his document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

MEXT B

Understanding Linux Network Internals
By Christian Benvenuti

Publisher: O'Reilly

Pub Date: December 2005

ISBN: 0-596-00255-6

Pages: 1062

| able of Contentg ||ndeg|

Overview

If you've ever wondered how Linux carries out the complicated tasks assigned to it by the IP protocols -- or if you just want to learn
about modern networking through real-life examples -- Understanding Linux Network Internals is for you.

Like the popular O'Reilly book, Understanding the Linux Kernel, this book clearly explains the underlying concepts and teaches you how
to follow the actual C code that implements it. Although some background in the TCP/IP protocols is helpful, you can learn a great deal
from this text about the protocols themselves and their uses. And if you already have a base knowledge of C, you can use the book's
code walkthroughs to figure out exactly what this sophisticated part of the Linux kernel is doing.

Part of the difficulty in understanding networks -- and implementing them -- is that the tasks are broken up and performed at many
different times by different pieces of code. One of the strengths of this book is to integrate the pieces and reveal the relationships
between far-flung functions and data structures. Understanding Linux Network Internals is both a big-picture discussion and a
no-nonsense guide to the details of Linux networking. Topics include:

® Key problems with networking

® Network interface card (NIC) device drivers
® System initialization

® | ayer 2 (link-layer) tasks and implementation
® | ayer 3 (IPv4) tasks and implementation

® Neighbor infrastructure and protocols (ARP)
® PBridging

® Routing

® |CMP

Author Christian Benvenuti, an operating system designer specializing in networking, explains much more than how Linux code works.
He shows the purposes of major networking features and the trade-offs involved in choosing one solution over another. A large number
of flowcharts and other diagrams enhance the book's understandability.

NEXT B

his document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

Understanding Linux Network Internals
By Christian Benvenuti

Publisher: O'Reilly

Pub Date: December 2005

ISBN: 0-596-00255-6

Pages: 1062

| able of Contentg ||ndeg|

0

refacq

righ

he Audience for This B oolJ

ackground Informatio
rganization of the Materia

onventions Used in This Boo

sing Code Example.

e'd Like to Hear from Yo

cknowledgment:

art I: General Backgroun

ection 1.1. Basic Terminoloqxj

3atterng

ection 1.4 Browsing the Source Codé

. Common Codin

ection 1.3. User-Space Toold

ection 1.5. When a Feature Is Offered as a Patcll
Chapter 2. Critical Data Structuresl

ection 2.1. The Socket Buffer: sk buff Structurel
ection 2.2. net device Structur
ection 2.3. Files Mentioned in This Chaﬁti’l

Chapter 3. User-Space-to-Kernel Interfac

. Overvie

L. procfs Versus SVSCtl

. Serializing Configuration Chanqes]

Chapter 4. Notifica_tion Chain

ection 4.1. Reasons for Notification Chainsl

. Overvie
=

. Defining a Chai

. Reg.isterinq with a Chai

ection 4.5. Notifying Events on a Chai

ection 4.6. Notifica_tion Chgins for the Networking Subsvstemsl

. TLininq vig /proc Filesvstenl

._Functions and Variables Featured in This Chapte

. Files zlnd Directories Featured in This Chapte

Chapter 5. Network Device Initializatio

MEXT B

his document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

ection 5.1. System Initialization OvervieV\I

ection 5.2, Device Reqistra_tion and Initializatiorl

ection 5.3. Ba_sic Goe&ls of NIC Initializatio

ection 5.4. Interaction Between Devices and Kernel

._Initialization O

ection 5.6. Module Option

ection 5.7. Initi@nq the Device Handling Layer: net_dev inil

ection 5.8. User-Space Helperq

ection 5.9. Virtual Device

ection 5.10._Tuning via /proc Filesvstggl

ection 5.11. Functions and Variables Feat_ured in This Chapte

ection 5.12. Files and Directories Featured in This Chapte

Chapter 6. The PCI Laver and Network Interface Card

ection 6.1. Data Structures Featured in This Chaptel

ection 6.2. Registering a PCI NIC Device Drive
ection 6.3. Power Management gnd nge—on—LANn
ection 6.4. Examgle of PCI NIC Driver Registratiol

ection 6.5. The Big Pictur

ection 6.6._Tuning via /proc Filesvsterﬂ

ection 6.7. Functions and Variables Featured in This Chaptel

ection 6.8. Files and Directories Featured in This Chapte

Chapter 7. Kernel Infrastructure for Component Initializatio

ection 7.1. Boot-Time Kernel Optiong

ection 7.2. Module Initialization Cod
ection 7.3. Optimized Macro—Bas;ed Tagginﬁ
ection 7.4. Boot-Time Initialization Routine

ection 7.5. Memory Optimization:

ection 7.6. Tuning via /proc Filesvsterrl

ection 7.7. anctions and Variables Feat_ured in This Chaptel

ection 7.8. Files and Directories Featured in This Chapte

Chapter 8. Device Reqistra_tion and Initialization|

ection 8.1. When a Device Is Registere
ection 8.2. When a Device Is Unregistered
ection 8.3. AIIocaLinq net device Structure

ection 8.4. Skeleton of NIC Registration and Unregistratiogl

ection 8.5. Device Initializatior]

ection 8.6. Organization of net _device Structures]

ection 8.7. Device Statg

. Reg.isterinq and Unregistering Device

12 Upda_tinq the Device Queuing Discipline Stats

. Configuring Device-Related Information from User Spacel

. Tuning via /proc FiIesvsterJ
ection 8.17. Functions and Variables Feaﬂred in This Chargte[l

ection 8.18. Files gnd Directories Featured in This Chapte

IDart 11l: _Transmission and Receptior’l

|Cha9ter 9. Interrupts_and Network Driversl

ection 9.1. Decisions and Traffic Directiorl

his document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

ection 92. Notifying Drivers When Frames Are Received

ection 9.3. Interrupt Handlers
ection 9.4. softnet data Stchtur;

Chapter 10. Frame Receptiol

ection 10.1. Interactions with Other Feature

ection 10.2. Enabling and Disabling a Devicq

ection ;0.3. Queue!

ection 10.4. Notifying the Kernel of Frame Reception: NAPI zlnd netif nJ

ection 10.5. Old Interface Between Device Drivers and Kernel: First Part of netif r>1

ection ;0.6. Congestion Managemen
ection 10.7. Processing the NET _RX SOFTIROQ: net rx actiori
Chapter 11. Frame TrgnsmissioA

ection 11.1. Enabling and Disa_blinq TrgnsmissionJ

Chapter 12. General and Reference Material About Interrupd

ection 12.1. Statisticg

ection 12.2. Tuning via /proc and sysfs Filesvsteﬁ

ection 12.3. Functions and Variables Featured in This Part of the Bood

ection 12.4. Files and Directories Featured in This Part of the Boo
Chapter 13. Protocol Hgndlersl

ection 13.1. Overview of Network Stacl

ection 13.2. Executing the Right Protocol Handle

ection 133 Protocol Hzlndler Organizatio

ection 13.4. Protocol Hgndler Registratio
ection 13.5. Ethernet Versus IEEE 802.3 Frame

ection 13.6._Tuning via /proc Filesyste
ection 13.7. Functions and Variables Featured in This Chg'lml
ection 13.8. Files and Directories Featured in This Chapte|

IDart 1\V: Bridgin

Chapter 14. Bridging: Concepté

ection 14.1. Repeaters, Bridges, and Routerg

ection 14.2. Bridges Versus Switche

ection 14.3. Hosté

ection 14.4. Merging LANs with Bridqesl

ection 14.5. Bridging Different LAN Technoloqiesl

. _Address Learnin

ection 14.7. Multigle Bridge

Chapter 15. Briqginq: The Spanning Tree Protocol

ection 15.1. Basic Terminolog

ection 15.2. Example of Hierarchical Switched L2 Topology

ection 153 Basic Elements of the Spanning Tree Protoco

ection 15.4. Bridge and Port ID

ection 155 §ridqe Protgcol Data Units gBPDUsi
ection 15.6. Defining the Active Topolog

ection 15.7. Time

ection ;5.8. Topology Change!

ection 15.9. BPDU Enca sulatiol

ection 15.10. Transmitting Configuration

ection 15.11. Processing Ingress Frame
—

ection 15.12. Convergence Tim

ection 15.13. Overview of Newer Spanning Tree Protocolsl

|Cha9ter 16. Bridging: Linux Implementatioa
ection 16.1. Bridge Device Abstractio

his document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

Important Data Structure

. Initializ_ation of Bridging Cod

. Crea_tinq Bridge Devices and Bridge Port

._Bridge Device Setup Routini

ection 16.7. Deleting a Bridgg

ection 16.8. _Adding Ports to a Brid

ection 16.9. Enabling and Disabling a Bridge Devic
ection 16.10. Enabling and Disabling a Bridge Por
ection 16.11. Changing State on a Bridge Po

ection 16.12.

The Big Pictur

ection 16.13.

Forwarding Databas

ection ;6.14.

Hgndlinq Ingress Traffi

ection 16.15.
ection 16.16.

Transmitting on a Bridge Devic

Spanning Tree Protocol (STP

ection ;6.17.

netgevice Notifica_tion Chzﬁl

Chapter 17. Briqginq: Miscellgneous Topic

ection 17.1. User-Space Configuration Tool

ection 17.2._Tuning via /proc Filesyste

ection 17.3. Tuning via /sys Filesyste

ection 17.4. Statistic

ection 17.5. Data Structures Featured in This Part of the Bood

ection 17.6. Functions and Variables Featured in This Part of the Bood
ection 17.7. Files and Directories Featured in This Part of the Boo

IDart V: Internet Protocol Version 4 (lPV4J

Chapter 18. Internet Protocol Version 4 (IPv4): Conceptsl

. _|IP Protocol: The Big Picture]

182 1P Headevl

. 1P Optioné

_Packet Fra mentation/Defraqmentatiorl
. Checksumj

ection 19.1.

ection 19.2.

Ma_in IPv4 Data Structureg
General Packet Handlin

ection 21.1_Key FLinctions Thzlt Perform Transmissi

ection 21.2. Interface to the Neighboring Subsystem

Chapter 22. Internet Protgcol \ersion 4 (IPv4): Handling Fraqmentatiorl

ection 22.2. IP Defragmentatio

Chapter 23._Internet Protocol Version 4 (IPv4): Miscellaneous Topicsl
23.1._Long-Living IP Peer Informz@q

23.2. Selecting the IP Header's ID Fiel

._|P Statistics
. |P Config
. |P-over-IH

Eection 23.6. IPv4: What's Wrong with It’i

ection 23.7. Tuning via /proc Filesysten]

ratiof]

his document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

Section 23.8. Data Structures Featured in This Part of the Booll

BSection 23.9. Functions and Variables Featured in This Part of the Bood
Bection 23.10. Files and Directories Featured in This Part of the Boo
Chapter 24. Layer Four Protocol and Raw IP Handlind

Section 24.1. Available L4 Protocols

ection 24.2. L4 Protocol Registratio

ection 24.3. L3 to L4 Delivery: ip _local deliver finisrl
ection 24.4._1Pv4 Versus IPvd

ection 24.5. Tuning via /proc FilesvsterJ

ection 24.6. Functions and Variables Feaﬂred in This Chapte

ection 24.7. Files gnd Directories Fegtured in This Chapte

Chapter 25. Internet Control Message Protocol (ICMPv4
ection 25.1._ICMP Hez%
ection 25.2. ICMP Payloa
ection 25.3. ICMP Type
ection 25.4. Applications of the ICMP Protoco|
ection 25.5. The Big Pictur
ection 25.6. Protocol Initializatioa
ection 25.7. Data Structures Featured in This Chaptel
ICMP Message

._Transmittin

. Pa§sinq Error Notifications to the Transport Layevl
. Tuning vig /proc Filesyste
_Functions and Variables Featured in This ChaFtegl

ection 25.13. Files and Directories Featured in This Chaptel

m: Concegtg

ection 26.2. Reasons TheLt Neighboring Protocols Are Needed

ection 26.1. What Is a Neig.hbor’.

ection 26.3. Linux Implementatio

ection 26.4. Proxying the Neiqhﬁ)orinq Protocol

ection 26.5. When Solicita_tion Requests Are Transmitted and Processed
ection 26.6. Neighbor States and Network Unreachability Detection (NUD

Chapter 27. Neighboring Subsystem: Infrastructur

ection 27.1. Main Data Structured

Bection 27.2. Common Interface Between L3 Protocols and Neighboring Protocolg
Section 27.3. General Tasks of the Neiqhgorinq Infrastructurg

Section 27.4. Reference Counts on neighbour Structured

Section 27.5. Creating a neighbour Entr:

Section 27.6. Neighbor Deletio

Section 27.7. Acting As a Proxy
Section 27.8. L2 Header Cachind

Section 27.9. Protocol Initialization and Cleanug

BSection 27.10. Interaction with Other Subsystem
Section 27.11.

Interaction Between Neighboring Protocols and L3 Transmission Functiong

Section 27.12. Queuing

Chapter 28. Neighboring Subsystem: Address Resolution Protocol (ARPi
Section 28.1. ARP Pa_cket Formgl

Section 28.2. Example of an ARP Transactiorl

Section 28.3. Gratuitous ARl

Eection 28.4. Responding from Multiple Interfaceg
ection 28.5. Tunable ARP Option:

his document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

ection 28.6. ARP Protocol Initializatio

ection 28.7. Initializ_ation of a neiqhbogr Structur

ection 28.8. Transmitting and Receiving ARP Packe

ection 28.9. Processing Ingress ARP Packeé
ection 28.10. Proxy ARP|

ection 28.11. Exampled

ection 28.12. External Event;

ection 28.13._ARP
ection 28.14. Reverse Address Resolution Protocol (RAR Di

ection 28.15. Improvements in ND (IPv6) over ARP (IPv4

Chapter 29. Neighboring Subsystem: Miscellaneous Topicq
ection 29.1. System Administration of Neighbor;

ection 29.2. Tuning vig /proc Filesysten

ection 29.3. Data Structures Feat_ured in This Part of the Bood

ection 29.4. Files and Directories Featured in This Part of the Bood
IDart VII: Routin
Chapter 30. Routing: Concepré

ection 30.1. Routers, Routes, and Routing Table
ection 30.2. Essential Elements of Routin:

ection 30.5. chket Reception Versus Packet Transmissiorl

Chapter 31. Routing: Advance

ection 31.1. Concepts Behind Policy Routin[J
ection 31.2._Concepts Behind Multipath Routln_cl

ection 31.3. Intere_ictions with Other Kernel Subsystemsl

ection 31.4. Routing Protocol Daemon
ection 31.5. Verbose Monitorind

ection 31.6. ICMP REDIRECT Message
ection 31.7. Reverse Path FiIterinJ

Chapter 32. Routing: Li hux Implementatiorl

. Kernel Option

. Main Data Structure

. Route gnd Ad(iress Scope:
IP_Addresse:

._Primary and Secondar
ection 32.5._Generic Helper Routines and Macro
ection 32.6._Global Locké
ection 32.7. Routing Subsystem Initializatio

ection 32.8. External Event
ection 32.9. Intergctions with Other Subsystem
Chapter 33. Routing: The Routing Cach

ection 33.1. Routing Ca_che Initializatio

ection 33.2. Hash Table Organizatio
ection 33.3. Major Cache Operation
ection 33.4. Multipath Cachin

ection 33.5. Interface Between the DST and Calling Protocolsl
ection 33.6. Flushing the Routing Cachgl
ection 33.7. _Garbage Collection
ection 33.8. Egress ICMP REDIRECT Rate Limitind
Chapter 34. Routing: Routing Table
Ection 34.1.Organization of Routing Hash Tablesl

ection 34.2. Routing Table Initializatio

his document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

ection 34.3. Adding and Removing Routesl

ection 34.4. Policy Routing and Its Effects on Routing Table Definitionsl
Chapter 35. Routing: Looku
_ High-Level View of Lookup Functioné
._Helper Routines
_ The Table Looku
_fib_lookup Functio

. fn_hash looku

. Setting Functions for Reception zlnd Trgnsmissior{

. General Structure of the Input and Output Routing Routine!

