

Designing and Implementing
Linux Firewalls and QoS using
netfilter, iproute2, NAT, and
L7-filter

Learn how to secure your system and implement QoS
using real-world scenarios for networks of all sizes

Lucian Gheorghe

 BIRMINGHAM - MUMBAI

Designing and Implementing Linux Firewalls and QoS
using netfilter, iproute2, NAT, and L7-filter

Copyright © 2006 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of
the information presented. However, the information contained in this book is sold
without warranty, either express or implied. Neither the author, Packt Publishing,
nor its dealers or distributors will be held liable for any damages caused or alleged to
be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: October 2006

Production Reference: 2181006

Published by Packt Publishing Ltd.
32 Lincoln Road
Olton
Birmingham, B27 6PA, UK.

ISBN 1-904811-65-5

www.packtpub.com

Cover Image by www.visionwt.com

Credits

Author

Lucian Gheorghe

Reviewer

Barrie Dempster

Development Editor

Louay Fatoohi

Assistant Development Editor

Nikhil Bangera

Technical Editor

Niranjan Jahagirdar

Code Testing

Ankur Shah

Editorial Manager

Dipali Chittar

Indexer

Mithil Kulkarni

Proofreader

Chris Smith

Layouts and Illustrations

Shantanu Zagade

Cover Designer

Shantanu Zagade

About the Author

Lucian Gheorghe has just joined the Global NOC of Interoute, Europe's largest
voice and data network provider. Before Interoute, he was working as a senior
network engineer for Globtel Internet, a significant Internet and Telephony Services
Provider to the Romanian market. He has been working with Linux for more than
8 years putting a strong accent on security for protecting vital data from hackers
and ensuring good quality services for internet customers. Moving to VoIP services
he had to focus even more on security as sensitive billing data is most often stored
on servers with public IP addresses. He has been studying QoS implementations
on Linux to build different types of services for IP customers and also to deliver
good quality for them and for VoIP over the public Internet. Lucian has also been
programming with Perl, PHP, and Smarty for over 5 years mostly developing
in-house management interfaces for IP and VoIP services.

I would like to thank everyone who is reading this book and
the people that run netfilter, iproute2, and L7-filter projects.
Your feedback is very important to me, so drop me a line at
lucian.firewallbook@gmail.com. The book is far from being
perfect so please send me errata information on the same email
address (I would love to receive erratas from readers because it
will convince me that people who read this book actually
learned something :-))

I want to dedicate this book to my father, my mother, and my
sister—I love you very very much. Many thanks go to the team at
Globtel who were like second family to me, to my girlfriend for
understanding me and standing by me, to Louay and the rest of the
team at Packt Publishing for doing a great job, to Nigel Coulson,
Petr Klobasa and the rest of the people at Interoute for supporting
me, to Claudiu Filip who is one of the most intelligent people I
know, and last, but not least, to the greatest technical author
alive—Cristian Darie.

About the Reviewer

Barrie Dempster is currently employed as a Senior Security Consultant for
NGS Software Ltd, a world-renowned security consultancy well known for its
focus in enterprise-level application vulnerability research and database security.
He has a background in Infrastructure and Information Security in a number of
specialized environments such as financial services institutions, telecommunications
companies, call centers, and other organizations across multiple continents. Barrie
has experience in the integration of network infrastructure and telecommunications
systems requiring high-caliber secure design, testing, and management. He has been
involved in a variety of projects from the design and implementation of Internet
banking systems to large-scale conferencing and telephony infrastructure, as well as
penetration testing and other security assessments of business-critical infrastructure.

Table of Contents
Preface	 1
Chapter 1: Networking Fundamentals	 7

The OSI Model 	 8
OSI Layer 7: Application	 9
OSI Layer 6: Presentation	 9
OSI Layer 5: Session	 10
OSI Layer 4: Transport	 10
OSI Layer 3: Network	 11
OSI Layer 2: Data Link	 11
OSI Layer 1: Physical 	 11
OSI Functionality Example and Benefits	 12

The TCP/IP Model	 13
The TCP/IP Application Layer	 13
The TCP/IP Transport Layer	 14

The Transmission Control Protocol (TCP)	 15
The User Datagram Protocol (UDP)	 18

The TCP/IP Internet Layer	 19
The TCP/IP Network Access Layer	 22
TCP/IP Protocol Suite Summary 	 23

OSI versus TCP/IP	2 5
IP Addressing, IP Subnetting, and IP Supernetting	2 7

Obtaining an IP Address	 28
IP Classes 	 29

Reserved IP Addresses	 30
Public and Private IP Addresses	 31

IP Subnetting	 32
The Subnet Mask	 33
Everything Divided in Two	 34
A Different Approach	 36

IP Supernetting or CIDR	 36

Table of Contents

[ii]

How the Internet Works	3 8
Summary 	3 9

Chapter 2: Security Threats	 41
Layer 1 Security Threats	 42
Layer 2 Security Threats	 42

MAC Attacks	 42
DHCP Attacks	 43
ARP Attacks	 45
STP and VLAN-Related Attacks	 45

Layer 3 Security Threats	 46
Packet Sniffing	 47
IP Spoofing	 47
Routing Protocols Attacks	 48
ICMP Attacks 	 48
Teardrop Attacks	 49

Layer 4 Security Threats	 49
TCP Attacks	 50
UDP Attacks 	 51
TCP and UDP Port Scan Attacks	 51

Layer 5, 6, and 7 Security Threats	 51
BIND Domain Name System (DNS)	 52
Apache Web Server	 52
Version Control Systems	 53
Mail Transport Agents (MTA)	 54
Simple Network Management Protocol (SNMP)	 55
Open Secure Sockets Layer (OpenSSL)	 56
Protect Running Services—General Discussion	 56

Summary	 62
Chapter 3: Prerequisites: netfilter and iproute2	 63

netfilter/iptables	 63
Iptables — Operations	 67

Filtering Specifications	 68
Target Specifications	 70
A Basic Firewall Script—Linux as a Workstation	 72

iproute2 and Traffic Control	 74
Network Configuration: "ip" Tool	 74
Traffic Control: tc	 75

Queuing Packets	 76
tc qdisc, tc class, and tc filter	 80

A Real Example	 82
Summary	 86

Table of Contents

[iii]

Chapter 4: NAT and Packet Mangling with iptables	 89
A Short Introduction to NAT and PAT (NAPT)	 89

SNAT and Masquerade	 92
DNAT	 94
Full NAT (aka Full Cone NAT)	 95
PAT or NAPT	 96

NAT Using iptables	 97
Setting Up the Kernel	 97
The netfilter nat Table	 100
SNAT with iptables	 102
DNAT with iptables	 105
Transparent Proxy	 105
Setting Up the Script	 106
Verifying the Configuration	 108
A Less Normal Situation: Double NAT	 109

Packet Mangling with iptables	 113
The netfilter mangle Table	 115

Summary	 117
Chapter 5: Layer 7 Filtering	 119

When to Use L7-filter	 120
How Does L7-filter Work?	 121
Installing L7-filter	 122

Applying the Kernel Patch	 122
Applying the iptables Patch	 124
Protocol Definitions 	 125
Testing the Installation	 126

L7-filter Applications	 128
Filtering Application Data	 128
Application Bandwidth Limiting	 129
Accounting with L7-filter	 131

IPP2P: A P2P Match Option	 132
Installing IPP2P	 132
Using IPP2P	 133

IPP2P versus L7-filter	 134
Summary	 135

Chapter 6: Small Networks Case Studies	 137
Linux as SOHO Router 	 137

Setting Up the Network	 139
Defining the Security Policy	 141
Building the Firewall	 142

Table of Contents

[iv]

Setting Up the Firewall Script	 146
Verifying the Firewall Configuration	 147
QoS—Bandwidth Allocation	 150

The QoS Script	 151
Verifying the QoS Configuration	 152

Linux as Router for a Typical Small to Medium Company	 154
Setting Up the Router	 154
Defining the Security Policy	 156
A Few Words on Applications	 156
Creating the Firewall Rules	 158
Setting Up the Firewall Script	 161
QoS—Bandwidth Allocation	 163

The QoS Script	 166
Summary	 168

Chapter 7: Medium Networks Case Studies	 169
Example 1: A Company with Remote Locations	 169

The Network	 170
Building the Network Configuration	 172
Designing the Firewalls	 175
Building the Firewalls	 176

Sites B and C	 176
Site A	 179
Headquarters	 181

Make the Network Intelligent by Adding QoS	 183
Example 2: A Typical Small ISP	 191

The Network	 192
Building the Network Configuration	 194
Designing and Implementing the Firewalls	 195

The Intranet Server: 1.2.3.10	 196
The Wireless Server: 1.2.3.130	 200
The AAA Server: 1.2.3.1	 201
The Database Server: 1.2.3.2	 203
The Email Server: 1.2.3.3	 205
The Web Server: 1.2.3.4	 206
A Few Words on the Access Server: 1.2.3.131	 208
The Core Router—First Line of Defense	 208

QoS for This Network	 214
QoS on the Wireless Server for Long-Range Wireless Users	 216
QoS on the Intranet Server for the Internal Departments	 218
QoS on the Core Router	 220

Summary	22 4

Table of Contents

[�]

Chapter 8: Large Networks Case Studies	22 5
Thinking Large, Thinking Layered Models	22 8
A Real Large Network Example	22 9

A Brief Network Overview	 230
City-1	 231
City-2	 232
City-3 and City-4	 234

The Core Network Configuration	 235
Core-2	 237
Core-1, Core-3, and Core-4	 240

Security Threats	 242
Core Routers INPUT Firewalls	 242
Protecting the Networks behind the Core Routers	 243
Denial of Service Attacks	 245

City-1 Firewall for Business-Critical Voice Equipment	 250
Securing the Voice Network	 252

QoS Implementation	 255
Traffic Shaping for Clients	 260

Summary	2 63
Index	 265

Preface
A networking firewall is a logical barrier designed to prevent unauthorized
or unwanted communications between sections of a computer network.
Linux-based firewalls besides being highly customizable and versatile are also
robust, inexpensive, and reliable.

The two things needed to build firewalls and QoS with Linux are two packages
named netfilter and iproute. While netfilter is a packet-filtering framework included
in the Linux kernels 2.4 and 2.6, iproute is a package containing a few utilities that
allow Linux users to do advanced routing and traffic shaping.

L7-filter is a packet classifier for the Linux kernel that doesn't look up port numbers
or Layer 4 protocols, but instead looks at the data in an IP packet and does a regular
expression match on it to determine what kind of data it is, mainly what application
protocol is being used. IP2P is an alternative to L7-filter, but has been designed for
filtering only P2P applications while L7-filter takes into consideration a wider range
of applications.

What This Book Covers
Chapter 1 is a brief introduction to networking concepts. It covers the OSI and TCP/
IP networking models with explanations of their layers, TCP and UDP as Layer
4 protocols, and then rounds off the chapter with a discussion on IP addresses,
Subnetting, and Supernetting.

Chapter 2 discusses possible security threats and vulnerabilities found at each of the
OSI layers. The goal here is to understand where and how these threats can affect us
and to stay protected from attackers. It then rounds off the discussion by sketching
out the basic steps required to protect the services that run on our system.

Preface

[�]

Chapter 3 introduces two tools needed to build Linux firewalls and QoS. We first
learn the workings of netfilter, which is a packet-filtering framework, and implement
what we have learned to build a basic firewall for a Linux workstation. We then
see how to perform advanced routing and traffic shaping using the IP and TC tools
provided by the iproute2 package. The chapter ends with another example scenario
where we implement the concepts learned in the chapter.

Chapter 4 discusses NAT, the types of NAT, how they work, and how they can
be implemented with Linux by giving practical examples. It also describe packet
mangling, when to use it, and why to use it.

Chapter 5 covers Layer 7 filtering in detail. We see how to install the L7-filter package,
apply the necessary Linux kernel and iptables patches, and test our installation. We
then learn the different applications of L7-filter and see how to put them to practical
use. We also see how to install and use IPP2P, which is an alternative to the
L7-filter package, but only for P2P traffic, and finally we set up a test between the
two packages.

Chapter 6 raises two very popular scenarios, for which we design, implement, and
test firewalls and a small QoS configuration. In the first scenario, we configure Linux
as a SOHO router. Being a relatively smaller network with few devices, we learn
how to adapt to what we have learned in the earlier chapters to suit this environment
and build a secure network. We implement transparent proxies using squid and
iptables so that children/minors cannot access malicious or pornographic web
content. Our firewall setup implements NAT to redirect traffic from certain ports to
other hosts using Linux. This configuration is tested by checking the NAT table and
seeing how the kernel analyzes our rules.
As part of QoS, we split the bandwidth between the devices in a SOHO environment
using HTB. Assuming a 1Mbps connection, we design a policy to split it between the
4 devices creating 4 HTB child classes for the 4 devices. In the end, we test our QoS
configuration using the tc class show command.
In the second scenario, we configure Linux as router for a typical small to
medium company.

Chapter 7 covers the design of a firewall system for a hypermarket having its
headquarters in one location, one store in the same city, and several stores in other
cities. The hypermarket has an application that uses MSSQL databases in each
location, which are replicated at the headquarters. All locations have IP Analog
Telephone Adapters with subscriptions at the main provider (the HQ provider). In
this example we use, just like in the real H.323 as the VoIP protocol. We set up all
remote locations to have an encrypted VPN connection using ip tunnel to connect
to the headquarters. Users are shown how to create a QOS script with HTB that
controls bandwidth usage based on priorities.

Preface

[�]

The next firewall taken up is that for a small ISP setup that has one internet
connection, an access network, a server farm, and the internal departments. The
setup of firewall scripts for each of them and methods to handle the tricky wireless
server are covered. The QoS is handled by the intranet server, the wireless server,
and the Core router.

Chapter 8 covers the design of a three-layered network deployed at a large provider
of Internet and IP telephony services, the three layers being Core, Distribution, and
Access. It explains network configuration first on the core and distribution levels and
then moves on to building firewalls. The huge size of the network also means that
there is a need to tackle newer security threats. We have four Cores running BGP
under Zebra and each one is peculiar in its own way. There are three data services
that this ISP can provide to its customers: Internet access, national network access,
and metropolitan network access. This chapter will show you how to handle QoS so
as to limit this traffic as needed.

Conventions
In this book, you will find a number of styles of text that distinguish between
different kinds of information. Here are some examples of these styles, and an
explanation of their meaning.

There are three styles for code. Code words in text are shown as follows: "To limit
upload, we will mark packets in the PREROUTING chain of the mangle table".

A block of code will be set as follows:

#Drop SSH packets except from admins
$IPT -A INPUT -s ! 1.2.3.16/28 -p tcp --dport 22 -j DROP

When we wish to draw your attention to a particular part of a code block, the
relevant lines or items will be made bold:

tc filter add dev eth0 protocol ip parent 1:0 prio 5 u32 match ip src
1.2.3.34 flowid 1:100

New terms and important words are introduced in a bold-type font. Words that
you see on the screen, in menus or dialog boxes for example, appear in our text like
this: "In the IP: Netfilter Configuration section you will find the options needed
for NAT".

Preface

[�]

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader Feedback
Feedback from our readers is always welcome. Let us know what you think about
this book, what you liked or may have disliked. Reader feedback is important for us
to develop titles that you really get the most out of.

To send us general feedback, simply drop an email to feedback@packtpub.com,
making sure to mention the book title in the subject of your message.

If there is a book that you need and would like to see us publish, please send us a
note in the SUGGEST A TITLE form on www.packtpub.com or email suggest@
packtpub.com.

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book, see our author guide on www.packtpub.com/authors.

Customer Support
Now that you are the proud owner of a Packt book, we have a number of things to
help you to get the most from your purchase.

Downloading the Example Code for the Book
Visit http://www.packtpub.com/support, and select this book from the list of titles
to download any example code or extra resources for this book. The files available
for download will then be displayed.

The downloadable files contain instructions on how to use them.

Preface

[�]

Errata
Although we have taken every care to ensure the accuracy of our contents, mistakes
do happen. If you find a mistake in one of our books—maybe a mistake in text or
code—we would be grateful if you would report this to us. By doing this you can
save other readers from frustration, and help to improve subsequent versions of this
book. If you find any errata, report them by visiting http://www.packtpub.com/
support, selecting your book, clicking on the Submit Errata link, and entering the
details of your errata. Once your errata have been verified, your submission will be
accepted and the errata added to the list of existing errata. The existing errata can be
viewed by selecting your title from http://www.packtpub.com/support.

Questions
You can contact us at questions@packtpub.com if you are having a problem with
some aspect of the book, and we will do our best to address it.

Networking Fundamentals
When it comes to theory, some of you out there might find it boring to read; so the first
thing that may go through your mind is to skip this chapter. Don't do it. Even if you
think that you know all the theoretical concepts, a recapitulation is good anytime.

Network professionals talk about protocols, devices, and software in terms of which
OSI Layer they function at. When people talk about high-performance Layer 3
switches these days, they talk about switches that can perform OSI Layer 3 tasks and
they expect you to know which tasks are at that layer. A simple deduction makes
you realize that classic switches perform OSI Layer 2 functions.

Layer 3 switches are beyond the scope of this book, but that was a simple example of
why you should know the OSI layered model, which is purely theoretical. Further in
this book, you will learn about "Layer 7 filtering" which refers to how to filter what is
on OSI Layer 7, which I'm sure you will find very attractive to read and implement.

By definition, a network is a group of two or more computer systems linked together,
with the ability to communicate with each other.

The types of networks commonly used are:

LAN (Local Area Network): A network in which the computers are close
together (the same building).
WAN (Wide Area Network): A network in which the computers are at very
long distances.
MAN (Metropolitan Area Network): A city-wide network.
CAN (Campus Area Network): A network in a campus or a military base.
SAN (Storage Area Network): A high-performance network used to move
data between servers and dedicated storage devices.
VPN (Virtual Private Network): A private network built over the public
network infrastructure (over the Internet).

•

•

•

•

•

•

Networking Fundamentals

[�]

HAN (Home Area Network): A network in a personal home. This term is
rarely used; most people use the term LAN in this matter.

Computers in a user home network (a HAN) are usually connected to the building
switch and form a LAN with the other users' computers. This switch is connected to
a MAN or a CAN that is connected to the largest WAN, which is the Internet.

The OSI Model
In order for computers to communicate, they must speak the same language or
protocol. In the early days of networking, networks were disorganized in many
ways. Companies developed proprietary network technologies that had great
difficulties in exchanging information with other or existing technologies; so network
interconnections were very hard to build. To solve this problem, the International
Organization for Standardization (ISO) created a network model that helps vendors
to create networks compatible with each other.

In 1984, ISO released the Open Systems Interconnection (OSI) reference model,
which is a well-defined set of specifications that ensures greater compatibility among
various technologies.

In fact, OSI is a description of network communication that everyone refers to. It
is not the only network model, but it has become the primary model for network
communication. You will see further in this chapter, that the TCP/IP model is only a
reduced version of the OSI model.

The OSI model consists of seven layers, each illustrating a particular network function.

•

Chapter 1

[�]

Information contained in one layer usually has headers and trailers and data
encapsulated from an upper layer. Encapsulation is the process of placing the data
from an upper layer between headers and trailers so that when data is received by a
layer, after it is analyzed, the protocol at that layer removes the headers and trailers
and gives the data to the upper layer in the format that the upper layer understands.

At Layer 7 (application) of the OSI model we have the user interface (a web browser
for example). Layer 6 (presentation) handles how data is presented (e.g. HTML).
While accessing a web page, a computer may be sending/receiving emails. Keeping
data from different applications separate is the job for Layer 5 (session) of the OSI
model. At Layer 4 (transport) we find protocols that transfer the data (TCP for
example), while at Layer 3 (network) we find logical addressing, which is used
for path determination (e.g. IP). At Layer 2 (data link), we find network protocols
such as Ethernet, and at the lowest layer, Layer 1 (physical), we find the cabling
specifications (e.g. RJ-45).

This was a quick overview on the OSI layers. Now, let's have a closer look at these
layers in order for us to understand the communication process.

OSI Layer 7: Application
The OSI application layer refers to communication services to applications.
When programmers design an image editor for example, they don't have to think
about adding OSI Layer 7 capabilities to that software, because it has no need for
communication with other computers. On the other hand, when creating an FTP
client, they must add communication capabilities to that software.

At Layer 7 we usually find Telnet, FTP, HTTP, SMTP, SNMP, or SSH.

When we say, for example, Layer 7 filtering, we refer to filtering application data,
regardless of what port or computer it may come from.

OSI Layer 6: Presentation
The purpose of the presentation layer is defining the data formats in which data is
represented. Data formats are usually standard formats like ASCII, JPEG, GIF, TIFF,
MPEG, etc. OSI Layer 6 also defines encryption as a presentation layer service.

The importance of defining data formats is obvious. For example, when sending
email, you usually send it plain text (ASCII) or HTML. If the receiving application
doesn't know these data formats, your email will not be displayed correctly.

OSI Layer 6 provides a service to the upper OSI layer (application). It formats the
data to be sent across the network in a manner that the receiving application is able
to understand and/or manipulate.

Networking Fundamentals

[10]

OSI Layer 5: Session
The session layer defines how to start, control, and end conversations. These
conversations are called sessions. OSI Layer 5 ensures inter-host communication,
meaning that it establishes ways to manage sessions between applications.

An application may communicate with several other applications (on other PCs) at
the same time. For each communication channel, Layer 5 starts a separate session that
provides a service to the upper layer (presentation). The session layer ensures that
a series of messages is completed. For example, if only half the data is received on a
particular session, Layer 5 will not pass the data to the upper layer if the application
is built this way. For example, suppose you go to an ATM machine, log in, print your
account status, and insert an amount you want to extract from your account, but a
communication error happens right then. The ATM will not give you the cash before
it debits your account; instead, it will wait for the confirmation from the central
system that the account was debited with that amount and then gives you the cash.

At the session layer, we find SQL, NFS, RPC, etc. Usually, the operating system is
responsible for OSI Layer 5.

OSI Layer 4: Transport
The transport layer ensures the management of virtual circuits between hosts
that can provide error correction. It contains a series of protocols concerned with
transportation issues between hosts. These protocols may reorder the data stream if
the packets arrive out of order. Layer 4 protocols are also responsible for multiplexing
incoming data for different flows to applications running on the same host.

OSI Layer 4 provides a service to the session layer, meaning that after the data
is received, multiplexed, and reordered, it is given to the upper layer (session)
for handling.

The most common Layer 4 protocols are TCP, UDP, and SPX. The most important
features of Layer 4 protocols are error correction and flow control. Because a router
can discard packets for many reasons (communication errors, network congestion,
etc.) Layer 4 protocols can provide retransmission of packets that the other host
didn't receive. This is called error correction. Also, because of bandwidth limitations,
if data is sent from one device using its full physical bandwidth, network congestion
will occur. Layer 4 protocols are responsible for limiting transmission speed so that
the network doesn't get flooded. This is called flow control.

We will see later in this chapter how error connection and flow control are
accomplished and what protocols provide reliable or unreliable transport.

Chapter 1

[11]

OSI Layer 3: Network
The network layer defines end-to-end delivery of data. In order for computers to be
identified, the network layer defines logical addressing (e.g. IP addresses). OSI Layer
3 also defines how routing works and how routes are learned by routers for packet
delivery. Also, the network layer defines fragmentation of packets, which is the
process that breaks packets into smaller units in order to accommodate media with
smaller maximum transmission unit (MTU) sizes.

Usually at OSI Layer 3 we find IP and IPX. When we think about OSI Layer 3, we
must think of "routing". For example, routers are Layer 3 devices that run routing
protocols for path determination.

Routers make their routing decisions based on the routing tables they have. Routing
tables are collections of rules that define where data should go for a specific address
or network.

At the beginning of this chapter, I was talking about one very common issue these
days—"Layer 3 switches". Layer 3 switches switch packets according to a Layer
3 routing table. Usually, routers have a small number of interfaces that connect
to switches for connectivity with other endpoints. In IP, Layer 3 switches are
transparent routers with a very high density of ports.

OSI Layer 2: Data Link
The data link layer specifications are concerned with transferring data over a
particular medium. For example, IEEE 802.3, which is the protocol for Ethernet, is
found at OSI Layer 2. Hubs and switches are Layer 2 devices because they forward
Ethernet packets over copper wires. At the data link layer we find protocols like
ATM, Frame Relay, HDLC, PPP, FDDI, etc.

What we need to understand from this is that OSI Layer 2 specifies how packets are
sent to the communication link. When we think about OSI Layer 2, we can think
"switching", for example.

OSI Layer 1: Physical
The physical layer contains specifications for the physical medium of transmission
that the data link layer protocols use. Layer 1 specifications are about connectors,
pins, electrical currents, light modulation, etc. At Layer 1, we find the 802.3 standard,
which has definitions about the Ethernet pinout, cable lengths, voltages, etc. More
than that, we find cabling specification standards for RJ45, RJ48, V.35, V.24,
EIA/TIA-232, and so on.

When we think about Layer 1, we can think "cables and connectors".

Networking Fundamentals

[12]

OSI Functionality Example and Benefits
Let's think about one world-wide service that wouldn't have been possible without
standardization, like email services. There are so many email client software
applications out there, and all of them use the same protocols to transmit and
receive data.

Let's say you are in a company LAN and you want to send an email.

Layer 7: You use an email client (like Outlook Express for example), which has SMTP
and POP3 functions according to OSI Layer 7 (application).

Layer 6: You send the email, formatted in ASCII or HTML. The application then creates
a data unit formatted in ASCII or HTML according to OSI Layer 6 (presentation).

Layer 5: The email message uses the operating system to open a session for inter-host
communication according to OSI Layer 5 (session).

Layer 4: A TCP socket with the SMTP server is opened by the operating system. A
virtual circuit is opened between your computer and the email server using TCP
according to OSI Layer 4 (transport).

Layer 3: Your computer searches for the IP address of the SMTP server according to
the routing table of the operating system. If it is not found in the routing table, it will
forward it to the company router for path determination. The IP protocol is at OSI
Layer 3 (network).

Layer 2: The IP packet is transformed to an Ethernet frame according to OSI Layer 2
(data link).

Layer 1: The Ethernet frame is converted to electrical signals that are sent throughout
the CAT5 cable according to OSI Layer 1 (physical).

By creating specifications on multiple layers, the OSI model has a lot of benefits:

Reduced complexity allows faster evolution. There are companies specialized
in creating products specific for one layer, instead of rebuilding everything
from the application to the physical layer.
Interoperability is much easier due to standardization.
Each layer uses the service of the layer immediately below it, and so it is
easier to remember what the lower layer does.
It simplifies teaching. For example, network administrators need to know
the functions of the lowest four layers, while programmers need to know the
upper layers.

•

•

•

•

Chapter 1

[13]

The TCP/IP Model
The TCP/IP model was developed by the U.S. Department of Defense (DoD) and
originated from the need of a network that could survive any conditions, including
a nuclear war. After it was released to the public, in a few years the TCP/IP model
became the most popular networking model and it is now the core of the Internet.

In a world where we have data transmitted over wires, microwaves, satellite links,
and optical fiber, there is the need to transmit data reliably over any media and
under any circumstances. Let's see how the TCP/IP model can do that.

First of all, the TCP/IP model consists of four layers as in the following figure:

So, the layers of the TCP/IP model are: Application, Transport, Internet, and
Network Access.

Even if some layers from the TCP/IP model share the same name with some layers
from the OSI model, they include different functions.

The TCP/IP Application Layer
The TCP/IP application layer handles high-level protocols, representation, encoding,
and dialog control. The Application layer in the TCP/IP model defines not only the
application, but also how data is formatted, and how sessions are initialized and
destroyed. As an analogy to the OSI model, the TCP/IP application layer handles
the functions found at the three upper layers in the OSI model—application,
presentation, and session. This way, all application-related issues found in the OSI
model are combined into one layer.

Networking Fundamentals

[14]

The application layer in the TCP/IP model includes protocols like FTP, SMTP,
etc., with all their issues regarding data representation and dialog control. The
application layer ensures that the data is properly packaged before it is passed to the
transport layer.

The TCP/IP Transport Layer
The transport layer provides transport services for the application layer by creating
logical connections between the source host and the destination host.

In the TCP/IP model, two protocols are found at the transport layer:

Transmission Control Protocol (TCP)
User Datagram Protocol (UDP)

•

•

Chapter 1

[15]

The Transmission Control Protocol (TCP)
TCP is a connection-oriented protocol and provides reliable data transfer
between endpoints.

TCP breaks messages into segments, reassembles them at the destination, and sends
them to the upper layer (application).

A TCP segment contains:

Source Port: The port number used by the sending host to send data
Destination Port: The port number used by the receiving host to receive data
Sequence Number: The SEQ number of the segment, used to ensure the data
arrives in the correct order

•

•

•

Networking Fundamentals

[16]

Acknowledgement Number: The ACK number is the next expected TCP
octet from the other host.
Header Length (HLEN): Number of 32-bit words in the header
Code Bits: Control functions such as set up or terminate a session
Reserved: Reserved bits are set to zero
Window: The number of octets that the sender will accept
Checksum: Calculated checksum of the header and data fields
Urgent: Indicates the end of the urgent data
Options: There is only one option defined, which is the maximum TCP
segment size.
Data: The data from the upper layer (application)

Connection-oriented means that TCP needs to establish a connection between the
two hosts before it starts sending data. This is done by using a three-way handshake,
which means that two hosts communicating using TCP synchronization (SYN).

First, the initiating host sends a SYN packet to the receiving host sending its
sequence number (SEQ). The receiving host receives the SYN packet and sends back
an acknowledgement (ACK) packet containing its own sequence number and the
source's SEQ number incremented by 1. This tells the sending host that the packet
was received successfully and informs it about its SEQ number. Next, the sending
host sends an ACK packet to the receiving host, containing the receiving host's
SEQ number incremented by one. This tells the receiving host that the sending host
received its packet.

The process described above is called synchronization (the three-way handshake),
and it is necessary because the network doesn't have a global clock and TCP
protocols may use different mechanisms to choose initial sequence numbers.

In a few words, synchronization is the way both hosts
learn about the other host's initial SEQ number. Another
important aspect that you should learn from this is that the
first packet sent by a host to another is called a SYN packet.

After the synchronization is performed, TCP uses a process called windowing to
ensure flow control and ACK packets for the reliability of the data transmission.

•

•

•

•

•

•

•

•

•

Chapter 1

[17]

Windowing is a process in which the two hosts adapt the number of bytes they send
by how many windows the other host receives before sending an ACK packet. For
example, see the following figure:

The sender host sends three packets before expecting an ACK packet, while the
receiving host can only process two. The receiving host sends back an ACK packet
confirming what packet the sender should send and specifies a window size of 2. The
sending host sends packet 3 again but with the same window size 3. The receiver
sends ACK 5, meaning that it waits for the fifth packet and specifies again the
window size 2. From this point, the sender only sends two packets before waiting for
an ACK packet from the receiver.

Flow control is a mechanism that keeps the data transmission in limits imposed
by the physical medium. For example, a host on a network that is connected to the
Internet through a router with 64 kilobits per second, without flow control would
flood out 100 megabits per second to the router when sending data to another
computer located at the other end of the world. With a flow control mechanism
in TCP, the hosts negotiate a window size, meaning an amount of data to be
transmitted by one host at once.

ACK packets are sent by the receiving host indicating the last packet has been
received, and that the receiving host is waiting for the next packet after the one last
received. If packets get lost along the way, this will force the sending host to resend
that packet, thus ensuring a reliable communication.

Networking Fundamentals

[18]

Please note that TCP is a connection-oriented protocol with
reliable data transmission and flow control.

Applications with the need of reliable data transmission use TCP as transport
protocol. Examples of such applications are FTP, HTTP, SMTP, Telnet, SSH, etc.

The User Datagram Protocol (UDP)
UDP is a much simpler protocol than TCP is, and it's everything that TCP isn't. UDP
is a transport layer protocol that doesn't need to establish a connection with the other
host for sending data. This means that UDP is connectionless.

A UDP segment contains:

Source Port: The port number used by the sending host to send data
Destination Port: The port number used by the receiving host to receive data
Length: The number of bytes in header and data
Checksum: Calculated checksum of the header and data fields
Data: The data from the upper layer (application)

Also, UDP doesn't have any mechanisms for flow control and doesn't retransmit
data if data gets lost. This means that UDP provides unreliable delivery. However,
data retransmission and error handling can be implemented at the application layer,
whenever it is needed.

Now, you are probably wondering if TCP has so many great features, why use UDP?

A first answer to that question would be because there are applications that don't
need to put sequences of segments together. Let's take for instance H.323, which is
used for Voice over IP (VoIP). Voice over IP is a way to send real-time conversations
over an IP network. If H.323 used TCP, in a conversation, when data gets lost due
to network congestion, the sending host must retransmit all the lost data while
encapsulating the new telephone input into new data, which would have to wait to

•

•

•

•

•

Chapter 1

[19]

be sent. This would be very bad for a conversation in a network with delays higher
than 100 miliseconds.

A second motive for using UDP would be that a simple protocol needs less
processing capacity. For example, DNS uses UDP for handling DNS requests from
clients. Think about a very large network that usually has two or three DNS servers.
If TCP was used to handle DNS requests, the DNS servers would have to establish
TCP connections with all clients for each DNS request. This would need high
processing capacity from the DNS server and would be slower than UDP is.

Another example is TFTP, which is used for file transfer, usually by routers to load
their operating systems from. TFTP is much simpler than FTP, and it is far easier to
code in a router's bootloader than FTP is.

Please note that TCP and UDP are at TCP/IP Layer 3.
However, when referred as networking model protocols,
TCP and UDP are said to be Layer 4 protocols, because
they stand at Layer 4 in the OSI model, which is the
reference model for networking.

The TCP/IP Internet Layer
The Internet layer in the TCP/IP model has the functions of OSI Layer 3—network.
The purpose for the Internet layer is to select a path (preferably the best path) in the
network for end-to-end delivery.

Networking Fundamentals

[20]

The main protocol found at the Internet layer is IP (Internet Protocol), which provides
connectionless, best-effort delivery routing of packets. IP handles logical addressing,
and its primary concern is to find the best path between the endpoints, without
caring about the contents of the packet. IP does not perform error checking and
error correction, and for this reason is called an unreliable protocol. However, these
functions are handled by the transport layer (TCP) and/or the application layer.

IP encapsulates data from the transport layer in IP packets. IP packets don't use
trailers when encapsulating TCP or UDP data. Let's see what an IP packet looks like:

The fields contained in the IP header signify:

Version: Specifies the format of the IP packet header. The 4-bit version field
contains the number 4 if it is an IPv4 packet, and 6 if it is an IPv6 packet.
However, this field is not used to distinguish between IPv4 and IPv6 packets.
The protocol type field present in the Layer 2 envelope is used for that.
IP header length (HLEN): Indicates the datagram header length in 32-bit
words. This is the total length of all header information, and includes the two
variable-length header fields.
Type of service (ToS): 8 bits that specify the level of importance that has
been assigned by a particular upper-layer protocol.
Total length: 16 bits that specify the length of the entire packet in bytes. This
includes the data and header. To get the length of the data payload, subtract
the HLEN from the total length.
Identification: 16 bits that identify the current datagram. This is the
sequence number.
Flags: A 3-bit field in which the two low-order bits control fragmentation.
One bit specifies if the packet can be fragmented, and the other indicates if
the packet is the last fragment in a series of fragmented packets.

•

•

•

•

•

•

Chapter 1

[21]

Fragment offset: 13 bits that are used to help piece together datagram
fragments. This field allows the next field to start on a 16-bit boundary.
Time to Live (TTL): A field that specifies the number of hops a packet may
travel. This number is decreased by one as the packet travels through a
router. When the counter reaches zero, the packet is discarded. This prevents
packets from looping endlessly.
Protocol: 8 bits that indicate which upper-layer protocol, such as TCP or
UDP, receives incoming packets after the IP processes have been completed.
Header checksum: 16 bits that help ensure IP header integrity.
Source address: 32 bits that specify the IP address of the node from which
the packet was sent.
Destination address: 32 bits that specify the IP address of the node to which
the data is sent.
Options: Allows IP to support various options such as security. The length of
this field varies.
Padding: Extra zeros are added to this field to ensure that the IP header is
always a multiple of 32 bits.

Data is not a part of the IP header. It contains upper-layer information (TCP or UDP
packets) and has a variable length of up to 64 bytes.

If an IP packet needs to go out on an interface that has a MTU (Maximum
Transmission Unit) size of less than the size of the IP packet, the Internet Protocol
needs to fragment that packet into smaller packets matching the MTU of that
interface. If the "Don't Fragment" bit in the Flags field of the IP packet is set to 1 and
the packet is larger than the MTU of the interface, the packet will be dropped.

ICMP: Internet Control Message Protocol is a protocol that provides control and
messaging capabilities to the Internet Protocol (IP). ICMP is a very important
protocol because most of the troubleshooting of IP networks is done by using ICMP
messages. The most important aspect of ICMP involves the types of messages that it
returns and how to interpret them.

•

•

•

•

•

•

•

•

Networking Fundamentals

[22]

Message Returned Description / Interpretation
Destination Unreachable This tells the source host that there is a problem

delivering a packet. The problem is that either the
destination host is down or its internet connection is
down.

Time Exceeded It has taken too long for a packet to be delivered. The
packet has been discarded.

Source Quench The source is sending data faster than it can be
forwarded. This message requests that the sender slow
down.

Redirect The router sending this message has received some
packet for which another router, which is also directly
connected to the sender, would have had a better route.
The message tells the sender to use the better router.

Echo This is used by the ping command to verify connectivity.
The sender will issue an "echo request" message and will
receive an "echo reply" from the other host if a path is
found between the two.

Parameter Problem This is used to identify a parameter that is incorrect.
Timestamp This is used to measure roundtrip time to particular hosts.
Address Mask Request/Reply This is used to inquire about and learn the correct subnet

mask to be used.
Router Advertisement and
Selection

This is used to allow hosts to dynamically learn the IP
addresses of the routers attached to the subnet.

ARP: Address Resolution Protocol is used to determine MAC addresses for a given
IP address.

RARP: Reverse Address Resolution Protocol is used to determine an IP address for a
given MAC address.

The TCP/IP Network Access Layer
The network access layer in TCP/IP, also called host-to-network layer, allows IP
packets to make physical links to the network media.

Chapter 1

[23]

As you can notice, ARP and RARP are found at both the Internet and network access
layers. Also, you can see that the TCP/IP network access layer contains LAN and
WAN technologies that are found at the OSI physical and data link layers.

Network access layer protocols map IP addresses to hardware addresses and
encapsulate IP packets into frames. Drivers for network interfaces, modems, and
WAN interfaces also operate at the TCP/IP network access layer.

TCP/IP Protocol Suite Summary
To have an overview of the TCP/IP model, take a look at the following diagram:

Networking Fundamentals

[24]

You have applications that need to reliably transfer data like FTP, HTTP, SMTP, and
the zone transfers in DNS that use the TCP protocol, as well as applications that need
to use a simpler protocol like TFTP and DNS requests using UDP.

Both TCP and UDP then use IP for end-to-end delivery (routing) and physical
interfaces to send the data.

Let's see what the email example we gave with the OSI model looks like with
TCP/IP. So, you are in a company LAN and you want to send an email:

Layer 4: You use an email client (like Outlook Express for example) that has SMTP
and POP3 functions according to TCP/IP Layer 4 (application). You send the
email, formatted in ASCII or HTML. The application then creates a data unit
formatted in ASCII or HTML. The email client uses the operating system to open
a session for inter-host communication. All those functions are performed at
TCP/IP Layer 4 (application).

Layer 3: A TCP socket with the SMTP server is opened by the operating system. A
virtual circuit is opened between your computer and the email server using TCP
according to TCP/IP Layer 3 (transport).

Layer 2: Your computer searches for the IP address of the SMTP server according to
the routing table of the operating system. If it is not found in the routing table, it
will forward it to the company router for path determination. The IP protocol is at
TCP/IP Layer 2 (Internet).

Layer 1: The IP Packet is transformed to an Ethernet frame. The Ethernet frame
is converted to electrical signals that are sent throughout the CAT5 cable. Those
functions are performed at TCP/IP Layer 1 (data link).

Chapter 1

[25]

OSI versus TCP/IP
As it was mentioned before, the OSI model is more of a theoretical model and it is
very useful in the learning process. On the other hand, the Internet was built on the
TCP/IP model, and so, TCP/IP is the most popular due to its usage and its protocols.

Some similarities between the two models are:

Both models are layered models and have the benefits of layered
communication models.
Both models have application layers, even if they include different services.
Both models have transport and network layers that have comparable
functionality.
Both models use packet-switching technologies instead of circuit-switching.

Some differences between the two models are:

TCP/IP combines the three upper layers of the OSI model in a single layer,
thus being more oriented towards the transmission protocols.
The data link and physical layers from the OSI model are combined in a
single layer in the TCP/IP model.

Nowadays, the OSI model doesn't have live applications as TCP/IP does, but it is the
starting point of every networking model because of its benefits.

TCP/IP looks simpler because it has fewer layers than the OSI model. However,
communication using TCP/IP matches all the layers in the OSI model.

•

•

•

•

•

•

Networking Fundamentals

[26]

Let's see an example in a TCP/IP network:

A packet originating from host X will get to host Y by traversing routers A, B, and C.

Let's say, for example, that host X is a web server replying to a request originally
initiated from host Y.

The HTTPD server (X Layer 7) responds to the request by sending a HTML-formatted
page (X Layer 6) to host Y. The server has many requests that it answers at that
moment; so the operating system will send the data (the web page) on a session
initiated when host Y made the request (X Layer 5). The data is then encapsulated in
a TCP segment (X Layer 4). The TCP segment is then encapsulated in an IP packet
with the source IP of host X and destination IP of host Y (X Layer 3). Host X looks for
host Y in its routing table and doesn't find it; so host X should forward the IP packet
to router A, which has an interface on the same subnet with the IP address of an
Ethernet card on host X. The IP packet is sent to the Ethernet interface and converted
to Ethernet frames (X Layer 2), which are then converted to electric currents and sent
through the RJ45 socket of the Ethernet card (X Layer 1).

Router A receives some currents on the cable entering one of its Ethernet interfaces
(A Layer 1) and converts these currents to Ethernet frames (A Layer 2). Ethernet
frames are then converted to IP packets. The router looks at the destination IP address
in the IP packet, and sees that it matches none of its IP addresses; so it knows that it
should find a path to host Y. Looking at its routing table, it finds that the best path is

Chapter 1

[27]

advertised by router B and decides to send the IP packet to it (A Layer 3). If router A is
connected to router B through a modem, it will convert the IP packet into PPP frames
(A Layer 2), and the modem will convert the PPP frames into sounds (A Layer 1).

Routers B and C will do the same thing as router A, except that router C will find
host Y directly connected to one of its interfaces (Y has an IP address in the same
subnet as one if C's IP addresses), and so it will send the packet directly to Y.

Host Y receives some currents on the cable connected to its Ethernet interface
(Y Layer 1), which it will convert to Ethernet frames (Y Layer 2) and then to IP
packets (Y Layer 3). It will then look for the destination host in the IP packet that
matches one of its IP addresses. The contents of the IP packet are then taken by the
TCP protocol (Y Layer 4), which puts the received segments together. The operating
system of host Y will handle the data received from TCP to send it on the session
that requested this data (Y Layer 5). For example, if host Y has three web browsers
opened, the operating system will give the data from TCP to the browser that
requested it. The data received is HTML formatted (Y Layer 6); so it will be read by
the web browser using the HTML standard. Finally, after all data is received, the
web browser will display to the user the web page received (Y Layer 7).

IP Addressing, IP Subnetting, and IP
Supernetting
The Internet Protocol (IP) found at OSI Layer 3 is responsible for end-to-end delivery
of data between computers in an IP network (the Internet). To find a path between
two computers in a large network such as the Internet, computers must be uniquely
identified. To do that, the Internet Protocol defines IP Addresses, which are unique
32 bit sequences of one and zeros.

For example, 11000000101010000000000100000001 is a valid IP address. For the ease
of use, IP addresses are represented in a form called the dotted decimal format. The
32 bits of the IP address are grouped in 4 bytes delimited by dots and transformed
into the decimal form because it is simpler to use decimal number instead long
sequences of ones and zeros. For example, the IP address shown here is:

Binary 11000000 10101000 00000001 00000001
Decimal 192 168 1 1
Dotted decimal form 192.168.1.1

Networking Fundamentals

[28]

Please note that we will discuss IP version 4 (IPv4). There is
also IP version 6 (IPv6), which is intended to replace IPv4
in the future. Because each byte has 8 bits, each byte in the
IPv4 address can vary from minimum 0 to maximum 255.
This gives us a maximum of 4,294,967,296 IP addresses.
The IPv6 protocol extends the number of IP addresses by
creating IP addresses 16 bytes long. Since IPv4 is most
widely used protocol and it will still be for many years, we
will refer to IPv4 addresses in this book.

One device connected to the Internet can have more than one IP address assigned to
a single interface. In order for one interface to communicate in an IP network, it must
have at least one IP address. Two hosts that have the same IP address in the same
network will conflict with each other, and only one or none of them will work on
the Internet.

Obtaining an IP Address
An IP address can be statically configured on a device, by assigning an interface
a fixed IP address in the dotted decimal format. This way, that host has a static IP
address, and will use it until the user changes it.

Servers, routers, and network printers should be assigned static IP addresses. Also,
if a network is small, statically assigning IP addresses doesn't make it difficult for the
administrator to keep track of computers.

A computer connecting to the Internet by using a modem usually receives an IP
address from the access server that it dials into. The Point to Point Protocol (PPP) is
used in such cases, and IPCP (Internet Protocol Control Protocol) is responsible for IP
address negotiation and can also provide DNS and WINS addresses.

The most popular protocol for dynamic IP address configuration these days is DHCP
(Dynamic Host Configuration Protocol). Configuring a DHCP involves a few simple
tasks like specifying a range of IP addresses that can be assigned to clients, DNS
servers, and the default gateway for the clients. This is very simple to set up when
administering a large LAN, because you don't have to set up static IP addresses on
each computer. The DHCP server does all the work.

The predecessor of DHCP is the Bootstrap Protocol (BOOTP). BOOTP, however, was
not made to provide IP addresses dynamically; so, for every host in the network,
an entry containing the IP address and MAC address of that host is added in the
configuration file. You still have to provide computers static IP addresses, but, using
BOOTP, instead of setting those up manually on the computers, you set them in a
file on the server.

Chapter 1

[29]

The Reverse Address Resolution Protocol (RARP) can be also used to assign IP
addresses. RARP associates a known MAC address to an IP address. A RARP server
must be configured with the MAC addresses of the stations using RARP and IP
addresses for those stations.

Please note that MAC addresses are Layer 2 addresses
that make sense only in the local network. Routers will not
forward these outside the LAN.

IP Classes
An IP address has two parts: one that specifies the network that it is in, and one that
uniquely identifies it in that network. The first part is called the network part of the
IP address, and the second part is called the host part of the IP address.

To identify the two parts of an IP address, devices use a network mask. Network
masks have the same format as IP addresses (32 bits) and have the bits in the
network part of the IP address set to 1 and the bits in the host part set to 0.

For example, if we find computers from 192.168.1.0 to 192.168.1.255 on a network,
it means that all computers have the network part 192.168.1, and the rest will be the
host part. The network mask in this case will be 11111111111111111111111100000000
in binary, and 255.255.255.0 in dotted decimal form.

To accommodate different sized networks, IP addresses are divided in groups called
classes, identified by the leftmost bit or sequence of bits. The classes are called A, B,
C, D, and E, and this process is called classful addressing.

Class Leftmost bits Start Address End Address
A 0xxx 0.0.0.0 127.255.255.255
B 10xx 128.0.0.0 191.255.255.255
C 110x 192.0.0.0 223.255.255.255
D 1110 224.0.0.0 239.255.255.255
E 1111 240.0.0.0 255.255.255.255

Class A was designed to accommodate very large networks, with more than 16
million hosts. The first bit in a class A IP address must be 0; so the minimum value of
the first byte is 0 and the maximum is 127. However, 0 and 127 are reserved; so valid
class A IP addresses start with numbers between 1 and 126. The network 127.0.0.0 is
used for loopback testing, and it is used by devices to communicate with themselves

Networking Fundamentals

[30]

using TCP/IP. A loopback interface is a virtual interface that emulates the TCP/IP
network access layer or OSI Layers 1 and 2.

Class B addresses accommodate medium to large networks. The first two bits in the
first byte of the IP address must be 10; so the first byte is between 128 and 191 in
decimal. A valid class B IP address starts with a number between 128 and 191.

Class C addresses accommodate small networks with a maximum of 254 hosts. The
first three bits in the first byte of a class C IP address must be 110; so the first byte
must have its decimal value between 192 and 223. A valid class C IP address starts
with a number between 192 and 223.

Class D addresses were created to enable multicasting in IP networks. Multicasting
is a process in which you define a number of IP addresses from a network that
will receive a data stream from a streaming source. Multicasting is used mainly for
broadcasting video and audio over an IP network. A streaming device such as a
video server can multicast a data stream that will be received by some computers,
not necessarily all (like broadcast) and not individually (like multicast). Class D IP
addresses must have the first four bits in the first byte 1110; so a valid class D IP
address may start with a value between 224 and 239 in the dotted decimal format.

Class E addresses have not been released for the public use in the Internet. They have
been defined and are reserved by the Internet Engineering Task Force (IETF) for its
own research. Class E IP addresses must have the first four bits 1111; so a class E IP
address can start with a value between 240 and 255.

Reserved IP Addresses
An IP network has two IP addresses that can't be used by any device connected to
the network. These are the first and the last IP addresses in that network.

The Network Address: The first IP in the network. It identifies the network
itself and is the most relevant IP address for devices outside the network.
For example, for the 192.168.1.xxx class C, the first IP address is 192.168.1.0,
which is the network address for that class C. Devices outside this network
must first "find" the network 192.168.1.0, meaning that IP packets must be
routed towards the 192.168.1.0 network, and only after that is the host part of
the IP address relevant. The first IP address in the network always has all the
bits in the host part of the IP address 0.
The Broadcast Address: The last IP in the network. It is used to broadcast
packets to all devices in that network. For example, for the 192.168.1.xxx
class C, the broadcast address is 192.168.1.255. A host that sends an IP packet
with the destination IP address 192.168.1.255 is sending a broadcast to the
network; so all devices receive that IP packet. Broadcasts are used to make

•

•

Chapter 1

[31]

the network aware of some services on the broadcasting device or to request
a service from a device without knowing its IP address. Broadcast addresses
always have the bits in the host part 1.

Public and Private IP Addresses
The Internet is a public network, and therefore a device connected directly to the
Internet has a public IP address. Those IP addresses must be administered by
someone in such way that two devices connected to the public network don't use the
same IP address or that two networks don't have the same network address. This
job was done by InterNIC (Internet Network Information Center), which has been
succeeded by IANA (Internet Assigned Numbers Authority). IANA makes sure to
provide unique IP network addresses to Internet Service Providers (ISPs) and keeps
track of their usage.

Both IPv4 and IPv6 addresses are assigned in a delegated manner. Users are assigned
IP addresses by ISPs. ISPs obtain allocations of IP addresses from a local Internet
registry (LIR) or national Internet registry (NIR), or from their appropriate regional
Internet Registry (RIR):

AfriNIC (African Network Information Centre): Africa Region,
http://www.afrinic.net

APNIC (Asia Pacific Network Information Centre): Asia/Pacific Region,
http://www.apnic.net

ARIN (American Registry for Internet Numbers): North America Region,
http://www.arin.net

LACNIC (Regional Latin-American and Caribbean IP Address Registry):
Latin America and some Caribbean Islands, http://www.lacnic.net
RIPE NCC (Réseaux IP Européens): Europe, the Middle East, and Central
Asia, http://www.ripe.net

A local area network connected to the Internet through a router doesn't always need
public IP addresses for all the devices in that network. The devices will use local IP
addresses, and when going outside the network, the router can do Network Address
Translation (NAT), a process that translates the local IP address of the device into
one IP address that is actually routed on the Internet to that router. NAT will be
explained in greater detail later in this book.

NAT must be done by using private IP addresses that are not routed anywhere on
the Internet. If we didn't have private IP addresses when using NAT, devices behind
NAT could access any public IP address, except those within the same subnet as the
ones used for the network behind NAT.

•

•

•

•

•

Networking Fundamentals

[32]

For example, a network administrator decides to use for a local network the class
C IP address 217.207.125.0, which the router will translate into its own IP address
whenever a device will access the Internet. This way, everything works fine,
except one thing: no devices in the local network will be able to access, for example,
www.packtpub.com, which has the IP address 217.207.125.58, because they will
search for that IP address in the local network. In fact, no device in the local network
will be able to access any devices in the Internet that have public addresses assigned
by IANA within the class C network 217.207.125.0.

To address this problem, IANA has reserved several IP classes that can't be used
in the public network, meaning that they will not be routed in the Internet. These
IP classes are described by RFC 1918 as private IP addresses that should be used in
private networks. They are:

10.0.0.0 to 10.255.255.255 class A IP addresses
172.16.0.0 to 172.31.255.255 class B IP addresses
192.168.0.0 to 192.168.255.255 class C IP addresses

By using these private IP addresses for local networks (intranets) connected to the
Internet, the number of public IP addresses needed for devices accessing the public
network decreases a lot. If a company has two local networks connected to the
Internet in geographically distanced locations without a separate connection between
those two networks, it doesn't have to use public IP addresses for the devices in each
network. Instead, both networks can communicate by creating a virtual connection
over the Internet, thus creating a VPN (Virtual Private Network), which will be
discussed later in this book.

Since private IP addresses are not routed by any ISP, a
company with two geographically distanced locations
that have internet connections from different providers
can't access one network from the other directly. In this
case, they can create a virtual connection between the two
locations and add routes to the public IP addresses in those
locations only on their routers. This creates the advantage
that both private networks can access the Internet and each
other, but other hosts from the Internet can't access them.
This is called a VPN (Virtual Private Network).

IP Subnetting
Subnetting is the process in which you break a network into smaller pieces. This can
be done for a variety of reasons. For example, a company having department LANs

•

•

•

Chapter 1

[33]

connected to different interfaces in a router or in different VLANs in a switch can't
use the same network part and the same mask for devices in all departments because
they would not communicate with each other.

Using different IP network addresses for devices in different LANs within the same
company is not recommended because of the large number of IP addresses that
might be wasted in the process.

Subnetting is done by choosing an appropriate mask, called a subnet mask or NetMask
to define the number of hosts in that network. The network address of a subnet can be
a valid IP address from the subnetted network that devices will no longer be able to
use. By subnetting, you lose some usable IP addresses (two for each subnet).

The Subnet Mask
The subnet mask is a 32 bit sequence of zeros and ones, just like the IP address. The
subnet mask has all the bits in the network part of the IP address set to 1, and all
the bits in the host part of the IP address set to 0. The subnet mask works like the
network mask (it's basically the same thing), except that the subnet mask borrows
some bits from the host part to identify the subnet.

Let's say the IP address 192.168.1.130 is in the class C network 192.168.1.0-255; so, it
has the mask 255.255.255.0. The company has two different departments, and they
are both in the same network, but it is required that they should be on different
networks. When assigning IP addresses, the network administrator used to assign
IP addresses ascending, starting with 192.168.1.1 to department A and descending
starting from 192.168.1.254 to department B, and so decided to divide this class C
network into two subnets, each containing 128 addresses. Those subnets will be
192.168.1.0-127 and 192.168.1.128-255.

Initially, we would have:

11000000.10101000.00000001.10000010 192.168.1.130
11111111.11111111.11111111.00000000 255.255.255.0

In order to break the class C network in two subnets, we need to borrow one bit from
the host part of the IP address for the network part, so we will have the subnet mask:

11111111.11111111.11111111.10000000=255.255.255.128

The first bit in the last byte of the subnet mask is called a "borrowed bit". The logic
is pretty simple and it's based on Boolean logic. A device with IP capabilities does a
logical AND between the subnet mask and the IP address to find out the network this
IP address belongs to.

Networking Fundamentals

[34]

For example, for 192.168.1.130 with the subnet mask of 255.255.255.128, a device does
the following operation:

11000000.10101000.00000001.10000010 AND
11111111.11111111.11111111.10000000 EQUALS
11000000.10101000.00000001.10000000 = 192.168.1.128

This way it finds out that the IP address 192.168.1.130 having the subnet mask
255.255.255.128 is in the subnet 192.168.1.128.

