S/SA keep state
pass out on msk0 proto udp all keep state
pass in on msk0 proto tcp from any to <truested> port = http flags S/
SA keep state
pass in on msk0 proto udp from any to <truested> port = http keep
state
pass out on msk0 inet from 192.168.0.0/24 to any flags S/SA keep state
queue datacenter
pass out on msk0 inet from 192.168.1.0/24 to any flags S/SA keep state
queue sales

Using -s parameter, PF displays various information about the PF configuration.
The following table shows a list of keywords that are used in combination with
the -s flag:

Keyword Description
nat Displays NAT rules
queue Displays Queue rules
rules Displays filter rules
Anchors Displays anchors
state Displays contents of state table
Sources Displays contents of source tracking table
info Displays statistics for active rules
labels Displays detailed per-rule statistics
timeouts Displays time-out settings
memory Displays memory limits
Tables Displays list of currently loaded tables
osfp Displays list of OS fingerprints database
Interfaces Displays list of interfaces. Also displays verbose per-interface

statistics when used with "-vv" parameter
all Displays all above information except for interfaces and osfp

Chapter 12

[199]

Network Address Translation using PF
and IPFW
Different methods of NAT can be implemented using both PF and IPFW in FreeBSD.
Several combinations are listed here:

IPFW in conjunction with natd(8)
IPFW and in-kernel NAT (libalias)
built-in PF NAT

Prior to FreeBSD 7, there was no built-in support for NAT in IPFW. This is where
natd(8) kicks in. IPFW can be used to divert raw traffic to natd(8) daemon,
which is a network address translation daemon. IPFW cannot divert packets, unless
necessary kernel options are enabled:

options IPDIVERT

Adding this line to your kernel configuration enables your kernel to be able to divert
raw IP packets to an external daemon, using the IPFW's divert rule:

ipfw add divert natd ip from any to any via fxp0

Using this rule, ipfw redirects all ip traffic that is passing from the fxp0 interface to
natd daemon. The natd daemon then decides whether the packet should be translated
or not, and then re-injects the packet into the network stack after processing.

The configuration for natd daemon is pretty straightforward. The daemon should be
enabled from the /etc/rc.conf configuration file, as usual:

natd_enable="YES"

This basically enableas natd(8) daemon to start automatically, upon system
boot. However, you should also tell natd, which interface is your public or WAN
interface, so that natd uses the addresses on that interface for translation. This can be
done using variables in the /etc/rc.conf file:

natd_interface="bge0"
natd_flags="-u -l"

This is a typical scenario where we have enabled natd and configured it to translate
traffic to the address that is configured on interface bge0. There are also two important
options we have configured along with natd. The first parameter, -u, tells natd
to translate only the traffic, whose source address is an "unregistered" or basically
RFC1918 (private) addresses. This is very useful in a typical NAT scenario, where
you want to translate all traffic from private addresses to a public address. The other
parameter we used is -l that logs some statistics to the /var/log/alias.log file.

•

•

•

Network Configuration—Firewalls

[200]

As of FreeBSD 7, you can enable in-kernel NAT by adding appropriate options to the
kernel configuration:

options LIBALIAS
options IPFIREWALL_NAT

Of course you also need to add other IPFW options to your kernel configuration to
enable IPFW. By enabling this option, ipfw will be able to perform network address
translation, without any help from external daemons such as natd. Now you can
directly use ipfw's nat rule to perform any type of address translation.

Typical examples of ipfw nat rule look like the following commands:

ipfw add nat 50 ip from any to any via fxp0

ipfw nat 50 config if bge0 log unreg_only

This is equivalent to the previous example where we used natd. We added a nat
rule that is applied on all ip traffic that is passing from interface fxp0. On the next
line, we configured that nat is to translate all traffic from private addresses (hence
unreg_only parameter) to the IP address that is configured on bge0 (the if bge0
parameter), and also log the statistics.

For more information about various options of ipfw's built-in NAT functionality, it is
recommended that you read ipfw(8) manual pages.

As noted earlier, pf can also be used for network address translation. PF has built-
in address translation capability by design and there is no need for any external
daemon or any special kernel configuration to enable PF NAT.

You should add only the necessary NAT configuration to your PF configuration file
at /etc/pf.conf, under "translation" section. A typical PF NAT clause looks like the
following code:

nat on fxp0 from 192.168.0.0/16 to any -> (bge0)

This rule simply does the same as in our previous scenario. Any traffic from a private
address that we have specified manually will be translated to an ip address on the
bge0 interface. Please note the bge0 in parentheses means that PF will detect and
take care of IP address changes on bge0 interface for translation.

Chapter 12

[201]

Summary
FreeBSD's IPFW and PF firewalls let you turn your host into a complicated firewall
with many features that are available on commercial grade firewall appliances. All
you need to do is to get familiar with different configuration options of the firewall
software of your choice, and start writing your firewall rules.

IPFW is the legacy firewall package having many features, and ease of configuration
while PF is a newer firewall package with more features and better flexibility.

As a systems or network administration, having at least basic knowledge about any
of these two firewall packages and their features, is a must.

Network Services—Internet
Servers

FreeBSD is the operating system of choice for many enterprises as well as
individuals, especially for running various types of internet services. In fact,
many major service/content providers use FreeBSD as a reliable platform for their
mission-critical applications.

A typical FreeBSD installation can be easily turned into an internet server with
minimum effort. For example, you can set up a secure and reliable web server in a few
minutes, thanks to FreeBSD's easy-to-use, yet powerful, package management system.

Whatever you might need to turn your system into, a powerful internet server is
already available in the base system installation or in the ports/packages system.

In this chapter, we will quickly go through some important internet services and the
way you can set them up on your FreeBSD system. These include the following:

inetd daemon
SSH
NTP
DNS
FTP
Mail
Web
Proxy

•

•

•

•

•

•

•

•

Network Services—Internet Servers

[204]

inetd Daemon
The internet "super-server" or inetd is a wrapper around various smaller network
services. The inetd(8) utility listens to specified TCP or UDP ports. Once a
connection for each port is detected, it will launch an appropriate daemon and
handover the connection to that daemon. Once the connection is closed, the daemon
is also closed.

This will be very useful for the smaller services, such as tftp, finger, and ftp, as
they may not have a lot of requests, and consequently don't have to be loaded as a
separate daemon. So, they can listen in the background for new requests. Instead,
inetd(8) will play this role for these services and listen to as many ports, as
specified. Rather than running multiple services, only one service (inetd daemon)
will be loaded.

The inetd configuration file is located at /etc/inetd.conf, and it can be enabled
by adding the following line to the /etc/rc.conf file:

inetd_enable=YES

The default configuration of inetd does not listen for any incoming connection. The
configuration file contains sample configuration lines for popular services, but is
commented out. Hence, you should uncomment any line, depending on the service
you want to enable, and restart the inetd daemon.

For example, to enable FTP service on your host using inetd, you should
uncomment the appropriate line (remove the # mark from the beginning of the line)
in the /etc/inetd.conf file:

ftp stream tcp nowait root /usr/libexec/ftpd ftpd –l

You may have noticed that there are two lines for most of the services listed in the
inetd configuration file. Each line specified in the inetd configuration file should
listen to TCP (IPv4) or TCP6 (IPv6), if it is supported by the service, so that you can
specify each service over IPv4 or IPv6, separately.

In the previous example, we enabled FTP service over TCP/IPv4. In order to reload
the inetd configuration (if running), the following command should be issued:

/etc/rc.d/inetd reload

You can verify the inetd services using the sockstat(1) utility as follows:

sockstat -l | grep inetd

root inetd 797 5 tcp4 *:21 *:*

This shows that inetd is listening to TCP4 port 21 (which is FTP service).

Chapter 13

[205]

In case you want to add a service to inetd that is not listed in the default
configuration file, you can take any of the lines as a sample and modify it to suit your
own daemon.

The first parameter in each line (in this case, ftp) is the service name. The service
name is then looked up from the /etc/services file, to find out the actual port
number that should be listened to. In this example, the second parameter, stream,
specifies the socket type. A socket type can be one of stream, dgram, raw, rdm, or
seqpacket. A typical service running on TCP uses stream, while UDP socket type
is dgram. The third parameter in this example is protocol tcp. For UDP services, this
parameter should be changed to udp.

It is advisable to use tcp4, udp4, tcp6 ,udp6, tcp46, or udp46 instead
of tcp or udp, to specify whether a service should work on IPv4 or IPv6
(or both) protocol stacks.

The fourth parameter in each line (in this example, nowait) specifies whether inetd
should wait for the server to exit before listening for new requests. Generally,
services running on TCP protocol should use nowait and UDP should use the
wait option.

As TCP is a connection-oriented protocol, inetd accepts the new connection request
and passes the connection to the daemon. Once a new connection request is received,
inetd launches a new instance of the daemon, and passes the connection to
the daemon.

Unlike TCP, the UDP is connection-less and therefore the wait option is used.

The fifth parameter on the line (root in this example) is actually the user whom
daemon will launch, with its privilege. You may have noticed that almost all sample
services in the inetd.conf file will run with root privilege, which is not a good
practice in the production environment.

It is proposed that each daemon to run with a specific user having
limited privilege (for example, only have permission on required files
and directories), so that in case of any security breach, the scope of the
damage will be limited to that specific service and related files
and directories.

Finally the last parameter on the configuration line is the full path to the daemon
program including the command line parameters (if applicable).

Network Services—Internet Servers

[206]

To have a quick look at a custom inetd service, the following example shows
that inetd should listen to a port 69 UDP (tftp service), which is a dgram socket
using root user privileges to run the tftpd binary at /usr/libexec/tftpd with
appropriate parameters:

tftp dgram udp wait root /usr/libexec/tftpd tftpd
-l -s /tftpboot

tcpd
The inetd daemon does not give all the necessary controls over the service, such
as an access list to control the access to each service, or log incoming connection
attempts. The tcpd(8) utility introduces a method to control remote access to the
daemons that are launched from inetd.

In fact, tcpd(8) is a wrapper that wraps around the daemon and checks incoming
requests against access lists, and logs the connection attempt before actually passing
the connection to the daemon. This is achieved by modifying appropriate lines in the
inetd.conf file. The following example shows FTP daemon wrapped in a
tcpd wrapper:

ftp stream tcp nowait root /usr/libexec/tcpd ftpd -l

Once an incoming request arrives for FTP service, tcpd will be invoked first. The
tcpd wrapper looks in the /etc/hosts.allow file for a set of access rules. It will
then reject or accept the request, based on the access list.

In this example, we modify the hosts.allow file to limit ftp access to specific
subnets in our network. The default FTP related section in the hosts.allow file
looks like the following code:

Provide a small amount of protection for ftpd
ftpd : localhost : allow
#ftpd : .nice.guy.example.com : allow
#ftpd : .evil.cracker.example.com : deny
ftpd : ALL : allow

Note that the comments lines start with a # sign. The second line indicates that all
connections to the ftpd daemon from the localhost should be allowed. The last line
also allows access from any host (ALL keyword) to the ftp service.

Chapter 13

[207]

Once a match is found, tcpd will not look for more rules in the file. So if
you want to add a limiting rule to ftp section, it should be added before
the explicit allow rule at the end of the section.

Now, to add a rule to limit FTP access to 192.168.50.0/27 subnet, the following
line should be added:

ftpd : 192.168.50.0/27 : allow

You may want to comment out the other lines that permit the access to ftpd.

Looking at the hosts.allow file, you will find a few other examples for other
services such as sendmail, fingerd, ypserv (NIS), etc. You may want to add your own
service restrictions to the file, based on the inetd.conf definition.

You should also note that there are some lines starting with the ALL keyword that
would be applied on any service. For example, the default hosts.allow file contains
the following default line at the beginning of the file:

ALL : ALL : allow

This will permit connections from any source to any service. Once you add a
customized rule to the file, you should comment out this line. Leaving this line
uncommented on top of the file makes your further rules ineffective, as the tcpd
matches this rule at the beginning of the file, and does not process further rules.

SSH
SSH service is used to manage your host securely over the network. However, SSH
does more than just a secure shell protocol. It can be used to transfer files securely or
tunnel (and encrypt) network traffic between two hosts using tunneling techniques.

FreeBSD 7 uses SSH tools and libraries that are based on OpenSSH 4.5. Most of the
FreeBSD hosts are running the sshd(8) daemon. The daemon accepts incoming
connection on port 22 TCP, authenticates the user against system's user database (the
default behavior), and lets user in, if authentication succeeds (and user has a valid
shell and home directory).

If sshd daemon is not enabled on the host, it can be enabled by adding the following
line to the /etc/rc.conf file:

sshd_enable="YES"

The daemon can also be started manually by invoking the following command:

/etc/rc.d/sshd start

Network Services—Internet Servers

[208]

Once the server is started, you can remotely log into the server using the
ssh command:
ssh joe@192.168.0.5

This will start a secure shell to host 192.168.0.5 using the username "joe".

The ssh command will use your current system login name if the
username is not specified.

Once you have authenticated with the destination host, basically using a password,
you will get a shell prompt on an encrypted tunnel to the server.

This is the very basic usage of the ssh command. However, SSH offers many more
features than just a simple shell connection.

Running a Command Remotely
If you want only to run a command on a remote host, and you do not need a fully
functional shell, you can run that command using a single the ssh command.
ssh 192.168.0.5 ps ax

The above example establishes a secure shell connection to host 192.168.0.5 and runs
the command ps ax (that shows a list of currently running processes for all users)
and then closes the secure shell connection to the server and returns to your local
host's prompt.