_Output Routin

ection 35.9. Effects of Multipath on Next Hop Selectiorl

ection 35.10. Policy Routin

ection 35.11. Source Routin

ection 35.12. Policy Routing and Routing Table Based Classifie}

Chapter 36. Routing: Miscellgneous Topicy

. User-Space Configuration Toolsl

_Data Structures Featured in This Part of the Boo
ection 36.6. Functions and Variaples Featured in This Part of the Bood
ection 36.7. Files and Directories Featured in This Part of the Boo

bout the Author

olopho

nde

KI==a NEXT

his document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

=2 wEXT

Understanding Linux Network Internals
by Christian Benvenuti
Copyright © 2006 O'Reilly Media, Inc. All rights reserved. Printed in the United States of America.

Published by O'Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

books may be purchased for educational, business, or sales promotional use. Online editions are also availab

Rei) 0
). For more information, contact our corporate/institutional sales department: (800) 998-9938 or.

Editor: Andy Oram
Production Editor: Philip Dangler
Cover Designer: Karen Montgomery
Interior Designer: David Futato

Printing History:

December 2005: First Edition.

Nutshell Handbook, the Nutshell Handbook logo, and the O'Reilly logo are registered trademarks of O'Reilly Media, Inc. The Linux series
designations, Understanding Linux Network Internals, images of the American West, and related trade dress are trademarks of O'Reilly
Media, Inc.

Many of the designations used by manufacturers and sellers to distinguish their products are claimed as trademarks. Where those
designations appear in this book, and O'Reilly Media, Inc. was aware of a trademark claim, the designations have been printed in caps or
initial caps.

While every precaution has been taken in the preparation of this book, the publisher and author assume no responsibility for errors or
omissions, or for damages resulting from the use of the information contained herein.

M]

ISBN: 0-596-00255-6

" prey wEXT

http://safari.oreilly.com
mailto:corporate@oreilly.com
file:///C:/DOCUME~1/%B9%DA%B9%AE%B1%B9/LOCALS~1/Temp/Oreilly,%20Understanding%20Linux%20Network%20Internals%20(2005)%20Bbl%20Lotb.chm/0596002556/9961536.html

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

=2 wEXT

Preface

Today more than ever before, networking is a hot topic. Any electronic gadget in its latest generation embeds some kind of networking
capability. The Internet continues to broaden in its population and opportunities. It should not come as a surprise that a robust, freely
available, and feature-rich operating system like Linux is well accepted by many producers of embedded devices. Its networking
capabilities make it an optimal operating system for networking devices of any kind. The features it already has are well implemented,
and new ones can be added easily. If you are a developer for embedded devices or a student who would like to experiment with Linux,
this book will provide you with good fodder.

The performance of a pure software-based product that uses Linux cannot compete with commercial products that can count on the help
of specialized hardware. This of course is not a criticism of software; it is a simple recognition of the consequence of the speed
difference between dedicated hardware and general-purpose CPUs. However, Linux can definitely compete with low-end commercial
products that are entirely software-based. Of course, simple extensions to the Linux kernel allow vendors to use Linux on hybrid systems
as well (software and hardware); it is only a matter of writing the necessary device drivers.

Linux is also often used as the operating system of choice for the implementation of university projects and theses. Not all of them make
it to the official kernel (not right away, at least). A few do, and others are simply made available online as patches to the official kernel.
Isn't it a great satisfaction and reward to see your contribution to the Linux kernel being used by potentially millions of users? There is
only one drawback: if your contribution is really appreciated, you may not be able to cope with the numerous emails of thanks or
requests for help.

The momentum for Linux has been growing continually over the past years, and apparently it can only keep growing.

| first encountered Linux at the University of Bologna, where | was a grad student in computer science around 10 years ago. What a
wonderful piece of software! | could work on my image processing projects at home on an i286/486 computer without having to compete
with other students for access to the few Sun stations available at the university labs.

Since then, my marriage to Linux has never seen a gray day. It has even started to displace my fond memories of the glorious C64
generation, when | was first introduced to programming with Assembly language and the various dialects of BASIC. Yes, | belong to the
C64 generation, and to some extent | can compare the joy of my first programming experiences with the C64 to my first journeys into the
Linux kernel.

When | was first introduced to the beautiful world of networking, | started playing with the tools available on Linux. | also had the fortune
to work for a UNESCO center in Italy where | helped develop their networking courses, based entirely on Linux boxes. That gave me
access to a good lab equipped with all sorts of network devices and documentation, plus plenty of Linux enthusiasts to learn from and to
collaborate with.

Unfortunately for my own peace of mind (but fortunately, | hope, for the reader of this book who benefits from the results), | am the kind
of person that likes to understand everything and takes very little for granted. So at UNESCO, | started looking into the kernel code. This
not only proved to be a good way to burn in my knowledge, but it also gave me more confidence in making use of user-space
configuration tools: whenever a configuration tool did not provide a specific option, | usually knew whether it would be possible to add it
or whether it would have required significant changes to the kernel. This kind of study turns into a path without an end: you always want
more.

After developing a few tools as extensions to the Linux kernel (some revision of versions 2.0 and 2.2), my love for operating systems and
networking led me to the Silicon Valley (Cisco Systems). When you learn a language, be it a human language or a computer
programming language, a rule emerges: the more languages you know, the easier it becomes to learn new ones. You can identify each
one's strengths and weaknesses, see the reasons behind design compromises, etc. The same applies to operating systems.

When | noticed the lack of good documentation about the networking code of the Linux kernel and the availability of good books for other
parts of the kernel, | decided to try filling in the gapor at least part of it. | hope this book will give you the starting documentation that |
would have loved to have had years ago.

| believe that this book, together with O'Reilly's other two kernel books (Understanding the Linux Kerneland Linux Device Drivers),

his document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

represents a good starting point for anyone willing to learn more about the Linux kernel internals. They complement each other and,
when they do not address a given feature, point the reader to external documentation sources (when available).

However, | still suggest you make some coffee, turn on the music, and spend some time on the source code trying to understand how a
given feature is implemented. | believe the knowledge you build in this way lasts longer than that built in any other way. Shortcuts are
good, but sometimes the long way has its advantages, too.

=2 wExT

his document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

=2 wEXT

The Audience for This Book

This book can help those who already have some knowledge of networking and would like to see how the engine of the Internetthat is,
the Internet Protocol (IP) and its friendsis implemented on a first-class operating system. However, there is a theoretical introduction for
each topic, so newcomers will be able to get up to speed quickly, too. Complex topics are accompanied by enough examples to make
them easier to follow.

Linux doesn't just support basic IP; it also has quite a few advanced features. More important, its implementation must be sophisticated
enough to play nicely with other kernel features such as symmetric multiprocessing (SMP) and kernel preemption. This makes the
networking code of the Linux kernel a very good gym in which to train and keep your networking knowledge in shape.

Moreover, if you are like me and want to learn everything, you will find enough details in this book to keep you satisfied for quite a while.

" prey wEXT

file:///C:/DOCUME~1/%B9%DA%B9%AE%B1%B9/LOCALS~1/Temp/Oreilly,%20Understanding%20Linux%20Network%20Internals%20(2005)%20Bbl%20Lotb.chm/0596002556/9961536.html

his document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

=2 wEXT

Background Information

Some knowledge of operating systems would help. The networking code, like any other component of the operating system, must follow
both common sense and implicit rules for coexistence with the rest of the kernel, including proper use of locking; fair use of memory and
CPU; and an eye toward modularity, code cleanliness, and good performance. Even though | occasionally spend time on those aspects,
| refer you to the other two O'Reilly kernel books mentioned earlier for a deeper and detailed discussion on generic operating system
services and design.

Some knowledge of networking, and especially IP, would also help. However, | think the theory overview that precedes each
implementation description in this book is sufficient to make the book self-contained for both newcomers and experienced readers.

The theoretical description of the topics covered in the book does not require any programming experience. However, the descriptions of
the associated implementations require an intermediate knowledge of the C language. will go through a series of coding
conventions and tricks that are often used in the code, which should help especially those with less experience with C and kernel
programming.

" prey wEXT

file:///C:/DOCUME~1/%B9%DA%B9%AE%B1%B9/LOCALS~1/Temp/Oreilly,%20Understanding%20Linux%20Network%20Internals%20(2005)%20Bbl%20Lotb.chm/0596002556/9961536.html

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

=2 wEXT

Organization of the Material

Some aspects of networking code require as many as seven chapters, while for other aspects one chapter is sufficient. When the topic is
complex or big enough to span different chapters, the part of the book devoted to that topic always starts with a concept chapter that
covers the theory necessary to understand the implementation, which is described in another chapter. All of the reference and
secondary material is usually located in one miscellaneous chapter at the end of the part. No matter how big the topic is, the same
scheme is used to organize its presentation.

For each topic, the implementation description includes:

® The big picture, which shows where the described kernel component falls in the network stack.
® A prief description of the main data structures and a figure that shows how they relate to each other.

® A description of which other kernel features the component interfaces withfor example, by means of notification chains or data
structure cross-references. The firewall is an example of such a kernel feature, given the numerous hooks it has all over the
networking code.

® txtensive use of flow charts and figures to make it easier to go through the code and extract the logic from big and seemingly
complex functions.

The reference material always includes:

® A detailed description of the most important data structures, field by field
® A table with a brief description of all functions, macros, and data structures, which you can use as a quick reference
® A |ist of the files mentioned in the chapter, with their location in the kernel source tree

® A description of the interface between the most common user-space tools used to configure the topic of the chapter and the
kernel

® A description of any file in /proc that is exported

The Linux kernel's networking code is not just a moving target, but a fast runner. The book does not cover all of the networking features.
New ones are probably being added right now while you are reading. Many new features are driven by the needs of single users or
organizations, or as university projects, but they find their way into the official kernel when they're considered useful for a large audience.
Besides detailing the implementation of a subset of those features, | try to give you an idea of what the generic implementation of a
feature might look like. This will help you greatly in understanding changes to the code and learning how new features are implemented.
For example, given any feature, you need to take the following points into consideration:

® owdo you design the data structures and the locking semantics?

® s there a need for a user-space configuration tool? If so, is it going to interact with the kernel via an existing system call, an
ioctl command, a/proc file, or the Netlink socket?

® s there any need for a new notification chain, and is there a need to register to an already existing chain?
® \Whatis the relationship with the firewall?

® s there any need for a cache, a garbage collection mechanism, statistics, etc.?

Here is the list of topics covered in the book:

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

Interface between user space and kernel

In , you will get a brief overview of the mechanisms that networking configuration tools use to interact with their
counterparts inside the kernel. It will not be a detailed discussion, but it will help you to understand certain parts of the kernel
code.

System initialization

describes the initialization of key components of the networking code, and how network devices are registered and
initialized.

Interface between device drivers and protocol handlers

offers a detailed description of howingress (incoming or received) packets are handed by the device drivers to the
upper-layer protocols, and vice versa.

Bridging

describes transparent bridging and the Spanning Tree Protocol, the L2 (Layer two) counterpart of routing at L3 (Layer
three).

Internet Protocol Version 4 (IPv4)

describes how packets are received, transmitted, forwarded, and delivered locally at the IPv4 layer.

Interface between IPv4 and the transport layer (L4) protocols

shows how IPv4 packets addressed to the local host are delivered to the transport layer (L4) protocols (TCP,
UDP, etc.).

Internet Control Message Protocol (ICMP)

describes the implementation of ICMP, the only transport layer (L4) protocol covered in the book.

Neighboring protocols

These find local network addresses, given their IP addresses. describes both the common infrastructure of the various
protocols and the details of the ARP neighboring protocol used by IPv4.

Routing

, the biggest one of the book, describes the routing cache and tables. Advanced features such as Policy Routing and
Multipath are also covered.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

What Is Not Covered

For lack of space, | had to select a subset of the Linux networking features to cover. No selection would make everyone happy, but |
think | covered the core of the networking code, and with the knowledge you can gain with this book, you will find it easier to study on
your own any other networking feature of the kernel.

In this book, | decided to focus on the networking code, from the interface between device drivers and the protocol handlers, up to the
interface between the IPv4 and L4 protocols. Instead of covering all of the features with a compromise on quality, | preferred to keep
quality as the first goal, and to select the subset of features that would represent the best start for a journey into the kernel networking
implementation.

Here is a partial list of the features | could not cover for lack of space:

Internet Protocol Version 6 (IPv6)

Even though | do not cover IPv6 in the book, the description of IPv4 can help you a lot in understanding the IPv6
implementation. The two protocols share naming conventions for functions and often for variables. Their interface to Netffilter
is also similar.

IP Security protocol

The kernel provides a generic infrastructure for cryptography along with a collection of both ciphers and digest algorithms.
The first interface to the cryptographic layer was synchronous, but the latest improvements are adding an asynchronous
interface to allow Linux to take advantage of hardware cards that can offload the work from the CPU.

The protocols of the IPsec suiteAuthentication Header (AH), EncapsulatingSecurity Payload (ESP), and IP Compression
(IPcomp)are implemented in the kernel and make use of the cryptographic layer.

IP multicast and IP multicast routing

Multicast functionality was implemented to conform to versions 2 and 3 of the Internet Group Management Protocol (IGMP).
Multicast routing support is also present, conforming to versions 1 and 2 of Protocol Independent Multicast (PIM).

Transport layer (L4) protocols

Several L4 protocols are implemented in the Linux kernel. Besides the two well-known ones, UDP and TCP, Linux has the
newer Stream Control Transmission Protocol (SCTP). A good description of the implementation of those protocols would
require a new book of this size, all on its own.

Traffic Control

This is the Quality of Service (QoS) layer of Linux, another interesting and powerful component of the kernel's networking
code. Traffic control is implemented as a general infrastructure and as a collection of traffic classifi d queuing
disciplines. | briefly describe it and the interface it provides to the main transmission routine inChapter 1. A great deal of

ttp://lartc.org.

documentation is available at

Netfilter

The firewall code infrastructure and its extensions (including the various NAT flavors) is not cove
describe its interaction with most of the networking features | cover. At the Netfilter home page, http://www.netfilter.ord, you

http://lartc.org
http://www.netfilter.org

his document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

can find some interesting documentation about its kernel internals.

Network filesystems

Several network filesystems are implemented in the kernel, among them NFS (versions 2, 3, and 4), SMB, Coda, and
Andrew. You can read a detailed description of the Virtual File System layer in Understanding the Linux Kernel, and then
delve into the source code to see how those network filesystems interface with it.

Virtual devices

The use of a dedicated virtual device underlies the implementation of networking features. Examples include 802.1Q,
bonding, and the various tunneling protocols, such as IP-over-IP (IPIP) and Generalized Routing Encapsulation (GRE).
Virtual devices need to follow the same guidelines as real devices and provide the same interface to other kernel
components. In different chapters, where needed, | compare real and virtual device behaviors. The only virtual device that is
described in detail is the bridge interface, which is covered in .

DECnet, IPX, AppleTalk, etc.

These have historical roots and are still in use, but are much less commonly used than IP. | left them out to give more space
to topics that affect more users.

IP virtual server

This is another interesting piece of the networking code, described at Ijttg://WWW.Iinuxvirtualserver.orgl. This feature can be

used to build clusters of servers using different scheduling algorithms.

Simple Network Management Protocol (SNMP)

No chapter in this book is dedicated to SNMP, but for each feature, | give a description of all the counters and statistics kept
by the kernel, the routines used to manipulate them, and the /proc files used to export them, when available.

Frame Diverter

This feature allow gress frames not addressed to the local host. | will briefly mention it in Part ll]. Its

h o kid i
home page is pttp://diverter.sourceforge.nef.

Plenty of other network projects are available as separate patches to the kernel, and | can't list them all here. One that | find particularly
inati isi pecially in relation to the Linux routing code, is the highly configurable Click router, currently offered at

Because this is a book about the kernel, | do not cover user-space configuration tools. However, for each topic, | describe the interface
between the most common user-space configuration tools and the kernel.

=2 wEXT

http://www.linuxvirtualserver.org/
http://diverter.sourceforge.net
http://pdos.csail.mit.edu/click/
file:///C:/DOCUME~1/%B9%DA%B9%AE%B1%B9/LOCALS~1/Temp/Oreilly,%20Understanding%20Linux%20Network%20Internals%20(2005)%20Bbl%20Lotb.chm/0596002556/9961536.html

his document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

=2 wEXT

Conventions Used in This Book

The following is a list of the typographical conventions used in this book:

Italic

Used for file and directory names, program and command names, command-line options, URLS, and new terms

Constant Width

Used in examples to show the contents of files or the output from commands, and in the text to indicate words that appear in
C code or other literal strings

Constant Width Italic

Used to indicate text within commands that the user replaces with an actual value

Constant Width Bold
Used in examples to show commands or other text that should be typed literally by the user

Pay special attention to notes set apart from the text with the following icons:

This is a tip. It contains useful supplementary information about the topic at hand.