For 192.168.1.1 having the subnet mask 255.255.255.128, the logical AND will be:

11000000.10101000.00000001.00000010 AND
11111111.11111111.11111111.10000000 EQUALS
11000000.10101000.00000001.00000000 = 192.168.1.0

So the address is in the subnet 192.168.1.0.

By performing a logical AND of all IP addresses in the 192.168.1.0-255 class C with the
subnet mask 255.255.255.128, the results can only be 192.168.1.0 or 192.168.1.128. This
way, we divide the class C network in two.

Before dividing the class C network, we had the broadcast address 192.168.1.255.
Now, the last IP address from every subnet becomes the broadcast address for that
subnet. The first subnet will have 192.168.1.127 as a broadcast address, and the
second will have 192.168.1.255 as a broadcast address. By dividing this class C in
two, we lost two possible host IP addresses—192.168.1.127 (first subnet's broadcast)
and 192.168.1.128 (second subnet's network).

Everything Divided in Two
If we need four subnets in that class C network, we do the same thing to the
255.255.255.128 subnet mask. This means we will borrow one bit from the host part
of the IP address and add it to the subnet mask, and so we will be borrowing two
bits from the class C mask:

11111111.11111111.11111111.11000000	 =	 255.255.255.192

By performing a logical AND with any IP address starting with 192.168.1, we will have
four possible values for the last byte:

00000000	 =	 0
01000000	 =	 64
10000000	 =	 128
11000000	 =	 192

Chapter 1

[35]

So we have created four subnets: 192.168.1.0, 192.168.1.64, 192.168.1.128, and
192.168.1.192.

We can divide those subnets in another two subnets, and so on.

The rule with the first and the last address of the subnet as being reserved still
applies here; so, the first IP address in the subnet is the network address (to identify
the subnet) and the last possible address in a subnet is used for broadcast. For the
example we just saw, we have:

Usable IP addresses Network Address Broadcast Address
192.168.1.1 to 192.168.1.62 192.168.1.0 192.168.1.63
192.168.1.65 to 192.168.1.126 192.168.1.64 192.168.1.127
192.168.1.129 to 192.168.1.190 192.168.1.128 192.168.1.191
192.168.1.193 to 192.168.1.254 192.168.1.192 192.168.1.255

If the class C 192.168.1.0-255 network is subneted as in the example, the host having
the IP address 192.168.1.71 and the subnet mask 255.255.255.192 will send the
broadcasts to the IP address 192.168.1.127, and only the devices having IP addresses
in the same subnet will receive those broadcasts.

For a subnet mask to be valid, it must have a host part,
meaning it cannot borrow all the bits in the last byte. At
least the last bit must be 0; so the last valid subnet mask is:
11111111.11111111.11111110 = 255.255.255.254. However, a
subnet with the subnet mask 255.255.255.254 has only two
possible IP addresses, and by using one for broadcast and
one for network address, there are no usable IP addresses
in that subnet!

For a class C network, the valid subnets are:

11111111.11111111.11111111.10000000 = 255.255.255.128
11111111.11111111.11111111.11000000 = 255.255.255.192
11111111.11111111.11111111.11100000 = 255.255.255.224
11111111.11111111.11111111.11110000 = 255.255.255.240
11111111.11111111.11111111.11111000 = 255.255.255.248
11111111.11111111.11111111.11111100 = 255.255.255.252

The smallest number of usable IP addresses in a subnet is two, given by the subnet
mask 255.255.255.252, which has four IP addresses in that network (one for network,
one for broadcast, and two usable IP addresses).

Networking Fundamentals

[36]

A Different Approach
Thinking in binary is not always that simple, but that is the process that devices
using IP communication use to calculate things. A simple logic in decimal would be
like this:

A class C network has 256 IP addresses (from 0 to 255). I need to create four
subnets in that class C, and so, each subnet will have (256 / 4 =) 64 IP addresses
(only 62 usable for devices). The last byte (in decimal) for the subnet mask will
be (256 – 64 =) 192, and so, I get the subnet mask 255.255.255.192, and subnets
192.168.1.0, 192.168.1.64, 192.168.1.128, and 192.168.1.255.

The trick for subneting class C networks is to subtract the number of hosts that you
want in that subnet from 256 and you get the subnet mask. Please remember that the
number of hosts in that subnet must be a power of 2. For 16 addresses in a subnet,
you will use the subnet mask 255.255.255.240 (256 – 16 = 240).

To subnet a class B network, if you don't want to use the binary logic, you can still
use this procedure by working on the third byte of the subnet mask. For example, a
full class B network has 256 * 256 IP addresses. If I want to use 16 * 256 IP addresses
in a subnet, I will use for the third byte of the subnet mask the value 256 – 16 = 240,
so I will have a subnet mask of 255.255.240.0.

IP Supernetting or CIDR
CIDR stands for "Classless Inter-Domain Routing". It is a new addressing scheme
for the Internet, intended to replace the old classful (Class A, B, C) address scheme.
CIDR allows a more efficient allocation of IP addresses and uses routing aggregation
for minimizing the routing table entries, and is also called supernetting.

A recapitulation of classful IP addressing shows us the following:

Address Class Number of Network
Bits

Number of Hosts
Bits

Decimal Address
Range

Class A 8 bits 24 bits 1-126
Class B 16 bits 16 bits 128-191
Class C 24 bits 8 bits 192-223

126 class A networks with up to 16,777,214 hosts each
65,000 class B networks with up to 65,534 hosts each
Over 2 million class C networks with 254 hosts each

•

•

•

Chapter 1

[37]

If a provider needed 10,000 IP addresses for a project, then it would receive a class B
network, and 55,534 IP addresses would not be used. If however, the provider had
been assigned 40 class C networks for that 10,000 IP addresses, it could not match its
needs (not all the IP addresses would be in the same network) and the routing tables
of routers on the Internet would grow with 40 new routes.

CIDR is an addressing scheme that supports masks not only of 8, 16, or 24 bits as in
classful routing but of arbitrary length. The CIDR notation is:

xxx.xxx.xxx.xxx/n

where xxx.xxx.xxx.xxx is the IP address of the network and "n" is the number of
'1' bits in the mask. For example, the class C network 192.168.1.0 with the mask
255.255.255.0 is written in CIDR as 192.168.1.0/24.

The CIDR masks for classes A, B, and C respectively are /8, /16, and /24.

For the earlier example with the provider requesting 10,000 IP addresses, with CIDR
the provider would be assigned a network having a mask of /18, meaning the subnet
mask would be 255.255.192.0 with 16,382 usable IP addresses and only one prefix in
all the routing tables in the world.

Nowadays, providers are assigned large blocks of addresses that their customers
can buy instead of every customer having different IP classes. For example, the
provider that was assigned a /18 network can give 64 of its customers a class C IP
class (a /24). This is called aggregation, and it significantly reduces the size of the
routing tables on the Internet.

Let's have a look at the CIDR prefixes down to /16 (class B):

CIDR Prefix Subnet Mask Number of IP Addresses
/32 255.255.255.255 /32 is used in CIDR to specify a

single host or IP address. If the
prefix is missing, /32 is assumed

/30 255.255.255.252 4
/29 255.255.255.248 8
/28 255.255.255.240 16
/27 255.255.255.224 32
/26 255.255.255.192 64
/25 255.255.255.128 128
/24 255.255.255.0 256
/23 255.255.254.0 512
/22 255.255.252.0 1024

Networking Fundamentals

[38]

CIDR Prefix Subnet Mask Number of IP Addresses
/21 255.255.248.0 2048
/20 255.255.240.0 4096
/19 255.255.224.0 8192
/18 255.255.192.0 16384
/17 255.255.128.0 32768
/16 255.255.0.0 65536

How the Internet Works
Large providers are assigned large IP blocks for them and for their customers. When
accessing an IP address outside the provider's network, the data must travel through
certain routers to get to the destination IP. The Internet Protocol is responsible for
routing the packet to the destination.

Providers have some large, carrier-class routers located at the edge of their network
where they interconnect to other providers. Every provider that has at least two
interconnections with two different other providers must have an Autonomous
System (AS) number to be identified in the exchange of routing information.

All the Internet is based on BGP (Border Gateway Protocol), which is a dynamic
routing protocol used to exchange information between providers about the
networks they have.

Chapter 1

[39]

A provider having the Autonomous System number 1 (AS 1) has two
interconnections: one with AS 2 and another with AS 3. Depending on the agreement
between the providers, AS 1 can route to either of them only their own networks
(Local Exchange or Local Peerings), or it can announce all the routes received from
other peers (Full Exchange or Full BGP).

AS 3 can receive the routes to AS 1 networks directly from AS 1, and can also receive
them from AS 2 and AS 4. The router finds the best path to AS 1 networks and sends
packets to those networks on that path, and if that link fails, on the next best path.
(e.g. AS 3 sends the packets to AS 1 directly on their interconnection. If that link fails,
it will send them to AS 2, which will forward the packets to AS 1.)

Summary
In this chapter, we saw that:

Layered models for networking communication allow interoperability, ease
of use, and a faster growth of the Internet.
The TCP/IP model is the most popular model, but the OSI model is used as a
reference in network communication. For example, TCP, which is at TCP/IP
Layer 3, is referred to as a Layer 4 protocol.
TCP is a connection-oriented and reliable protocol that implements flow-
control, while UDP is much simpler, and provides connectionless, unreliable
delivery of packets.
IP classes A, B, C, D, and E were defined.
Subnetting is a process to divide an IP class into smaller pieces by borrowing
bits from the host part of the IP address to the network part.
CIDR or IP supernetting is an IP addressing scheme that allows a more
efficient management of IP addresses and aggregation for reducing the size
of routing tables.
Providers exchange routing information using the Border Gateway Protocol,
thus making the Internet work.

•

•

•

•

•

•

•

Security Threats
Creating firewalls may block some malicious attempts on your network, but this
step is far from running an entirely secure network. As a network administrator or
security consultant, to design a proper firewall for your network you need to know
what you defend your network from. We cannot fully discuss this topic, even in 1000
pages, but we want to explain some principles that you should consider in running a
safe network.

As hard as it may seem to protect your network from the outside world, the most
dangerous threats always come from inside your network. Whether it is a user
with malicious intentions or a hacker who broke into a less important part of your
network, the inner threat is the worse.

Besides outside and inside attacks on your network, there is one more attack type,
called MIM (Man In the Middle) attack. This involves two trusted parts of your
network that transit one or many routers that you don't control.

For instance, we might have a network in one building and another network in a
distant building and we ask our ISP to connect both of the networks, but due to the
ISP's distribution network, the packets pass through one of its routers. If we don't
make an encrypted VPN connection between the sites, the Man In the Middle (our
provider) can easily sniff the traffic going from one network to the other, discovering
passwords, servers' IP addresses, remote control ports, etc.

If the provider has bad intentions, he or she can assume trusted IP addresses from
one of the sites to log in into protected servers on the other site after sniffing out
users and passwords. Of course, a serious provider would never do that, but still
you might consider that behind everything there are people that can have malicious
intentions, or that there is a small chance that some hacker that wants your data may
hack your provider's systems.

Well, we've now established that a security threat may come from inside, outside,
or from transit points of the network. This means you are exposed to everywhere,

Security Threats

[42]

and so a good practice would be to close some doors. Closing doors means
eliminating transit points (create encrypted VPNs), identifying weak parts of
your network, and treating them as outside network. If you can do this with your
network, you will have only outside attacks to care about.

Even if the Internet runs on the TCP/IP protocol suite, we explained in Chapter 1
that the reference model for networking is the OSI layered model. Network security
should be addressed at each OSI layer for different vulnerabilities and types of
attacks. You will find out that every layer has its own security challenges.

Layer 1 Security Threats
OSI Layer 1 defines physical links. There are quite a few types of attacks that can be
found at Layer 1, including:

Cable / Fiber cuts
High voltage applied on copper lines
Wireless links jamming
Electromagnetic field sources brought near copper cables, etc.

Securing the physical layer is beyond the scope of this book and must be done by
field or transmission engineers.

However, it is important for network administrators to know how the physical links
are built, and to have backup routes for the most important ones as well as for the
most exposed ones.

Layer 2 Security Threats
Layer 2 of the OSI model defines the data link layer. The data link layer can be a
very weak link in terms of security, and the worst thing is that it can affect the upper
layers by causing service disruptions or security breaches.

At Layer 2 we can find ATM, frame relay, PPP, Ethernet, Wireless LAN (802.11a/
b/g), etc. Since the most popular Layer 2 protocol is Ethernet, we will discuss its
security in more detail.

MAC Attacks
MAC addresses used in Ethernet, 802.11x Wireless networks, Bluetooth, FDDI,
Fiber Channel, and Token Ring are unique identifiers attached to the networking
equipment. MAC addresses are 48 bits long, should be unique, and are usually

•

•

•

•

Chapter 2

[43]

shown in hexadecimal format (e.g. "00-13-F7-18-A1-AC"). The first 24-bit part of a
MAC address is the manufacturer code assigned by IEEE, and the second 24 bits are
assigned by the manufacturer to this interface.

By convention, the MAC address FF-FF-FF-FF-FF-FF is used for broadcast.

A security issue found at Layer 2 is CAM table overflow, which affects switches in
the network. CAM is a physical part of a switch; it stands for Content Addressable
Memory, and it stores information about MAC addresses available on each physical
port and their associated VLAN parameters.

Physically, a CAM is a normal memory limited in size. In 1999, Ian Vitek created
a tool called macof, later integrated in dsniff, which floods switches with invalid
source MAC addresses (up to 155,000/minute). This tool quickly fills up the CAM
table of the switch to which the computer running the tool is connected, and also
the adjacent switches. The result of this attack is an abnormal behavior of the switch
by flooding incoming traffic out on all ports (like a simple old Hub), thus making
possible a Man-In-the-Middle (MIM) attack—the attacker can start sniffing
network traffic.

Unfortunately, Linux can't protect you against this type of attack. Only managed
switches with port security options can do that. However, the attacker can only sniff
packets within his or her VLAN; so it is important to determine where these attacks
may come from, and make sure that no important traffic passes through that VLAN.

Another security issue with this subject is MAC address spoofing, which is used by
attackers to replace a CAM table entry of a known MAC address on another port.
This will cause the switch to send the traffic destined for the port of the attacked
computer to the port at which the attacker is connected. This attack causes service
disruption and can be used as an MIM attack with the attacker sniffing the packets
destined to the attacked computer.

MAC address spoofing attacks can be blocked only in the switches, if the switches
have facilities for that.

DHCP Attacks
DHCP (Dynamic Host Configuration Protocol) described by RFC 2131
(http://www.ietf.org/rfc/rfc2131.txt) is a protocol used by devices in a
network to obtain the network configuration settings like IP Address, subnet mask,
default router, and DNS servers' IP addresses from a server in the network running
DHCP Server software.

DHCP servers are configured to assign clients (devices in the network) IP addresses
from defined ranges. The basic DHCP operation is described in the following figure:

Security Threats

[44]

The DHCP server gives the IP address to a requesting device on a lease basis,
meaning that the IP address is "leased" for a limited amount of time. During this
time, the DHCP server will not lease that IP address to any other clients. Before
the lease time expires, the DHCP client must request an extension of the lease time
from the DHCP server. The DHCP lease time is configurable from 120 seconds to
whatever the administrator chooses.

DHCP starvation attack consists of consuming the IP address space allocated by a
DHCP server. This can easily be accomplished by an attacker by broadcasting a large
number of DHCP requests using spoofed MAC addresses. The DHCP server will
lease its IP addresses one by one to the attacker until it runs out of available IPs for
new, normal clients. This leads to Denial of Service for those clients in the network
requesting IP addresses from the DHCP server.

Chapter 2

[45]

At this point, the attacker can set up a rogue DHCP server serving clients with false
details, for example giving them its own IP address as default router. This will result
in all the traffic passing through the attacker's computer, thus making it really easy
for him or her to sniff all the network traffic from the clients.

The rogue DHCP server can be set up even without performing the DHCP starvation
attack, as clients accept the first DHCPOFFER they receive.

Both these attacks can be easily accomplished using gobbler, a simple tool that can be
found on the Internet. Unfortunately, only switches can protect users against these
attacks. DHCP starvation attack can be prevented by using port security features
that don't allow more than X MAC addresses on one port (the same method of
prevention as for CAM attacks).

However, the rogue DHCP server attack is more difficult to prevent, but hopefully
it will be in the future with the implementation of "Authentication for DHCP
Messages" described by RFC 3118. For now some smart and expensive switches have
a "DHCP snooping" function, which filters DHCP messages from non-trusted hosts.

ARP Attacks
ARP stands for Address Resolution Protocol, and it's the protocol used to map IP
addresses into MAC addresses.

Within the same broadcast domain (network segment), computers exchange ARP
messages to find each other's MAC address based on the IP address they have. ARP
is essential to TCP/IP communications, and is a very simple protocol with almost
zero security features.

ARP spoofing is a simple way to conduct ARP attacks by sending broadcasts
with spoofed MAC or IP addresses causing either Denial-of-Service or
Man-In-the-Middle attacks.

Adding IP/MAC pairs manually in the ARP tables of the computers in the network
can solve some of the ARP spoofing attack scenarios, but it's far from being a
solution to this type of attack.

The very popular dsniff package (http://www.monkey.org/~dugsong/dsniff/)
contains ARP spoofing tools among other network attack/audit tools.

STP and VLAN-Related Attacks
Virtual LANs (VLANs) are logically independent networks physically connected in
a larger network. The idea behind VLANs is to create multiple broadcast domains
within a single network and to separate different traffic types from each other.

Security Threats

[46]

Multiple VLANS can exist in a single switch, and VLAN information can be carried
between switches using trunks. Trunks are interconnections between switches that
carry data between them using tags to identify to which VLAN the data belongs to.
The dominant tagging protocol is IEEE 802.1Q.

Creating VLANS is a very good security measure at Layer 2 because of separation of
different types of traffic. However, misconfigured switches can allow a certain type
of attack called VLAN hopping.

VLAN hopping is an attack in which an attacker tries to send data to hosts that
belong to other VLANs by tagging the data with a different VLAN ID than the one it
belongs to. As 802.1Q implementations are available for Linux and other OSes, and
some vendors' (e.g. Cisco) switches have the default mode for a port as trunking, an
attacker can easily create a trunk link between the switch and itself, thus being able
to communicate to hosts in all VLANs configured on that switch.

Another type of attack that probably everyone knows about is creating network
loops. A network loop appears when two ports belonging to the same VLAN have
a link to each other, or when there are two or more paths between two switches.
Malicious users can physically create network loops, and the easiest way to do that
is connecting a cross-connect cable to two ports that belong to the same switch and
the same VLAN (the same broadcast domain). When a loop appears in a network,
broadcasts travel infinitely within that VLAN, flooding every port that belongs to
that VLAN for every switch in the network, thus bringing the network down.

STP Spanning Tree Protocol (IEEE 802.1D) was designed to prevent network loops.
STP works by deactivating links that can form a network loop, raising the possibility
of deploying redundant links in the network that, without STP, would create
network loops.

STP manipulation is a type of threat in which an attacker broadcasts STP
configuration or topology change BPDUs (Bridge Protocol Data Units), forcing
STP recalculations and expecting that the attacker becomes the root bridge. As root
bridge, the attacker can sniff Ethernet frames belonging to other VLANs. 802.1D STP
takes about 30 to 45 seconds to re-elect a root bridge if the old root bridge fails, thus
resulting in a DoS attack.

Layer 3 Security Threats
At the network layer of OSI model, we find the Internet Protocol (IP) with ICMP
being a part of the Internet Protocol. Layer 3 is vulnerable to multiple DoS attacks
and privacy disclosure attacks.

Chapter 2

[47]

Packet Sniffing
We discussed packet sniffing earlier in this chapter and how attackers in a switched
network can sniff packets that don't belong to them. If the network is not switched
(e.g. a Hub is used) packet sniffing becomes a lot easier.

Sniffing packets means capturing IP traffic using tools like dsniff, tcpdump, ethereal,
etc. Because data from upper layers is encapsulated into IP packets, all the information
from those layers can be disclosed when analyzing (decapsulating) IP packets.

Protocols like POP3, SMTP, SNMP, etc., transmit passwords in clear text, and so,
decoding captured IP packets may result in disclosing such sensitive data. Packet
sniffers like dsniff have very nice tools to decode those packets and store this
information in a file in clear text.

Securing Layer 2 with managed switches can drastically reduce the success of packet
sniffers in the network. Also, creating encrypted VPNs using IPSec or other encryption
means will decrease the possibility of the data being sniffed almost to zero.

IP Spoofing
An attacker might spoof a trusted IP address when communicating to a host in order
to gain unauthorized access on that host. There are a variety of tools that can be
found on the Internet to do IP spoofing.

Using IP spoofing, attackers can also initiate Denial of Service by sending data with
the source IP spoofed to the attacked IP address. The receiver then sends back replies
that can contain large amounts of data to the attacked IP address resulting in a flood
attack to that address. Sending data using the spoofed IP address to many hosts will
result in a Distributed Denial-of-Service attack.

To protect against IP spoofing, the Linux kernel has an option named "rp_filter",
which can be modified at run time using:

root@router:~# echo 0 > /proc/sys/net/ipv4/conf/all/rp_filter

This command disables rp_filter on all interfaces. To disable on one interface, eth0
for example, we can use:

root@router:~# echo 0 > /proc/sys/net/ipv4/conf/eth0/rp_filter

Setting rp_filter to:

1 enables IP spoofing protection
0 disables IP spoofing protection

•

•

Security Threats

[48]

IP packets coming from one host enter the Linux box on one interface. The replies to
those IP packets must be on the same interface if rp_filter is set to 0.

Routing Protocols Attacks
Misconfigured dynamic routing protocols such as RIP, BGP, and OSPF may allow
attackers to inject routes into the routing tables of the machines running instances
of those protocols. This may allow attackers to conduct Denial-of-Service attacks by
injecting wrong routes or IP sniffing by configuring its computer to act like a router
from the network.

We will discuss later in this book how to set up, configure, and secure BGP on Linux.

ICMP Attacks
ICMP is a very important part of the IP protocol enabling hosts and routers to
exchange control messages.

Using spoofed IP addresses, an attacker might disrupt communications between two
hosts by sending "Time Exceeded" or "Destination Unreachable" messages to both
hosts, resulting in a DoS attack.

By sending ICMP "redirect" messages, an attacker might force a router to forward
packets destined to one host to the attacker's IP address.

With Linux, we can force the kernel not to accept redirect messages for one or
all interfaces:

root@router:~# echo 0 > /proc/sys/net/ipv4/conf/eth0/
accept_redirects

ICMP Flooding is one of the easiest ways to attack a host. ping is one of the
most commonly used tools to verify connectivity, but it can also be used as a DoS
attack tool.

For example, using Linux, one can flood a host using ping –f. The following
command floods the host 10.10.10.12 with 1000 packets:

root@router:~# ping -f 10.10.10.12 -c 1000
PING 10.10.10.12 (10.10.10.12) 56(84) bytes of data.

This type of attack can be stopped by limiting the number of ICMP echo-request
messages with iptables:

root@router:~# iptables -A FORWARD -p icmp --icmp-type
echo-request -m limit --limit 10/s -j ACCEPT

Chapter 2

[49]

root@router:~# iptables -A FORWARD -p icmp --icmp-type
echo-request –j DROP

We will learn in the following chapters more on the iptables
syntax. For now, we are just presenting the ways to stop
some DoS attacks using iptables. You can always come
back to these commands after learning more on the iptables
syntax from the next chapters.

Old ICMP implementations had some other vulnerabilities; for example, the Ping
of Death. The ping of death crashed machines by sending ICMP "echo request"
messages in IP packets larger than the maximum legal length of 65535 octets, causing
a buffer overflow to crash the victim's device (computer, printer, etc.). A Linux patch
for the ping of death was out in 2 hours, 35 minutes, and 10 seconds, and shortly
after, patches for other OSes were available from vendors.

However, the ping of death problem generated a trend of filtering ICMP packets,
which, as you will see later in this book, is not a good practice.

Teardrop Attacks
Teardrop, targa, NewTear, Nestea Bonk, Boink, TearDrop2, Syndrop, and many
others are all tools to crash machines that have a vulnerability in the IP stack.

Those tools exploit a fragmentation bug in the IP stack implementation of some
old Linux kernels (2.0), Windows NT, and Windows 95. Teardrop sent fragmented
IP packets that could not be assembled properly by the attacked machine, by
manipulating the offset values of the packets. The effect was a kernel panic in Linux
or a blue screen in Windows. A reboot solved the problem until the next attack.

Layer 4 Security Threats
TCP and UDP are the transport protocols found at OSI Layer 4—transport. We've
learned about them in more detail in Chapter 1, with TCP being more complex than
UDP because it's a connection-oriented protocol that has a flow-control mechanism
(windowing), while UDP is simple and connectionless, and with no flow-control
implemented in the protocol.

Security Threats

[50]

TCP Attacks
Being a connection-oriented protocol, a TCP connection is established using a three-
way handshake as described in Chapter 1. An attacker can exploit this property of
the protocol by sending a very large number of SYN packets without regarding the
SYNACK the attacked host sends back. This type of attack is called TCP SYN attack
or SYN flooding.

SYN flooding can be successful as the attacked computer keeps track of partially
opened connections for minimum 75 seconds in a "listen queue". The queue is
limited on various TCP implementations; therefore a SYN flood can fill it up, causing
the machine to reboot or to crash.

In Linux, the TCP listen queue differs from one kernel version to another. For 2.2 and
older kernels, the default listen queue is 1024 for TCP connections in SYN_RECV
state; for 2.0 kernels, there was a backlog keeping track of opened and partially
opened TCP connections. The listen queue can be seen and modified using sysctl
parameter tcp_max_syn_backlog:

root@router:~# cat /proc/sys/net/ipv4/tcp_max_syn_backlog
1024
root@router:~# echo 2048 > /proc/sys/net/ipv4/tcp_max_syn_backlog

The first command shows the backlog size of 1024, and the second command sets it
to 2048.

The default Linux Kernel behavior is to discard new SYN packets if the queue is
full. This can be modified by another sysctl parameter tcp_syncookies, which
can be used only if the Linux kernel is compiled with syncookies support
(CONFIG_SYN_COOKIES="Y").

root@router:~# echo 1 > /proc/sys/net/ipv4/tcp_syncookies

This command sets tcp_syncookies to 1 and the Linux kernel will ignore the
tcp_max_syn_backlog size. However, the use of tcp_syncookies can have
unwanted side-effects. For example, a web server that partially handles 1024 TCP
connections normally will discard a new SYN packet when overloaded. This may
lead new clients to another, less loaded web server that can process their request
faster. With syncookies enabled, new clients may wait for a very long time for a reply
from the overloaded server.

We can use iptables to protect against SYN flooding by limiting the number of SYN
packets in a defined amount of time, as we did for ICMP echo-requests:

root@router:~# iptables -A INPUT -p tcp --syn -m limit --limit
10/s -j ACCEPT
root@router:~# iptables -A INPUT -p tcp --syn –j DROP

Chapter 2

[51]

Another TCP-related type of attack is the Land attack. The Land attack is very
simple and was very devastating at the same time, as not only a large number of
Unix versions and all Windows versions were affected, but also Cisco routers. The
Land attack is conducted using a small program written in C (land.c) that sends a
SYN packet to a host on an opened TCP port with the source IP address spoofed to
the destination IP address (e.g. 192.168.1.1 port 139 to 192.168.1.1 port 139).

Another popular TCP-related attack is a Man-In-the-Middle attack called
TCP Connection Hijacking. An attacker standing in the path of two computers
communicating via TCP can seize control of the TCP connection during the
three-way handshake, or afterwards, when the connection is in established,
by creating a desynchronized state, which means that the TCP connection is
established, no data is sent, and the SEQ number of one host differs from the ACK
number of the other host and the other way around (A_SEQ <> B_ACK and B_SEQ
<> A_ACK). During a desynchronized state, the hosts discard packets from one
another (DoS), but the attacker can create a sequence of correct numbers, injecting
commands into the communication.

UDP Attacks
Since UDP is a simple protocol with no connection establishment procedures, the
only way UDP can be affected is by sending a large number of UDP packets to
random ports at the attacked machine. This type of attack is called UDP flooding.
The attacked machine will try to determine the application that the packet is destined
for. If no application listens on that UDP port, the packet will be discarded. By
flooding the victim with these types of packets, the victim computer might overload,
resulting in system a crash.

TCP and UDP Port Scan Attacks
Port scanning is probably the first thing an attacker does when trying to hack a
victim. Using a tool from a variety of programs found on the Internet (e.g. Nmap),
an attacker can discover which TCP and UDP ports a host has opened in order to
identify running services for further exploitation of vulnerabilities.

Layer 5, 6, and 7 Security Threats
We have grouped Layers 5, 6, and 7 of the OSI model corresponding to the TCP/IP
Layer 4—application. There are a lot of applications that are known from the past to
be vulnerable to exploits. Most of these applications had problems at all of the three
upper layers of the OSI model. We will present a few of these applications, known to
contain a large number of vulnerabilities, and that are very popular.

Security Threats

[52]

BIND Domain Name System (DNS)
BIND (Berkley Internet Name Domain) is the most used DNS server on the Internet.
Nowadays, every Linux distribution has a BIND package for DNS services.

The problem with BIND and any DNS server is that in order to be able to translate
names into IP addresses it has to communicate with a whole lot of other DNS
servers, and so, filtering DNS packets is not possible.

DNS services are vital for internet connection; so in order to disrupt services to
victims, attackers have a great interest in bringing down DNS servers. Although
BIND is well known for its security issues, there are many vulnerable BIND servers
out there, and so you have to be really careful running BIND. A DNS server survey
at http://mydns.bboy.net/survey shows the popularity of BIND, and that there
are still quite a lot of vulnerable versions out there.

Here is some of my advice on what would provide a more secure BIND�:

Don't use the BIND package that comes with your distribution of Linux;
download the latest from BIND website (http://www.isc.org).
Place BIND in a chroot jail. This is the best thing to do to protect against
remotely exploitable vulnerabilities in BIND that allow attackers to get a
shell on the server running BIND. If you don't chroot your version of BIND
and such a vulnerability is discovered, your Linux server and all data on it
may be compromised before you have the time to upgrade.
Always apply patches and upgrade BIND whenever a bug is discovered or a
new version comes out.
Secure zone transfers between primary and secondary DNS servers using
DNS Transaction Signatures (TSIG).
Disable recursion and glue fetching to defend against DNS cache poisoning.

Although BIND is more popular and easier to configure, consider using TinyDNS, as
it has proven to be more secure over the years.

Apache Web Server
The most popular web server is Apache, found at http://www.apache.org, which
had some security issues in the past, whether they were Apache bugs or add-on
modules' vulnerabilities. Here is some of my advice on what would provide a more
secure Apache server:

Patch your server and try to keep it as up to date as possible.
Remove all sample scripts of add-on modules
(mod_php, mod_cgi, mod_perl, etc.).

•

•

•

•

•

•

•

Chapter 2

[53]

If running PHP, CGI, and other script languages, consider using suEXEC, a
wrapper program called by Apache to allow it to call scripts from a different
user ID than the one it uses for Apache.
Don't allow uploads of any scripts into your web server by untrusted parties.
Read about all vulnerabilities of any open-source projects that you install,
such as PHPBB forums, for example.
Don't run the web server as root. Create a user with minimal rights to run the
web server.
Modify the response token for your web server. It's harder for an attacker
to bring it down when he or she doesn't know what web server you
are running.

Version Control Systems
Version control systems provide tools for software developers to concurrently work
on the same set of files and manage different versions of source code.

In Linux systems, the most popular version control system is CVS (Concurrent
Versions System), used by many open-source software projects that allow anonymous
access to their CVS repositories via the pserver protocol that runs on TCP port 2401 by
default. A CVS server with remote access has the following vulnerabilities:

A heap-based buffer overflow that can be triggered by specially crafted
entry lines. Exploit code for CVS servers was published on security lists, and
allows attackers to execute arbitrary code on the CVS server.
There are some vulnerabilities in the implementation of other commands and
functions that may be exploited by an authenticated user to cause Denial of
Service or execute arbitrary code on the CVS server. Some of these may be
exploited by anonymous users.

To protect against these vulnerabilities, consider the following steps:

Update CVS to the latest stable release. CVS can be found at
http://www.cvshome.org.
Run the CVS server in a chroot jail.
Configure CVS to use the SSH protocol instead of the pserver protocol
(which sends the passwords in plaintext).
If you don't allow anonymous access to your CVS server, try filtering port
2401 to allow only trusted hosts to connect to it.
Host the CVS server for anonymous read-only access on a stand-alone system.
Run the published exploits against your CVS servers.

•

•

•

•

•

•

•

•

•

•

•

•

•

Security Threats

[54]

Another version control system that gained popularity on Linux is subversion. A
subversion repository can be remotely accessed via the svn protocol. The svn server
runs on the TCP port 3690 by default and contains the following vulnerabilities:

A heap-based buffer overflow that can be exploited by unauthenticated
attackers to execute arbitrary code on the subversion server.
A stack-based buffer overflow that can be triggered by a specially crafted
get-date-rev svn command. In this way too an unauthenticated attacker
can execute arbitrary code. For this vulnerability, multiple exploits were
published on security lists.

To protect your subversion server against those vulnerabilities, consider the
following steps:

1.	 Update your subversion software to the latest stable version from
http://subversion.tigris.org/.

2.	 Configure subversion to use webDAV instead of the svn protocol.
3.	 If you don't allow anonymous access to your subversion server, try filtering

the TCP port 3690 to allow only trusted hosts.
4.	 Run the published exploits against your subversion server.
5.	 Host the subversion server for anonymous read-only access on a

stand-alone system.

Mail Transport Agents (MTA)
Email is one of the most popular services on the Internet and for a company it is a
vital service in almost every department. SMTP (Send Mail Transport Protocol) is
one of the oldest protocols on the Internet and it is used by MTAs to send email from
the sender to the recipients. SMTP listens on the TCP port 25 by default, and if it is
used to receive email from any email address on the Internet, it must not be filtered.

The most popular MTA for Linux is Sendmail, which had a lot of security issues
including buffer overruns that could be remotely exploited to compromise the MTA
server. Popular alternatives to Sendmail are Postfix, Qmail, Exim, and Courier-MTA.

MTAs' most popular problems are the following:

Vulnerabilities such as buffer overruns, heap overflows, etc., which can be
used by remote or local attackers to compromise the server running the MTA.
Missconfiguration of the MTA allowing everyone to use it for sending mail.
This is called open relay. Missconfigured MTAs as open relays immediately
fall in the hands of spammers, which may cause big damages to your
company by having your email server in one of the many email servers

•

•

•

•

Chapter 2

[55]

blacklists, plus the fact that all the spam consumes your bandwidth.
You can check your mail server to see if it is an open relay at
http://www.abuse.net/relay.html, which runs a set of tests to see if
there's any way for a spammer to use your email server to send mail to
other people.
User-account database disclosure vulnerabilities.

Simple Network Management Protocol
(SNMP)
These days, most network devices use SNMP for remote monitoring and
configuration. SNMP is a simple protocol used usually to create monitoring software
that can retrieve information such as network traffic, CPU load, disk load, etc., and
also to modify configuration of devices such as wireless equipment, broadband
routers, etc.

Most SNMP implementations on those kinds of network devices use version 1 or
version 2, which have a very weak authentication method. SNMP version 1 contains
a set of bugs in the way SNMP traps and requests messages are handled and
decoded that can be exploited in many ways, from denial of service to rewriting
the configuration.

SNMP versions 1 and 2 use community strings for authentication. These are sent
on UDP port 161 unencrypted; so it is very easy for a man in the middle to sniff the
community strings. When you set up SNMP on a device (including a Linux box), you
must set up two community strings: one that has read-only access and the default is
"public", and one that has read-write access and the default is "private". If you don't
change the communities to SNMP-enabled devices, it is very easy in the absence of a
firewall to view their configuration and change it.

This is very dangerous for the devices and the network; so here's what you should
try to do:

Try not to use SNMP, unless you have to.
Whenever possible, use SNMP version 3, which has user mode
authentication and can do encryption.
In any case, if you use SNMP, change the default communities.
Create a proper firewall on the device or on a device in front of it, allowing
only trusted hosts to connect using SNMP.

For instance, a Cisco router running SNMP with the community string "public"
reveals its entire running configuration, including usernames and passwords as

•

•

•

•

•

Security Threats

[56]

well as the enable secret and password. If the router has the SNMP community
"private" for write access, you can modify absolutely everything in the configuration.
More than that, most Cisco routers have SNMP enabled by default with the default
communities and without filters.

Open Secure Sockets Layer (OpenSSL)
The OpenSSL library is the most popular choice for applications that need
cryptographic support in network communications. Such applications are Apache
(HTTP secure connections), Sendmail, OpenLDAP, OpenSSH, etc.

Vulnerabilities in one version of the OpenSSL libraries affect all applications that use
them and can be exploited through those. Depending on the functions used by the
application, vulnerabilities in OpenSSL can be exploited through the application to
execute arbitrary code on the server or even to get root privileges.

OpenSSL had some vulnerabilities in the past that did a lot of damage to servers
running applications compiled with OpenSSL support, especially Apache, Sendmail
and OpenSSH. In the Sendmail case, an exploit that gave the attacker root privileges
was published on security mailing lists.

To stay protected, consider the following:

Identify the OpenSSL version on each of the servers that has the libraries
installed. Check to see if you have the latest version and if your version of
OpenSSL has remotely exploitable vulnerabilities.
Upgrade your OpenSSL library to the latest version from the OpenSSL
website at http://www.openssl.org.
Identify applications that use the OpenSSL library, and if they require
recompilation because of the upgrade, recompile them to use the new libraries.

If applications using OpenSSL don't require connections from everyone, create a
proper firewall to allow connections only from trusted sites.

Protect Running Services—General
Discussion
A network administrator's job is to keep the network running and safe. There
are services that don't depend on him or her; for example a web server could be
administered by a webmaster. The steps outlined here would make you feel more
secure. We will follow this up by actually testing out these steps on a Linux box so
that you get a better idea.

•

•

•

Chapter 2

[57]

1.	 Identify services that run on every system. Most importantly, identify open
ports and the services that opened them.

2.	 Verify every running service's current version. Update to the latest software
version. Search for vulnerabilities for the service at its homepage and at
http://nvd.nist.gov/.

3.	 Verify the configurations and, when you can, create software-based access
lists to allow only trusted hosts to use that service. Try changing default
usernames and passwords every time. If you can run the software in a chroot
jail, do it.

4.	 If the service doesn't require access from everywhere, create a firewall to
limit the access only to trusted hosts.

5.	 Audit your network! Try to hack into your network. Connect to your
network as an outsider and test all running services against known exploits.
Search for hacker tools and use them against your own network to see what
happens.

6.	 Create logs for authentication requests. Also try to run a network intrusion
detection system such as Snort, available at http://www.snort.org, which
produces really good log files.

Not all the steps are required for every service that runs in your network; for
example, there are some services for which you allow connections only from
localhost and that's it.

Let's take a look at one of the Linux boxes in my network. For security reasons, I will
interchange the IP addresses from the real world with reserved IP addresses.

1.	 First I will identify the opened TCP ports on the server:
 root@router:~# netstat -an
 Active Internet connections (servers and established)
 Proto Recv-Q Send-Q Local Address Foreign Address State
 tcp 0 0 0.0.0.0:2601 0.0.0.0:* LISTEN
 tcp 0 0 0.0.0.0:2605 0.0.0.0:* LISTEN
 tcp 0 0 0.0.0.0:179 0.0.0.0:* LISTEN

So, we have TCP ports 179, 2601, and 2605 listening. For me, those are very
well-known ports, but if I forget them, we need to see what services opened
those ports:

 root@router:~# fuser -n tcp 2601 2605 179
 2601/tcp: 1520
 2605/tcp: 1521
 179/tcp: 1521
 root@router:~# ps ax | grep -E "(1520|1521)"

Security Threats

[58]

 1520 ? Ss 1:03 /usr/local/sbin/zebra
 1521 ? Ss 1:00 /usr/local/sbin/bgpd

This means that the TCP port 2601 was opened by the process zebra, and the
TCP ports 179 and 2605 were opened by the process bgpd.

Zebra is Linux routing software that knows routing
protocols such as BGP, OSPF, RIPv1, and RIPv2. In this
case, I use zebra for BGP connections. The bgpd process
is for making BGP connections, and the zebra process is
responsible for adding routes received from neighbors in
the Linux kernel.

2.	 Let's identify the versions:
 root@router:~# zebra -v
 zebra version 0.95 ()
 Copyright 1996-2001, Kunihiro Ishiguro
 root@router:~# bgpd -v
 bgpd version 0.95 ()
 Copyright 1996-2001, Kunihiro Ishiguro

The latest vulnerabilities for Zebra were in version 0.93b; so no known
vulnerabilities here.

3.	 The next step is to configure the software. For Zebra, port 2601 is for its
command line interface, which is very similar to a Cisco router. The same
with the BGP for port 2605.
The /etc/services file reveals (on some Linux distributions) the CLI ports
used by the Zebra protocols:

 zebrasrv 2600/tcp # zebra service
 zebra 2601/tcp # zebra vty
 ripd 2602/tcp # ripd vty (zebra)
 ripngd 2603/tcp # ripngd vty (zebra)
 ospfd 2604/tcp # ospfd vty (zebra)
 bgpd 2605/tcp # bgpd vty (zebra)
 ospf6d 2606/tcp # ospf6d vty (zebra)
 ospfapi 2607/tcp # OSPF-API
 isisd 2608/tcp # ISISd vty (zebra)

For zebra and bgpd, we create software-based access lists to allow VTY
access only from localhost. This is done using the CLI, as follows:

 root@router:~# telnet 127.0.0.1 2601

Chapter 2

[59]

 Trying 127.0.0.1...
 Connected to 127.0.0.1.
 Escape character is '^]'.

 Hello, this is zebra (version 0.95).
 Copyright 1996-2004 Kunihiro Ishiguro.
 User Access Verification

 Password:
 Router> ena
 Password:
 Router# conf t
 Router(config)# access-list 1 permit host 127.0.0.1
 Router(config)# access-list 1 deny any
 Router(config)# line vty
 Router(config-line)# access-class 1
 Router(config-line)# exit
 Router(config)# exit
 Router# write memory
 Configuration saved to /usr/local/etc/zebra.conf
 Router# exit
 Connection closed by foreign host.

This was for zebra; now we will do the same thing for bgpd:
 root@router:~# telnet 127.0.0.1 2605
 Trying 127.0.0.1...
 Connected to 127.0.0.1.
 Escape character is '^]'.

 Hello, this is zebra (version 0.95).
 Copyright 1996-2004 Kunihiro Ishiguro.

 User Access Verification

 Password:
 Router> ena
 Password:
 Router# conf t
 Router(config)# access-list 1 permit host 127.0.0.1
 Router(config)# access-list 1 deny any
 Router(config)# line vty
 Router(config-line)# access-class 1
 Router(config-line)# exit

Security Threats

[60]

 Router(config)# exit
 Router# write memory
 Configuration saved to /usr/local/etc/bgpd.conf
 Router# exit
 Connection closed by foreign host.

We have changed the default passwords, and created software access lists
to deny access for everyone except localhost. Now, if I try to connect to this
server on 2601 or on 2605, I get the following:

 router-2:~# telnet 10.10.10.22 2601
 Trying 10.10.10.22...
 Connected to 10.10.10.22.
 Escape character is '^]'.
 Connection closed by foreign host.
 router-2:~#

Now, no one from outside can try to guess the password.

4.	 The router has BGP connections with 10.10.10.1, 10.10.11.13, and with
10.10.15.1. What we want to do is deny access on the TCP port 179, which
is used for BGP connections, to anyone except those IP addresses. Also, we
want to double the protection we created with the software-based access lists
for zebra and bgpd, and allow only localhost to connect to the Zebra and its
routing protocol's VTYs. We create a firewall script like this:

 #!/bin/bash

 I=/sbin/iptables

 #flush all rules
 $I –F

 #allow packets on the loopback interface
 $I -A INPUT -i lo -j ACCEPT

 #reject all zebra vtys
 $I -A INPUT -p tcp --dport 2601:2608 -i eth+ -j REJECT

 #allow the bgp neighbors to connect to tcp port 179
 $I –A INPUT –p tcp –-dport 179 –s 10.10.10.1 –j ACCEPT
 $I –A INPUT –p tcp –-dport 179 –s 10.10.11.13 –j ACCEPT
 $I –A INPUT –p tcp –-dport 179 –s 10.10.15.1 –j ACCEPT

 #reject the rest of the world for the tcp port 179
 $I –A INPUT –p tcp –-dport 179 –j REJECT

Chapter 2

[61]

5.	 Since we don't have software known for vulnerabilities, what we can do is to
test and see if our firewall works:

 root@router:~# telnet 127.0.0.1 2601
 Trying 127.0.0.1...
 Connected to 127.0.0.1.
 Escape character is '^]'.

 Hello, this is zebra (version 0.95).
 Copyright 1996-2004 Kunihiro Ishiguro.

 User Access Verification

 Password:

 root@router:~# telnet 127.0.0.1 2605
 Trying 127.0.0.1...
 Connected to 127.0.0.1.
 Escape character is '^]'.

 Hello, this is zebra (version 0.95).
 Copyright 1996-2004 Kunihiro Ishiguro.

 User Access Verification

 Password:

As you can see, we can connect to zebra and bgpd CLI from localhost; let's
see if we can do this from other locations:

 router-2:~# telnet 10.10.10.22 2601
 Trying 10.10.10.22...
 telnet: Unable to connect to remote host: Connection refused
 router-2:~# telnet 10.10.10.22 2605
 Trying 10.10.10.22...
 telnet: Unable to connect to remote host: Connection refused

Good! We can't connect from anywhere except localhost on the CLI of zebra
and bgpd. Now, we should try to connect on TCP port 179 from one of the
BGP neighbors:

 router-2:~# telnet 10.10.10.22 179
 Trying 10.10.10.22...
 Connected to 10.10.10.22.
 Escape character is '^]'.

Security Threats

[62]

It worked, which means the BGP connections should stay up. We can verify
this in the bgpd CLI with show ip bgp summary. Now, let's see if we can
connect from a computer that is not a BGP peer for our router:

 srv-x:~# telnet 10.10.10.22 179
 Trying 10.10.10.22...
 telnet: Unable to connect to remote host: Connection refused

Well, everything looks OK; so at this point what we need to do is to
periodically check to see if vulnerabilities for Zebra 0.95 will be found.

Summary
Throughout this chapter, we discussed security threats found at each of the OSI
layers and saw how we can protect running services with a practical example.

Layer 1 attacks (mostly cable cuts) cannot be addressed with Linux.
Layer 2 attacks can be very disruptive as they can affect upper layer
information.
Layer 3 attacks include packet sniffing, IP spoofing, and ICMP attacks.
Layer 4 attacks derived from TCP and UDP vulnerabilities include TCP SYN
flooding, Land attacks, TCP connection hijacking, UDP floods, and Port
scan attacks.
Layer 5, 6, and 7 attacks consist of attacks against different applications. We
saw some advice on how to safely run DNS, CVS, Apache web server, Mail,
OpenSSL, and SNMP services.
We gave an example on how to protect running services.

•

•

•

•

•

•

Prerequisites:
netfilter and iproute2

The two things needed to build firewalls and Quality of Service (QoS) with Linux
are two packages named netfilter and iproute. While netfilter is a packet filtering
framework included in the Linux kernels 2.4 and 2.6, iproute is a package containing
a few utilities that allow Linux users to do advanced routing and traffic shaping.

This chapter is intended to introduce the tools we will use throughout this book.
However, netfilter and iproute are very large subjects; so what I'll try to do in this
chapter is to introduce readers who are not familiar with the subject, along with
building a nice overview for readers who already know the subject.

There are two websites with a lot of documentation on both projects—for netfilter,
http://www.netfilter.org, and for iproute, http://www.lartc.org.

netfilter/iptables
netfilter is a very important part of the Linux kernel in terms of security, packet
mangling, and manipulation. The front end for netfilter is iptables, which "tells" the
kernel what the user wants to do with the IP packets arriving into, passing through,
or leaving the Linux box.

The most used features of netfilter are packet filtering and network address
translation, but there are a lot of other things that we can do with netfilter, such as
packet mangling Layer 7 filtering.

Firewall Prerequisites: netfilter and iproute2

[64]

A rough explanation on how netfilter works is like this:

The user instructs the kernel about what it needs to do with the IP packets
that flow through the Linux box using the iptables tool.
The Linux box then analyzes the IP headers on all packets flowing through it.
If, when looking at the IP headers, the kernel finds matching rules, then the
packet is manipulated according to the matching rule.

It might look very simple at the beginning, but actually is a lot more complicated
process. netfilter has a few tables, each containing a default set of rules, which
are called chains. The default table loaded into the kernel is the filter table, which
contains three chains:

INPUT: Contains rules for packets destined to the Linux machine itself.
FORWARD: Contains rules for packets that the Linux machine routes to
another IP address.
OUTPUT: Contains rules for packets generated by the Linux machine.

By loading the NAT and mangle modules of netfilter, nat and mangle tables are
automatically loaded. The nat and mangle tables, and their predefined chains, are
detailed in Chapter 4.

Here's an overview of how packets travel through the tables and their chains:

•

•

•

•

•

•

Chapter 3

[65]

This diagram shows how packets travel the tables and their chains when the NAT
and mangle modules are loaded into the kernel. Immediately after a packet arrives
at our Linux box, the mangle table PREROUTING chain is analyzed. At this point
we can do all sorts of modifications on the IP packets supported by the mangle table
(e.g. TOS byte modifications, marking packets, and so on) before the routing process
takes place.

Firewall Prerequisites: netfilter and iproute2

[66]

Next, the packets flow through the pre-routing chain of the nat table, where we can
do DNAT, port redirection, etc.

It is only logical to be able to perform destination network address translation before
the routing process occurs. As you will see in Chapter 4, where we discuss DNAT in
more detail, DNAT is the process of translating one (usually public) IP address into
another (usually private). This is done by modifying the destination IP address in the
IP packet's header. netfilter must do that before the kernel makes a routing decision
so that the kernel will look for the new destination IP address in the IP packet.

After passing through the two chains, the Linux kernel makes a routing decision.
This is not the netfilter's job. By analyzing the destination IP address from the IP
packet header, the Linux box knows if the packet needs to be routed elsewhere or it
was destined for it.

If the Linux box is the destination for the IP packet, the packet goes through the
mangle table's INPUT chain for packet mangling. Afterwards, the packet is passed
to the filter table INPUT chain, where it can be accepted, rejected, or dropped. If the
packet is accepted (e.g. a request to a web server running on our Linux box), the
Linux box generates a response to that packet, which goes through the mangle table
OUPUT chain first.

Next, the packet is passed through the nat table OUTPUT chain and the filter table
OUTPUT chain. At this point, the mangle table POSTROUTING chain and the nat
table POSTROUTING chain are analyzed and the packet is ready to be sent out on
the corresponding interface.

The chains presented here are the predefined chains of each table (filter, nat, and
mangle). However, users can set up custom chains with custom names, and pass
packets to those chains from the corresponding predefined chain. For example, if we
want to create some rules for SSH access into the Linux box, we can create a custom
chain named SSH, and insert one rule in the INPUT chain that instructs the kernel to
analyze the SSH chain for incoming packets on port 22/TCP.

The predefined chains cannot be deleted or renamed.

This packet flow diagram is one basic thing to have in mind
for all people who work with netfilter/iptables on a daily
basis. It's recommended to memorize it or at least keep it
handy if you are just starting out.

Chapter 3

[67]

Iptables — Operations
iptables has a syntax somewhat similar to the old ipchains (netfilter for 2.2 kernels).
However, the concepts of netfilter for 2.4+ kernels are totally different from netfilters'
concepts for 2.2 kernels.

The operations iptables can do with chains are:

List the rules in a chain (iptables –L CHAIN).
Change the policy of a chain (iptables –P CHAIN ACCEPT).
Create a new chain (iptables –N CHAIN).
Flush a chain; delete all rules (iptables –F CHAIN).
Delete a chain (iptables –D CHAIN), only if the chain is empty.
Zero counters in a chain (iptables –Z CHAIN). Every rule in every chain
keeps a counter of the number of packets and bytes it matched. This
command resets those counters.

For the –L, –F, –D, and –Z operations, if the chain name is not specified, the operation
is applied to the entire table, which if not specified is by default the filter table.

To specify the table on which we do operations, we must use the –t switch like so
iptables –t filter …

Operations that iptables can execute on rules are:

Append rules to a chain (iptables –A)
Insert rules in a chain (iptables –I)
Replace a rule from a chain (iptables –R)
Delete a rule from a chain (iptables –D)

The most used switches are –A and –D (append and delete rules). Usually, when
designing firewalls, the rules are appended to chains.

During run time, users use –I more than –A because often they need to insert
temporary rules in the chain.

iptables –A places the rule at the end of the chain, while iptables –I places
the rule on the top of the other rules in the chain. However, you can insert a rule
anywhere in the chain by specifying the position where you want the rule to be in
the chain with the –I switch: iptables –I CHAIN 4 will insert a rule at the fourth
position of the specified chain.

•

•

•

•

•

•

•

•

•

•

Firewall Prerequisites: netfilter and iproute2

[68]

iptables –D can be used by specifying the position of the rule you want to delete or
by specifying the entire rule.

The syntax for adding a rule to a chain is:

iptables –A <CHAIN_NAME> …<filtering specifications>… -j <TARGET>

Filtering specifications is a part of an iptables rule that is used by the kernel to
identify IP packets for which the kernel does the action specified by TARGET.

Filtering Specifications
IP packets can be identified in a large number of ways by specifying interfaces,
protocols, ports, etc., to iptables rules. The beauty of it is that we can mix any of
those specifications, having a high flexibility and a wide range of selectors. I'm not
planning to cover all those selectors in depth, but keep in mind that if you think
about something logical about IP packets, you have every chance to identify those
packets using iptables rules.

Filtering specifications for Layer2: Interfaces can be specified as selectors with –i
and –o switches.

-i stands for "--in-interface", and -o for "--out-interface". + can be used to
specify only the beginning string of the interface—for example -i eth+ will match all
interfaces beginning with the string eth; so we've specified all Ethernet interfaces as
input interfaces for one rule.

Short version switches (e.g -i) and long version switches (e.g. "--in-interface")
have absolutely the same effect. Some people prefer using short switches for
command lines and long switches for scripts as they can offer better readability, but
we will use only short switches in this book even in the scripts to get used to the
command lines better.

The exclamation mark "!" represents a negation and can be used to specify on which
interface(s) not to apply this filter (e.g. -i ! eth1 will not match packets coming in
on eth1).

Packets analyzed in the OUTPUT and POSTROUTING
chains don't have input interfaces, and so it is not allowed
to use the -i switch on those chains.
Also, INPUT and PREROUTING chains don't have output
interfaces, and so you can't use the -o switch for rules in
those chains.

Chapter 3

[69]

Layer 3: Source IP address(es) can be specified using -s, --src, or --source, and
destination IP address(es) with -d,--dst, or --destination. Sources or destinations
can be IP addresses, subnets, or canonical names (e.g, "-s 217.207.125.58",
"-s www.packtpub.com", or "-s 217.207.125.58/32" have the same effect).
Specifying canonical names for hosts that have multiple IP addresses will result
in adding the same number of rules as the number of IP addresses the DNS server
resolves for that host at the time the rules are added.

Don't use canonical names on rules with high risk.
For example, don't allow SSH access from ahost.
anotherisp.com, as this will easily allow a
man-in-the-middle attack.

Layer 4: Protocol can be specified using the -p switch, which stands for
"--protocol". Protocols can be specified by their corresponding numbers or by their
names—tcp, udp, or icmp (case insensitive).

For the ICMP protocol, you can specify ICMP message types using
"--icmp-type". The list of ICMP messages can be found by using the command
"iptables -p icmp --help".

For the UDP protocol, you can specify source or destination ports with
"--source-port" or "--sport" and "--destination-port" and "--dport".

TCP, being the most complete Layer 4 protocol, has more options. You can
specify, besides source or destination ports as for the UDP protocol, "--tcp-flags",
"--syn" and "--tcp-option". TCP flags can be "SYN ACK FIN RST URG PSH ALL NONE".
"--syn" is used to identify the initiating connections and is equivalent to
"--tcp-flags SYN,RST,ACK SYN". "--tcp-option" followed by a number
matches TCP packets with the option set to that number.

Filtering specifications can combine all of the features just
mentioned; so we can have a combination of Layers 2, 3,
and 4 specifications in the same rule.