There is no login information specified in the command prompt. In this case, SSH
assumes that you want to use the username that you are currently logged on to your
system with it. It also asks for a password, once the connection is established.

SSH Keys
Asking for a password during login is the default behavior of SSH. However, there
are various authentication models than can be used in stead of passwords.

A widely used method is using the SSH keys, instead of a password. Using keys
has some advantages over using password. Using keys is more secure as no one can
look over your shoulder to find out what you are typing as a password, or run a
brute-force attack on the SSH server to find out your password (if your account is not
configured to using a password for login).

Another major advantage is that you do not have to enter your password every time
you want to log into a remote server. So if you are using SSH frequently, you do not
have to enter the password every time you log into a host.

Chapter 13

[209]

To create a SSH public/private key pair on a FreeBSD host, the ssh-keygen(1)
utility should be used as follows:

$ ssh-keygen

Generating public/private rsa key pair.
Enter file in which to save the key (/home/babak/.ssh/id_rsa):
Created directory '/home/babak/.ssh'.
Enter passphrase (empty for no passphrase):
Enter same passphrase again:
Your identification has been saved in /home/babak/.ssh/id_rsa.
Your public key has been saved in /home/babak/.ssh/id_rsa.pub.
The key fingerprint is:
cc:73:cd:6f:9e:72:da:cd:54:ab:2f:f1:56:7c:b5:b2 babak@myhost

In the above example, simply running the ssh-keygen command starts creating a
fresh pair of SSH public and private keys using the RSA encryption algorithm. Once
the key is generated, it asks where it should save the private key file. The default
file name is id_rsa and it is saved under the .ssh directory, in your home directory.
You can change it if you want to save it under a different name or path. Otherwise,
pressing enter will take the defaults.

You also have the choice to protect your key using a password, which is a very wise
thing to do. If your keys are not protected, anyone can use these keys to log into your
hosts without any restriction. Protecting keys with a password will reduce the risk of
abusing the keys in case of key theft. The ssh-keygen utility asks whether you want
to protect the private key through a password. You can enter a password (a strong
password is suggested) or simply hit enter to bypass password protection.

Then it saves the public key under the same path that you've chosen, in the default
name id_rsa.pub. It also shows your unique key fingerprint, which in this case is a
128-bit hexadecimal string.

You can verify the result by seeing your keys under the .ssh directory as follows:

$ ls -l .ssh/

total 4
-rw------- 1 babak babak 1679 Nov 7 21:15 id_rsa
-rw-r--r-- 1 babak babak 412 Nov 7 21:15 id_rsa.pub

The private key, id_rsa, has a default permission of 0600, which means that only the
owner of the key can read or modify the key file. However, the public key, id_rsa.
pub, is readable by all other users. In fact, you should safeguard your private keys,
though you can freely distribute the public keys to be used on the other hosts.

Network Services—Internet Servers

[210]

In case you have lost your private key, or the key is stolen, you should
remove all public keys that you have installed on your hosts, and replace
it with your new public keys. Otherwise, the intruders can log into your
system using the private key.
Losing your private key is just as if the intruder knows your password. So
you should change your passwords (in this case, replacing or removing
the related public key) on all the hosts where you have used the password
(or public key).

Now that you have created your first set of keys, you should install the public key on
the hosts that you want to log into. This can be achieved by transferring the public
key to the destination host and adding it to the authorized_keys file.

scp .ssh/id_rsa.pub 192.168.0.5:.ssh/

This will simply transfer the public key file to the destination host under the .ssh
directory. However, this time you will be authenticated using password. Once the
public key is transferred, you should add the key to the list of authorized keys that
can log in to the account. This would be as simple as logging into the remote host
and adding the file to the authorized_keys file under the .ssh directory.

cd .ssh

cat id_rsa.pub >> authorized_keys

Every time you start SSH for a secure shell connection, the SSH client looks for SSH
private keys under the .ssh directory as well as the SSH key agent (This will be
discussed later in this chapter). If a key is found, the SSH client tries to authenticate
the session using the key. In case of success, you will log into the remote host.
Otherwise SSH keeps trying other authentication methods, for example, a password.

If your key is protected using a password, you will be asked the password, once the
key is loaded. If you are using SSH with keys frequently, it can be annoying to enter
the same password every time you run the SSH client. The ssh-agent(1) utility will
help in solving this issue by loading the keys into the memory, for future use.

SSH Authentication Agent
If you are a frequent SSH user (like every other system administrator), you will
find ssh-agent(1) very useful. The main goal of ssh-agent is to load one or more
private keys into the memory, so that the SSH client can use the keys from the agent.
If the keys are password protected, you will be asked the password, once the key is
loaded to the memory.

Chapter 13

[211]

There may also be cases where you use multiple pairs of keys for authentication on
different hosts. The ssh-agent utility will let you load multiple keys, and try using
all keys while authenticating with a remote host.

Since multiple users on a host may have their own ssh-agent process
loaded, you may have multiple ssh-agent processes running on the
same host. SSH client uses environment variables to figure out which
ssh-agent it should use.

The ssh-agent utility does not set the appropriate environment variables upon start
up by default, instead writes the variables on stdout. However, you can update
environment variables using the eval command:

eval `ssh-agent`

Agent pid 82485

Now that the agent will run with PID 82485 (so that you can kill the agent when not
needed) and the environment variables are set, the SSH client can communicate with
the agent. The next step is to add one or more keys to the keychain, using
ssh-add(1).

When you first run the ssh-add command, it looks for private keys in the default
location (.ssh directory) and loads them into the memory, as shown here:

ssh-add

Identity added: /home/babak/.ssh/id_rsa (/home/babak/.ssh/id_rsa)

You can also add more keys to the keychain (if they are not installed in the
default location) by specifying a private key file name as a parameter for the
ssh-add command.

The operation can then be verified by listing the loaded keys, as shown here:

ssh-add -l

2048 cc:73:cd:6f:9e:72:da:cd:54:ab:2f:f1:56:7c:b5:b2 /home/babak/.ssh/
id_rsa (RSA)

From now on, the SSH client uses keys from ssh-agent to authenticate with the
remote hosts, as the first option.

Network Services—Internet Servers

[212]

SSH Tunneling or Port Forwarding
A SSH port forwarding tunnel can basically be considered an encrypted VPN
connection that can be used to transfer data over a public network. The benefit of
SSH tunneling is the ease of setup, and the lack of the need for a separate daemon.
Hence, you can use your default SSH configuration to establish a secure tunnel
to your server, or the network behind your server. Using SSH tunneling, you
can transmit almost any protocol that uses TCP as transmission protocol over an
encrypted SSH tunnel.

A SSH tunnel can be established in two modes—Dynamic forwarding and
Static forwarding.

Dynamic forwarding is, in fact, turning your host into a SOCKS 4/5 proxy server
and forwarding all network traffic from the proxy server to the destination host over
a secure tunnel. This can be used to connect to a remote network through a firewall,
like a VPN client into a private network.

The following example shows an example of SSH connection to a remote host with
dynamic port forwarding:

ssh –D 4567 –l babak 172.16.25.1

This example establishes an SSH connection to the host 172.16.25.1 with username
"babak". It also listens on TCP port 4567 on localhost, and acts as a SOCKS proxy
server and forwards traffic to the destination host over the secure connection.

Now you should configure your application (for example web browser) to use your
SOCKS proxy on the localhost port 4567. Please note that you can use any other
unused port number on your host for the proxy server to listen on.

This method can also be used to get through restrictive firewalls and access public
internet without restrictions, by tunneling traffic over a secure SSH tunnel to an
external host that runs the SSH server.

Static port forwarding offers much simpler methods compared to dynamic port
forwarding for simple scenarios in which you want to forward traffic to one specific
application on another host. An example is forwarding traffic from your host to your
remote SMTP server, over a secure SSH tunnel.

In this example, SSH listens to the port 4425 on local host and forwards any
connection on this port to host the mail.example.org port TCP 25 via secure SSH
tunnel that is established to remote SSH server on 172.16.25.1 as shown here:

ssh –L 4425:mail.example.org:25 172.16.25.1

Chapter 13

[213]

Using this method, the SMTP traffic will be forwarded from your host to your
remote shell server securely. However, the connection from the shell server to the
ultimate destination (SMTP server on mail.example.org in this example) may not
be secure.

NTP
Keeping time in sync, has more importance than people realize. For example a server
that sends event logs to another server, using syslog protocol, should be in sync
with each other. Otherwise, the log time will differ from the time,when the event
actually happened. Alternatively a caching web proxy will not remove the expired
cached objects correctly, as it relies on the server's date and time while looking for
the expire field in the http header.

The solution for having server times in sync (beside correcting date and time
manually) is the Network Time Protocol (NTP, as per RFC 1305).

Before trying to synchronize your clock using NTP protocol, make sure
you have set the correct time zone. To modify the current time zone,
use tzsetup(8).

Syncing
Synchronizing system time to an ntp server can be done manually using the
ntpdate(8) utility. The ntpdate(8) needs an ntp server name to synchronize with:

ntpdate pool.ntp.org

Looking for host pool.ntp.org and service ntp
host found : ferret.eicat.ca
 9 Nov 00:15:41 ntpdate[72515]: step time server 66.96.30.91 offset
138.608584 sec

There are plenty of public NTP servers available (see: www.ntp.org).
However, it is suggested that you use pool.ntp.org, as it actually
balances the load between a large pools of NTP servers.

You can also have the system run ntpdate automatically during boot up process, by
adding the following variable to the rc.conf file:

ntpdate_enable="YES"

Network Services—Internet Servers

[214]

However, your server may get out of sync because you are unlikely to reboot your
servers frequently. The ntpd(8) utility does this by running as a daemon in the
background and keeping time synchronized with the servers that you have specified.
The ntpd daemon also acts as the NTP server that can be used as a clock reference for
your local hosts.

NTP Server
Running ntpd(8) can be very useful for keeping local time in sync, as well as serving
as an accurate clock for other hosts in your network. Configuring ntpd is as easy
as setting up the configuration file located at /etc/ntp.conf and starting the ntp
daemon (which is already included in the base system).

A default ntp.conf file does not come with the default installation and it should be
created from scratch. The configuration should consist of the definitions for one or
more servers, as well as a drift file address, as shown here:

server pool.ntp.org prefer
server ntp0.nl.uu.net
server clock.isc.org
driftfile /var/db/ntp.drift

The configuration, above, has introduced three servers (to make sure you always
have accurate time), and marked the first server as prefer. The drift file is the
file that ntpd keeps the calculated drift value in. So it knows the drift value across
server restarts.

The server can then be enabled by adding the following line to the rc.conf file:

ntpd_enable="YES"

It may take a few minutes before your ntp server shows accurate time.
This can be verified by querying the server using the ntpq(8) utility.

To view the current status of the ntpd (running on the same server), you may
use ntpq(8):

ntpq -c rv

status=06d4 leap_none, sync_ntp, 13 events, event_peer/strat_chg,
version="ntpd 4.2.0-a Mon Jul 16 09:19:35 BST 2007 (1)",
processor="i386", system="FreeBSD/7.0-STABLE", leap=00, stratum=2,
precision=-19, rootdelay=343.773, rootdispersion=290.834, peer=55622,
refid=192.43.244.18,
reftime=cade029c.cad8daf3 Fri, Nov 9 2007 1:18:12.792, poll=10,
clock=cade0320.d6d74a76 Fri, Nov 9 2007 1:20:24.839, state=4,
offset=51.066, frequency=25.407, jitter=16.671, stability=0.738

Chapter 13

[215]

Once the host is synchronized, the stratum value shows a real value (below 15) that
is actually the number of ntp servers between you and the accurate clock (atomic,
gps, or other type of radio clocks). In this case, the stratum 2 means that our uplink
ntp host, which is a stratum 1 device, is directly connected to an accurate reference
clock. If the ntpd is out of sync, you will see stratum 16. Please see ntpq(8) manual
page for more information on querying from an ntp server.

DNS
Domain Name System (DNS) defined by RFC 1035 (and many other RFCs that
introduce enhancements and extensions), is one of the protocols that is gluing
the whole internet together, and makes life easier by mapping names to hard-to-
remember IP addresses. Despite looking simple, DNS has evolved since its invention
back in 1983, and is getting more and more complex every day.

Today's DNS servers are even able to map telephone numbers using the ENUM
extension (RFC 3401 through 3404). As the DNS protocols evolves, the DNS related
software are also getting more and more complicated, facing more performance and
security challenges.

BIND software
FreeBSD 7 bundles ISC's BIND version 9.4.1 with the base system. BIND (or
named(8) which is the actual daemon name) offers various modes of operations.

There are also older versions of BIND still being used (8.x and 4.x). But the 9.4 series
offers the latest performance and security enhancements as well as support for IPv6
and DNSSEC.

If you are interested in running older versions or modified versions of
BIND, you can install them using ports system under the /usr/ports/
dns directory.

Operating Modes
BIND can be used in two modes—Authoritative and Caching forwarder.

Authoritative: In this mode, BIND has the mapping information in the zone files on
the disk, and answers queries based on the locally stored zone information.

Network Services—Internet Servers

[216]

Caching forwarder: In this mode, BIND does not have any name to address mapping
information locally, and it forwards DNS requests to specified upstream DNS servers
(or root DNS servers) to find out the answer, and caches the answer after sending the
response to the client.