This is a warning. It helps you solve and avoid annoying problems.

=2 wExT

his document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

=2 wEXT

Using Code Examples

This book is here to help you get your job done. In general, you may use the code in this book in your programs and documentation. The

code samples are covered by a dual BSD/GPL license.

We appreciate, but do not require, attribution. An attribution usually includes the title, author, publisher, and ISBN. For example:
"Understanding Linux Network Internals, by Christian Benvenuti. Copyright 2006 O'Reilly Media, Inc., 0-596-00255-6."

=2 wExT

file:///C:/DOCUME~1/%B9%DA%B9%AE%B1%B9/LOCALS~1/Temp/Oreilly,%20Understanding%20Linux%20Network%20Internals%20(2005)%20Bbl%20Lotb.chm/0596002556/9961536.html

his document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

=2 wEXT

We'd Like to Hear from You

Please address comments and questions concerning this book to the publisher:

O'Reilly Media, Inc.

1005 Gravenstein Highway North

Sebastopol, CA 95472

(800) 998-9938 (in the United States or Canada)
(707) 829-0515 (international or local)

(707) 829-0104 (fax)

We have a web page for this book, where we list errata, examples, and any additional information. You can access this page at:

Lttp://WWW.oreiIIv.com/cataloq/understandln_il

To comment or ask technical questions about this book, send email to:

laookquestions@oreiIIv.conl

For more information about our books, conferences, Resource Centers, and the O'Reilly Network, see our web site at:

http://www.oreillv.conl

=2 NEXT

http://www.oreilly.com/catalog/understandlni/
mailto:bookquestions@oreilly.com
http://www.oreilly.com

his document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

=2 wEXT

Safari Enabled

BOOKE OMLINE

— When you see a Safari® Enabled icon on the cover of your favorite technology book, that means the book is
available online through the O'Reilly Network Safari Bookshelf.

Safari offers a solution that's better than e-books. It's a virtual library that lets you easily search thousands of top tech books, cut and
aste code samples. download chapters, and find quick answers when you need the most accurate, current information. Try it for free at
http://safari.oreilly.con.

=2 wEXT

http://safari.oreilly.com

his document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

=2 wEXT

Acknowledgments

This book would not have been possible without an interesting topic to talk about, and an audience. The interesting topic is Linux, this
modern operating system that anyone has an opportunity to be part of, and the audience is the incredible number of users that often
decide not only to take advantage of the good work of others, but also to contribute to its success by getting involved in its development. |
have always loved sharing knowledge and passion for the things | like, and with this book, | have tried my best to add a lane or two to
the highway that takes interested people into the wonderful world of the Linux kernel.

Of course, | did not do everything while lying in a hammock by the beach, with an ice cream in one hand and a mouse in the other. It took
quite a lot of work to investigate the reasons behind some of the implementation choices. It is incredible how much information you can
dig out of the development mailing lists, and how much people are willing to share their knowledge when you show genuine interest in
their work.

For sure, this book would not be what it is without the great help and suggestions of my editor, Andy Oram. Due to the frequent changes
that the networking code experiences, a few chapters had to undergo substantial updates during the writing of the book, but Andy
understood this and helped me get to the finish line.

| also would like to thank all of those people that supported me in this effort, and Cisco Systems for giving me the flexibility | needed to
work on this book.

A special thanks also goes to the technical reviewers for being able to review a book of this size in a short amount of time, still providing
useful comments that allowed me to catch errors and improve the quality of the material. The book was reviewed by Jerry Cooperstein
Michael Boerner, and Paul Kinzelman (in alphabetical order, by first name). | also would like to thank Francois Tallet for reviewing
and Andi Kleen for his feedback on

=2 wExT

file:///C:/DOCUME~1/%B9%DA%B9%AE%B1%B9/LOCALS~1/Temp/Oreilly,%20Understanding%20Linux%20Network%20Internals%20(2005)%20Bbl%20Lotb.chm/0596002556/9961536.html

his document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

=2 wEXT

Part I. General Background

The information in this part of the book represents the basic knowledge you need to understand the rest of the
book comfortably. If you are already familiar with the Linux kernel, or you are an experienced software engineer,
you will be able to go pretty quickly through these chapters. For other readers, | suggest getting familiar with this
material before proceeding with the following parts of the book:

Introduction

The bulk of this chapter is devoted to introducing a few of the common programming patterns and
tricks that you'll often meet in the networking code.

Critical Data Structures

In this chapter, you can find a detailed description of two of the most important data structures used by
the networking code: the socket buffer sk_buff and the network devicenet_device.

User-Space-to-KerneI Interface

The discussion of each feature in this book ends with a set of sections that shows how user-space
configuration tools and the kernel communicate. The information in this chapter can help you
understand those sections better.

=2 NEXT

file:///C:/DOCUME~1/%B9%DA%B9%AE%B1%B9/LOCALS~1/Temp/Oreilly,%20Understanding%20Linux%20Network%20Internals%20(2005)%20Bbl%20Lotb.chm/0596002556/9961536.html

his document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

=2 wEXT

Chapter 1. Introduction

To do research in the source code of a large project is to enter a strange, new land with its own customs and unspoken expectations. It is
useful to learn some of the major conventions up front, and to try interacting with the inhabitants instead of merely standing back and
observing.

The bulk of this chapter is devoted to introducing you to a few of the common programming patterns and tricks that you'll often meet in
the networking code.

| encourage you, when possible, to try interacting with a given part of the kernel networking code by means of user-space tools. So in
this chapter, I'll give you a few pointers as to where you can download those tools if they're not already installed on your preferred Linux

distribution, or if you simply want to upgrade them to the latest versions.

I'll also describe some tools that let you find your way gracefully through the enormous kernel code. Finally, I'll explain briefly why a
kernel feature may not be integrated into the official kernel releases, even if it is widely used in the Linux community.

=2 wEXT

his document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

=2 wEXT

1.1. Basic Terminology

In this section, I'll introduce terms and abbreviations that are going to be used extensively in this book.

Eight-bit quantities are normally called octets in the networking literature. In this book, however, | use the more familiar ternbyte. After all,
the book describes the behavior of the kernel rather than some network abstraction, and kernel developers are used to thinking in terms
of bytes .

The terms vector and array will be used interchangeably.

When referring to the layers of the TCP/IP network stack, | will use the abbreviations L2, L3, and L4 to refer to the link, network, and
transport layers, respectively. The numbers are based on the famous (if not exactly current) seven-layer OSI model. In most cases, L2
will be a synonym for Ethernet, L3 for IP Version 4 or 6, and L4 for UDP, TCP, or ICMP. When | need to refer to a specific protocol, I'll
use its name (i.e., TCP) rather than the generic Ln protocol term.

In different chapters, we will see how data units are received and transmitted by the protocols that sit at a given layer in the network
stack. In those contexts, the terms ingress and input will be used interchangeably. The same applies toegress and output. The action of
receiving or transmitting a data unit may be referred to with the abbreviations RX and TX, respectively.

Edata unit is given qﬁames, such as frame, packet, segment, and message, depending on the layer where it is used (se

for more details).[Table 1-1] summarizes the major abbreviations you'll see in the book.

Table 1-1. Abbreviations used frequently in this book

Abbreviation Meaning

L2 Link layer (e.g., Ethernet)

L3 Network layer (e.g., IP)

L4 Transport layer (e.g., UDP/TCP/ICMP)
BH Bottom half

IRQ Interrupt

RX Reception

TX Transmission

=2 wExT

file:///C:/DOCUME~1/%B9%DA%B9%AE%B1%B9/LOCALS~1/Temp/Oreilly,%20Understanding%20Linux%20Network%20Internals%20(2005)%20Bbl%20Lotb.chm/0596002556/9961536.html

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

=2 wEXT

1.2. Common Coding Patterns

Each networking feature, like any other kernel feature, is just one of the citizens inside the kernel. As such, it must make proper and fair
use of memory, CPU, and all other shared resources. Most features are not written as standalone pieces of kernel code, but interact with
other kernel components more or less heavily depending on the feature. They therefore try, as much as possible, to follow similar
mechanisms to implement similar functionalities (there is no need to reinvent the wheel every time).

Some requirements are common to several kernel components, such as the need to allocate several instances of the same data
structure type, the need to keep track of references to an instance of a data structure to avoid unsafe memory deallocations, etc. In the
following subsections, we will view common ways in Linux to handle such requirements. | will also talk about common coding tricks that
you may come across while browsing the kernel's code.

This book uses subsystem as a loose term to describe a collection of files that implement a major set of featuressuch as IP or routingand
that tend to be maintained by the same people and to change in lockstep. In the rest of the chapter, I'll also use the term kernel
component to refer to these subsystems, because the conventions discussed here apply to most parts of the kernel, not just those
involved in networking.

1.2.1. Memory Caches

The kernel uses the kmalloc and kfree functions to allocate and free a memory block, respectively. The syntax of those two functions is
similar to that of the two sister calls, malloc and free, from the libc user-space library. For more details onkmalloc and kfree, please refer
to Linux Device Drivers (O'Reilly).

It is common for a kernel component to allocate several instances of the same data structure type. When allocation and deallocation are
expected to happen often, the associated kernel component initialization routine (for example, fib_hash_init for the routing table) usually
allocates a special memory cache that will be used for the allocations. When a memory block is freed, it is actually returned to the same
cache from which it was allocated.

Some examples of network data structures for which the kernel maintains dedicated memory caches include:

Socket buffer descriptors

This cache, allocated by skb_init in net/core/sk_buff.c, is used for the allocation ofsk_buff buffer descriptors. The sk_buff
structure is probably the one that registers the highest number of allocations and deallocations in the networking subsystem.

Neighboring protocol mappings

,Ejﬂboring protocol uses a memory cache to allocate the data structures that store L3-to-L2 address mappings. See
Chapter 21.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

Routing tables
The routing code uses two memory caches for two of the data structures that define routes. See .

Here are the key kernel functions used to deal with memory caches:
kmem_cache_create

kmem_cache_destroy

Create and destroy a cache.
kmem_cache_alloc

kmem_cache_free

Allocate and return a buffer to the cache. They are usually called via wrappers, which manage the requests for allocation and
deallocation at a higher level. For example, the request to free an instance of an sk_buff buffer withkfree_skb ends up calling
kmem_cache_free only when all the references to the buffer have been released and all the necessary cleanup has been
done by the interested subsystems (for instance, the firewall).

The limit on the number of instances that can be allocated from a given cache (when present) is usually enforced by the wrappers
around kmem_cache_alloc, and are sometimes configurable with a parameter irfproc.

For more details on how memory caches are implemented and how they interface to the slab allocator, please refer toUnderstanding the
Linux Kernel (O'Reilly).

1.2.2. Caching and Hash Tables

It is pretty common to use a cache to increase performance. In the networking code, there are caches for L3-to-L2 mappings (such as
the ARP cache used by IPv4), for the routing table cache, etc.

Cache lookup routines often take an input parameter that says whether a cache miss should or should not create a new element and add
it to the cache. Other lookup routines simply add missing elements all the time.

Caches are often implemented with hash tables . The kernel provides a set of data types, such as one-way and bidirectional lists, that
can be used as building blocks for simple hash tables.

The standard way to handle inputs that hash to the same value is to put them in a list. Traversing this list takes substantially longer than
using the hash key to do a lookup. Therefore, it is always important to minimize the number of inputs that hash to the same value.

When the lookup time on a hash table (whether it uses a cache or not) is a critical parameter for the owner subsystem, it may implement
a mechanism to increase the si of the collisign lists goes down and the average lookup
time improves. See the section "‘Pynamic resizing of per-netmask hash tableq in for an example.

You may also find subsystems, such as the neighboring layer, that add a random component (regularly changed) to the key used to
distribute elements in the cache's buckets. This is used to reduce the damage j Service (DoS) attacks aimed at concentrating
the elements of a hash table into a single bucket. See the section "Cachind" in [Chapter 27 for an example.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

1.2.3. Reference Counts

When a piece of code tries to access a data structure that has already been freed, the kernel is not very happy, and the user is rarely
happy with the kernel's reaction. To avoid those nasty problems, and to make garbage collection mechanisms easier and more effective
(see the section '[Garbage Collectior]" later in this chapter), most data structures keep a reference count. Good kernel citizens increment
and decrement the reference count of every data structure every time they save and release a reference, respectively, to the structure.
For any data structure type that requires a reference count, the kernel component that owns the structure usually exports two functions
that can be used to increment and decrement the reference count. Such functions are usually called xxx_hold and xxx_release,

respectively. Sometimes the release function is called xxx_putinstead (e.g., dev_put for net_device structures).

While we like to assume there are no bad citizens in the kernel, developers are human, and as such they do not always write bug-free
code. The use of the reference count is a simple but effective mechanism to avoid freeing still-referenced data structures. However, it
does not always solve the problem completely. This is the consequence of forgetting to balance increments and decrements:

® i you release a reference to a data structure but forget to call the xxx_release function, the kernel will never allow the data
structure to be freed (unless another buggy piece of code happens to call the release function an extra time by mistake!).
This leads to gradual memory exhaustion.

® i you take a reference to a data structure but forget to call xxx_hold, and at some later point you happen to be the only
reference holder, the structure will be prematurely freed because you are not accounted for. This case definitely can be more
catastrophic than the previous one; your next attempt to access the structure can corrupt other data or cause a kernel panic
that brings down the whole system instantly.

When a data structure is to be removed for some reason, the reference holders can be explicitly notified about its going ayay so that
they can politely release their references. This is done through notification chains. See the section in ‘ for
an interesting example.

The reference count on a data structure typically can be incremented when:

® Thereis a close relationship between two data structure types. In this case, one of the two often maintains a pointer initialized
to the address of the second one.

® A timer is started whose handler is going to access the data structure. When the timer is fired, the reference count on the
structure is incremented, because the last thing you want is for the data structure to be freed before the timer expires.

® A successful lookup on a list or a hash table returns a pointer to the matching element. In most cases, the returned result is
used by the caller to carry out some task. Because of that, it is common for a lookup routine to increase the reference count
on the matching element, and let the caller release it when necessary.

When the last reference to a data structure is released, it may be freed because it is not needed anymore, but not necessarily.

The introduction of the new sysfs filesystem has helped to make a good portion of the kernel code more aware of reference counts and
consistent in its use of them.

1.2.4. Garbage Collection

Memory is a shared and limited resource and should not be wasted, particularly in the kernel because it does not use virtual memory.
Most kernel subsystems implement some sort of garbage collection to reclaim the memory held by unused or stale data structure
instances. Depending on the needs of any given feature, you will find two main kinds of garbage collection:

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

Asynchronous

This type of garbage collection is unrelated to particular events. A timer that expires regularly invokes a routine that scans a
set of data structures and frees the ones considered eligible for deletion. The conditions that make a data structure eligible for
deletion depend on the features and logic of the subsystem, but a common criterion is the presence of a null reference count.

Synchronous

There are cases where a shortage of memory, which cannot wait for the asynchronous garbage collection timer to kick in,
triggers immediate garbage collection. The criteria used to select the data structures eligible for deletion are not necessarily
the same ones used by asynchronous cleanup (for instance, they could be more aggressive). See [Chapter 33 for an example.

In , you will see how the kernel manages to reclaim the memory used by initialization routines and that is no longer needed
after they have been executed.

1.2.5. Function Pointers and Virtual Function Tables (VFTs)

Function pointers are a convenient way to write clean C code while getting some of the benefits of the object-oriented languages. In the
definition of a data structure type (the object), you include a set of function pointers (the methods). Some or all manipulations of the
structure are then done through the embedded functions. C-language function pointers in data structures look like this:

struct sock {

void (*sk_state_change)(struct sock *sk);
void (*sk_data_ready)(struct sock *sk, int bytes);

A key advantage to using function pointers is that they can be initialized differently depending on various criteria and the role played by
the object. Thus, invoking sk_state_change may actually invoke different functions for differentsock sockets.

Function pointers are used extensively in the networking code. The following are only a few examples:

® \When an ingress or egress packet is processed by the routing subsystem, it initializes two routines in the buffer data
structure. You will see this in . Refer to for a complete list of function pointers included in thesk_buff data

structure.

® \Whena packet is ready for transmission on the networking hardware, it is handed to the hard_start_xmit function pointer of
the net_device data structure. That routine is initialized by the device driver associated with the device.