Another beautiful thing about netfilter/iptables is that matching extensions can be
developed separately and added later. On the netfilter site, there is a large repository
of matching extensions called "patch-o-matic", at http://www.netfilter.org/
projects/patch-o-matic/index.html.

Firewall Prerequisites: netfilter and iproute2

[70]

A new and "daring" extension to iptables plans to extend its capabilities from the
lower layers to the upper layer of the OSI model, Layer 7—application. The project is
called l7-filter and it will be explained later in this book, in Chapter 6.

Target Specifications
For the filter table, the most used targets for firewall rules are DROP and ACCEPT.
If a rule matches the filtering specifications and has a DROP target, the packet will
simply be discarded. If a packet matches a rule with a DROP target, the Linux
kernel will drop the packet without consulting other rules in the firewall. If the
target is ACCEPT, then the packet is accepted without further consultation of other
firewall rules.

An alternative to DROP is the REJECT target, which drops the packet but sends an
ICMP packet to the source IP of the packet. By default, the REJECT target will send
an ICMP 'port unreachable' message to the sender, but that can be overwritten using
the "--reject-with" switch.

The target in an iptables rule can also be used to pass a packet to a user-defined
chain. For example, if we create a new chain like "iptables –N SSH", we need to tell
the kernel to look for this chain for all incoming TCP connections on port 22 like this:

iptables -A INPUT -p tcp --dport 22 -j SSH

Another useful target is LOG, which can be used to log packets matching a filtering
specification in the kernel log, which can be read with dmesg or syslogd. LOG target
options are:

--log-level level: The level of logging can be a name or a number. The
valid names are debug, info, notice, warning, err, crit, alert, and emerg
with corresponding numbers from 7 to 0.
--log-prefix prefix: Log prefix is followed by a string of up to 29
characters, placed at the beginning of the log message.
--log-tcp-sequence: Logs TCP sequence numbers.
--log-tcp-options: Logs the option field of TCP packet headers.
--log-ip-options: Logs the option field of the IP packet headers.
--log-uid: Logs the user ID of the process that generated the packet.

The LOG target is not a terminating target like ACCEPT, DROP, and REJECT. This
means that if a packet matches a rule that has the LOG target, the kernel looks up the
rules that follow to also match this packet. A limit match for rules with LOG targets
would be a good idea to prevent flooding the log files.

•

•

•

•

•

•

Chapter 3

[71]

As an example, earlier we created the SSH chain and passed packets coming
in on port 22/TCP. Now, we want to accept incoming SSH connections from
192.168.0.0/27 and 10.10.15.0/24, for example, and log all other attempts, but we
will limit logging to 5/s, because in the case of a SYN flood on port 22/TCP, the logs
would fill quickly.

First, we will append the rules to the SSH chain to allow connections from the
trusted hosts:

iptables -A SSH -s 192.168.0.0/27 -j ACCEPT
iptables -A SSH -s 10.10.15.0/24 -j ACCEPT

Next, we will add the logging rule:

iptables -A SSH -m limit --limit 5/s -j LOG

And then DROP all other connections:

iptables -A SSH -j DROP

We need to verify the configuration, and we will use iptables -L -n for that. We
will see in the INPUT chain:

root@router:~/lucix# iptables -L –n
Chain INPUT (policy ACCEPT)
target prot opt source destination
SSH tcp -- 0.0.0.0/0 0.0.0.0/0 tcp dpt:22

And we will see the SSH chain:

Chain SSH (1 references)
target prot opt source destination
ACCEPT all -- 192.168.0.0/27 0.0.0.0/0
ACCEPT all -- 10.10.15.0/24 0.0.0.0/0
LOG all -- 0.0.0.0/0 0.0.0.0/0
limit: avg 5/sec burst 5 LOG flags 0 level 4
DROP all -- 0.0.0.0/0 0.0.0.0/0

To test the SSH chain we will try to telnet port 22 from an unauthorized host. Using
iptables -L -n -v, we will see that the packet matched the LOG and DROP rules:

Chain SSH (1 references)
 pkts bytes target prot opt in out source destination
 0 0 ACCEPT all -- * * 192.168.0.0/27 0.0.0.0/0
 0 0 ACCEPT all -- * * 10.10.15.0/24 0.0.0.0/0
 1 48 LOG all -- * * 0.0.0.0/0 0.0.0.0/0
limit: avg 5/sec burst 5 LOG flags 0 level 4
 1 48 DROP all -- * * 0.0.0.0/0 0.0.0.0/0

Firewall Prerequisites: netfilter and iproute2

[72]

Now, if you look at the logs using dmesg command, you will see:

IN=eth0 OUT= MAC=00:d0:b7:a7:6f:74:00:04:23:cf:14:e6:08:00
SRC=192.168.168.168 DST=192.168.0.1 LEN=48 TOS=0x00 PREC=0x00
TTL=109 ID=54250 DF PROTO=TCP SPT=27276 DPT=22 WINDOW=16384
RES=0x00 SYN URGP=0

which tells us that 192.168.168.168 tried to connect on port 22 TCP.

For the nat and mangle tables, we will discuss the targets in the following chapter.

The targets presented here are the most commonly used
targets of iptables. There are a lot of add-ons published on
patch-o-matic, which can provide new targets for iptables.

A Basic Firewall Script—Linux as a Workstation
So far, we've learned mostly about the usage of iptables filtering options. I will now
build up a small firewall script that I think should be default when installing any
Linux distribution.

By default, all Linux distributions have the default policy ACCEPT on all filter chains.
Also, on a default installation, most Linux distributions leave a lot of services running.
If you install an old Linux distribution and decide to go for lunch after you have just
booted up without any firewall and with a public IP address, good chances are that by
the time you've eaten your soup, a rootkit is already installed on your computer.

Let's take a look at the following simple script:

#!/bin/bash

#assign variable $IPT with the iptables command
IPT=/sbin/iptables

#set policies on each chain
$IPT -P INPUT DROP

$IPT -P FORWARD DROP

$IPT -P OUTPUT ACCEPT #default, but set it anyway
#flush all rules in the filter table
$IPT -F

#allow traffic on the loopback interface

Chapter 3

[73]

$IPT -A INPUT -i lo -j ACCEPT

#allow icmp traffic
$IPT -A INPUT -p icmp -j ACCEPT

#allow incoming DNS traffic
$IPT -A INPUT -p udp --sport 53 -j ACCEPT

#allow established TCP connections
$IPT -A INPUT -p tcp ! --syn -j ACCEPT

So, what we did here was to set the INPUT and FORWARD chains policy to DROP.
The OUTPUT chain policy is set to ACCEPT, which is the default policy for this chain.

We will not append any rules in the FORWARD chain because this is a personal
computer and not a router, and so the forwarding will be off. We will also not
append any rules in the OUTPUT chain—anything we originate is OK.

Next, we flush all existing rules out from the filter table. At this point, nothing really
works. Some applications use TCP/IP connections on the loopback interface; so it's
safe to allow packets that come in on the interface "lo".

We learned about ICMP attacks in Chapter 2. However, it is my opinion that ICMP
should be allowed. Filtering ICMP will not allow you to test your internet connection
using ping, traceroute, mtr, etc., and also path MTU discovery will not work,
which is a very important protocol in many cases.

DNS responses use the UDP protocol and source port 53.
Keep in mind that the line:
$IPT -A INPUT -p udp --sport 53 -j ACCEPT

is a potential security breach. We left it like this because we
earlier stated that this is what we think the default firewall
should look like. However, if you're not running a DNS
server (which is not recommended for a personal computer),
accept incoming UDP connections with source port 53 only
from your provider's DNS servers (the ones you have in
/etc/resolv.conf). For example, if the provider's DNS
servers are 1.1.1.1 and 1.1.2.1, replace the earlier line with:
$IPT -A INPUT –s 1.1.1.1 -p udp --sport 53 -j ACCEPT
$IPT -A INPUT –s 1.1.2.1 -p udp --sport 53 -j ACCEPT

This way, you will be safer.

Firewall Prerequisites: netfilter and iproute2

[74]

The last thing we need for our internet connection to work is to allow incoming TCP
traffic for already established TCP connections. Better phrased, deny any incoming
TCP traffic that doesn't belong to a TCP connection that this computer initiated (deny
TCP SYN packets).

This rough introduction on netfilter/iptables covers only
some basic parts of the subject. The intention of this book
is not to teach the reader the complete syntax of iptables.
For that, there is a manpage at http://www.netfilter.
org/documentation/HOWTO/packet-filtering-
HOWTO.html.

iproute2 and Traffic Control
iproute2 is a software package that provides various tools for advanced routing,
tunnels, and traffic control.

iproute2 was originally designed by Alexey Kuznetsov, and is well known for
implementing QoS in Linux kernels and is now maintained by Stephen Hemminger.
The primary site for iproute2 is http://linux-net.osdl.org/index.php/Iproute2
and its main documentation site is http://www.lartc.org.

The most important tools that iproute2 provides are ip and tc.

Network Configuration: "ip" Tool
The ip tool provides most of the networking configuration a Linux box needs. You
can configure interfaces, ARP, policy routing, tunnels, etc.

Now, with IPv4 and IPv6, ip can do pretty much anything (including a lot that we
don't need in our particular situations). The syntax of ip is not difficult, and there is a
lot of documentation on this subject. However, the most important thing is knowing
what we need and when we need it.

First of all, ip is the main tool we need for dynamic routing protocols (BGP, OSPF,
and RIP) on Linux provided by Zebra, which will be discussed later in this book.

Let's have a look at the ip command help to see what ip knows:

root@router:~# ip help
Usage: ip [OPTIONS] OBJECT { COMMAND | help }
where OBJECT := { link | addr | route | rule | neigh | tunnel |
 maddr | mroute | monitor | xfrm }

Chapter 3

[75]

 OPTIONS := { -V[ersion] | -s[tatistics] | -r[esolve] |
 -f[amily] { inet | inet6 | ipx | dnet | link } |
-o[neline] }
root@router:~#

The ip link command shows the network device's configurations that can be
changed with ip link set. This command is used to modify the device's proprieties
and not the IP address.

The IP addresses can be configured using the ip addr command. This command can
be used to add a primary or secondary (alias) IP address to a network device (ip
addr add), to display the IP addresses for each network device (ip addr show), or to
delete IP addresses from interfaces (ip addr del). IP addresses can also be flushed
using different criteria, e.g. ip addr flush dynamic will flush all routes added to the
kernel by a dynamic routing protocol.

Neighbor/Arp table management is done using ip neighbor, which has a few
commands expressively named add, change, replace, delete, and flush.

ip tunnel is used to manage tunneled connections. Tunnels can be gre, ipip, and
sit. We will include an example later in the book on how to build IP tunnels.

The ip tool offers a way for monitoring routes, addresses, and the states of devices
in real-time. This can be accomplished using ip monitor, rtmon, and rtacct
commands included in the iproute2 package.

One very important and probably the most used object of the ip tool is ip route,
which can do any operations on the kernel routing table. It has commands to add,
change, replace, delete, show, flush, and get routes.

One of the things iproute2 introduced to Linux that ensured its popularity was
policy routing. This can be done using ip rule and ip route in a few simple steps.

Traffic Control: tc
The tc command allows administrators to build different QoS policies in their
networks using Linux instead of very expensive dedicated QoS machines. Using
Linux, you can implement QoS in all the ways any dedicated QoS machine can and
even more. Also, one can make a bridge using a good PC running Linux that can be
transformed into a very powerful and very cheap dedicated QoS machine.

For that, QoS support must be configured in the Linux kernel (CONFIG_NET_QOS="Y"
and CONFIG_NET_SCHED="Y").

Firewall Prerequisites: netfilter and iproute2

[76]

Queuing Packets
First of all, queuing is used to determine the way data is sent; so with queuing, we
can control how much data is sent, and with what priority we send data that matches
some criteria.

Please keep in mind that there is no way to queue incoming data. When we talk
about limiting upload and download speeds for some IP address, for example, we
talk about limiting the data our Linux router sends to that IP address on the interface
that IP address is connected to (download) and the data our Linux router sends over
the Internet from that IP address (upload), as in the following figure:

This is quite satisfying because TCP has flow control, which actually negotiates
the speed of the packet flow between two communicating hosts depending on the
capabilities of each host. UDP doesn't have flow control, but most of the applications
that use UDP as transport protocol implement flow control within themselves.

Well, things look pretty good, but this is how things work in the "perfect world",
where there aren't people with bad intentions (or stupid people without bad
intentions) that generate flood attacks because we can't limit the incoming data.

So, what's the problem? Well, put 99 computers near the 1.1.1.1 computer in the
earlier figure! Let's say there are 100 users on a FastEthernet connection (with more
switches, as the router has one Ethernet cable in one switch). We can limit each
computer to 1Mbps upload / 1Mbps download; so we're using 100 Mbps when
everyone is on the top of their limits. Now, if 1.1.1.1 wants to disrupt service to the
other users, it's very simple. Because there is no way of limiting incoming traffic,
if 1.1.1.1 floods one or many random hosts on the Internet with a 100Mbps data
stream, the router limits the outgoing data from 1.1.1.1 to 1Mbps, but it still receives
100Mbps on its eth1 interface. This results in denial of service, and there isn't really
much to do about it. If the switches are unmanaged, the only thing you can do about
it is to plug out the cable from the port in which 1.1.1.1 is connected.

Chapter 3

[77]

Now, to get back to the subject, queuing disciplines are of two kinds: classless
and classful.

Classless Queuing Disciplines (Classless qdiscs)
Classless qdiscs are the simplest ones because they only accept, drop, delay or
reschedule data. They can be attached to one interface and can only shape the
entire interface.

There are several qdisc implementations on Linux, most of them included in the
Linux kernel.

FIFO (pfifo and bfifo): The simplest qdisc, which functions by the First In,
First Out rule. FIFO algorithms have a queue size limit (buffer size), which
can be defined in packets for pfifo or in bytes for bfifo.
pfifo_fast: The default qdisc on all Linux interfaces. It's important to know
how pfifo_fast works; so we'll explain it soon.
Token Bucket Filter (tbf): A simple qdisc that is perfect for slowing down an
interface to a specified rate. It can allow short bursts over the specified rate
and is very processor friendly.
Stochastic Fair Queuing (SFQ): One of the most widely used qdiscs. SFQ
tries to fairly distribute the transmitting data among a number of flows.
Enhanced Stochastic Fair Queuing (ESFQ): Not included in the Linux
kernel, it works in the same manner as SFQ with the exception that the user
can control more of the algorithm's parameters such as depth (flows) limit,
hash table size options (hardcoded in original SFQ) and hash types.
Random Early Detection and Generic Random Early Detection (RED and
GRED): qdiscs suitable for backbone data queuing, with data rates over
100 Mbps.

There are more qdiscs than the ones I have stated here. However, from my experience,
SFQ and ESFQ do a great job, and are the qdiscs that I have got the best results with.

As I said earlier, the default qdisc on Linux for all interfaces is pfifo_fast. Normally,
one would think that this is just like pfifo, meaning there is a buffer and packets
pass through the buffer using the First In First Out rule. Actually, it's not quite true.
pfifo_fast has 3 bands—0, 1, and 2—in which packets are placed according to their
TOS byte. Packets are sent out from those bands as follows:

Packets in the 0 band have the highest priority
Packets in the 1 band are sent out only if there aren't any packets in
the 0 band

•

•

•

•

•

•

•

•

Firewall Prerequisites: netfilter and iproute2

[78]

Packets in the 2 band have the lowest priority and are sent out only if there
aren't any packets in the 0 and 1 bands.

It's important to know this because this can be a way to optimize how packets travel
through the network interfaces of our Linux routers. The TOS byte looks like this:

0 1 2 3 4 5 6 7
PRECEDENCE Type of Service — TOS MBZ

The TOS bits are defined as follows:

0000		 Normal Service
0001		 Minimize Monetary Cost (MMC)
0010		 Maximize Reliability (MR)
0100		 Maximize throughput (MT)
1000		 Minimize Delay (MD)

Based on the TOS byte, the packets are placed in one of the three bands as follows:

•

•

•

•

•

•

Chapter 3

[79]

This means that, by default, Linux is smart enough to prioritize traffic according to
the TOS bytes. Usually, applications like Telnet, FTP, SMTP modify the TOS byte
to work in an optimal way. We will see later in this book how to optimize the
traffic ourselves.

Classful Queuing Disciplines
These qdiscs are used for shaping different types of data. The commonly used
classful qdiscs are CBQ (Class Based Queuing) and HTB (Hierarchical Token Bucket).

First of all, we need to learn how classful queuing disciplines work. The whole
process is not difficult; so I'll try to explain it as simply as possible.

Everything is based on a hierarchy. First, every interface has one root qdisc that
talks to the kernel. Second, there is a child class attached to the root qdisc. The child
class further has child classes that have qdiscs attached to schedule the data and leaf
classes, which are child classes of the child classes.

All confused? Have a look at the following image, which will explain away
the confusion:

So, basically CBQ or HTB qdiscs allow us to create child CBQ or HTB classes, which
we can set up to shape some kind of data. For each child class, we can attach a qdisc
for scheduling packets within that child class. Next, we can create leaf classes, which
are child classes of the qdiscs we attached to the child classes, or we can create leaf
classes as child classes' child classes attached to the root qdisc.

Firewall Prerequisites: netfilter and iproute2

[80]

tc qdisc, tc class, and tc filter
To build the tree configuration in the earlier figure, we need to use the tc command:

tc qdisc manipulates queuing disciplines.
tc class manipulates classes.
tc filter manipulates filters used to identify data.

Both CBQ and HTB have a few parameters that can be adjusted to optimize
their performance. Throughout this book we will use different values to suit
the applications we are building. There is a lot of tuning to be done with these
parameters, and I'm not going to explain all of them as there are some that you will
probably never need.

CBQ qdiscs and classes have the following parameters:

root@router:~# tc qdisc add cbq help
Usage: ... cbq bandwidth BPS avpkt BYTES [mpu BYTES]
 [cell BYTES] [ewma LOG]
root@router:~# tc class add cbq help
Usage: ... cbq bandwidth BPS rate BPS maxburst PKTS [avpkt BYTES]
 [minburst PKTS] [bounded] [isolated]
 [allot BYTES] [mpu BYTES] [weight RATE]
 [prio NUMBER] [cell BYTES] [ewma LOG]
 [estimator INTERVAL TIME_CONSTANT]
 [split CLASSID] [defmap MASK/CHANGE]

and HTB qdiscs and classes' parameters are:

root@router:~# tc class add htb help
Usage: ... qdisc add ... htb [default N] [r2q N]
 default minor id of class to which unclassified packets are sent {0}
 r2q DRR quantums are computed as rate in Bps/r2q {10}
 debug string of 16 numbers each 0-3 {0}

... class add ... htb rate R1 [burst B1] [mpu B] [overhead O]
 [prio P] [slot S] [pslot PS]
 [ceil R2] [cburst B2] [mtu MTU] [quantum Q]
 rate rate allocated to this class (class can still borrow)
 burst max bytes burst which can be accumulated during idle
period {computed}
 mpu minimum packet size used in rate computations
 overhead per-packet size overhead used in rate computations
 ceil definite upper class rate (no borrows) {rate}
 cburst burst but for ceil {computed}
 mtu max packet size we create rate map for {1600}

•

•

•

Chapter 3

[81]

 prio priority of leaf; lower are served first {0}
 quantum how much bytes to serve from leaf at once {use r2q}

TC HTB version 3.3

I will try to explain a few of these parameters while using them in the actual example
that follows.

Filters are used to identify the data we need to shape. We can identify the data
based on the way the firewall marked it using the fw classifier, based on fields of the
IP header using the u32 classifier, based on the kernel's routing decision using the
route classifier, or based on RSVP using rsvp or rsvp6 classifiers.

The tc filter command has the following parameters:

root@router:~# tc filter help
Usage: tc filter [add | del | change | get] dev STRING
 [pref PRIO] [protocol PROTO]
 [estimator INTERVAL TIME_CONSTANT]
 [root | classid CLASSID] [handle FILTERID]
 [[FILTER_TYPE] [help | OPTIONS]]

 tc filter show [dev STRING] [root | parent CLASSID]
Where:
FILTER_TYPE := { rsvp | u32 | fw | route | etc. }
FILTERID := ... format depends on classifier, see there
OPTIONS := ... try tc filter add <desired FILTER_KIND> help

The most used classifier is u32, because most people desire to identify data by IP
addresses, source or destination ports, etc. However, we will use the fw classifier
along with u32 throughout the book. The u32 parameters are:

root@router:~# tc filter add u32 help
Usage: ... u32 [match SELECTOR ...] [link HTID] [classid CLASSID
]
 [police POLICE_SPEC] [offset OFFSET_SPEC]
 [ht HTID] [hashkey HASHKEY_SPEC]
 [sample SAMPLE]
or u32 divisor DIVISOR

Where: SELECTOR := SAMPLE SAMPLE ...
 SAMPLE := { ip | ip6 | udp | tcp | icmp | u{32|16|8} } SAMPLE_ARGS
 FILTERID := X:Y:Z

Firewall Prerequisites: netfilter and iproute2

[82]

And for the fw classifier:

root@router:~# tc filter add fw help
Usage: ... fw [classid CLASSID] [police POLICE_SPEC]
 POLICE_SPEC := ... look at TBF
 CLASSID := X:Y

A Real Example
In the following example we will try to divide a 10Mbps bandwidth between three
entities: a home-user, an office, and another ISP, as shown in the following figure:

Let's assume we want to give the home user 1Mbps of our bandwidth, the office
4Mbps, and the ISP 5Mbps.

First, let's see how this looks using CBQ. First, we need to add the root qdisc to the
eth1 interface on which the clients are connected:

tc qdisc add dev eth1 root handle 10: cbq bandwidth 100Mbit avpkt 1000

So, the command used is tc qdisc add with the dev parameter set to eth1 to
define the interface we will attach the qdisc to. The root parameter specifies that this
is the root qdisc. We will assign handle 10 for the root qdisc. After specifying

Chapter 3

[83]

the handle, we specified cbq as the type of the qdisc, followed by the parameters for
cbq. bandwidth is set to 100Mbit, which is the physical bandwidth of the device, and
avpkt, which specifies the average packet size is set to 1000.

Next, we need to create a child class that will be the parent of all classes. This class
will have the bandwidth parameter equal to that of the root qdisc, equal to the
physical bandwidth of the interface:

tc class add dev eth1 parent 10:0 classid 10:10 cbq bandwidth 100Mbit
rate \
 100Mbit allot 1514 weight 10Mbit prio 5 maxburst 20 avpkt 1000
bounded

For the child classes, we need to specify the parent class, which in this case is 10:0—
the root class. classid specifies the ID of the class, and bandwidth is the physical
bandwidth of the interface (100Mbit). The speed limit is specified with the rate
parameter, followed by the rate in bits (in this case, 100Mbit). The allot parameter
is the base unit for how much data the class can send in one round. weight is a
parameter used by CBQ with allot to calculate how much data is sent in one round.
Actually, from our experience and tests, weight pretty much specifies the rate in
bytes for the class.

We will be using in this book parameters that gave the
best results in our tests. Except bandwidth, rate, and
weight, we don't recommend learning about all the other
parameters. However, there is a more detailed explanation
at: http://www.lartc.org/howto/lartc.qdisc.
classful.html#AEN939.

For each client, we will create leaf classes, qdiscs, and filters. Let's start with the
home user:

tc class add dev eth1 parent 10:10 classid 10:100 cbq bandwidth
100Mbit rate \
 1Mbit allot 1514 weight 128Kbit prio 5 maxburst 20 avpkt 1000
bounded

tc qdisc add dev eth1 parent 10:100 sfq quantum 1514b perturb 15

tc filter add dev eth1 parent 10:0 protocol ip prio 5 u32 match ip dst
1.1.1.1 flowid 10:100

So we created the 10:100 class with a rate of 1Mbit and 128Kbit weight. Next, we
attached an sfq qdisc and a u32 filter to match all traffic with the destination IP
address 1.1.1.1. The bounded argument of the tc class add cbq command means

Firewall Prerequisites: netfilter and iproute2

[84]

that the class isn't allowed to borrow bytes from other classes, meaning that there is
no way that data for this class will go over 1Mbps.

A lot of documentation explains that weight should be
rate/10. In our case, weight would be 100Kbit and the
user wouldn't get data with speed above 100KB/s which is
not 1Mbps. We've been always using weight as rate/8
because this seems more fair to me.

Now, the other classes, qdiscs, and filters look like this:

#the office
tc class add dev eth1 parent 10:10 classid 10:200 cbq bandwidth
100Mbit rate \
 4Mbit allot 1514 weight 512Kbit prio 5 maxburst 20 avpkt 1000
bounded

tc qdisc add dev eth1 parent 10:200 sfq quantum 1514b perturb 15

tc filter add dev eth1 parent 10:0 protocol ip prio 5 u32 match ip dst
1.1.2.0/24 flowid 10:200

#the ISP
tc class add dev eth1 parent 10:10 classid 10:300 cbq bandwidth
100Mbit rate \
 5Mbit allot 1514 weight 640Kbit prio 5 maxburst 20 avpkt 1000
bounded

tc qdisc add dev eth1 parent 10:300 sfq quantum 1514b perturb 15

tc filter add dev eth1 parent 10:0 protocol ip prio 5 u32 match ip dst
1.1.1.2 flowid 10:300
tc filter add dev eth1 parent 10:0 protocol ip prio 5 u32 match ip dst
1.1.3.0/24 flowid 10:300

As you can see in the ISP case, we can add as many filters as we want to a class.

To verify the configuration, we can use tc class show dev eth1 and see the classes:

root@router:~# tc class show dev eth1
class cbq 10: root rate 100000Kbit (bounded,isolated) prio no-transmit
class cbq 10:100 parent 10:10 leaf 806e: rate 1000Kbit (bounded) prio 5
class cbq 10:10 parent 10: rate 100000Kbit (bounded) prio 5
class cbq 10:200 parent 10:10 leaf 806f: rate 4000Kbit (bounded) prio 5
class cbq 10:300 parent 10:10 leaf 8070: rate 5000Kbit (bounded) prio 5

Chapter 3

[85]

Now, to see that a class is actually shaping packets, we send three ping packets to
1.1.1.1, and check to see if the CBQ class matched those packets using tc –s class
show dev eth1:

root@router:~# tc -s class show dev eth1 | fgrep -A 2 10:100
class cbq 10:100 parent 10:10 leaf 806e: rate 1000Kbit (bounded) prio 5
 Sent 294 bytes 3 pkts (dropped 0, overlimits 0)
 borrowed 0 overactions 0 avgidle 184151 undertime 0

Now everything looks OK; so let's move on to HTB. Before we do that, we need to
delete the CBQ root qdisc using:

root@router:~# tc qdisc del root dev eth1

Using HTB looks a bit simpler than CBQ. First, the root qdisc looks like this:

tc qdisc add dev eth1 root handle 10: htb

Next, we will create the child class:

tc class add dev eth1 parent 10:0 classid 10:10 htb rate 100Mbit

Now, the qdiscs and filters within the client classes are the same as in the CBQ
example. The only thing that differs is how the classes are built. Let's see the
home-user class, qdisc, and filter:

tc class add dev eth1 parent 10:10 classid 10:100 htb rate 1Mbit

tc qdisc add dev eth1 parent 10:100 sfq quantum 1514b perturb 15

tc filter add dev eth1 protocol ip parent 10:0 prio 5 u32 match ip dst
1.1.1.1 flowid 10:100

So much simple, isn't it? Let's create the other two entities' classes, qdiscs, and filters:

#the office
tc class add dev eth1 parent 10:10 classid 10:200 htb rate 4Mbit

tc qdisc add dev eth1 parent 10:200 sfq quantum 1514b perturb 15

tc filter add dev eth1 parent 10:0 protocol ip prio 5 u32 match ip dst
1.1.2.0/24 flowid 10:200

#the ISP
tc class add dev eth1 parent 10:10 classid 10:300 htb rate 5Mbit

tc qdisc add dev eth1 parent 10:300 sfq quantum 1514b perturb 15

tc filter add dev eth1 parent 10:0 protocol ip prio 5 u32 match ip dst

Firewall Prerequisites: netfilter and iproute2

[86]

1.1.1.2 flowid 10:300
tc filter add dev eth1 parent 10:0 protocol ip prio 5 u32 match ip dst
1.1.3.0/24 flowid 10:300

Now it's time to verify the configuration using tc class show dev eth1:

root@router:~# tc class show dev eth1
class htb 10:10 root rate 100000Kbit ceil 100000Kbit burst 126575b
cburst 126575b
class htb 10:100 parent 10:10 leaf 8072: prio 0 rate 1000Kbit ceil
1000Kbit burst 2849b cburst 2849b
class htb 10:200 parent 10:10 leaf 8073: prio 0 rate 4000Kbit ceil
4000Kbit burst 6599b cburst 6599b
class htb 10:300 parent 10:10 leaf 8074: prio 0 rate 5000Kbit ceil
5000Kbit burst 7849b cburst 7849b

and after sending three ping packets to 1.1.1.1, we should see them on the 10:100 class:

root@router:~# tc -s class show dev eth1 | fgrep -A 4 10:100
class htb 10:100 parent 10:10 leaf 8072: prio 0 rate 1000Kbit ceil
1000Kbit burst 2849b cburst 2849b
 Sent 294 bytes 3 pkts (dropped 0, overlimits 0)
 rate 24bit
 lended: 3 borrowed: 0 giants: 0
 tokens: 18048 ctokens: 18048

There is no catch in all of this—HTB looks simpler and it
really is. CBQ has more parameters that can be adjusted
by the user, while HTB does much of the adjustments
internally.

Summary
This chapter introduced netfilter/iptables and iproute2. A very important thing for
anyone building firewalls is to know how and where packets are analyzed. For that,
we introduced a diagram of how packets traverse the chains in the filter, nat, and
mangle tables for netfilter.

For beginners, a first look the iptables syntax might seem a bit difficult. An iptables
rule contains the table on which we make an operation (filter table being default), a
command (append, insert, delete, list), some filtering specifications to match the
packets we want, and a target (DROP, ACCEPT, REJECT, LOG) that specifies what
we want to do with the packet.

Chapter 3

[87]

The iproute2 package introduces two complex tools. One is ip, which can be used
to set up Layer 3 communication like IP addresses and routing. tc stands for traffic
control, and it is used to implement QoS.

Before digging into tc commands, we learned a bit of theory on classless and classful
queuing disciplines. The best and most popular classful qdiscs are CBQ and HTB,
which we will use throughout this book.

We saw that HTB is simpler to use than CBQ because the command lines for CBQ
must contain a lot of parameters. On the other hand, CBQ can be tuned for more
advanced configurations, but the needs for these tunings are very rare.

We made a lot of tests with CBQ, and we will use in this book the parameters that
produced the best results for us.

NAT and Packet Mangling
with iptables

In the first part of this chapter we will learn how to perform Network Address
Translation (NAT) and Port Address Translation (PAT), also referred to as Network
Address and Port Translation (NAPT), with iptables. After that, we will learn what
packet mangling is and how to mangle packets.

A Short Introduction to NAT and PAT
(NAPT)
According to the way TCP/IP works, in order for hosts to communicate on the
Internet, each must have a unique IP address.

However, due to the shortage of public IP addresses available, it is necessary to use
one IP address for many hosts using NAT.

Network Address Translation is a way to translate one IP address into another. This
implies a NAT router (Linux in our case) that rewrites the source or destination IP of
a device behind the NAT router.

There are many small boxes called SOHO routers or NAT routers that can be used to
perform NAT for a small private LAN. They are cheap and usually you can just plug
them in and everything works. If you have already used one, you will see that there
are many things you can do with Linux.

NAT and Packet Mangling with iptables

[90]

To explain NAT in more detail, let's take a look at the following diagram:

We have a Linux router with one Internet connection and a public IP address—1.1.1.1.
We can use whatever IP addresses we want from the private IP segments we presented
in Chapter 1; so we choose for this network 192.168.1.0/24 as a subnet for our private
network. The private IP segments are described in RFC 1918, and are:

10.0.0.0 - 10.255.255.255 (10/8 prefix)
172.16.0.0 - 172.31.255.255 (172.16/12 prefix)
192.168.0.0 - 192.168.255.255 (192.168/16 prefix)

Now, since 192.168.1.0/24 is a private network, those IP addresses are not routed
anywhere in the Internet, meaning that no host on the Internet can access the devices
in our network (so, using private IP addresses also offers some protection, doesn't it?).

In order for the hosts using private IP addresses to communicate with other hosts on
the Internet, the NAT router rewrites their private IP addresses into its own public IP

•

•

•

Chapter 4

[91]

address. This way, hosts on the Internet exchange data with the public IP address of
the Linux router.

The router needs to "know" which packets are for itself, and which packets are
for which hosts with private IP addresses. The router accomplishes this by keeping
track of all TCP/IP connections that pass through it. This process is called
connection tracking.

Connection tracking gives Linux the ability to hold state information about TCP
and UDP connections in memory tables. Information about every connection is
stored in /proc/net/ip_conntrack and includes IP addresses, port numbers,
protocol types, connection state, and timeouts. Here are some example entries in
/proc/net/ip_conntrack:

tcp 6 262872 ESTABLISHED src=2.2.2.2 dst=1.1.1.1 sport=80
dport=65000 [UNREPLIED] src=192.168.1.2 dst=2.2.2.2 sport=65000
dport=80 use=1

udp 17 174 src=1.1.1.1 dst=1.1.1.11 sport=40997 dport=161
src=1.1.1.11 dst=1.1.1.1 sport=161 dport=40997 [ASSURED] use=1

Using connection tracking, the router is aware that when a packet arrives to 1.1.1.1 as
a result of a request originated from 192.168.1.2, the packet must be forwarded to the
laptop computer, and so it rewrites the destination IP address in the IP packet header
from 1.1.1.1 to 192.168.1.2.

Firewalls that do connection tracking are known as "stateful firewalls".

NAT can be performed in different scenarios:

One-to-one (1:1): We translate one private IP address into one public IP
address, for example, in the previous diagram if we perform NAT only for
the laptop computer, then we would be performing one-to-one NAT.
One-to-many (1:Many): One private IP address is translated into many public
IP addresses. This means that for each connection the private device initiates
with a host on the Internet, the NAT router chooses a public IP address from a
range to translate the private IP address into it. For example, if we performed
NAT only for the laptop computer and we have more than one public IP
address in the diagram, we would have one-to-many NAT.
Many-to-one (Many:1) This is just like in the previous diagram, where many
private IP addresses are translated into one public IP address (if the public IP
address belongs to the router, this is also known as masquerading).
Many-to-many (Many:Many): Many private IP addresses are translated using
a range of public IP addresses. If we had more than one public IP address
and we were to NAT all the computers in the earlier diagram using multiple
public IP addresses, then we would perform many-to-many NAT.

•

•

•

•

NAT and Packet Mangling with iptables

[92]

SNAT and Masquerade
SNAT is an alias for Source Network Address Translation. It is called so because only
the source IP address gets translated. The NAT box will overwrite the source address
in IP headers of all packets sent by a box behind NAT to one or many IP addresses.

One or many hosts can be translated into one or many public IP addresses only when
accessing the Internet, but when a request from the Internet is made to the public
IP address(es), the request will not reach any of the hosts (if the translated address
is the router's, it will reach the router; otherwise packets will be dropped). This is a
good protection for local networks and saves a lot of public IP addresses.

If one or many hosts behind NAT are translated into only one public IP address,
the process is called static SNAT. If they are translated into several public IP
addresses (usually a range of IP addresses), the process is called dynamic SNAT. In
the case of dynamic SNAT, the NAT router chooses an IP address from a range; so
one computer accessing the Internet is very likely to be translated into different IP
addresses for each connection it initiates. For dynamic SNAT, iptables chooses the
least used IP address from the specified range. If many IP addresses from the range
are not used at all, iptables randomly chooses one of those.

Masquerade or MASQ works exactly like static SNAT does, except that you cannot
specify the public IP address to be used. It will automatically use the IP address of
the outgoing interface of the NAT router.

SNAT was introduced with iptables, and did not exist in
netfilter for kernels lower than 2.4. However, Masquerade
was kept in iptables simply because with interfaces like PPP
adapters that receive a dynamically assigned IP address, it
is simpler to do a MASQ rather than find the dynamically
assigned IP address and do SNAT.

In order to do SNAT or Masquerade, the router needs to use connection tracking
so that it "knows" where to send flows of data belonging to connections initiated by
hosts behind NAT.

Chapter 4

[93]

The following diagram presents an example of how SNAT or Masquerade works:

In this diagram, the computer with the IP address 192.168.1.3 tries to initiate a
connection to 2.2.2.2. The packet is passed to the Linux router with the source IP
address 192.168.1.3 and destination IP address 2.2.2.2.

If the computer is SNATed or Masqueraded, the Linux router will change the source
IP address in the packet header from 192.168.1.3 to 1.1.1.1 and will pass the packet
towards 2.2.2.2 according to the routing process. Information about this connection is
stored in /proc/net/ip_conntrack.

When 2.2.2.2 replies, the IP packet that arrives in the Linux router will have
source IP address 2.2.2.2 and destination IP address 1.1.1.1. Linux searches for
information about this packet in /proc/net/ip_conntrack, and finds a match
against information stored at the previous step. At this point, Linux will change the
destination IP address in the packet header to 192.168.1.3 and will pass the IP packet
towards the NATed computer according to the routing process.

NAT and Packet Mangling with iptables

[94]

Using SNAT or Masquerade, 192.168.1.3 can initiate a
connection to 2.2.2.2, but 2.2.2.2 can't initiate a connection to
192.168.1.3, because this is a private IP address.

DNAT
DNAT or Destination Network Address Translations maps a public IP address to
a private IP address. DNAT is the reverse of SNAT; so, if you SNAT to translate a
private IP address into a public IP address and DNAT to translate the same public IP
address into the same private IP address, the result will be full NAT.

DNAT is usually used when you have servers behind NAT, so the same public IP
address is mapped to different private IP addresses depending on ports or protocols.
This process is also called port forwarding.

Let's take a look at the following diagram:

Chapter 4

[95]

Normally, 2.2.2.2 cannot initiate a communication to 192.168.1.3 because this is a
private IP address and is not routed on the Internet.

2.2.2.2 tries to initiate a connection with 1.1.1.1. If a DNAT rule is matched for this
packet, the Linux router will change the destination IP address in the IP packet
header from 1.1.1.1 to 192.168.1.3, pass the packet towards 192.168.1.3, and keep a
track of this connection.

When 192.168.1.3 replies, the packet is found in the conntrack table of the Linux
router so it "knows" that the packet belongs to the connection initiated by 2.2.2.2 to
1.1.1.1. The Linux router will change the source IP address in the IP packet header
from 192.168.1.3 to 1.1.1.1.

If DNAT is configured, but SNAT is not, 2.2.2.2 will be
able to establish connections to 192.168.1.3 using 1.1.1.1 as
destination IP address, but 192.168.1.3 will not be able to
initiate connections to 2.2.2.2.

To get a little off-topic here, there are quite a lot of SOHO routers calling their DNAT
functions DMZ. Actually, most of the SOHO routers call DNAT DMZ, which is not
entirely correct. DMZ, acronym for Demilitarized Zone is a place in your network
where you don't filter anything. DMZ is basically a set of public IP addresses that
are allowed to do anything (all incoming and outgoing traffic to and from these IP
addresses is allowed to pass without exceptions).

Due to the fact that most SOHO routers are programmed to Masquerade for a LAN,
they call a process in which one private IP address receives all (unfiltered) traffic
destined to the public IP of the router's WAN interface DMZ.

Full NAT (aka Full Cone NAT)
Full NAT is a way to fully map one IP address to another. With full NAT, one
device behind the NAT box which has a private IP address (e.g. 192.168.1.3) will be
seen on the Internet as another IP address routed to the NAT box by the provider
(e.g. 1.1.1.1).

This means that when a request is sent by 192.168.1.3 to any device on the Internet,
the receiving device will "see" that it received a packet from 1.1.1.1 (so far, this is
simple source NAT). More than that, for any packet from the Internet with the
destination IP address 1.1.1.1, the NAT box will rewrite the destination address in
the IP header to 192.168.1.3 and will forward that packet to 192.168.1.3, even if the
connection was not initiated by 192.168.1.3 (this is simple destination NAT).

NAT and Packet Mangling with iptables

[96]

In other words, full NAT is SNAT and DNAT as presented earlier.

This is the function that SOHO routers call "DMZ", as explained earlier. The reason
they call this function "DMZ" is that IP packets that don't belong to a connection
initiated by any host from the private network 192.168.1.0/24 will be forwarded to
192.168.1.3, and so this host doesn't have the protection provided by the fact that it
has a private IP address.

In the case just presented, 1.1.1.1 can be the NAT router
IP address or it can just be routed to it. If it's the router's
public IP address (as in the earlier diagrams),
the NAT router can't be accessed from the Internet
(e.g. you can't SSH into it) because it will forward all
packets to 192.168.1.3.

PAT or NAPT
PAT stands for Port Address Translation and it is also called NAPT, which stands for
Network Address and Port Translation. The idea behind PAT is to translate not only
the IP address, but also the port number for specific hosts and ports.

The company's web server is behind NAT and it has the IP address 192.168.1.100.
Having only one public IP address, http://www.<ourcompanyname>.com is
configured to respond to 1.1.1.1. For the web server to be accessed from the Internet,
we have to rewrite the address 1.1.1.1 to 192.168.1.100 whenever a request comes into
our NAT router with the destination port 80.

More than this, we have a company intranet server with the IP address 192.168.1.200,
running a web server on port 80. When being in the office, the employees have to
type http://192.168.1.200 in their web browser and they can log in the intranet
web server.

If we want to allow users to log on to the intranet server when they are outside the
office, PAT is the answer. With PAT, we can choose a port that's not opened on the
NAT router (e.g. 2143), and whenever a request comes from the Internet with the
destination IP address 217.156.123.3 and the destination port 2143, the NAT router
rewrites the destination IP address to 192.168.1.200 and the destination port from
2143 to 80.

This way, from the Internet when a user types:

http://www.<ourcompanyname>.com/ the request is forwarded to
192.168.1.100 on port 80 and the company's web page is displayed

•

Chapter 4

[97]

http://www.<ourcompanyname>.com:2143/ the request is forwarded to
192.168.1.200 on port 80 and the company's intranet web page is displayed

We don't have to rewrite the port when a packet has the source IP address
192.168.1.200; we just have to set up SNAT or Masquerade so that the intranet server
accesses the Internet using 1.1.1.1.

NAT Using iptables
So far, we discussed general NAT principles, NAT types, and what every sort of
NAT does.

netfilter/iptables can be used to perform NAT in any of the ways that we discussed.
Actually, there are many things that you can do with iptables in this area and we will
try to cover as much as possible in this chapter. Before we get there, let's see what we
need to be able to successfully perform NAT on Linux.

Setting Up the Kernel
Usually, every Linux distribution comes with a kernel compiled with netfilter
support, iptables tool, and all the modules needed for performing Network
Address Translation.

A very good HowTo on compiling Linux 2.4 and 2.6 kernels is written by
Kwan Lowe and can be found at http://www.digitalhermit.com/linux/
Kernel-Build-HOWTO.html

When compiling a new kernel or recompiling the kernel that you have, you must set
NETFILTER=y in order to use iptables. In the 2.6 kernels, this option is usually found
under Device Drivers | Networking support | Networking support (NET [=y]) |
Networking options, but it really depends on the kernel version.

For example, in kernel 2.6.14, this option is found under Networking | Networking
Options.

If you use make menuconfig or make xconfig to configure your kernel for
recompiling, select Networking | Networking options | Network packet filtering
(replaces ipchains) | IP: Netfilter Configuration:

•

NAT and Packet Mangling with iptables

[98]

In the IP: Netfilter Configuration section you will find the options needed for NAT
as follows:

IP_NF_CONNTRACK or Connection tracking (required for masq/NAT) keeps
a record of the IP packets that passed through the machine in order to pass
them correctly to the NATed endpoints when requests made from those are
answered. This is vital for NAT. If you say No here, you will not be able to
perform NAT.

•

Chapter 4

[99]

It is highly recommended that you select M for conntrack,
meaning that you compile the connection tracking option
of netfilter as a module. In time, you might want to use
your Linux box to do routing without NAT, and conntrack
would slow things down in that case.

IP_NF_NAT or Full NAT allows you to do SNAT, DNAT, MASQ, and
redirects. You must select this module for NAT.
IP_NF_TARGET_MASQUERADE or MASQUERADE target support is needed for
MASQ. If you will need MASQ, select this module.
IP_NF_TARGET_REDIRECT or REDIRECT target support is needed to do
redirection of packets to the local machine instead of letting them pass
through. We will need this if we want to set up a transparent proxy,
for example.
IP_NF_TARGET_NETMAP or NETMAP target support is an implementation of
static 1:1 NAT mapping of a network address.
IP_NF_TARGET_SAME or SAME target support is exactly like SNAT, except
that when using a range of public IP addresses for a network, SAME tries to
allocate clients the same IP address for all outgoing connections.

•

•

•

•

•

NAT and Packet Mangling with iptables

[100]

IP_NF_FTP (FTP protocol support), IP_NF_IRC (IRC protocol support),
IP_NF_TFTP (TFTP protocol support), IP_NF_AMANDA (Amanda backup
protocol support), and IP_NF_CT_PROTO_SCTP (SCTP protocol connection
tracking support) are connection tracking helpers for the protocols they
describe. If we need to allow the NATed endpoints to one of these protocols,
we need to compile that module and load it when starting our firewall.

The netfilter nat Table
The nat table contains three chains—PREROUTING, POSTROUTING, and OUTPUT. Each
chain may contain rules that are examined sequentially until one of the rules matches
a packet, the same as for the chains in the netfilter table. These chains can be viewed
by issuing the command iptables –t nat –L.

router:~# iptables -t nat -L
Chain PREROUTING (policy ACCEPT)
target prot opt source destination

Chain POSTROUTING (policy ACCEPT)
target prot opt source destination

Chain OUTPUT (policy ACCEPT)
target prot opt source destination

If the kernel modules are properly built, the Linux box will automatically load
the modules iptable_nat and ip_conntrack when issuing any commands with
iptables –t nat; so there is no need to use Linux utilities insmod or modprobe for
NAT to work.

The OUTPUT chain is not fully supported, so we will have to ignore that for now.

The PREROUTING and POSTROUTING chains have meaningful names. The PREROUTING
chain is analyzed by the kernel before any routing decision is made. Therefore, what
we should do in the PREROUTING chain is to change the address of the destination
IP and then leave it to the routing process to find the destination that we just
changed (DNAT).

The POSTROUTING chain contains rules that the kernel analyzes after a routing
decision is made. This means that we have a path to the destination, and so we can
change the source IP address if that path is outside our network (SNAT).

•

Chapter 4

[101]

Let's have a look at this diagram to visualize how DNAT and SNAT work.

DNAT means that we rewrite the destination IP address; so the kernel must do that
before looking up its routing table to check where to send the packet (this is the
PREROUTING chain). For instance, if we perform DNAT for a host in a private network
that is directly connected to the NAT router (e.g. 192.168.1.3), the IP packet comes in,
the destination IP address is rewritten with 192.168.1.3, and the kernel looks it up in
its routing table:

router:~# route -n
Kernel IP routing table
Destination Gateway Genmask Flags Metric Ref Use Iface
192.168.1.0 0.0.0.0 255.255.255.0 U 0 0 0 eth1

The kernel sees the 192.168.1.0/24 network directly connected on the device Eth1,
and so it will forward the packet to the host 192.168.1.3.

SNAT on the other hand means that the source IP address gets rewritten. To be
able to understand the process better, we will think about Masquerading. A packet
originating from 192.168.1.3 must access a host on the Internet. The kernel looks up
its routing table, and if it has a route to the destination host on one interface, the
source IP address is rewritten to the IP address of that interface in the router. If a
route to the destination host is not found, then the NAT router will match the default
route, and the source IP packet is rewritten with the IP address of the interface on
which the default route resides.

To append, insert, or delete rules in the nat table, the syntax of iptables is basically
the same as in packet filtering.

Append: iptables –t nat –A <chain> <rule>
Insert: iptables –t nat –I <chain> <rule>
Delete: iptables –t nat –D <chain> <rule>
Delete all: iptables –t nat –F

where <chain> can be PREROUTING, POSTROUTING, or OUTPUT, and <rule> is the
actual rule.

Please note that the command iptables –F flushes all
rules in the INPUT, FORWARD, and OUTPUT chains of the
netfilter table, and doesn't flush the rules in the nat table.

•

•

•

•

NAT and Packet Mangling with iptables

[102]

SNAT with iptables
SNAT is one of the most commonly used types of NAT with iptables because of the
topology used.

Let's see, for example, the following scenario:

Network 192.168.1.0/24 is in our office. We have an Ethernet connection from
our provider, which assigned us the IP address 1.2.3.1/30 and the default
gateway 1.2.3.2.

All the computers in the 192.168.1.0/24 network have the default gateway set to
192.168.1.1.

Our Linux router has two Ethernet interfaces:

Eth0, with the IP address 192.168.1.1 and netmask 255.255.255.0, is connected
to a switch that connects other devices in the 192.168.1.0/24 network.
Eth1, with the IP address 1.2.3.1 and netmask 255.255.255.252, is connected
to the provider's CPE (Customer Premises Equipment), which can be a DSL
modem, cable modem, media converter, etc.

We can set up SNAT so that all devices in the 192.168.1.0/24 network access the
Internet with only one rule:

iptables –t nat –A POSTROUTING –s 192.168.1.0/24 –j SNAT –-to 1.2.3.1

This command has the same effect as the following command, which we would use
if the IP address of Eth1 were dynamically assigned, or if we used a dial-up modem
instead of an Ethernet card:

•

•

Chapter 4

[103]

iptables –t nat –A POSTROUTING –s 192.168.1.0/24 –j MASQUERADE

Let's say our provider filters out all ports higher than 1024. In this case, we will need
to change the source port as well, and not only the source IP address. This can be
done by:

iptables –t nat –A POSTROUTING –s 192.168.1.0/24 –j SNAT –-to
1.2.3.1:1-1024

The laptop user seen in the previous figure is an IRC fan and he gives us a call
saying he can't connect to any IRC networks. This means that the ip_conntrack
module needs a little help, and we can give it to him by inserting the ip_conntrack_
irc module in the kernel. Also, we might want to let users make successful FTP
connections, and so we want to add the ip_conntrack_ftp module as well.

modprobe ip_conntrack_irc #or insmod ip_conntrack_irc
modprobe ip_conntrack_ftp #or insmod ip_conntrack_ftp

After a few weeks, the laptop user has convinced other users in the 192.168.1.0/24
network of how wonderful the IRC is; so we have about 20-30 users connecting to
the same IRC network. Now, they have started to complain about how difficult it
is to get connected on the IRC network, because the IRC network only allows a few
connections from the same IP address. We figure that 32 IP addresses are enough for
them, so we call the provider to assign us a /27 public IP subnet. For a few dollars
extra, they assign us 1.2.4.0/27. We have to change the initial rule to:

iptables –t nat –A POSTROUTING –s 192.168.1.0/24 –j SNAT –-to 1.2.4.0-
1.2.4.32

They stop complaining, but we realize that we don't use the public IP address of
our Linux router for NAT anymore. Let's add that too; so we give them an extra
IP address:

iptables –t nat –A POSTROUTING –s 192.168.1.0/24 –j SNAT –-to 1.2.4.0-
1.2.4.32 –-to 1.2.3.1

One of our users gets into an argument on IRC, and gets flooded while SNAT mapps
his IP address to 1.2.4.15. Our provider's flood-detection system automatically filters
that IP address and sends us an email informing us about it. We need to stop SNAT
to map any internal addresses to that IP address, so we do the following:

iptables –t nat –A POSTROUTING –s 192.168.1.0/24 –j SNAT –-to 1.2.4.0-
1.2.4.14 –-to 1.2.4.16-1.2.4.32 –-to 1.2.3.1

One guy from accounting with the IP address 192.168.1.19 complains that he can't
access any computers with IP addresses over 192.168.1.32. It is possible that he has
changed his netmask to 255.255.255.227, and so all IP packets from his computer to

NAT and Packet Mangling with iptables

[104]

computers in 192.168.1.0/24 that are not in 192.168.1.0/27 pass through the Linux
router and get SNATed. To solve this problem, we have two alternatives.

The first would be not to SNAT 192.168.1.0/24 when the destination is another
computer in 192.168.1.0/24:

iptables –t nat –A POSTROUTING –s 192.168.1.0/24 –d ! 192.168.1.0/24
–j SNAT –-to 1.2.4.0-1.2.4.32 –-to 1.2.3.1

The second choice we have is to SNAT only the packets that go out on Eth1:

iptables –t nat –A POSTROUTING –s 192.168.1.0/24 –o eth1 –j SNAT –-to
1.2.4.0-1.2.4.32 –-to 1.2.3.1

Our provider connected another location of our company to the same equipment,
and since we are in the same VLAN, we don't have to build a tunnel between the
routers at each location, but just route the networks through the Linux router at
that location. On the other site, we have the network 192.168.2.0/24. We need to let
computers in our network access computers in the 192.168.2.0/24 network without
SNATing them:

iptables –t nat –I POSTROUTING –s 192.168.1.0/24 –d 192.168.2.0/24 –j
ACCEPT

This command will insert the rule before the NAT rule; so if any packet from
192.168.1.0/24 is destined to any IP in the 192.168.2.0/24 network, this rule will
match and the chain will not be analyzed further, so SNAT will not take place.

Jane, our secretary, is famous for her good coffee, but since she got the IRC fever,
she's not doing anything anymore. The manager is angry about this but she doesn't
want to fire Jane because she's addicted to her famous coffee; so she comes to ask
us to do something about it. There are many things we can do in this matter, for
instance drop packets from Jane (192.168.1.31) when trying to access ports 6666 to
6669 in the POSTROUTING chain:

iptables –t nat –I POSTROUTING –s 192.168.1.31 –p tcp –-dport
6666:6669 –j DROP

We might want to ask the manager what Jane is allowed to do. For instance, if the
manager wants to allow Jane only web access, we can do the following:

iptables –t nat –I POSTROUTING –s 192.168.1.31 –p tcp –-dport ! 80 –j
DROP

This rule will not SNAT Jane's IP address when trying to access something other
than port 80 TCP, but it will SNAT her IP address when accessing any UDP services
because UDP packets will not match this rule; so she will be able to access any DNS
server outside our network.

Chapter 4

[105]

DNAT with iptables
We will continue with the previous scenario for DNAT as well. One day, the
manager calls us telling she needs to access her computer from home. Of course she
can't do that because of her private IP address 192.168.1.50. We decide to allocate
one of the public IP addresses that we have for her office computer, but if we were
to create an alias on Eth0 for that, we would not only lose some IP addresses, but she
also won't be in the same network as the others. The best solution is to map a public
IP address (let's say 1.2.4.1) to her office computer's private IP address (192.168.1.50).
This is, of course, DNAT:

iptables –t nat –A PREROUTING –d 1.2.4.1 –j DNAT –-to 192.168.1.50

So the next thing to do is to call her and tell him that whenever she tries to connect to
her office computer from home, she must connect to 1.2.4.1.

Our intranet server has the IP address 192.168.1.100. One guy from the financial
department has a broadband connection and asks us if he can access the intranet
server from home. He gives us his public IP address as 1.2.5.17. We tell him that from
his home he should try the IP address 1.2.4.2 in his web browser, and we execute:

iptables –t nat –A PREROUTING –s 1.2.5.17 –d 1.2.4.2 –p tcp –-dport 80
–j DNAT -–to 192.168.1.100

We think we might want to SSH to the intranet server from anywhere. It would not
be a very wise idea to map one IP address to the intranet server as it is vital for our
company, and if an SSH bug is discovered, we don't want that server to be hacked.
A good idea would be to map a high-number port to the SSH port on the intranet
server (this is PAT or NAPT).

iptables –t nat –A PREROUTING –d 1.2.4.2 –p tcp –-dport 65521 –j DNAT
–-to 192.168.1.100:22

This way, when we are not at the office and we want to SSH into the intranet server,
we open an SSH connection to 1.2.4.2 port 65521.

After a while, suppose we installed a web server with the IP address 192.168.1.200.
The web server is www.mycompany.whatever and points in DNS to 1.2.4.5. To be
accessible to the outside world, we perform the following:

iptables –t nat –A PREROUTING –d 1.2.4.5 –p tcp –-dport 80 –j DNAT –-
to 192.168.1.200

Transparent Proxy
Transparent proxy is a way to force users to use a proxy server, even if their browsers
are configured not to. You probably know about the benefits of using a proxy server—

NAT and Packet Mangling with iptables

[106]

bandwidth saving for cached pages and access control implementation (e.g. deny
downloads of files that have dangerous extensions).