While it is possible to run the DNS server in a mixed mode (authoritative
and forwarding simultaneously), it is not advisable to do so.

Forwarding/Caching DNS Server
This is the case that is used on a LAN or service provider environment to provide
users with faster DNS responses and lower upstream network overhead.

To set up a DNS forwarder on FreeBSD 7, first, you need to enable BIND by adding
the following variable to the /etc/rc.conf file as shown here:

named_enable="YES"

And start the server manually, as shown here:

/etc/rc.d/named start

Since you have not defined any zone information, the server is running in
forwarding mode. By default, the server listens on localhost (127.0.0.1) so that the
clients on your network will not be able to communicate with the server. You need
to edit the bind configuration file located at /etc/namedb/named.conf to remove
this restriction. You can comment out the following line to completely disable this
restriction, or modify it based on your network configuration to have the named(8)
daemon listen on the IP address you have specified:

listen-on { 127.0.0.1; };

Once you have removed or modified the configuration, you should restart the
named(8) daemon for changes take effect:

/etc/rc.d/named restart

In this mode, the named daemon contacts the ROOT DNS servers (as defined in
/etc/namedb/named.root file) and then other DNS servers, recursively, to resolve
incoming requests, and caches the results for later reference. This can slow things
down although you always get the authoritative and accurate result.

Chapter 13

[217]

There is another option, whereby you can forward DNS requests to one or more
specific upstream DNS servers instead of resolving the DNS information from the
root servers. This can be done by specifying forwarders under the options clause in
the named.conf configuration files, as shown:

 forwarders
 {
 10.3.25.2;
 10.3.1.10;
 };

This will tell the named daemon to try forwarding the requests to these servers first.
If it is unable to get the result from these servers, it will initiate a new query to the
root servers. However, you can also disable this second part (asking root servers) by
adding the following line (under the options clause) to the named.conf file:

forward only;

In this case, if the forwarders you specified are unable to resolve the query, it will fail.

There may be times when you would need to flush the DNS cache, for example, to
get rid of some stale data that are cached in the DNS cache. This can be achieved
using the rndc(8) utility as follows:

rndc flush

Authoritative
Running an authoritative DNS server is similar to running forwarder setup, except in
that you would have to set up your DNS zone files, and then modify the named.conf
file to answer the specific domain information for the zone files you have specified.

A typical forward DNS (Hostname to IP address mapping) named.conf file looks
like this:

options
{
 directory "/etc/namedb"; // Working directory
 allow-query-cache { none; }; // Do not allow access to cache
 recursion no; // Do not provide recursive service
};

zone "example.com"
{
 type master;
 file "master/example.com.db";
 allow-transfer

Network Services—Internet Servers

[218]

 {
 192.168.14.2;
 192.168.15.2;
 };
};

This configuration disables recursion. So if the request is not resolved using the local
zone files, it will fail. Also a zone definition for the domain, example.com, is defined.
This server acts as the "master" server for the domain. The zone file is located at
/etc/namedb/master/example.com.db and the server allows two hosts (as defined
under the allow-transfer clause) to transfer the whole zone, which in a typical case
plays the slave server role.

It is recommended that you store the zone files for the domains that are hosted as
master under the master subdirectory, and use the slave directory if the host acts
as slave server for the domain. In this example, the file example.com.db contains
definitions for the example.com domain, and is stored under the master directory:

$TTL 24h ;

$ORIGIN example.com.;

@ IN SOA ns1.example.com. noc.example.com. (
 2007102001 ; serial
 12h ; refresh
 15m ; update retry
 3w ; expiry
 3h ; minimum
)
 IN NS ns1.example.com.
 IN NS ns2.example.com.
 IN A 192.168.25.1
 IN MX 10 mail
ftp IN CNAME example.com.
www IN CNAME example.com.
mail IN A 192.168.25.10
ns1 IN A 192.168.25.1
ns2 IN A 192.168.14.2
portal IN A 192.168.25.7
cvs IN A 192.168.25.9

This zone file contains basic information about the domain example.com, including
TTL and other DNS related information, as well as host to IP mapping under
this zone.

Chapter 13

[219]

Monitoring
While setting up a basic DNS server (either caching/forwarding or authoritative)
is quite simple, monitoring the performance and health of a DNS server could be
somewhat tricky. Luckily, there are some fine tools available in the ports tree under
the /usr/ports/dns directory. However, we start with some BIND tools that
would help.

The BIND's built-in rndc(8) is very helpful in extracting status information from a
running named process.

rndc status

number of zones: 3
debug level: 0
xfers running: 0
xfers deferred: 0
soa queries in progress: 0
query logging is OFF
recursive clients: 93/2500
tcp clients: 0/100
server is up and running

The status shows various counter values, which in turn show a number of in-process
queries, which would be helpful in measuring the load of a running server.

The dnstop(8) utility is also very useful in monitoring DNS activity in a live
environment. dnstop can be installed from ports under /usr/ports/dns/dnstop.
This utility actually captures DNS traffic information from the specified network
interface, and shows live statistics of the DNS queries on various parameters, such as
source address, destination address, and queried address with different levels
of details.

Optimizations
While running a DNS server under load, your server should deal with plenty of
small UDP packets, which may sometimes be several hundreds or thousands per
second. Your entire setup should be configured in such a way that your server picks
up the packet from the NIC, and passes it to upper levels in the network stack,
right up to the DNS server. DNS server should also process the packet and return a
response back to the lower levels of network stack and finally to your NIC for further
transmission over the wire, in the shortest possible time.

This can be achieved by optimizing network stack and DNS server software to
minimize the processing delay.

Network Services—Internet Servers

[220]

To achieve a better rate of packet pick up from NIC, you should enable POLLING
feature on your network interface (please refer to Chapter 6 for more information).

The default configuration for BIND should be sufficient for most deployments.
However, there may be cases when you may need to tweak the configuration to get
the most out of your name server. This would involve configuring zone-transfer
parameters carefully, if you are running an authoritative name server, in addition to
tweaking TTL and concurrent queries limitation on forwarding/recursive
name servers.

An example setup for a high performance recursive name server is as follows:

options
{
 directory "/etc/namedb";
 pid-file "/var/run/named/pid";
 dump-file "/var/dump/named_dump.db";
 statistics-file "/var/stats/named.stats";
 recursion yes;
 max-ncache-ttl 120;
 max-cache-ttl 7200;
 version "Geronimo!";
 allow-transfer {"none";};
 listen-on-v6 { none; };
 notify no;
 recursive-clients 5000;
 minimal-responses yes;
 interface-interval 0;
};

This is the configuration for a recursive name server than can serve up to a
maximum 5000 recursive clients, simultaneously (default in BIND is 1000) and serves
only IPv4 clients.

While this forwarding DNS server caches all responses it receives from upstream
(including negative responses), you can also tweak the cache aging. This example
caches the negative responses for 120 seconds and positive responses for 7200
seconds (2 hours).

ISC BIND is a complicated name server. It is recommended that you read through
the documentation of the version you are currently using, or refer to related books
for more detailed information about the functionality and performance tuning.

Chapter 13

[221]

FTP
Since SFTP (from SSH toolset) is meant to be a secure replacement for FTP protocol,
FTP protocol is used for different purposes. As FTP does not encrypt or compress
data on the fly, it offers superior performance over the SFTP.

Like other core services, FreeBSD has its own ftpd(8) daemon included in the base
system. The ftpd daemon can simply be enabled from the inetd daemon, which is
suitable for a system with a somewhat low FTP traffic. However, you can run the
ftpd in the stand-alone mode, in which the ftpd daemon will run in the background
and answers FTP requests.

If you are setting up a busy FTP server, it is not advisable to run ftpd
from inetd, which may reduce performance of the system with many
FTP requests, or many simultaneous FTP users.

Adding the following line to the /etc/rc.conf file enables ftpd(8):
ftpd_enable="YES"

You should then start the ftpd by running the appropriate rc script:
/etc/rc.d/ftpd start

Now you are set. The ftpd daemon is listening for incoming connections on TCP
port 21, and authenticates users against the system's local passwd scheme, which
means that you can log into the FTP server, using your system logins. Users will be
directed to their own home directory when they log into the FTP server. Moreover,
the same disk access permissions apply to the FTP users. In fact, the ftpd process
forks a new ftpd process with the logged in user's permission, and has the same
access restriction.

Anonymous FTP Server
An FTP server can also be used as a public file repository for public masses that
do not require an individual login access to the system. This is the case where
"anonymous ftp access" pops out. An anonymous FTP access lets people download
files from the FTP server, or upload to specific directories on the server. Users should
log into the FTP user using the username "anonymous" and their email address as
the password (which can be ignored).

To enable an anonymous- only FTP access, you should add the following parameter
to the rc.conf file:

ftpd_flags="-A"

And restart the running ftpd daemon.

Network Services—Internet Servers

[222]

The next step is to create a special user in the host system, named "ftp". FTP daemon
uses this user (actually forks with this user's permission) when an anonymous user
logs in. The home directory of this user will also be used as the root directory of the
FTP server.

adduser

Username: ftp
Full name: Anonymous FTP user
Uid (Leave empty for default):
Login group [ftp]:
Login group is ftp. Invite ftp into other groups? []:
Login class [default]:

Shell (sh csh tcsh bash rbash zsh nologin) [sh]: nologin
Home directory [/home/ftp]:

Use password-based authentication? [yes]: no
Lock out the account after creation? [no]:
Username : ftp
Password : <disabled>
Full Name : Anonymous FTP user
Uid : 1020
Class :
Groups : ftp
Home : /home/ftp
Shell : /usr/sbin/nologin
Locked : no

OK? (yes/no): yes
adduser: INFO: Successfully added (ftp) to the user database.

Add another user? (yes/no): no
Goodbye!

The user is now created. There are two important points to be noted here. The first is
the shell which is set to nologin so that people cannot gain shell access to the system
through this user. The second is the home directory location, which in this example is
set to /home/ftp, but you may change this according to your specific system setup.

Now the system has copied some default configuration file into the home directory
that you do not need. You should also create a standard directory hierarchy under
the FTP home directory, which consists of the etc and pub directories and also
an optional incoming directory. The etc subdirectory holds some configuration
files, while the pub directory hosts the server content that should be available to
anonymous users. The optional incoming directory is a place to which anonymous
users have write permission and can upload their files. This directory is used in
special cases.

Chapter 13

[223]

You should also fix the permissions on the directory hierarchy in such a way
that anonymous users have read-only access to etc and pub directory, and write
permission on the incoming directory.

cd ~ftp

rm .*

mkdir etc pub incoming

chown –R root:wheel /home/ftp

chmod 755 etc pub

chown –R nobody incoming

chmod 5777 incoming

And this is finally how the directory structure should look like (note the owners
and permissions):

ls -l

total 6
drwxr-xr-x 2 root wheel 512 Nov 9 13:02 etc
drwsrwxrwt 2 nobody wheel 512 Nov 9 13:01 incoming
drwxr-xr-x 2 root wheel 512 Nov 9 12:38 pub

So the anonymous user (actually the "ftp" user that you have created earlier) has
read-only access to the pub directory (according to file permissions), and also write
permission on the incoming directory. However, the files written in the incoming
directory cannot be removed or modified by anonymous users later on.

Always make sure that the files have correct permission (owner and mod)
under the FTP directory hierarchy to prevent security breaches.

Mail
The Mail Transfer Agent (MTA) is the daemon in charge of transferring electronic
mails from one host to another, using the SMTP protocol (RFC 2821 and many
other complementary RFCs). Just like other core Internet services, FreeBSD 7 has
Sendmail 8.14.1 bundled in the base system. Sendmail is one of the oldest and widely
used MTAs and is the default MTA on most of the UNIX based operating systems.
Besides sendmail, there are other MTAs available, such as Postfix and Qmail, that
have even more advanced features, security and robustness. However the system
administrators can choose any MTA that suits their specific applications.

Network Services—Internet Servers

[224]

If you are not running a complicated mail server, you may stick with the default
sendmail for your daily mail transfer use.

We will also look into Postfix (which is also another widely used and a slightly more
advanced MTA), later in this chapter.

Sendmail
Chances are that the default sendmail from the base system is the latest and the most
stable sendmail distribution for your current installation. However, the sendmail in
the base system is not updated frequently. Hence, if you feel that you may want to
use a newer version of the sendmail for any reason, you can find the latest version in
the ports under the /usr/ports/mail/sendmail directory.

The sendmail program can operate in various modes—from a fully loaded MTA that
accepts mail from other hosts and routes mails to their destinations, to a minimal
configuration that lets local mails be submitted.

To completely enable sendmail, you can use the following lines in the
/etc/rc.conf file:

sendmail_enable="YES"

And then start the sendmail by calling its rc script as shown here:

/etc/rc.d/sendmail start

This will start the sendmail process that listens on all active network interfaces on
TCP port 25, for incoming SMTP requests.

If you do not want to enable sendmail to receive incoming emails over the network,
you can modify the rc.conf file as shown here:

sendmail_enable="NO"

Note that this will not actually disable the sendmail. After restarting the process, you
will find the sendmail process still running and listening only for SMTP traffic (TCP
port 25) on the loopback interface (127.0.0.1). So it will not be able to actually receive
emails over the network, and only accepts SMTP connection from the localhost on
the loopback interface, and routes the local mail to their destination.

If you want to completely disable sendmail, you should modify the rc.conf file as
shown here:

senmail_enable="NONE"

Chapter 13

[225]

Note the NONE keyword, which will completely disable the sendmail process. You
should therefore use SMTP servers on the other hosts on the network, if you want to
transmit emails.