® \WhenanlL3 protocol wants to transmit a packet, it invokes one of a set of function pointers. These have been initialized to a
set of routines by the address resolution protocol associated with the L3 protocol. Depending on the actual routine to which
the function pointer is initialized, a transparent L3-to-L2 address resolution may take place (forexample, IPv4 packets go
through ARP). When the address resolution is unnecessary, a different routine is used. See Part V| for a detailed discussion
on this interface.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

We see in the preceding examples how function pointers can be employed as interfaces between kernel components or as generic
mechanisms to invoke the right function handler at the right time based on the result of something done by a different subsystem. There
are cases where function pointers are also used as a simple way to allow protocols, device drivers, or any other feature to personalize
an action.

Let's look at an example. When a device driver registers a network device with the kernel, it goes through a series of steps that are
needed regardless of the device type. At some point, it invokes a function pointer on the net_device data structure to let the device driver
do something extra if needed. The device driver could either initialize that function pointer to a function of its own, or leave the pointer
NULL because the default steps performed by the kernel are sufficient.

A check on the value of a function pointer is always necessary before executing it to avoid NULL pointer dereferences, as shown in this
snapshot from register_netdevice:

if (dev->init && dev->init(dev) != 0) {

Function pointers have one main drawback: they make browsing the source code a little harder. While going through a given code path,
you may end up focusing on a function pointer call. In such cases, before proceeding down the code path, you need to find out how the
function pointer has been initialized. It could depend on different factors:

® \When the selection of the routine to assign to a function pointer is based on a particular piece of data, such as the protocol
handling the data or the device driver a given packet is received from, it is easier to derive the routine. For example, if a given
device is managed by the drivers/net/3c59x.c device driver, you can derive the routine to which a given function pointer of the
net_device data structure is initialized by reading the device initialization routine provided by the device driver.

® \When the selection of the routine is based instead on more complex logic, such as the state of the resolution of an L3-to-L2
address mapping, the routine used at any time depends on external events that cannot be predicted.

A set of function pointers grouped into a data structure are often referred to as a virtual function table (VFT). When a VFT is used as the
interface between two major subsystems, such as the L3 and L4 protocol layers, or when the VFT is simply exported as an interface to a
generic kernel component (set of objects), the number of function pointers in it may swell to include many different pointers that
accommodate a wide range_of protocols or other features. Each feature may end up using only a few of the many functions provided.
You will see an example in Part V|. Of course, if this use of a VFT is taken too far, it becomes cumbersome and a major redesign is
needed.

1.2.6. goto Statements

Few C programmers like the goto statement. Without getting into the history of thegoto (one of the longest and most famous
controversies in computer programming), I'll summarize some of the reasons the goto is usually deprecated, but why the Linux kernel
uses it anyway.

Any piece of code that uses goto can be rewritten without it. The use ofgoto statements can reduce the readability of the code, and make
debugging harder, because at any position following a goto you can no longer derive unequivocally the conditions that led the execution
to that point.

Let me make this analogy: given any node in a tree, you know what the path from the root to the node is. But if you add vines that
entwine around branches randomly, you do not always have a unique path between the root and the other nodes anymore.

However, because the C language does not provide explicit exceptions (and they are often avoided in other languages as well because
of the performance hit and coding complexity), carefully placed goto statements can make it easier to jump to code that handles

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

undesired or peculiar events. In kernel programming, and particularly in networking, such events are very common, so goto becomes a
convenient tool.

| must defend the kernel's use of goto by pointing out that developers have by no means gone wild with it. Even though there are more
than 30,000 instances, they are mainly used to handle different return codes within a function, or to jump out of more than one level of
nesting.

1.2.7. Vector Definitions

In some cases, the definition of a data structure includes an optional block at the end. This is an example:
struct abc {

int age;
char *name[20];

char placeholder|[0];

The optional block starts with placeholder. Note that placeholder is defined as a vector of size 0. This means that wherabc is allocated
with the optional block, placeholder points to the beginning of the block. When no optional block is required,placeholder is just a pointer
to the end of the structure; it does not consume any space.

Thus, if abc is used by several pieces of code, each one can use the same basic definition (avoiding the confusion of doing the same
thing in slightly different ways) while extending abc differently to personalize its definition according to its needs.

We will see this kind of data structure definition a few times in the book. One example is in .

1.2.8. Conditional Directives (#ifdef and family)

Conditional directives to the compiler are sometimes necessary. An excessive use of them can reduce the readability of the code, but |

can state that Linux does not abuse them. They appear for different reasons, but the ones we are interested in are those used to check
whether a given feature is supported by the kernel. Configuration tools such as make xconfig determine whether the feature is compiled
in, not supported at all, or loadable as a module.

Examples of feature checks by #ifdef or #if defined C preprocessor directives are:

To include or exclude fields from a data structure definition

struct sk_buff {

#ifdef CONFIG_NETFILTER_DEBUG
unsigned int nf_debug;
#endif

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

In this example, the Netfilter debugging feature requires an nf_debug field in the sk_buff structure. When the kernel does not
have support for Netfilter debugging (a feature needed by only a handful of developers), there is no need to include the field,
which would just take up more memory for every network packet.

To include or exclude pieces of code from a function

int ip_route_input(...)

{

if (rth->fl.fl4_dst == daddr &&
rth->fl.fl4_src == saddr &&
rth->fl.iif == iif &&
rth->fl.oif == 0 &&
#ifndef CONFIG_IP_ROUTE_FWMARK
rth->fl.fl4_fwmark == skb->nfmark &&
#endif
rth->fl.fl4_tos == tos) {

The routing cache lookup routine ip_route_input, described in , checks the value of the tag set by the firewall only
when the kernel has been compiled with support for the "IP: use netfilter MARK value as routing key" feature.

To select the right prototype for a function

#ifdef CONFIG_IP_MULTIPLE_TABLES
struct fib_table * fib_hash_init(int id)

#else

struct fib_table * _ _init fib_hash_init(int id)

{

%]
In this example, the directives are used to add the _ _init ta to the prototype when the kernel does not have support for
Policy Routing.

7 See for a description of this macro.

To select the right definition for a function

#ifndef CONFIG_IP_MULTIPLE_TABLES

static inline struct fib_table *fib_get_table(int id)
{
if (id I= RT_TABLE_LOCAL)
return ip_fib_main_table;
return ip_fib_local_table

#else

static inline struct fib_table *fib_get_table(int id)

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

if (id == 0)
id = RT_TABLE_MAIN;
return fib_tables[id];
}

#endif

Note that this case differs from the previous one. In the previous case, the function body lies outside the #ifdef/#endif blocks,
whereas in this case, each block contains a complete definition of the function.

The definition or initialization of variables and macros can also use conditional compilation.

It is important to know about the existence of multiple definitions of certain functions or macros, whose selection at compile time is based
on a preprocessor macro as in the preceding examples. Otherwise, when you look for a function, variable, or macro definition, you may
be looking at the wrong one.

See Chapter 7 for a discussion of how the introduction of special macros has reduced, in some cases, the use of conditional compiler
directives.

1.2.9. Compile-Time Optimization for Condition Checks

Most of the time, when the kernel compares a variable against some external value to see whether a given condition is met, the result is
extremely likely to be predictable. This is pretty common, for example, with code that enforces sanity checks. The kernel uses the likely
and unlikely macros, respectively, to wrap comparisons that are likely to return a true (1) or false (0) result. Those macros take
advantage of a feature of the gcc compiler that can optimize the compilation of the code based on that information.

Here is an example. Let's suppose you need to call the do_something function, and that in case of failure, you must handle it with the
handle_error function:

err = do_something(x,y,z);
if (err)
handle_error(err);

Under the assumption that do_something rarely fails, you can rewrite the code as follows:

err = do_something(x,y,z);
if (unlikely(err))
handle_error(err);

An example of the optimization made possible by the likely and unlikely macros is in handling options in the IP header. The use of IP

options is limited to very specific cases, and the kernel can safely assume that most IP pac t carry IP options. When the kernel
forwards an IP packet, it needs to take care of options according to the rules described in [Chapter 1§. The last stage of forwarding an IP
packet is taken care of by ip_forward_finish. This function uses theu 1Iikeli macro to wrap the condition that checks whether there is any

IP option to take care of. See the section "|p_forward finish Functior]" in .

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

1.2.10.

Mutual Exclusion

Locking is used extensively in the networking code, and you are likely to see it come up as an issue under every topic in this book.
Mutual exclusion, locking mechanisms, and synchronization are a general topicand a highly interesting and complex onefor many types
of programming, especially kernel programming. Linux has seen the introduction and optimization of several approaches to mutual

exclusion

over the years. Thus, this section merely summarizes the locking mechanisms seen in networking code; | refer you to the

high-quality, detailed discussions available in O'Reilly's Understanding the Linux Kernel and Linux Device Driver.

Each mutual exclusion mechanism is the best choice for particular circumstances. Here is a brief summary of the alternative mutual
exclusion approaches you will see often in the networking code:

Spin locks

This is a lock that can be held by only one thread of execution at a time. An attempt to acquire the lock by another thread of
execution makes the latter loop until the lock is released. Because of the waste cause by looping, spin locks are used only
on multiprocessor systems, and generally are used only when the developer expects the lock to be held for short intervals.

Also because of the waste caused to other threads, a thread of execution must not sleep while holding a spin lock.

Read-write spin locks

When the uses of a given lock can be clearly classified as read-only and read-write, the use of read-write spin locks is
preferred. The difference between spin locks and read-write spin locks is that in the latter, multiple readers can hold the lock
at the same time. However, only one writer at a time can hold the lock, and no reader can acquire it when it is already held by
a writer. Because readers are given higher priority over writers, this type of lock performs well when the number of readers (or
the number of read-only lock acquisitions) is a good deal bigger than the number of writers (or the number or read-write lock
acquisitions).

When the lock is acquired in read-only mode, it cannot be promoted to read-write mode directly: the lock must be released
and reacquired in read-write mode.

Read-Copy-Update (RCU)

RCU is one of the latest mechanisms made available in Linux to provide mutual exclusion. It performs quite well under the
following specific conditions:

® Read-write lock requests are rare compared to read-only lock requests.
® The code that holds the lock is executed atomically and does not sleep.
® The data structures protected by the lock are accessed via pointers.
The first condition concerns performance, and the other two are at the base of the RCU working principle.

Note that the first condition would suggest the use of read-write spin locks as an alternative to RCU. To understand why RCU,
when its use is appropriate, performs better than read-write spin locks, you need to consider other aspects, such as the effect
of the processor caches on SMP systems.

The working principle behind the design of RCU is simple yet powerful. For a clear description of the advantages of RCU and
a brief description of its implementation, refer to an article published by its author, Paul McKenney, in the Linux Journal

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

- 1
(http://linuxjournal.com/article/699). You can also refer to Understanding the Linux Kernel and Linux Device Drivers.

[l For more documentation. you can refer to the following URL maintained by the author:

ttp://www.rdrop.com/users/paulmck/rclocH.

An example where RCU is used in the networking code is the routing subsystem. Lookups are more frequent than u [
g cache, and the routine that implements the routing cache lookup does not block in the middle of the search. See [Chapter

Semaphores are offered by the kernel but are rarely used in the networking code covered in this book. One example, however, is the
code used to serialize configuration changes, which we will see in action in ‘.

1.2.11. Conversions Between Host and Network Order

Data structures spanning more than one byte can be stored in memory with two different formats: Little Endian and Big Endian. The first
format stores the least significant byte at the lowest memory address, and the second does the opposite. The format used by an
operating system such as Linux depends on the processor in use. For example, Intel processors follow the Little Endian model, and
Motorola processors use the Big Endian model.

Suppose our Linux box receives an IP packet from a remote host. Because it does not know which format, Little Endian or Big Endian,
was used by the remote host to initialize the protocol headers, how will it read the header? For this reason, each protocol family must
define what "endianness " it uses. The TCP/IP stack, for example, follows the Big Endian model.

But this still leaves the kernel developer with a problem: she must write code that can run on many different processors that support
different endianness. Some processors might match the endianness of the incoming packet, but those that do not require conversion to
the endianness used by the processor.

Therefore, every time the kernel needs to read, save, or compare a field of the IP header that spans more than one byte, it must first
convert it from network byte order to host byte order or vice versa. The same applies to the other protocols of the TCP/IP stack. When
both the protocol and the local host are Big Endian, the conversion routines are simply no-ops because there is no need for any
conversion. They always appear in the code to make the code portable; only the conversion routines themselves are platform
dependent. lists the main macros used for the conversion of two-byte and four-byte fields.

Table 1-2. Byte-ordering conversion routines

Macro Meaning (short is 2 bytes, long is 4 bytes)
htons Host-to-network byte order (short)
htonl Host-to-network byte order (long)
ntohs Network-to-host byte order (short)
ntohl Network-to-host byte order (long)

The macros are defined in the generic header file include/linux/byteorder/generic.h. This is how each architecture tailors the definition of
those macros based on their endianness:

® or each architecture there is a byteorder.h file in the per-architecture directoryinclude/asm-XXX/.

http://linuxjournal.com/article/6993
http://www.rdrop.com/users/paulmck/rclock

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

® That file includes either include/linux/byteorder/big_endian.h or include/linux/byteorder/little_endian.h, depending on the
processor's endianness.

® i endian.h and big_endian.h include the generic fileinclude/linux/byteorder/generic.h. The definitions of the macros in
[Fable 1-2 are based on other macros that are defined differently byittle_endian.h and big_endian.h, and this is how the
endianness of the architecture influences the definition of the macros of [Table 1-3.

For each macro xxx in there is a sister macro, _constant xxx, that is used when the input field is a constant value, such as an
element of an enumeration list (see the section "IARP Protocol Initialization]' in Chapter 2§ for an ex:). Note that the macros ifffable
-lj are common ed in the kernel code even when their input is a constant value (see the sectioﬁltﬂti-enq the Ethernet Protocol andl

| ength" inl for an example).

We said earlier in the section that endianness is important when a data field spans more than one byte. Endianness is actually i nt
also when a field of one or more bytes is defined as a collection of bitfields. See, for example, what the IPv4 header looks like infigure|
M in , and how the kernel defines theiphdr structure ininclude/linux/ip.h. The kernel defines _ _LITTLE_ENDIAN_BITFIELD

and _ _BIG_ENDIAN_BITFIELD, respectively, in thelittle_endian.h and big_endian.h files mentioned earlier.

1.2.12. Catching Bugs

A few functions are supposed to be called under specific conditions, or are not supposed to be called under certain conditions. The
kernel uses the BUG_ON and BUG_TRAP macros to catch cases where such conditions are not met. When the input condition to
BUG_TRAP is false, the kernel prints a warning message.BUG_ON instead prints an error message and panics.

1.2.13. Statistics

It is a good habit for a feature to collect statistics about the occurrence of specific conditions, such as cache lookup successes and
failures, memory allocation successes and failures, etc. For each networking feature that collects statistics, this book lists and describes
each counter.

1.2.14. Measuring Time

The kernel often needs to measure how much time has passed since a given moment. For example, a routine that carries on a
CPU-intensive task often releases the CPU after a given amount of time. It will continue its job when it is rescheduled for execution. This
is especially important in kernel code, even though the kernel supports kernel preemption. A common example in the networking code is
given by the routines that implement garbage collection. We will see plenty in this book.

The passing of time in kernel space is measured in ticks . A tick is the time between two consecutive expirations of the timer interrupt.
The timer takes care of different tasks (we are not interested in them here) and regularly expires HZ times per second.HZ is a variable
initialized by architecture-dependent code. For example, it is initialized to 1,000 on i386 machines. This means that the timer interrupt
expires 1,000 times per second when Linux runs on an i386 system, and that there is one millisecond between two consecutive
expirations.

Every time the timer expires it increments the global variable called jiffies. This means that at any time,jiffies represents the number of

his document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

ticks since the system booted, and the generic value n*HZ represents n seconds of time.

If all a function needs is to measure the passing of time, it can save the value of jiffies into a local variable and later compare the
difference between jiffies and that timestamp against a time interval (expressed in number of ticks) to see how much time has passed
since measurement started.

The following example shows a function that needs to do some kind of work but does not want to hold the CPU for more than one tick.
When do_something says the work is completed by settingjob_done to a nonzero value, the function can return:

unsigned long start_time = jiffies;
int job_done = 0;
do {
do_something(&job_done);
If (job_done)
return;
while (jiffies - start_time < 1);

For a couple of examples involving real kernel code using jiffies, see the section 'l3ack|oq Processing: The process backlog Poll Virtuall
Function” in hhapter 1d, or the section 'lAsynchronous cleanup: the neigh periodic_timer functior{' in Chapter 2.