We can perform transparent proxy for all or some users to prevent them from
bypassing the proxy whenever they want. This is especially good for children's
computers to deny them access to sexually explicit sites, for example.

On our Linux router, we installed a Squid proxy server to cache some content from
the Web. Also, we want to deny access to sex sites or malicious downloads for
users. The users are not very pleased about using our proxy server, and they usually
remove it from their browser configuration. We can force them to use the proxy
server anyway. If the proxy server listens on port 3128 we will do the following:

iptables –t nat –A PREROUTING –s 192.168.1.0/24 –p tcp –-dport 80 –j
REDIRECT –-to-port 3128

If we want to allow the manager (who has the IP address 192.168.1.50) to bypass the
proxy server, we do so like this:

iptables –t nat –I PREROUTING –s 192.168.1.50 –p tcp –-dport 80 –j
ACCEPT

So this rule will be matched in the PREROUTING chain, and she will be SNATed in the
POSTROUTING chain.

Setting Up the Script
This is a commonly used configuration, but there are many other things we can
do with the NAT support for netfilter. We will discuss more NAT issues and
configurations in the third section of this book in the small networks case studies. For
now, let's see how we should set up the script for this example scenario.

The NAT part of the firewall should be included in the same script as the rest of the
firewall rules as described earlier. So, we have:

#!/bin/bash

IP=/sbin/iptables

#... some packet filtering rules

NAT SECTION

#first of all, we want to flush the NAT table

$IP –t nat –F

Chapter 4

[107]

############ SNAT PART

#Jane's special rule.
#Don't SNAT any TCP connections from her computer except www and all
#udp connections except DNS

$IP –t nat –A POSTROUTING –s 192.168.1.31 –p tcp –-dport ! 80 –j DROP
$IP –t nat –A POSTROUTING –s 192.168.1.31 –p udp –-dport ! 53 –j DROP

#Don't SNAT anything from 192.168.1.0/24 to 192.168.2.0/24

$IP –t nat –A POSTROUTING –s 192.168.1.0/24 –d 192.168.2.0/24 –j ACCEPT

#The boss needs DNAT but we should also SNAT her IP address to 1.2.4.1

$IP –t nat –A POSTROUTING –s 192.168.1.50 –j SNAT –-to 1.2.4.1

#Snat Everyone

$IP –t nat –A POSTROUTING –s 192.168.1.0/24 –o eth1 –j SNAT –-to
1.2.4.0-1.2.4.32 –-to 1.2.3.1
############ DNAT PART

#Dnat the boss so she can access her PC from home

$IP –t nat –A PREROUTING –d 1.2.4.1 –j DNAT –-to 192.168.1.50

#DNAT the intranet server for the guy in the financial department

$IP –t nat –A PREROUTING –s 1.2.5.17 –d 1.2.4.2 –p tcp –-dport 80 –j
DNAT -–to 192.168.1.100

#DNAT for us to ssh into the intranet server

$IP –t nat –A PREROUTING –d 1.2.4.2 –p tcp –-dport 65521 –j DNAT –-to
192.168.1.100:22

#DNAT the web server

$IP –t nat –A PREROUTING –d 1.2.4.5 –p tcp –-dport 80 –j DNAT –-to
192.168.1.200
############ Transparent Proxy

#Allow the boss to bypass the proxy server

NAT and Packet Mangling with iptables

[108]

$IP –t nat –A PREROUTING –s 192.168.1.50 –p tcp –-dport 80 –j ACCEPT

#Do transparent proxy for the rest of the people

$IP –t nat –A PREROUTING –s 192.168.1.0/24 –p tcp –-dport 80 –j
REDIRECT –-to-port 3128

End of NAT section

Verifying the Configuration
To verify the configuration, we need to see the chains of the nat table.

root@router:~# iptables -t nat -L -n
Chain PREROUTING (policy ACCEPT)
target prot opt source destination
DNAT all -- 0.0.0.0/0 1.2.4.1 to:192.168.1.50
DNAT tcp -- 1.2.5.17 1.2.4.2 tcp dpt:80
 to:192.168.1.100
DNAT tcp -- 0.0.0.0/0 1.2.4.2 tcp dpt:65521
 to:192.168.1.100:22
DNAT tcp -- 0.0.0.0/0 1.2.4.5 tcp dpt:80
 to:192.168.1.200
ACCEPT tcp -- 192.168.1.50 0.0.0.0/0 tcp dpt:80
REDIRECT tcp -- 192.168.1.0/24 0.0.0.0/0 tcp dpt:80 redir
 ports 3128

Chain POSTROUTING (policy ACCEPT)
target prot opt source destination
DROP tcp -- 192.168.1.31 0.0.0.0/0 tcp dpt:!80
DROP udp -- 192.168.1.31 0.0.0.0/0 tcp dpt:!53
ACCEPT all -- 192.168.1.0/24 192.168.2.0/24
SNAT all -- 192.168.1.50 0.0.0.0/0 to:1.2.4.1
SNAT all -- 192.168.1.0/24 0.0.0.0/0 to:1.2.4.0-1.2.
 4.32 1.2.3.1

Chain OUTPUT (policy ACCEPT)
target prot opt source destination
root@router:~#

We can see here that all the lines we wrote in the script have been successfully
entered in the nat table.

After building a script like this, the only way to test its correct functionality is to send
test packets for each line and track them with a network analyzer like TCPdump,
ethereal, etc.

Chapter 4

[109]

For example, if we capture packets on our Linux router and try to initiate a
connection from the Internet to 1.2.4.1 on a random port and TCPdump shows a
sequence of packets like:

1.	 In on Eth0 from 2.2.2.2 to 1.2.4.1

2.	 Out on Eth0 from 1.2.3.1—destination host unreachable

and nothing on Eth1, then we will know from the start that the DNAT rule was not
matched.

If the packet flow from the analyzer looks OK, then we should see the packets
matching the rules using the -v when listing the rules (in this case iptables –L –n –v).

A Less Normal Situation: Double NAT
Our company opened a remote office in a third-world country that didn't have an
internet connection. The administrator hired in that location configured the local
network with IP addresses in the private class C network 192.168.1.0/24.

After a while, they were able to install a permanent internet connection with a static
assigned IP address 1.2.8.1. The database server on their location has the same IP
address as the database server in our location—192.168.1.60.

The configuration is the same as in the following figure:

In the headquarter's location, we have:

HQ local network: 192.168.1.0/24
HQ database server: 192.168.1.60

•

•

NAT and Packet Mangling with iptables

[110]

Linux Router 1 with two Ethernet interfaces: Eth0, which connects to the local
network and has the IP address 192.168.1.1, and Eth1, which connects to the
Internet with the IP address 1.2.7.1

In the remote location, we have:

Remote local network: 192.168.1.0/24
Remote database server in the remote location: 192.168.1.60
Linux Router 2 with two Ethernet interfaces: Eth0, which connects to the local
network and has the IP address 192.168.1.1, and Eth1, which connects to the
Internet with the IP address 1.2.8.1

The next step is to create a VPN between these locations. On Linux Router 1 at the
headquarters, we perform the following:

iptunnel add vpn1 mode gre remote 1.2.8.1 local 1.2.7.1 key 8132912

ifconfig vpn1 10.10.10.1 pointopoint 10.10.10.2 netmask
255.255.255.252

On Linux Router 2 at the remote location, what we do is:

iptunnel add vpn1 mode gre remote 1.2.7.1 local 1.2.8.1 key 8132912

ifconfig vpn1 10.10.10.2 pointopoint 10.10.10.1 netmask
255.255.255.252

In a normal situation, we would have a network at the headquarters and another
network at the remote location, and we would route them on the vpn1 interface
and don't perform SNAT. As the heading says, this is not a normal situation. On
Linux Router 1 we can route on the Linux Router 1 network 192.168.1.0/24 through
10.10.10.2 (Linux Router 2), but it would have absolutely no effect, because the Linux
kernel prefers directly connected routes (and it is normal for it to be this way).

In order for a computer from headquarters to communicate with a computer from
the remote location, we have to "fake" the fact that we have different networks on
each side. So, we will tell the headquarters' computers that the computers in the
remote location are in the network 192.168.20.0/24. We will also tell the remote
computers that the computers in the headquarters location are in the network
192.168.10.0/24.

In the following example, we will show how the database servers can communicate,
for example, for data replication. So, we will teach you how to map one IP, and you
can do the same for the other 252 IP addresses (i.e. from 254, excluding the database
server and the gateway).

•

•

•

•

Chapter 4

[111]

From their point of view, the database server in the headquarters location is
communicating with the database server in the remote location that has the
IP address 192.168.20.60, and the database server in the remote location is
communicating with the database server in the headquarters location that has the IP
address 192.168.10.60. In fact, they both have the IP address 192.168.1.60.

Let's configure Linux Router 1 (at the headquarters).

Step 1

ifconfig eth1:0 192.168.10.1 netmask 255.255.255.0

This is an optional step. IP packets with destination IP addresses in 192.168.10.0/24
will arrive at this router, and if we have no rules in the PREROUTING chain, we don't
want to forward them on the default route.

Step 2

route add –net 192.168.20.0 netmask 255.255.255.0 gw 10.10.10.2

This will add a route to network 192.168.20.0/24 via 10.10.10.2 on the vpn1 interface.

Step 3

iptables –t nat –A POSTROUTING –s 192.168.1.60 –d 192.168.20.60 –j
SNAT –-to 192.168.10.60

This will create a SNAT rule on Linux Router 1 that will map the IP address
192.168.1.60 to 192.168.10.60 if the destination IP address is 192.168.20.60.

Step 4

iptables –t nat –A PREROUTING –d 192.168.10.60 –j DNAT –-to
192.168.1.60

This will create an DNAT rule for all packets arriving at Linux Router 1 having the
destination IP address 192.168.10.60 to send the packets to 192.168.1.60.

This is all we need on Linux Router 1.

On Linux router 2, we do basically the same thing.

Step 1

ifconfig eth1:0 192.168.20.1 netmask 255.255.255.0

Step 2

route add –net 192.168.10.0 netmask 255.255.255.0 gw 10.10.10.1

NAT and Packet Mangling with iptables

[112]

This will add a route to network 192.168.10.0/24 via 10.10.10.1 on the vpn1 interface.

Step 3

iptables –t nat –A POSTROUTING –s 192.168.1.60 –d 192.168.10.60 –j
SNAT –-to 192.168.20.60

This will create an SNAT rule on Linux Router 2 that will map the IP address
192.168.1.60 to 192.168.20.60 if the destination IP address is 192.168.10.60.

Step 4

iptables –t nat –A PREROUTING –d 192.168.20.60 –j DNAT –-to
192.168.1.60

This will create a DNAT rule for all packets arriving at Linux Router 2 with the
destination IP address 192.168.20.60 to send the packets to 192.168.1.60.

This is the end of the configuration we need to make. Let's see if it works both ways:

The database server in the headquarters location sends a packet to the database
server in the remote location, which it thinks is 192.168.20.60. Since 192.168.20.60
is not directly connected to 192.168.1.60, it will forward the packet to the default
gateway, Linux Router 1. Linux Router 1 checks out the PREROUTING chain and finds
no rule to match this packet, and so it looks up the routing table for 192.168.20.60
and finds the best route through 10.10.10.2 on interface vpn1. Now, Linux Router
1 checks out the POSTROUTING chain and matches the rule that states that for every
packet from 192.168.1.60 to 192.168.20.60, it should change the source IP address to
192.168.10.60. Linux Router 1 does that, and due to ip_conntrack it keeps a record
of this connection. The packet with the changed source IP address is forwarded
according to the routing table to 10.10.10.2 on interface vpn1.

Now, the packet arrives at Linux Router 2 at the remote location having the source
IP address 192.168.10.60 and destination 192.168.20.60. Linux Router 2 looks in
its PREROUTING chain and matches the rule that says to change the destination IP
address to 192.168.1.60 if the packet is destined for 192.168.20.60. Linux Router 2
does this and then looks up 192.168.1.60 in its routing table and sees that 192.168.1.60
is directly connected with itself on Eth0. After analyzing the POSTROUTING chain
and seeing that no rule matches this packet, Linux Router 2 forwards the packet to
192.168.1.60 as being from 192.168.10.60.

Packets traveling the other way around follow the exact same steps; so we can say
"Mission Accomplished!"

Chapter 4

[113]

Packet Mangling with iptables
The term "mangling" might mislead people to conceive it as malicious—packet
mangling is nothing like that at all. Packet mangling refers to the process of
intentionally altering data in IP packet headers before or after the routing process.

Well, not all fields of the IP packet header can be modified in the mangle table, but
that is not necessary.

Let's recall what an IP packet header looks like:

We have already discussed NAT, where we saw that we can "mangle" a packet by
modifying the Source IP address and Destination IP address fields of the IP header.
This mangling of packets is done only with NAT and is a part of the NAT process.

So, using the mangle table of netfilter we can modify the following two fields:

TOS: the 8 bit Type Of Service field
TTL: the 8 bit Time To Live field

iptables can also set a mark to IP packets that can be used internal by iproute2 for
source routing and/or QoS with tc. This internal mark, called nfmark (netfilter
mark), doesn't alter any of the IP packet headers' fields. Nfmarks can be set using
the MARK target in iptables, which has three options that we can see using --help in
conjunction with the MARK target:

root@router:~# iptables -j MARK --help

… some lines missing …
MARK target v1.3.1 options:
 --set-mark value Set nfmark value
 --and-mark value Binary AND the nfmark with value
 --or-mark value Binary OR the nfmark with value

•

•

NAT and Packet Mangling with iptables

[114]

Example: mark packets to 192.168.1.100 with nfmark 6:

iptables -t mangle -A POSTROUTING -d 192.168.1.100 -j MARK --set-mark 6

The TOS field is 8 bits long and was discussed in the previous chapter. Alteration of
the TOS field is very useful for QoS. For this, iptables uses the TOS target, which has
the --set-tos option. We can see TOS target options using --help in the
command line:

root@router:~# iptables -j TOS --help
… some lines missing…
TOS target v1.3.5 options:
 --set-tos value Set Type of Service field to one of the
 following numeric or descriptive values:
 Minimize-Delay 16 (0x10)
 Maximize-Throughput 8 (0x08)
 Maximize-Reliability 4 (0x04)
 Minimize-Cost 2 (0x02)
 Normal-Service 0 (0x00)

Example: set TOS to Maximize-Throughput for outgoing FTP data:

iptables -t mangle -A POSTROUTING -p tcp --sport 20 -j TOS --set-tos 8

There are only five TOS values we can set; so the TOS target doesn't modify the
whole TOS byte. However, this can be done with DSCP (Differentiated Services
Field Codepoints). The DSCP bits are the first six bits in the TOS byte, as shown in
the following figure:

iptables has the DSCP target that can be used to alter the DSCP bits. The options can
be found using --help with the DSCP target.

root@router:~# iptables -j DSCP --help
… some lines missing…
DSCP target options
 --set-dscp value Set DSCP field in packet header to value

Chapter 4

[115]

 This value can be in decimal (ex: 32)
 or in hex (ex: 0x20)

 --set-dscp-class class Set the DSCP field in packet header
 to the value represented by the DiffServ class
 value.
 This class may be EF,BE or any of the CSxx
 or AFxx classes.
 These two options are mutually exclusive !

Example: set DSCP 32 to packets arriving on interface Eth0:

iptables -t mangle -A PREROUTING -i eth0 -j DSCP --set-dscp 32

DSCP is explained in more detail in RFC2474, which can be found at
http://www.rfc-editor.org/rfc/rfc2474.txt.

The TTL field of the IP packet header is the Time To Live for that IP packet, and can
be altered using the TTL target of iptables.

root@router:~# iptables -j TTL --help
… some lines missing…
TTL target v1.3.1 options
 --ttl-set value Set TTL to <value 0-255>
 --ttl-dec value Decrement TTL by <value 1-255>
 --ttl-inc value Increment TTL by <value 1-255>

Altering TTL can be useful, for example, if you want a client not to distribute the
Internet to others. If you set the TTL value to 1 for packets going to a certain IP
address, then only the device having that IP address receives the IP packets. If the
packet is destined to a host behind that IP address, the TTL will be decremented and
the IP packet will be dropped.

Example: set TTL to 1 for packets going out interface ppp0:

iptables -t mangle -I POSTROUTING -o ppp0 -j TTL --ttl-set 1

The netfilter mangle Table
The mangle table has five chains, named PREROUTING, INPUT, FORWARD, OUTPUT, and
POSTROUTING. Let's look again at the packet flow diagram again:

NAT and Packet Mangling with iptables

[116]

The rules in the PREROUTING chain of the mangle table are analyzed by the kernel
when a packet comes in, before the routing process takes place.

If the packet is not for the router (is destined to a host behind it), the kernel looks
up the rules in the mangle table FORWARD chain and afterwards the mangle table
POSTROUTING chain.

Chapter 4

[117]

If the packet is destined to the router, then the mangle table INPUT chain is analyzed.
When the response is generated, the kernel looks up the rules in the OUTPUT chain of
the mangle table first, and then in the POSTROUTING chain of the mangle table.

On those chains, all iptables operations are possible.

It is not recommended to perform packet filtering in the
mangle table. Even if you are not restricted to drop packets
in the mangle table, it should be only for rules that mangle
IP packets.

A particularity of the mangle table is that, unlike the filter or nat tables, all rules
are analyzed, even if a packet is matched against one rule. This functionality of the
mangle table was needed, because you might want to alter the same IP packet in
several ways (set DSCP, nfmark, and TTL at the same time), and so, unlike the other
tables, if a match is found against one rule in a chain, the kernel doesn't stop there,
and tries to match the packet against all the other rules in that chain.

This is one of the major reasons for which packet filtering in the mangle table is
strongly discouraged.

Summary
This chapter showed you how to perform Network Address Translation and IP
packet mangling using netfilter/iptables.

We saw:

What Network Address Translation is
Types of NAT: SNAT or Masquerading, DNAT, full cone NAT
Requirements for performing NAT with netfilter/iptables
How to SNAT with iptables
How to DNAT with iptables
How to perform transparent proxy with iptables
How to perform double NAT with iptables
What packet mangling is
What fields of the IP packet header can be modified using iptables
How packets are matched against the chains of rules in the netflter
mangle table

•

•

•

•

•

•

•

•

•

•

Layer 7 Filtering
In Chapter 1 of this book, we presented the OSI and TCP/IP networking models.
As we saw there, even if the TCP/IP model has the widest usage, the reference
model is OSI.

Let's have a look at the TCP/IP and OSI models again:

At Layer 7 of the OSI model, we find Application (HTTP, FTP, SSH, etc.). As
you can see from the picture above, TCP/IP compacted OSI Layers 7, 6, and 5
into one Layer, TCP/IP Layer 4 (Application), which has the same name, but
different functionality.

Filtering and prioritizing traffic from some applications can be very easy and
very hard at the same time. Normally, we would filter/prioritize web traffic by
matching TCP packets with source or destination port 80, which is the standard
HTTP port. However, web servers can be configured to use any port; so our
filters/prioritizations won't work for that particular traffic.

Layer 7 Filtering

[120]

Another big problem network administrators have is filtering traffic belonging to
P2P (peer to peer) applications like Kazaa, DC++, Emule, etc., as those applications
don't use standard ports and, even worse, they can be configured to use other
applications' standard ports for communication (e.g. TCP port 80).

At one point, some people decided to do something about it and they did a
pretty good job by starting the project named "Layer 7 Filtering" at
http://l7-filter.sourceforge.net.

As you probably guessed, "Layer 7 Filtering" is a method to filter Layer 7 data. That
means filtering network traffic generated by an application regardless of the protocol
or port it uses at Layer 4.

L7-filter is a packet classifier for the Linux kernel that doesn't look up port numbers
or Layer 4 protocols, but instead looks up the data in an IP packet and does a regular
expression match on it to determine what kind of data it is, mainly what application
protocol is being used.

Another project we will talk about is IP2P; it is an alternative to L7-filter, but
has been designed for filtering only P2P applications while L7-filter takes into
consideration a wider range of applications.

When to Use L7-filter
L7-filter is a great solution for matching application data in a network, but, as with
almost every good thing, there are downsides to it too. As we will go deeper into
how L7-filter works, you will see that it has to actually analyze data contained in
IP packets, so it is quite obvious that this can eat up a lot of CPU power. So, using
L7-filter on a Linux router with high traffic is not quite recommended, as L7-filter
is CPU-consuming and can thus introduce latency and packet loss in the network.
However, it really depends on the type of traffic passing through that router rather
than the amount of traffic. For example, if you have 20 Mbps average of WWW
data, L7-filter can work pretty well, but for 2 Mbps of VoIP traffic, the router's
performance would dramatically drop.

Normally, we would consider using L7-filter for SOHO environments. In this case,
L7-filter is very good for filtering viruses, limiting the bandwidth consumed by
children when downloading music, etc.

Another situation when L7-filter is recommended would be for small-to-medium-
sized companies that want to shape and prioritize traffic consumed by applications
that are not vital or productive to the company. For example, in a company that
has a 10 Mbps internet connection, an employee using P2P software can fill up the
bandwidth and other traffic like Web, SSH, database replication, and so on would
suffer because of that.

Chapter 5

[121]

Another downside to using L7-filter is that it needs the connection tracking module
to function. We have already discussed in the previous chapter about connection
tracking (ip_conntrack) and we saw that it is not suitable for very high traffic
conditions. So, when using L7-filter, you must also consider the disadvantage of
using connection tracking.

Anyway, to draw a conclusion on this topic, L7-filter is a great tool but it also is
CPU-consuming and can be used only with ip_conntrack; so it's quite difficult to
make exact statements about when to use and when not to use L7-filter, and with what
machines. I'd recommend not to use L7-filter on machines with rates over 5000 pps
(packets per second), but, at the end of the day, if the machine can handle it, use it.

How Does L7-filter Work?
What L7-filter does is provides a way for iptables to match packets based on the
application they belong to.

The TCP/IP model contains four layers and, before the L7-filter project, netfilter
could match data by the first three layers:

Network access layer: iptables -A CHAIN -m mac --mac-source …"
Internet: iptables -A CHAIN -s IP_ADDRESS …"
Transport: iptables -A CHAIN -p tcp --dport 80 …

At the network access layer, netfilter uses -m mac to match packets from or to a
MAC address in the network. At the layer above, the Internet layer, we have the
IP protocol; netfilter matches packets from or to an IP address, regardless of the
transport protocol, port number, or application the packet uses. At the transport
layer, we have TCP or UDP, and netfilter can match packets by protocol, and more
specifically, by port number within the protocol.

Any combination of the three lower layers is permitted; for instance:

iptables –A FORWARD –s 192.168.0.2 –p tcp -–dport 80 –m mac –-mac-
source 00:01:BC:2D:EF:2A –j DROP"

will drop all packets from the IP address 192.168.0.2 if the source MAC address is
00:01:BC:2D:EF:2A and the packets use the TCP protocol and have the destination
TCP port 80.

L7-filter adds a new feature to netfilter by matching packets that belong to an
application that is found at the TCP/IP Layer 4. A very important thing is that
L7-filter is just another match option for iptables, and so all the rules of the other
match options apply in this case. Therefore, you can do all the iptables operations
with the packets matched by L7-filter.

•
•
•

Layer 7 Filtering

[122]

The short and easy version of L7-filter is that after installing it you have -m layer7
--l7proto [http|ftp|...]. This is the match option we were talking about.

In order to match Layer 7 data, netfilter looks deeper into an IP packet than just at
its header. However, the actual data contained in the packet doesn't just say "I'm a
P2P packet; filter me!"; so the data is matched against a set of regular expressions that
are common to different applications. This set of regular expressions is probably the
most important part of this project, and is called "protocol definitions".

The L7-filter project contains three important parts:

A kernel patch, which provides a way for the kernel to look into the
IP packets
An iptables patch, which provides the match option for iptables
A collection of pattern files that contain the regular expressions for supported
protocols (protocol definitions)

Installing L7-filter
To install the L7-filter project, we need to patch our kernel with the patch provided
by the source found at http://l7-filter.sourceforge.net. To do that, we need
the kernel source. The next operation would be to apply the iptables patch, recompile
iptables, and install the protocol definitions files. Let's go deeper into the process.

Applying the Kernel Patch
The first step is to download the kernel source we want from http://www.kernel.org.
Next, we need to download L7-filter from http://l7-filter.sourceforge.net.

For this chapter, we used kernel source 2.6.12.5 and L7-filter version 2.0 beta. After
downloading what you need to the /usr/src folder, unzip the L7-filter TAR archive
as follows:

router:/usr/src# tar xfvz netfilter-layer7-v2.0-beta.tar.gz
netfilter-layer7-v2.0-beta/
netfilter-layer7-v2.0-beta/stray_code
netfilter-layer7-v2.0-beta/for_older_kernels/
netfilter-layer7-v2.0-beta/for_older_kernels/
 kernel-2.6.9-2.6.10-layer7-1.2.patch
netfilter-layer7-v2.0-beta/for_older_kernels/
 kernel-2.6.0-2.6.8.1-layer7-0.9.2.patch
netfilter-layer7-v2.0-beta/for_older_kernels/
 kernel-2.6.11-2.6.12-layer7-1.4.patch
netfilter-layer7-v2.0-beta/CHANGELOG

•

•

•

Chapter 5

[123]

netfilter-layer7-v2.0-beta/README
netfilter-layer7-v2.0-beta/iptables-layer7-2.0.patch
netfilter-layer7-v2.0-beta/kernel-2.6.13-layer7-2.0.patch
netfilter-layer7-v2.0-beta/kernel-2.4-layer7-2.0.patch
router:/usr/src#

Next, go to the kernel source root and patch the kernel using the appropriate patch:

router:/usr/src/linux-2.6.12.5# patch -p1 < ../netfilter-layer7-v2.
 0-beta/for_older_kernels/kernel-2.6.11-2.6.12-layer7-1.4.patch
patching file include/linux/netfilter_ipv4/ip_conntrack.h
patching file include/linux/netfilter_ipv4/ipt_layer7.h
patching file net/ipv4/netfilter/Kconfig
patching file net/ipv4/netfilter/Makefile
patching file net/ipv4/netfilter/ip_conntrack_core.c
patching file net/ipv4/netfilter/ip_conntrack_standalone.c
Hunk #1 succeeded at 189 with fuzz 2 (offset 37 lines).
patching file net/ipv4/netfilter/ipt_layer7.c
patching file net/ipv4/netfilter/regexp/regexp.c
patching file net/ipv4/netfilter/regexp/regexp.h
patching file net/ipv4/netfilter/regexp/regmagic.h
patching file net/ipv4/netfilter/regexp/regsub.c
router:/usr/src/linux-2.6.12.5#

Next, run make config, make menuconfig, or make Xconfig. You need to enable the
following options:

Code maturity level options | Prompt for development and/or incomplete
code/drivers
Netfilter (Device Drivers | Networking support | Networking Options |
Network packet filtering)
Connection tracking (Network packet filtering | IP: Netfilter Configuration
| Connection tracking)
Connection tracking flow accounting and IP tables support (on the
same screen)
Layer 7 match support

•

•

•

•

•

Layer 7 Filtering

[124]

Next, compile the kernel, install it as usual, and reboot your machine with the
new kernel.

When compiling, you might see a warning, depending on the compiler version:

 CC [M] net/ipv4/netfilter/ipt_layer7.o
net/ipv4/netfilter/ipt_layer7.c:457: warning: initialization from
incompatible pointer type

Just ignore the warning and go on.

Applying the iptables Patch
To apply the iptables patch, we need the iptables sources from
http://www.netfilter.org. Go to the iptables source root and patch it with
the patch provided by the L7-filter project.

router:/usr/src/iptables-1.3.4# patch -p1 < ../
 netfilter-layer7-v2.0-beta/iptables-layer7-2.0.patch
patching file extensions/.layer7-test
patching file extensions/libipt_layer7.c

Chapter 5

[125]

patching file extensions/libipt_layer7.man
router:/usr/src/iptables-1.3.4#

Because file permissions can't be included in a patch, you need to set execute
permission for the file extensions/.layer7-test.

router:/usr/src/iptables-1.3.4# chmod +x extensions/.layer7-test

Next, we will compile iptables using make and specifying the path to our patched
kernel. In our case:

router:/usr/src/iptables-1.3.4# make KERNEL_DIR=/usr/src/
 linux-2.6.12.5
Making dependencies: please wait...
Extensions found: IPv4:CLUSTERIP IPv4:layer7 IPv4:recent IPv6:ah IPv6:
esp IPv6:frag IPv6:ipv6header IPv6:hbh IPv6:dst IPv6:rt
...

Now we will install iptables using the make install command and also specifying
the path to the patched kernel. In our case:

router:/usr/src/iptables-1.3.4# make install KERNEL_DIR=/usr/src/
 linux-2.6.12.5
cp iptables /usr/local/sbin/iptables
cp iptables.8 /usr/local/man/man8/iptables.8
...

Now, we're almost done. Please note that the new iptables tool might be in a
different folder than the original. For example, we can see that the make install
command installed iptables in /usr/local/sbin/iptables because we didn't
specify the BINDIR option when compiling iptables. We also need to make sure
that we're using the right tool when issuing commands. We can verify that using
iptables –V and comparing the versions we have:

router:~# iptables -V
iptables v1.2.11
router:~# type iptables
iptables is hashed (/sbin/iptables)
router:~# /usr/local/sbin/iptables -V
iptables v1.3.4

Protocol Definitions
First, we need to download the protocol definitions archive from the L7-filter project
page at sourceforge, http://prdownloads.sourceforge.net/l7-filter/
l7-protocols-2006-06-03.tar.gz?download. Next, we need to copy the pattern
files (.pat) from the archive to the /etc/l7-protocols folder.

Layer 7 Filtering

[126]

router:/usr/src/l7-protocols-YYYY-MM-DD# mkdir /etc/l7-protocols
router:/usr/src/l7-protocols-YYYY-MM-DD# cp protocols/* /etc/
 l7-protocols

The /etc/l7-protocols folder is the default folder for pattern files, and iptables
will look into it and its subfolders, but not recursively. This means that iptables will
search for pattern files in /etc/l7-protocols and in any /etc/l7-protocols/
subdir, but not in /etc/l7-protocols/subdir/subsubdir.

If you don't wish to set up the /etc/l7-protocols folder, you can specify the
pattern files folder by doing:

iptables […] –m layer7 –-l7dir /path-to/patterns –-l7proto […]

Please note that you have to specify the patterns folder before the protocol.

Testing the Installation
First, we might want to see if our module is in place. We can do that using the
modinfo command:

router:~# modinfo ipt_layer7
filename: /lib/modules/2.6.12.5-home.made/kernel/net/ipv4/
 netfilter/ipt_layer7.ko
author: Matthew Strait <quadong@users.sf.net>,
 Ethan Sommer <sommere@users.sf.net>
license: GPL
description: iptables application layer match module
vermagic: 2.6.12.5-home.made preempt PENTIUMIII gcc-3.3
depends: ip_tables

The output shows that we have a module called ipt_layer7 and some information
about it, such as filename, author, license, description, version, and other module
dependencies.

Next, we will try to load the module using the modprobe command:

router:~# modprobe ipt_layer7
router:~# lsmod
Module Size Used by
ipt_layer7 12364 0

The modprobe command didn't produce any errors. By using the lsmod command,
we can see the module loaded into the kernel, its size, and the number of processes it
is used by (in our case 0), because we didn't used it yet.

Next, we might want to test it and see if it works. We will do that by using Apache
web server, placing some files in the web folder and downloading them.

Chapter 5

[127]

When downloading the files, we should see that all packets are matched. First, we
will use the command iptables –Z to zero the counters of all the rules in all chains,
and then we will insert an accounting rule in the OUTPUT chain to match all the
outgoing HTTP traffic.

router:~# iptables -Z
router:~# iptables -A OUTPUT -m layer7 --l7proto http
router:~# iptables -L OUTPUT -n -v
Chain OUTPUT (policy ACCEPT 10168 packets, 3433K bytes)
 pkts bytes target prot opt in out source destination
 0 0 all -- * * 0.0.0.0/0 0.0.0.0/0
 LAYER7 l7proto http

Next, we download the file whale.qt (for example) from this server; and look in the
apache access.log:

"GET /whale.qt HTTP/1.1" 200 11727970 "-"

So we must have 11 Mb matched on the accounting rule in the OUTPUT chain.

router:~# iptables -L OUTPUT -n -v
Chain OUTPUT (policy ACCEPT 172K packets, 65M bytes)
 pkts bytes target prot opt in out source destination
 0 0 all -- * * 0.0.0.0/0 0.0.0.0/0
 LAYER7 l7proto http
router:~#

Oops! No packet was matched. Did we do something wrong or is L7-filter not good
at all? Well, in most cases, the first option is valid, so when looking again at the
ipt_layer7 module, we can see that it depends only on the ip_tables module.
We now quickly verify what modules are loaded in the kernel, but we don't see the
ip_conntrack module. Normally, ipt_layer7 should have had ip_conntrack in
the dependencies, but it doesn't. That is why we neither got any errors while loading
the module nor did we get any result.

We know that L7-filter uses the ip_conntrack module; so we need to load it. Let's
see what happens now.

router:~# modprobe ip_conntrack
router:~# iptables -L OUTPUT -n -v
Chain OUTPUT (policy ACCEPT 457K packets, 159M bytes)
 pkts bytes target prot opt in out source destination
 0 0 all -- * * 0.0.0.0/0 0.0.0.0/0
 LAYER7 l7proto http
router:~# wget http://127.0.0.1/whale.qt
--00:37:21-- http://127.0.0.1/whale.qt
 => `whale.qt'
Connecting to 127.0.0.1:80... connected.

Layer 7 Filtering

[128]

HTTP request sent, awaiting response... 200 OK
Length: 11,727,970 [video/quicktime]

100%[===
=================>] 11,727,970 12.74M/s

00:37:22 (12.71 MB/s) - `whale.qt' saved [11727970/11727970]

router:~# iptables -L OUTPUT -n -v
Chain OUTPUT (policy ACCEPT 467K packets, 175M bytes)
 pkts bytes target prot opt in out source destination
 1433 12M all -- * * 0.0.0.0/0 0.0.0.0/0
 LAYER7 l7proto http

Well, as you can see, it worked. Now we have a Linux router with application layer
filtering capabilities.

L7-filter Applications
We can use L7-filter with any iptables option; after all, L7-filter provides just another
match option. However, not all the things we can do with our new match option are
recommended, because L7-filter might match packets belonging to other applications
than the one you want.

Filtering Application Data
Blocking application data that passes through your router is one of the non-
recommended things that you can do with L7-filter.

Traffic from different applications might look similar; so you might experience
problems when dropping data based on the L7-filter match. For example, if you
drop packets that belong to eDonkey, there might be some other protocols that will
experience problems. The eDonkey pattern matches about 1% of other streams with
random data.

If you still want to use L7-filter for blocking several applications passing through
your Linux router, it can be done as follows:

router:~# iptables -A FORWARD -m layer7 --l7proto edonkey -j DROP

You can also use L7-filter in conjunction with port numbers or IP addresses.
For example:

router:~# iptables -A FORWARD -m layer7 --l7proto edonkey –d
192.168.1.131 -j DROP

will drop eDonkey packets that have the destination 192.168.1.131.

Chapter 5

[129]

Before deciding on blocking certain applications, please
take a look at http://l7-filter.sourceforge.net/
protocols. You will see the list of protocols supported
by the L7-filter project, and how good the patterns are. If
pattern matching is poor, don't use L7-filter with DROP
or REJECT!

Application Bandwidth Limiting
The creators of the L7-filter project describe this as being the best way to use their
project. To limit bandwidth consumed by applications or users, we will use the tc
tool described in Chapter 3.

L7-filter can match some or all application data in IP packets. Therefore, we can set a
mark on the packets belonging to a specific application. Due to the fact that L7-filter
is a match option, we can use netfilter mark to mark the packets, TOS to set a specific
type of service, or DSCP to set a DSCP value, whatever we think is best to use
with tc.

As an example, we will build a script that will limit BitTorrent to 2 Mbps for all our
users, and FTP traffic to 512 Kbps for one user and to 1 Mbps for another user.

First, we need to mark BitTorrent and FTP data with arbitrary integer values. We can
do it like this:

router:~# iptables -t mangle -A POSTROUTING -m layer7 --
 l7proto bittorrent -j MARK --set-mark 5
router:~# iptables -t mangle -A POSTROUTING -m layer7 --
 l7proto ftp –d 192.168.1.100 -j MARK --set-mark 6
router:~# iptables -t mangle -A POSTROUTING -m layer7 --
 l7proto ftp –d 192.168.1.112 -j MARK --set-mark 7

Now, let's verify the POSTROUTING chain:

router:~# iptables -t mangle -L POSTROUTING -n -v
Chain POSTROUTING (policy ACCEPT 5855K packets, 4686M bytes)
 pkts bytes target prot opt in out source destination
 3183 1404K MARK all -- * * 0.0.0.0/0 0.0.0.0/0
 LAYER7 l7proto bittorrent MARK set 0x5
 119 1012K MARK all -- * * 0.0.0.0/0
 192.168.1.100 LAYER7 l7proto ftp MARK set 0x6
 12 100K MARK all -- * * 0.0.0.0/0
 192.168.1.112 LAYER7 l7proto ftp MARK set 0x7

OK, it seems that packets are matched and marked with the values we want (5 for
BitTorrent and 7 for FTP).

Layer 7 Filtering

[130]

We will use CBQ in this example; so we need to create the cbq classes we want. Let's
create a script called limits like this:

#!/bin/bash

#delete root class. When running this
#script we need to delete limits first
tc qdisc del dev eth1 root

#create the root class
tc qdisc add dev eth1 root handle 10: cbq bandwidth 100Mbit avpkt 1000
tc class add dev eth1 parent 10:0 classid 10:1 cbq bandwidth 100Mbit
rate \
 100Mbit allot 1514 weight 10Mbit prio 8 maxburst 20 avpkt 1000

#create a 2 mbps class for bittorrent
tc class add dev eth1 parent 10:1 classid 10:100 cbq bandwidth 100Mbit
rate \
 2Mbit allot 1514 weight 256Kbit prio 5 maxburst 20 avpkt 1000
bounded
tc qdisc add dev eth1 parent 10:100 sfq quantum 1514b perturb 15
tc filter add dev eth1 parent 10:0 protocol ip prio 25 handle 5 fw \
 flowid 10:100

#create a 512 kbps class for ftp for the client 192.168.1.100
tc class add dev eth1 parent 10:1 classid 10:200 cbq bandwidth 100Mbit
rate \
 512Kbit allot 1514 weight 64Kbit prio 5 maxburst 20 avpkt 1000
bounded
tc qdisc add dev eth1 parent 10:200 sfq quantum 1514b perturb 15
tc filter add dev eth1 parent 10:0 protocol ip prio 25 handle 6 fw \
 flowid 10:200

#create a 1 mbps class for ftp for the client 192.168.1.112
tc class add dev eth1 parent 10:1 classid 10:300 cbq bandwidth 100Mbit
rate \
 1Mbit allot 1514 weight 128Kbit prio 5 maxburst 20 avpkt 1000
bounded
tc qdisc add dev eth1 parent 10:300 sfq quantum 1514b perturb 15
tc filter add dev eth1 parent 10:0 protocol ip prio 25 handle 7 fw \
 flowid 10:300

After running the script, to verify the configuration, we need to zero the
POSTROUTING chain in the mangle table and run the script.

router:~# chmod +x limits
router:~# iptables -t mangle -Z POSTROUTING; ./limits

Chapter 5

[131]

RTNETLINK answers: No such file or directory
router:~#

The error we got when running the limits script was generated because no limits
existed on that interface, meaning that no root class was present. If we will run it
again, we will not get any errors.

Now, the commands iptables –t mangle –L POSTROUTING –n –v and tc –s class
show dev eth1 should generate the same number of bytes and packets matched for
each rule and corresponding class.

Accounting with L7-filter
Accounting is the easiest application that you can do with L7-filter. You can set
up accounting scripts to see how many bytes are consumed by applications in
your network.

Let's take the following example on a building router with 11 clients connected. We
want to see what the traffic looks like at the application layer; so we will set up an
accounting script like this:

iptables -A FORWARD -m layer7 --l7proto directconnect
iptables -A FORWARD -m layer7 --l7proto bittorrent
iptables -A FORWARD -m layer7 --l7proto http
iptables -A FORWARD -m layer7 --l7proto ftp
iptables -A FORWARD -m layer7 --l7proto yahoo
iptables -Z

After a few minutes, we can get an idea on what type of traffic is most popular with
those clients:

router:~# iptables -L FORWARD -n -v
Chain FORWARD (policy ACCEPT 289K packets, 209M bytes)
 pkts bytes target prot opt in out source destination
62318 55M all -- * * 0.0.0.0/0 0.0.0.0/0
 LAYER7 l7proto directconnect
 6978 1202K all -- * * 0.0.0.0/0 0.0.0.0/0
 LAYER7 l7proto bittorrent
 8037 6116K all -- * * 0.0.0.0/0 0.0.0.0/0
 LAYER7 l7proto http
 0 0 all -- * * 0.0.0.0/0 0.0.0.0/0
 LAYER7 l7proto ftp
 108 10724 all -- * * 0.0.0.0/0 0.0.0.0/0
 LAYER7 l7proto yahoo

And the winner is dc++ with about 25% of the traffic!

Layer 7 Filtering

[132]

IPP2P: A P2P Match Option
IPP2P is an application that matches P2P data in IP traffic, mostly in the way that
L7-filter does, except that IPP2P is oriented only towards P2P applications. The
project home page is http://www.ipp2p.org.

Installing IPP2P
Installing IPP2P is much simpler than L7-filter. We need to check on its web page for
the latest stable version and download it.

router:~# wget http://www.ipp2p.org/downloads/ipp2p-X.Y.Z.tar.gz
--19:59:51-- http://www.ipp2p.org/downloads/ipp2p-X.Y.Z.tar.gz
 => `ipp2p-X.Y.Z.tar.gz'
Resolving www.ipp2p.org... 81.169.145.64
Connecting to www.ipp2p.org[81.169.145.64]:80... connected.
HTTP request sent, awaiting response... 200 OK
Length: 18,910 [application/x-tar]

100%[===
=================>] 18,910 --.--K/s

19:59:52 (181.98 KB/s) - `ipp2p-X.Y.Z.tar.gz' saved [18910/18910]

Next, we extract the files from the archive:

router:~# tar xfvz ipp2p-X.Y.Z.tar.gz

The README file says "modify the Makefile (change "IUSER = -I/usr/src/iptables/include"
to wherever iptables.h is located)". For example, we have the iptables sources in /usr/
src/iptables-1.3.4. However, some versions don't have IUSER defined in the
makefile, but they have:

ifndef $(IPTABLES_SRC)
IPTVER ?= \
 $(shell $(IPTABLES_BIN) --version | $(SED) -e 's/^iptables v//')
IPTABLES_SRC = $(wildcard /usr/src/iptables-$(IPTVER))
endif

which means that the script will check the iptables version and search for the iptables
sources in /usr/src/iptables-<VERSION>; so, in our situation, we don't have to
modify anything.

Now type make. The application compiles, after which we have to copy
libipt_ipp2p.so to the iptables lib folder, in our case /usr/local/lib/
iptables/, and ipt_ipp2p.ko to the module's directory and run depmod -a. In
this case:

Chapter 5

[133]

router:~/ipp2p-0.8.0# cp ipt_ipp2p.ko /lib/modules/2.6.12.5-home.made/
kernel/net/ipv4/
router:~# depmod -a
router:~# modinfo ipt_ipp2p
filename: /lib/modules/2.6.12.5-home.made/kernel/net/ipv4/
 ipt_ipp2p.ko
author: Eicke Friedrich/Klaus Degner <ipp2p@ipp2p.org>
description: An extension to iptables to identify P2P traffic.
license: GPL
vermagic: 2.6.12.5-home.made preempt PENTIUMIII gcc-3.3
depends: ip_tables

Next, we need to load the module, and it's all set.

router:~/ipp2p-0.8.0# modprobe ipt_ipp2p

Using IPP2P
IPP2P provides another match option for iptables; so the syntax is:

iptables … -m ipp2p –-option ...

where option can be:

Option P2P network Protocol Quality
--edk eDonkey, eMule, Kademlia TCP and UDP very good
--kazaa KaZaA, FastTrack TCP and UDP good
--gnu Gnutella TCP and UDP good
--dc Direct Connect TCP only good
--bit BitTorrent, extended BT TCP and UDP good
--apple AppleJuice TCP only (need feedback)
--winmx WinMX TCP only (need feedback)
--soul SoulSeek TCP only good (need feedback)
--ares Ares, AresLite TCP only moderate (DROP only)

Another possibility is to use as option --ipp2p, which matches all the protocols
stated earlier.

This new match option has the same rules as the L7-filter project, and it's basically
the same. Let's make some tests and compare the results between IPP2P and L7-filter.

Layer 7 Filtering

[134]

IPP2P versus L7-filter
In order to test the results of L7-filter and IPP2P matches, we will set up accounting
rules and see the results. We will use three of the most popular P2P applications:
DirectConnect (DC++), BitTorrent, and eDonkey.

Let's set up a script like this:

iptables -I FORWARD -m layer7 --l7proto directconnect
iptables -I FORWARD -m ipp2p --dc

iptables -I FORWARD -m layer7 --l7proto bittorrent
iptables -I FORWARD -m ipp2p --bit

iptables -I FORWARD -m layer7 --l7proto edonkey
iptables -I FORWARD -m ipp2p --edk

After a few minutes, we pick up the results:

router:~/ipp2p-0.8.0# iptables -L FORWARD -n -v
Chain FORWARD (policy ACCEPT 25M packets, 18G bytes)
 pkts bytes target prot opt in out source destination
 2797 253K all -- * * 0.0.0.0/0 0.0.0.0/0
 ipp2p v0.8.0 --edk
 1533 434K all -- * * 0.0.0.0/0 0.0.0.0/0
 LAYER7 l7proto edonkey
 6665 1069K all -- * * 0.0.0.0/0 0.0.0.0/0
 ipp2p v0.8.0 --bit
 7375 1273K all -- * * 0.0.0.0/0 0.0.0.0/0
 LAYER7 l7proto bittorrent
 192 36558 all -- * * 0.0.0.0/0 0.0.0.0/0
 ipp2p v0.8.0 --dc
 693K 640M all -- * * 0.0.0.0/0 0.0.0.0/0
 LAYER7 l7proto directconnect

The results confirm our expectations that there are a lot of differences between these
two applications.

For example, for eDonkey, IPP2P matched more packets (but less data) than L7-filter.
That doesn't mean that IPP2P matches edk better; it means that IPP2P and L7-filter
don't match the same packets. The explanation is found in the edonkey.pat file in
/etc/l7-protocols:

edonkey

http://gd.tuwien.ac.at/opsys/linux/sf/p/pdonkey/eDonkey-protocol-0.6
#

Chapter 5

[135]

In addition to \xe3, \xc5 and \xd4, I see a lot of \xe5
#
God this is a mess. What an irritating protocol.
This will match about 1% of streams with random data in them!

^[\xe3\xc5\xe5\xd4].?.?.?.?([\x01\x02\x05\x14\x15\x16\x18\x19\x1a\x1b\
x1c\x20\x21\x32\x33\x34\x35\x36\x38\x40\x41\x42\x43\x46\x47\x48\x49\
x4a\x4b\x4c\x4d\x4e\x4f\x50\x51\x52\x53\x54\x55\x56\x57\x58\x5b\x5c\
x60\x81\x82\x90\x91\x93\x96\x97\x98\x99\x9a\x9b\x9c\x9e\xa0\xa1\xa2\
xa3\xa4]|\x59................?[-~]|\x96....$)

matches everything and too much
^(\xe3|\xc5|\xd4)

ipp2p essentially uses "\xe3....\x47", which doesn't seem at all
right to me.

bandwidtharbitrator uses
e0.*@.*6[a-z].*p$|e0.*@.*[a-z]6[a-z].*p0$|e.*@.*[0-
9]6.*p$|emule|edonkey
no comments to explain what all the mush is, of course...

Well, they all use different patterns, which explains the difference.

BitTorrent values are closer between IPP2P and L7-filter, but we can't tell which one
is closer to the truth. To be able to make such an affirmation, we have to set up a test
lab and I really don't think it's worth the trouble.

DC++ data, however, has the most differences. In this case, I'm 90% sure that
L7-filter was way more accurate that IPP2P, because I saw a few of the users behind
that Linux router on our DC++ hub during the time that I waited for these values.

Summary
In this chapter we saw two ways of filtering Layer 7 (Application) traffic in a network.

The most popular and most stable project is L7-filter, which has pretty good
matching patterns for quite a large number of protocols.

Using Layer 7 filtering with Linux is a very nice feature, but it is CPU intensive, and
might not be suitable for high-traffic conditions. Dedicated, specialized hardware
solutions have existed for Layer 7 filtering for quite some time now, and some of
them deliver good performance.

Layer 7 Filtering

[136]

L7-filter is a smart and ambitious project aimed at small to medium networks that
need bandwidth optimization. The advantage of L7-filter over the specialized
hardware solutions is, of course, the cost.

To conclude this chapter, there are two important ideas to be drawn from it, and
those are:

Use L7-filter if it doesn't affect the network performance and doesn't
overload the router's CPU. The decision whether to use L7-filter must be
based on the machine performance (mainly CPU speed) and the type of
traffic passing through it (mainly datarates in PPS).
L7-filter is recommended to be used for marking packets in order to queue
them, and should not be used to drop or reject packets as there might be
many false matches. In case of false matches, it's better to have that data
slower than not to have it at all.

•

•

Small Networks Case Studies
In this chapter we will see some live examples about firewalls for small networks. By
small networks we mean networks with a small number of users (up to 10) that can
be usually found in homes or small offices.

We will try to cover some of the most common situations encountered in small
networks. However, there might be some scenarios that you will face when
administering a small network that cannot be found here, especially if there are some
other devices in the network (like IP phones, for example). Therefore, even if your
interest is only in small networks, we recommend reading the following chapters
also, where we might cover the usage of such (or similar) devices.

Now, let's try to build two scenarios that can be encountered in small networks.

Linux as SOHO Router
SOHO stands for Small Offices and Home Offices, and usually refers to situations
where there exists just one computer at home to a few computers in a small office.

There is a very large offer of SOHO routers on the market nowadays from various
manufacturers, but from what I've tested, most of them do the same basic things
(NAT, DHCP, and some port filtering). They are less expensive than any computer,
but if you have an old computer that you are about to throw away, you can easily
install Linux on it and make it your own SOHO router having the advantage of
higher flexibility at zero cost.

Usually, a SOHO router has a WAN port that is an Ethernet port where the provider
connection must be plugged in. The Provider's CPE (Customer Premises Equipment)
can be of any type (xDSL modem, wireless bridge, cable modem, fiber optic media
converter) that can provide an Ethernet connection. SOHO routers usually have four
to eight Ethernet ports for the LAN. This is basically a small four-to-eight-port switch

Small Networks Case Studies

[138]

that's built in the SOHO router. Some SOHO routers also have a wireless access point
chipset that is bridged to the built-in switch.

Our computer that will run Linux and act as SOHO router must have two Ethernet
cards, one for the WAN function of a SOHO router into which the provider's CPE
is plugged, and one for the LAN. If you want the LAN to be wired and wireless,
the Ethernet interface for the local network will be plugged into an access point
with a built-in switch. However it is, everything is basically a LAN (wired,
wireless, bridged, or switched); so, from the firewall point of view, it doesn't really
matter what we use at the first and second layers of the OSI model (access points,
hubs, switches).

A typical SOHO configuration looks like this:

Chapter 6

[139]

The provider usually assigns us a public IP address that can be either statically
assigned or dynamically assigned using DHCP or PPPoE. Linux has support for
PPPoE; this can be downloaded from http://www.roaringpenguin.com/pppoe/.

It is not the purpose of this book to teach how to set up the
internet connection, mainly because usually this is provider
specific, and providers have a HowTo on this when you
buy the service. The main idea is that you will have an
Ethernet connection to the Internet and a public IP address.

Setting Up the Network
When setting up the local network, we must use a range of private IP addresses. In
this example, we will use the private class C network 192.168.1.0/24; so, the best
thing to do would be to assign the IP address 192.168.1.1 on the Ethernet interface
eth1 on our Linux router.

router:~#ifconfig eth1 192.168.1.1 netmask 255.255.255.0 up

In order to create a proper firewall for all devices behind NAT, we should assign them
static IP addresses. However, we might want to use DHCP for the gaming device
and for the laptop. To do that, first, we need to install the DHCP server. This is a
distribution-specific task. For example, on Debian we run the following commands:

router:~# apt-get install dhcp
Reading Package Lists... Done
Building Dependency Tree... Done
The following NEW packages will be installed:
 dhcp

Next, we need to set up the DHCP server. We want to let the laptop acquire IP
addresses from 192.168.1.2 to 192.168.1.10, for example. We set up a range just in case
we have some friends visiting with their laptops. In the /etc/dhcpd.conf file, we
need to enter the following text:

subnet 192.168.1.0 netmask 255.255.255.0 {
 range 192.168.1.2 192.168.1.10;
 option domain-name-servers provider.assigned.me.one;
 option routers 192.168.1.1;
 option subnet-mask 255.255.255.0;
 option broadcast-address 192.168.1.255;
 default-lease-time 600;
 max-lease-time 7200;
}

Small Networks Case Studies

[140]

For the printer, desktop computer, and the children's computer, we want to assign
them the same IP addresses every time. We find out the MAC addresses for each one,
and, based on their MAC address, we assign them IP addresses by writing in the
/etc/dhcpd.conf the following lines:

host children {
 hardware ethernet 02:03:04:05:06:07;
 fixed-address 192.168.1.55;
 option name-servers provider.assigned.me.one;
 option routers 192.168.1.1;
 option subnet-mask 255.255.255.0;
 option broadcast-address 192.168.1.255;
}
host desktop {
 hardware ethernet 02:03:04:05:06:08;
 fixed-address 192.168.1.11;
 option name-servers provider.assigned.me.one;
 option routers 192.168.1.1;
 option subnet-mask 255.255.255.0;
 option broadcast-address 192.168.1.255;
}
host printer {
 hardware ethernet 02:03:04:05:06:09;
 fixed-address 192.168.1.100;
 option name-servers provider.assigned.me.one;
 option routers 192.168.1.1;
 option subnet-mask 255.255.255.0;
 option broadcast-address 192.168.1.255;
}
host Xbox {
 hardware ethernet 02:03:04:05:06:10;
 fixed-address 192.168.1.200;
 option name-servers provider.assigned.me.one;
 option routers 192.168.1.1;
 option subnet-mask 255.255.255.0;
 option broadcast-address 192.168.1.255;
}

Now, we need to edit the /etc/init.d/dhcp script and set the interface to eth1:

Defaults
INTERFACES="eth1"

and start the DHCP server by running the /etc/init.d/dhcp script with the
start argument.

Chapter 6

[141]

At this point, we have:

The Linux router has a public IP address on eth0, the private IP address on
eth1 192.168.1.1, and DHCP running.
The laptop acquires a private IP address from the range 192.168.1.2-
192.168.1.10.
The desktop computer always acquires the private IP address 192.168.1.11.
The children's computer always acquires the private IP address 192.168.1.55.
The network printer always acquires the private IP address 192.168.1.100.
The gaming device always acquires the private IP address 192.168.1.200.

Defining the Security Policy
Before building up any firewalls, we have to decide what the firewall must do by
creating a security policy that can be from a document (recommended) to a piece of
paper, or some thoughts in our heads.

For the simple and very common network just discussed, we can decide the
following simple rules:

The gaming device can access anything on the Internet. Also, we want to host
games on it using GameSpy Arcade.
The network printer must be accessed only from inside our network.
The children must use the computer to browse the Internet and use
Yahoo! Messenger. We don't want them to be able to access porn content
or download viruses. We also don't want to let them use P2P software; so
basically we limit their access to the Web and Yahoo! messenger.
The laptop and guests laptops can access anything on the Internet (we don't
want to be rude and deny them access to xxx sites, for example).
The desktop can access anything. Also, we want to be able to log in on the
desktop computer from outside using VNC (Virtual Network Computing).
The Linux router must run SSH so that we can log in to it from the internal
network and from the office.

The most difficult thing from our list is to perform all those restrictions for the
children's computer. To be able to block porn sites and viruses, we must use a proxy
server and make it transparent.