Once the sendmail process is enabled, it works out of the box in simple scenarios
such as routing mails for local users. The sendmail related configuration files are
located in the /etc/mail/ subdirectory.

The sendmail configuration files may seem somewhat bizarre to you, as
they are extremely different from the configuration files that you have
seen in other parts of the system. This is because the configuration is
based on the m4 "macro language processor".

The most important files that you may need to modify in your configuration are
aliases, local-host-names, and virtusertable.

The aliases file contains the email address aliases that would be used to redirect
emails to the local users. An example of aliases files looks like this:

root: babak
postmaster: mail-admins@example.org
bit-bucket: /dev/null
msgs: "| /usr/bin/msgs –s"

This example shows the incoming mail messages for specific users being delivered to
another local user, remote user, a file, or being piped to a program.

Once you have modified the aliases file, you should run the
newaliases(1) command to update the aliases database.

The sendmail program uses the current hostname to figure out whether the
incoming email messages belong to this host, or they should be forwarded to another
host (or rejected).

In case the actual hostname is different from the host name that you want to receive
mails for, or if you want to receive email for multiple hosts, the hostnames should be
specified (one hostname per line) in the /etc/mail/local-host-names file:

example.com
mail.example.com
host.example.com

This will tell sendmail to receive and deliver emails to local users if the destination
address matches any of the listed addresses in this file.

Network Services—Internet Servers

[226]

There may also be some cases, where you do not have a system user entry for the
email addresses. You can specify virtual email addresses and map them to local
system accounts. This can also enable a method called catchall that catches all
email addresses destined for a specific domain name, and delivers it to the user you
have specified:

postmaster@example.com postmaster
root@example.com root
@example.com exampleuser

This example shows that emails sent to postmaster@example.com and root@
example.com should be delivered to the equivalent local system users. However,
any other emails destined for an address under the example.com domain should be
delivered to exampleuser, which is a local user (or could be an alias too).

Postfix
Postfix is a serious alternative to sendmail, which is widely being used as a full-
featured MTA. The major advantages that postfix has over sendmail are modularity
(as compared to sendmail's monolithic design) and simplicity (as compared
to sendmail's complicated configuration). However, this is a matter of system
administrator's choice to use whichever MTA, he or she wishes.

Postfix is not available in the base system. Therefore the latest version should be
installed from ports system under /usr/ports/mail/postfix.

Once installed, postfix will completely replace the sendmail. It even replaces the
sendmail binaries with its own binaries, to maintain compatibility with applications
that call sendmail binaries directly by updating the /etc/mail/mailer.conf file.

After the postfix is installed, it should be activated by adding appropriate variables
in the rc.conf configuration file:

postfix_enable="YES"

And start the postfix by running its rc script:
/usr/local/etc/rc.d/postfix start

Note:
Make sure you have completely disabled sendmail before
activating postfix.

Chapter 13

[227]

Postfix configuration files are located under /usr/local/etc/postfix. Unlike
sendmail, the postfix configuration files are more readable and have clear inline
documentation, so that you can easily tweak the configuration values and start
using your MTA. However, for a simple mail routing scenario, postfix will work out
of the box.

There are two main configuration files that you will want to have a look into—the
main.cf file and the master.cf file. The main.cf file contains main configuration
parameters such as queue locations, hostname, and permissions.

At least you may want to modify myhostname and mydomain variables with your own
information, so that postfix is able to receive your incoming emails. You should also
set up postfix to know your internal network in order to relay messages correctly. You
can do this by restricting the subnets that can transmit outgoing emails.

Another configuration that you may want to look at, is the master.cf file that
controls the behavior of postfix's master process. Here, you can configure various
modules. For example, you can configure a module to enable TLS or interface with
other third-party services, such as mailman for running mailing lists.

Web
FreeBSD has proven to be a reliable and high-performance platform for running
HTTP service. Millions of websites (Including Yahoo!, NYI, and Pair.com) are relying
on FreeBSD to run their web hosting solution (as well as other services of course).

The httpd daemon from Apache Project (also known as Apache Web Server) is the
de facto standard for hosting websites using HTTP and HTTPS protocols.

Despite the fact that httpd is the dominant web server of Internet, there are also other
lightweight and robust alternatives that are available to httpd. A good example is
lighttpd, which offers less complexity and more flexibility in some cases.

This section discusses setting up basic web servers using apache httpd and
lighttpd web servers.

Both of the mentioned web servers (among many others) are available in ports tree
under the /usr/ports/www subdirectory.

Network Services—Internet Servers

[228]

Apache
There are various versions of apache web server available under ports tree. The
www/apache13 directory contains Apache 1.3 which is the legacy and stable version of
apache web server. The newer versions are 2.0 (www/apache20 directory), 2.1
(www/apache21 directory), and 2.2 (www/apache22 directory). Apache 2.0 is the
current stable version that introduces many improvements over the previous version
as well as a revised and modular configuration system. Newer versions (2.1 and 2.2)
are offering cutting-edge features but they are still under development and are not
recommended for use in a production environment. If you are deploying apache in a
production environment, you may want to choose between Apache 1.3 or Apache 2.0.

It is actually a matter of taste when it comes to choosing the right version
of the apache web server. You are most likely to go for a newer stable
version, unless you need an old application, which is not compatible with
newer version of web server.

Once you have installed your favorite apache web server from ports, you should
enable the daemon in the rc.conf file. Different versions of apache have different
variable names. You should find which variable you should set, by running the
appropriate rc script. For example:

/usr/local/etc/rc.d/apache2 rcvar

apache2_enable=NO

Then add the appropriate variable to rc.conf as usual:

apache2_enable="YES"

Apache stores configuration files under /usr/local/etc/apache. (This may vary
slightly in different versions; for example apache 2.0 looks in /usr/local/etc/
apache2 and so on.) Moreover, it looks for web pages under /usr/local/www/data.
(This would also vary across different apache versions; for example apache 2.2 looks
for /usr/local/www/apache22.) Usually, this directory is symlinked to the
data-dist directory that contains default web pages. It is suggested that you
create your own subdirectory and symlink "data" to your own directory, keeping
data-dist intact.

It is not advisable to use the default data-dist directory, as it may not
be preserved across upgrades and your files may be overwritten. It is
recommended that you create your own directory and symlink "data"
to it.

cd /usr/local/www

mkdir homepage

Chapter 13

[229]

rm data

ln –s homepage data

You may want to have a look into the default apache configuration file located under
/usr/local/etc/apache (or similar name, depending on your installation) to tweak
configuration parameters.

Virtual Hosts
Apache can handle name-based virtual hosting, that lets you run multiple sites on
the same IP address, but differentiate them based on their hostnames. You should
configure your DNS zone files in such a way that they point (for example www host)
to the IP address of your web server. You should also configure your apache web
server to the server-specified directory as the home page of the specified host.

To enable name-based virtual hosting, you should first modify your httpd.conf file
and uncomment the following line:

NameVirtualHost *:80

This will enable the functionality. Now you should add appropriate configuration
clauses, for each host, to your configuration file. In this example, we have used
Apache 2.0 that supports the external configuration files into httpd.conf. Hence,
you will not need to modify the httpd.conf file for each virtual host. Instead you
can create a file, for example, example.com.conf, under the Includes directory
which is under your apache configuration directory. Apache will automatically
include all files with a .conf extension from the Includes directory and append it
to the main configuration, during startup. The sample configuration file (for example
/usr/local/etc/apache2/Includes/example.com.conf) looks like this:

<VirtualHost *:80>
 ServerAdmin admin@example.com
 DocumentRoot /usr/local/www/example.com
 ServerName www.example.com
 ServerAlias example.com
 ErrorLog /var/log/example.com-error_log
 CustomLog /var/log/example.com-access_log common
</VirtualHost>

Network Services—Internet Servers

[230]

As the example configuration suggests, this virtual host configuration will catch
all the requests for www.example.org (note the ServerName directive) and also
example.com (note the ServerAlias directive, and you can define as many alias
names as necessary), from incoming http request headers. Moreover, it serves
web pages from /usr/local/www/example.com directory for these requests. The
ErrorLog and CustomLog directives specify the error log file and the access log file
respectively. The email address specified in front of the ServerAdmin directive will
also be shown under the error messages.

Alternative HTTP Servers
While Apache HTTPD server is very popular and widely used, you may want to
use other lighter and faster alternatives instead. The reason you may want to choose
an alternative to apache web server, is the fact that apache is complex and loaded
with different modules and features that would slow things down. Luckily, there
are plenty of alternative HTTP servers available via FreeBSD's ports tree that would
suite your needs better than the apache web server.

The lighttpd (www/lighttpd under ports directory) server is a lightweight
and fast HTTP server. Compared to Apache, it uses much less system resources.
The lighttpd server is designed with performance in mind, avoiding Apache's
performance bottlenecks and pre-fork model.

It runs as a multi-threaded single process and can serve thousands of sessions
simultaneously with minimum processor and memory usage.

Another alternative web server is nginx (available in ports tree as www/nignx).
Besides being a high performance and lightweight web server, nignx is also a
HTTP and email reverse-proxy server. Just as lighttpd, nignx also serves static
content, very fast.

Proxy
A web proxy server is a gateway that receives HTTP requests from the hosts and
forwards the request to the destination (perhaps some host on Internet), and relays
the answer back to the original requester. HTTP Proxy servers are mostly used as
Internet access gateways to bring web access to the users in a campus LAN, while
having the ability to control, restrict, and cache the requests.

A very well-known and popular HTTP proxy software is the open-source Squid
project. Squid offers high performance web proxy function as well as content caching,
in order to improve the web browsing experience. It can also be used to enforce
restriction policies, such as time restriction, bandwidth control, and content filtering.

Chapter 13

[231]

Luckily, Squid is available in FreeBSD ports tree and is ported very well to integrate
into the system, and work in conjunction with FreeBSD firewall packages such as pf
and ipfw, where needed.

Squid can be installed from the /usr/ports/www/squid port directory, and should
be activated in the rc.conf file by adding the following variable to the file:

squid_enable="YES"

Squid requires a little bit of configuration before we actually start its service. First of
all you should specify a few things, such as the location of the cache directory (where
the cache objects will be stored), its size, and the number of directories. You should
also specify a few restriction rules such as the IP address of the clients, in order to
restrict web proxy access (unless you want to run a public proxy server).

Squid configuration file can be found under the /usr/local/etc/squid/ directory
called squid.conf.

Squid has a large and complicated configuration file with too many
options which you may want to tweak. However, the configuration file is
full of samples and explanations on how to use each setting options.

To configure the cache directory, find the cache_dir directive and modify it with
your desired configuration. The default cache_dir directive looks like this:

cache_dir ufs /usr/local/squid/cache 100 16 256

The cache_dir store type specified in the above example is ufs, which is the default
storage scheme. The other store types are aufs and diskd. The aufs store type is an
asynchronous/multi-threaded ufs scheme. And diskd is the same as ufs, except for
the fact that it is forked as one or more separate processes, to avoid blocking of the
squid process in disk access.

The second parameter is the location of the cache directory. This is where the cached
objects are being stored. You may want to use a separate physical disk for this,
depending on the load.

The next parameter to consider, after the directory location, is the cache directory.
Its maximum size is set to 100 megabytes by this configuration. Make sure you
have enough storage, before increasing this number to a bigger value as your cache
directory may increase very quickly, and fill up your disk space. Increasing the cache
directory size should be done with care. Larger cache disk space does not always
mean better performance, as this may have a huge overhead on your disk.

Network Services—Internet Servers

[232]

And the 'last' two parameters to consider are the number of first-level and second-
level directories that will be created under the cache directory, to hold the cached
objects. This configuration creates 16 directories under the cache directory and also
creates 256 directories under each of these 16 directories, which will run into a total
4096 directories. Each directory holds 256 files that total up to more than a million
files that can be stored according to our configuration.

Now that you have finished configuring disk parameters, you should initialize the
cache directory for the first time by running the squid –z command. It will take a
few seconds to set up the whole cache directory and the necessary database files for
the first time.

Now you are set to start the squid for the first time:

/usr/local/etc/rc.d/squid start

This will start the squid process. Squid listens on TCP port 3128 for incoming
requests so that you can set up your client's web browser's proxy configuration to
send their http requests port 3128 of your host.

However, Squid's default policies restrict all requests from other hosts for security
reasons. You should set up an access-list in the squid.conf file and specify
your trusted networks that the Squid should accept requests from. The Squid
configuration file already has a fine set of examples on setting up access-lists with
different parameters. A simple example of restricting access to a few subnets would
look like this:

acl our_networks src 192.168.21.0/24 10.1.2.0/23
http_access allow our_networks
http_access deny all

This example shows how to restrict HTTP service access to a few subnets, and deny
all other requests coming from other source addresses.

Squid can also restrict access based on a few other parameters, such as time-based
restrictions, TCP port numbers, and regular expressions in URLs. It can also
authenticate users to give different access-levels.

Chapter 13

[233]

Summary
FreeBSD can be used as a powerful server platform to host any kind of service you
need to run an internet server (for example WWW, DNS, FTP, and Mail). Some of
the services are already in the base system, while others can be easily installed from
ports system. The only thing you need to do is to modify some basic configuration
parameters for each service and start the service application. In most cases, the
application comes with a default configuration template that mostly fits your basic
needs. However, for a high performance and secure setup, you need to spend some
time to get more familiar with the configuration of each specific application, and
tweak the configuration to suit your environment.