" prey wEXT

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

=2 wEXT

1.3. User-Space Tools

Different tools can be used to configure the many networking features available on Linux. As mentioned at the beginning of the chapter,
you can make thoughtful use of these tools to manipulate the kernel for learning purposes and to discover the effects of these changes.

The following tools are the ones | will refer often to in this book:

iputils
Besides the perennial command ping, iputils includes arping (used to generate ARP requests), the Network Router Discovery
daemon rdisc, and others.

net-tools
This is a suite of networking tools, where you can find the well-known ifconfig, route, netstat, and arp, but also ipmaddr,
iptunnel, ether-wake, netplugd, etc.

IPROUTE2

This is the new-generation networking configuration suite (although it has been around for a few years already). Through an
omnibus command named ip, the suite can be used to configure IP addresses and routing along with all of its advanced
features, neighboring protocols, etc.

IPROUTEZ2's source code can be downloaded from http://linux-net.osdl.orq/index.php/lproutezl, and the other packages can be
downloaded from the download server of most Linux distributions.

These packages are included by default on most (if not all) Linux distributions. Whenever you do not understand how the kernel code
processes a command from user space, | encourage you to look at the user-space tool source code and see how the command from the
user is packaged and sent to the kernel.

At the following URLSs, you can find good documentation on how to use the aforementioned tools, including active mailing lists:

[} do not cover the firewall infrastructure design in this book, but | often show where the firewall hooks are
located when analyzing various network protocols and layers.

® hitp:/lartc.ord

® I1ttp://WWW.poIicyroutinq.orcI

® http://www.netfilter.orfl

If you want to follow the latest changes in the networking code, keep an eye on the following mailing list:

® The Linux Network Development List Archives (l\ttp://oss.sqi.com/proiects/netdev/archivel)

http://linux-net.osdl.org/index.php/Iproute2
http://lartc.org
http://www.policyrouting.org
http://www.netfilter.org
http://oss.sgi.com/projects/netdev/archive

his document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

Other, more specific URLs will be given in the associated chapters.

e prey | NEXT B

file:///C:/DOCUME~1/%B9%DA%B9%AE%B1%B9/LOCALS~1/Temp/Oreilly,%20Understanding%20Linux%20Network%20Internals%20(2005)%20Bbl%20Lotb.chm/0596002556/9961536.html

his document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

=2 wEXT

1.4. Browsing the Source Code

The Linux kernel has gotten pretty big, and browsing the code with our old friend grep is definitely not a good idea anymore. Nowadays
you can count on different pieces of software to make your journey into the kernel code a better experience.

One that | would like to suggest to those that do not know it already is cscope, which you can download from
http://cscope.sourceforge.net. It is a simple yet powerful tool for searching, for example, where a function or variable is defined, where it
is called, etc. Installing the tool is straightforward and you can find all the necessary instructions on the web site.

Each of us has his preferred editor, and probably the majority of us are fans of some form of either Emacs or vi. Both editors can use a
special file called a "tags" file, to allow the user to move through source code. (cscope also uses a similar database file.) You can easily

create such files with a synonymous target in the kernel root tree's mfile. The three databases: TAGS, tags, and cscope.out, are
%
created, respectively, with make TAGS, make tags, and make cscope.

M The tags and TAGS files are created with the help of thectags utility.

Be aware that those files are pretty big, especially the one used by cscope. Therefore, make sure before building the file that you have a
lot of free disk space.

If you are already using other source navigation tools, fine. But if you are not using any and have been lazy so far, it is time to say
goodbye to grep and invest 15 minutes in learning how to use the aforementioned toolsthey are well worth it.

1.4.1. Dead Code

The kernel, like any other large and dynamic piece of software, includes pieces of code that are no longer invoked. Unfortunately, you
rarely see comments in the code that tell you this. You may sometimes find yourself having trouble trying to understand how a given
function is used or a given variable is initialized simply because you are looking at dead code. If you are lucky, that code does not
compile and you can guess its out-of-date status. Other times you may not be that lucky.

Each kernel subsystem is supposed to be assigned one or more maintainers. However, some maintainers simply have too much code to
look at, and insufficient free time to do it. Other times they may have lost interest in maintaining their subsystems but could not find any
substitutes for their role. It is therefore good to keep this in mind when looking at code that seems to do something strange or that simply
does not adhere to general, common-sense programming rules.

In this book, | tried, whenever meaningful, to alert you about functions, variables, and data structure fields that are not used, perhaps
because they were left behind when removing a feature or because they were introduced for a new feature whose coding was never
completed.

" prey wEXT

http://cscope.sourceforge.net

his document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

=2 wEXT

1.5. When a Feature Is Offered as a Patch

The kernel networking code is continuously evolving. Not only does it integrate new features, but existing components sometimes
undergo design changes to achieve more modularity and higher performance. This obviously makes Linux very attractive as an
embedded operating system for network appliance products (routers, switches, firewalls, load balancers, etc.).

Because anyone can develop a new feature for the Linux kernel, or extend or reimplement an existing one, the greatest thrill for any
"open" developer is to see her work make it to the official kernel release. Sometimes, however, that is not possible or it may take a long
time, even when a project has valuable features and is well implemented. Common reasons include:

® The code may not have been written following the guidelines irDocumentation/CodingStyle.

® Another major project that provides the same functionality has been around for some time and has already received the green
light from the Linux community and from the key kernel developers that maintain the associated kernel area.

® There is too much overlap with another kernel component. In a case like this, the best approach is to remove the redundant
functionality and use existing functionality where possible, or to extend the latter so that it can be used in new contexts. This
situation underlines the importance of modularity.

® The size of the project and the amount of work required to maintain it in a quick-changing kernel may lead the new project's
developers to keep it as a separate patch and release a new version only once in a while.

® The feature would be used only in very specific scenarios, considered not necessary in a general-purpose operating system.
In this case, a separate patch is often the best solution.

® The overall design may not satisfy some key kernel developers. These experts usually have the big picture in mind,
concerning both where the kernel is and where it is going. Often, they request design changes to make a feature fit into the
kernel the right way.

Sometimes, overlap between features is hard to remove completely, perhaps, for example, because a feature is so flexible that its
different uses become apparent only after some time. For example, the firewall has hooks in several places in the network stack. This
makes it unnecessary for other features to implement any filtering or marking of data packets going in any direction: they can simply rely
on the firewall. Of course, this creates dependencies (for example, if the routing subsystem wants to mark traffic matching specific
criteria, the kernel must include support for the firewall). Also, the firewall maintainers must be ready to accept reasonable enhancement
requests when they are deemed to be required by other kernel features. However, the compromise is often worth the gain: less
redundant code means fewer bugs, easier code maintenance, simplified code paths, and other benefits.

An example of a recent cleanup of feature overlap is the removal of stateless Network Address Translation (NAT) support by the routing
code in version 2.6 of the kernel. The developers realized that the stateful NAT support in the firewall is more flexible, and therefore that
it was no longer worthwhile maintaining stateless NAT code (although it is faster and consumes less memory). Note that a new module
could be written for Netfilter at any time to provide stateless NAT support if necessary.

=2 NEXT

file:///C:/DOCUME~1/%B9%DA%B9%AE%B1%B9/LOCALS~1/Temp/Oreilly,%20Understanding%20Linux%20Network%20Internals%20(2005)%20Bbl%20Lotb.chm/0596002556/9961536.html

his document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

=2 wEXT

Chapter 2. Critical Data Structures

A few key data structures are referenced throughout the Linux networking code. Both when reading this book and when studying the
source code directly, you'll need to understand the fields in these data structures. To be sure, going over data structures field by field is
less fun than unraveling functions, but it's an important foundation to have. "Show me your data," said the legendary software engineer,
Frederick P. Brooks.

This chapter introduces the following data structures, and mentions some of the functions and macros that manipulate them:

struct sk_buff

This is where a packet is stored. The structure is used by all the network layers to store their headers, information about the
user data (the payload), and other information needed internally for coordinating their work.

struct net_device

Each network device is represented in the Linux kernel by this data structure, which contains information about both its
hardware and its software configuration. See‘ for details on when and hownet_device data structures are allocated.

Another critical data structure for Linux networking is struct sock, which stores the networking information for sockets. Because this book
does not cover sockets, | have not included sock in this chapter.

=2 wEXT

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

=2 wexT

2.1. The Socket Buffer: sk_buff Structure

This is probably the most important data structure in the Linux networking code, representing the headers for data that has been received
or is about to be transmitted. Defined in the <include/linux/skbuff.n> include file, it consists of a tremendous heap of variables that try to be
all things to all people.

The structure has changed many times in the history of the kernel, both to add new options and to reorganize existing fields into a cleaner
layout. Its fields can be classified roughly into the following categories:

® |ayout
® General
® Feature-specific

® Management functions

This structure is used by several different network layers (MAC or another link protocol on the L2 layer, IP on L3, TCP or UDP on L4), and
various fields of the structure change as it is passed from one layer to another. L4 appends a header before passing it to L3, which in turn

puts on its own header before passing it to L2. Appending headers is more efficient than copying the data from one layer to another. Since
adding space to the beginning of a bufferwhich means changing the variable that points to itis a complicated operation, the kernel provides

the skn_reserve function (described later in this chapter) to carry it out. Thus, one of tﬁe first things done by each protocol, as the buffer passes

down through layers, is to call skb_reserve t0 reserve space for the protocol's headerH In the later section bata reservation and alignment:

Bkb_reserve, skb put, skb_push, and skb_pull," we will see an example of how the kernel makes sure enough space is reserved at the
head of the buffer to allow each layer to add its own header while the buffer traverses the layers.

0 skb_reserve IS also used by device drivers to align the IP header of ingress frames. Se.

When the buffer passes up through the network layers, each header from the old layer is no longer of interest. The L2 header, for
instance, is used only by the device drivers that handle the L2 protocol, so it is of no interest to L3. Instead of removing the L2 header from
the buffer, the pointer to the beginning of the payload is moved ahead to the beginning of the L3 header, which requires fewer CPU cycles.

The rest of this section explains a basic principle about conditional (optional) fields, and then covers each of the categories just listed.

2.1.1. Networking Options and Kernel Structures

As you can see from glancing at TCP/IP specifications or configuring a kernel, network code provides an enormous number of options that
are useful but not always required, such as a Firewall, Multicasting, and other features. Most of these options require additional fields in
kernel data structures. Therefore, sk_buff is peppered with C preprocessor #ifdef directives. For example, near the bottom of thesk_buft definition
you can find:

struct sk_buff {

#ifdef CONFIG_NET_SCHED
__u32 tc_index;

#ifdef CONFIG_NET_CLS_ACT
__u32 tc_verd;

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

__u32 tc_classid;
#endif
#endif

}

This shows that the field «_index is part of the data structure only if theconric_neT_scHep symbol is defined at compile time, which means that

the right option (in this example, "Device Drivers — Networking support — Networking options — QoS and/or fair queueing")
has been enabled with some version of make config by an administrator or by an automated installation utility.

The previous example actually shows two nested options: the fields used by conric_neT_cLs_acT (packet classifier) are considered for
inclusion only if support for "QoS and/or fair queueing" is present.

Notice, by the way, that the QoS option cannot be compiled as a module. The reason is that most of the consequences of enabling the
option will not be reversible after the kernel is compiled. In general, any option that causes a change in a kernel data structure (such as
adding the t«_index field to the sk_buff Structure) renders the option unfit to be compiled as a module.

You'll often want to find out which compile option from make config or its variants is associated with a giveritder Ssymbol, to understand
when a block of code is included in the kernel. The fastest way to make the association, in the 2.6 kernels, is to look for the symbol in the
kconfig files that are spread all over the source tree (one per directory). In 2.4 kernels, you can consult the file
Documentation/Configure.help.

2.1.2. Layout Fields

A few of the sk_buff's fields exist just to facilitate searching and to organize the data structure itself. The kernel maintains alk_buff structures in
a doubly linked list. But the organization of this list is somewhat more complicated than that of a traditional doubly linked list.

Like any doubly linked list, this one is tied together by next and prev fields in each sk_buft Structure, the rext field pointing forward and the prev field
pointing backward. But this list has another requirement: each sk_buif structure must be able to find the head of the whole list quickly. To
implement this requirement, an extra structure of type sk_buif_head iS inserted at the beginning of the list, as a kind of dummy element. The
sk_buff_head Structure is:

struct sk_buff_head {
/* These two members must be first. */
struct sk_buff * next;
struct sk_buff * prev;

_u32 glen;
spinlock_t lock;

ffn represents the number of elements in the list.ock is used to prevent simultaneous accesses to the list and is described in the section

anagement functiond," later in this chapter.

The first two elements of both sk_buff and sk_buff_head are the same: thenext and prev pointers. This allows the two structures to coexist in the
same list, even though sk_buff_head iS positively skimpy in comparison tosk_butt. In addition, the same functions can be used to manipulate both

sk_buff aNd sk_buff_head.

To add to the complexity, every sk_buff Structure contains a pointer to the singlesk_buff_nead structure. This pointer has the field nameiist. See

for help finding your way around these data structures.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

Figure 2-1. List of sk_buff elements

struct sk buff_head

Other interesting fields of sk_buff follow:

struct sock *sk

" next = =
o prev
glen=4
lack
L L J
next »| next next ——| pext
ey [<— prev |- prev prey
list list list list
sk sk sk sk
struct sk_buff struct sk_buff struct sk_buff struct sk_buff

This is a pointer to a sock data structure of the socket that owns this buffer. This pointer is needed when data is either locally
generated or being received by a local process, because the data and socket-related information is used by L4 (TCP or UDP)
and by the user application. When a buffer is merely being forwarded (that is, neither the source nor the destination is on the
local machine), this pointer is NULL.

unsigned int len

This is the size of the block of data[lin the buffer. This length includes both the data in the main buffer (i.e., the one pointed to by

nead) and the data in the fragments¥ Its value changes as the buffer moves from one network layer to the next, because headers

are discarded whi
well, as shown in

e

gure 2-§in the section 'IData reservation and alignment: skb_reserve, skb_put, skb_push, and skb_pul

moving up in the stack and are added while moving down the stack. len accounts for protocol headers

as

0 See for a discussion of fragmented buffers.

unsigned int data_len

Unlike ten, data_len accounts only for the size of the data in the fragments.

unsigned int mac_len

This is the size of the MAC header.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

atomic_t users

This is the reference count, or the number of entities using this sk_butt buffer. The main use of this parameter is to avoid freeing
the sk_buff structure when someone is still using it. For this reason, each user of the buffer should increment and decrement this

field when necessary. This counter covers only the users of the sk_buff data structure; the Ty&mﬂﬁmm_ﬁm&ai_dﬂa_ﬁ_l
covered by a similar field (datarer) that will be introduced later in the chapter, in the section|[The skb_shared info structure and the

5kb _shinfo functior].

users IS sometimes incremented and decremented directly with theatomic_inc and atomic_dec functions, but most of the time it is
manipulated with skb_get and kiree_skb.

unsigned int truesize

This field represents the total size of the buffer, including the sk_buf structure itself. It is initially set by the functionaiioc_skb to
len+sizeof(sk_buff) When the buffer is allocated for a requested data space on bytes.

struct sk_buff *alloc_skb(unsigned int size,int gfp_mask)

The field gets updated whenever skb->len is increased.
unsigned char *head
unsigned char *end
unsigned char *data

unsigned char *tail

These represent the boundaries of the buffer and the data within it. When each layer prepares the buffer for its activities, it may
allocate more space for a header or for more data. head and end point to the beginning and end of the space allocated to the
buffer, and data and wil point to the beginning and end of the actual data. Se%izure 2-4. The layer can then fill in the gap between
head and data With @ protocol header, or the gap betweenail and end with new data. You will see in the later section

emory: alloc_skb and dev_alloc_skH" that the buffer on the right side o includes an additional header at the bottom.

Figure 2-2. head/end versus data/tail pointers

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

s 3
headroom
i
Data
i
tailroom
head
data
tail
end

struct sk_buff

void (*destructor)(...)

This function pointer can be initialized to a routine that performs some activity when the buffer is removed. When the buffer does
not belong to a socket, the destructor is usually not initialized. When the buffer belongs to a socket, it is usually set to sock_rfree OF

sock_wiree (DY the skb_set_owner_r and skb_set_owner_w initialization functions, respectively). The twosock_xxx routines are used to update the
amount of memory held by the socket in its queues.