•

•

•

•

•

•

•

•

•

•

•

•

Small Networks Case Studies

[142]

Building the Firewall
First, we need to set up Squid proxy server to be able to perform transparent proxy
for the children's computer and deny access to porn sites and some viruses.

Squid can be found at www.squid-cache.org, and is the most widely used
proxy server under Linux—most distributions have packages for Squid. The best
documentation for Squid is the configuration file itself, which is heavily commented.

We will run Squid on its default port, 3128. To be able to use Squid as transparent
proxy, we have to add the following information in the configuration file (usually
/etc/squid/squid.conf):

httpd_accel_host virtual
httpd_accel_port 80
httpd_accel_with_proxy on
httpd_accel_uses_host_header on

Next, we need to define Squid access lists for the internal network to have access
to Squid and to deny porn sites and dangerous files. We will do this for our entire
internal network, but we will use the transparent proxy only for the children's
computer. Any file can be a virus, and the file extensions that follow are just as an
example; so please feel free to add any file extension you consider dangerous. In the
squid.conf file, we add the following lines:

acl all src 0.0.0.0/0.0.0.0
acl our_network src 192.168.1.0/24
acl porn url_regex -i sex adult porn hardcore fetish
acl downloads urlpath_regex \.exe$ \.rar$ \.zip$ \.pif$ \.scr$

http_access deny porn
http_access deny downloads
http_access allow our_network
http_access deny all

The ACL named "porn" contains a list of names that are not allowed in the URL; so
you won't be able to access a site that has one of those words in its name using the
proxy server.

The ACL named "downloads" contains a list of file types that are not allowed to be
accessed; so you won't be able to download files with the extensions in that list using
the proxy server.

Now that we have set up the proxy server, let's implement the firewall to match the
security policy we just built. First of all, because we will use NAT, we might want to
load some of the connection tracking helpers described in Chapter 4:

Chapter 6

[143]

modprobe ip_nat_ftp
modprobe ip_nat_irc

For the gaming device, we need to find out how it works when we host GameSpy
Arcade games on it. We go to their websites and we see that we need to forward the
following ports to the gaming device:

6500 UDP: for GameSpy Arcade
6700 UDP: for GameSpy Tunnel

Let's forward those ports:

iptables –t nat –A PREROUTING –p udp –-dport 6500 –j DNAT –-to
192.168.1.200
iptables –t nat –A PREROUTING –p udp –-dport 6700 –j DNAT –-to
192.168.1.200

For the gaming device to work, we also have to perform NAT for it, which will be
included in the NAT rule for our entire network, which will be at the end.

Next, we need to deny access for the network printer to the Internet. Normally, we
don't do filtering in the NAT table, but we don't want to do masquerading for the
printer IP address. Since the printer has a private IP address, it won't be accessible
from outside and also we will drop packets going out of eth0 in the POSTROUTING
chain of the nat table so that the printer's IP address doesn't get NATed.

iptables –t nat –A POSTROUTING –o eth0 –s 192.168.1.100 –j DROP

For the children's computer, we will perform transparent proxy, meaning that the
computer will use the proxy server without configuring the web browser. We have
already set up the proxy server, so now we need to redirect all the traffic for port 80
TCP to the proxy server. We also want the children's computer to access port 443
TCP, which is HTTPS:

iptables -t nat -A PREROUTING -s 192.168.1.55 -p tcp --dport 80 -j
REDIRECT --to-port 3128
iptables -t nat -A POSTROUTING –o eth0 -s 192.168.1.55 -p tcp --dport
443 -j MASQUERADE

Now, requests from 192.168.1.55 to any host having the destination port 80 or 443
will go to our proxy server; so everything is done locally and we don't have to
masquerade 192.168.1.55 for those requests.

Next, we need to masquerade the children's computer when it sends DNS requests to
our provider:

iptables –t nat –A POSTROUTING –o eth0 –s 192.168.1.55 –p udp –-dport
53 –j MASQUERADE

•

•

Small Networks Case Studies

[144]

DNS requests use port 53 UDP; so now the children's computer can access any
DNS servers.

We want to allow them to use Yahoo! Messenger only for chatting (not voice or file
transfer). Reading the Yahoo! Messenger help, we see that Yahoo! Messenger uses
ports 20, 23, 25, 80, 119, 5050, 8001, and 8002. Also, we see that the hosts needed for
instant messaging using Yahoo! Messenger are:

scs.msg.yahoo.com

scsa.msg.yahoo.com
scsb.msg.yahoo.com
scsc.msg.yahoo.com

So it's better to masquerade the children's computer IP address when accessing those
hosts; we should do like this:

iptables –t nat –A POSTROUTING –o eth0 –s 192.168.1.55 –d scs.msg.
yahoo.com –j MASQUERADE
iptables –t nat –A POSTROUTING –o eth0 –s 192.168.1.55 –d scsa.msg.
yahoo.com –j MASQUERADE
iptables –t nat –A POSTROUTING –o eth0 –s 192.168.1.55 –d scsb.msg.
yahoo.com –j MASQUERADE
iptables –t nat –A POSTROUTING –o eth0 –s 192.168.1.55 –d scsc.msg.
yahoo.com –j MASQUERADE

When using a canonical name instead of an IP address in
the syntax of iptables, the Linux router will resolve the IP
address(es) of the canonical name and insert the rules in the
kernel using those IP addresses. If one canonical name is
resolved to multiple IP addresses, then iptables will insert
in the kernel a number of rules equal to the number of IP
addresses resolved, each line having one of the resolved
IP addresses.

Now that we have set up access for the children's computer, we have to deny access
to other ports and hosts. We do that in the POSTROUTING chain of the nat table:

iptables –t nat –A POSTROUTING –o eth0 –s 192.168.1.55 –j DROP

The laptop and desktop computer must be able to access anything, and so, no special
rules are inserted for them, except the MASQUERADE rule for our network, which we
will append now:

iptables –t nat –A POSTROUTING –o eth0 –s 192.168.1.0/24 –j MASQUERADE

•

•

•

•

Chapter 6

[145]

One more configuration must be done in the nat table to provide the ability to log
in remotely to the desktop computer using VNC. We set up VNC server to use TCP
port 9112 on the desktop computer, so we have to perform DNAT for this port as
follows:

iptables –t nat –A PREROUTING –p tcp –-dport 9112 –j DNAT –-to
192.168.1.11

This is all the configuration that we need for the local network. We need to set up
some firewall rules to secure the Linux router.

First, we need SSH to run on the Linux router so we can administer it remotely.
To secure the SSH access, it is best to create a chain called SSH in which we permit
or deny access to SSH. If a vulnerability is discovered in OpenSSH, it's very likely
that worms scanning for OpenSSH servers on port 22 will appear in a few hours.
Therefore, we might want to run the SSH server on another port than the standard
one (for example, 1234). The SSH chain is created by:

iptables –N SSH

Next, we insert a rule that tells the kernel to look up the SSH chain for all incoming
TCP connections on port 1234:

iptables –A INPUT –p tcp –-dport 1234 –j SSH

We must insert rules in the SSH chain to allow access only from trusted hosts. Let's
say that the IP address at our office is 1.2.3.4:

iptables –A SSH –s 1.2.3.4 –j ACCEPT
iptables –A SSH –s 192.168.1.0/27 –j ACCEPT
iptables –A SSH –s 0/0 –j DROP

The first rule accepts connections from our office IP address 1.2.3.4. The second
rule allows incoming SSH connections only from 192.168.1.0/27, which contains IP
addresses from 192.168.1.1 to 192.168.1.32, as we don't want to allow SSH access from
the children's computer, the printer, and the gaming device. The third rule drops all
other incoming connections to port 1234.

The proxy server (Squid) has its own security by using access lists. However, the best
way to secure it and the router is to drop TCP SYN packets from the Internet in the
input chain. This way, no incoming connection to the Linux router can be made from
the Internet, except SSH on port 1234 from 1.2.3.4, which is matched before this rule.
We also want to accept all packets on the loopback interface (lo) for IPC (internal
process communications).

iptables –A INPUT –i lo –j ACCEPT
iptables –A INPUT –i eth0 –p tcp –-syn –j DROP

Small Networks Case Studies

[146]

Dropping SYN packets offers a good protection for processes that might have bugs.
However, this only drops incoming TCP connections with the SYN flag set (the
request to set up a TCP connection), and will not offer any protection to software that
opens UDP ports.

Setting Up the Firewall Script
On our Linux router, we create the script to contain all the rules above in the order
we need to add them. We present the rules in this order, which is the order in which
the kernel will analyze them.

#!/bin/bash

#define where iptables is
IPT=/sbin/iptables

############# Begin the NAT table operations ######

#Flush all the rules in the nat table
$IPT -t nat -F

#Load some modules needed for NAT
/sbin/modprobe ip_nat_ftp
/sbin/modprobe ip_nat_irc

#DNAT the gaming device ports 6500 and 6700 UDP for hosting games
$IPT –t nat -A PREROUTING -p udp --dport 6500 -j DNAT --to
192.168.1.200
$IPT –t nat -A PREROUTING -p udp --dport 6700 -j DNAT --to
192.168.1.200

#Deny printer access to the internet
$IPT -t nat -A POSTROUTING -o eth0 -s 192.168.1.100 -j DROP

#Transparent Proxy for the children's computer
$IPT -t nat -A PREROUTING -s 192.168.1.55 -p tcp --dport 80 -j
REDIRECT --to-port 3128

#Masquerade HTTPS for children's computer
$IPT -t nat -A POSTROUTING –o eth0 -s 192.168.1.55 -p tcp --dport 443
-j MASQUERADE
#Masquerade the children's computer for DNS requests
$IPT -t nat -A POSTROUTING -o eth0 -s 192.168.1.55 -p udp --dport 53
-j MASQUERADE

Chapter 6

[147]

#Masquerade the children's computer to access yahoo messenger servers
$IPT -t nat -A POSTROUTING -o eth0 -s 192.168.1.55 -d scs.msg.yahoo.
com -j MASQUERADE
$IPT -t nat -A POSTROUTING -o eth0 -s 192.168.1.55 -d scsa.msg.yahoo.
com -j MASQUERADE
$IPT -t nat -A POSTROUTING -o eth0 -s 192.168.1.55 -d scsb.msg.yahoo.
com -j MASQUERADE
$IPT -t nat -A POSTROUTING -o eth0 -s 192.168.1.55 -d scsc.msg.yahoo.
com -j MASQUERADE

#Drop everything else for the children's computer
$IPT -t nat -A POSTROUTING -o eth0 -s 192.168.1.55 -j DROP

#Masquerade all our network
$IPT -t nat -A POSTROUTING -o eth0 -s 192.168.1.0/24 -j MASQUERADE

#DNAT port 9112 TCP for VNC into the desktop computer
$IPT –t nat -A PREROUTING -p tcp --dport 9112 -j DNAT --to
192.168.1.11

############# End the NAT table opperations ######

#Flush all the rules in INPUT, FORWARD and OUTPUT
$IPT -F

#Allow everything on the loopback interface
$IPT -A INPUT -i lo -j ACCEPT

#Delete the SSH chain if it exists and create it again
$IPT -X SSH
$IPT -N SSH

#Pass all tcp packets to port 1234 to the SSH chain
$IPT -A INPUT -p tcp --dport 1234 -j SSH

#Append the allow and drop rules for the SSH chain
$IPT -A SSH -s 1.2.3.4 -j ACCEPT
$IPT -A SSH -s 192.168.1.0/27 -j ACCEPT
$IPT -A SSH -s 0/0 -j DROP

#DROP all incoming TCP SYN packets on eth0
$IPT -A INPUT -i eth0 -p tcp --syn -j DROP

Verifying the Firewall Configuration
After running the script, we want to see how our tables and chains look. First, let's
check the nat table and see how our kernel analyses our rules:

Small Networks Case Studies

[148]

We verify the configuration using iptables –t nat –L –n –v.

router:~# iptables -t nat -L -n -v
Chain PREROUTING (policy ACCEPT 201 packets, 26363 bytes)
 pkts bytes target prot opt in out source destination
 0 0 DNAT udp -- eth0 * 0.0.0.0/0
0.0.0.0/0 udp dpt:6500 to:192.168.1.200
 0 0 DNAT udp -- eth0 * 0.0.0.0/0
0.0.0.0/0 udp dpt:6700 to:192.168.1.200
 0 0 REDIRECT tcp -- * * 192.168.1.55
0.0.0.0/0 tcp dpt:80 redir ports 3128
 0 0 DNAT tcp -- eth0 * 0.0.0.0/0
0.0.0.0/0 tcp dpt:9112 to:192.168.1.11

Chain POSTROUTING (policy ACCEPT 47 packets, 8648 bytes)
 pkts bytes target prot opt in out source destination
 0 0 DROP all -- * eth0 192.168.1.100 0.0.0.0/0
 0 0 MASQUERADE udp -- * eth0 192.168.1.55 0.0.0.0/0
tcp dpt:443
 0 0 MASQUERADE udp -- * eth0 192.168.1.55 0.0.0.0/0
udp dpt:53
 0 0 MASQUERADE all -- * eth0 192.168.1.55
216.155.193.136
 0 0 MASQUERADE all -- * eth0 192.168.1.55
216.155.193.137
 0 0 MASQUERADE all -- * eth0 192.168.1.55
216.155.193.138

(… some lines missing here …)

 0 0 DROP all -- * eth0 192.168.1.55 0.0.0.0/0
 0 0 MASQUERADE all -- * eth0 192.168.1.0/24 0.0.0.0/0

Chain OUTPUT (policy ACCEPT 3 packets, 250 bytes)
 pkts bytes target prot opt in out source destination
router:~#

When an IP packet arrives into the Linux router, in the nat table the PREROUTING
chain is analyzed first. If the packet arrives on eth0 and has the destination UDP
port 6500, the first rule is matched and the destination IP address is rewritten to
192.168.1.200. If the packet doesn't match the first rule, the kernel will try to analyze
the second rule, and so on.

After the PREROUTING chain is analyzed, the kernel does the routing process and
analyzes the POSTROUTING chain rule by rule.

Chapter 6

[149]

At the risk of repeating, you must keep in mind that when a
chain is analyzed, the kernel analyzes the rules in the order
they are seen with iptables –L, and if it matches one rule
in the chain, no other rule in that chain will be analyzed. For
example, if we had the rule that did MASQUERADE for the
entire network 192.168.1.0/24 before the rule in which we
drop all packets for the children's computer (192.168.1.55),
then the last rule would have no effect.

After verifying the nat table, we verify the Netfilter table with iptables –L –n –v:

router:~# iptables -L -n -v
Chain INPUT (policy ACCEPT 86 packets, 6206 bytes)
 pkts bytes target prot opt in out source
destination
 0 0 ACCEPT all -- lo * 0.0.0.0/0 0.0.0.0/0
 0 0 SSH tcp -- * * 0.0.0.0/0 0.0.0.0/0
tcp dpt:1234
 0 0 DROP tcp -- eth0 * 0.0.0.0/0 0.0.0.0/0
tcp flags:0x16/0x02

Chain FORWARD (policy ACCEPT 0 packets, 0 bytes)
 pkts bytes target prot opt in out source destination

Chain OUTPUT (policy ACCEPT 3775 packets, 776K bytes)
 pkts bytes target prot opt in out source destination

Chain SSH (1 references)
 pkts bytes target prot opt in out source destination
 0 0 ACCEPT all -- * * 1.2.3.4 0.0.0.0/0
 0 0 ACCEPT all -- * * 192.168.1.0/27 0.0.0.0/0
 0 0 DROP all -- * * 0.0.0.0/0 0.0.0.0/0

The FORWARD and OUTPUT chains are empty and have the default policy ACCEPT. The
first rule in the INPUT chain tells the kernel to accept all incoming packets on the
loopback interface. If the packet doesn't arrive on the loopback interface, the second
rule is tested, which tells the kernel that if the destination port is 1234 TCP, it should
check the SSH chain to see if it should accept or drop the packet. The kernel next
looks up the SSH chain and accepts or drops the packet.

If the packet is not matched by the second rule in the INPUT chain, then the kernel
doesn't look up the SSH chain at all, and it checks the third rule, which states that the
kernel must drop TCP SYN packets.

Small Networks Case Studies

[150]

QoS—Bandwidth Allocation
At this point our network is protected by a firewall and we have a SOHO router that
we built from a PC running Linux. With Linux we can do a lot more than this; so it's
time to configure it to do more for us.

Let's say that we have a 1Mbps connection (download speed) that we want to share
between the devices in this home so that everyone is happy. First, we need to decide
how to split this bandwidth.

The gaming device needs a maximum of 128kbps when playing online; so we
must allocate at least 128kbps for it, but we want to allow it to use the maximum
bandwidth available when downloading updates, etc.

We want the children's computer and the desktop to have a 256kbps each, and
we also want to leave them the possibility to use the entire bandwidth when it's
available; and for the laptop and friends, we will allocate the remaining 384kbps,
along with the possibility of reaching 1Mbps.

For SOHO applications, usually we don't need to do upload bandwidth allocation; so
we'll just limit the download speeds.

For teaching purposes we will use HTB in this section of the
chapter and CBQ in the following section.

So, what we need is to create an HTB class of 1Mbit and four child classes for
the devices.

First, we need to attach the root qdisc to the interface eth1 and create a root class
with the speed of the interface—100Mbps in our case:

tc qdisc add dev eth1 root handle 1: htb
tc class add dev eth1 parent 1:0 classid 1:10 htb rate 100Mbit

Next, we need to create our 1Mbps class that we'll share between the all devices:

tc class add dev eth1 parent 1:10 classid 1:20 htb rate 1Mbit

This line creates an HTB class with the ID 1:20 and the parent 1:10, which is the
root class.

Chapter 6

[151]

For the gaming device, we will create an HTB class with the ID 1:100 as a child class
to 1:20:

tc class add dev eth1 parent 1:20 classid 1:100 htb rate 128Kbit ceil
1Mbit

We need to attach a queuing discipline to this class. We will use sfq in this section:

tc qdisc add dev eth1 parent 1:100 sfq quantum 1514b perturb 15

Now we need to add a tc filter to specify which packets belong to this class:

tc filter add dev eth1 protocol ip parent 1:0 prio 5 u32 match ip dst
192.168.1.200 flowid 1:100

This is all for the gaming device. For the other HTB classes, we will do the same thing.

For the children's computer:

tc class add dev eth1 parent 1:20 classid 1:200 htb rate 256Kbit ceil
1Mbit
tc qdisc add dev eth1 parent 1:200 sfq quantum 1514b perturb 15
tc filter add dev eth1 protocol ip parent 1:0 prio 5 u32 match ip dst
192.168.1.55 flowid 1:200

For the desktop:

tc class add dev eth1 parent 1:20 classid 1:300 htb rate 256Kbit ceil
1Mbit
tc qdisc add dev eth1 parent 1:300 sfq quantum 1514b perturb 15
tc filter add dev eth1 protocol ip parent 1:0 prio 5 u32 match ip dst
192.168.1.11 flowid 1:300

For the laptop and friends, we will create a class just like the others, but we want to
filter all the IP addresses in the 192.168.1.0/24 network. Since we have already created
the earlier classes, IP packets for 192.168.1.200, 192.168.1.55, and 192.168.1.11 will match
those classes and not this one, even if the filter contains the whole network:

tc class add dev eth1 parent 1:20 classid 1:400 htb rate 256Kbit ceil
1Mbit
tc qdisc add dev eth1 parent 1:400 sfq quantum 1514b perturb 15
tc filter add dev eth1 protocol ip parent 1:0 prio 5 u32 match ip dst
192.168.1.0/24 flowid 1:400

The QoS Script
We need to put all the QoS lines in a script running at boot time, after the network is
initialized. Also, we need to delete the root qdisc first in case we run it again manually
if we make some modifications. Deleting the root qdisc will destroy all classes.

Small Networks Case Studies

[152]

#!/bin/bash

#delete root qdisc (this will destroy all classes)
tc qdisc del dev eth1 root

#attach root qdisc and create the 100Mbps root class
tc qdisc add dev eth1 root handle 1: htb
tc class add dev eth1 parent 1:0 classid 1:10 htb rate 100Mbit

#create the 1Mbps class for the whole bandwidth
tc class add dev eth1 parent 1:10 classid 1:20 htb rate 1Mbit

#Xbox - 128kbit
tc class add dev eth1 parent 1:20 classid 1:100 htb rate 128Kbit ceil
1Mbit
tc qdisc add dev eth1 parent 1:100 sfq quantum 1514b perturb 15
tc filter add dev eth1 protocol ip parent 1:0 prio 5 u32 match ip dst
192.168.1.200 flowid 1:100

#children - 256kbit
tc class add dev eth1 parent 1:20 classid 1:200 htb rate 256Kbit ceil
1Mbit
tc qdisc add dev eth1 parent 1:200 sfq quantum 1514b perturb 15
tc filter add dev eth1 protocol ip parent 1:0 prio 5 u32 match ip dst
192.168.1.55 flowid 1:200

#desktop - 256kbit
tc class add dev eth1 parent 1:20 classid 1:300 htb rate 256Kbit ceil
1Mbit
tc qdisc add dev eth1 parent 1:300 sfq quantum 1514b perturb 15
tc filter add dev eth1 protocol ip parent 1:0 prio 5 u32 match ip dst
192.168.1.11 flowid 1:300

#all other IPs from this class - 384kbit
tc class add dev eth1 parent 1:20 classid 1:400 htb rate 256Kbit ceil
1Mbit
tc qdisc add dev eth1 parent 1:400 sfq quantum 1514b perturb 15
tc filter add dev eth1 protocol ip parent 1:0 prio 5 u32 match ip dst
192.168.1.0/24 flowid 1:400

Verifying the QoS Configuration
We need to verify the configuration we created by looking at the HTB classes. This is
done with tc class show:

Chapter 6

[153]

root@router:~# tc class show dev eth1

class htb 1:10 root rate 100000Kbit ceil 100000Kbit burst 126575b
cburst 126575b
class htb 1:100 parent 1:20 leaf 8081: prio 0 rate 128000bit ceil
1000Kbit burst 1759b cburst 2849b
class htb 1:20 parent 1:10 rate 1000Kbit ceil 1000Kbit burst 2849b
cburst 2849b
class htb 1:200 parent 1:20 leaf 8082: prio 0 rate 256000bit ceil
1000Kbit burst 1919b cburst 2849b
class htb 1:300 parent 1:20 leaf 8083: prio 0 rate 256000bit ceil
1000Kbit burst 1919b cburst 2849b
class htb 1:400 parent 1:20 leaf 8084: prio 0 rate 256000bit ceil
1000Kbit burst 1919b cburst 2849b

So we see the root class 1:10, and the 1000Kbit (1Mbit) class 1:20 having the parent
1:10, and the other classes with their bandwidths having the parent 1:20.

We need to see if packets match our classes. In case of zero traffic, we will verify
that by pinging their IP address and seeing if they made a match for the
corresponding class:

root@router:~# ping -f -c 10 192.168.1.200
PING 192.168.1.200 (192.168.1.200) 56(84) bytes of data.

--- 192.168.1.200 ping statistics ---
10 packets transmitted, 10 received, 0% packet loss, time 3ms
rtt min/avg/max/mdev = 0.198/0.210/0.300/0.033 ms, ipg/ewma
0.394/0.230 ms

root@router:~# tc -s class show dev eth1 | fgrep -A 4 1:100
class htb 1:100 parent 1:20 leaf 808d: prio 0 rate 128000bit ceil
1000Kbit burst 1759b cburst 2849b
 Sent 980 bytes 10 pkts (dropped 0, overlimits 0)
 lended: 10 borrowed: 0 giants: 0
 tokens: 40962 ctokens: 12387

What we did was to send a flood ping with 10 packets to 192.168.1.200, and then
check at the 1:100 class for the gaming device to see if those packets matched the
class for the gaming device, and, as we expected, they did.

Small Networks Case Studies

[154]

Linux as Router for a Typical Small to
Medium Company
In a typical small to medium business, using Linux as a router has a number of
advantages, including low cost and flexibility; also, a Linux router can be used to do
a lot more than just routing.

Let's analyze the following example of a typical small to medium company:

Setting Up the Router
The network above is built for a small to medium company with sales, accounting,
executive, and IT departments as illustrated in the diagram.

Chapter 6

[155]

For easy understanding of the network, we've placed three switches belonging to
three separate networks, one for the sales and accounting departments, one for the
executive offices, and one for the IT department. Usually, a managed switch is used
in this case to create three separate VLANS.

What we have here in this network is:

A broadband internet connection. The provider assigned us the IP 1.1.1.1 for
our router and routed the class C network 1.1.2.0/24 through our router's
IP address (1.1.1.1). The modem is inserted into Eth0, which is statically
configured with the IP address 1.1.1.1, netmask 255.255.255.252, and default
gateway 1.1.1.2, which is the provider's directly connected router.
The Linux router has four fast Ethernet cards. Besides routing IP packets, it
also runs Apache for our intranet application and Samba server; so it acts like
a router, intranet server, and file server.
The IT department has, besides the IT manager, one or more network
administrators. They have a separate network and the web server and mail
server (which is a single Linux machine) resides in the same network. The
web and mail server needs a public IP address, and all the IT department
employees have static public IP addresses. With the thought of adding more
servers in the future, we reserve a 64-host subnet, the first in our class C,
1.1.2.0/26; so we assign to Eth1 on our Linux router the IP address 1.1.2.1,
netmask 255.255.255.192, and configure the web and mail server to have
1.1.2.2, netmask 255.255.255.192, and default gateway 1.1.2.1. If you want, we
will call this network the DMZ zone .
The executive department network contains the computers for all the
managers in the company. They expressed their need to have the least
restriction possible for special chat applications and so on (and also file
sharing). We assign a 32-hosts subnet from our class C for them, the
1.1.2.64/27 network. We assign the static public IP address 1.1.2.65, netmask
255.255.255.224 on Eth2 of our Linux router, and statically assign to them IP
addresses from 1.1.2.66 to 1.1.2.94 using netmask 255.255.255.224 and default
gateway 1.1.2.65.
Sales and accounting departments have one big network, as the company has
a large number of sales agents. This is the part of the network that requires
the most of our attention since usually sales is the department with the most
IT problems :-). We will run DHCP on our Linux router to serve clients on
Eth3. We set up the private IP address 192.168.1.1 with netmask 255.255.255.0
on Eth3 and give our clients, through DHCP, private IP addresses from
192.168.1.2 to 192.168.1.254, netmask 255.255.255.0, and default gateway
192.168.1.1.

•

•

•

•

•

Small Networks Case Studies

[156]

This is our company now, with three smaller networks. It is time to define the
security policy.

Defining the Security Policy
The IT department network is our DMZ zone because the IT guys are experienced
computer users and they know how to secure their computers. The web and mail
server must be accessed from anywhere; so we need to open port 80 TCP for web
access, ports 110 and 25 TCP for mail, and also need SSH. We need to be able
to access both Linux servers in the network using SSH from the IT department
computers as well as from some public IP addresses we have at home.

The intranet server must be accessed only from computers in the office, and so must
the fileserver too. The two servers are on the same machine, but we are referring here
to the services when we say "server".

The executive department must be able to access anything on the Internet; so it
somehow resembles the DMZ zone, but we might want to create some restrictions
for them:

Deny access from people outside the executive network to see their file
shares (NetBIOS file shares, shared folders, etc.)
Use a transparent proxy for them to deny access to .pif and .scr files.

Sales and accounting departments' computers are allowed to do the following:

Browse the Web, but not to download .pif, .scr, .exe, .zip, and .rar files,
and also not to visit sex sites
Access HTTPS port 443 TCP for internet banking
Send and receive email using the company mail server
Access the intranet and file servers

A Few Words on Applications
We described earlier in this chapter how to set up Squid for transparent proxy
and how to set up access lists. In our case, the same Squid proxy server must do
the following:

Be used as transparent proxy
Deny dangerous files (.pif and .scr) for the managers, but allow everything
else for them
Deny dangerous files and sex sites for sales and accounting, but allow
everything else

•

•

•

•

•

•

•

•

•

Chapter 6

[157]

The solution to this problem is the order of the access lists in the squid.conf file.

First, to be able to use Squid as transparent proxy, we have to set:

httpd_accel_host virtual
httpd_accel_port 80
httpd_accel_with_proxy on
httpd_accel_uses_host_header on

in the squid.conf file. Next, we need to set up ACLs for the managers, sales, and
accounting, and the ACLs to deny malicious files, downloads, and sex sites:

acl all src 0.0.0.0/0.0.0.0
acl managers src 1.1.2.64/27
acl sales_accounting src 192.168.1.0/24
acl malicious urlpath_regex \.pif$ \.scr$
acl downloads urlpath_regex \.exe$ \.rar$ \.zip$
acl porn url_regex -i sex adult porn hardcore fetish

Now, to match our security policy, we have to set http_access to those ACLs in the
following order:

http_access deny malicious
http_access allow managers
http_access deny downloads
http_access deny porn
http_access allow sales_accounting
http_access deny all

The intranet server is usually a web server that runs an application that, in most
cases, is a database interface. If the intranet application uses MySQL or PostgreSQL,
which can be installed on the same machine, both of them can be configured using
their configuration files (my.cnf for MySQL and pg_hba.conf for PostgreSQL) to
allow access only from localhost. However, we want to protect ourselves against
possible bugs of this database server software by filtering the ports that listen for
incoming connections, which we can find out by examining the configuration files.

Using Samba as a file server can be done in multiple ways. For the above
configuration, it is recommended to use Samba as WINS server. We can see that by
starting the Samba service only, we will have the following output of netstat –anp:

router:~# netstat -anp
Active Internet connections (servers and established)
Proto Recv-Q Send-Q Local Address Foreign Address State
tcp 0 0 0.0.0.0:139 0.0.0.0:* LISTEN 3950/smbd
tcp 0 0 0.0.0.0:445 0.0.0.0:* LISTEN 3950/smbd
udp 0 0 0.0.0.0:137 0.0.0.0:* 3948/nmbd
udp 0 0 0.0.0.0:138 0.0.0.0:* 3948/nmbd

Small Networks Case Studies

[158]

This means that the Samba server opened TCP ports 139 and 445 and UDP ports 137
and 138.

We know that NetBIOS uses the famous trio of ports 137-138-139, so 445 TCP looks a
little strange.

It was opened by Samba and is the port for microsoft-ds (Microsoft Directory
Services); so we need to filter this port for packets coming from the Internet.

The Samba file server is very complex software. For more information on Samba,
please visit http://us2.samba.org/samba/docs/man/Samba-HOWTO-Collection/.

Creating the Firewall Rules
Since the sales and accounting departments have a lot of people, we will use the
remaining public IP addresses to SNAT those two departments, even if they have
very restrictive access.

First, we need to SNAT the DNS requests made by the computers in those
departments:

iptables -t nat -A POSTROUTING -o eth0 -s 192.168.1.0/24 -p udp
--dport 53 -j SNAT --to 1.1.2.96-1.1.2.254

Next, we need to redirect all the web requests to the proxy server, except those for
the intranet server:

iptables -t nat -A PREROUTING -s 192.168.1.0/24 –d ! 192.168.1.1 -p
tcp --dport 80 -j REDIRECT --to-port 3128

For HTTPS (port 443 TCP) we can't redirect the requests to the proxy server; so we
will SNAT those requests as well:

iptables -t nat -A POSTROUTING -o eth0 -s 192.168.1.0/24 -p tcp
--dport 443 -j SNAT --to 1.1.2.96-1.1.2.254

Next, we need to drop all packets originating from sales and accounting to
the Internet:

iptables -t nat -A POSTROUTING -o eth0 -s 192.168.1.0/24 -j DROP

With these five simple rules, we solved the restrictive access for the sales and
accounting departments. All they can do on the Internet is browse web pages that
don't contain the words in our Squid ACL "porn" and can't download files with the
extensions defined by our Squid ACLs "malicious" and they "downloads". They also
can access all HTTPS sites because they work with several banks that offer internet
banking and also they have to make online acquisitions using credit cards.

Chapter 6

[159]

Now that we are adding rules in the nat table, we should redirect managers' web
requests to use the proxy:

iptables -t nat -A PREROUTING -s 1.1.2.64/27 -p tcp --dport 80 -j
REDIRECT --to-port 3128

The thing we need to make sure is to allow packets on the loopback interface before
we start filtering ports.

iptables -A INPUT -i lo -j ACCEPT

We will need access to SSH on both Linux servers we have from a list of allowed
hosts from our network and from outside (e.g. network administrators' home IP
addresses). First, we decide on a port (22 is default for SSH), let's say 61146 TCP for
running SSH on both our hosts.

Next, we need to build the list of IP addresses that are authorized to access the SSH
ports. Let's say those are 1.1.2.0/26, 1.1.3.192, 1.1.9.21, 1.1.19.61. The simplest way to
build the rules for SSH is to create a chain called MANAGEMENT as follows:

iptables -N MANAGEMENT
iptables -A MANAGEMENT -s 1.1.2.0/26 -j ACCEPT
iptables -A MANAGEMENT -s 1.1.3.192 -j ACCEPT
iptables -A MANAGEMENT -s 1.1.9.21 -j ACCEPT
iptables -A MANAGEMENT -s 1.1.19.61 -j ACCEPT
iptables -A MANAGEMENT -s 0/0 -j DROP

On our Linux router, we need to apply the rules in the MANAGEMENT chain for
incoming packets with the destination port 61146 TCP:

iptables -A INPUT -p tcp --dport 61146 -j MANAGEMENT

Also, for the web and mail server, we will run SSH on port 61146 TCP, and we
need to apply the rules in the MANAGEMENT chain to packets destined to 1.1.2.2 port
61146 TCP:

iptables -A FORWARD -d 1.1.2.2 -p tcp --dport 61146 -j MANAGEMENT

Since we don't want to allow access to the Samba file server from anywhere except
our networks, we will deny access to ports 137, 138, 139 UDP and TCP, and to port
445 TCP in the INPUT chain:

iptables -A INPUT –i eth0 -p tcp --dport 137:139 -j DROP
iptables -A INPUT –i eth0 -p udp --dport 137:139 -j DROP
iptables -A INPUT –i eth0 -p tcp --dport 445 -j DROP

Small Networks Case Studies

[160]

In the security policy, we stated that we want the intranet server that runs on the
Linux router to be accessed only from inside our departments' networks; so we will
have to filter port 80 TCP on the Linux router:

iptables -A INPUT -i eth0 -p tcp --dport 80 -j DROP

The intranet application is coded in PHP and uses PostgreSQL as database. We run
PostgreSQL on the default port 5432, and we don't need connections from outside to
it; so we will filter it regardless of the interface the packet arrives on to port 5432.

iptables -A INPUT -p tcp --dport 5432 -j DROP

Next, we want to drop TCP SYN packets in the INPUT chain. This is a very useful
rule in the eventuality that one of the people that have SSH access on the Linux
router start a buggy service running on a TCP port. This rule also gives us protection
for the Squid proxy server, because we are now not only protected by access lists, but
no one can connect to port 3128 from the Internet:

iptables -A INPUT -i eth0 -p tcp --syn -j DROP

So far, we managed to implement our security policy for the sales and accounting
departments' network and for the Linux router. We also secured SSH connections
from trusted hosts for the web and mail server. We want to allow access from
anywhere to the web and mail server for HTTP (port 80 TCP), SMTP (port 25 TCP),
and POP3 (port 110 TCP). It is important to allow the web and mail server to make
DNS requests (port 53 UDP), and we will not filter any UDP traffic for now; so DNS
requests will work OK.

iptables -A FORWARD -d 1.1.2.2 -p tcp -m multiport --dport 80,25,110
-j ACCEPT

Next, we will drop any TCP SYN packets for the web and mail server:

iptables -A FORWARD -d 1.1.2.2 -p tcp --syn -j DROP

Our security policy requires that no one from outside the executive offices may access
their NetBIOS shares, so we will drop NetBIOS and Microsoft-DS packets for them:

iptables -A FORWARD -d 1.1.2.64/27 -p tcp --dport 137:139 -j DROP
iptables -A FORWARD -d 1.1.2.64/27 -p udp --dport 137:139 -j DROP
iptables -A FORWARD -d 1.1.2.64/27 -p tcp --dport 445 -j DROP

The only thing left in our security policy that we haven't implemented yet is limiting
the bandwidth consumed by the executive computers for BitTorrent and DC++.
To do that, we need the help of our little friend called tc, which stands for "traffic
control", a tool included in the iproute package found in every Linux distribution.

Since BitTorrent and DC++ don't use standard ports, we will also need the help of
the L7-filter project.

Chapter 6

[161]

The strategy is to mark packets matched by L7-filter for BitTorrent and DC++ and to
limit the bandwidth those two protocols use with tc.

Installation and usage of L7-filter is described in the Chapter 5 called Layer 7 filtering,
and marking packets is done by using the mangle table described in Chapter 4. To be
able to limit the bandwidth used by BitTorrent and DC++, we will mark the packets
using an nfmark. We will use nfmark 5 in this example:

iptables -t mangle -A POSTROUTING –o eth2 -m layer7 --l7proto
bittorrent -j MARK --set-mark 5
iptables -t mangle -A POSTROUTING –o eth2 -m layer7 --l7proto
directconnect -j MARK --set-mark 5

At this point we've created all the firewall rules to match our security policy.

Setting Up the Firewall Script
On the Linux router, we will create the following script to add the rules we created
just now, in the correct order, so that the firewall will have the desired effect:

#!/bin/bash

#define where iptables is
IPT=/sbin/iptables

############# Begin the NAT table opperations ######

#Flush all the rules in the nat table
$IPT -t nat -F

#SNAT sales and accounting to port 53 UDP (DNS)
$IPT -t nat -A POSTROUTING -o eth0 -s 192.168.1.0/24 -p udp --dport 53
-j SNAT --to 1.1.2.96-1.1.2.254

#Transparent Proxy for sales and accounting
$IPT -t nat -A PREROUTING -s 192.168.1.0/24 -p tcp --dport 80 -j
REDIRECT --to-port 3128

#SNAT Sales and accounting for HTTPS
$IPT -t nat -A POSTROUTING -o eth0 -s 192.168.1.0/24 -p tcp --dport
443 -j SNAT --to 1.1.2.96-1.1.2.254

#Drop everything else from sales and accouting to the internet
$IPT -t nat -A POSTROUTING -o eth0 -s 192.168.1.0/24 -j DROP

Small Networks Case Studies

[162]

#Transparent Proxy for management
$IPT -t nat -A PREROUTING -s 1.1.2.64/27 -p tcp --dport 80 -j REDIRECT
--to-port 3128

############# End the NAT table opperations ######

#Flush netfilter table
$IPT -F

#allow packets on the loopback interface
$IPT -A INPUT -i lo -j ACCEPT

#delete MANAGEMENT chain if exists
$IPT -X MANAGEMENT
#create MANAGEMENT chain
$IPT -N MANAGEMENT

#add authorized IPs to the MANAGEMENT chain, drop all the others
$IPT -A MANAGEMENT -s 1.1.2.0/26 -j ACCEPT
$IPT -A MANAGEMENT -s 1.1.3.192 -j ACCEPT
$IPT -A MANAGEMENT -s 1.1.9.21 -j ACCEPT
$IPT -A MANAGEMENT -s 1.1.19.61 -j ACCEPT
$IPT -A MANAGEMENT -s 0/0 -j DROP

#Jump incoming packets for port 61146 TCP to the MANAGEMENT chain
$IPT -A INPUT -p tcp --dport 61146 -j MANAGEMENT

#Jump packets destined to 1.1.2.2 port 61146 TCP to the MANAGEMENT
#chain
$IPT -A FORWARD -d 1.1.2.2 -p tcp --dport 61146 -j MANAGEMENT

#drop samba (netbios and ms-ds)
$IPT -A INPUT -i eth0 -p tcp --dport 137:139 -j DROP
$IPT -A INPUT -i eth0 -p udp --dport 137:139 -j DROP
$IPT -A INPUT -i eth0 -p tcp --dport 445 -j DROP

#deny access to the intranet web server
$IPT -A INPUT -i eth0 -p tcp --dport 80 -j DROP

#filter the PostgreSQL port
$IPT -A INPUT -p tcp --dport 5432 -j DROP

#drop incoming TCP SYN packets
$IPT -A INPUT -i eth0 -p tcp --syn -j DROP

Chapter 6

[163]

#allow http, pop3, smtp for the web and mail server
$IPT -A FORWARD -d 1.1.2.2 -p tcp -m multiport --dport 80,25,110 -j
ACCEPT

#drop all other tcp traffic for the web and mail server
$IPT -A FORWARD -d 1.1.2.2 -p tcp --syn -j DROP

#Drop netbios and ms-ds for the managers
$IPT -A FORWARD -d 1.1.2.64/27 -p tcp --dport 137:139 -j DROP
$IPT -A FORWARD -d 1.1.2.64/27 -p udp --dport 137:139 -j DROP
$IPT -A FORWARD -d 1.1.2.64/27 -p tcp --dport 445 -j DROP

#Flush the mangle table
$IPT -t mangle -F

#Mark packets belonging to dc++ and bittorrent
$IPT -t mangle -A POSTROUTING -o eth2 -m layer7 --l7proto bittorrent
-j MARK --set-mark 5
$IPT -t mangle -A POSTROUTING -o eth2 -m layer7 --l7proto
directconnect -j MARK --set-mark 5

Since we used the netfilter table, the mangle table, and the nat table, to verify all
the rules, we need to see the output of iptables –L –n –v, iptables –t nat –L –n
–v, and iptables –t mangle –L –n –v.

QoS—Bandwidth Allocation
For this example, we will perform a simple bandwidth splitting between the
departments of the company. To do bandwidth sharing between them is a bit more
complicated, because each department has its own interface; so, we will have to use
an additional tool to do that. We will explain how to perform bandwidth sharing on
multiple interfaces in the following chapter; for now, we will divide the bandwidth
between the departments using CBQ.

Let's say our total bandwidth is 6Mbps. We want to give 1Mbps to sales and
accounting, 2Mbps to the executive department (from which 512kbps at most goes
to BitTorrent and DC++), 1Mbps to the web and mail server, and 2Mbps to the
IT department.

CBQ has more parameters than HTB, and these can be tuned to adjust performance.
We got the best results using the parameters that we'll use for this example.

First, for the sales and accounting departments we need to attach a CBQ qdisc to
Eth3. After attaching the qdisc, we need to create the root class for the interface:

Small Networks Case Studies

[164]

tc qdisc add dev eth3 root handle 30: cbq bandwidth 100Mbit avpkt 1000

tc class add dev eth3 parent 30:0 classid 30:1 cbq bandwidth 100Mbit
rate 100Mbit allot 1514 weight 10Mbit prio 8 maxburst 20 avpkt 1000

Now, for Eth3 all that needs to be done is to create a class of 1Mbps, attach an SFQ
qdisc to the class, and a tc filter to match the IP addresses in those departments:

tc class add dev eth3 parent 30:1 classid 30:100 cbq bandwidth 100Mbit
rate 1Mbit allot 1514 weight 128Kbit prio 5 maxburst 20 avpkt 1000
bounded

tc qdisc add dev eth3 parent 30:100 sfq quantum 1514b perturb 15

tc filter add dev eth3 parent 30:0 protocol ip prio 5 u32 match ip dst
192.168.1.0/24 flowid 30:100

In the tc class, the rate parameter refers to the
bandwidth in bps that we allow for this class. Most CBQ
documentation recommends using the weight parameter
as rate/10. If we do that, traffic would not exceed 100KB/s,
while for 1Mbps bandwidth, the download speed should be
128KB/s; so it only seems fair to use rate/8.

The bounded parameter of the CBQ class tells the class NOT to exceed the specified
rate. Without the bounded parameter, a class can borrow up to 100% of the free
bandwidth in its parent class.

We will move next to limiting the bandwidth for the executive department. For
them, we will create a 2Mbps CBQ class and two child classes, one of 512Kbps and
one of 1.5Mbps. We won't allow the 512Kbps class to borrow bandwidth from the
other class, but we'll allow the 1.5Mbps to go up to 2Mbps.

As for Eth3, we need to attach a CBQ qdisc and to create a root class for Eth2 first:

tc qdisc add dev eth2 root handle 20: cbq bandwidth 100Mbit avpkt 1000

tc class add dev eth2 parent 20:0 classid 20:1 cbq bandwidth 100Mbit
rate 100Mbit allot 1514 weight 10Mbit prio 8 maxburst 20 avpkt 1000

Next, we will create a 2Mbps class that will be the parent for the other two classes we
discussed earlier:

tc class add dev eth2 parent 20:1 classid 20:10 cbq bandwidth 100Mbit
rate 2Mbit allot 1514 weight 256Kbit prio 5 maxburst 20 avpkt 1000
bounded

Chapter 6

[165]

Now, we will create a 512Kbps class having 20:10 as parent. We will set the bounded
parameter to this class so that it can't go over 512Kbps; we will attach an SFQ qdisc and
a tc filter to match the nfmark 5 that we set in the firewall for BitTorrent and DC++:

tc class add dev eth2 parent 20:10 classid 20:100 cbq bandwidth
100Mbit rate 512Kbit allot 1514 weight 64Kbit prio 5 maxburst 20 avpkt
1000 bounded

tc qdisc add dev eth2 parent 20:100 sfq quantum 1514b perturb 15

tc filter add dev eth2 parent 20:0 protocol ip prio 5 handle 5 fw
flowid 20:100

For the rest of the traffic to the executive department, we will create a 1.5Mbps class
with the parent class 20:10, without the bounded parameter set. We will attach an
SFQ qdisc to this class and a tc filter to match the executive department subnet:

tc class add dev eth2 parent 20:10 classid 20:200 cbq bandwidth
100Mbit rate 1536Kbit allot 1514 weight 192Kbit prio 5 maxburst 20
avpkt 1000

tc qdisc add dev eth2 parent 20:200 sfq quantum 1514b perturb 15

tc filter add dev eth2 parent 20:0 protocol ip prio 5 u32 match ip dst
1.1.2.64/27 flowid 20:200

The configuration for the web server and for the IT department is done in a similar
way; there's nothing new here.

tc qdisc add dev eth1 root handle 10: cbq bandwidth 100Mbit avpkt 1000
tc class add dev eth1 parent 10:0 classid 10:1 cbq bandwidth 100Mbit
rate 100Mbit allot 1514 weight 10Mbit prio 8 maxburst 20 avpkt 1000

tc class add dev eth1 parent 10:1 classid 10:100 cbq bandwidth 100Mbit
rate 1Mbit allot 1514 weight 128Kbit prio 5 maxburst 20 avpkt 1000
bounded
tc qdisc add dev eth1 parent 10:100 sfq quantum 1514b perturb 15
tc filter add dev eth1 parent 10:0 protocol ip prio 5 u32 match ip dst
1.1.2.2 flowid 10:100

tc class add dev eth1 parent 10:1 classid 10:200 cbq bandwidth 100Mbit
rate 2Mbit allot 1514 weight 256Kbit prio 5 maxburst 20 avpkt 1000
bounded
tc qdisc add dev eth1 parent 10:200 sfq quantum 1514b perturb 15
tc filter add dev eth1 parent 10:0 protocol ip prio 5 u32 match ip dst
1.1.2.2 flowid 10:200

Small Networks Case Studies

[166]

The QoS Script
We need to place all those lines in a script, and also need to add some lines to delete
the attached qdisc from all interfaces before adding it again. The script looks like this:

#!/bin/bash

#delete root qdisc for eth3
tc qdisc del dev eth3 root

#attach root qdisc and create the root class for eth3
tc qdisc add dev eth3 root handle 30: cbq bandwidth 100Mbit avpkt 1000
tc class add dev eth3 parent 30:0 classid 30:1 cbq bandwidth 100Mbit
rate \
 100Mbit allot 1514 weight 10Mbit prio 8 maxburst 20 avpkt 1000

#create the 1Mbps class for sales and accounting
tc class add dev eth3 parent 30:1 classid 30:100 cbq bandwidth 100Mbit
rate \
 1Mbit allot 1514 weight 128Kbit prio 5 maxburst 20 avpkt 1000
bounded
tc qdisc add dev eth3 parent 30:100 sfq quantum 1514b perturb 15
tc filter add dev eth3 parent 30:0 protocol ip prio 5 u32 match ip dst
192.168.1.0/24 flowid 30:100

#delete root qdisc for eth2
tc qdisc del dev eth2 root

#attach root qdisc and create the root class for eth2
tc qdisc add dev eth2 root handle 20: cbq bandwidth 100Mbit avpkt 1000
tc class add dev eth2 parent 20:0 classid 20:1 cbq bandwidth 100Mbit
rate \
 100Mbit allot 1514 weight 10Mbit prio 8 maxburst 20 avpkt 1000

#create the 2Mbps class for all traffic to executive dep.
tc class add dev eth2 parent 20:1 classid 20:10 cbq bandwidth 100Mbit
rate \
 2Mbit allot 1514 weight 256Kbit prio 5 maxburst 20 avpkt 1000
bounded

#the bittorrent and dc++ class - 512Kbps
tc class add dev eth2 parent 20:10 classid 20:100 cbq bandwidth
100Mbit rate \
 512Kbit allot 1514 weight 64Kbit prio 5 maxburst 20 avpkt 1000
bounded
tc qdisc add dev eth2 parent 20:100 sfq quantum 1514b perturb 15

Chapter 6

[167]

tc filter add dev eth2 parent 20:0 protocol ip prio 5 handle 5 fw
flowid 20:100

#other traffic to executive dep.
tc class add dev eth2 parent 20:10 classid 20:200 cbq bandwidth
100Mbit rate \
 1536Kbit allot 1514 weight 192Kbit prio 5 maxburst 20 avpkt 1000
tc qdisc add dev eth2 parent 20:200 sfq quantum 1514b perturb 15
tc filter add dev eth2 parent 20:0 protocol ip prio 5 u32 match ip dst
1.1.2.64/27 flowid 20:200

#delete root qdisc for eth1
tc qdisc del dev eth1 root

#attach root qdisc and create the root class for eth1
tc qdisc add dev eth1 root handle 10: cbq bandwidth 100Mbit avpkt 1000
tc class add dev eth1 parent 10:0 classid 10:1 cbq bandwidth 100Mbit
rate \
 100Mbit allot 1514 weight 10Mbit prio 8 maxburst 20 avpkt 1000

#create the 1Mbps class for the web and mail server
tc class add dev eth1 parent 10:1 classid 10:100 cbq bandwidth 100Mbit
rate \
 1Mbit allot 1514 weight 128Kbit prio 5 maxburst 20 avpkt 1000
bounded
tc qdisc add dev eth1 parent 10:100 sfq quantum 1514b perturb 15
tc filter add dev eth1 parent 10:0 protocol ip prio 5 u32 match ip dst
1.1.2.2 flowid 10:100

#create the 2Mbps class for the IT dep.
tc class add dev eth1 parent 10:1 classid 10:200 cbq bandwidth 100Mbit
rate \
 2Mbit allot 1514 weight 256Kbit prio 5 maxburst 20 avpkt 1000
bounded
tc qdisc add dev eth1 parent 10:200 sfq quantum 1514b perturb 15
tc filter add dev eth1 parent 10:0 protocol ip prio 5 u32 match ip dst
1.1.2.2 flowid 10:200

The QoS configuration is verified with tc show dev ethX and with the options -s
and -d to have a more verbose output. Whichever qdisc is used (CBQ or HTB), the
configuration is verified with tc show, though the output differs a bit. For example,
for this script, the output of tc -s class show dev eth1 would be like this:

root@router:~# tc -s class show dev eth1
class cbq 10: root rate 100000Kbit (bounded,isolated) prio no-
transmit

Small Networks Case Studies

[168]

 Sent 391984925 bytes 323636 pkts (dropped 0, overlimits 0)
 borrowed 0 overactions 0 avgidle 53 undertime 0
class cbq 10:100 parent 10:1 leaf 8091: rate 1000Kbit (bounded)
prio 5
 Sent 0 bytes 0 pkts (dropped 0, overlimits 0)
 borrowed 0 overactions 0 avgidle 184151 undertime 0
class cbq 10:1 parent 10: rate 100000Kbit prio no-transmit
 Sent 0 bytes 0 pkts (dropped 0, overlimits 0)
 borrowed 0 overactions 0 avgidle 65 undertime 0
class cbq 10:200 parent 10:1 leaf 8092: rate 2000Kbit (bounded)
prio 5
 Sent 0 bytes 0 pkts (dropped 0, overlimits 0)
 borrowed 0 overactions 0 avgidle 91145 undertime 0

Of course, this output shows zero bytes and zero packets sent for the classes, but
when traffic starts, you should see packets matching the classes.

Summary
In this first case-study chapter of this book, we've analyzed a couple of scenarios that
we can classify as "small" networks, for which we've built firewall and QoS.

The chapter presented:

How to make a SOHO router out of a PC running Linux
How to secure a SOHO network
How to use Linux as router for a small to medium office, and how to secure
such a network
How to perform transparent proxy using Squid and iptables
How to perform NAPT to redirect traffic for certain ports to other hosts
using Linux
How to split bandwidth between the devices in a SOHO environment
using HTB
How to do bandwidth shaping using CBQ
How to use the L7-filter project to shape traffic consumed by certain
applications
Most important, how to think, define, and apply security policies for SOHO
and small-to-medium office environments

•

•

•

•

•

•

•

•

•

Medium Networks
Case Studies

In the previous chapter we learned about using Linux as a SOHO router and as a
router for a medium company with internal departments.

While small networks have the most common topologies because of their simplicity,
when we go further in the hierarchy of networks, there are fewer chances to find
standard topologies for networks built with Linux machines as routers. This is not a
bad thing at all, because, considering Linux' flexibility, network administrators can
deploy networks and services using more their imagination than standardization.

Throughout this chapter we will try to describe a few medium networks we've
encountered in our experience, how we deployed them, and how we built the
firewall for those networks.

Example 1: A Company with Remote
Locations
The following example is from a real application. It's about a hypermarket having
the headquarters in one location, one store in the same city, and several stores in
other cities.

The hypermarket has an application that uses MSSQL databases in each location.
The remote database contains details on stocks and personnel, and needs to replicate
with the headquarters database every day at closing hours. Replication is needed
for stock details update, as the checkout devices query the database for prices
and update stocks so that the headquarters database has all info on daily sales,
and available stocks in every store. The application is developed by a third party

Medium Networks Case Studies

[170]

software company that also does database administration and remote storage; so it
needs access to all databases in every store.

All locations have IP Analog Telephone Adapters (IP phones in the diagram that
follows) with subscriptions at the main provider (the HQ provider). In this example
we will use, just as in the real application, H.323 as VoIP protocol. SIP, IAX, MGCP,
or other VoIP protocols can also be used with slight modifications of the firewalls we
are going to present here.

Headquarters and the store in the same city are connected to the same ISP. Given its
fact that MAN access is much cheaper than an internet connection, headquarters has
a 10 Mbps internet connection with 100 Mbps MAN, and for the store, they wanted
only 100 Mbps MAN, with no internet connection. The rest of the stores have internet
connections from other ISPs in the cities they are in.

The Network
Let's have a look at the network diagram:

Chapter 7

[171]

At the headquarters:

The provider assigned the public IP address 1.1.1.1 for the internet
connection. The connection is a 10 Mbps internet connection and 100 Mbps
metropolitan access.
We decided to use the private class C 192.168.1.0/24 for our internal network.
We set the HQ router LAN interface with the private IP address 192.168.1.1.
MSSQL HQ must have a static private IP address—192.168.1.2.
The IP ATA must have a static private IP address—192.168.1.3.

Site A (Store A):

The provider assigned the private IP address 10.10.12.1 for the MAN
connection. The connection is a 100 Mbps metropolitan access, and no
internet access.
We decided to use the private class C 192.168.2.0/24 for our internal network.
We set the Linux router A LAN interfaces with the private IP address
192.168.2.1.
MSSQL A must have a static private IP address—192.168.2.2.
The IP ATA must have a static private IP address—192.168.2.3.

Sites B and C (Stores B and C):

Local providers assigned public IP addresses 1.1.2.1 for Store B and 1.1.3.1 for
Store C. Internet connections are: 2 Mbps for Store B and 1Mbps for Store C.
We decided to use the private class C 192.168.3.0/24 for Store B and
192.168.4.0/24 for Store C.
We set the Linux routers B and C LAN interface with the private IP addresses
192.168.3.1 and 192.168.4.1.
MSSQL B and C must have static private IP addresses—192.168.3.2 and
192.168.4.2.
The IP ATAs must have static private IP addresses—192.168.3.3 and
192.168.3.4.

The actual network we deployed contains more stores.
However, there is no special situation for any other store
than Stores B and C; so deploying this network is enough to
know how to add more sites.