Network Services—Local
Network Services

While FreeBSD offers a rock solid platform for running network services, it is not
only about Internet services. There are also some network services that are designed
and being used mostly on the local area networks. Such services include DHCP, NFS,
NIS, Printer Sharing, SMB (Windows File Sharing), and so on. There are also a few
protocols that a system/network administrator have to deal with frequently, such as
TFTP and SNMP.

As you may have guessed already, some parts of the mentioned services are already
included in the core FreeBSD system. They do not need to be installed separately,
while a few others should be installed from the ports system.

This chapter introduces the mentioned services and a brief introduction of setting
up these services in FreeBSD, as well as some tips to getting the most out of them
quickly and effectively.

In this chapter, we will look at the following:

Dynamic host configuration protocol
Trivial File Transfer Protocol
Network File System
Server Message Block/CIFS
Simple Network Management Protocol
Printing
Network Information System (yellow pages).

•

•

•

•

•

•

•

Network Services—Local Network Services

[236]

Dynamic Host Configuration Protocol
(DHCP)
In the simplest form, DHCP (as per RFC2131) introduces a method for network
devices to obtain network configuration parameters from a centralized server. The
obtained information can be the IP address, subnet mask, default router, DNS, or
even information required for remote booting.

dhclient
FreeBSD comes with built-in DHCP client called dhclient(8). Once it is executed,
it attaches to the specified network interface and goes to daemon mode (runs as a
background process). Dhclient then takes care of discovering DHCP server on the
specified interface, and receives network configuration information, and applies
that to the interface. You can run dhclient manually, and bind it to a specific
network interface:

dhclient fxp0

You can also enable dhclient(8) on any interface to run on system start up, by
adding a the following line to /etc/rc.conf:

ifconfig_fxp0="DHCP"

ISC DHCPD
FreeBSD does not come with a built-in DHCP server. However, the widely used ISC
DHCP server (as well as client and relay) is available from the ports tree, under
/usr/ports/net/isc-dhcp3-server.

ISC DHCPD (currently at version 3), is the de facto open source DHCP server
solution that is available on many platforms, including FreeBSD.

Installing isc-dhcp3-server from port installs requires binaries, manual pages, and
sample configuration file. A sample configuration file can be found at /usr/local/
etc/dhcpd.conf.sample. The dhcpd daemon looks for its configuration
file at /usr/local/etc/dhcpd.conf. So, you can simply copy the sample file
as the configuration file. Then make your own modifications, before starting the
dhcpd daemon.

Enabling isc-dhcpd is possible by adding the following line to your
/etc/rc.conf file:

dhcpd_enable="YES"

Chapter 14

[237]

This will enable dhcpd to start automatically on system start up, by running the
relevant rc script. You can also manually start DHCP server by running its rc script at:

/usr/local/etc/rc.d/isc-dhcpd start

This will start the DHCP server that awaits on all active network interfaces for
incoming DHCP discovery requests. If your server has multiple network interfaces,
there are chances that you may not want dhcpd to be enabled on all interfaces (for
example, your WAN uplink interface). This can be achieved by adding the following
line to the /etc/rc.conf file:

dhcpd_ifaces="fxp0 bge0"

This will tell dhcpd to only listen for incoming requests on fxp0 and bge0 interface,
and simply ignore all the other active interfaces.

DHCPD Configuration
Now that you have basically installed and enabled ISC DHCPD, you should set up
your configuration file carefully, before starting to use your brand new DHCP server.
The configuration file contains general information about how your DHCP server
should assign IP addresses, and what information it should offer to the clients.

ddns-updates off;
ddns-update-style ad-hoc;
option domain-name "example.com";
option domain-name-servers 192.168.0.5, 192.168.0.6;
default-lease-time 600;
max-lease-time 7200;
log-facility local7;

Our Network
subnet 192.168.0.0 netmask 255.255.255.0
{
 range 192.168.0.30 192.168.0.254;
 option routers 192.168.0.1;
 option subnet-mask 255.255.255.0;
}

The above example configuration file assigns dynamic IP addresses to hosts
from subnet 192.168.0.0/24. In fact, the server assigns from 192.168.0.30 to
192.168.0.254 (leaving a small subnet of the address space for static allocation).
The DHCP server also advertises the 192.168.0.1 as the default gateway for the
network and also subnet mask 255.255.255.0 to the clients. In addition, there are
two DNS servers and the default domain name (in this case example.com).

Network Services—Local Network Services

[238]

According to our configuration, the default lease time for each address is 600 seconds
(10 minutes), if the client does not request any specific lease time. The maximum
possible lease time we have specified is 7200 seconds (2 hours). You may want to
modify these parameters according to your network configuration and resources.

To keep track of assigned IP addresses, DHCP server maintains a lease file at /var/
db/dhcpd/dhcpd.leases. This is where DHCP server writes down the IP addresses
assigned to each client, and whether the leases are active or inactive. The file also
contains additional information about each client, such as MAC address. This address
is used to identify unique hosts, as well as start and end times for leases and also
the binding state field. This will be useful for a system administrator to see which
systems are online and have active leases (by looking at binding state field) and
which hosts are not online. You can also modify this file to remove inactive leases,
or easily assign a specific IP address to each client. Removing this file will lead the
DHCP server to lose track of its assignment history, and all the leases will be reset.

The following sample shows a dhcpd.leases file that contains two entries, the
first entry for an expired (and reserved) address and the second entry for an active
(currently assigned) IP address as shown here:

cat /var/db/dhcpd/dhcpd.leases

lease 192.168.0.220
{
 starts 0 2008/03/16 17:25:09;
 ends 0 2008/03/16 17:35:09;
 tstp 0 2008/03/16 17:35:09;
 binding state free;
 hardware ethernet 00:18:f3:03:f4:5b;
 uid "\001\000\030\363\003\364[";
}
lease 192.168.0.219
{
 starts 0 2008/03/16 19:22:01;
 ends 0 2008/03/16 19:32:01;
 binding state active;
 next binding state free;
 hardware ethernet 00:a0:d1:3d:00:dd;
 uid "\001\000\240\321=\000\335";
 client-hostname "pixel";
}

Chapter 14

[239]

Trivial File Transfer Protocol (TFTP)
TFTP (RFC 1350) is a simple and lightweight file transfer protocol, somewhat similar
to a slimmed down version of the FTP, without any complexity. TFTP does not need
login, does not support changing directories, nor does it show the list of files and
directories on the server. When using TFTP, you should know the exact file name
you want to receive.

Many network devices use TFTP to download their OS image, or even load/save
their configuration on TFTP.

Running TFTP service requires the inetd server to be run. You should first enable
TFTP by removing comment from TFTP related line in /etc/inetd.conf. The line
should simply look like this:

tftp dgram udp wait root /usr/libexec/tftpd
tftpd -l -s /tftpboot

The last parameter on the above line runs tftpd(8) with syslog logging enabled
(hence -l parameter) and also sets the root directory to /tftpboot. You may change
this to your desired directory. Please note that /tftpboot does not exist on a clean
FreeBSD installation and hence should be created.

After configuring the tftpd parameters, you should start/restart the inetd process
(for more information on inetd, please refer to Chapter 13).

You can test functionality of your TFTP server using a TFTP client across
the network.

FreeBSD also comes with a TFTP client called tftp(1). To test the functionality
of your tftpd(8) server using tftp(1) client, you should set up appropriate
directories and put some files in your /tftproot directory. Using tftp(1) on the
same client you should be able to get (download) the file from TFTP server. Please
note that you should remember the filename, since TFTP does not have the ability to
see the list of the files on the server.

tftp localhost

tftp> verbose
Verbose mode on.

tftp> get make.conf
getting from localhost:make.conf to make.conf [netascii]
Received 853 bytes in 7.0 seconds [975 bits/sec]

tftp> quit

Network Services—Local Network Services

[240]

The above example shows a basic TFTP file transfer scenario using FreeBSD's built-in
TFTP client. The TFTP client connects to the server on localhost. In this example, I
turned on verbose output by entering the verbose command. This will tell the client
to show the transfer progress, and more details about the errors, if any. Using the
get command, you can download a file from TFTP server. And once the transfer is
done, you can leave the client using the quit command.

TFTP can also be used to upload files to a specific server (for example, a network
device backing up its configuration or OS image on a TFTP server). However this can
be a little tricky as compared to downloading files.

The TFTP server does not basically allow a client to create a file on the server, by
default. However, if the file already exists on the server, it will be overwritten.
Otherwise, it fails.

If you want to let your clients create files on the server by uploading files to your
TFTP servers that do not exist already, you should modify the /etc/inetd.conf file.
Then add the -w parameter to the tftpd parameters. This will let the clients upload
files to your tftp root directory that does not already exist.

If you do not want your existing files to be overwritten by TFTP clients,
you should make your files read-only, using the chown(8) command
(for example, permission 0440 on your files).

Network File System (NFS)
NFS is the original *nix file sharing protocol. Using NFS, you can share the file
system resources (as well as printers) across a network. Hence, other hosts on the
network can access the remote storage, just like their local storage.

NFS was developed in 1970 by Sun Microsystems, and has evolved hugely since
then. Nowadays NFS is an integrated part of every *nix operating system.

NFS is a client/server protocol, which means a server shares its storage resources
and other client(s) can access the shared resources on the server. The clients and
servers should be configured separately using FreeBSD's built-in NFS utilities.

Server
NFS server has three main daemons that should be running in order to serve storage
resources across the network:

The nfsd(8) daemon services NFS requests from client machines.•

Chapter 14

[241]

The rpcbind(8) daemon maps Remote Procedure Call (RPC) program
numbers to universal addresses and lets NFS clients know which ports the
NFS server is using to serve requests.
The mountd(8) daemon processes incoming mount requests.

Enabling the NFS server is as simple as adding appropriate variables to /etc/
rc.conf, and starting the daemons (or restarting the server):

rpcbind_enable="YES"
nfs_server_enable="YES"

Running NFS server is the easiest part. Now all you need to do is to specify which
resources should be shared (exported), as well as access policies for each export.

This is done using the /etc/exports file. The /etc/exports file contains
information about every resource you want to share, as well as some export options
and the hosts you want to permit to have access to each resource.

The above example shows the /etc/exports file that specifies three
exported directories.

/usr/ports/distfiles -network 192.168.11.0 -mask=255.255.255.0
/cdrom -ro 192.168.0.14
/public –ro –mapall=nobody

The first line exports the /usr/ports/distfiles directory. The share is only
accessible for 192.168.11.0/24 subnet, and is exported with read/write permission
(which is available by default).

The second line in the above code, exports the /cdrom directory with read-only
permission (hence the -ro parameter), only for the host 192.168.0.14.

And the third line exports /public directory as read-only for any host, and
everyone can access the contents of this export with user access set to nobody. The
-mapall=nobody maps all users to local user nobody.

Client
FreeBSD can mount NFS shares using mount(8) or mount_nfs(8) utility. All you
need to do is to prepare the host to be able to mount NFS shares, by enabling NFS
client modules:

nfs_client_enable="YES"

Adding the above variable to the /etc/rc.conf file ensures that the current
operating environment is prepared to mount NFS shares.

•

•

Network Services—Local Network Services

[242]

You also need to run the NFS client rc script manually, for the first time:

/etc/rc.d/nfsclient start

You can now mount the NFS shares using the mount(8) utility. The following
example shows how to mount one of the exports we have done recently:

mount 192.168.0.5:/usr/ports/distfiles /mnt

This will mount the export /usr/ports/distfiles from host 192.168.0.5 on the
/mnt mount point. You can then verify if the share has been mounted:

mount

/dev/da0s1a on / (ufs, local)
devfs on /dev (devfs, local)
/dev/da0s1e on /tmp (ufs, local, soft-updates)
/dev/da0s1f on /usr (ufs, local, soft-updates)
/dev/da0s1d on /var (ufs, local, soft-updates)
fdescfs on /dev/fd (fdescfs)
192.168.0.5:/usr/ports/distfiles on /mnt (nfs)

You can then unmount the mounted share using the umount(8) command:

umount /mnt

Mounting a NFS share manually is quite straightforward. This is useful when
you want to mount a share temporarily, any time. But it is highly likely that you
may want to have your mounts activated automatically, during system boot. Just
as in every other file system you can achieve this by adding necessary mounting
information to the /etc/fstab file. However, this might be a little bit tricky. The
following example shows mounting the same share we used in the recent example
via the /etc/fstab file. To achieve this, the following line should be added to
the fstab file:

192.168.0.5:/usr/ports/distfiles /mnt nfs -b 0 0

This line in the fstab file will mount the share /usr/ports/distfiles from
192.168.0.5 on /mnt, during system boot up.

Normally your system will fail to boot if the specified share is not
available and therefore cannot be mounted. This is the reason why
-b flag is used. This flag tells mount_nfs(8) to fork a background
process if it fails to mount the share for any reason, and retry the mount
in the background. This will avoid any boot problem if your share is
being mounted from the fstab file during the boot-up process.

Chapter 14

[243]

NFS Locking
Locking files over NFS protocol is not enabled by the default configuration. There
may be certain circumstances when you may need to have the file locking feature on
your NFS mounts, just as in the local file system. To achieve this, you have to enable
rpc.lockd(8) and rpc.statd(8) on both NFS server and its clients. The rpc.
lockd(8) daemon in conjunction with rpc.statd(8) takes care of file and record
locking in an NFS environment.