2.1.3. General Fields

This section covers the majority of sk_buff fields, which are not associated with specific kernel features:

struct timeval stamp

This is usually meaningful only for a received packet. It is a timestamp that represents when a packet was received or
(occasionally) when one is scheduled for transmission. It is set by the function netit_rx with net_timestamp, Which is called by the device

driver after the reception of each packet and is described in Chapter 21.

struct net_device *dev

This field, whose type (net_device) will be described in more detail later in the chapter, describes a network device. The role of the
device represented by dev depends on whether the packet stored in the buffer is about to be transmitted or has just been received.

When a packet is received, the device driver updates this field with the pointer to the data structure representing the receiving
interface, as illustrated by the following piece of code from vortex_rx, the function called by the driver of the 3c59x Ethernet card

series when receiving a frame (in drivers/net/3c59x.c):

static int vortex_rx(struct net_device *dev)

skb->protocol = eth_type_trans(skb, dev);
netif_rx(skb); /* Pass the packet to the higher layer */

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

When a packet is to be transmitted, this parameter represents the device through which it will be sent out. The code that sets the
value is more complicated than the code for receiving a packet, so | will postpone a discussion until and _.
Some network features allow a few devices to be grouped together to represent a single virtual interface (that is, one that is not

directly associated with a hardware device), served by a virtual device driver. When the device driver is invoked, the dev
parameter points to the virtual device's net_device data structure. The driver chooses a specific device from its group and changes

the dev parameter to point to thenet_device data structure of that device. Under these circumstances, therefore, the pointer to the
transmitting device may be changed during packet processing.

struct net_device *input_dev

This is the device the packet has been received from, It is a NULL pojnter when the packet has been generated locally. For
Ethernet devices, it is initialized in eth_type_trans (see. and E} It is used mainly by Traffic Control.

struct net_device *real_dev

This field is meaningful only for virtual devices, and represents the real device the virtual one is associated with. The Bonding
and VLAN interfaces use it, for example, to remember where the real device ingress traffic is received from.

union{...} h
union {...} nh

union {...} mac

These are pointers to the protocol headers of the TCP/IP stack: n for L4, nn for L3, andmac for L2. Each field points to a union of
various structures, one structure for each protocol understood by the kernel at that layer. For instance, n is a union that includes
a field for the header of each L4 protocol understood by the kernel. One member of each union is called raw and is used for
initialization; all later accesses are through the protocol-specific members.

When receiving a data packet, the function responsible for processing the layer n header receives a buffer from layern-1 with
skb->data Pointing to the beginning of the layern header. The function that handles layern initializes the proper pointer for this layer
(for instance, sko->nh for L3 handlers) to preserve theskb->data field, because the contents of this pointer will be lost during the
processing at the next layer, when skb->data is initialized to a different offset within the buffer. The function then completes the layer
n processing and, before passing the packet to the layem+1 handler, updates skb->data to make it point to the end of the layem
header, which is the beginning of the layer n+1 header (see).

Sending a packet reverses this process, with the added complexity of adding a new header at each layer.

Figure 2-3. Header's pointer initializations while moving from layer two to layer three

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

sk -> mac skb -= mac skb-=nh
Ethernet | IR Ethemer | 1P
header q e 2

skb -> data skb - data

(a) Before (b) After

struct dst_entry dst

This is used by the routing subsystem. Because the data cture is quite complex and requires knowledge of how other
subsystems work, I'll postpone a description of it until Part VI

char cb[40]

This is a "control buffer," or storage for private information, maintained by each layer for internal use. It is statically allocated
within the sk_butf structure (currently with a size of 40 bytes) and is large enough to hold whatever private data is needed by each
layer. In the code for each layer, access is done through macros to make the code more readable. TCP, for example, uses that
space to store a tcp_skb_cb data structure, which is defined ininclude/net/tcp.h:

struct tcp_skb_cb {

_u32 seq; /* Starting sequence number */
_u32 end_seq; /*SEQ + FIN + SYN + datalen*/
_u32 when; /* used to compute rit's ¥/

_u8 flags; /* TCP header flags. */

And this is the macro used by the TCP code to access the structure. The macro consists simply of a pointer cast:

#define TCP_SKB_CB(_ _skb) ((struct tcp_skb_cb *)&((_ _skb)->cb[0]))

Here is an example where the TCP subsystem fills in the structure upon receipt of a segment:

int tcp_v4_rcv(struct sk_buff *skb)

th = skb->h.th;

TCP_SKB_CB(skb)->seq = ntohl(th->seq);

TCP_SKB_CB(skb)->end_seq = (TCP_SKB_CB(skb)->seq + th->syn + th->fin +
skb->len - th->doff * 4);

TCP_SKB_CB(skb)->ack_seq = ntohl(th->ack_seq);

TCP_SKB_CB(skb)->when = 0;

TCP_SKB_CB(skb)->flags = skb->nh.iph->tos;

TCP_SKB_CB(skb)->sacked = 0;

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

To see how the parameters in the b buffer are retrieved, take a look at the functioncp_transmit_skb in net/ipv4/tcp_output.c. That

function is used by TCP to push a data segment down to the IP layer for transmission.

In , you will also see how IPv4 usescb to store information about IP fragmentation.

unsigned int csum

unsigned char ip_summed
These represent the checksum and associated status flag. Their use is described in .

unsigned char cloned
loning and

it, when set, indicates that this structure is a clone of anothes_buit buffer. See the later section

opying bufferg.

unsigned char pkt_type
This field classifies the type of frame based on its L2 destination address. The possible values are listed in
x/if_packet.h. For Ethernet devices, this parameter is initialized by the functioret_type_trans, which is described in

nclude/linu
Chapter 13.

The main values it can be assigned are:

PACKET_HOST
The destination address of the received frame is that of the receiving interface; in other words, the packet has reached

its destination.

PACKET_MULTICAST
The destination address of the received frame is one of the multicast addresses to which the interface is registered.

PACKET_BROADCAST
The destination address of the received frame is the broadcast address of the receiving interface.

PACKET_OTHERHOST
The destination address of the received frame does not belong to the ones associated with the interface (unicast,
multicast, and broadcast); thus, the frame will have to be forwarded if forwarding is enabled, and dropped otherwise

PACKET_OUTGOING
e Decnet protocol and the function that gives each

hapter 11).

The packet is being sent out; among the users of this flag are th
network tap a copy of the outgoing packet (see dev_queue_xmit_nit in

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

PACKET_LOOPBACK

The packet is being sent out to the loopback device. Thanks to this flag, when dealing with the loopback device, the
kernel can skip some operations needed for real devices.

PACKET_FASTROUTE

The packet is being routed using the Fastroute feature. Fastroute support is not available anymore in 2.6 kernels.

details how those values are set based on the L2 destination address value.

__u32 priority

This indicates the Quality of Service (QoS) class of a packet being transmitted or forwarded. If the packet is generated locally,
the socket layer defines the priority value. If instead the packet is being forwarded, the functiont_toszpriority (called from theip_forward

function) defines the value of the field according to the value of the Type of Service (T,the IP header itself. The value
nh

of this pa ing to do with the DiffServ Code Point (DSCP) described in [Chapter 1§. | will discuss its role in the
section] forward Functior]" in .

unsigned short protocol

This is the protocol used at the next-higher layer from the perspective of the device driver at L2. Typical protocols listed here are
IP, IPv6, and ARP; a complete list is available in include/linux/if_ether.h. Since each protocol has its own function handler for the
processing of incoming packets, this field is used by the driver to inform the layer above it what handler to use. Each driver calls
netif_rx t0 invoke the handler for the upper network layer, so therotocol field must be initialized before that function is invoked. See

and B for more detail.

unsigned short security

This is the security level of the packet. This field was originally introduced for use with IPsec but is no longer used.

2.1.4. Feature-Specific Fields

The Linux kernel is modular, allowing you to select what to include and what to leave out. Thus, some fields are included in thesk_buf data
structure only if the kernel is compiled with support for particular features such as firewalling (Netfilter) or QoS:

unsigned long nfmark
__u32 nfcache
__u32 nfctinfo

struct nf_conntrack *nfct

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

unsigned int nfdebug

struct nf_bridge_info *nf_bridge
These parameters are used by Netfilter (the firewall code), and more specifically by the kernel option "Device Drivers _}

Networking support 3 Networking options a Network packet filtering" and its two suboptions, "Network packet filtering
debugging" and "Bridged IP/ARP packets filtering."

union {...} private

This union is used by the High Performance Parallel Interface (HIPPI). The associated kernel option is "Device Drivers _}
Networking support = Network device support =} HIPPI driver support."

_ _u32tc_index
__u32tc_verd

_ _u32tc_classid

These parameters are used by the Traffic Control, and more specifically by the kernel option "Device Drivers i Networking
support — Networking options — QoS and/or fair queueing" and its suboption, "Packet classifier API."

struct sec_path *sp

This is used by the IPsec protocol suite to keep track of transformations.

2.1.5. Management Functions

Lots of functions , usually very short and simple, are offered by the kernel to manipulatex_buf elements or lists of elements. With the help of
Eigure 2-4, I'll describe the most important ones. First we will see the functions used to allocate and free buffers, and then the ones used to
manipulate the pointers (i.e., skb->data) to reserve space at the head or at the tail of a frame.

If you take a look at the files include/linux/skbuff.h and net/core/skbuff.c, you will notice that almost all of the functions exist in two versions,
with names like do_something and _ _do_something. Usually, the first one is a wrapper that adds extra sanity checks or locking mechanisms around
a call to the second one. The internal __do_something form is generally not called directly (unless specific conditions are meti.e., lock

requirements, to name one). Exceptions to that rule are usually poorly coded functions that will be fixed eventually.

Figure 2-4. Before and after: (a)skb_put, (b)skb_push, (c)skb_pull, and (d)skb_reserve

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

(a1) (a2)

skb -> data skb - data
> -
skb -= len
skb -= len
skb -= tail n
ghb -= 1ail =
(b1) (b2)
skb -> data i
sk - data fn
e skl - len
skb -> tail & skh -= tail a
(c1) ()
kb -= data
—_— -
n skb - data fl
_—
skb > len skb - len
3 -
skb -= tail skb -= tail
I (@)
skb -> tail skb > data 10
skb - tail

2.1.5.1. Allocating memory: alloc_skb and dev_alloc_skb

alloc_skb iS the main function for the allocation of buffers and is defined imet/core/skbuff.c. We have already seen that the data buffer and the

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

header (the sk_buff data structure) are two different entities, which means that creating a single buffer involves two allocations of memory
(one for the buffer and one for the sk_buff structure).

alloc_skb takes an sk_buff data structure from a cache by calling the functiorkmem_cache_alloc, and gets a data buffer by callingmaiioc, which also
uses cached memory if it is available. The code (slightly simplified) is:

skb = kmem_cache_alloc(skbuff_head_cache, gfp_mask & ~_ _GFP_DMA);

size = SKB_DATA_ALIGN(size);
data = kmalloc(size + sizeof(struct skb_shared_info), gfp_mask);

Before calling kmalloc, the size parameter is tuned with the macrosks_pata_auien to force alignment. Before returning, the function initializes a
few parameters in the structure, producing the final result shown in .

At the bottom of the memory block on the right side of you can see the padding area introduced to force the alignment. The

skb_shared_info block is mainly used to handle IP fragments and is described later in this chapter. The fields shown on the left side of the figure
were explained earlier.

Figure 2-5. alloc_skb function

= I ;
ESjIE SKB_DATA_ALIGH(size)
LA
. Padding v
struct

leni=0 ski_shared _info

head

data

tail

enid

struck sk_buff

dev_alloc_skb iS the buffer allocation function meant for use by device drivers and expected to be executed in interrupt mode. It is simply a

wrapper around aloc_skb that adds 16 bytes to the requested size for optimization reasons and asks for an atomic operatiors§p_atomic) since
it will be called from within an interrupt handler routine:

static inline struct sk_buff *dev_alloc_skb(unsigned int length)
{
return _ _dev_alloc_skb(length, GFP_ATOMIC);

static inline
struct sk_buff *_ _dev_alloc_skb(unsigned int length, int gfp_mask)

{
struct sk_buff *skb = alloc_skb(length + 16, gfp_mask);
if (likely(skb))
skb_reserve(skb, 16);

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

return skb;
This definition of __dev_alloc_skb is the default one used when there is no architecture-specific definition.
2.1.5.2. Freeing memory: kfree_skb and dev_kfree_skb

These two functions release a buffer, which results in its return to the buffer pool (cache). kiree_skb is both called directly and invoked
through the dev_kiree_sko Wrapper. The latter is defined for use by device drivers, to have a name that parallelgev_alloc_skb but consists of a
simple macro that does nothing but call kiree_skb. This basic function releases a buffer only when theskb->users counter is 1 (when no users of
the buffer are left). Otherwise, the function simply decrements that counter. So if a buffer had three users, only the third call to dev_kfree_skb Or
kiree_skb Would free memory.

The flowchart in shows all the steps involved in freeing a buffer. As you will see in, an sk_buff structure can hold a

reference on a dst_entry data structure. When thesk_buif structure is freed, therefore, dst_release also has to be called to decrement the reference
count on the associated dst_entry data structure.

When the destructor function pointer has been initialized, it is called here (see the section fLayout Fieldg" earlier in this chapter).

We have seen in what a simple scenario looks like: ansk_buft data structure is associated to another memory block where the
actual data is stored. However,_the skb shared info data structure at the bottom of that data block, as shown ifrigure 2-§, can hold pointers to
other memory fragments. See for some examples.kiree_skb releases the memory held by those fragments as well, when they are

present. Finally, the sk_buff data structure is returned to theskbuff_head_cache cache.

2.1.5.3. Data reservation and alignment: skb_reserve, skb_put, skb_push, and skb_pull

skb_reserve reserves some space (headroom) at the head of the buffer and is commonly used to allow the insertion of a header or to force

he data ang il pointers (discussed earlier in the section [Layout Fieldg") that mark
shows the result of calling skb_reserve(skb,n). This function is usually
called soon after the allocation of the buffer, when data and i are still the same.

data to be aligned on some boundary. The function shift
the beginning and the end of the payload, respectively.

If you look at the receive function of one of the Ethernet drivers (for instance, vortex_rx in drivers/net/3c59x.c) you will see that they all use the
following command before storing any data in the buffer they have just allocated:

skb_reserve(skb, 2); /* Align IP on 16 byte boundaries */

Figure 2-6. kfree_skb function

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

Decrement skh refont
[5kb-=tesers)

'

Is sk refent Mo

=01 *

es * Return

Yes Is skb in
[alist?

Print warning m
{likely to be a busgﬂ No
| ,l

TE'E. Is E-HJ =
I destructor

initialized?
Execute destructor

' » | No skb_release data

lsskha Mo
clone?

+ Yes

Decrament refent on
data (dataref}

v

Is refent Yes
dataref=07

Mo L

Free the main buffer
and any fragments

i I

Return skb to the
cache

Because they know that they are about to copy an Ethernet frame that has a header 14 octets long into the buffer, the argument of 2 shifts
the head of the buffer 2 bytes. This keeps the IP header, which follows immediately after the Ethernet header, aligned on a 16-byte
boundary from the beginning of the buffer, as shown in

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

Figure 2-7. (a) before skb_reserve, (b) after skb_reserve, and (c) after copying the frame on the buffer

(a)

struct sk_buff

(b)
struct sk_buff

(c)

len=({)
head
data

tail
end :

Fadding

2

struct sk buff
L

shows an example of using skb_reserve in the opposite direction, during data transmission.

Figure 2-8. Buffer that is filled in while traversing the stack from the TCP layer down to the link layer

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

(a)

(b) (0

struct sk_buff struct sk_buff struct sk_buff

len=0

head - - head -
data - data -
tail tail

end

” len=0

(d) (e) (f)
struct sk_buff struct sk_buff struct sk_buff
len=L4
data -~
tail

4.

5.

6.

When TCP is asked to transmit some data, it allocates a buffer following certain criteria (TCP Maximum Segment Size (mss),
support for scatter gather 1/O, etc.).

TCP reserves (with sko_reserve) @nough space at the head of the buffer to hold all the headers of all layers (TCP, IP, link layer). The
parameter max_tcp_HEADER iS the sum of all headers of all levels and is calculated taking into account the worst-case scenarios:
because the TCP layer does not know what type of interface will be used for the transmission, it reserves the biggest possible
header for each layer. It even accounts for the possibility of multiple IP headers (because you can have multiple IP headers
when the kernel is compiled with support for IP over IP).

The TCP payload is copied into the buffer. Note that M is just an example. The TCP payload could be organized
differently; for example, it could be stored as fragments. In , we will see what a fragmented buffer (also commonly
called a paged buffer) looks like.