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

Medium Networks Case Studies

[172]

Building the Network Configuration
All remote locations must have an encrypted VPN connection to headquarters. This
will eliminate the possibility of a MITM (Man In The Middle) attack, and sniffing of
packets between locations will be impossible due to encryption.

Building encrypted VPN connections can be done in various ways: using OpenVPN
software, IP tunnel contained in the iproute package, using POP-TOP (pptpd
package), etc. We decided to use IP tunnel because it was most suited for this
applications (IP addresses are statically assigned) in each location.

The Linux distribution used in all locations is Debian; so we will show the
configuration files as they are on Debian Linux, with the remark that they can be
adapted for any Linux distribution.

For the headquarters' Linux router, we will set up the network interfaces and the
GRE-encrypted tunnels by modifying the /etc/network/interfaces file like this:

#eth0 – ISP inteface

auto eth0
iface eth0 inet static
 address 1.1.1.1
 netmask 255.255.255.252
 network 1.1.1.0
 broadcast 1.1.1.3
 gateway 1.1.1.2
 dns-nameservers 1.1.11.1

#eth1 – LAN interface

auto eth1
iface eth1 inet static
 address 192.168.1.1
 netmask 255.255.255.0
 network 192.168.1.0
 broadcast 192.168.1.255

#tunnel to site A

auto sitea
iface sitea inet static
 address 10.100.100.1
 netmask 255.255.255.252
 network 10.100.100.0

Chapter 7

[173]

 broadcast 10.100.100.3
 pre-up /sbin/modprobe ip_gre
 pre-up /sbin/iptunnel add sitea mode gre local 1.1.1.1
 remote 10.10.12.1 key 111111 dev eth0
 up /sbin/route add –net 192.168.2.0/24 gw 10.100.100.2
 post-down /sbin/iptunnel del sitea

#tunnel to site B

auto siteb
iface siteb inet static
 address 10.100.200.1
 netmask 255.255.255.252
 network 10.100.200.0
 broadcast 10.100.200.3
 pre-up /sbin/modprobe ip_gre
 pre-up /sbin/iptunnel add siteb mode gre local 1.1.1.1
 remote 1.1.2.1 key 222222 dev eth0
 up /sbin/route add –net 192.168.3.0/24 gw 10.100.200.2
 post-down /sbin/iptunnel del siteb

#tunnel to site C

auto sitec
iface sitec inet static
 address 10.100.300.1
 netmask 255.255.255.252
 network 10.100.300.0
 broadcast 10.100.300.3
 pre-up /sbin/modprobe ip_gre
 pre-up /sbin/iptunnel add sitec mode gre local 1.1.1.1
 remote 1.1.3.1 key 333333 dev eth0
 up /sbin/route add –net 192.168.4.0/24 gw 10.100.300.2
 post-down /sbin/iptunnel del sitec

By performing a network restart, our Linux router will have five logical interfaces:
eth0, eth1, sitea, siteb, and sitec. The configuration can be verified using
ifconfig and ip tunnel show commands.

The network configuration for routers B and C is very similar to the HQ router's
configuration. IP addresses on Eth0 need to be changed to 1.1.2.1 for site B and 1.1.3.1
for site C with their corresponding gateways. Also, the IP addresses for Eth1 in both
locations need to be changed to 192.168.3.1 for site B and 192.168.4.1 for site C. The
tunnel interfaces in sites B and C are configured with IP addresses 10.100.200.2 for
site B and 10.100.300.2 on site C. Remember that the tunnels must be configured with
the same keys used on the HQ router.

Medium Networks Case Studies

[174]

The router at site A needs a special configuration, because it only has metro access
and no internet access, and therefore it needs to have as the default route the IP
address of the HQ router. Here's the configuration:

#eth0 – ISP inteface

auto eth0
iface eth0 inet static
 address 10.10.12.1
 netmask 255.255.255.252
 network 10.10.12.0
 broadcast 10.10.12.3
 up /sbin/route add 1.1.1.1 gw 10.10.12.2
		

#eth1 – LAN interface

auto eth1
iface eth1 inet static
 address 192.168.2.1
 netmask 255.255.255.0
 network 192.168.2.0
 broadcast 192.168.2.255

#tunnel to HeadQuarters

auto hq
iface hq inet static
 address 10.100.100.2
 netmask 255.255.255.252
 network 10.100.100.0
 broadcast 10.100.100.3
 pre-up /sbin/modprobe ip_gre
 pre-up /sbin/iptunnel add hq mode gre local 10.10.12.1
 remote 1.1.1.1 key oursiteAkey dev eth0
 up /sbin/route add default gw 10.100.100.1
 post-down /sbin/iptunnel del hq

When bringing up the interface eth0, no default route is set; so, in order to set up the
tunnel, we have to add the route to the IP address of the HQ router via the provider's
directly connected IP address.

After bringing up the tunnel between site A and HQ, we add the default route via
10.100.100.1, which is the IP address of the HQ router on the tunnel interface.

Chapter 7

[175]

Designing the Firewalls
At a first glance, firewalls for this network might seem complicated; however, they
are pretty simple to build. The main concern is database security and with the
tunnels built between the locations, the encryption gives us most of the protection
we need; so data will not be intercepted when database replication occurs.

A man in the middle who wants to sniff packets between the sites sees encrypted
GRE packets, and without the key can't use the captured data.

The third-party database developers can be allowed access to the database servers
either by trusting their IP addresses (trusting routes to them, meaning the providers
on the way) or by giving them a way to make a VPN connection to the sites or to
HQ and letting them work via encrypted connections. In our real-life example, we
allowed them to work directly from their IP addresses because we trust the providers
in between.

We will present our real-life solution for the third-party database developers with
the remark that by giving them VPN access to HQ or directly to the sites the firewalls
are simplified.

Now, what we need to do is deny access to port 1433/TCP, which is used for MSSQL,
from everyone, then allow and DNAT the trusted IP addresses from the third-party
developer to each database in every location.

There's a special configuration for site A, and we can either change the port on which
MSSQL is running, or we can give the developers another port and can DNAT that
port to 1433/TCP. In our example, we will leave MSSQL running on 1433/TCP and
we will give the developers port 9001/TCP to connect to the MSSQL server in site A,
which we will then DNAT to 1433/TCP.

Another complicated situation has to do with the IP Analog Telephone Adapters
(ATA). They use the protocol H.323, which is not so NAT-friendly, because it uses
UDP to transport voice. Fortunately, we know that the standard call signaling port
is 1720/TCP and best of all, we can set the call signaling port on every ATA to be
whatever port we want. We can also set the UDP ports that every ATA uses for RTP
(Real Time Protocol), which is used to transport voice over IP.

Without any firewall configuration, the IP ATA can make calls without hearing the
audio from the other end, but it can't receive calls. So, for the IP ATAs to work, we
have to DNAT RTP ports in our Linux routers. Also, for site A we have to change the
call signaling port so we can use the IP address of the HQ router.

At a first glance at this you might say this is all, but there's one other thing that we
found out only after we implemented the solution. Site A connects to the Internet
over an IP tunnel. The IP tunnel interface can't inherit the MTU (Maximum Transmit

Medium Networks Case Studies

[176]

Unit) of the Ethernet interface. When we NAT the users in site A with the IP address
of the HQ router, packets are transmitted over the Internet with the MTU of the
Ethernet interface eth0 of the HQ router: 1500 bytes.

The problem is that when packets arrive in the HQ router having a size of 1500 bytes
and the DF (Don't Fragment) bit in the TCP header set to 1, the HQ router can't
send the packet to a user in site A. The Linux kernel drops that IP packet because
this is how TCP works (if the IP packet size is greater than the MTU of the interface
through which it needs to be sent, Linux will fragment the packet only if DF is set to
0 in the IP header; otherwise packets are dropped).

We noticed this problem when having IP tunnels with private IP addresses. If the IP
addresses at the end of the tunnels are public, packets with a length greater than the
MTU will be dropped, but the router in site A will send an ICMP packet to the source
with the message "couldn't fragment". The source will then lower the size of the
packet until a suitable size is reached. This is called PMTU-D (Path MTU Discovery),
but in order for it to work, routers at the other end of the tunnel need to be able to
communicate with the source of the packet, and so, ICMP must be allowed; and
ICMP needs a public IP address (or the IP address should be NATed).

Please read carefully the PMTU part. PMTU uses ICMP
messages. There are a lot of network administrators who
block ICMP messages because they consider them as
security threats because of DoS attacks that use ICMP
messages. ICMP should not be filtered anywhere on the
Internet. To give you an example, if Yahoo! administrators
were to filter ICMP packets, over 80% of Internet users
would not be able to access their web-based mail servers.

Building the Firewalls
We have a pretty clear image of what we need to do here. We will start with the
firewalls for sites B and C, which are the simplest.

Sites B and C
The network administrators are all at the headquarters location and they have IP
addresses from 192.168.1.32 to 192.168.1.38; so we will allow SSH on port 22 only
from these IP addresses:

iptables -A INPUT -p tcp --dport 22 -s ! 192.168.1.32/29 -j DROP

Chapter 7

[177]

For the MSSQL servers, we will create separate chains like this:

iptables -N SQL
iptables -A FORWARD -p tcp --dport 1433 -j SQL

and add the rules we want for the SQL chain:

iptables -A SQL -s 192.168.1.3 -j ACCEPT
iptables -A SQL -s 1.1.4.1 -j ACCEPT
iptables -A SQL -s 0/0 -j DROP

Now, let's DNAT the SQL server:

iptables -t nat -A PREROUTING –d 1.1.2.1 -p tcp --dport 1433 -j DNAT
--to 192.168.3.2

and for site C:

iptables -t nat -A PREROUTING –d 1.1.3.1 -p tcp --dport 1433 -j DNAT
--to 192.168.4.2

This is the logical way to do it, but it's wrong. If we build the
firewall this way, everyone can access our SQL servers on
port 1433 by connecting to IP addresses 1.1.2.1 and 1.1.3.1
on port 1433/TCP. We especially wrote it this way so you
can see the big difference. Packets for 1.1.2.1 (site B) and
1.1.3.1 (site C) are treated in the INPUT chain, even if the
MSSQL server is behind the Linux router.

What we need to do is:

iptables -A INPUT -p tcp --dport 1433 -j SQL

or instead of:

iptables -t nat -A PREROUTING –d 1.1.3.1 -p tcp --dport 1433 -j DNAT
--to 192.168.3.2

we should use:

iptables -t nat -A PREROUTING –d 1.1.3.1 –s 1.1.4.1 -p tcp --dport
1433 -j DNAT --to 192.168.3.2

However, we prefer the first way because if developers want to add other IP
addresses that can access the SQL servers, it would be easier in that manner.

Medium Networks Case Studies

[178]

Now, let's allow everyone access to the Internet:

iptables -t nat -A POSTROUTING -s 192.168.3.0/24 -d ! 192.168.1.0/24
-j
MASQUERADE

At this point, our VoIP device is able to place calls but it's not able to receive calls.
Setting the RTP port range for our IP ATA to from 16384 to 16500, with DNAT port
1720/TCP used for call signaling, and port range 16384-16500/UDP used for RTP,
everything should work fine:

iptables -t nat -A PREROUTING -p tcp --dport 1720 -j DNAT --to
192.168.3.3
iptables -t nat -A PREROUTING -p udp --dport 16384:16500 -j DNAT --
to 192.168.3.3

At a first sight you might think that by doing DNAT for all
packets coming from 1.1.99.1 to the ATA device everything
works OK. This is true only if 1.1.99.1 is a VoIP Proxy. If it's
not a proxy, then call signaling and RTP will come from an
unlimited number of IP addresses; so by doing things the
way we presented here it will work for sure.

This is basically all that needs to be done to sites B and C. Now, the smart way of
setting up those is to create a generic script for sites in those situations. This will help
a lot when adding new sites:

#!/bin/bash

#define the prefix for the network (where we are)
PREFIX=192.168.3

#define where iptables is
IPT=/sbin/iptables

#Flush all Rules
$IPT –F

#Flush all the rules in the nat table
$IPT -t nat -F

#Load some modules needed for NAT
/sbin/modprobe ip_nat_ftp
/sbin/modprobe ip_nat_irc

Chapter 7

[179]

#deny SSH access except admins
$IPT -A INPUT -p tcp --dport 22 -s ! 192.168.1.0/29 -j DROP

#SQL Chain
$IPT -N SQL
$IPT -A FORWARD -p tcp --dport 1433 -j SQL
$IPT -A INPUT -p tcp --dport 1433 -j SQL

$IPT -A SQL -s 192.168.1.2 -j ACCEPT
$IPT -A SQL -s 1.1.4.1 -j ACCEPT
$IPT -A SQL -s 0/0 -j DROP

#Dnat port 1433 - SQL server
$IPT -t nat -A PREROUTING –s 1.1.4.1 -p tcp --dport 1433 -j DNAT --to
$PREFIX.2

#NAT all to the internet. Don't nat to network at HQ
$IPT -t nat -A POSTROUTING -s $PREFIX.0/24 -d ! 192.168.1.0/24 -j
MASQUERADE

#allow the IP phone to receive calls.
$IPT -t nat -A PREROUTING -p tcp --dport 1720 -j DNAT --to $PREFIX.3
$IPT -t nat -A PREROUTING -p udp --dport 16384:16500 -j DNAT --to
$PREFIX.3

Every time we add a site we modify the prefix with the network that we use at that
location. For example, for site C we will copy this script and use PREFIX=192.168.4

Site A
Site A has a special situation due to the fact that it has no internet connection.
Because of that, we have to find some ways not only to allow to access the Internet
for hosts at site A, but also to allow remote DB developers access to the SQL server
and the VoIP device to function.

So, the first thing we did was to bring up the tunnel and the interface. The interface
looks like this:

hq Link encap:UNSPEC HWaddr C2-99-E9-C1-00-00-00-00-00-00-00-
 00-00-00-00-00
 inet addr:10.100.100.2 P-t-P:10.100.100.1
 Mask:255.255.255.252
 UP POINTOPOINT RUNNING NOARP MTU:1472 Metric:1
 RX packets:0 errors:0 dropped:0 overruns:0 frame:0
 TX packets:0 errors:0 dropped:0 overruns:0 carrier:0
 collisions:0 txqueuelen:0
 RX bytes:0 (0.0 b) TX bytes:0 (0.0 b)

Medium Networks Case Studies

[180]

We have the default route set to 10.100.100.1. Also, we can see that the hq interface
doesn't have the standard Ethernet MTU of 1500, and instead has an MTU of 1472.

The funniest thing about this special configuration is that site A doesn't need much
of a firewall. Think about it—it has a private IP address that can only be accessed
from the provider's MAN. However, the default route is set on the tunnel so all
packets will go through the HQ router, which can do the filtering. Everything behind
the Linux router in site A has private IP addresses so no one has access to those.

The only thing that can go wrong would be a route to the private network
192.168.2.0/24 added by the provider via 10.10.12.1, which is the site A
MAN-connection IP address. In this case a MAN user can try to attack the SQL
server for example. There's a very simple way to solve this without using iptables.
All you need is to do like this:

echo 1 > /proc/sys/net/conf/all/rp_filter

This will enable rp_filter on all interfaces. rp_filter is short for "Return Path
Filter", and is the mechanism that Linux uses to drop all packets that come in
one interface but go out on another one. This is usually used to prevent spoof
attacks, and in most Linux distributions is enabled by default. In our case setting
rp_filter"on" on the site A router will give us the protection we need.

The only thing we need to set up is to filter SSH access on this router:

iptables -A INPUT -p tcp --dport 22 -s ! 192.168.1.0/29 -j DROP

To our shame that's all we did the first time we deployed this configuration.
Afterwards, users started to complain that several sites (e.g. mail.yahoo.com) didn't
work. The problem is that those sites send data with the segment size set to the MSS
(Maximum Segment Size) of Ethernet and the DF (Don't fragment) bit set to 1. MTU
is the size of the entire IP packet while MSS is the size of the payload. Normally,
the header of a TCP packet is 40 bytes if there aren't any TCP options expanding
the header, and so MSS is equal to MTU—40. For Ethernet, MSS is 1460. For our
connection the MTU is 1472; so MSS is 1432. When a packet has a segment size larger
than 1432 and the DF bit set to 1, the packet is dropped and the Linux router in site A
informs the sender of the packet about this by sending an ICMP message "Couldn't
fragment". This is where PMTU-D (Path MTU Discovery) should come in, but Linux
router A tries to send this packet from it's IP address 10.100.100.2, and so, the original
sender will never receive the "Couldn't fragment" message, because 10.100.100.2 is a
private IP address.

If PMTU-D fails, there are a lot of things that might not function right. The solution
for this is:

iptables -t mangle -A POSTROUTING -o hq -j TCPMSS --clamp-mss-to-pmtu

Chapter 7

[181]

The TCPMSS target of iptables is used to alter the MSS of outgoing packets. In our case,
all packets going out on the hq interface are altered to use another MSS value than the
original value. The --clamp-mss-to-pmtu option automatically sets MSS to the proper
value of the connection. iptables changes the MSS for every packet that goes out of the
hq interface to PMTU (Path Maximum Transfer Unit) minus 40 = 1432.

This is the entire configuration needed for site A.

Headquarters
The HQ Linux router seems to have a more complicated configuration, but in fact,
it is pretty simple. If we look at what needs to be done step by step, we can see
that it differs from sites B and C by performing almost the same functions for two
networks—192.168.1.0/24 in the headquarters location, and 192.168.2.0/24 at site A.

If we take a look again at the network diagram, we can see that if the HQ Linux
router had two IP addresses, the configuration would be the same as sites B and
C (with a few minor changes). Because we only have one IP address, we have to
manage those connections in an intelligent manner.

First, we can use some parts of the script we built for the remote sites:

#!/bin/bash

#define the prefix for the network (where we are)
PREFIX=192.168.1

#define where iptables is
IPT=/sbin/iptables

#Flush all Rules
$IPT –F

#Flush all the rules in the nat table
$IPT -t nat -F

#Load some modules needed for NAT
/sbin/modprobe ip_nat_ftp
/sbin/modprobe ip_nat_irc

#deny SSH access except admins
$IPT -A INPUT -p tcp --dport 22 -s ! 192.168.1.0/29 -j DROP

#SQL Chain
$IPT -N SQL
$IPT -A FORWARD -p tcp --dport 1433 -j SQL

Medium Networks Case Studies

[182]

$IPT -A INPUT -p tcp --dport 1433 -j SQL

$IPT -A SQL -s 192.168.1.2 -j ACCEPT
$IPT -A SQL -s 192.168.2.2 -j ACCEPT
$IPT -A SQL -s 192.168.3.2 -j ACCEPT
$IPT -A SQL -s 192.168.4.2 -j ACCEPT
$IPT -A SQL -s 1.1.4.1 -j ACCEPT
$IPT -A SQL -s 0/0 -j DROP

#Dnat port 1433 - SQL server
$IPT -t nat -A PREROUTING –s 1.1.4.1 -p tcp --dport 1433 -j DNAT --to
$PREFIX.2

#NAT all to the internet. Don't nat to network at HQ
$IPT -t nat -A POSTROUTING -s $PREFIX.0/24 –d 192.168.2.0/24 -j ACCEPT
$IPT -t nat -A POSTROUTING -s $PREFIX.0/24 –d 192.168.3.0/24 -j ACCEPT
$IPT -t nat -A POSTROUTING -s $PREFIX.0/24 –d 192.168.4.0/24 -j ACCEPT
$IPT -t nat -A POSTROUTING -s $PREFIX.0/24 -j MASQUERADE

#allow the IP phone to receive calls.
$IPT -t nat -A PREROUTING -p tcp --dport 1720 -j DNAT --to $PREFIX.3
$IPT -t nat -A PREROUTING -p udp --dport 16384:16500 -j DNAT --to
$PREFIX.3

What we did here was almost the same as in sites B and C, except that we accept SQL
connections from all the SQL servers in all the locations and we don't NAT the local
network 192.168.1.0/24 for all the networks in the remote locations.

We added access to the IP address 192.168.1.2 in the SQL chain because all packets
that pass through the HQ router with the destination port 1433/TCP go through the
SQL chain, even the packets from the SQL server in the headquarters location to the
SQL server in site A.

The script doesn't end here. We have to do the same things for site A, but we can't
use port 1433/TCP for SQL, port 1720/TCP for call signaling, and ports 16384-
16500/UDP for RTP.

We already gave the remote DB developers the IP address 1.1.1.1 and port 9001/
TCP to connect to the SQL server in site A, and so, what we need to do is to DNAT
packets arriving from 1.1.4.1 with the destination port 9001/TCP to 192.168.2.2 on
port 1433/TCP. We don't need to filter anything for this because we don't DNAT
everyone; so, connections from other hosts to 1.1.1.1 on port 9001/TCP will be
dropped because the HQ router doesn't run anything on port 9001/TCP. We will
therefore add to the script the following line:

$IPT -t nat -A PREROUTING -s 1.1.4.1 -p tcp --dport 9001 -j DNAT --to
192.168.2.2:1433

Chapter 7

[183]

Next, we need to reconfigure the VoIP device at site A to use port 1721/TCP for call
signaling and ports 16501 to 16800 for RTP. After that, we need to do DNAT for it to
work; so we'll add the following lines to the script:

$IPT -t nat -A PREROUTING -p tcp --dport 1721 -j DNAT --to 192.168.2.3
$IPT -t nat -A PREROUTING -p udp --dport 16501:16800 -j DNAT --to
192.168.2.3

The H.323 gatekeeper sees two terminals registered from the same IP address
(1.1.1.1), one with the call signaling port 1720/TCP, and the other with 1721/TCP.

Next, we need to NAT the network in site A for Internet access; so we'll add the
following line to the script:

$IPT -t nat -A POSTROUTING -s 192.168.2.0/24 -d ! 192.168.1.0/24 -j
MASQUERADE

Now everything should work fine. Path MTU Discovery should work OK from
headquarters to site A, because we don't filter ICMP and there are routes to the
private IP addresses from both locations. However, just to be sure everything works
OK, we can add the following lines to the script:

#Set MSS on the tunnels
$IPT -t mangle -A POSTROUTING -o sitea -j TCPMSS --clamp-mss-to-pmtu
$IPT -t mangle -A POSTROUTING -o siteb -j TCPMSS --clamp-mss-to-pmtu
$IPT -t mangle -A POSTROUTING -o sitec -j TCPMSS --clamp-mss-to-pmtu

We're all set with the basic configuration. Of course in time
there will be requests such as to deny user access to some
services, but most of those were explained in the previous
chapter. The idea is that we can apply to this kind of
network everything we learned in the previous chapters.

Make the Network Intelligent by Adding QoS
Most people want to use their resources in the optimum way they can. QoS in this
case is related to iptables in the way that we need to use iptables to mark packets to
differentiate services.

Without QoS, one or more users in this network, with or without intention, can slow
things down and can make the use of the VoIP devices almost impossible. It doesn't
matter how much bandwidth each location has; this can happen anyway.

Medium Networks Case Studies

[184]

Let's have a look at the network diagram again:

The general rules we should consider when building QoS for this network are
the following:

Voice traffic should have the highest priority because it is the most sensitive
to packet loss and high delays. We will use priority 0 for voice traffic.
Database replication is very important and it should have priority over user
traffic—priority 1.
Remote DB application developers must be able to work on the SQL servers
with low latency—priority 2.
Traffic between headquarters and the remote locations should have priority
over internet traffic—priority 3.
Internet traffic from users must have the lowest priority—priority 4.

We will create a script for QoS just as we did for the firewall so that we can ease
our work when deploying new locations. When talking about QoS, there's no
"best way" to do it; it's just how we think it's better and optimum for our needs. For

•

•

•

•

•

Chapter 7

[185]

example, for this network we allocated a bandwidth for the VoIP devices in every
location, leaving the rest of the applications only able to consume less than the total
available bandwidth. Some might think this is not optimum, but we know that
there's a lot of voice traffic from the locations and latency is very important to VoIP.

While some applications (e.g. data replication) might eat up all bandwidth, when a
call is set up from the VoIP device, it takes a few seconds for HTB or CBQ to lower
the bandwidth consumed by those applications and give bandwidth to the VoIP
device. For a conversation that has just started, those seconds are very bad in the way
that voice quality is very poor. Our decision can be justified also with the fact that,
being VoIP, the devices use low-bit codecs such as g.729 or g.723, which consume
very low bandwidth for a call (about 16 kbps average).

From the total bandwidth a site has, we will allocate 32 kbps for each line of a VoIP
ATA to make sure that calls don't experience problems. This bandwidth should have
the highest priority over the rest of the traffic. The database replication is important
and bandwidth-consuming at the same time; so we will allocate at least 3/8th of the
remaining bandwidth, with the possibility of borrowing bandwidth from the other
classes, except from VoIP.

The remote developers don't need to eat up so much bandwidth; so we'll allocate
a minimum of 1/8 of the total bandwidth minus the voice bandwidth, with the
possibility to borrow the other's bandwidth, except VoIP.

At this point we've allocated half of the total bandwidth minus the VoIP bandwidth.
For the rest of the traffic that normally passes through site routers, we only have
traffic between the site and headquarters, and the rest is normal internet traffic. We
will divide the rest of the free bandwidth in two and allocate it to those two types of
traffic, except that we'll give priority 3 to HQ traffic and priority 4 to Internet traffic.
This bandwidth allocation that we described is detailed in the following figure:

Medium Networks Case Studies

[186]

To differentiate these services we will mark packets in the mangle table in
the POSTROUTING chain for every service, using the MARK target of iptables (module
ipt_MARK).

Let's go back to the firewall script we created for sites B and C. We need to add the
following lines to the script:

#Flush Mangle chain
$IPT -t mangle -F

#mark packets for the Voip Device - value 0
$IPT -t mangle -A POSTROUTING -d $PREFIX.3 -j MARK --set-mark 1

#mark packets for Database replication - value 1
$IPT -t mangle -A POSTROUTING -s 192.168.1.2 -d $PREFIX.2 -j MARK --
set-mark 2

#mark packets for remote DB developers - value 2
$IPT -t mangle -A POSTROUTING -s 1.1.4.1 -d $PREFIX.2 -j MARK --set-
mark 3

#mark packets for HQ traffic - value 3
$IPT -t mangle -A POSTROUTING -s 192.168.1.0/24 -d $PREFIX.0/24 -j
MARK --set-mark 4

Now, we have packets marked like this:

 0: VoIP traffic
 1: Database Replication
 2: Remote DB Developers
 3: Headquarters traffic
 4: Everything else is Internet traffic

The POSTROUTING chain of the mangle table looks like this:

Chain POSTROUTING (policy ACCEPT)
target prot opt source destination
MARK all -- 0.0.0.0/0 192.168.4.3 MARK set 0x1
MARK all -- 192.168.1.2 192.168.4.2 MARK set 0x2
MARK all -- 1.1.4.1 192.168.4.2 MARK set 0x3
MARK all -- 192.168.1.0/24 192.168.4.0/24 MARK set 0x4

•

•

•

•

•

Chapter 7

[187]

We will create HTB classes for this configuration using the following script:

#!/bin/bash

#Edit these lines to suit location

TOTALBW=1024 #Total DOWNLOAD bandwidth for the location
VBW=128 #Voice bandwidth in this location
PREFIX=192.168.4 #IP addresses in this location

#no more editing is required below this line

let BW=$TOTALBW-$VBW

#delete root qdisc - this will drop all classes
tc qdisc del root dev eth1

#create root qdisc
tc qdisc add dev eth1 root handle 1: htb default 12

#create root class
tc class add dev eth1 parent 1: classid 1:1 htb rate ${TOTALBW}kbit
ceil ${TOTALBW}kbit

#add class, Add Qdisc, Add Filter
AC="tc class add dev eth1 parent"
AQ="tc qdisc add dev eth1 parent"
AF="tc filter add dev eth1 protocol ip parent 1:0 prio 1"

#VoIP should have the highest priority
$AC 1:1 classid 1:10 htb rate ${VBW}kbit ceil ${VBW}kbit prio 0
$AQ 1:10 handle 100: pfifo limit 5
$AF handle 1 fw classid 1:10

#Database Replication
#we allow a minimum of 3/8 of total bandwidth for replication
let DBW=3*$BW/8

$AC 1:1 classid 1:20 htb rate ${DBW}kbit ceil ${BW}kbit prio 1
$AQ 1:20 handle 200: pfifo limit 5
$AF handle 2 fw classid 1:20

#Remote DB application developers

Medium Networks Case Studies

[188]

#we allow a minimum of 1/8 of total bandwidth for remote developers

let RBW=$BW/8

$AC 1:1 classid 1:30 htb rate ${RBW}kbit ceil ${RBW}kbit prio 2
$AQ 1:30 handle 300: pfifo limit 5
$AF handle 3 fw classid 1:30

#traffic between HQ and this location
#we allow a minimum of 1/4 of total bandwidth for traffic with HQ

let I=$BW/4
$AC 1:1 classid 1:40 htb rate ${I}kbit ceil ${BW}kbit prio 3
$AQ 1:40 handle 400: pfifo limit 5
$AF handle 4 fw classid 1:40

#Internet Traffic for users
#we allow a minimum of 1/4 of total bandwidth for internet traffic
$AC 1:1 classid 1:50 htb rate ${I}kbit ceil ${BW}kbit prio 4
$AQ 1:50 handle 500: pfifo limit 5
tc filter add dev eth1 protocol ip parent 1:0 prio 5 u32 match ip dst
$PREFIX.0/24 flowid 1:50

In this script we used $TOTALBW (X in the earlier diagram) 1024 kbps = 1 Mbps, and
$VBW (Y in the same diagram) 128 kbps. We can verify the configuration using the
following command:

sitec~# tc -s class show dev eth1
class htb 1:1 root rate 1Mbit ceil 1Mbit burst 2909b cburst 2909b
 Sent 0 bytes 0 pkts (dropped 0, overlimits 0)
 lended: 0 borrowed: 0 giants: 0
 tokens: 18187 ctokens: 18187

class htb 1:10 parent 1:1 leaf 100: prio 0 rate 128Kbit ceil 128Kbit
burst 1762b cburst 1762b
 Sent 0 bytes 0 pkts (dropped 0, overlimits 0)
 lended: 0 borrowed: 0 giants: 0
 tokens: 88149 ctokens: 88149

class htb 1:20 parent 1:1 leaf 200: prio 1 rate 336Kbit ceil 896Kbit
burst 2029b cburst 2745b
 Sent 0 bytes 0 pkts (dropped 0, overlimits 0)
 lended: 0 borrowed: 0 giants: 0
 tokens: 38666 ctokens: 19614

Chapter 7

[189]

class htb 1:30 parent 1:1 leaf 300: prio 2 rate 112Kbit ceil 112Kbit
burst 1742b cburst 1742b
 Sent 0 bytes 0 pkts (dropped 0, overlimits 0)
 lended: 0 borrowed: 0 giants: 0
 tokens: 99599 ctokens: 99599

class htb 1:40 parent 1:1 leaf 400: prio 3 rate 224Kbit ceil 896Kbit
burst 1885b cburst 2745b
 Sent 0 bytes 0 pkts (dropped 0, overlimits 0)
 lended: 0 borrowed: 0 giants: 0
 tokens: 53885 ctokens: 19614

class htb 1:50 parent 1:1 leaf 500: prio 4 rate 224Kbit ceil 896Kbit
burst 1885b cburst 2745b
 Sent 0 bytes 0 pkts (dropped 0, overlimits 0)
 lended: 0 borrowed: 0 giants: 0
 tokens: 53885 ctokens: 19614

To be sure everything works OK you should make some traffic of any kind, and you
should see Sent bytes more than 0 for the appropriate class. The number of bytes
and packets sent out on any class should match the number of bytes and packets on
each rule in the POSTROUTING chain of the mangle table, only of the scripts run at the
same time.

We presented here how to limit and prioritize traffic that
comes into one site (download only). This doesn't limit
the upload. For each interface, you can limit and prioritize
traffic that goes out on that interface but not what comes in;
so, in order to limit the upload, we have to make another
script for interface eth0.

For limiting upload, we will mark packets in the PREROUTING chain of the mangle
table; so we'll add the following lines to the firewall script:

#mark packets from the Voip Device - value 0
$IPT -t mangle -A PREROUTING -s $PREFIX.3 -j MARK --set-mark 1

#mark packets for Database replication - value 1
$IPT -t mangle -A PREROUTING -d 192.168.1.2 -s $PREFIX.2 -j MARK --
set-mark 2

#mark packets for remote DB developers - value 2
$IPT -t mangle -A PREROUTING -d 1.1.4.1 -s $PREFIX.2 -j MARK --set-
mark 3

Medium Networks Case Studies

[190]

#mark packets for HQ traffic - value 3
$IPT -t mangle -A PREROUTING -d 192.168.1.0/24 -s $PREFIX.0/24 -j
MARK --set-mark 4

The QoS script should look like this:

#!/bin/bash

#Edit these lines to suit location

TOTALBW=1024 #Total UPLOAD bandwidth for the location
VBW=128 #Voice bandwidth in this location
PREFIX=192.168.4 #IP addresses in this location

#no more editing is required below this line

let BW=$TOTALBW-$VBW

#delete root qdisc - this will drop all classes
tc qdisc del root dev eth0

#create root qdisc
tc qdisc add dev eth0 root handle 1: htb default 12

#create root class
tc class add dev eth0 parent 1: classid 1:1 htb rate ${TOTALBW}kbit
ceil ${TOTALBW}kbit

#add class, Add Qdisc, Add Filter
AC="tc class add dev eth0 parent"
AQ="tc qdisc add dev eth0 parent"
AF="tc filter add dev eth0 protocol ip parent 1:0 prio 1"

#VoIP should have the highest priority
$AC 1:1 classid 1:10 htb rate ${VBW}kbit ceil ${VBW}kbit prio 0
$AQ 1:10 handle 100: pfifo limit 5
$AF handle 1 fw classid 1:10

#Database Replication
#we allow a minimum of 3/8 of total bandwidth for replication
let DBW=3*$BW/8

$AC 1:1 classid 1:20 htb rate ${DBW}kbit ceil ${BW}kbit prio 1
$AQ 1:20 handle 200: pfifo limit 5
$AF handle 2 fw classid 1:20

Chapter 7

[191]

#Remote DB application developers
#we allow a minimum of 1/8 of total bandwidth for remote developers

let RBW=$BW/8

$AC 1:1 classid 1:30 htb rate ${RBW}kbit ceil ${RBW}kbit prio 2
$AQ 1:30 handle 300: pfifo limit 5
$AF handle 3 fw classid 1:30

#traffic between HQ and this location
#we allow a minimum of 1/4 of total bandwidth for traffic with HQ

let I=$BW/4
$AC 1:1 classid 1:40 htb rate ${I}kbit ceil ${BW}kbit prio 3
$AQ 1:40 handle 400: pfifo limit 5
$AF handle 4 fw classid 1:40

#Internet Traffic for users
#we allow a minimum of 1/4 of total bandwidth for internet traffic
$AC 1:1 classid 1:50 htb rate ${I}kbit ceil ${BW}kbit prio 4
$AQ 1:50 handle 500: pfifo limit 5
tc filter add dev eth0 protocol ip parent 1:0 prio 5 u32 match ip src
$PREFIX.0/24 flowid 1:50

This is the basic setup for QoS. More information about HTB can be found at
http://luxik.cdi.cz/~devik/qos/htb/manual/userg.htm.

Example 2: A Typical Small ISP
The term "typical" might not be so appropriate when talking about small ISPs. We
have met a lot of network administrators and we seen a lot of small ISPs, and they all
had different configurations.

The network we are going to build in this example is not specific to any provider
but rather a general one. These types of networks exist in generally with a few
modifications.

The network has more security breakpoints than the previous network; so we'll have
more complex and complicated firewalls.

Medium Networks Case Studies

[192]

The Network
Let's take the following network as an example:

This is a small ISP that has one internet connection, an access network, a server farm,
and the internal departments. This ISP uses Linux routers and servers.

The connection from the provider comes in one interface of the Linux core router.
Usually, the core router should be a very stable and powerful machine because it
needs to have a few network interfaces through which a significant amount of data
is passed.

Chapter 7

[193]

Depending on how powerful the core router is, we can say how many users the
network can accommodate. A dual Xeon can handle easily a few hundred broadband
customers and over one thousand smaller customers. You can never say "OK, this
network is fit for 2000 customers", because it really depends on what kind of traffic
they make or what kind of services you provide.

The intranet server is a Linux server used for intranet applications and is also used
to perform routing and NAT for the internal departments. The intranet server is also
responsible with the firewall for the internal departments.

There is a part of the network named the server farm, which contains the servers
of the ISP. There is a database server, an email server, a web server that also
does web hosting and a radius server used for authorization and accounting
(AAA—Authentication, Authorization, and Accounting server) which also runs
DNS server software. Each of these servers runs Linux as OS, and has a dedicated
interface in the core router, which means that all packets arriving in this part of the
network pass through the core router.

The most complicated part is the access network. When building it, you have to
consider the available physical bandwidth for each connection. You can see on the
diagram a server called "Wireless Server". Normally, instead of a computer there,
we can use a wireless bridge. However, the wireless bridge would be connected to
an access point far away in a wireless network that doesn't support very high data
rates and a large number of packets per second. High traffic between users in the
metro Ethernet and wireless users or a large number of broadcasts from the metro
Ethernet network would affect the wireless network performance, because a wireless
bridge would place the wireless network in the same broadcast domain as the metro
Ethernet network, and we wouldn't be able to do anything since packets would only
go through the switch. Of course this can be avoided by breaking up the network
using multiple VLANs.

What we want to do is ease the core router's job and place a wireless server so that
we can perform QoS for the long range wireless customers without having all the
access traffic (between metro Ethernet and wireless) going through the core router.

In the close wireless user case, we won't do this. The close wireless users can connect
to the access point, which is a bridge to very high data rates; so we are not in the
situation where we need to limit all Metro Ethernet access to this network.

In the access part of the network, there is an access server that is used for
providing dial-up access. The access server "talks" AAA with the radius server in
the server farm.

Medium Networks Case Studies

[194]

Building the Network Configuration
For the internet connection, the provider assigned one public IP address (1.1.1.1). The
ISP has one class C network 1.2.3.0/24 that must be divided in subnets to be able to
provide public IP addresses to all these segments of the network.

The way I would subnet this class would be like this:

1.2.3.0/29 subnet for the servers. I would allocate 1.2.3.1 to the radius server,
which also runs a DNS server. The core router would have an interface
(eth1) with the IP address 1.2.3.6 and netmask 255.255.255.248 connected to
the server farm switch.
The intranet server has a separate interface (eth2) which needs a /30 subnet.
I would allocate the IP address 1.2.3.9/30 (netmask 255.255.255.252) for the
core router and 1.2.3.10/30 for the intranet server. The technical department
needs public IP addresses; so I'll route the subnet 1.2.3.16/29 through
the intranet server. The intranet server runs OpenVPN for the network
administrators to connect from remote locations. We'll route the subnet
1.2.3.24/29 to the intranet server for the interfaces on OpenVPN.
I would allocate for the access network the subnet 1.2.3.128/25 from which I
would allocate 1.2.3.129 for eth3 on the core router, 1.2.3.130 for eth0 on the
wireless server, and 1.2.3.131 for the dial-up access server.
There are devices in the network (switches, wireless access points) that
can be managed via telnet/web/snmp. These devices don't need public
IP addresses, and we don't need to NAT them; so I bring up on the core
router an alias to eth3 (eth3:1) with the IP address 192.168.100.1 netmask
255.255.255.0, and set up all those devices to use IP addresses from
192.168.100.0/24.
I would then route the subnet 1.2.3.32/27 to the long range wireless users
and set 1.2.3.33 on the wlan0 wireless interface.
There are two E1 connections for dial-up access (60 lines in total) that can be
used for analog dial-up or ISDN dial-up services. For that I would allocate
the subnet 1.2.3.64/26 with a PPP pool starting from 1.2.3.65 up to 1.2.3.126.

•

•

•

•

•

•

Chapter 7

[195]

After subnetting, the network looks like this:

This is the network for which we will build the firewalls.

Designing and Implementing the Firewalls
Due to the fact that all the servers run Linux, they will all have their own firewall.
However, the main firewall is on the core router, and so we'll have double protection
and can say that we have a layered defense here. Layered defense is when we have
machines and services protected by more than one firewall placed one behind the
other, so that if the outer one fails, we still have protection.

Medium Networks Case Studies

[196]

The reason the intranet server exists in this network is not only for running
the intranet application, but also for NATing the local network of the internal
departments. If the core router did that instead of having the intranet server there,
we would have to use the ip_conntrack module on the core router, which is not
recommended, because at high PPS (packets per second) rates, the conntrack table
would fill and drop packets.

We will build the firewall policy for each server along with the scripts.

The Intranet Server: 1.2.3.10
The intranet server runs the intranet application, which is written in PHP. It only
needs to connect to the database, which has the IP address 1.2.3.2, on port 5432/
TCP (PostgreSQL). It is also a file server running Samba and OpenVPN for the
administrators to connect to this server from home.

We leave SSH to run on the default port (22/TCP), Apache web server on 80/TCP,
and we set up OpenVPN to listen on port 6669/TCP.

We should check to see if there are other ports opened, using netstat:

intranet:~# netstat -an
Active Internet connections (servers and established)
Proto Recv-Q Send-Q Local Address Foreign Address State
tcp 0 0 0.0.0.0:139 0.0.0.0:* LISTEN
tcp 0 0 0.0.0.0:6669 0.0.0.0:* LISTEN
tcp 0 0 0.0.0.0:80 0.0.0.0:* LISTEN
tcp 0 0 0.0.0.0:22 0.0.0.0:* LISTEN
tcp 0 0 0.0.0.0:445 0.0.0.0:* LISTEN
udp 0 0 0.0.0.0:137 0.0.0.0:*
udp 0 0 0.0.0.0:138 0.0.0.0:*

This looks normal; so we'll set up the filters in the INPUT chain to secure our server.

The first thing we want to do is set the INPUT policy to DROP so that all packets with
the destination one of the intranet server's IP addresses will be dropped unless they
match one of the ALLOW rules in the chain. We don't want to filter anything on the
loopback interface.

iptables -P INPUT DROP
iptables -A INPUT -i lo -j ACCEPT

We don't want to filter any ICMP messages:

iptables -A INPUT -p icmp -j ACCEPT

Chapter 7

[197]

Next, we want to allow our internal departments access to the web server running
the intranet application:

iptables -A INPUT -s 192.168.1.0/24 -p tcp --dport 80 -j ACCEPT
iptables -A INPUT -s 1.2.3.16/28 -p tcp --dport 80 -j ACCEPT

The second line allows 1.2.3.16/28, which contains both subnets 1.2.3.16/29 (the
technical department) and 1.2.3.24/29 (IP addresses for VPN connections).

We want to allow everyone to connect to OpenVPN. The authentication for
OpenVPN is made using SSL certificates; so, we want to allow the network
administrators with their certificates on their laptop computers or on a USB flash to
connect from anywhere:

iptables -A INPUT -p tcp --dport 6669 -j ACCEPT

Only the network administrators should have SSH access on the intranet server:

iptables -A INPUT -s 1.2.3.16/28 -p tcp --dport 22 -j ACCEPT

All the internal departments must have access to the file server:

iptables -A INPUT -s 192.168.1.0/24 -p tcp --dport 137:139 -j ACCEPT
iptables -A INPUT -s 192.168.1.0/24 -p udp --dport 137:139 -j ACCEPT
iptables -A INPUT -s 192.168.1.0/24 -p tcp --dport 445 -j ACCEPT

iptables -A INPUT -s 1.2.3.16/28 -p tcp --dport 137:139 -j ACCEPT
iptables -A INPUT -s 1.2.3.16/28 -p udp --dport 137:139 -j ACCEPT
iptables -A INPUT -s 1.2.3.16/28 -p tcp --dport 445 -j ACCEPT

We want to allow the intranet server to resolve hostnames so we will allow
DNS packets:

iptables -A INPUT -p udp --sport 53 -j ACCEPT

We also want to allow the intranet server to be able to initiate TCP connections (for
web access, FTP, etc.):

iptables -A INPUT -p tcp ! --syn -j ACCEPT

This also allows the intranet server to connect to the database at 1.2.3.2.

The FORWARD chain must have the default policy ALLOW. We'll just filter the NetBIOS
and ms-ds packets that come in on eth0, which is the "external" interface:

iptables -A FORWARD -i eth0 -p tcp --dport 137:139 -j DROP
iptables -A FORWARD -i eth0 -p udp --dport 137:139 -j DROP
iptables -A FORWARD -i eth0 -p tcp --dport 445 -j DROP

Medium Networks Case Studies

[198]

All we need to do further with the intranet server is to NAT the 192.168.1.0/24
network:

iptables -t nat -A POSTROUTING -s 192.168.1.0/24 -o eth0 -j MASQUERADE

We MASQUERADE all packets from 192.168.1.0/24 except to 1.2.3.16/28 to allow
NetBIOS and remote desktop traffic between the network administrators and the rest
of the internal departments.

Putting all those rules in a script that is usually executed at boot time would result in:

#!/bin/bash

IPT="/sbin/iptables"

#flush rules
$IPT -F

########## INPUT Chain ########
#policy Drop
$IPT -P INPUT DROP

#Accept all on the loopback interface
$IPT -A INPUT -i lo -j ACCEPT

#Accept icmp
$IPT -A INPUT -p icmp -j ACCEPT

#Allow internal departments to local web server
$IPT -A INPUT -s 192.168.1.0/24 -p tcp --dport 80 -j ACCEPT
$IPT -A INPUT -s 1.2.3.16/28 -p tcp --dport 80 -j ACCEPT

#Allow users to connect to openvpn
$IPT -A INPUT -p tcp --dport 6669 -j ACCEPT

#Allow admins SSH access
$IPT -A INPUT -s 1.2.3.16/28 -p tcp --dport 22 -j ACCEPT

#Allow internal departments SAMBA connections
$IPT -A INPUT -s 192.168.1.0/24 -p tcp --dport 137:139 -j ACCEPT
$IPT -A INPUT -s 192.168.1.0/24 -p udp --dport 137:139 -j ACCEPT
$IPT -A INPUT -s 192.168.1.0/24 -p tcp --dport 445 -j ACCEPT

#Allow admins SAMBA connections
$IPT -A INPUT -s 1.2.3.16/28 -p tcp --dport 137:139 -j ACCEPT

Chapter 7

[199]

$IPT -A INPUT -s 1.2.3.16/28 -p udp --dport 137:139 -j ACCEPT
$IPT -A INPUT -s 1.2.3.16/28 -p tcp --dport 445 -j ACCEPT

#Allow the intranet server to receive DNS packets
$IPT -A INPUT -p udp --sport 53 -j ACCEPT

#Allow non syn packets (connections initiated by this machine)
$IPT -A INPUT -p tcp ! --syn -j ACCEPT

########## FORWARD Chain ########
#Drop SAMBA and ms-ds comming in eth0
$IPT -A FORWARD -i eth0 -p tcp --dport 137:139 -j DROP
$IPT -A FORWARD -i eth0 -p udp --dport 137:139 -j DROP
$IPT -A FORWARD -i eth0 -p tcp --dport 445 -j DROP

########## NAT table ########
#Flush Nat Rules
$IPT -t nat -F

#load some modules for nat to work better
/sbin/modprobe ip_nat_ftp
/sbin/modprobe ip_nat_irc

#MASQ internal departments
$IPT -t nat -A POSTROUTING -s 192.168.1.0/24 -o eth0 -j MASQUERADE

To verify the configuration, we should use iptables –L –n and iptables –t nat –L –n.

intranet:~# iptables -L –n
Chain INPUT (policy DROP)
ACCEPT icmp -- 0.0.0.0/0 0.0.0.0/0
ACCEPT tcp -- 192.168.1.0/24 0.0.0.0/0 tcp dpt:80
ACCEPT tcp -- 1.2.3.16/28 0.0.0.0/0 tcp dpt:80
ACCEPT tcp -- 0.0.0.0/0 0.0.0.0/0 tcp dpt:6669
ACCEPT tcp -- 1.2.3.16/28 0.0.0.0/0 tcp dpt:22
ACCEPT tcp -- 192.168.1.0/24 0.0.0.0/0 tcp dpts:137:139
ACCEPT udp -- 192.168.1.0/24 0.0.0.0/0 udp dpts:137:139
ACCEPT tcp -- 192.168.1.0/24 0.0.0.0/0 tcp dpt:445
ACCEPT tcp -- 1.2.3.16/28 0.0.0.0/0 tcp dpts:137:139
ACCEPT udp -- 1.2.3.16/28 0.0.0.0/0 udp dpts:137:139
ACCEPT tcp -- 1.2.3.16/28 0.0.0.0/0 tcp dpt:445
ACCEPT udp -- 0.0.0.0/0 0.0.0.0/0 udp spt:53
ACCEPT tcp -- 0.0.0.0/0 0.0.0.0/0 tcp flags:!0x16/0x02

Chain FORWARD (policy ACCEPT)

Medium Networks Case Studies

[200]

target prot opt source destination
ACCEPT all -- 0.0.0.0/0 0.0.0.0/0
DROP tcp -- 0.0.0.0/0 0.0.0.0/0 tcp dpts:137:139
DROP udp -- 0.0.0.0/0 0.0.0.0/0 udp dpts:137:139
DROP tcp -- 0.0.0.0/0 0.0.0.0/0 tcp dpt:445

Chain OUTPUT (policy ACCEPT)
target prot opt source destination
intranet:~#
intranet:~# iptables -t nat -L -n
Chain PREROUTING (policy ACCEPT)
target prot opt source destination

Chain POSTROUTING (policy ACCEPT)
target prot opt source destination
MASQUERADE all -- 192.168.1.0/24 !1.2.3.16/28

Chain OUTPUT (policy ACCEPT)
target prot opt source destination

Everything looks OK, and if everything works OK for the internal departments, then
it means we did a good job. More than that, we built a very restrictive firewall; so we
should be safe with the intranet server.

The Wireless Server: 1.2.3.130
The wireless server is more like a router. It doesn't need much of a firewall, and it
doesn't perform NAT for anyone. Its basic function is to route the subnet 1.2.3.33/27
on its wireless interface and to perform QoS for the wireless users connected to it. It
only needs to run SSH; so we'll build a firewall like this:

#!/bin/bash

IPT="/sbin/iptables"

#flush rules
$IPT -F

########## INPUT Chain ########
#policy Drop
$IPT -P INPUT DROP

#Accept all on the loopback interface
$IPT -A INPUT -i lo -j ACCEPT

Chapter 7

[201]

#Accept icmp
$IPT -A INPUT -p icmp -j ACCEPT

#Allow admins SSH access
$IPT -A INPUT -s 1.2.3.16/28 -p tcp --dport 22 -j ACCEPT

#Allow the wireless server to receive DNS packets
$IPT -A INPUT -p udp --sport 53 -j ACCEPT

#Allow non syn packets (connections initiated by this machine)
$IPT -A INPUT -p tcp ! --syn -j ACCEPT

So, what we did for this server was to set the policy for the INPUT chain to DROP.
Then we allowed ICMP messages, SSH for the network administrators, and also let it
access the Internet (for updates, etc.).

The AAA Server: 1.2.3.1
The AAA server runs radius for Authentication, Authorization, and Accounting for
dial-up users, and also for the email users who are stored in the database at 1.2.3.2.

It also runs a DNS server. As we learned in the previous chapters, DNS is a service
exposed to attacks, and bugs often appear in different DNS server implementations.
The worst thing about DNS servers is that we can't filter their traffic because they
wouldn't function anymore.

The most popular DNS server is BIND, which is one of the programs with a very
high number of remotely exploitable bugs compromising security.

My advice is to use other DNS servers than BIND (e.g. djbdns, at http://tinydns.
org/). However, if you decide on using BIND, please don't use any precompiled
executables or installation packages. If you use BIND, you must download the latest
version of BIND from http://www.isc.org/sw/bind/ and place it in a chroot
jail. Please read the chroot-BIND HowTo found at http://tldp.org/HOWTO/
Chroot-BIND-HOWTO.html.

We will use the FreeRADIUS server for AAA with database support. FreeRADIUS
also had some security issues in the past, but we can solve that by creating an
appropriate firewall for it. However, it is recommended that you run FreeRADIUS in
a chroot jail too.

So, we must have SSH, DNS, and Radius running on this server:

AAA:~# netstat -an
Active Internet connections (servers and established)
Proto Recv-Q Send-Q Local Address Foreign Address State

Medium Networks Case Studies

[202]

tcp 0 0 0.0.0.0:22 0.0.0.0:* LISTEN
tcp 0 0 0.0.0.0:53 0.0.0.0:* LISTEN
udp 0 0 0.0.0.0:53 0.0.0.0:*
udp 0 0 0.0.0.0:1812 0.0.0.0:*
udp 0 0 0.0.0.0:1813 0.0.0.0:*
udp 0 0 0.0.0.0:1814 0.0.0.0:*

We will leave the INPUT chain policy as ACCEPT. First, we need to filter SSH to drop
all TCP packets arriving on port 22 except from 1.2.3.16/28:

iptables -A INPUT -s ! 1.2.3.16/28 -p tcp --dport 22 -j DROP

For radius packets, we will create a chain called RADIUS and add a firewall rule in the
INPUT chain to forward all packets on ports 1812-1814 UDP to the RADIUS chain:

iptables -N RADIUS
iptables -A INPUT -p udp --dport 1812:1814 -j RADIUS

Next, we want to allow Radius access to the access server, the mail server, and the
Radius server itself. So we'll add the following rules to the RADIUS chain:

iptables -A RADIUS -i lo -j ACCEPT
iptables -A RADIUS -s 1.2.3.131 -j ACCEPT
iptables -A RADIUS -s 1.2.3.3 -j ACCEPT

Now we just need to drop Radius packets arriving from other hosts:

iptables -A RADIUS -j DROP

Using the netstat command, we see that our server
listens on port 53/TCP. This is used by the DNS server for
zone transfer. Since we don't have a secondary DNS server,
we might disable that or just filter it.

We will leave UDP traffic untouched, but since we don't need to receive any
TCP connections to this server, and only initiate TCP connections, we'll drop
SYN packets:

iptables -A INPUT -i ! lo -p tcp --syn -j DROP

Putting it up together, the script should look like this:

#!/bin/bash

IPT="/sbin/iptables"

Chapter 7

[203]

#flush rules
$IPT -F

#Drop SSH packets except from admins
$IPT -A INPUT -s ! 1.2.3.16/28 -p tcp --dport 22 -j DROP

#Create the RADIUS Chain
$IPT -N RADIUS

#All incoming radius packets jump to RADIUS chain
$IPT -A INPUT -p udp --dport 1812:1814 -j RADIUS

#Allow some hosts to the RADIUS chain
$IPT -A RADIUS -i lo -j ACCEPT
$IPT -A RADIUS -s 1.2.3.131 -j ACCEPT
$IPT -A RADIUS -s 1.2.3.3 -j ACCEPT

#Drop everything else in the RADIUS chain
$IPT -A RADIUS -j DROP

#Drop incoming TCP SYN packets except on loopback
$IPT -A INPUT -i ! lo -p tcp --syn -j DROP

The Database Server: 1.2.3.2
The database server is the most important servers because it holds the database with
all customer details and the business operations from the intranet application.

It is very important for us to secure the database server, and this is not even very
difficult. Although we can combine the other three servers in two or even one server
that can run Radius, DNS, web, FTP, and email, this ISP should keep the database
on a separate machine. They can all be on the same machine, but it's strongly
recommended that the database be on a different machine, as DNS, web, FTP, email,
and even Radius are open to remote exploits.