The following lines should be added to the /etc/rc.conf file on NFS server and its
clients in order to enable file locking over NFS:

rpc_lockd_enable="YES"
rpc_statd_enable="YES"

And then start the rpc.lockd daemon manually, if you do not want to reboot
your host:

/etc/rc.d/lockd start

Server Message Block (SMB) or CIFS
In a heterogeneous network, you may have different operating systems running,
such as Microsoft Windows, that do not support NFS file sharing natively.

The SMB protocols or Windows File Sharing protocols are Microsoft's file sharing
protocols that are mainly used on Windows operating system.

Your FreeBSD host can act as SMB client and server to make the integration into
heterogeneous networks, easier.

This means that you can mount SMB shares using mount_smbfs(8), which is a
FreeBSD's built-in utility. Your FreeBSD server can also act as a SMB file and print
server using popular open-source SAMBA package.

SMB Client
As mentioned earlier, FreeBSD comes with a built-in utility to mount SMB shares.
The mount_smbfs(8) utility can mount SMB shares to local mount points, and can
also be used in the /etc/fstab file to mount SMB shares automatically, on system
start up.

The typical mount_smbfs command looks like this:

mount_smbfs –I 192.168.0.14 //admin@babak-winxp/cygwin /mnt/cygwin

Network Services—Local Network Services

[244]

This will mount a share called cygwin from a host called babak-winxp with IP
address 192.168.0.14. The share is mounted with the permission of user admin and
the password is asked for, during the mount process.

Note that the -I parameter takes the actual IP address of the SMB server (in this
case 192.168.0.14). You should also specify the name of the SMB server (for
example babak-winxp). In case you do not specify the IP address of your server
using the -I options, the IP address will be looked up from the host name, using
NetBIOS name resolver. However, it would be a good idea to use -I to speed up the
mounting process.

Once you enter this command, the password for the specified user, in this case,
admin, is asked. If the authentication succeeds, the remote share will be mounted
to the node you have specified (/mnt/cygwin in this example).

You can also verify whether the share is mounted as you wanted as shown here:

mount

/dev/ad0s1a on / (ufs, local, noatime, soft-updates)
devfs on /dev (devfs, local)
procfs on /proc (procfs, local)
/dev/md0 on /tmp (ufs, local)
//ADMIN@BABAK-WINXP/CYGWIN on /mnt/cygwin (smbfs)

The last line of the mount(8) output shows that the share has been
mounted successfully.

Note that you can also unmount the mounted share like a typical mount point, using
the umount(8) utility

umount /mnt/cygwin

SMB Server
SAMBA is a very popular open-source implementation of the SMB protocol that runs
on various operating systems including FreeBSD. Using SAMBA, you can turn your
FreeBSD server into a high performance Windows File Sharing server, which can
integrate into your hybrid network.

SAMBA is available in FreeBSD's ports collection under /usr/ports/net/samba3.

After installing SAMBA via port (or package), just like any other server package you
should configure it using the configuration file and enable it in /etc/rc.conf:

samba_enable="YES"

Chapter 14

[245]

The default configuration file for samba is located at /usr/local/etc/smb.conf.
The default configuration file contains the basic configuration including a few
sample shared directories and printers. You should modify this file (or create a new
one from the scratch) to suit your specific needs.

You need to set up your server name, workgroup name, security-level, and
access control rules in your smb.conf file, before actually setting up your shared
directories/printers:

[global]
 workgroup = MYGROUP
 server string = Samba Server
 security = user
 hosts allow = 192.168.1. 192.168.2. 127.

This will set your workgroup name, server name (as it will be seen by other SMB
hosts), security-level (which can be chosen from various options such as user, share,
server, ads, and domain) as well as the hosts that are allowed to access this server.

There are also further advanced options that can be specified in this
configuration file, such as debugging and logging options, Master Browser
preference, centralized password server settings, and wins/dns proxy
settings. The default configuration file is crafted in a way that it fits in most
of the simple deployments. However, all these configuration parameters
along with a short description and their default value are present in the
sample configuration file, which can be modified to suit your need.

After tweaking general configuration parameters, you should specify your shared
resources configuration. Each share has its own configuration block, like the
following example:

[myshare]
 comment = sample shared directory
 path = /usr/home/babak/mydocs
 valid users = babak jdoe
 public = no
 writeable = yes
 printable = no

This example shows a simple shared directory. The share can be accessed on the
number using its name (in this example, myshare). We have also specified the actual
address of the directories we are going to share over the network. This share would
not be available for everyone and users should be authenticated, hence the valid
users parameter. Only the users, babak and jdoe, are authorized to access this
share. The share is also writable so that users can create and modify the shared files
across the network. And as the last parameter, we have also specified that this share
is not a printer (which explains the printable parameter).

Network Services—Local Network Services

[246]

Authentication
The recent example shows that we can set up shares for specific users that would
be authenticated over the network and granted access according to specified
access policies.

SAMBA can authenticate users with a local password database, or a password server
that you may configure for this reason. The password server can be a Windows
Active Directory, Windows NT Domain Controller or even LDAP.

In most simple deployments, administrator chooses the local password database
to store user passwords. This local password database can be maintained using the
smbpasswd(8) utility. Using this utility you can add, delete, enable, disable, and
change users' password for the users you configure to access SMB shared over
the network.

smbpasswd –a babak

New SMB password:
Retype new SMB password:
startsmbfilepwent_internal: file /usr/local/etc/samba/smbpasswd did
not exist. File successfully created.
Added user babak.

This will add a new user named babak to samba's local password database at /usr/
local/etc/samba/smbpasswd.

In the local authentication scheme, the user should also exist in the
systems password database (the /etc/passwd file) before you can
actually add it to SAMBA's password database. Otherwise, it fails to add
the user.

Samba Web Administration Tool (SWAT)
SWAT, as the name mentions, is the web administration tool to manage SAMBA
configuration such as managing shares, users, and so on.

SWAT makes your life easier, on busy servers in which you have many shares or
users to manage. SWAT is also lightweight and fast, and best of all it does not need
any third-party web server to run. It has its own web request handler, and can be
enabled in a few seconds using the inetd daemon. All you need to do is to modify
your /etc/inetd.conf file and start/restart your inetd daemon. The configuration
line for swat already exists in the /etc/inetd.conf file (the last line of the file) and
all you have to do is to un-comment it:

swat stream tcp nowait/400 root /usr/local/sbin/swat swat

Chapter 14

[247]

SWAT runs on TCP port 901. So if SWAT is running on a host with IP address
10.1.1.1, you may access SWAT using a web browser on http://10.1.1.1:901.

Creating a share using SWAT is shown in the following screenshot:

Network Services—Local Network Services

[248]

Simple Network Management Protocol
(SNMP)
SNMP is a protocol to monitor and control network attached devices. SNMP agents
that run on the devices can provide status information about the device upon
request, or even send TRAP messages to specific hosts, when an event occurs. SNMP
can also be used to manage devices over the network by setting the given parameter
on the device.

SNMP is a client/server protocol. A SNMP server (or agent) is a piece of software
that runs on hosts and keeps one or more databases of almost live information about
the host. These databases are called Management Information Bases (MIBs).

On the other hand, the SNMP client queries SNMP servers/agents for information.
This information can be used in a Network Management System (NMS) to monitor
the status of the device, or can be used to draw statistics graphs.

There are various open-source SNMP suites available that can be used in FreeBSD.
This chapter discusses two important SNMP implementations in FreeBSD as
shown here:

Net-SNMP, that is available via ports system, is a very popular open-source
SNMP toolkit.
bsnmpd is a light-weight SNMP agent that is available in FreeBSD's
base system.

bsnmpd
The bsnmpd(1) daemon is a very light-weight SNMP daemon that is supposed to
serve only the basic SNMP MIBS, and the other MIBS through loadable modules. The
bsnmpd(1) is available in FreeBSD base system, out of the box.

Setting up a basic SNMP server using bsnmpd is pretty straightforward:

bsnmpd_enable="YES"

Adding this line to /etc/rc.conf file will enable the daemon so that it is started
automatically, upon system start up. You should then start the daemon, manually,
for the first time:

/etc/rc.d/bsnmpd start

And you are set.

•

•

Chapter 14

[249]

Now bsnmpd(1) is running with the default configuration (which is not always secure)
and it is highly recommended that you customize the configuration for your needs.

The configuration file is located at /etc/snmpd.config. You need to change a few
basic things, such as location and contact fields, and most importantly, the read
and write to community strings.

In SNMP, the community strings are almost equal to passwords. Anyone
who knows your community string can poll status information from your
SNMP server, or even change the variables over the network.

Following is a sample of secured snmpd.config file:

location := "Datacenter"
contact := "sysadmin@example.com"
system := 1 # FreeBSD
traphost := localhost
trapport := 162
read := "p^49Gb*z0n$0"
write := "wMt54%z@0Rcj3"

The sample configuration file also contains a modules section in which it loads
appropriate modules, if necessary. One module that is loaded by default is SNMP
MIB II module that contains basic information about the host. There are also a few
other modules available such as Netgraph Module, PF Module, and Bridge Module.

For more information about the other modules, please see documents and MIBs
under the /usr/share/snmp directory.

NET-SNMP
NET-SNMP is a complete suite of open-source SNMP tools, including client and
server components, and supports the SNMP v1, v2c, and v3 protocols. NET-SNMP is
very popular, and has many modules that can be used to extend its functionality.

Unlike bsnmpd(1), the NET-SNMP is a fully loaded SNMP toolkit that contains
many MIBs and supports many protocol extensions, and also includes a handful of
client and test tools. NET-SNMP is the right choice for a complex SNMP scenario.

NET-SNMP is available in ports tree under the /usr/ports/net-mgmt/net-snmp
directory. After installing the port, you can enable the NET-SNMP in the /etc/
rc.conf file using appropriate configuration variable:

snmpd_enable="YES"

Network Services—Local Network Services

[250]

You can then manually start the daemon by issuing the following command:

/usr/local/etc/rc.d/snmpd start

The NET-SNMP configuration is somehow complicated, as compared to bsnmpd.
The configuration consists of a set of configuration files that can be found under
the /usr/local/share/snmp subdirectory. The most important configuration
file is snmpd.conf,which contains configuration information for the SNMP
server component.

You do not have to edit the configuration files manually. The snmpconf(1) utility
can be used to edit the configuration in a step-by-step manner.

You need to perform some basic initial setup for your NET-SNMP daemon, before
you can actually use it. These configuration parameters consist of the basic contact
and location information, as well as community names and network access policies.
All these steps can be done using the following command:

snmpconf –i

The snmpconf(1) utility then asks you, which component you want to configure and
starts asking you questions about your preferred setup parameters. Once finished,
it will automatically install the configuration file in the correct location, and all you
need to do is to start or restart the SNMP daemon.

Client Tools
The NET-SNMP is bundled with a Swiss army knife of SNMP client and test tools.
Using these utilities, you can perform various SNMP operations from the command
line. The client set consists of the following tools:

Utility Name Description of functionality
snmpget Queries SNMP server for a specific variable using GET request.
snmpgetnext Queries SNMP server for a specific variable using GETNEXT request.
snmpset Sends a SET request to SNMP server to update a specific variable.
snmpwalk Retrieves a subtree of variables from SNMP server.
snmpbulkget Queries SNMP server for a set of variables using GETBULK request.
snmpbulkwalk Retrieves a subtree of variable from SNMP server using GETBULK

request.
snmpdelta Monitors delta differences in SNMP counter values.
snmpinform Sends an INFORM-PDU to the trap receiver.
snmpnetstat Displays network status and configuration information of a SNMP

server.

Chapter 14

[251]

Utility Name Description of functionality
snmptest Communicates with SNMP servers using user specified SNMP requests.
snmpstatus Retrieves a fixed set of management information from SNMP server.
snmptable Retrieves an SNMP table and displays it in tabular format.
snmptranslate Translates OID names from numeric to text and vice versa.
snmpusm Manages SNMPv3 users on SNMP servers.
snmpvacm Manages SNMPv3 View-based Access Control on SNMP servers.
snmpdf Retrieves disk usage information from SNMP server.
snmptrap Sends TRAP-PDU or TRAP2-PDU to trap receiver.

The snmpget(1) utility is a handy tool to retrieve SNMP variables from an
SNMP agent.
snmpget –v 1 –c public 10.10.1.3 sysName.0

SNMPv2-MIB::sysName.0 = STRING: server01.example.org

This example shows retrieveing sysName variable from host 10.10.1.3. This
query is initiaited using SNMP version 1 (hence the -v parameter) and a read-only
community named public is configured on the SNMP server.

On the other hand, snmpwalk(1) actually retrieves a complete sub-tree from
the SNMP server. It can be used to populate a complete set of data from an
SNMP-enabled host.

snmpwalk -v 1 -c public 10.10.1.3 IF-MIB::ifDescr

IF-MIB::ifDescr.1 = STRING: sis0
IF-MIB::ifDescr.2 = STRING: xl0
IF-MIB::ifDescr.3 = STRING: lo0

This example shows how to retrieve the ifDescr sub-tree from IF-MIB. Note that
you can retrieve the complete SNMP MIB tree from the host, if you do not specify
any SNMP OID in parameters. This will most likely give a huge amount of output,
but it is useful to see what kind of information you can get from the host.