The TCP layer adds its header.
The TCP layer hands the buffer to the IP layer, which adds its header as well.

The IP layer hands the IP packet to the neighboring layer, which adds the link layer header.

Note that while the buffer travels down the network stack, each protocol moves skb->data down, copies in its header, and updatesskb->ten. All of

this is accomplished with the functions we saw in ‘.

Note that the sko_reserve function does not really move anything into or within the data buffer; it simply updates the two pointers as depicted in
Figure 2-4(d].

static inline void skb_reserve(struct sk_buff *skb, unsigned int len)

{

skb->data+=len;

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

skb->tail+=len;

skb_push adds one block of data to the beginning of the buffer, andsko_put adds one to the end. Likesko_reserve, these functions don't really add
any data to the buffer; they simply move the pointers to its head or tail. The new data is supposed o be copied explicitly by other functions.
skb_pull removes a block of data from the head of the buffer by moving thewead pointer forward. Figure 2-4 shows how these functions work.

2.1.5.4. The skb_shared_info structure and the skb_shinfo function

As shown in , there is a structure calledskn_shared_info at the end of the data buffer that keeps additional information about the data
block. The data structure immediately follows the end pointer that marks the end of the data. This is the definition of the data structure:

struct skb_shared_info {
atomic_t dataref;
unsigned int nr_frags;
unsigned short tso_size;
unsigned short tso_seqs;
struct sk_buff *frag_list;
skb_frag t frags[MAX_SKB_FRAGS];

dataref represents the number of "users" of the data block and is described in the next section, "Cloning and copying buffersar frags, frag_list,
and frags are used to handle IP fragments and are described i . The skb_is_nonlinear routine can be used to check whether the buffer

is fragmented, and skb_linearizeH can be used to collapse the fragments into a single flat buffer. Collapsing the fragments involves copying,
which introduces a performance penalty.

I see the section 'ljev queue xmit Functior‘" in IChapter 11 for an example of its use.

Some network interface cards (NICs) can handle in hardware some of the tasks that have traditionally been done by the CPU. The most
common example is the computation of the L3 and L4 checksums. Some NICs can even maintain the L4 protocol's state machines. For
the sake of the code shown here, we are interested in TCP segmentation offload, where the NIC implements a subset of the TCP layer.
tso_size aNd tso_segs are used by this feature.

Note that there is no field inside the sk_buff Structure pointing at the sko_shared_info data structure. To access that structure, functions need to
use the skv_shinfo macro, which simply returns theend pointer:

#define skb_shinfo(SKB) ((struct skb_shared_info *)((SKB)->end))

The following statement, for instance, shows how the macro is used to increment a field of the private block:

skb_shinfo(skb)->dataref++;

2.1.5.5. Cloning and copying buffers

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

When the same buffer needs to be processed independently by different consumers, and they may need to change the content of the
sk_buff descriptor (the nh and nh pointers to the protocol headers), the kernel does not need to make a complete copy of both the_butf structure

and the associated data buffers. Instead, to be more efficient, the kernel can clone the original, which consists of making a copy of the
sk_buff structure only and playing with the reference counts to avoid releasing the shared data block prematurely. Buffer cloning is done with

the skb_clone function.

An example of a situation using cloning is when an ing
handler and one or more network taps (see [Chapter 273).

ess packet needs to be delivered to multiple recipients, such as the protocol

The sk_buff clone is not linked to any list and has no reference to the socket owner. The fieldskb->cioned is set to 1 in both the clone and the

original buffer. sko->users is set to 1 in the clone so that the first attempt to remove it succeeds, and the numi

buffer containing the data is incremented (since now there is one more sk butf data structure pointing to it).|
a cloned buffer.

Figure 2-9. skb_clone function

ber of referencesdataref) to the
Figure 2-9 shows an example of

l4— Clone

- -
headropom
- -
DATA
= -+
" tailroom
T dataref=2 |
head n_frag=1 head
data frags data
tai{tl taiuli
€n e L]
Ege_uﬁsetﬂl users =1
struct sk_buff Struct skb_shared_info ol struct sk_buff
sk_shinfoldona) sk shinfo{skb)
| AT

The skb_clone routine can be used to check the cloned status of arsks buffer.

shows an example of a fragmented bufferth‘ a buffer that has some data stored in data fragments linked with thegs
nhater 2

array. We will see how fragmented buffers are used in|

. for now, let's not bother with those details.

The skb_share_check routine can be used to check the reference countskb->users and clone the bufferskb when the users field says the buffer is

shared.

When a buffer is cloned, the contents of the data block cannot be modified. This means that code can access the data without any need
for locking. When, however, a function needs to modify not only the contents of the sk_butf Structure but the data too, it needs to clone the

data block as well. In this case, the programmer has two options. When he knows he needs to modify only the contents of the data in the

area between skb->start and skb->end, he can use pskb_copy t0 clone just that area. When he thinks he mai need to modify the con

fragment data blocks too, he must use skb_copy. The result of bothpskb_copy @and skb_copy is shown in

igure 2-10. You will see in}

tent of the

Chaéter 2] that

the skn_shared_info data structure can include a list ofsk_nuff structures too (linked to a field calledirag_iist). That list is handled bypskb_copy and

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

skb_copy in the same way as therrags array (this detail has been omitted from to keep the latter more readable).

Figure 2-10. (a) pskb_copy function and (b) skb_copy function

strisct sk_buff
- W

L ‘h,E [I W
R admom head
dara
tail
DATA end
(copied) ol
. | 4 j
tailraam
skir_shinfo{skh) —m — skb_shinfolnew)
— nr_frags=1
dataref=1
frags
- - - <——{page
Data a page_affset=0
struct i size=51
skb_shared_info
struet sk buff
- - il [P
headroam headraom
?
DATA DATA
(copied)
- |
tailroom tailroom ;
skir_shinfo{skb) —m — skb_shinfoinew)
@ nr_frags=1 nr_frags=1
d = i =y
frags frags
page e o~ fage
page_offset=0 [iata 151 Data pane_offset=0
struct SEIEISI | copied) siJ.E:SI
skeh_shared_infio

You may not be able to appreciate all of the details in and at this point. Later in the book, especially once you have gone

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

through , everything will make more sense.

While discussing the various topics of this book, | will sometimes emphasize that a given function needs to clone or copy a buffer. When
deciding to make a clone or copy of a buffer, programmers of each subsystem cannot anticipate whether other kernel components (or
other users of their subsystems) will need the original information in that buffer. The kernel is very modular and changes in a very dynamic
and unpredictable way, so each subsystem is ignorant of what other subsystems may do with a buffer. Therefore, the programmers of
each subsystem just keep track of any modifications they make to the buffer, and take care to make a copy before modifying anything in
case some other part of the kernel needs the original information.

2.1.5.6. List management functions

These functions manipulate the lists of sk_buf elements, also called queues. For a complete list of functions, see<include/linux/skbuff.h> and
<net/core/skbuff.c>. Some of the most commonly used functions are:

skb_queue_head_init

Initializes an sk_buft_head With an empty queue of elements.

skb_queue_head, skb_queue_tail

Adds one buffer to the head or to the tail of a queue, respectively.

skb_dequeue, skb_dequeue_tail

Dequeues an element from the head or from the tail, respectively. The second function should probably have been called
skb_dequeue_head t0 be consistent with the names of the other queueing functions.

skb_queue_purge

Empties a queue.

skb_queue_walk
Runs a loop on each element of a queue in turn.

All functions of this class must be executed atomicallythat is, they must grab the spin lock provided by the sk_buff_head structure for the
gueue. Otherwise, they could be interrupted by asynchronous events that enqueue or dequeue elements from the queues, such as
functions invoked by expired timers, which would lead to race conditions.

Thus, each function is implemented as follows:

static inline function_name (parameter_list)

{

unsigned long flags;

spin_lock_irgsave(...);
___function_name (parameter_list)

spin_unlock_irgrestore(...);

his document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

The function consists of a wrapper that grabs the lock, does its work by invoking a function whose name begins with two underscores, and
releases the lock.

E==a wexT

file:///C:/DOCUME~1/%B9%DA%B9%AE%B1%B9/LOCALS~1/Temp/Oreilly,%20Understanding%20Linux%20Network%20Internals%20(2005)%20Bbl%20Lotb.chm/0596002556/9961536.html

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

=2 wEXT

2.2. net_device Structure

The net_device data structure stores all information specifically regarding a network device. There is one such structure for each device,

both real ones (such as Ethernet NICs) and virtual ones (such as bondingH or VLANl I). In this section, | will use the wordsinterface and
device interchangeably, even though the difference between them is important in other contexts.

0 Bonding, also called EtherChannel (Cisco terminology) and trunking (Sun terminology), allows a set of interfaces
to be grouped together and be treated as a single interface. This feature is useful when a system needs to
support point-to-point connections at a high bandwidth. A nearly linear speedup can be achieved, with the virtual
interface having a throughput nearly equal to the sum of the throughputs of the individual interfaces.

[T] VLAN stands for Virtual LAN. The use of VLANSs is a convenient way to isolate traffic using the same L2

switch in different broadcast domains by means of an additional tag, called the VLAN tag, that is added to the
thernet frames. You can find an introduction to VLANs and their use with Linux at

http://www.linuxjournal.com/article/726§.

The net_device structures for all devices are put into a global list to which the global variableev_base points. The data structure is
defined in include/linux/netdevice.h. The registration of network devices is described in. In that chapter, you can find details on
how and when most of the net_device fields are initialized.

Like sk_buff, this structure is quite big and includes many feature-specific parameters, along with parameters from many different layers.
For this reason, the overall organization of the structure will probably see some changes soon for optimization reasons.

Network devices can be classified into types such as Ethernet cards and Token Ring cards. While certain fields of thenet_device
structure are set to the same value for all devices of the same type, some fields must be set differently by each model of device. Thus,
for almost every type, Linux provides a general function that initializes the parameters whose values stay the same across all models.
Each device driver invokes this function in addition to setting those fields that have unique values for its model. Drivers can alsg
overwrite fields that were already initialized by the kernel (for instance, to improve performance). You can find more details in .

The fields of the net_device structure can be classified into the following categories:

® Configuration

® statistics

® Device status

® st management

® Traffic management
® rcature specific

® Generic

® runction pointers (or VFT)

http://www.linuxjournal.com/article/7268

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

2.2.1. Identifiers

The net_device structure includes three identifiers , not to be confused:

int ifindex

A unique ID, assigned to each device when it is registered with a call to dev_new_index.

int iflink

This field is mainly used by (virtual) tunnel devices and identifies the real device that will be used to reach the other end of the
tunnel.

unsigned short dev_id

Currently used by IPv6 with the zSeries OSA NICs. The field is used to differentiate between virtual instances of the same
device that can be shared between different OSes concurrently. See comments in net/ipv6/addrconf.c.

2.2.2. Configuration

Some of the configuration fields are given a default value by the kernel that depends on the class of network device, and some fields are
left to the driver to fill. The driver can change defaults, as mentioned earlier, and some fields can even be changed at runtime by
commands such as ifconfig and ip. In fact, several parametersbase_addr, if_port, dma, and irgare commonly set by the user when the
module for the device is loaded. On the other hand, these parameters are not used by virtual devices.

char name[IFNAMSIZ]

Name of the device (e.g., eth0).

unsigned long mem_start

unsigned long mem_end

These fields describe the shared memory used by the device to communicate with the kernel. They are initialized and
accessed only within the device driver; higher layers do not need to care about them.

unsigned long base_addr

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

The beginning of the I/O memory mapped to the device's own memory.

unsigned int irq

The interrupt number used by the device to talk to the kernel. It can be shared among multiple devices. Drivers use the
request_irq function to allocate this variable andfree_irq to release it.

unsigned char if_port

The type of port being used for this interface. See the next section, "|nterface types and portsl“

unsigned char dma

The DMA channel used by the device (if any). To obtain and release a DMA channel from the kernel, the file kernel/dma.c
defines the functions request_dma and free_dma. To enable or disable a DMA channel after obtaining it, the functions

enable_dma and disable_dma are provided in variousinclude/asm-architecture files (e.g., include/asm-i386). The routines are
used by ISA devices; Peripheral Component Interconnect (PCl) devices do not need them because they use others instead.

DMA is not available for all devices because some buses don't use it.

unsigned short flags

unsigned short gflags

unsigned short priv_flags

Some bits in the flags field represent capabilities of the network device (such aslFF_MULTICAST) and others represent
changing status (such as IFF_UP or IFF_RUNNING). You can find the complete list of these flags ininclude/linux/if.h. The
device driver usually sets the capabilities at initialization time, and the status flags are managed by the kernel in response to
external events. The settings of the flags can be viewed through the familiar ifconfig command:

bash# ifconfig lo

lo Link encap:Local Loopback
inet addr:127.0.0.1 Mask:255.0.0.0
UP LOOPBACK RUNNING MTU:3924 Metric:1
RX packets:198 errors:0 dropped:0 overruns:0 frame:0
TX packets:198 errors:0 dropped:0 overruns:0 carrier:0
collisions:0 txqueuelen:0

In this example, the words UP LOOPBACK RUNNING correspond to the flags IFF_UP, IFF_LOOPBACK, and IFF_RUNNING.

priv_flags stores flags that are not visible to the user space. Right now this field is used by the VLAN and Bridge virtual
devices. gflags is almost never used and is there for compatibility reasons. Flags can be changed through the
dev_change_flags function.

int features

Another bitmap of flags used to store some other device capabilities. It is not redundant for this data structure to contain
multiple flag variables. The features field reports the card's capabilities for communicating with the CPU, such as whether the

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

card can do DMA to high memory, or checksum all the packets in hardware. The list of the possible features is defined inside
the structure net_device itself. This parameter is initialized by the device driver. You can find the list oNETIF_F_XXX

features, along with good comments, inside the net_device data structure definition.

unsigned mtu

TU stands for Maximum Transmission Unit and it represents the maximum size of the frames that the device can handle.
Table 2-1f shows the values for the most common network technologies.

Table 2-1. MTU values for different device types

Device type MTU

PPP 296

SLIP 296

Ethernet 1,500

ISDN 1,500

PLIP 1,500 (ether_setup)
Wavelan 1,500 (ether_setup)
EtherChannel 2,024

FDDI 4,352

Token Ring 4 MB/s (IEEE 802.5) 4,464

Token Bus (IEEE 802.4) 8,182

Token Ring 16 MB/s (IBM) 17,914
Hyperchannel 65,535

The Ethernet MTU deserves a little clarification. The Ethernet frame specification defines the maximum payload size as 1,500 bytes.
Sometimes you find the Ethernet MTU defined as 1,518 or 1,514: the first is the maximum size of an Ethernet frame including the
header, and the second includes the header but not the frame check sequence (4 bytes of checksum).

In 1998, Alteon Networks (acquired by Nortel Networks in 2000) promoted an initiative to increase the maximum payload of Ethernet
frames to 9 KB. This proposal was later formalized with an IETF Internet draft, but the IEEE never accepted it. Frames exceeding the
1,500 bytes of payload in the IEEE specification are commonly called jumbo frames and are used with Gigabit Ethernet to increase
throughput. This is because bigger frames mean fewer frames for large data transfers, fewer interrupts, and therefore less CPU usage,
less header overhead, etc.). For a discussion of the benefits of increasing the Ethernet MTU and why IEEE does not agree on

standardizing this extension, yoy
an Internet search, as well as at

t Networks" that can be found with

ttp://www.ietf.org/proceedings/Olaug/I-D/draft-ietf-isis-ext-eth-01.tx{.

unsigned short type

The category of devices to which it belongs (Ethernet, Frame Relay, etc.). include/linux/if_arp.h contains the complete list of

possible types.

http://www.ietf.org/proceedings/01aug/I-D/draft-ietf-isis-ext-eth-01.txt

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

unsigned short hard_header_len

The size of the device header in octets. The Ethernet header, for instance, is 14 octets long. The length of each device
header is defined in the header file for that device. For Ethernet, for instance, ETH_HLEN is defined in
<include/linux/if_ether.h>.

unsigned char broadcast{MAX_ADDR_LEN]

The link layer broadcast address.
unsigned char dev_addr[MAX_ADDR_LEN]

unsigned char addr_len

dev_addr is the device link layer address; do not confuse it with the L3 or IP address. The address's length in octets is given
by addr_len. The value of addr_len depends on the type of device. Ethernet addresses are 8 octets long.

int promiscuity

See the later section "Promiscuous modg."