We stated that it's not very difficult to secure the database server. Assuming we run
PostgreSQL on the default port 5432, we have only a few steps to be taken. First, we
want to set the INPUT chain policy to DROP:

iptables -P INPUT DROP

Next, we want to allow packets on the loopback interface:

iptables -A INPUT -i lo -j ACCEPT

Medium Networks Case Studies

[204]

We will accept incoming SSH connections from the network administrators:

iptables -A INPUT -s 1.2.3.16/28 -p tcp --dport 22 -j ACCEPT

Next, we need to create a chain named SQL and pass all packets arriving with the
destination port 5432/TCP to this chain:

iptables -N SQL
iptables -A INPUT -p udp --dport 5432 -j SQL

In the SQL chain we need to allow packets from the Radius server and from the
intranet server:

iptables -A SQL -s 1.2.3.1 -j ACCEPT
iptables -A SQL -s 1.2.3.10 -j ACCEPT
iptables -A SQL -j DROP

We want to give access to the SQL server to the Internet for updates. We will allow
DNS packets and TCP packets except SYN. To be more restrictive, we can allow DNS
packets only from our DNS server.

iptables -A INPUT -s 1.2.3.1 -p udp --sport 53 -j ACCEPT
iptables -A INPUT -p tcp ! --syn -j ACCEPT

Now, let's set the script for the database server:

#!/bin/bash

IPT="/sbin/iptables"

#flush rules
$IPT -F

#INPUT chain policy DROP
$IPT -P INPUT DROP

#Accept packets on loopback
$IPT -A INPUT -i lo -j ACCEPT

#Accept SSH from Admins
$IPT -A INPUT -s 1.2.3.16/28 -p tcp --dport 22 -j ACCEPT

#Create SQL chain and jump packets for 5432/tcp to it
$IPT -N SQL
$IPT -A INPUT -p udp --dport 5432 -j SQL

#Allow SQL connections from AAA and intranet servers

Chapter 7

[205]

$IPT -A SQL -s 1.2.3.1 -j ACCEPT
$IPT -A SQL -s 1.2.3.10 -j ACCEPT
$IPT -A SQL -j DROP

#Allow outgoing TCP connections
$IPT -A INPUT -s 1.2.3.1 -p udp --sport 53 -j ACCEPT
$IPT -A INPUT -p tcp ! --syn -j ACCEPT

The Email Server: 1.2.3.3
Sendmail is the most popular SMTP server. Sendmail had some security issues in the
past, and it's very probable for it to have such issues in the future. For this server, we
have firewalls similar to the others. The SMTP server running on port 25 must not
be filtered, because then it would not be able to receive emails anymore. chrooting
Sendmail is not a good idea because most probably you won't be able to receive mail.

Therefore you can either choose another SMTP server (I would recommend Postfix)
or have your Sendmail server up to date all the time.

Running the xinetd POP3 server is a good idea and it has been pretty stable over
the years. There is no reason to filter POP3 unless you don't want to allow users to
get their email from other locations than within the ISP network. Some may call it
paranoia, but there's a good reason for why others do this—POP3 is unencrypted,
and it's is very easy to sniff POP3 passwords, and so, getting your email from outside
your ISP network might bring some risks for your email account. We can also
encrypt POP3 (e.g. on Debian Linux package courier-pop-ssl) to eliminate this
concern.

Since the email server has a firewall somewhat similar to the others, we'll present the
script with the appropriate comments:

#!/bin/bash

IPT="/sbin/iptables"

#flush rules
$IPT -F

#INPUT chain policy DROP
$IPT -P INPUT DROP

#Accept packets on loopback
$IPT -A INPUT -i lo -j ACCEPT

#Accept SSH from Admins

Medium Networks Case Studies

[206]

$IPT -A INPUT -s 1.2.3.16/28 -p tcp --dport 22 -j ACCEPT

#Accept UDP radius packets from the AAA server
$IPT -A INPUT -s 1.2.3.1 -p udp --sport 1812:1814 -j ACCEPT

#Accept SMTP traffic
$IPT -A INPUT -p tcp --dport 25 -j ACCEPT

#Accept POP3 traffic
$IPT -A INPUT -p tcp --dport 110 -j ACCEPT

#Allow outgoing TCP connections
$IPT -A INPUT -s 1.2.3.1 -p udp --sport 53 -j ACCEPT
$IPT -A INPUT -p tcp ! --syn -j ACCEPT

Please note that once we set the INPUT chain policy to DROP, even if the mail server
initiates connections to the Radius server, if we don't specify the rule:

$IPT -A INPUT -s 1.2.3.1 -p udp --sport 1812:1814 -j ACCEPT

those packets will be dropped because Radius uses UDP packets and not TCP. As
we learned in Chapter 3, UDP is not connection-oriented; there is no SYN ACK
handshake, and therefore we need this rule for Radius communication to work.

The Web Server: 1.2.3.4
The web server is running Apache with PHP and MySQL for web hosting. It also
runs an FTP server for users to upload their web pages.

We need to make sure that Apache and PHP are up to date and they are configured
in a secure manner so that people for whom we offer web-hosting solutions
can't gain unauthorized access. Please read carefully the instructions at
http://httpd.apache.org/docs/2.2/misc/security_tips.html and
http://www.php.net/manual/en/security.php to secure the two products.

MySQL should be accessed on the loopback interface for security; so the server string
in each MySQL connection should be 127.0.0.1.

There are a lot of FTP servers that can be used, out of which we recommend ProFTPD
and Pure-FTPd. Also, we need to be sure that we have the latest version. Running an
FTP server on our host raises up a new problem we didn't encounter so far.

FTP is a different protocol from the others in the way that it uses a 'control' port and
a 'data' port. FTP runs only on TCP, and by standard, it uses port 21 (FTP) for control
(connecting and issuing commands to the server) and port 20 (FTP data) for actual
data transfer. However, FTP has two modes:

Chapter 7

[207]

Active mode: The client initiates the connection to the server on port 21 using
an unprivileged port N (N>1024). After the connection is established, the
client listens on port N+1 and sends the FTP server the command PORT N+1.
The FTP server will initiate a connection from port 20/TCP to the client on
port N+1/TCP for data transfer.
Passive mode: The client initiates the connection to the server on port 21
using an unprivileged port N like in the active mode. At this point, the FTP
server opens an unprivileged port Y (Y>1024) and sends to the client the
command "PORT Y". Then, the client will open a connection from its port N+1
to the FTP server's port Y.

To toggle between active/passive modes of FTP, a client must issue the command
PASV to the server.

In the first case (active mode), at one point, the server is trying to initiate a TCP
connection from port 20 to an unprivileged port of the client. If the client is behind
NAT, there is a high chance that the connection won't work, and this is mainly why
passive mode is used.

Considering we offer web hosting on this server, we may think that we might
have a lot of clients behind NAT that want to access the FTP server. Both ProFTPD
and Pure-FTPd have configuration directives to specify what port range to use for
passive connections.

We should set the FTP passive port range to 50000-52000. Now, the firewall script
would look like this:

#!/bin/bash

IPT="/sbin/iptables"

#flush rules
$IPT -F

#INPUT chain policy DROP
$IPT -P INPUT DROP

#Accept packets on loopback
$IPT -A INPUT -i lo -j ACCEPT

#Accept SSH from Admins
$IPT -A INPUT -s 1.2.3.16/28 -p tcp --dport 22 -j ACCEPT

#Accept FTP connections
$IPT -A INPUT -p tcp --dport 21 -j ACCEPT

•

•

Medium Networks Case Studies

[208]

#Active connections initiate the requests
#So we only have to accept passive connections
$IPT -A INPUT -p tcp --dport 50000:52000 -j ACCEPT

#Accept web connections
$IPT -A INPUT -p tcp --dport 80 -j ACCEPT

#Allow outgoing TCP connections
$IPT -A INPUT -s 1.2.3.1 -p udp --sport 53 -j ACCEPT
$IPT -A INPUT -p tcp ! --syn -j ACCEPT

A Few Words on the Access Server: 1.2.3.131
While there are a lot of linecards that can be used on Linux to provide computers
with interfaces such as E1 or T1, it seems more feasible to use a dial-up access server
built by a telecom hardware supplier such as Cisco, Lucent, Alcatel, etc.

These access servers usually have a built-in web server and Telnet server for
configuration, and most of them support configuration via SNMP. Even if we have a
firewall on the core router, it would be good to be able to build a firewall on the access
server itself as the last line of defense against attackers as well as for the dial-up users.

If the access server is Cisco, then you can build an extended access list like this:

access-list 101 permit tcp 1.2.3.16 0.0.0.15 host 1.2.3.131 eq telnet
access-list 101 permit tcp 1.2.3.16 0.0.0.15 host 1.2.3.131 eq www
access-list 101 permit udp 1.2.3.16 0.0.0.15 host 1.2.3.131 eq snmp
access-list 101 permit icmp any host 1.2.3.131
access-list 101 deny ip any host 1.2.3.131

You can then apply the access list on the network interface (FastEthernet 0) and on
the dialer groups you created for dial-up users.

The Core Router—First Line of �������Defense
We left the core router to last for the simple reason that most of the firewall on the
core router contains pieces from the firewalls on the other servers.

Chapter 7

[209]

Now, let's refresh our memory with the network diagram:

From a security point of view, the core router is the first line of defense. The first line
of defense should stop all attacks coming from outside. However, if the firewall at
the core router fails, then the firewall on each server is responsible for the security of
that server.

If a user gains unauthorized access due to a bug in one of the services running on
one server, the core router firewall or the firewall on that server are useless. In this
case, the attacker has access to a server directly connected to the other servers in the
server farm, and so the first line of defense has failed.

Medium Networks Case Studies

[210]

To get back to the reason we implemented security on the core router last, we think
it's better this way because we already explained a lot of features that will be use in
this firewall, and we did that by specifying the services for each situation.

The INPUT chain for the core router is the simplest of all the firewalls so far.
We need to set the policy to DROP, allow SSH, ICMP, and DNS, and disallow SYN
packets—that's all!

In the FORWARD chain, we will do most of the operations we already did on the
servers. Let's set up the script:

#!/bin/bash

IPT="/sbin/iptables"

#flush rules
$IPT -F

########## INPUT Chain begin ########
#policy Drop
$IPT -P INPUT DROP

#Accept all on the loopback interface
$IPT -A INPUT -i lo -j ACCEPT

#Accept icmp
$IPT -A INPUT -p icmp -j ACCEPT

#Allow admins SSH access
$IPT -A INPUT -s 1.2.3.16/28 -p tcp --dport 22 -j ACCEPT

#Allow the core router to receive DNS packets
$IPT -A INPUT -p udp --sport 53 -j ACCEPT

#Allow non syn packets (connections initiated by this machine)
$IPT -A INPUT -p tcp ! --syn -j ACCEPT

########## INPUT Chain end ########

########## FORWARD Chain begin ########
########## policy ACCEPT - default

#Deny Access to switches and wireless equipment
$IPT -A FORWARD -s ! 1.2.3.16/28 -d 192.168.100.0/24 -j DROP

Chapter 7

[211]

#Allow SSH access to everything from admins
$IPT -A FORWARD -s ! 1.2.3.16/28 -p tcp --dport 22 -j ACCEPT

#Allow established tcp packets out eth1 and eth2
$IPT -A FORWARD -o eth1 -p tcp ! --syn -j ACCEPT
$IPT -A FORWARD -o eth2 -p tcp ! --syn -j ACCEPT

#Create a chain for the intranet server
#Intranet server
$IPT -N INTRANET
$IPT -A FORWARD -d 1.2.3.10 -j INTRANET

INTRANET Chain
#DROP web packets for the intranet application
$IPT -A INTRANET -p tcp --dport 80 -j DROP

#DROP SSH (Packets from ADMINS don't pass through here)
$IPT -A INTRANET -p tcp --dport 22 -j DROP

#Drop Samba and ms-ds for packets on eth2
$IPT -A FORWARD -o eth2 -p tcp --dport 137:139 -j DROP
$IPT -A FORWARD -o eth2 -p udp --dport 137:139 -j DROP
$IPT -A FORWARD -o eth2 -p tcp --dport 445 -j DROP

#wireless server - simple, we don't need a chain
$IPT -A FORWARD -d 1.2.3.130 -p udp --sport 53 -j ACCEPT
$IPT -A FORWARD -d 1.2.3.130 -p ICMP -j ACCEPT
$IPT -A FORWARD -d 1.2.3.130 -j DROP

#AAA server
$IPT -A FORWARD -d 1.2.3.1 -s ! 1.2.3.131 -p udp --dport 1812:1814 -j
DROP
$IPT -A FORWARD -d 1.2.3.1 -p tcp --dport 23 -j DROP

#SQL server
$IPT -A FORWARD -d 1.2.3.2 -s ! 1.2.3.10 -p tcp --dport 5432 -j DROP
$IPT -A FORWARD -d 1.2.3.2 -p ICMP -j ACCEPT
$IPT -A FORWARD -d 1.2.3.2 -j DROP

#MAIL server
$IPT -A FORWARD -d 1.2.3.3 -p tcp --dport 25 -j ACCEPT
$IPT -A FORWARD -d 1.2.3.3 -p tcp --dport 110 -j ACCEPT
$IPT -A FORWARD -d 1.2.3.3 -p udp --sport 53 -j ACCEPT
$IPT -A FORWARD -d 1.2.3.3 -p ICMP -j ACCEPT

Medium Networks Case Studies

[212]

$IPT -A FORWARD -d 1.2.3.3 -j DROP

#WEB server
$IPT -A FORWARD -d 1.2.3.4 -p tcp --dport 50000:52000 -j ACCEPT
$IPT -A FORWARD -d 1.2.3.4 -p tcp --dport 80 -j ACCEPT
$IPT -A FORWARD -d 1.2.3.4 -p tcp --dport 21 -j ACCEPT
$IPT -A FORWARD -d 1.2.3.4 -p ICMP -j ACCEPT
$IPT -A FORWARD -d 1.2.3.4 -j DROP

#Access Server
$IPT -A FORWARD -d 1.2.3.131 -s 1.2.3.1 -p udp --sport 1812:1814 -j
ACCEPT
$IPT -A FORWARD -d 1.2.3.131 -s 1.2.3.1 -p udp --sport 53 -j ACCEPT
$IPT -A FORWARD -d 1.2.3.131 -s 1.2.3.16/28 -j ACCEPT
$IPT -A FORWARD -d 1.2.3.131 -p ICMP -j ACCEPT
$IPT -A FORWARD -d 1.2.3.131 -j DROP

As you might've expected, the firewall rules from the core router differ from the ones
on the servers. Let's take the SQL server for example. We have the line:

$IPT -A FORWARD -d 1.2.3.2 -s ! 1.2.3.10 -p tcp --dport 5432 -j DROP

This will drop packets from other sources than 1.2.3.10 (the intranet server) to the
database server on port 5432/TCP. However, on the database server we have a
chain named SQL in which we allow connections from 1.2.3.10 and 1.2.3.1 (the AAA
server). The reason why we didn't add a rule in the core router for packets with the
source 1.2.3.1 to pass to 1.2.3.2 is that those servers are in the same subnet (directly
connected) and packets from one to another don't pass through the core router.

At this point we should verify the configuration and see if everything is OK. We will
do this with iptables –L –n:

root@core:~# iptables -L -n
Chain INPUT (policy DROP)
ACCEPT all -- 0.0.0.0/0 0.0.0.0/0
ACCEPT icmp -- 0.0.0.0/0 0.0.0.0/0
ACCEPT tcp -- 1.2.3.16/28 0.0.0.0/0 tcp dpt:22
ACCEPT udp -- 0.0.0.0/0 0.0.0.0/0 udp spt:53
ACCEPT tcp -- 0.0.0.0/0 0.0.0.0/0 tcp flags:!0x16/0x02

Chain FORWARD (policy ACCEPT)
target prot opt source destination
DROP all -- !1.2.3.16/28 192.168.100.0/24
ACCEPT tcp -- !1.2.3.16/28 0.0.0.0/0 tcp dpt:22
ACCEPT tcp -- 0.0.0.0/0 0.0.0.0/0 tcp flags:!0x16/0x02
ACCEPT tcp -- 0.0.0.0/0 0.0.0.0/0 tcp flags:!0x16/0x02

Chapter 7

[213]

INTRANET all -- 0.0.0.0/0 1.2.3.10
DROP tcp -- 0.0.0.0/0 0.0.0.0/0 tcp dpts:137:139
DROP udp -- 0.0.0.0/0 0.0.0.0/0 udp dpts:137:139
DROP tcp -- 0.0.0.0/0 0.0.0.0/0 tcp dpt:445
ACCEPT udp -- 0.0.0.0/0 1.2.3.130 udp spt:53
ACCEPT icmp -- 0.0.0.0/0 1.2.3.130
DROP all -- 0.0.0.0/0 1.2.3.130
DROP udp -- !1.2.3.131 1.2.3.1 udp dpts:1812:1814
DROP tcp -- 0.0.0.0/0 1.2.3.1 tcp dpt:23
DROP tcp -- !1.2.3.10 1.2.3.2 tcp dpt:5432
ACCEPT icmp -- 0.0.0.0/0 1.2.3.2
DROP all -- 0.0.0.0/0 1.2.3.2
ACCEPT tcp -- 0.0.0.0/0 1.2.3.3 tcp dpt:25
ACCEPT tcp -- 0.0.0.0/0 1.2.3.3 tcp dpt:110
ACCEPT udp -- 0.0.0.0/0 1.2.3.3 udp spt:53
ACCEPT icmp -- 0.0.0.0/0 1.2.3.3
DROP all -- 0.0.0.0/0 1.2.3.3
ACCEPT tcp -- 0.0.0.0/0 1.2.3.4 tcp dpts:50000:52000
ACCEPT tcp -- 0.0.0.0/0 1.2.3.4 tcp dpt:80
ACCEPT tcp -- 0.0.0.0/0 1.2.3.4 tcp dpt:21
ACCEPT icmp -- 0.0.0.0/0 1.2.3.4
DROP all -- 0.0.0.0/0 1.2.3.4
ACCEPT udp -- 1.2.3.1 1.2.3.131 udp spts:1812:1814
ACCEPT udp -- 1.2.3.1 1.2.3.131 udp spt:53
ACCEPT all -- 1.2.3.16/28 1.2.3.131
ACCEPT icmp -- 0.0.0.0/0 1.2.3.131
DROP all -- 0.0.0.0/0 1.2.3.131

Chain OUTPUT (policy ACCEPT)
target prot opt source destination

Chain INTRANET (1 references)
target prot opt source destination
DROP tcp -- 0.0.0.0/0 0.0.0.0/0 tcp dpt:80
DROP tcp -- 0.0.0.0/0 0.0.0.0/0 tcp dpt:22

Overall, this looks like a pretty secure network. There's one thing that we did here
that might compromise security (although it's very unlikely)—a little hole in the
firewall. I'm talking about -p udp --sport 53 -j ACCEPT. Starting at one point, an
unpatched service on UDP might give an attacker the possibility to pass our firewalls
by using port 53 as source port.

Medium Networks Case Studies

[214]

Let's say for example we start a TFTP server on the mail server used to save the
configuration from the access server. Now, we might think that the DROP policy of
the INPUT chain will protect us; so we think about adding to the INPUT chain the rule:

iptables -A INPUT -s 1.2.3.131 -p udp --dport 69 -j ACCEPT

This will give access to the TFTP server for 1.2.3.131, which is OK. Due to the INPUT
policy DROP, no other TFTP clients can access the TFTP server. However, an attacker
might emulate a TFTP client and bind his or her local port to 53/UDP. At this point,
he or she will pass our filters and will have access to the TFTP server, which would
be a major security breach.

We have two solutions for that:

The first is to allow packets with the source port 53/UDP only from trusted
DNS servers; so we can modify the rules to be –s 1.2.3.1 -p udp --sport 53
-j ACCEPT.
The second solution would be to insert the rules for TFTP using iptables -I
INPUT -s ! 1.2.3.131 -p udp --dport 69 -j DROP.

Of course, we strongly recommend the first solution.

QoS for This Network
There are three Linux machines that will do QoS in this network—the intranet server,
the wireless server, and the core router.

•

•

Chapter 7

[215]

Let's take another look at our network

The total bandwidth we have on our internet connection is 20Mbps upload and
20Mbps download.

The core router will do bandwidth shaping for all customers except the long range
wireless users for whom we'll do bandwidth allocation on the wireless server. QoS
for the internal departments will be done on the intranet server.

Medium Networks Case Studies

[216]

On the metro Ethernet network and the wireless network served by the access point
connected in the Access Network Switch, some users could have malicious intentions
and try to escape their bandwidth allocation by changing their IP address and using
some unallocated IP addresses.

To address this problem, we'll introduce a new concept in this example—the default
class. The default class will be an HTB class that will have a low bandwidth limit
(12 kbps), which will handle all traffic that doesn't match any other HTB class. This
means that anyone's traffic that doesn't have some bandwidth allocated will fall into
this 12 kbps class.

Using a default HTB class will force us to add bandwidth allocation for all IP
addresses used in our network, including the servers and the dial-up users.

QoS on the Wireless Server for Long-Range
Wireless Users
The wireless server has two network interfaces—eth0 with the IP address 1.2.3.130,
and wlan0 with the IP address 1.2.3.33. On wlan0 there are some wireless customers
connected with IP addresses from the 1.2.3.32/27 subnet.

In the previous picture, we've annotated CIR=MIR for those users. CIR means
Committed Information Rate, and it's the minimum guaranteed bandwidth, and
MIR means Maximum Information Rate, and it's the maximum bandwidth a user
can get.

We will show in this example how to make bandwidth allocation for one user,
having the first available IP address from the 1.2.3.32/27 subnet—1.2.3.34. In this
case, the interface on which we do shaping for download speed for the user is wlan0
and that for upload is eth0. We'll create default classes for both interfaces so that
unallocated IP addresses not to eat up our bandwidth.

The default class is specified when attaching the HTB root qdisc.

tc qdisc add dev wlan0 root handle 1: htb default 9999

When building the download limit for the users on wlan0, we will create tc filters to
match the destination IP address—the user's IP address:

tc class add dev wlan0 parent 1:10 classid 1:100 htb rate 128Kbit
tc qdisc add dev wlan0 parent 1:100 sfq quantum 1514b perturb 15
tc filter add dev wlan0 protocol ip parent 1:0 prio 5 u32 match ip dst
1.2.3.34 flowid 1:100

When we create the upload limit for the users—on eth0 this time—we will create tc
filters to match the source IP address as the user's IP address:

Chapter 7

[217]

tc class add dev eth0 parent 1:10 classid 1:100 htb rate 128Kbit
tc qdisc add dev eth0 parent 1:100 sfq quantum 1514b perturb 15
tc filter add dev eth0 protocol ip parent 1:0 prio 5 u32 match ip src
1.2.3.34 flowid 1:100

The entire QoS script on the wireless server (with the limits for this user only) looks
like this:

#!/bin/bash

#download speed first - on wlan0

#delete root qdisc (this will destroy all classes)
tc qdisc del dev wlan0 root

#attach root qdisc and create the 100Mbps root class
tc qdisc add dev wlan0 root handle 1: htb default 9999
tc class add dev wlan0 parent 1:0 classid 1:10 htb rate 100Mbit

#1st client - 128 kbps
tc class add dev wlan0 parent 1:10 classid 1:100 htb rate 128Kbit
tc qdisc add dev wlan0 parent 1:100 sfq quantum 1514b perturb 15
tc filter add dev wlan0 protocol ip parent 1:0 prio 5 u32 match ip dst
1.2.3.34 flowid 1:100

#default class
tc class add dev wlan0 parent 1:10 classid 1:9999 htb rate 16Kbit

#Upload speed - on eth0
#delete root qdisc (this will destroy all classes)
tc qdisc del dev eth0 root

#attach root qdisc and create the 100Mbps root class
tc qdisc add dev eth0 root handle 1: htb default 9999
tc class add dev eth0 parent 1:0 classid 1:10 htb rate 100Mbit

#1st client - 128 kbps
tc class add dev eth0 parent 1:10 classid 1:100 htb rate 128Kbit
tc qdisc add dev eth0 parent 1:100 sfq quantum 1514b perturb 15
tc filter add dev eth0 protocol ip parent 1:0 prio 5 u32 match ip src
1.2.3.34 flowid 1:100

#default class
tc class add dev eth0 parent 1:10 classid 1:9999 htb rate 16Kbit

Medium Networks Case Studies

[218]

QoS on the Intranet Server for the Internal
Departments
On this server, we don't need a default class as it holds the internal departments and
there are no fraud attempts here. We will limit the technical department to 2Mbps
download / 2Mbps upload, but it would be wise to leave it 98Mbps speed within
our network.

We can do that in two ways. The first one would be to add two classes with two tc
filters—one with a selector to match source IP addresses 1.2.3.0/24, and one to match
source IP addresses 192.168.1.0/24. The second way would be to mark the traffic
from 192.168.1.0/24 and 1.2.3.0/24 with the same value and add a single class with a
tc filter having an nfmark selector.

To choose one of these two options, we'll think further on how to create the limits
for the other internal departments that are Masqueraded. They also have a 2Mbps
limit, but the problem with them is that, being under NAT, a selector to match
source IP addresses 192.168.1.0/24 for packets going out through Eth0 will not match
any packets. The only way to limit the NATed internal departments is to mark the
packets before they are NATed (in the PREROUTING chain of the mangle table) and
create a filter to match the nfmark.

Now, since we already mark the packets from 192.168.1.0/24, it's easier to add
another rule to the firewall and mark packets from 1.2.3.0/24 to 1.2.3.16/29 and
create a single tc class for traffic from our network to the technical department. We'll
therefore choose the second option, which consumes less resources.

So, first of all we have to go back to the firewall for the intranet server and add
the line:

iptables -t mangle -A PREROUTING -s 192.168.1.0/24 -j MARK --set-mark 1

which marks all packets from 192.168.1.0/24 with the nfmark value 1.

We also need to add a line to mark packets from 1.2.3.0/24 going out on Eth2 with
the same nfmark value:

iptables -t mangle -A POSTROUTING -s 1.2.3.0/24 -o eth2 -j MARK
--set-mark 1

Now, we'll create the QoS script for the intranet server:

#!/bin/bash

#eth2 - technical department
#delete root qdisc (this will destroy all classes)

Chapter 7

[219]

tc qdisc del dev eth2 root

#attach root qdisc and create the 100Mbps root class
tc qdisc add dev eth2 root handle 1: htb
tc class add dev eth2 parent 1:0 classid 1:10 htb rate 100Mbit

#download limit 98Mbps from our network
tc class add dev eth2 parent 1:10 classid 1:100 htb rate 98Mbit
tc qdisc add dev eth2 parent 1:100 sfq quantum 1514b perturb 15
tc filter add dev eth2 protocol ip parent 1:0 prio 5 handle 1 fw
flowid 1:100

#The rest is internet traffic - 2Mbps
tc class add dev eth2 parent 1:10 classid 1:200 htb rate 2Mbit
tc qdisc add dev eth2 parent 1:200 sfq quantum 1514b perturb 15
tc filter add dev eth2 protocol ip parent 1:0 prio 5 u32 match ip dst
1.2.3.16/29 flowid 1:200

#eth1 - internal departments under nat
#delete root qdisc (this will destroy all classes)
tc qdisc del dev eth1 root

#attach root qdisc and create the 100Mbps root class
tc qdisc add dev eth1 root handle 1: htb
tc class add dev eth1 parent 1:0 classid 1:10 htb rate 100Mbit

#download limit 98Mbps from our network
tc class add dev eth1 parent 1:10 classid 1:100 htb rate 98Mbit
tc qdisc add dev eth1 parent 1:100 sfq quantum 1514b perturb 15
tc filter add dev eth1 protocol ip parent 1:0 prio 5 u32 match ip src
1.2.3.0/24 flowid 1:100

#The rest is internet traffic - 2Mbps
tc class add dev eth1 parent 1:10 classid 1:200 htb rate 2Mbit
tc qdisc add dev eth1 parent 1:200 sfq quantum 1514b perturb 15
tc filter add dev eth1 protocol ip parent 1:0 prio 5 u32 match ip dst
1.2.3.16/29 flowid 1:200

#Upload speed - on eth0
#delete root qdisc (this will destroy all classes)
tc qdisc del dev eth0 root

#attach root qdisc and create the 100Mbps root class
tc qdisc add dev eth0 root handle 1: htb

Medium Networks Case Studies

[220]

tc class add dev eth0 parent 1:0 classid 1:10 htb rate 100Mbit

#upload to our network
tc class add dev eth0 parent 1:10 classid 1:100 htb rate 96Mbit
tc qdisc add dev eth0 parent 1:100 sfq quantum 1514b perturb 15
tc filter add dev eth0 protocol ip parent 1:0 prio 5 u32 match ip dst
1.2.3.0/24 flowid 1:100

#Upload to the internet from the tech department - 2Mbps
tc class add dev eth0 parent 1:10 classid 1:200 htb rate 2Mbit
tc qdisc add dev eth0 parent 1:200 sfq quantum 1514b perturb 15
tc filter add dev eth0 protocol ip parent 1:0 prio 5 u32 match ip src
1.2.3.16/29 flowid 1:200

#Upload to the internet from the other departments - 2Mbps
tc class add dev eth0 parent 1:10 classid 1:300 htb rate 2Mbit
tc qdisc add dev eth0 parent 1:300 sfq quantum 1514b perturb 15
tc filter add dev eth0 protocol ip parent 1:0 prio 5 handle 1 fw
flowid 1:300

For Eth2, we created the class 1:100 of 98Mbps and attached a tc filter to match our
nfmark 1, which matches all traffic from our network and the internal departments'
networks. The rest of the traffic going to 1.2.3.16/29 is internet traffic; so the 1:200
class of Eth2 has a 2Mbps limit.

The packets that go out of Eth1 are either from our class C 1.2.3.0/24 or from other
hosts on the Internet; so we created the 1:100 class of 98Mbps for traffic from our
network to the internal departments and the 1:200 class of 2Mbps for internet traffic.

The upload is limited on Eth0, for which we created the 96Mbps class 1:100 with a
filter to match all packets going to hosts in our network. If packets going out of Eth0
are not destined to 1.2.3.0/24, then they will not match the 1:100 class, and if they are
from 1.2.3.16/29, they will match the 1:200 class of 2Mbps, and it means that this is
upload traffic from the technical department to the Internet.

Traffic going out of Eth0 that is marked with nfmark 1 is from the NATed internal
departments and is matched on the 1:300 class of 2Mbps.

QoS on the Core Router
The core router has four interfaces:

eth0, connected to the upstream provider
eth1, connected to the servers LAN
eth2, connected with the intranet server
eth3, connected to the customers

•

•

•

•

Chapter 7

[221]

We will not perform traffic shaping on eth1 (servers) and on eth2, because we want
as much bandwidth as we can get for the servers, and the internal departments are
limited locally on the intranet server.

The interfaces that will have HTB qdiscs will be eth0 for upload and eth3 to shape
the customers' download.

We will start with eth3, which will have a 16kbit default class. First, we will
create a 100Mbps class for the access server IP address, the wireless server, and
192.168.100.0/24, which is used for switches and access points' management IP
addresses. For the dial-up customers, we will allocate 1Mbps of bandwidth.

We'll create a 2Mbps class in which we will add customers who buy our service with
CIR/MIR 256kbps/2Mbps. If the number of customers who buy this service grows,
we can always increase the limit of this class, which is the parent class for each
customer's class.

For the upload interface, the classes will look about the same, except that in the first
100Mbps class, we will add the IP addresses of the servers and the subnets for which
we perform shaping on the wireless and intranet servers.

The script looks like this:

#!/bin/bash

#download speed first - on eth3

#delete root qdisc (this will destroy all classes)
tc qdisc del dev eth3 root

#attach root qdisc and create the 100Mbps root class
tc qdisc add dev eth3 root handle 1: htb default 9999
tc class add dev eth3 parent 1:0 classid 1:10 htb rate 100Mbit

#access server and wireless server
tc class add dev eth3 parent 1:10 classid 1:100 htb rate 100Mbit
tc qdisc add dev eth3 parent 1:100 sfq quantum 1514b perturb 15
tc filter add dev eth3 protocol ip parent 1:0 prio 5 u32 match ip dst
1.2.3.130 flowid 1:100
tc filter add dev eth3 protocol ip parent 1:0 prio 5 u32 match ip dst
1.2.3.131 flowid 1:100
tc filter add dev eth3 protocol ip parent 1:0 prio 5 u32 match ip dst
192.168.100.0/24 flowid 1:100

#dialup users
tc class add dev eth3 parent 1:10 classid 1:200 htb rate 1Mbit

Medium Networks Case Studies

[222]

tc qdisc add dev eth3 parent 1:200 sfq quantum 1514b perturb 15
tc filter add dev eth3 protocol ip parent 1:0 prio 5 u32 match ip dst
1.2.3.64/26 flowid 1:200

#1st Customer with CIR=MIR - 1.2.3.133
tc class add dev eth3 parent 1:10 classid 1:300 htb rate 1Mbit
tc qdisc add dev eth3 parent 1:300 sfq quantum 1514b perturb 15
tc filter add dev eth3 protocol ip parent 1:0 prio 5 u32 match ip dst
1.2.3.133 flowid 1:300

#2Mbps class for CIR=256, MIR=2Mbps service
tc class add dev eth3 parent 1:10 classid 1:1000 htb rate 2Mbit

#1st client for the CIR=256, MIR=2Mbps service - 1.2.3.134
tc class add dev eth3 parent 1:10 classid 1:1001 htb rate 256Kbit ceil
2Mbit
tc qdisc add dev eth3 parent 1:1001 sfq quantum 1514b perturb 15
tc filter add dev eth3 protocol ip parent 1:0 prio 5 u32 match ip dst
1.2.3.134 flowid 1:1001

#default class
tc class add dev eth3 parent 1:10 classid 1:9999 htb rate 16Kbit

#Upload speed - on eth0
#delete root qdisc (this will destroy all classes)
tc qdisc del dev eth0 root

#attach root qdisc and create the 100Mbps root class
tc qdisc add dev eth0 root handle 1: htb default 9999
tc class add dev eth0 parent 1:0 classid 1:10 htb rate 100Mbit

#access server and wireless server
tc class add dev eth0 parent 1:10 classid 1:100 htb rate 100Mbit
tc qdisc add dev eth0 parent 1:100 sfq quantum 1514b perturb 15
tc filter add dev eth0 protocol ip parent 1:0 prio 5 u32 match ip src
1.2.3.130 flowid 1:100
tc filter add dev eth0 protocol ip parent 1:0 prio 5 u32 match ip src
1.2.3.131 flowid 1:100
tc filter add dev eth0 protocol ip parent 1:0 prio 5 u32 match ip src
1.2.3.0/29 flowid 1:100
tc filter add dev eth0 protocol ip parent 1:0 prio 5 u32 match ip src
1.2.3.8/30 flowid 1:100
tc filter add dev eth0 protocol ip parent 1:0 prio 5 u32 match ip src
1.2.3.16/29 flowid 1:100
tc filter add dev eth0 protocol ip parent 1:0 prio 5 u32 match ip src

Chapter 7

[223]

1.2.3.32/27 flowid 1:100

#dialup users
tc class add dev eth0 parent 1:10 classid 1:200 htb rate 1Mbit
tc qdisc add dev eth0 parent 1:200 sfq quantum 1514b perturb 15
tc filter add dev eth0 protocol ip parent 1:0 prio 5 u32 match ip src
1.2.3.64/26 flowid 1:200

#1st Customer with CIR=MIR - 1.2.3.133
tc class add dev eth0 parent 1:10 classid 1:300 htb rate 1Mbit
tc qdisc add dev eth0 parent 1:300 sfq quantum 1514b perturb 15
tc filter add dev eth0 protocol ip parent 1:0 prio 5 u32 match ip src
1.2.3.133 flowid 1:300

#2Mbps class for CIR=256, MIR=2Mbps service
tc class add dev eth0 parent 1:10 classid 1:1000 htb rate 2Mbit

#1st client for the CIR=256, MIR=2Mbps service - 1.2.3.134
tc class add dev eth0 parent 1:10 classid 1:1001 htb rate 256Kbit ceil
2Mbit
tc qdisc add dev eth0 parent 1:1001 sfq quantum 1514b perturb 15
tc filter add dev eth0 protocol ip parent 1:0 prio 5 u32 match ip src
1.2.3.134 flowid 1:1001

#default class
tc class add dev eth0 parent 1:10 classid 1:9999 htb rate 16Kbit

It looks like we didn't miss anything; so we should be happy with this configuration.

After applying this script, everything runs OK, but after a while we see some
service interruptions on our upstream provider link. The upstream provider tells
us everything is OK on its side, but the packet loss is very high between us, and
after about 20-30 seconds, the provider can't see our MAC address for another 20-30
seconds, and this cycle repeats itself forever.

Since we haven't modified anything for a long time and this has just started
happening, we might think it's a hardware problem. Well, it isn't. Since packet loss
might come from a faulty cable or NIC, the strange part is that they don't see our
MAC address for a while. Looking at the default class on eth0, we see that it's full,
and so, someone in our network might have changed their IP address, but that
shouldn't affect us.

Medium Networks Case Studies

[224]

If we take a closer look at the QoS script, we see that we don't find the IP address
assigned by the provider—1.1.1.1. After 20-30 seconds, the ARP cache of the provider
for our IP address expires, and so, its router sends a request to our IP address
(1.1.1.1) and asks for our MAC address. Since we didn't add 1.1.1.1 anywhere in the
QoS script, the reply from our router to that requests has to wait inline on the
default class.

So, the solution to this problem is to add the IP address 1.1.1.1 in the filters for the
100Mbps class 1:100 of the eth0 interface.

The reason we left this out on purpose is that we have seen
a lot of network administrators doing that and taking a lot
of time to troubleshoot this problem.

Summary
We saw in this chapter some pretty complicated networks. We also saw that building
firewalls and QoS for such networks is not so complicated. However, it is very
important to draw the network and identify security breakpoints to be able to create
a firewall that will protect your network.

In my opinion, the most important things about security are knowing your network,
building it in an intelligent manner and with security in mind, and most of all,
understanding how packets flow in your network.

Understanding the flow of the packets in the network is essential for people who
want to build good firewalls and intelligent QoS. I've seen simpler networks than
the ones presented here with very complicated firewalls, which had rules that didn't
belong there or that could be reduced to much simpler ones.

I've also seen some networks that were badly thought out from the beginning. For
instance, think about the second example of this chapter and how it would be if we
place one server on the customer interface, some customers in the server farm switch,
etc. This would complicate our firewalls a lot. Also, a badly thought out subneting
of the network would mean generating kilometers of firewall rules and a lot of
tc filters.

It may happen at some point that you have to administer a network badly subneted
and badly thought out by others. To be honest, taking each part of it and building
security is way more difficult and time consuming than redrawing the network,
renumbering IP address, and rebuilding the firewalls. Of course, all of these operations
must be done always thinking about minimal downtime for servers and customers.

Large Networks Case Studies
There are different points of view in designing and deploying large networks using
Linux routers or dedicated routers that can handle very high data rates.

While some prefer to pay a large amount of money for dedicated routers for
which they have technical support and well-defined technical characteristics
and limitations, others want to reduce the costs by building such networks using
powerful computers running Linux, offering a much larger flexibility in deployment.

This is not an easy choice at all. The business point of view has ups and downs when
considering the two options. The biggest advantage of using dedicated routers from
the business point of view is that the value of the network rises considerably if the
network is built to be sold. What I mean is that if you build a large network using
Cisco routers, you have more chance of selling it to a bigger provider than if you've
build the network with Linux routers.

Using dedicated routers you will have the following advantages:

Wide range of network interfaces (ATM, SDH/SONET, Ge, Fe, etc.)
Less likely software bugs, and technical support from producers
Well-known and well-defined technical limitations
Standard protocol implementations
High market value of the network

and the following disadvantages:

High costs for implementation, upgrade, and personnel training
Less application flexibility

Using Linux routers has its advantages and disadvantages also. From the
advantages, we can mention:

•

•

•

•

•

•

•

Large Networks Case Studies

[226]

Low deployment costs and low costs for upgrades
Personnel cost less, and are easier to find
High application flexibility—large open source repository that can
be implemented

and from the disadvantages, we can mention:

Low value on the market if the network is sold
A smaller range of network interfaces available
Higher probability of software bugs

Experienced network administrators usually prefer using dedicated routers because
of well-known technical limitations and protocol standardizations. However, from
my experience, the best way of implementing large networks is as a combination
between those two; however, we prefer using Linux as much as we can because of
the lower costs and higher application flexibility.

The biggest disadvantage in using Linux is that there are fewer options about the
network interfaces that can be used in a Linux router. To give a simple example, we
had to decide on using a router for the following application:

The router we had to choose had three uplink connections to other backbones of
our network in a geographically distanced place. We rented an STM-1 connection
from a carrier, an E3 connection from another carrier, and a FastEthernet connection
from a third carrier. The router had to have three Gigabit connections to three
distribution networks.

As you can probably guess, there is a large amount of traffic passing through this
router. Because of the variety of interfaces, our first thought was to buy a high-capacity
router with one E3, one STM-1, one FastEthernet, and three Gigabit interfaces that

•

•

•

•

•

•

Chapter 8

[227]

can handle a high number of packets per second; so the first choice would be to buy
a router equivalent to (or an actual) a Cisco 7206 VXR with NPE (Network Processor
Engine) running at at least 300 Mhz.

This raises the problem that we have to have other equivalent routers in the
backbones with the STM-1 and E3 connections. Such a router costs at least $30,000,
and adding the extra costs for the backbone routers, we would have deployment
costs of over $50,000. More than that, we can think about value-added services such
as dynamically allocating bandwidth for customers in the access networks, which
would require dedicated machines.

There are some network hardware manufacturers that offer media converters for
applications in which you need E3/T3 over SoNet or STM-1 over SoNet. These
media converters have one E3/T3 or STM-1 interface, and one FastEthernet or
Gigabit Ethernet; so we decided to see how they handle large traffic.

We bought a 3 GHz dual-Xeon Intel server with 2 Gigabit Ethernet onboard and a
NIC with 4 Gigabit Ethernet for about $3,500, a pair of E3-to-FastEthernet converters,
and a pair of STM-1 to Gigabit Ethernet converters, all of them for less $10,000.
We installed Linux on the server and discovered that it could very well handle the
amount of traffic we needed.

At the exact moment this chapter was written, it was forwarding a total of:

total: 299.61 Mb/s In 293.28 Mb/s Out - 80742.2 p/s In 78790.2
p/s Out

on all interfaces with a load average: 0.95, 0.94, 0.72. It also has a total of 2700 HTB
classes and 3,000 filters for those classes.

The optimum way of building large networks in my opinion
is to choose Linux as often as you can. There are some
applications in which you can't use Linux, and so I think is
better to reserve the budget for buying high-cost routers for
those applications and try to use Linux in the applications in
which you can.

Large Networks Case Studies

[228]

Thinking Large, Thinking Layered Models
At the risk of sounding repetative, I will state the fact that the key of building a good
and secure firewall is to design the network in an intelligent way, identify points of
security, and understand how packets are flowing through the network.

When designing and deploying large networks, it's recommended to identify how
and where routers must be placed in the network and how to scale the routers for the
functions they must perform.

Large networks are often built in layers. The largest networks use a three-layered
hierarchy consisting of the following three layers:

Core layer
Distribution layer
Access layer

The three-layer network hierarchy is not always suited for all large networks, and
some routers can perform functions of more than one layer.

Usually, a three-layered network design looks something like this:

•
•
•

Chapter 8

[229]

The core layer usually contains routers that have internet or local peering
connections. There are high-speed links between them, and routes are distributed
between them for better load balancing of internet and peering connections.

The distribution layer contains routers that route several customers in different
locations, while the access layer contains routers at the customer premises, which can
even be SOHO routers for smaller customers.

Of course you can have customers connected directly to a core router, which means
that the core router also performs distribution and access layer functions. This is not
a bad thing if the customer is a large one, because you might want to distribute them
a large routing table without passing it through a distribution router, but usually it's
better to pass customers through distribution routers where you do QoS so that the
core routers are not overloaded with QoS functions.

A Real Large Network Example
The network we are going to present here is actually working in real life. Of course,
we will replace the real IP addresses of the routers and servers.

The network is deployed at a large provider of Internet and IP telephony services.
The point is to understand how packets flow through the network, to identify the
security breakpoints, and build proper firewalls for the network.

We will present here only the important parts of the network as it is.

Let's start by looking at the network architecture and explain how the network is
built and what's in the network.

Large Networks Case Studies

[230]

A Brief Network Overview
The core of the network is represented in the following figure:

Core-1 is a router that has one FastEthernet connection to an ISP from which we
buy 34Mbps of internet services. It is located in the main datacenter of this company
and has a fiber optic connection at 100Mbps to Core-2 located in another datacenter.
Core-1 also has a fiber optic connection at 1000Mbps (1Gbps) to Core-3.

Core-2 has one internet connection of 34Mbps connected to Provider2. Provider2 also
has a large national network; so we have a peering connection with it on a 100Mbps
interface. Core-2 is connected to Core-1 via a 100Mbps link.

Core-3 has a backup internet connection of 10 Mbps. It is also connected to a local
exchange network for local peerings on a 100Mbps interface and to another provider
(Provider4) on another 100Mbps interface. The connection with Provider4 is only
for peering.

Chapter 8

[231]

Core-4 is physically located in City-2, which is a considerable geographical distance
away from City-1. It has an STM-1 connection to Core-3 (Gigabit interface using
STM-1 to GE converter), one FastEthernet connection to a provider that offers us a
service of MPLS VPN (34 Mbps), and another FastEthernet to a provider offering an
Ethernet Over MPLS connection (34 Mbps). The City-3 router is connected through
Core-4 using an E3 to FastEthernet converter.

All core routers are Linux machines and run Zebra, which is a routing software
package distributed under GNU General Public License for BGP connections. Zebra
can be found at http://www.zebra.org.

City-1
Datacenter-1 is the place for most voice interconnections for this provider; so it's the
most important voice node in the network.

The City-1 part of this ISP network has the following particularities:

It holds most of the voice equipment of the network.
Customers of Internet services are only broadband customers with large
bandwidth needs.
It holds most of the web hosting and database servers (the server farm).
Datacenter-1 is located in a building where there's an office with tech, sales,
marketing, and commercial people, but it's not the Headquarters of the ISP.

•

•

•

•

Large Networks Case Studies

[232]

The network looks like this:

Core-1 has one interface connected to the core switch of Datacenter-1. The voice
equipment has special designated racks, and it has its own switch and their
own VLAN.

Another VLAN is created on the core switch for the server farm, which has web,
email, and database servers.

The Distribution-1 router is a Linux machine with three FastEthernet cards: one
connected to the core switch, one connected to a LAN switch for the office, and one
to a distribution switch from which the distribution network begins.

City-2
Datacenter-4 is located in City-2 in the same building as the ISP Headquarters.

The City-2 part of the network has the following particularities:

It has a very large and complex self-owned fiber optics network.
It has one high-density DSLAM operating ADSL2+ (192 ports).
It has a large and complex wireless network.

•

•

•

Chapter 8

[233]

It has a wireless link that connects a smaller nearby city (City-5).
Datacenter-4 hosts voice equipment for local interconnections.
Datacenter-4 hosts a server farm for web, mail, database, and intranet servers.
The City-2 network has over 2000 home-users and over 100 broadband
customers.
Over 30% of the clients are subscribed to the IP telephony network of this ISP.

The network looks like this:

Core-4 is a Linux router that handles a lot of network traffic. It has six network
interfaces, three of them connected to the other core routers, two connected to a core
switch in Datacenter-4, and one to the fiber optics switch also located in Datacenter-4.

Into the core switch of Datacenter-4 are connected some voice equipment, a server
farm, and an ADSL2+ DSLAM. The server farm and the voice equipment are in
the same VLAN as one of Core-4's NICs, and the DSLAM is in a VLAN with the
second NIC of Core-4 connected to the core switch. ADSL clients have modems that
function in bridge mode; so it shouldn't be in the same VLAN with the servers or

•

•

•

•

•

Large Networks Case Studies

[234]

voice equipment. For the same reason, we didn't place the DSLAM in the FO switch,
because high broadcast data rates may affect the performance of ADSL clients with
poor lines.

The f﻿iber optic network covers the entire city and has a ring topology at Layer 2.
Some corporate clients are connected directly to the FO network, meaning they
use Core-4 as the default gateway. Throughout the network, distribution routers
annotated in the figure with DR-1…DR-8 are placed in distribution points to route
subnets used for home users and companies connected to the distribution network.

In some of the distribution points, there are a few wireless access points used to
connect wireless customers.

In the same VLAN with the DSLAM, there's an E3 to FastEthernet converter that
connects City-3 and City-4.

City-3 and City-4
City-3 is located at about 40 km from City-2 and City-4 is located at 20km from
City-3 (60km from City-2).

They are smaller cities and both have fiber optics distribution networks. City-3 has
a wireless distribution network and a Cisco AS5350 for voice interconnection with
local telcos.

Chapter 8

[235]

The network looks like this:

The Core Network Configuration
As we did in the earlier chapters of the book when we explained other firewall
scenarios, we will present how the network configuration is built to fully understand
how packets travel in the network. Without a good understanding of this process,
good firewall and QoS configurations are practically impossible to achieve.

We will build the network configuration first on the core and distribution levels, and
only afterwards will we build firewalls and QoS .

All routers in the core level run the BGP routing protocol (Border Gateway Protocol)
described in RFC1771. With Linux, BGP is very well implemented using the Zebra
router project found at http://www.zebra.org.

Zebra has support for other routing protocols and has a modular architecture having
a daemon for each routing protocol it supports. The Zebra daemon is used to talk
to the kernel in the way of adding and removing routes received from its routing
daemons. Each daemon (protocol) has a status port that can be used for configuration
and troubleshooting with commands very similar to Cisco IOS.

Large Networks Case Studies

[236]

BGP version 4 (BGP-4) described in RFC1771 is the routing protocol used between
ISPs to exchange routing information, so we can definitely say that BGP-4 is the
routing protocol that gets the Internet to work. BGP is a very complex protocol
and we can't cover even a short introduction in a few pages; so if you are not
familiar with BGP, we suggest reading an introduction from Cisco at
http://www.cisco.com/univercd/cc/td/doc/cisintwk/ito_doc/bgp.htm.

For obvious security reasons, we replaced the IP addresses in the real situations and
the AS numbers with private AS numbers. The private AS number block is from
AS64512 to AS65534.

Our AS number is AS65000, as presented in the figure. The IP addresses we have are:

1.1.1.0/24, which we use for our routers
1.1.10.0/24, which we use for the voice equipment
1.1.48.0/20 and 1.1.96.0/20, which we use in City-2 to provide
internet services
1.1.168.0/22, which we use in City-1 to provide internet services

•

•

•

•

Chapter 8

[237]

1.1.48.0/20 and 1.1.96.0/20 being used in City-2 will be advertised by the
Core-4 router, and 1.1.160.0/22 will be advertised by Core-1. Since most of the voice
equipment is in City-1, the network 1.1.10.0/24 will be advertised by Core-1, and a
subnet of 1.1.10.0/27 by Core-4.

1.1.1.0/24 can be advertised by any routers, but we will use Core-1 for the job
because it's one of the routers with the most core links (three, same as Core-4) and it's
a border router and closest to the other border routers.

To load-balance the links, we will use AS-path prepends for the external links and
metrics for the core links.

Core-2
Core-2 has four BGP connections: two iBGP (internal BGP) and two eBGP (external
BGP). We will use the internet connection to Provider-2 as the main connection for
1.1.48.0/20, which has more traffic than 1.1.96.0/20, and we will use prepends for
1.1.96.0/20 and 1.1.168.0/22.

The BGP configuration is like this:

core-2-bgpd# sh run

Current configuration:
!
hostname core-2-bgpd
password password
enable password enable
log file /var/log/bgpd.log
service advanced-vty
!
router bgp 65000
 neighbor 1.1.1.190 remote-as 65000
 neighbor 1.1.1.22 remote-as 65000
 neighbor 1.3.1.89 remote-as 65002
 neighbor 1.3.2.1 remote-as 65002
!
 address-family ipv4
!
 neighbor 1.1.1.190 activate
 neighbor 1.1.1.190 route-reflector-client
 neighbor 1.1.1.190 default-originate
 neighbor 1.1.1.190 route-map core-1-in in
 neighbor 1.1.1.190 route-map core-1-out out
!

Large Networks Case Studies

[238]

 neighbor 1.1.1.22 activate
 neighbor 1.1.1.22 route-reflector-client
 neighbor 1.1.1.22 default-originate
 neighbor 1.1.1.22 route-map core-4-in in
 neighbor 1.1.1.22 route-map core-4-out out
!
 neighbor 1.3.1.89 activate
 neighbor 1.3.1.89 next-hop-self
 neighbor 1.3.1.89 route-map provider-2-inet-in in
 neighbor 1.3.1.89 route-map provider-2-inet-out out
!
 neighbor 1.3.2.1 activate
 neighbor 1.3.2.1 next-hop-self
 neighbor 1.3.2.1 route-map provider-2-peering-in in
 neighbor 1.3.2.1 route-map provider-2-peering-out out
!
 network 1.1.48.1/32
!
 exit-address-family
!
access-list prefer-provider-2 permit 1.1.48.0/20 exact-match
access-list prefer-provider-2 permit 1.1.10.0/24 exact-match
access-list prefer-provider-2 permit 1.1.1.0/24 exact-match
!
access-list prepend-provider-2 permit 1.1.96.0/20 exact-match
access-list prepend-provider-2 permit 1.1.168.0/22 exact-match
!
access-list flood permit 1.1.48.1/32 exact-match
!
access-list defaultgw permit 0.0.0.0/0 exact-match
!
access-list permitany permit any
access-list denyany deny any
!
route-map core-1-in permit 9
 match ip address prepend-provider-2
 set metric +2
!
route-map core-1-in permit 10
 match ip address prefere-provider-2
 set metric +1
!
route-map core-1-out permit 10
 match ip address permitany

Chapter 8

[239]

!
route-map core-4-in permit 9
 match ip address prepend-provider-2
 set metric +1
!
route-map core-4-in permit 10
 match ip address prefere-provider-2
 set metric +4
!
route-map core-4-out permit 10
 match ip address permitany
!
route-map provider-2-inet-in permit 10
 match ip address defaultgw
!
route-map provider-2-inet-in deny 11
 match ip address denyany
!
route-map provider-2-inet-out permit 9
 match ip address flood
 set community 65002:6666
!
route-map provider-2-inet-out permit 10
 match ip address prefere-provider-2
!
route-map provider-2-inet-out permit 11
 match ip address prepend-provider-2
 set as-path prepend 65000 65000
!
route-map provider-2-inet-out deny 12
 match ip address denyany
!
route-map provider-2-peering-out permit 10
 match ip address prefere-provider-2
!
route-map provider-2-peering-out permit 11
 match ip address prepend-provider-2
!
route-map provider-2-peering-out deny 12
 match ip address denyany
!
route-map provider-2-peering-in deny 10
 match ip address defaultgw
!

Large Networks Case Studies

[240]

route-map provider-2-peering-in permit 11
 match ip address permitany
!
line vty
!
end

This is a simple BGP configuration for Core-2 that has four BGP peers each with a
route map for input and route map for output.

Core-2 originates the default route to Core-1 and Core-4. It receives the default route
from the external peer 1.3.1.89, but it shouldn't receive the default route from 1.3.2.1,
which is a peering BGP connection.

The configuration has an example on how to filter an IP address (1.1.48.1) on an
upstream link. The upstream provider Provider-2 has the community 6666 for
filtering IP addresses. In case of a flood attack to one of our IP addresses (in this
case 1.1.48.1), we advertise the IP address to the provider setting the community to
65002:6666 so they filter the IP address without affecting our 34Mbps connection.

Routes to our networks are received by Core-2 from Core-1 and Core-4. We will set
metric +1 for the routes found in ACL prefer-provider-2 for the Core-1 iBGP and
metric +4 for the Core-4 iBGP. Since the route with the lowest metric is preferred,
Core-2 will prefer Core-1 for the networks in the prefer-provider-2 ACL.

We also mangled metrics for the networks in the ACL prepend-provider-2 to have
the lowest metric for those routes on the EoMPLS connection with Core-4. However,
metrics sum together and we have to set a metric of minimum +1 for the network
1.1.168.0/22 somewhere from Core-1 to Core-2 through Core-4 because that network
must be preferred to the direct link between Core-2 and Core-1.

Core-1, Core-3, and Core-4
We picked Core-2 first to show the configuration because it has the simplest
configuration. However, starting from the BGP configuration for Core-2 we can build
the other core routers configurations.

Core-3 has two peering eBGP peers, one internet eBGP peer used for backup, and
two iBGP peers (Core-1 and Core-4).

Since the core link from Core-3 to Core-4 has the largest bandwidth of all core links
to Core-4, this link normally carries most of the traffic to Core-4; so we should play
with metrics to route most of the traffic to Core-4 on this link. Other BGP attributes
can also be used (local preference, prepends, weights, or communities) but we prefer
using metric for this job.

Chapter 8

[241]

Core-3 has the particularity that the internet connection to Provider3 is for backup
only; so what we should do is to create an access list that contains all of our
networks, and use prepends in the route map, as follows:

access-list ournetworks permit 1.1.48.0/20 exact-match
access-list ournetworks permit 1.1.10.0/24 exact-match
access-list ournetworks permit 1.1.1.0/24 exact-match
access-list ournetworks permit 1.1.96.0/20 exact-match
access-list ournetworks permit 1.1.168.0/22 exact-match
!
route-map provider-3-out permit 10
 match ip address ournetworks
 set as-path prepend 65000 65000 65000

Core-1 and Core-4 have a few particularities more because the core link between
them is MPLS VPN. If all the other core links are Layer 2 connections, MPLS VPN is
a Layer 3 connection, meaning that there some routers between Core-1 and Core-4
that don't belong to us.