Printing
Obviously FreeBSD can be used to connect to printers and communicate with them.
This is not a big deal, since pretty much every other operating system has a printing
interface that can be hooked up to standard printers, and print documents. Besides
that, FreeBSD can be used as a full-featured print server. As a print server, your
FreeBSD host can receive print jobs from multiple hosts over the network, and spool
the jobs and then print them respectively.

Network Services—Local Network Services

[252]

FreeBSD has its own built-in generic print spooler called lpd(8) based on RFC 1179
definitions. There are also various alternatives to the built-in print spooler such as
LPRng (available in ports tree as sysutils/LPRng) that is a more advanced print
spooler as compared to FreeBSD's built-in spooler.

Another very popular and more complex print spooler is CUPS (for Common UNIX
Printing System) that supports more protocols and is easier to configure.

lpd—Print Spooler Daemon
The lpd(8) utility is the legacy print spooler daemon that is built-in to the FreeBSD
distribution. It can handle incoming print requests from the network (or locally) and
store them in the spool directory, and then take care of printing documents correctly.

LPD relies on the /etc/printcap file in order to communicate with your printer.
This file contains printer definitions. LPD reads this file anytime it needs to
communicate with a printer. Therefore, you should setup your printer and add
appropriate configuration to this file before anything else. Setting up the printcap
entries manually is somewhat complex. Luckily there are tools that would make
your life easier by taking care of configuring printcap for you, based on an
interactive interface. One such tool is apsfilter program that is available in ports
collection as print/apsfilter. The apsfilter program helps you in choosing the
correct printer drivers and configuration, and finally creating relevant entries in the
/etc/printcap file.

Once you have configured your printer driver, you should enable lpd, so that your
host can receive print jobs and send them to its attached printer.

LPD can be enabled from the rc.conf file by adding the following line:

lpd_enable="YES"

You can then start the LPD service manually, by running the following command:

/etc/rc.d/lpd start

Now LPD is ready to accept print jobs. You can test your setup by sending a sample
text file to the printer. The following command is run to test your print setup:

lpr /etc/motd

This should print the /etc/motd file to your recently configured printer.

Chapter 14

[253]

Common UNIX Printing System (CUPS)
CUPS provides you with a friendly interface for printing. Unlike legacy LPD, CUPS
automatically takes care of your printer configuration, and deals with the printcap
file in the background. In addition to LPD protocol, CUPS supports Internet Printing
Protocol (IPP) as the default protocol, as well as SMB and HP JetDirect protocols.
IPP is an advanced remote printing protocol that covers many shortcomings of older
protocols by adding many advanced features such as Access Control, Encryption,
and Authentication.

CUPS can be found in ports collection under the print/cups directory.

If you have already configured your /etc/printcap file, make sure you
take a backup prior to installing CUPS as it will overwrite the existing
printcap file.

Just like any other daemon in FreeBSD, CUPS should be enabled by adding this line
to your /etc/rc.conf file:

cupsd_enable="YES"

While running, CUPS listens on TCP 631 (bound to 127.0.0.1) and UDP 631, on all
interfaces. You can manage CUPS configuration using the Web GUI by pointing
your browser to http://127.0.0.1:631/ on the same host you are running CUPS.
If you want to manage CUPS configuration remotely, you should change the default
configuration file that is located at /usr/local/etc/cups/cupsd.conf.

Using the Web GUI, you can manage printers, classes (group of printers), and
print jobs. CUPS updates the /etc/printcap file, when you add or modify printer
settings. So when you configure a printer using CUPS, any other print spooler (for
example LPD or LPRng) can use the printcap file to communicate with the printers.

Network Services—Local Network Services

[254]

CUPS Management Interface shows a sample print job in the following screenshot:

Network Information System (NIS)
NIS (formerly YP) is to UNIX, what a Domain Controller is to Windows. Basically,
NIS allows a group of workstations to share a common set of configuration files such
as passwords database, group database, hosts files, and so on.

Chapter 14

[255]

NIS in conjunction with NFS can offer roaming users profile that will allow users
to log into any of the NIS member workstations and feel like they're at home (same
home directory and configuration).

Obviously, NIS follows Client/Server model in which there is at least one server
(master server), and optionally one or more slave servers.

There are also one or more clients that are members of the "NIS Domain". This is
called binding. The ypbind(8) daemon takes care of binding on the client machines.

NIS Server
To set up a NIS server, you should take a few steps. The first step is choosing
your NIS domain name. The NIS domain name is a name that your NIS domain
is identified with. The benefit of identifying a domain by name is that you may
have multiple domains, each with its own set of workstations running on the same
network without any interference.

As the NIS domain name is not necessarily your DNS domain name,
it does not follow DNS naming rules. You may choose your own NIS
domain name in order to avoid confusion. However, you are also free to
use your DNS domain name as NIS domain name.

Either on a server or a client, you should specify the domain name in the /etc/
rc.conf configuration file:

nisdomainname="example-domain"

You should also enable NIS server daemon to run during system startup, as
shown here:

nis_server_enable="YES"

These are the two parameters which you need to set up a NIS domain server.
However, there are a few other variables that we will discuss later in this chapter.

Initializing NIS Server
It is necessary to initialize the NIS server. By initializing you will create a default set
of centralized database files and make your server ready to serve the configuration
databases to the clients.

NIS database files are kept under the /var/yp subdirectory. On a brand-new
installation, you will have a Makefile under this directory, that will be used later to
initialize the NIS server.

Network Services—Local Network Services

[256]

First, you need to make a copy of the password file in the /var/yp directory
as follows:

cp /etc/master.passwd /var/yp/

Then you should edit the password file and remove unnecessary accounts. This
includes the system accounts such as daemon, operator, bin, etc. Please note that
the system accounts use UID lesser than 1000. You may also want to keep the root
account, and add a few accounts to the file, before initializing the server.

When you are finished with the password file, you are ready to initialize the NIS
server for the first time. To do so, the ypinit(8) command will be used. The
ypinit(8) command initializes a master or slave NIS domain server for the first
time. It creates initial databases and appropriate directory structure that is needed by
the NIS server. The ypinit command uses the Makefile from the /var/yp directory
to set up the server, so that you do not have to run the Makefile manually.

ypinit -m example-domain

Server Type: MASTER Domain: example-domain

Creating an YP server will require that you answer a few questions.
Questions will all be asked at the beginning of the procedure.

Do you want this procedure to quit on non-fatal errors? [y/n: n]

Ok, please remember to go back and redo manually whatever fails.
If you don't, something might not work.

At this point, we have to construct a list of this domains YP servers.
server.example.org is already known as master server.
Please continue to add any slave servers, one per line. When you are
done with the list, type a <control D>.
 master server : server.example.org

 next host to add: ^D
The current list of NIS servers looks like this:
server.example.org

Is this correct? [y/n: y]
Building /var/yp/example-domain/ypservers...
Running /var/yp/Makefile...
NIS Map update started on Sun Dec 16 00:32:45 IRST 2007 for domain
example-domain
Updating hosts.byname...
Updating hosts.byaddr...
yp_mkdb: duplicate key '192.168.0.5' - skipping
Updating networks.byaddr...
yp_mkdb: no key -- check source file for blank lines

Chapter 14

[257]

yp_mkdb: no key -- check source file for blank lines
Updating networks.byname...
yp_mkdb: no key -- check source file for blank lines
yp_mkdb: no key -- check source file for blank lines
Updating protocols.bynumber...
Updating protocols.byname...
Updating rpc.byname...
yp_mkdb: duplicate key 'rpcbind' - skipping
Updating rpc.bynumber...
Updating services.byname...
yp_mkdb: duplicate key 'compressnet/tcp' - skipping
yp_mkdb: duplicate key 'compressnet/udp' - skipping
yp_mkdb: duplicate key 'mit-ml-dev/tcp' - skipping
yp_mkdb: duplicate key 'mit-ml-dev/udp' - skipping
Updating shells...
Updating group.byname...
Updating group.bygid...
Updating passwd.byname...
Updating passwd.byuid...
Updating master.passwd.byname...
Updating master.passwd.byuid...
Updating netid.byname...
Updating amd.map...
NIS Map update completed.

server.example.org has been setup as an YP master server without any
errors.

Now your server is initialized. The /var/yp directory should now contain two new
files and a folder. The passwd file is just like a typical password file created using the
custom master.passwd that we created for our NIS server. The ypservers file also
contains the names of all master and slave servers for the domain.

A directory named example-domain (which is the same as the domain name on your
system) containing NIS server's database files is also created with the default values.

Now you can start your NIS server by running appropriate rc script manually, or by
rebooting the server:

/etc/rc.d/ypserve start

Network Services—Local Network Services

[258]

Summary
FreeBSD offers a sound platform for local network services. In this chapter we
learned to deal with a few of the local network services and protocols—DHCP, TFTP,
NFS, SMB, SNMP, Printing, and NIS/YP. FreeBSD provides some of these services
as built-in, while the others require the network administrators to configure them
separately using the built-in utilities (such as NFS).

DHCP describes a means by which network devices access network configuration
details from the server for communication. This section covers dhclient(8) ,and
ISC DHCPD daemon and its configuration. TFTP is a simpler version of FTP and
requires the inetd server to run. NFS is a client/server protocol used for file
sharing for *nix operating systems. Samba implements SMB protocol, and is used
for interface in Microsoft environments. SNMP monitors and controls the network
devices. This chapter discusses the two open source SNMP utilities—Net-SNMP
and bsnmpd. FreeBSD has its own print spooler daemons—lpd and CUPs. The final
services that this chapter discusses are NIS, where a group of workstations share a
set of configuration files.

Index
Symbols
/boot/loader.conf file 98
/etc/make.conf file

about 97
CFLAGS, variables 98
COPTFLAGS, variables 98
CPUTYPE, variables 97
variables 97

A
AH protocol 137
Autonomous System 166

B
bridging

about 169, 171
bridge, creating 170, 171
bridge interface configuration, verifying

170, 171
filtering bridges 171
filtering bridges, configuring 172
flags 171
interface, removing from bridge group 170,

171
network bridge 169, 171

C
CIDR method 175
CIFS. See SMB
CVSup

-CURRENT, tracking 33, 34
-STABLE, tracking 31-33
-STABLE, tracking supfile used 31

about 31
branch tag 30
HEAD tag 30
release tag 30
RELENG_7 tag 30
revision tag 30

D
DHCP, network services

about 236
Dhclient 236
DHCPD configuration 237, 238
ISC DHCPD 236

disk
file limits 92
i/o performance 92, 93
partition layout 7
RAID 93
RAID, levels 93
sizes 7
swap partitions 9

DNS, internet services
about 215
authoritative, operating modes 217, 218
BIND software 215
BIND software, authoritative mode 215
BIND software, caching forwarder mode

216
BIND software, modes 215
caching, operating modes 216
forwarding, operating modes 216
monitoring, operating modes 219
operating modes 215
optimizations, operating modes 219, 220

[260]

Domain Name System. See DNS
Dynamic Host Configuration Protocol. See

DHCP

E
Encapsulated Security Payload protocol. See

ESP protocol
ESP protocol 137

F
file system backup, system configuration

about 18
cpio utility 23
dump utility 18-21
pax utility 23
restore utility 18-21
snapshots 23
tarball 22
tar utility 22

FreeBSD
/, disk partitions 8
/tmp, disk partitions 8
/usr, disk partitions 8
/var, disk partitions 8
bridging 169, 171
chroot environment 75, 76
disklabel editor, with partitions 8, 9
disk partitions 8
internet services 203
IP forwarding 158
IPFW 183
IPv6 176
jail 75, 76
Multicast routing 181
network, variables 94
network address translation, PF and IPFW

used 199, 200
network configuration 101
network services 235
OpenBGPD 166
OpenOSPFD 163
package management tools 55
Perforce version control system, used 30
PF 183, 193
PF and IPFW combinations, for NAT

implementing 199

ports and packages 48
process accounting 72, 73
process management 63
proxy ARP 172
RAID-GEOM framework 24
resource management 69
RIP6 180
route6d(8) 162
routed(8) 162
routing daemons 162, 163
softwares 157
static routing 160
swap, disk partitions 8
swap encryption 12
swap partitions, creating 9
system configuration 7
upgrading 29

FreeBSD, performance
/boot/loader.conf file 98
/etc/make.conf file 97
disk, tweaking 92
kernel, tweaking 89, 90
kernel variables, tweaking using sysctl 88,

89
network, tweaking 94
SMP, tweaking 91

FreeBSD, softwares
OpenBGPD 157
OpenOSPFD 157
Quagga 157
XORP 157
Zebra 157

FreeBSD, upgrading
binary update 42
binary update, installing 43
binary update, methods 42
customized kernel, loading 44
custom kernel, advantages 38
custom kernel, building 39
custom kernel, considerations 40
custom kernel file, creating 39
CVSup 30
kernel, customizing 38
kernel, subdirectory and platform 38
new kernel, installing 43
ports collection 34
security 36

[261]

world, rebuilding 40, 41
world rebuilding, precautions 41
world rebuilding, tricks 42

FTP, internet services
about 221
anonymous FTP server 221, 222

G
Generic Routing Encapsulation. See GRE
GRE

about 134
gre(4) interface, creating 134
gre(4) interface, removing 134
GRE tunnel, establishing between Host A

and Host B 135, 136

I
ifconfig utility

about 101
address families 106
advanced options 113
Apple Talk, configuring 108
FEC (Fast EtherChannel), configuring 118
inet keyword 106
interface flags 102, 103
IP address, configuring 106
IPv6 address, assigning to interface 106
IPX, configuring 107, 108
layer2 address, configuring 107
media options, configuring 110, 111
NIC options 103, 104
secondary(alias) IP address, configuring

109, 110
uses 102
VLANs, configuring 112, 113

ifconfig utility, advanced options
ARP (Address Resolution Protocol) 116
hardware, offloading 114
monitor mode 118
MTU (Maximum Transmission Unit) 116
promiscuous mode 115
static ARP 117
TCP/IP checksum calculations, offloading

114
TCP Large Receive, offloading 114
TCP segmentation, offloading 114

VLAN tagging, offloading 114
inetd daemon, internet services

about 204, 205
tcdp 206

internet services
DNS 215
FTP 221
inetd daemon 204
mail 223
NTP 213
proxy 230
SSH 207
web 227

IPFIREWALL. See IPFW
IP forwarding

about 158
flags 159, 160
IPv6 routing table, displaying current

status 159
IPv6 routing table, displaying status and

content 158
routing entry, fields 159
routing table, modifying methods 158

IPFW
about 184
basic configuration 185, 186
configuration parameters, for pipes 193
customized rulesets 188
enabling 184
logging 190
NAT (Network Address Translation) 191
NAT configuration 191
NAT configuration, keywords 191
pipe, traffic shaping 192
queue, traffic shaping 192
ruleset templates 187
traffic shaping 192

IPSec
about 136
IPSec Tunneling 137
IPSec VPN 137
operating modes 137
transport mode, operating modes 137
tunnel mode 138
tunnel mode, operating modes 137

IPSec, tunnel mode
components, encryption setup 139

[262]

encryption, applying on packets 139
routing table updates, verifying 139
site to site IPSec tunnel, creating 138-143
static routes, adding 139

IPv4
about 175
issues 175

IPv6
about 176
GIF tunneling 181
interfaces, configuring 177, 178
multicast routing 181
reserved addresses 179
RIP6 180
routing 179, 180
tunnelling 181
using 177

IPv6, facts
addressing 176
address types 176
ARP 176
interface confiugration 177

J
jail

about 75, 76
automatic startup 81
devfs(5) mount 84
devfs(5) ruleset 84
host system, configuring 78-80
initial configuration 80
limitations 85
managing 82, 83
running 81
security 84
service jail 76
setting up 77, 78
shutting down 82
steps 80

M
mail, internet services

about 223
postfix 226
sendmail 224, 225
sendmail, catchall method 226

Mail Transfer Agent. See MTA
MTA 223

N
NAT method 175
network, variables

network interface polling 96
RFC 1323 extensions 95
TCP buffer space 95
TCP delayed ACK 94
TCP listen queue size 95

network configuration
about 101
default routing 119
GIF, tunneling protocols 133
GRE, tunneling protocols 133, 134
host name, translating to IP address 120
ifconfig utility 101
IPSEC, tunneling protocols 133
IPSec protocol 136
name resolution 120, 121
network interfaces 101
network testing tools 121
NOS, tunneling protocols 133
tunneling 133
tunneling protocols 133

Network File System. See NFS
Network Information System. See NIS
network interfaces

logical network interfaces 102
physical network interfaces 101

network services
DHCP 236
NFS 240
NIS 254
printing 251
SMB 243
SNMP 248
TFTP 239

network testing tools, network
configuration

ARP 125, 126
netstat 124, 125
netstat parameters 124
ping 121, 122
sockstat 123, 124

[263]

tcpdump 126-130
traceroute 122

NFS, network services
about 240
client 241, 242
locking 243
server 240, 241

NIS, network services
about 254
NIS server, initializing 255, 257
server 255

NTP, internet services
about 213
NTP server 214, 215
syncing 213, 214

O
OpenBGPD

about 166
bgpd.conf example 166, 168
BGP protocol 166

OpenOSPFD
about 163, 165
OSPF network 164

P
package management tools

about 55
pkg_deinstall, portupgrade 57
pkg_which, portupgrade 59
portinstall, portupgrade 56
portmaster 60
portsclean, portupgrade 59
portupgrade 56, 58
portversion, portupgrade 58
utilities, portupgrade 56

PF
about 193
controlling 197
keywords, used with -s flag 198
PF configuration syntax 194, 195

PF configuration syntax
filter rules 197
macros 195
options 196
queuing 196

Scrub 196
tables 196
translation 197

ports and packages, FreeBSD
about 48
FreeBSD website, software directories 49
freshports, software directories 49
legacy method 48, 49
local ports repository, software

directories 49
make arguments, ports 52, 53
packages 49, 50
ports 51
resources, for searching application 49
search facility, ports 52
software directories 49

ports collection
ports, tracking 34, 35
portsnap 35
portsnap, advantages 35
ports tree, downloading 36
ports tree, updating ways 34

printing, network services
CUPS(Common UNIX Printing System)

253
lpd, print spooler daemon 252

process accounting 72
process management

daemon 64
process 64
running processes, information 65
signal 64
signals 64

proxy, internet services
HTTP proxy server 230
web proxy server 230

Q
quotas, system configuration

about 15, 16
assigning 16, 17
high limit, quota limits 16
important notes 18
quota limits 16
soft limit, quota limits 17

[264]

R
RAID-GEOM framework, system

configuration
about 24
disk concatenation 27
gconcat(8) utility 27
GEOM stripe sets, devices 25
gmirror(8) utility 26
gmirror(8) utility, commands 26
gstripe(8) utility 24
RAID0, striping 24
RAID1, mirroring 26
RAID1, mirroring, balance algorithms 26

resource management
about 69
iostat, system resource monitoring tools 70
pstat, system resource monitoring tools 70
systat, system resource monitoring tools 71
system resource monitoring tools 69
vmstat, system resource monitoring

tools 69
running processes, process management

information 65
killall command, sending signals 68
kill command, sending signals 67
pgrep command, getting information 67
pkill command, sending signals 68
prioritizing, nice command 68
prioritizing, renice command 68, 69
ps command, getting information 65
top command, getting information 65

S
Samba Web Administration Tool. See

SWAT
security, FreeBSD

about 36
CVS branch tag 37
VuXML(Vulnerability and eXposure

Markup Language) 37
Server Message Block. See SMB
Simple Network Management Protocol. See

SNMP
SMB, network services

about 243

client 243
SAMBA 244
server 244
server, authentication 246
SWAT 246

snapshots, system configuration 13-15
SNMP, network services

about 248
bsnmpd 248
MIBs (Management Information Bases) 248
NET-SNMP 249
NET-SNMP, client tools 250

softupdates, system configuration 12
Squid

about 230
configuring 231, 232
installing 231

SSH, internet services
about 207
command, running remotely 208
SSH authentication agent, SSH keys 210
SSH keys 208
SSH keys, advantages 208
SSH keys, protecting 209
SSH port forwarding, SSH keys 212
SSH tunnel, dynamic forwarding mode 212
SSH tunnel, establishing modes 212
SSH tunnel, static forwarding mode 212
SSH tunneling, SSH keys 212

static routing
about 160
add command, routing table 161
adding, to routing table 160
change command, routing table 161
default gateway, adding to routing

table 160
delete command, routing table 161
example 162
existing route, removing from routing

table 161
routing table, cleaning up 161
routing table, manipulating 160
routing table, updating 161
routing table entries, viewing 161

supfile 31

[265]

swap, system configuration
about 9
partitions, creating 9

SWAT 246
system configuration

disks 7
file system backup 18
quotas 15
RAID-GEOM framework 24
snapshots 13
softupdates 12
swap 9
swap space, adding 10, 11

T
TFTP, network services 239
Trivial File Transfer Protocol. See TFTP
tunneling, network configuration 133

U
UFS2 file system

about 92
mounting modes 92

V
virtual server 76

W
web, internet services

about 227
alternative HTTP servers 230
Apache 228
Apache, virtual hosts 229

Y
yellow pages. See NIS

	Cover
	Table of Contents
	Preface
	Chapter 1: System Configuration—Disks
	Partition Layout and Sizes
	Swap
	Adding More Swap Space
	Swap Encryption

	Softupdates
	Snapshots
	Quotas
	Assigning Quotas

	File System Backup
	Dump and Restore
	The tar, cpio, and pax Utilities
	Snapshots

	RAID-GEOM Framework
	RAID0—Striping
	RAID1—Mirroring
	Disk Concatenation

	Summary

	Chapter 2: System Configuration—Keeping it Updated
	CVSup—Synchronizing the Source Code
	Tracking –STABLE
	Tracking –CURRENT

	Ports Collection
	Tracking Ports
	Portsnap

	Security Advisories
	VuXML—Vulnerability Database
	CVS Branch Tag

	Customizing and Rebuilding Kernel
	Rebuilding World
	Binary Update
	Recovering from a Dead Kernel
	Summary

	Chapter 3: System Configuration—Software Package Management
	Ports and Packages
	The Legacy Method
	Software Directories
	Packages
	Ports

	Package Management Tools
	Portupgrade
	portinstall
	pkg_deinstall
	portversion
	pkg_which
	portsclean

	Portmaster

	Summary

	Chapter 4: System Configuration—System Management
	Process Management and Control
	Processes and Daemons
	Getting Information about Running Processes—ps, top, and pgrep
	Sending Signals to Running Processes—kill, killall, and pkill
	Prioritizing Running Processes—nice and renice

	Resource Management and Control
	System Resource Monitoring Tools—vmstat, iostat, pstat, and systat

	Process Accounting

	Summary

	Chapter 5: System Configuration—Jails
	Concept
	Introduction
	Setting Up a Jail
	Configuring the Host System
	Starting the Jail
	Automatic Startup
	Shutting Down Jails
	Managing Jails
	Jail Security
	Jail Limitations
	Summary

	Chapter 6: System Configuration—Tuning Performance
	Tweaking Kernel Variables using SYSCTL
	Kernel
	SMP

	Disk
	File limits
	I/O Performance
	RAID

	Network
	TCP Delayed ACK
	RFC 1323 Extensions
	TCP Listen Queue Size
	TCP Buffer Space
	Network Interface Polling

	The /etc/make.conf file
	CPUTYPE
	CFLAGS and COPTFLAGS

	The /boot/loader.conf file
	Summary

	Chapter 7: Network Configuration—Basics
	Ifconfig Utility
	Configuring IP Address
	Configuring Layer2 Address
	Configuring IPX
	Configuring AppleTalk
	Configuring Secondary (alias) IP Addresses
	Configuring Media Options
	Configuring VLANs
	Advanced ifconfig Options
	Hardware Offloading
	Promiscuous Mode
	MTU
	ARP
	Static ARP
	Monitor Mode

	Configuring Fast EtherChannel

	Default Routing
	Name Resolution
	Network Testing Tools
	Ping
	Traceroute
	Sockstat
	netstat
	ARP
	Tcpdump

	Summary

	Chapter 8: Network Configuration—Tunneling
	Generic Routing Encapsulation (GRE) protocol
	IPSEC
	Operating Modes
	Tunnel Mode

	Summary

	Chapter 9: Network Configuration—PPP
	Setting up PPP Client
	Setting up PPP Server
	Setting up PPPoE Client
	Setting up PPPoE Server
	Summary

	Chapter 10: Network Configuration—Routing and Bridging
	Basic Routing—IP Forwarding
	Static Routing
	routed and route6d
	Running OSPF—OpenOSPFD
	Running BGP—OpenBGPD
	Bridging
	Filtering Bridges

	Proxy ARP
	Summary

	Chapter 11: Network Configuration—IPv6
	IPv6 Facts
	Fact One—Addressing
	Fact Two—Address Types
	Fact Three—ARP
	Fact Four—Interface Configuration

	Using IPv6
	Configuring Interfaces

	Routing IPv6
	RIP6
	Multicast Routing
	Tunneling
	GIF Tunneling

	Summary

	Chapter 12: Network Configuration—Firewalls
	Packet Filtering with IPFW
	Basic Configuration
	Ruleset Templates
	Customized Rulesets
	Logging
	Network Address Translation (NAT)
	Traffic Shaping

	Packet Filtering with PF
	PF Configuration Syntax
	Controlling PF

	Network Address Translation using PF and IPFW
	Summary

	Chapter 13: Network Services—Internet Servers
	inetd Daemon
	tcpd

	SSH
	Running a Command Remotely
	SSH Keys
	SSH Authentication Agent
	SSH Tunneling or Port Forwarding

	NTP
	Syncing
	NTP Server

	DNS
	BIND software
	Operating Modes
	Forwarding/Caching DNS Server
	Authoritative
	Monitoring
	Optimizations

	FTP
	Anonymous FTP Server

	Mail
	Sendmail
	Postfix

	Web
	Apache
	Virtual Hosts

	Alternative HTTP Servers

	Proxy
	Summary

	Chapter 14: Network Services—Local Network Services
	Dynamic Host Configuration Protocol (DHCP)
	dhclient
	ISC DHCPD
	DHCPD Configuration

	Trivial File Transfer Protocol (TFTP)
	Network File System (NFS)
	Server
	Client
	NFS Locking

	Server Message Block (SMB) or CIFS
	SMB Client
	SMB Server
	Authentication
	Samba Web Administration Tool (SWAT)

	Simple Network Management Protocol (SNMP)
	bsnmpd
	NET-SNMP
	Client Tools

	Printing
	lpd—Print Spooler Daemon
	Common UNIX Printing System (CUPS)

	Network Information System (NIS)
	NIS Server
	Initializing NIS Server

	Summary

	Index