You can see in the figure that the IP addresses are 10.10.2.2/30 on the Core-1
interface to Core-4 and 10.10.2.6/30 on the Core-4 interface to Core-1. Those IP
addresses are private IP addresses, and they are not in the same subnet. So, what we
need to do is to make BGP connections to the routers 10.10.2.1 and 10.10.2.5, which
belong to Provider-1 (from which we acquired the MPLS VPN service) from Core-1
and Core-4, and a multi-hop BGP connection between Core-1 and Core-4.

On Core-1, we will place a static route to Core-4 through 10.10.2.1:

route add 10.10.2.6 gw 10.10.2.1

and configure the two BGP peers as follows:

router bgp 65000
 neighbor 10.10.2.1 remote-as 65001
 neighbor 10.10.2.6 remote-as 65000
...
!
 address-family ipv4
!
 neighbor 10.10.2.1 next-hop-self
 neighbor 10.10.2.1 allow-as-in 1
 neighbor 10.10.2.1 route-map core-4-in in
 neighbor 10.10.2.1 route-map core-4-out out
!
 neighbor 10.10.2.6 disable-connected-check
 neighbor 10.10.2.6 route-map core-4-in in

Large Networks Case Studies

[242]

 neighbor 10.10.2.6 route-map core-4-out out
!
...
!
route-map core-4-in permit 10
 set ip next-hop 10.10.2.1
!
...

On Core-4, we will set a static route to 10.10.2.2 through 10.10.2.5 and build a
similar configuration.

This summarized example configuration is taken from an
existing network configuration. Building the entire BGP
configurations for all routers is beyond the scope of this
book. However, we hope this example gives you a starting
point for your BGP configurations.

Security Threats
So far, we have built the core network configuration. Now, for all core routers we
need to secure SSH, BGPd, Zebra, and SNMP (in such networks, SNMP is a must
because we need to create graphs for traffic, load average, and so on).

Core Routers INPUT Firewalls
The INPUT policy of the core routers should be DROP. We should accept SSH, SNMP,
Zebra, and BGPd status from the network administrators, DNS packets from our
DNS servers, ICMP packets, packets on the loopback interface, and TCP packets to
port 179 from our BGP peers.

The following example script is designated for all core routers. What needs to be
changed is the IP addresses of the BGP peers. This example is for the Core-2 router:

#!/bin/bash

I=/sbin/iptables
#INPUT policy ACCEPT and at the end DROP
$I -P INPUT ACCEPT

#Flush and zero chains
$I -F
$I -X

Chapter 8

[243]

$I -N manag

#Lo + dns + icmp + !syn
$I -A INPUT -i lo -j ACCEPT
$I -A INPUT -p tcp ! --syn -j ACCEPT
$I -A INPUT -p icmp -j ACCEPT
$I -A INPUT -p UDP --sport 53 -s our.dns.server.ourcompany.
 org -j ACCEPT
$I -A INPUT -p UDP --sport 53 -s our.dns.server2.ourcompany.
 org -j ACCEPT

#Management chain - ssh, snmp, zebra, BGPD
$I -A INPUT -p TCP --dport 22 -j manag #ssh
$I -A INPUT -p UDP --dport 161 -j manag #snmp
$I -A INPUT -p TCP --dport 2601 -j manag #zebra
$I -A INPUT -p TCP --dport 2605 -j manag #bgpd

#Network Administrators IP addresses
$I -A manag -s 1.1.40.0/27 -j ACCEPT
$I -A manag -s 1.1.169.0/27 -j ACCEPT
$I -A manag -j DROP

#Our BGP peers (core-2 example)
$I -A INPUT -s 1.3.2.1 -p TCP --dport 179 -j ACCEPT #provider-2
peering
$I -A INPUT -s 1.3.1.89 -p TCP --dport 179 -j ACCEPT #provider-2
internet
$I -A INPUT -s 1.1.1.190 -p TCP --dport 179 -j ACCEPT #core-1
$I -A INPUT -s 1.1.1.22 -p TCP --dport 179 -j ACCEPT #core-4

#policy DROP for INPUT chain
$I -P INPUT DROP

Protecting the Networks behind the Core Routers
The core routers offer the first protection for devices in our datacenters and in our
distribution networks. For some (e.g. voice equipment in Datacenter-1), the core
routers are the only external protection.

Large Networks Case Studies

[244]

For this topology, we have to keep in mind that at any time some links may fail. At
that point, the way we made the packets travel through the core links using metrics
in our BGP configuration will change, and so, we have to try to unify the forward
firewalls of the core routers.

In the previous figure, we state that Core-1, Core-2, and Core-3 are on the first line of
defense. Even if packets from the Internet to some hosts in City-2 will go on the route
Core-2 to Core-1 to Core-3 to Core-4, this only offers us a bit more protection, but the
core routers that have eBGP connections are always the first line of defense.

Core-4 is the second line of defense for the networks behind it, because it only has
core links to other core routers and no direct link to an external network.

We placed City-3 and City-4 Routers in the third line of defense because any packet
from an other network destined to a device in City-3 or City-4 must travel through at
least one of the core routers in the first line of defense and through Core-4.

Chapter 8

[245]

We have already discussed in the previous chapters how
to protect devices behind Linux routers; so we won't give
actual examples on this topic here. It matters to see where
and what we should filter. The point is that there should
be a unified FORWARD chain on all core routers, because
packets can go through any of them.

Denial of Service Attacks
DoS or DDoS (Distributed Denial of Service) attacks are every network
administrator's nightmare.

When a DDoS attack is aimed at a host in our network, there can be three scenarios
that can affect the entire network:

Very high PPS (packet per second) rates that affect routers' CPUs thus
resulting in high packet loss
Very high data rates (Mbps), which creates bottlenecks on our external links
Very high data rates and very high PPS rates — the worst kind of
attack — congesting our external links and affecting our routers' CPUs

A DDoS attack usually comes from multiple spoofed IP addresses and is aimed at
one IP address in our network. The worst effect such an attack has on our network
is that all VoIP calls will be affected by bottlenecks and packet loss. If the attack lasts
more than 20 seconds, then all the VoIP calls will be disconnected resulting in great
revenue loss.

So, how should we deal with these types of attacks?

We saw in the example configuration that Provider-2 has a filtering community.
Provider-1 doesn't have a filtering community, but if we advertise a /32 network, it
will automatically be filtered. Provider-3 has the same filtering mechanism.

All our providers have some sort of flood-detection mechanisms. Usually flood
detection mechanisms are pieces of software that analyze Cisco netflows and detect
unusually high PPS rates towards an IP address behind the router and stop all the
packets aimed at the destination IP address.

The providers' filters don't detect all DDoS attacks, and so we have to create our
own filters.

•

•

•

Large Networks Case Studies

[246]

At the beginning when DDoS attacks were very rare, one used to manually filter the
destination IP addresses (after discovering them with tcpdump). So, what we did
was to telnet on the core routers BGPd status port (2605) and issue the commands
manually. For example, to filter the IP address 1.1.48.1, we did something like:

telnet core-2

User Access Verification

Password:
core-2-bgpd> ena
Password:
core-2-bgpd# conf t
core-2-bgpd(config)# access-list flood permit 1.1.48.1/32 exact-match
core-2-bgpd(config)# router bgp 28720
core-2-bgpd(config)# router bgp 65000
core-2-bgpd(config-router)# network 1.1.48.1/32
core-2-bgpd# clear ip bgp 1.3.1.89 out
core-2-bgpd# wr me	

You have to do a clear ip bgp <neighbor> out to advertise the new network after
adding it in the config.

With the growth of the network, DDoS attacks started occurring more often, and
manually filtering the destinations became more difficult and resulted in a revenue
loss. Also, a big problem with manually adding filters is that for a large PPS
datarate, the CPU load grows a lot, and it takes a lot of time to be able to telnet on
that machine. The actual process can take a long time from the time when the flood
actually starts to when network engineers realize there's a problem, afterwards
finding out the destination IP address of the flood and actually filtering the
destination IP address.

So, when dealing with DDoS attacks in a network that transports live applications,
we have to find a way to automatically detect and filter DDoS attacks. Since we are
using Linux, Perl's PCAP libraries can be a good idea.

Here's a snapshot of a flood-detection tool created by Claudiu Filip, a very good
network engineer with good Perl programming skills (this might just be the first tool
of this kind ever published):

#!/usr/bin/perl

#Flood detection tool by Claudiu Filip – claudiu@mysql.ro

use Net::Pcap;

Chapter 8

[247]

sub loop_exit { Net::Pcap::breakloop($pcap); }
sub fail() { print STDERR "$IP telnet FAILED!\n"; };

local $pcap;
my @exceptions = ('1.1.10.'); # Exceptions list
my $bgp_peer = '1.3.1.89'; # BGP Peer that needs to be cleared
my $dev = 'eth0'; # Monitorized interface
my $threshold = 6500; # Maximum limit of pps
my $timeinterval= 10; # Time Interval to read from the interface
my $nr_packets = 50000; # Max number of packets to read
my $max_loss = 3000 * $timeinterval; # Max number of lost packets
my $snap_length = 128; # How much to read from a packet
my $pktsnapshot = 20; # Number of captured packets
my $snapshotto = 4; # Snapshot timeout
my $promisc = 1; # Put interface in Promiscuous mode
my $to_ms = 0;
my $filter_str = ''; # Some tcpdump filter if we need any
my $optimize = 1; # Optimize filter
my $netmask = 0;
my $log_path = '/tmp/'; # Where we should save the tcpdump
 snapshots
my $IP = '127.0.0.1'; # bgpd IP address
my $err;
my %count;
my $filter = '';

local $dumper;
$pcap = Net::Pcap::open_live($dev, $snap_length, $promisc, $to_ms,
\$err);
$pcap || die "Can't create packet descriptor. Error was $err";

if (Net::Pcap::compile($pcap, \$filter, $filter_str, $optimize,
$netmask) == -1) {
 $err = Net::Pcap::geterr($pcap);
 die "Invalid filter: $filter_str (error was: $err)\n";
} else {
 Net::Pcap::setfilter($pcap, $filter);
};

local $SIG{ALRM} = \&loop_exit;
my $start_time = time;
alarm $timeinterval;
my $exitcode = Net::Pcap::loop($pcap, $nr_packets,
 \&process_packet, '');
my $end_time = time;

Large Networks Case Studies

[248]

$timeinterval = $end_time - $start_time;
alarm 0;
my %stats; Net::Pcap::stats($pcap, \%stats);
my $message = '';
my @add2bgp = ();
my $subject = 'FLOOD';
my $maxx = 0; my $loss_ip = '';
while (($key, $value) = each %count) {
 $key2 = sprintf("%d.%d.%d.%d",
 ord(substr($key, 0, 1)),
 ord(substr($key, 1, 1)),
 ord(substr($key, 2, 1)),
 ord(substr($key, 3, 1)));
 $key = $key2;

 my $nr = map { $key =~ /$_/x } @exceptions;
 next if $nr > 0;
 if ($value > $maxx) {
 $maxx = $value;
 $loss_ip = $key;
 };

 if (($value/$timeinterval) > $threshold) {
 ####### FLOOOOOOOOOOOOD
 $subject .= ' '.$key;
 $message .= "\nFlood TO ". $key . "\t(".int($value/
 $timeinterval).' pps - Max. limit '.$threshold.')';
 push @add2bgp, $key;
 };
};

if ($message eq '') {
 if (($stats{ps_drop}+$stats{ps_ifdrop}) > $max_loss){
 ## Flood to $loss_ip
 $subject .= ' '.$loss_ip;
 $message .= "\nFlood TO ". $loss_ip . "\t(".int($maxx/
 $timeinterval).' pps - Max. limit '.$threshold.
 ")\npackets loss by filter \t".$stats{ps_drop}.
 "\npackets loss by the interface:\
 t".$stats{ps_ifdrop}..
 "\nAllowed Max number of lost packets
 ".$max_loss;
 push @add2bgp, $loss_ip;
 };
};

Chapter 8

[249]

if ($message ne '') {

use Net::Telnet::Cisco;
my $session = Net::Telnet::Cisco->new(Host => $IP,
 Port => '2605',
 Timeout => 20,
 Errmode => \&fail);
$ok = $session->cmd(String => 'p[',
 Prompt => '/bgpd[\$#>]/');
$ok = $session->cmd(String => 'enable',
 Prompt => '/assword/',
 Timeout => 20);
$ok = $session->cmd(String => 'p[',
 Prompt => '/bgpd[\$#>]/',
 Timeout => 20);
$ok = $session->cmd(String => "conf t",
 Timeout => 20,
 Prompt => '/bgpd\(config\)[\$#>]/');
for ($i=0; $i<=$#add2bgp; $i++) {

 $key = $add2bgp[$i];

 $ok = $session->cmd(String => "access-list flood permit
$key/32 exact-match",
 Timeout => 20,
 Prompt => '/bgpd\(config\)[\$#>]/');
 $ok = $session->cmd(String => "router bgp 65000",
 Timeout => 20,
 Prompt => '/bgpd\(config\-router\)[\$#>]/');
 $ok = $session->cmd(String => "network $key/32",
 Timeout => 20,
 Prompt => '/bgpd\(config\-router\)[\$#>]/');
 $ok = $session->cmd(String => "exit",
 Timeout => 20,
 Prompt => '/bgpd\(config\)[\$#>]/');
};
$ok = $session->cmd(String => "exit",
 Timeout => 20,
 Prompt => '/bgpd[\$#>]/');
$ok = $session->cmd(String => "clear ip bgp $bgp_peer out",
 Timeout => 20,
 Prompt => '/bgpd[\$#>]/');
$ok = $session->cmd(String => "wr me",
 Timeout => 20,

Large Networks Case Studies

[250]

 Prompt => '/bgpd[\$#>]/');
$ok = $session->cmd(String => "exit",
 Timeout => 20);
$session->close();

};

This Perl script runs every 20 seconds from crontab and captures flows from the
defined interface. If any host (other than the ones in the exception list) has a traffic
of more than 6500 PPS (defined in $threshold), then the destination IP address
is filtered.

City-1 Firewall for Business-Critical Voice
Equipment
The City-1 network contains servers that store very sensitive data, which in the
wrong hands could be very bad for business. A very fast example of how sensitive
the data is, would be calling cards details stored in the database of the VoIP
billing system.

If someone gains access to the database server of the VoIP billing system, they can
use the calling cards that are already on the market—the company must redraw all
those cards, cancel them, and generate others for market distribution. This would
generate thousands of USD loss for the business.

Chapter 8

[251]

From the security point of view, the City-1 network looks like this:

The first line of defense is Core-1, where we'll implement the firewall for all
equipment in City-1. However, there can be scenarios where Core-1 is the second,
third, and even fourth line of defense, depending on where the attack comes from; so
we will replicate the firewall rules from Core-1 to all other core routers.

The figure shows a connection between Core-1 and the core switch, but on the
physical layer, we have two interfaces from Core-1 to the core switch and two
separate VLANs—one for the voice equipment, and one for the server farm and the
distribution router.

For the voice equipment, the last line of defense is the local firewall implemented
on each machine. The PGW2200 machines run Solaris OS and the database for the
billing software is MSSQL, so the OS is Windows 2003 server. Firewalls run on both
OS, but it would be off-topic to talk about those. Firewalls on the Cisco equipment
are built with IOS access lists.

Large Networks Case Studies

[252]

Securing the Voice Network
We saw earlier in this chapter that we are using IP addresses 1.1.10.0/24 for the voice
network. We will allocate 1.1.10.224/27 for the equipment in City-1, and we will have:

1.1.10.254: interface Eth1 on Core-1
1.1.10.225: PGW2200 machine 1
1.1.10.226: PGW2200 machine 2
1.1.10.227: Radius Server
1.1.10.228: Database Server
1.1.10.240: Open h323 GK server 1
1.1.10.241: Open h323 GK server 2
1.1.10.242: Cisco GK
1.1.10.243 to 1.1.10.253: Cisco AS5350

First of all, we need to allow SSH, Telnet, and VNC access to these machines. For
SSH, we change the default port 22 to 39999. We will use port 39999 for VNC as well,
but Telnet is default on port 23 for Cisco. We already created the manag chain earlier
when we built the input firewalls for the core routers; so we will jump target for
those ports to the manag chain:

iptables -A FORWARD -d 1.1.10.224/27 -p tcp --dport 39999 -j manag
iptables -A FORWARD -d 1.1.10.224/27 -p tcp --dport 23 -j manag

We need to allow the machines running Cisco PGW2200 to communicate with Cisco
AS5350 machines that are not in the same subnet for the SIGTRAN protocol to work.
We will do that based on the way the voice network was provisioned. In our case, we
have 1.1.10.3 ports 3000 and 3001 TCP and 1.1.10.50 ports 5000 and 5001 TCP.

This is all we need for the PGW2200 machines. We will be a bit paranoid and
will deny all other traffic to and from these machines. We don't need browsing or
anything from those machines.

We will create a chain named PGW, jump all packets to and from the PGW2200
machines to this chain, and we will perform all the earlier operations in the PGW chain:

iptables -N PGW
iptables -A FORWARD -d 1.1.10.225 -j PGW
iptables -A FORWARD -d 1.1.10.226 -j PGW
iptables -A FORWARD -s 1.1.10.225 -j PGW
iptables -A FORWARD -s 1.1.10.226 -j PGW

iptables -A PGW -s 1.1.10.3 -p udp --dport 3000:3001 -j ACCEPT

•

•

•

•

•

•

•

•

•

Chapter 8

[253]

iptables -A PGW -s 1.1.10.50 –p udp --dport 5000:5001 -j ACCEPT

iptables -A PGW -d 1.1.10.3 -p udp --sport 3000:3001 -j ACCEPT
iptables -A PGW -d 1.1.10.50 –p udp --sport 5000:5001 -j ACCEPT

iptables -A PGW -j DROP

The Radius server runs on UDP ports 1812 (authentication) and 1813 (accounting).
The only hosts that need to communicate with the Radius server, besides the Ciscos
in the same subnet, are 1.1.10.3 and 1.1.10.50. We will drop all other packets to the
Radius server:

iptables -N RADIUS
iptables -A FORWARD -d 1.1.10.227 -p udp --dport 1812:1813 -j RADIUS
iptables -A FORWARD -s 1.1.10.227 -p udp --sport 1812:1813 -j RADIUS
iptables -A FORWARD -d 1.1.10.227 -j DROP
iptables -A FORWARD -s 1.1.10.227 -j DROP

iptables -A RADIUS -s 1.1.10.3 -j ACCEPT
iptables -A RADIUS -s 1.1.10.50 -j ACCEPT
iptables -A RADIUS -d 1.1.10.3 -j ACCEPT
iptables -A RADIUS -d 1.1.10.50 -j ACCEPT
iptables -A RADIUS -j DROP

This practice might seem a little bit paranoid to most
people. For instance, the PGW machines and the Radius
server don't have internet access, needed, for example, for
automatic updates, etc. In a critical part of the network like
this, we prefer not to have automatic updates, but rather
perform the updates ourselves. Some automatic updates
failed/rebooted/halted the machines. Also, automatic
updates give the possibility of a MIM attack—it's safer to
not have internet access all the time, and temporarily open
it when needed.

The database server needs to communicate mainly with the Radius server, which
is on the same subnet, and local firewalls on both machines need to be configured
for this. However, billing applications like reports, credit control, etc., run on
another Linux machine running the Apache web server, and so, this machine has to
communicate with the database.

Large Networks Case Studies

[254]

We choose to run the billing application on a dedicated Linux machine and not
on a web-hosting machine for the obvious reason that it's more probable for a
web-hosting machine to be hacked when some vulnerabilities are discovered. We
will change the port for MSSQL server from 1433/TCP to 38888/TCP as another
security measure and will allow the Linux machine in the server farm with the IP
address 1.1.168.4 to communicate with the MSSQL server:

iptables -A FORWARD -s 1.1.168.4 -d 1.1.10.228 -p tcp --dport 38888 -j
ACCEPT
iptables -A FORWARD -s 1.1.10.228 -d 1.1.168.4 -p tcp --sport 38888 -j
ACCEPT
iptables -A FORWARD -d 1.1.10.228 -j DROP
iptables -A FORWARD -s 1.1.10.228 -j DROP

The open H.323 gatekeepers, the Cisco gatekeeper, and the Cisco AS5350 access
servers are used for voice communication. The voice network is built using the H.323
protocol, all gatekeepers running in proxy mode, for which we have:

Port 1718/UDP used for unicast gatekeeper discovery
Port 1719/UDP used for H.225 RAS messages
Port 1720/TCP used for Q.931
Any UDP port above 1024 used for RTP

We allocated IP addresses from 1.1.10.240 to 1.1.10.253 to this equipment so that we
can include it all in a subnet 1.1.10.240/28. We will create a chain VOIP in which we
will allow H.323 communication for the ports we've just described:

iptables -N VOIP
iptables -A FORWARD -d 1.1.10.240/28 -j VOIP

iptables -A VOIP -p udp --dport 1718:1719 -j ACCEPT
iptables -A VOIP -p udp --dport 1024: -j ACCEPT
iptables -A VOIP -p tcp --dport 1720 -j ACCEPT
iptables -A VOIP -j DROP

At this point we are done with the security policies for the voice equipment and we
need to replicate those rules on the other core routers and on Distribution-1 router.

Please note that the method presented here is the basic way to make this network
secure and working. In real life, there are some other services that we might need for
improving/monitoring the voice network. Those services can easily be unfiltered by
adding simple rules to the firewall we just created. For example, we might want to
use an external (not in the same subnet) NTP server for time synchronization, SNMP
for monitoring and configuration, SNMP traps for alarms, ICMP for monitoring,
TFTP to store configurations/IOS images, etc.

•

•

•

•

Chapter 8

[255]

The real-life example contains a few of these services, but it's always good to use this
example as a starting point and add services along the way.

QoS Implementation
There are three data services that this ISP can provide to its customers:

Internet access
National network access
Metropolitan network access

Because there are so many peering interconnections, we have fast access to most of
the national networks; so, we can offer our clients a separate bandwidth from the
internet bandwidth they buy. Also, because most of the metropolitan networks are
built with fiber optics, we can give our clients different metropolitan bandwidth.

To do this, we have to mark the packets on every external connection. The most
reasonable things to do are:

Mark the packets that come on the internet links with a DSCP value.
Mark the packets that come on the peering connections with another DSCP
value.
All packets with different DSCP values than those two should be metro
traffic.

Provider-1 has its own national network, and since there's a physical link of 100Mbps
between us, it will mark internet traffic that we can consume up to 34Mbps and leave
the rest for traffic coming from its own networks.

When we design, this it's good to have in front of us a clear picture of what the TOS
byte looks like:

•

•

•

•

•

•

Large Networks Case Studies

[256]

So, Provider-1 tells us it will mark the internet traffic with precedence 2 and leave
the rest of the traffic unmarked. When it says precedence 2 it is referring to the
decimal value.

We should do the math and see that precedence 2 is:

Precedence bits: 010 = 2 (in hex)
DSCP bits: 010000 = 10 (in hex)
TOS bits: 01000000 = 40 (in hex)

So if we look at the packets coming on the interface with Provider-1 using tcpdump
-qntvvi eth2, we should see the packets with TOS 0x40.

If we already receive packets marked on the connection with Provider-1 with
DSCP 10, we should use DSCP 10 for packets coming on our internet links, but
historically speaking, we were already using DSCP value 21 (in hex) for our
internet connections.

DSCP 21 in hex is DSCP 33 in decimal and 100001 in binary; so the TOS byte is
10000100 in binary, meaning 84 in hex, and therefore we should see the packets with
TOS 0x84 at tcpdump.

So, what we need to do on Core-1 is to rewrite the DSCP field for packets with DSCP
10. The interface connected to Provider-1 is eth2.

iptables -t mangle -I PREROUTING -i eth2 –m dscp --dscp 0x10 -j DSCP
--set-dscp 0x21

On Core-2, the interface to Provider-2 internet is eth0; so we will add the
following line:

iptables -t mangle -I PREROUTING -i eth0 -j DSCP --set-dscp 0x21

On Core-3, we have to do the same thing for eth3, which is connected to Provider-3.

iptables -t mangle -I PREROUTING -i eth3 -j DSCP --set-dscp 0x21

At this point, packets coming from the Internet all have TOS 0x84 (DSCP 21).

Next, we need to mark packets from our peering connections. We choose DSCP
22 for packets from the national network; so we have to set it for our peering
connections.

On Core-2 we will set DSCP 22 for packets coming into Eth1 (Provider-2 peering
interface):

iptables -t mangle -I PREROUTING -i eth1 -j DSCP --set-dscp 0x22

•

•

•

Chapter 8

[257]

We also have to set DSCP 22 for packets coming from City-2 to our clients in City-1.
So we will be tempted to do it as follows: on Core-2, we will set DSCP 22 for packets
coming into eth2 (Core-4 interface) and going out of eth3 (Core-1 interface) and to
1.1.168.0/22:

iptables -t mangle -I FORWARD -i eth2 –o eth3 –d 1.1.168.0/22 -j DSCP
--set-dscp 0x22

This is wrong, because Core-2's interfaces eth2 and eth3 are both core links. This
means that any traffic can pass through those links—not just the traffic from the
City-2 network to City-1. For example, internet packets coming from Provider-3
to 1.1.168.0/22 can go on the route Core-3 to Core-4 to Core-2 to Core-1. The last
command line will mark this traffic with DSCP 22 (national traffic) and that's not OK.

For the previous command line, we can also add sources to solve this problem, but
the most elegant way to mark the packets from City-2 to City-1 is doing that in Core-
4. Core-4 has eth0 connected to the distribution network in City-2, eth1 to City-3,
eth2 to Core-3, eth3 to Core-1, and eth4 to Core-2. So, to mark the packets from the
networks behind Core-4 (this includes City-3 and City-4) to City-1, we will do the
following:

iptables -t mangle -I FORWARD -i eth0 –d 1.1.168.0/22 -j DSCP --set-
dscp 0x22
iptables -t mangle -I FORWARD -i eth1 –d 1.1.168.0/22 -j DSCP --set-
dscp 0x22

It is always recommended to mark the packets on the
border router (the router in the network that packets
reach first).

For Core-1, we have to mark the packets coming into eth2 (Provider-2 interface) that
are not marked with precedence 2:

iptables -t mangle -I PREROUTING -i eth2 –m dscp --dscp ! 0x10 -j DSCP
--set-dscp 0x22

This line must be placed in the firewall above the line where we rewrite the
marking for packets having DSCP 10 (precedence 2). We present those lines here
using –I (INSERT) and one after the other; so this is their correct sequence in the
firewall script.

Large Networks Case Studies

[258]

Core-1 has one interface to the City-1 distribution network (eth0); so we will mark
packets from that interface to the networks in City-2, City-3, and City-4:

iptables -t mangle -I FORWARD -i eth0 –d 1.1.48.0/20 -j DSCP --set-
dscp 0x22
iptables -t mangle -I FORWARD -i eth0 –d 1.1.96.0/20 -j DSCP --set-
dscp 0x22

The local exchange peering connection in Core-3 is connected to Core-3's eth1 NIC,
and the Provider-4 peering connection is connected to Core-3's eth2 NIC. All this
traffic is national traffic (traffic from networks within the country); so we will mark
these packets with DSCP 22:

iptables -t mangle -I PREROUTING -i eth1 -j DSCP --set-dscp 0x22
iptables -t mangle -I PREROUTING -i eth2 -j DSCP --set-dscp 0x22

At this point, we have all packets coming from the Internet
marked with DSCP 21, and all packets coming from the
national networks with DSCP 22.

This wasn't hard at all. Knowing how packets travel through the network makes the
tasks we have a lot simpler.

Now it is time to verify the configuration. This can be done using tcpdump –qntvvi
ethX to see if packets have the right TOS—but, to our surprise, they don't.

Using tcpdump on Core-4, we see that the packets coming in through two core
links—EoMPLS and MPLS VPN—all have TOS 0x0. The next logical thing to do is
to verify the other ends of those core links, but using tcpdump on Core-1 and on
Core-2, we see that the packets leave those routers with the correct DSCP marks, but
they come into Core-4 with the TOS byte 0x0.

So what do those links have in common? They are both MPLS services, and most
MPLS-enabled switches and routers clear the TOS byte.

Talking to Provider-2's engineers and explaining the problems, they could
solve the issue, and the EoMPLS connection keeps our DSCP marks. However,
Provider-1's engineers could not do the same thing for the MPLS VPN connection,
but they managed to keep the precedence 2 mark (DSCP 10) on the MPLS VPN
connection. So, for the MPLS VPN connection we have:

Packets leaving one end with precedence 2 (DSCP 10) arrive at the other end
with the same precedence (DSCP) value.

•

Chapter 8

[259]

Packets leaving one end with any TOS byte value (except 0x40 = DSCP 10 =
precedence 2) arrive to the other end with TOS 0x0.

Given these facts, we have to do some more operations with the TOS byte of the
packets so that we can have the packets marked with the wanted values.

First of all, on Core-1 we have to rewrite the TOS byte of all packets leaving eth4
(the MPLS VPN interface) from 0x84 (DSCP 21) to 0x40 (DSCP 10 = precedence 2); so
we'll do the following:

iptables -t mangle -I POSTROUTING -o eth4 –m dscp --dscp 0x21 -j DSCP
--set-dscp 0x10

We should do the same thing with packets leaving eth3 on Core-4:

iptables -t mangle -I POSTROUTING -o eth3 –m dscp --dscp 0x21 -j DSCP
--set-dscp 0x10

We also have to change the DSCP from 0x10 to 0x21 when the packets come in
through the MPLS VPN interface. On Core-1 we will do the following:

iptables -t mangle -I PREROUTING -i eth4 –m dscp --dscp 0x10 -j DSCP
--set-dscp 0x21

and the same on Core-4:

iptables -t mangle -I PREROUTING -i eth3 –m dscp --dscp 0x10 -j DSCP
--set-dscp 0x21

The packets that come in the MPLS VPN connection (at any end of the connection)
and that are destined to our networks, if not marked with DSCP 21, are national
traffic; so we should mark them with DSCP 22. On Core-1, we will do the following:

iptables -t mangle -I PREROUTING -i eth4 –m dscp --dscp 0x0 –d
1.1.168.0/22 -j DSCP --set-dscp 0x22

and on Core-4:

iptables -t mangle -I PREROUTING -i eth3 –m dscp --dscp 0x0 –d
1.1.48.0/20 -j DSCP --set-dscp 0x22
iptables -t mangle -I PREROUTING -i eth3 –m dscp --dscp 0x0 –d
1.1.96.0/20 -j DSCP --set-dscp 0x22

Now everything is all set. The packets are marked with TOS 0x84 (DSCP 21) if they
come from the Internet, and 0x88 (DSCP 22) if they come from the national network.
Packets marked with other DSCP values are from the metropolitan network.

•

Large Networks Case Studies

[260]

Traffic Shaping for Clients
We've managed to differentiate three services by marking the packets with DSCP
values, and so, we can offer our clients different bandwidth for the Internet, the
national network, and the metropolitan network.

However, there might be customers who are not interested in different services, and
just want to buy internet bandwidth. This doesn't mean that we won't give them
access in the national or metropolitan networks; it just means that they will not have
different bandwidth for these networks.

For example, to limit the entire bandwidth for 1.1.49.10 to 512kbps, we will do the
following:

#limit the entire bandwidth for 1.1.49.10 to 512kbps

tc class add dev eth0 parent 1:10 classid 1:100 htb rate 512kbps

tc qdisc add dev eth0 parent 1:100 sfq quantum 1514b perturb 15

tc filter add dev eth0 protocol ip parent 1:0 prio 5 u32 match ip dst
1.1.49.10 flowid 1:100

If the customer wants to have an internet bandwidth of 512kbps and national
network bandwidth of 1Mbps, but doesn't care about the national network, then the
metropolitan traffic is considered to be from the metropolitan network. For example,
to give this service to 1.1.49.11, we will do the following:

#limit the internet bandwidth for 1.1.49.11 to 512kbps

tc class add dev eth0 parent 1:10 classid 1:200 htb rate 512kbps

tc qdisc add dev eth0 parent 1:200 sfq quantum 1514b perturb 15

tc filter add dev eth0 protocol ip parent 1:0 prio 5 u32 match ip dst
1.1.49.11 match ip tos 0x84 0xfc flowid 1:200

#limit the national traffic (including metro) for 1.1.49.11 to 1Mbps

tc class add dev eth0 parent 1:10 classid 1:1200 htb rate 1Mbps

tc qdisc add dev eth0 parent 1:1200 sfq quantum 1514b perturb 15

tc filter add dev eth0 protocol ip parent 1:0 prio 5 u32 match ip dst
1.1.49.11 flowid 1:1200

Chapter 8

[261]

Most customers will want different bandwidth for the three services; so, for example,
if we want to give 512kbps of internet to 1.1.49.12, 1Mbps of national network, and
10Mbps of metropolitan network traffic, we will do the following:

#limit the internet bandwidth for 1.1.49.12 to 512kbps

tc class add dev eth0 parent 1:10 classid 1:300 htb rate 512kbps

tc qdisc add dev eth0 parent 1:300 sfq quantum 1514b perturb 15

tc filter add dev eth0 protocol ip parent 1:0 prio 5 u32 match ip dst
1.1.49.12 match ip tos 0x84 0xfc flowid 1:300

#limit the national traffic for 1.1.49.12 to 1Mbps

tc class add dev eth0 parent 1:10 classid 1:1300 htb rate 1Mbps

tc qdisc add dev eth0 parent 1:1300 sfq quantum 1514b perturb 15

tc filter add dev eth0 protocol ip parent 1:0 prio 5 u32 match ip dst
1.1.49.12 match ip tos 0x88 0xfc flowid 1:1300

#limit the metropolitan traffic for 1.1.49.12 to 10Mbps

tc class add dev eth0 parent 1:10 classid 1:9300 htb rate 10Mbps

tc qdisc add dev eth0 parent 1:9300 sfq quantum 1514b perturb 15

tc filter add dev eth0 protocol ip parent 1:0 prio 5 u32 match ip dst
1.1.49.12 flowid 1:9300

For more accessibility, you can make a bash script in which you can write the
following lines:

A="tc class add dev eth0 parent 1:10 classid"

Q="tc qdisc add dev eth0 parent"
P="sfq quantum 1514b perturb 15"

F_NET="tc filter add dev eth0 parent 1:0 protocol ip prio 25 u32 match
ip tos 0x84 0xfc match ip dst"
F_NAT="tc filter add dev eth0 parent 1:0 protocol ip prio 25 u32 match
ip tos 0x84 0xfc match ip dst"
F_METRO="tc filter add dev eth0 parent 1:0 protocol ip prio 25 u32
match ip dst"

Large Networks Case Studies

[262]

and use those variables as follows:

$A <classid> rate <rate>
$Q <classid> $P
$F_NET <dest_IP> flowid <classid>
or
$F_NAT <dest_IP> flowid <classid>
or
$F_METRO <dest_IP> flowid <classid>

As for the example above for 1.1.49.12 with internet access 512 kbps, national access
1Mbps, and metropolitan access 10Mbps, we can do the following:

$A 1:300 rate 512Kbit
$Q 1:300 $P
$F_NET 1.1.49.12 flowid 1:300

$A 1:1300 rate 1Mbit
$Q 1:1300 $P
$F_NAT 1.1.49.12 flowid 1:1300

$A 1:9300 rate 10Mbit
$Q 1:9300 $P
$F_METRO 1.1.49.12 flowid 1:9300

This is much simpler and easier to follow when the traffic shaping script
becomes enormous.

The question that follows is "where" we should place those scripts. If we place them
on the core routers it would be OK, but with so many core links, we won't be able to
do much shaping for the customer upload bandwidth. However, for some customers
who are directly connected to Core-4, we must place the script on Core-4; so, we'll
have to limit the upload bandwidth on three interfaces.

Our concern is not for the clients directly connected to Core-4 as they are big
companies, but rather for the home users and smaller clients who use P2P
applications all the time. Those clients pass through one core router (Core-1 or
Core-4) and through one distribution router.

Chapter 8

[263]

For clients that pass through a distribution router (as in the previous figure), the
optimum way to shape their traffic (from the point of view of the average load of the
routers) is as follows:

Internet limit: on the core router
National network limit: on the core router
Metropolitan network limit: on the distribution router
Upload limit: on the distribution router

Summary
In this chapter we saw a large network with four core routers and five core links, and
discussed:

How to build a configuration for a large network—how to create BGP
connections
What kind of security threads we should expect
How to filter DDoS attacks with a good script that detects and filters them
How to secure business-critical services like VoIP and billing databases
How to differentiate services by marking packets with different values for
those services

•

•

•

•

•

•

•

•

•

Large Networks Case Studies

[264]

How to solve a problem when one of the core links doesn't keep the mark of
the packets
How to perform traffic shaping for customers who buy one, two, or three
services that we created
Where to place the limit scripts for the customers

•

•

•

Index
A
AAA server, firewall policy

about 201
BIND, DNS server 201
FreeRADIUS server for AAA 201
INPUT chain policy, setting 202
RADIUS chain, creating 202
RADIUS packets 202
script 202

Address Resolution Protocol. See ARP
Address Resolution Protocol attacks. See

ARP attacks
Apache web server

about 52
MTA 54
secure Apache server 52, 53
version control systems 53

ARP 22
ARP attacks 45

ARP attacks
about 45
ARP spoofing 45

ARP spoofing 45

B
Berkley Internet Name Domain. See BIND
BIND

about 52
drawback 52
secure BIND 52

Border Gateway Protocol 235, 236

C
CAM table overflow 43

CIDR
about 36
prefixes 37

Committed Information Rate 216
company with remote locations

about 169
bandwidth allocation 185
database in each location 169
encrypted VPN connection 172
encrypted VPN connection, building 172
firewalls, building for headquarters 181-183
firewalls, building for site A 179-181
firewalls, building for site B and site C 176,

177
firewalls, designing 175
firewall script for site B and site C 186
HTB classes, creating 187, 188
interfaces, Linux router 173
IP Analog Telephone Adapters 170
MITM attack, avoiding 172
network 170
network configuration, building 172-174
network diagram 170
network for headquarters 171
network for site A 171
network for site B and site C 171
packets in mangle table, POSTROUTING

chain 186
POSTROUTING chain, mangle table 186
PREROUTING chain, mangle table 189
protocols used 170
QoS adding, for intelligent networks

183-185
QoS script 190, 191
rounter on site A, configuring 174
rounters on different sites 174

[266]

rules for building QoS in network 184
scripts for remote site 181, 182
TCPMSS target, iptables 181

Concurrent Versions System 53
core network configuration, large network

about 235
access list, core-3 241
AS number 236
BGP configuration, core-2 237, 238, 240
BGP peers configuration, core-1 241
BGP routing protocol 235
core-1 configuration 241
core-2 configuration 237, 240
core-3 configuration 240
core-4 configuration 240, 242
IP addresses 236
Zebra router project 235

core router, firewall policy
about 208, 209
configuration, verifying with iptables 212,

213
FORWARD chain 210
INPUT chain 210
script 210, 212
TFTP server 214

D
database server, firewall policy

about 203
script 204
securing 203
SQL chain 204

dedicated routers
about 225
advantages 225
disadvantages 225

Destination Network Address Translations.
See DNAT

DHCP attacks
about 43
DHCP operation 44
DHCP starvation attack 44
rogue DHCP server 45

Distributed Denial of Service 47
DNAT

about 94

port forwarding 94
SOHO routers 95
with iptables 105
working 95, 101

DSCP 114
Dynamic Host Configuration Protocol

attacks. See DHCP attacks

E
email server, firewall policy

about 205
INPUT chain policy 206
script 205, 206
Sendmail 205
xinetd POP3 server, running 205

F
filter classifiers 81
filtering and prioritizing traffic

about 119
for P2P applications 120
Layer 7 filtering 120

filtering specifications
about 68
for layer 2 68
for layer 3 69
for layer 4 69

firewall
building with Linux 63
connection tracking 91
designing for company with remote

locations 175
prerequisites 63
script, for installing Linux distribution

72, 73
stateful firewalls 91

flood-detection tool 246-248, 250
flow control 17
Full NAT 95

I
ICMP

about 21
messages, returned 22

[267]

ICMP attacks 48
Internet

working 38, 39
Internet Control Message Protocol. See

ICMP
intranet server, firewall policy

about 196
ALLOW, default policy 197
configuration, verifying 199, 200
INPUT policy, setting 196, 197
opened ports, checking 196
OpenVPN authentication 197
script 198, 199

IP2P 120
IP address

about 27
Bootstrap protocol 28
classful addressing 29, 30
DHCP protocol 28
DHCP protocol, configuring 28
IP classes 29, 30
IP subnetting 32
IP subnetting, different approach 36
IP supernetting 36, 37
local Internet registry 31
national Internet registry 31
NAT used 31
network mask 29
obtaining 28
private IP addresses 31
protocol for dynamic IP address configura-

tion 28
public IP addresses 31
RARP protocol 29
representation 27
reserved IP addresses 30, 32
versions 28

IPP2P
about 132
installing 132
match options for iptables, providing 133
using 133

IPP2P versus L7-filter 134
IP packet

about 20
IP header, fields 20, 21

iproute
about 1, 63, 74
history 74
ip tool 74
tc tool 75
tools 74

IP spoofing 47
iptables

about 63
filtering specifications 68
operations executed on rules 67
operations performed with chains 67
target specifications 70

ip tool, iproute
about 74
ip addr add command 75
ip addr command 75
ip addr del command 75
ip addr flush dynamic command 75
ip link command 75
ip monitor command 75
ip tunnel command 75
network configuration 74
rtacct command 75
rtmon command 75

L
L7-filter

about 120
advantages 120
applications 128
drawbacks 120, 121
features for netfilter 121
for small-to-medium size companies 120
for SOHO environments 120
important parts 122
installing 122
ip_conntrack module 127
ipt_layer7 modules 126
modules 126
modules, loading 126
using on Linux router 120
working 121, 122

L7-filter, installing
about 122
iptables, compiling 125

[268]

iptables, installing 125
iptables patch, applying 124, 125
kernel patch, applying 122-124
options enabling for applying kernel patch

123
protocol definitions 125
testing the installation 126, 127

L7-filter applications
about 128
accounting 131
application bandwidth, limiting 129, 131
application data, filtering 128
cbq classes 130
POSTROUTING chain, verifying 129, 130

large network example
about 229
bandwidth, limiting 260
city-1 firewall for business-critical voice

equipements 250, 251
city-1 network overview 231, 232
city-2 network overview 232-234
city-3 network overview 234
city-4 network overview 234
core network, configuration 230
Internet access 255
Metropolitan network access 255
national network access 255
network, overview 230
QoS implementation 255-257, 259
security threats 242
traffic shaping for clients 260-263
voice network, securing 252-254

layer 2, security threats
ARP attacks 45
DHCP attacks 43
MAC attacks 42
STP attacks 46
VLAN attacks 45

layer 3, security threats
about 46
ICMP attacks 48
IP spoofing 47
packet sniffing 47
routing protocol attacks 48
Teardrop Attacks 49

layer 4, security threats
about 49

TCP and UDP port scan attacks 51
TCP threats 50
UDP threats 51

layer 7 filtering 120
Linux

as router, for small or medium companies
154

as SOHO router 137
Squid proxy server 142

Linux as router
components of netrwork 155
firewall rules, creating 158-160
firewall script, setting up 161-163
for small or medium companies 154
intranet server 157
QoS-bandwidth allocation 163
router, setting up 154
Samba, file server 157
security policy, defining 156
settings, Squid proxy server 157
Squid proxy server 156

Linux as SOHO router
about 137, 138
DHCP server, setting up 139, 140
Ethernet cards 138
firewall, building 142-144
firewall building, NAT used 142-144
firewall configuration, verifying 147, 148
firewall configuration verifying, iptables

used 148
firewall script, setting up 146, 147
gaming device 142
Netfilter table, verifying with iptables 149
network, setting up 139, 140
QoS-bandwidth allocation 150, 151
rules, security policy 141
rules, SSH chain 145
security policy, defining 141
SOHO configuration 139

Linux rouerts
advantages 225
disadvantages 226

Linux rouerts and dedicated routers, combi-
nation 227

[269]

M
MAC address spoofing 43
MAC attack 42, 43
mail Transport Agents. See MTA
Masquerade

about 92
with iptables 92
working 93

Maximum Information Rate 216
MIM attack 41
MTA

about 54
problems 54
Sendmail 54

N
NAPT. See PAT
NAT

about 89
connection tracking 91
DNAT 94
Full NAT 95
many-to-many scenarios 91
many-to-one scenarios 91
Masquerade 92
one-to-many scenarios 91
one-to-one scenarios 91
private IP addresses, used by hosts 90
router 89
scenarios 91
SNAT 92
SOHO routers 89
working 90, 91

NAT using iptables
about 97
chains, netfilter nat table 100
configuration, verifying 108, 109
DNAT with iptables 105
double NAT 109, 110
Ethernet interfaces, SNAT with iptables 102
Kernel, setting up 97
Linux router configuring, double NAT

111, 112
Netfilter Configuration section 3, 98-100
netfilter nat table 100

OUTPUT chain, netfilter nat table 100
POSTROUTING chain, netfilter nat table

100
PREROUTING chain, netfilter nat table 100
script, setting up 106, 108
SNAT with iptables 102, 104
transparent proxy 105
VPN creating, double NAT 110

netfilter
about 1, 63
chains, default table 64
default table 64
features 63
front-end 63
iptables 63
mangle modules 64
mangle tables 64
NAT 64
packets, flow 65, 66
working 64, 66

Network Address and Port Translation. See
PAT

Network Address Translation. See NAT
networks

access layer 229
core layer 229
distribution layer 229
for company with remote locations 169
large network example 229
medium networks 169
security 41
setting up, Linux as SOHO router 139
three-layered hierarchy 228

network security
about 41
MIM attack 41
OSI layers 42

O
Open Secure Socket Layer. See OpenSSL
OpenSSL

about 56
protecting 56
vulnerabilities 56

OSI model
layers 119

[270]

OSI model and TCP/IP model
differences 25
similarities 25

P
packet mangling with iptables

about 113
IP packet header 113
mangle table, netfilter 113
netfilter mangle table 115
packet flow, netfilter mangle table 116, 117
TOS field 114
TTL field 115

packet sniffing 47
PAT

about 96
advantage 96
uses 96
working 96

Ping of Death 49
Port Address Translation. See PAT
port forwarding 94

Q
qdisc

about 77
CBQ 79
CBQ qdiscs and classes, parameters 80
classful qdiscs 79
classful queuing discipline, working 79
Enhanced Stochastic Fair Queuing (ESFQ)

77
FIFO (pfifo and bfifo) 77
HTB 79
HTB qdiscs and classes, parameters 80
implementations on Linux 77
pfifo_fast 77
Random Early Detection and Generic

Random Early Detection 77
Stochastic Fair Queuing (SFQ) 77
Token Bucket Filter (TBF) 77
TOS bits 78
TOS byte 78

QoS-bandwidth allocation
about 150, 163
Linux as router 163, 164

QoS configuration, verifying 152, 167
QoS script 151, 152, 166, 167
SOHO applications 150, 151

QoS for small ISP network
about 214
bandwidth 215
bandwidth alocation, wireless server 216
default class 216
interfaces, core router 220
QoS on core router 220, 223
QoS on intranet server 218-220
QoS on wireless server 216
QoS script, core router 221, 223
QoS script, intranet server 218, 220
QoS script, wireless server 217

R
RARP 22
Reverse Address Resolution Protocol. See

RARP
running services, protecting 56, 58, 59, 61

S
security threats

ARP attacks 45
DHCP attacks 43
ICMP attacks 48
IP spoofing 47
MAC attack 42
MIM attack 41
OSI layer 1 42
OSI layer 2 42-46
OSI layer 3 46
OSI layer 4 49
OSI layer 5 51
OSI layer 6 51
OSI layer 7 51
packet sniffing 47
routing protocol attacks 48
STP manipulation 46
TCP and UDP port scan attacks 51
TCP threats 50
Teardrop Attacks 49
UDP threats 51
VLAN related attacks 45

[271]

security threats, large network
about 242
Core Routers INPUT Firewalls 242
Distributed Denial of Service attacks 245,

246
flood-detection tool 246-248, 250
networks behind core routers, protecting

243, 244
script, core router 242

Simple Network Management Protocol. See
SNMP

small ISP
AAA server, firewall policy 201
about 191
access server, firewall policy 208
class C network, ISP 194
core router 192, 208
database server, firewall policy 203
email server, firewall policy 205
firewall policy 196
firewalls, designing 195
firewalls, implementing 195
intranet server 193, 196
intranet server, firewall policy 196
network 192
network after subnetting 195
network configuration, building 194
network diagram 209
QoS for network 214
Sendmail, SMTP server 205
server farm 193
subnet, class C network 194
web server, firewall policy 206
wireless bridge 193
wireless server, firewall policy 200

SNAT
about 92
dynamic SNAT 92
iptables 92
static SNAT 92
with iptables 92, 102
working 93, 101

SNMP
about 55
versions 55

SOHO
about 137

configuration 139
routers 137
routers, Ethernet ports 137
WAN port 137

Spanning Tree Protocol 46
Squid proxy server

about 142
configuring 142
default port 142
Linux as router 156

STP manipulation 46
subnetting

about 32
subnet mask 33, 35

supernetting 36
synchronization 16

T
target specifications

about 70
ACCEPT target 70
DROP target 70
LOG target 70, 71
SSH chain, rules 71, 72

TCP. See Transmission Control Protocol
TCP/IP layers

Application layer 13, 14
Internet layer 19
Network Access layer 22, 23
Network layer 22, 23
protocol, Internet layer 20
protocols, Application layer 14
protocols, Transport layer 14, 15
Transport layer 14

TCP/IP model
about 24
example 26
functionality 24
layers 119

TCP and UDP port scan attacks 51
TCP threats

about 50
Land attack 51
SYN flooding 50
TCP Connection Hijacking 51
TCP SYN attack 50

[272]

tc tool, iproute
about 75
classless qdiscs 77
example 82, 84-86
packet queuing 76
tc class command 80
tc command 75
tc filter command 80
tc filter command, parameters 81
tc qdisc command 80

Teardrop Attacks 49
Transmission control protocol

about 15
segments 15, 16
TCP synchronization 16
windowing 16

transparent proxy 143

U
UDP. See User Datagram Protocol
UDP threats

about 51
UDP flooding 51

User Datagram Protocol
about 18
benefits 18, 19
need for 18, 19
segment 18

V
Version control systems

about 53
Concurrent Versions System 53
subversion 54
subversion, protecting 54

Virtual LAN related attacks. See VLAN
related attacks

VLAN related attacks
about 45
network loops, creating 46
VLAN hopping 46

W
WAN port 137
web server, firewall policy

about 206
active mode, FTP 207
confugurations 206
FTP modes 206
passive mode, FTP 207
ProFTPD, FTP server 206
Pure-FTPd, FTP server 206
script 207, 208

windowing 17

Z
Zebra router project 235

	Designing and Implementing Linux Firewalls and QoS
	Table of Contents
	Preface
	Chapter 1: Networking Fundamentals
	The OSI Model
	OSI Layer 7: Application
	OSI Layer 6: Presentation
	OSI Layer 5: Session
	OSI Layer 4: Transport
	OSI Layer 3: Network
	OSI Layer 2: Data Link
	OSI Layer 1: Physical
	OSI Functionality Example and Benefits

	The TCP/IP Model
	The TCP/IP Application Layer
	The Transmission Control Protocol (TCP)
	The User Datagram Protocol (UDP)

	The TCP/IP Internet Layer
	The TCP/IP Network Access Layer
	TCP/IP Protocol Suite Summary

	OSI versus TCP/IP
	IP Addressing, IP Subnetting, and IP Supernetting
	Obtaining an IP Address
	IP Classes
	Reserved IP Addresses
	Public and Private IP Addresses

	IP Subnetting
	The Subnet Mask

	Everything Divided in Two
	A Different Approach

	IP Supernetting or CIDR

	How the Internet Works
	Summary

	Chapter 2: Security Threats
	Layer 1 Security Threats
	Layer 2 Security Threats
	MAC Attacks
	DHCP Attacks
	ARP Attacks
	STP and VLAN-Related Attacks

	Layer 3 Security Threats
	Packet Sniffing
	IP Spoofing
	Routing Protocols Attacks
	ICMP Attacks
	Teardrop Attacks

	Layer 4 Security Threats
	TCP Attacks
	UDP Attacks
	TCP and UDP Port Scan Attacks

	Layer 5, 6, and 7 Security Threats
	BIND Domain Name System (DNS)
	Apache Web Server
	Version Control Systems
	Mail Transport Agents (MTA)
	Simple Network Management Protocol (SNMP)
	Open Secure Sockets Layer (OpenSSL)

	Protect Running Services—General Discussion

	Summary

	Chapter 3: Prerequisites: netfilter and iproute2
	netfilter/iptables
	Iptables — Operations
	Filtering Specifications
	Target Specifications
	A Basic Firewall Script—Linux as a Workstation

	iproute2 and Traffic Control
	Network Configuration: "ip" Tool
	Traffic Control: tc
	Queuing Packets

	tc qdisc, tc class, and tc filter
	A Real Example

	Summary

	Chapter 4: NAT and Packet Mangling with iptables
	A Short Introduction to NAT and PAT (NAPT)
	SNAT and Masquerade
	DNAT
	Full NAT (aka Full Cone NAT)
	PAT or NAPT

	NAT Using iptables
	Setting Up the Kernel
	The netfilter nat Table
	SNAT with iptables
	DNAT with iptables
	Transparent Proxy
	Setting Up the Script
	Verifying the Configuration
	A Less Normal Situation: Double NAT

	Packet Mangling with iptables
	The netfilter mangle Table

	Summary

	Chapter 5: Layer 7 Filtering
	When to Use L7-filter
	How Does L7-filter Work?
	Installing L7-filter
	Applying the Kernel Patch
	Applying the iptables Patch
	Protocol Definitions
	Testing the Installation

	L7-filter Applications
	Filtering Application Data
	Application Bandwidth Limiting
	Accounting with L7-filter

	IPP2P: A P2P Match Option
	Installing IPP2P
	Using IPP2P

	IPP2P versus L7-filter
	Summary

	Chapter 6: Small Networks Case Studies
	Linux as SOHO Router
	Setting Up the Network
	Defining the Security Policy
	Building the Firewall
	Setting Up the Firewall Script
	Verifying the Firewall Configuration
	QoS—Bandwidth Allocation
	The QoS Script
	Verifying the QoS Configuration

	Linux as Router for a Typical Small to Medium Company
	Setting Up the Router
	Defining the Security Policy
	A Few Words on Applications
	Creating the Firewall Rules
	Setting Up the Firewall Script
	QoS—Bandwidth Allocation
	The QoS Script

	Summary

	Chapter 7: Medium Networks Case Studies
	Example 1: A Company with Remote Locations
	The Network
	Building the Network Configuration
	Designing the Firewalls
	Building the Firewalls
	Sites B and C
	Site A
	Headquarters

	Make the Network Intelligent by Adding QoS

	Example 2: A Typical Small ISP
	The Network
	Building the Network Configuration
	Designing and Implementing the Firewalls
	The Intranet Server: 1.2.3.10
	The Wireless Server: 1.2.3.130
	The AAA Server: 1.2.3.1
	The Database Server: 1.2.3.2
	The Email Server: 1.2.3.3
	The Web Server: 1.2.3.4
	A Few Words on the Access Server: 1.2.3.131
	The Core Router—First Line of Defense

	QoS for This Network
	QoS on the Wireless Server for Long-Range Wireless Users
	QoS on the Intranet Server for the Internal Departments
	QoS on the Core Router

	Summary

	Chapter 8: Large Networks Case Studies
	Thinking Large, Thinking Layered Models
	A Real Large Network Example
	A Brief Network Overview
	City-1
	City-2
	City-3 and City-4

	The Core Network Configuration
	Core-2
	Core-1, Core-3, and Core-4

	Security Threats
	Core Routers INPUT Firewalls
	Protecting the Networks behind the Core Routers
	Denial of Service Attacks

	City-1 Firewall for Business-Critical Voice Equipment
	Securing the Voice Network

	QoS Implementation
	Traffic Shaping for Clients

	Summary

	Index