2.2.2.1. Interface types and ports

Some devices come with more than one connector (the most common combination is BNC + RJ45) and allow the user to select one of
them depending on her needs. This parameter is used to set the port type for the device. When the device driver is not forced by
configuration commands to select a specific port type, it simply chooses a default one. There are also cases where a single device driver
can handle different interface models; in those situations, the interface can discover the port type to use by simply trying all of them in a
specific order. This piece of code shows how one device driver sets the interface mode depending on how it has been configured:

switch (dev->if_port) {

case IF_PORT_10BASE2:
writeb((readb(addr) & 0xf8) | 1, addr);
break;

case IF_PORT_10BASET:
writeb((readb(addr) & 0xf8), addr);
break;

2.2.2.2. Promiscuous mode

Certain network administration tasks require a system to receive all the frames that travel across a shared cable, not just the ones
directly addressed to it; a device that receives all packets is said to be in promiscuous mode . This mode is needed, for instance, by
applications that check performance or security breaches on their local network segment. Promiscuous mode is also used by bridging

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

code (see Part I\). Finally, it has obvious value to malicious snoopers, unfortunately; for this reason, no data is secure from other users
on a local network unless it is encrypted.

The net_device structure contains a counter namedpromiscuity that indicates a device is in promiscuous mode. The reason itis a
counter rather than a simple flag is that several clients may ask for promiscuous mode; therefore, each increments the counter when
entering the mode and decrements the counter when leaving the mode. The device does not leave promiscuous mode until the counter
reaches zero. Usually the field is manipulated by calling the function dev_set_promiscuity.

Whenever promiscuity is nonzero (such as through a call todev_set_promiscuity), the IFF_PROMISC bit flag of flags is also set and is
checked by the functions that configure the interface.

The following piece of code, taken from the drivers/net/3c59x.c driver, shows how the different receive modes are set based on the flags
(bits) in the flags field:

static void set_rx_mode(struct net_device *dev)

{

int ioaddr = dev->base_addr;
int new_mode;

if (dev->flags & IFF_PROMISC) {

if (corgscreq_debug > 3)

printk("%s: Setting promiscuous mode.\n", dev->name);

new_mode = SetRxFilter | RxStation | RxMulticast | RxBroadcast | RxProm;
} else if ((dev->mc_list) || (dev->flags & IFF_ALLMULTI)) {

new_mode = SetRxFilter | RxStation | RxMulticast | RxBroadcast;
} else

new_mode = SetRxFilter | RxStation | RxBroadcast;

outw(new_mode, ioaddr + EL3_CMD);

When the IFF_PROMISC flag is set, the new_mode variable is initialized to accept the traffic addressed to the card RxStation), multicast
traffic (RxMulticast), broadcast traffic (RxBroadcast), and all the other traffic RxProm). EL3_CMD is the offset to theioaddr memory
address that represents where commands are supposed to be copied when interacting with the device.

2.2.3. Statistics

Instead of providing a collection of fields to keep statistics , the net_device structure includes a pointer namedpriv that is set by the driver
to point to a private data structure storing information about the interface. The private data consists of statistics such as the number of
packets transmitted and received and the number of errors encountered.

The format of the structure pointed at by priv depends both on the device type and on the particular model: thus, different Ethernet cards
may use different private structures. However, nearly all structures include a field of type net_device_stats (defined in
include/linux/netdevice.h) that contains statistics common to all the network devices and that can be retrieved with the methodget_stats,
described later.

Wireless devices behave so differently from wired devices that wireless ones do not find the net_device_stats data structure appropriate.
Instead, they provide a field of type iw_statistics that can be retrieved using a method calledget_wireless_stats, described later.

The data structure to which priv points sometimes has a hame reflecting the interface (e.g.vortex_private for the Vortex and Boomerang
series, also called the 3c59x family), and other times is simply called net_local. Still, the fields innet_local are defined uniquely by each
device driver.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

The private data structure may be more or less complex depending on the card's capabilities and on how much the device driver writer is
willing to employ sophisticated statistics and complex design to enhance performance. Compare, for instance, the generic net_local
structure used by the 3c507 Ethernet card in drivers/net/3c507.c with the highly detailed vortex_private structure used by the 3c59x
Ethernet card in drivers/net/3c59x.c. Both, however, include a field of typenet_device_stats.

As you will see in , the private data structure is sometimes appended to thenet_device structure itself (requiring only onemalloc
for both) and sometimes allocated as a separate block.

2.2.4. Device Status

To control interactions with the NIC, each device driver has to maintain information such as timestamps and flags indicating what kind of
behavior the interface requires. In a symmetric multiprocessing (SMP) system, the kernel also has to make sure that concurrent
accesses to the same device from different CPUs are handled correctly. Several fields of the net_device structure are dedicated to these
types of information:

unsigned long state

A set of flags used by the network queuing subsystem. They are indexed by the constants in the enumnetdev_state_t, which
is defined in include/linux/netdevice.h and defines constants such as_ _LINK_STATE_XOFF for each bit. Individual bits are
set and cleared using the general functions set_bit and clear_bit, usually invoked through a wrapper that hides the details of
the bit used. For example, to stop a device queue, the subsystem invokes netif_stop_queue, which looks like this:

static inline void netif_stop_queue(struct net_device *dev)

{

set_bit(__LINK_STATE_XOFF, &dev->state);

The Traffic Control subsystem is briefly introduced in .

enum {...} reg_state

The registration state of the device. See .

unsigned long trans_start
The time (measured in jiffies) when the last frame transmission started. The device driver sets it just before starting

transmission. The field is used to detect problems with the card if it does not finish transmission after a given amount of time.
An overly long transmission means there is something wrong; in that case, the driver usually resets the card.

unsigned long last_rx

The time (measured in jiffies) when the last packet was received. At the moment, it is not used for any specific purpose, but is
available in case of need.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

struct net_device *master

Some protocols exist that allow a set of devices to be grouped together and be treated as a single device. These protocols
include EQL (Equalizer Load-balancer for serial network interfaces), Bonding (also called EtherChannel and trunking), and
the TEQL (true equalizer) queuing discipline of Traffic Control. One of the devices in the group is elected to be the so-called
master, which plays a special role. This field is a pointer to the net_device data structure of the master device of the group. If
the interface is not a member of such a group, the pointer is simply NULL.

spinlock_t xmit_lock

int xmit_lock_owner

The xmit_lock lock is used to serialize accesses to the driver functionhard_start_xmit. This means that each CPU can carry
out only one transmission at a time on any given device. xmit_lock_owner is the ID of the CPU that holds the lock. It is always
0 on single-processor systems and -1 when the lock is not MP systems. It is possible to have lockless
transmissions, too, when the device driver supports it. See Eha:ter 11 for both the lock and the lockless cases.

void *atalk_ptr
void *ip_ptr
void *dn_ptr
void *ip6_ptr
void *ec_ptr

void *ax25_ptr

These six fields are pointers to data structures specific to particular protocols, each data structure containing parameters that
are used privately by that protocol. ip_ptr, for instance, points to a data structure of typan_device (even though it is declared

as void *) that contains different IPv4-related parameters, among them the list of IP addresses configured on the interface
(see . Other sections of this book describe the fields of the data structures used by protocols covered in the book.
Most of the time only one of these fields is in use.

2.2.5. List Management

net_device data structures are inserted into a global list and into two hash tables, as described . The following fields are used
to accomplish these tasks:

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

struct net_device *next

Links each net_device data structure to the next in the global list.

struct hlist_node name_hlist

struct hlist_node index_hlist

Link the net_device structure to the bucket's list of two hash tables.

2.2.6. Link Layer Multicast

Multicast is a mechanism used to deliver data to multiple recipients. Multicasting can be available both at the L3 network layer (i.e., IP)
and at the L2 link layer (i.e., Ethernet). In this section, we are concerned with the latter.

Link layer multicast delivery can be achieved by using special addresses or control information in the link layer header. (When it is not
supported by the link layer protocol, it may be emulated.) Ethernet natively supports multicasting: we will see in Chapter 13 how an
Ethernet address can be classified as unicast, multicast, or broadcast.

Multicast addresses are distinguished from the range of other addresses by a specific bit. This means that 50% of the possible

addresses are multicast, and 50% of 248 is a huge number! When an interface is asked to join a lot of multicast groups (each identified
by a multicast address), it may be more efficient and faster for it to simply listen to all the multicast addresses instead of maintaining a
long list and wasting time filtering ingress L2 multicast frames based on the list. One of the flags in the net_device data structure
indicates whether the device should listen to all addresses. The decision about when to set or clear this flag is controlled by the all_multi
field shown in this section.

Each device keeps an instance of the dev_mc_list structure for each link layer multicastaddress it listens to. Link layer multicast
addresses can be added and removed with the functions dev_mc_add and dev_mc_delete, respectively. Relevant fields in thenet-device
structure include:

struct dev_mc_list *mc_list

Pointer to the head of this device's list of dev_mc_list structures.

int mc_count

The number of multicast addresses for this device, which is also the length of the list to which mc_list points.

int allmulti

When nonzero, causes the device to listen to all multicast addresses. Like promiscuity, discussed earlier in this chapter,
allmulti is a reference count rather than a simple Boolean. This is because multiple facilities (VLANs and bonding devices, for
instance) may independently require listening to all addresses. When the variable goes from 0 to nonzero, the function
dev_set_allmulti is called to instruct the interface to listen to all multicast addresses. The opposite happens whenallmulti goes
to 0.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

2.2.7. Traffic Management

The Traffic Control subsystem of Linux has grown quite a lot and represents one of the strengths of the Linux kernel. The associated

kernel option is "Device drivers ; Networking support ; Networking options ; QoS and/or fair queueing." Relevant fields
in the net-device structure include:

struct net_device *next_sched

Used by one of the software interrupts described in .

struct Qdisc *qdisc
struct Qdisc *qdisc_sleeping
struct Qdisc *qdisc_ingress

struct list_head qdisc_list

These fields are used to manage the ingress and egress packet queues and access to the device from different CPUs.
spinlock_t queue_lock

spinlock_t ingress_lock

The Traffic Control subsystem defines a ?rivate egress queue for each network device. queue_lock is used to avoid

simultaneous accesses to it (see [Chapter 11). ingress_lock does the same for ingress traffic.

unsigned long tx_queue_len

The length of the device's transmission queue. When Traffic Control support is present in the kernel, tx_queue_len may not
be used (only a few queuing discipline use it). shows the values used for the most common device types. Its value
can be tuned with the sysfs filesystem (see the/sys/class/net/device_name/ directories).

Table 2-2. tx_queue_len values for different device types

Device type tx_queue_len
Ethernet 1,000
Token Ring 100

EtherChannel 100

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

Device type tx_queue_len
Fibre Channel 100
FDDI 100
TEQL (true link equalizer)E 100
ISDN 30
HIPPI 25
PLIP 10
SLIP 10
AX25 10
EQL (Equalizer load balancer for serial network interfaces) 5
Generic PPP 3
Bonding 0
Loopback 0
Bridge 0
VLAN 0

aTEQL is one of the queuing disciplines you can configure with Traffic Control (the QoS layer).

Depending on the queuing disciplinethe strategy used to queue incoming and outgoing packetsin use, tx_queue_len may or
may not be used. It is usually used when the queue type is FIFO (First In, First Out) or something else relatively simple.

Note that all devices with a queue length of 0 are virtual devices: they rely on the associated real devices to do any queuing
(with the exception of the loopback device, which does not need it because it is internal to the kernel and delivers all traffic
immediately).

2.2.8. Feature Specific

As we saw when describing sk_buff, a few parameters are included in the definition ohet_device only if the features they belong to have

been included in the kernel:

0 The fields are actually included only when the associated feature is part of the kernel. See, for examplepr_port.

struct divert_blk *divert

Diverter is a feature that allows you to change the source and destination addresses of the incoming packet. This makes it
possible to reroute traffic with specific characteristics specified by the configuration to a different interface or a different host.
To work properly and to make sense, diverter needs other features such as bridging. The data structure pointed to by this

field stores the parameters needed by the diverter feature. The associated kernel option is "Device drivers ; Networking

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

support i Networking options ; Frame Diverter."

struct net_bridge_port *br_port

Extra information needed when the device is configured as a bridged port. The bridging code and the Spanning Tree Protocol
(STP) are covered in . The associated kernel option is "Device drivers i Networking support Networking

options i 802.1d Ethernet Bridging."
void (*vlan_rx_register)(...)
void (*vlan_rx_add_vid)(...)

void (*vlan_rx_kill_vid)(...)

These three function pointers are used by the VLAN code to register a device as VLAN tagging capable (see
net/8021qg/vlan.c), add a VLAN to the device, and delete the VLAN from the device, respectively. The associated kernel

option is "Device drivers ; Networking support ; Networking options ; 802.1Q VLAN Support.”

int netpoll_rx

void (*poll_controller)(...)

Used by the optional Netpoll feature that is briefly mentioned in .

2.2.9. Generic

In addition to the list management fields of the net_device structure discussed earlier, a few other fields are used to manage structures

and make sure they are removed when they are not needed:

atomic_t refent

Reference count. The device cannot be unregistered until this counter has gone to zero (see .
int watchdog_timeo

struct timer_list watchdog_timer

Along with the tx_timeout variable discussed earlier, these fields implement the timer discussed in the section

imell" in Chapter 13.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

int (*poll)(...)
struct list_head poll_list
int quota

int weight

Used by the NAPI feature described in .

const struct iw_handler_def *wireless_handlers

struct iw_public_data *wireless_data

Additional parameters and function pointers used by wireless devices. See also get_wireless_stats.

struct list_head todo_list

The registration and unregistration of a network device is done in two steps. todo_list is used to handle the second one. See
-hater g

struct class_device class_dev

Used by the new generic kernel driver infrastructure.

2.2.10. Function Pointers

We saw in that the networking code makes heavy use of function pointers. The net_device data structure includes quite a few
of them. Such functions are used mainly to:

® Transmit and receive a frame

® Addor parse the link layer header on a buffer
® Change a part of the configuration

® Retrieve statistics

® |nteract with a specific feature

A few function pointers were already introduced in the previous sections when describing the fields used to accomplish a specific task.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

Here are the generic ones:

struct ethtool_ops *ethtool_ops

Painter to Iction pointers used to set or get the configuration of different device parameters. See the section
in Chapter §.

int (*init)(...)
void (*uninit)(...)
void (*destructor)(...)
int (*open)(...)

int (*stop)(...)

Used to initialize, clean up, destroy, enable, and disable a device. Not all of them are always used. See .
struct net_device_stats* (*get_stats)(...)

struct iw_statistics* (*get_wireless_stats)(...)

Some statistics collected by the device driver can be displayed with user-space applications such as ifconfig and ip, and
others are strictly used by the kernel and are discussed in the section 'Eevice Statug" earlier in this chapter. These two
methods are used to collect statistics. get_stats operates on a normal device andget_wireless_stats on a wireless device. See

also the earlier section "Btatisticq.”

int (*hard_start_xmit)(...)

Used to transmit a frame. See .

int (*hard_header)(...)

int (*rebuild_header)(...)

int (*hard_header_cache)(...)

void (*header_cache_update)(...)

his document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

int (*hard_header_parse)(...)

int (*neigh_setup)(...)

,%e neighboring layer. See the sections "k/lethods Provided by the Device Drivell and 'l\leiqhbor Initializatiorl" in
Chapter 21.

int (*do_ioctl)(...)

ioctl is the system call used to issue commands to devices (se). This method is called to process some of theioctl
commands (see ‘ .

void (*set_multicast_list)(...)

We have already seen in the section "Link Layer Multicas{' that mc_list and mc_count are used to manage the list of L2

multicast addresses. This method is used to ask the device driver to configure the device to listen to those addresses. Usually
it is not called directly, but through wrappers such as dev_mc_upload or its lockless version, __dev_mc_upload. When a
device cannot install a list of multicast addresses, it simply enables all of them.

int (*set_mac_address)(...)

Changes the device MAC address. When the device does not provide this capability (as in the case of Bridge virtual devices),
it is set to NULL.

int (*set_config)(...)

Configures driver parameters, such as the hardware parameters irq, io_addr, andif_port. Higher-layer parameters (such as
protocol addresses) are handled by do_ioctl. Not many devices use this method, especially among the new devices that are

better able to implement probe functions. A good example with some documentation can be found insis900_set_config in
drivers/net/sis900.c.

int (*change_mtu)(...)

Changes the device MTU (see the description of mtu in the earlier section, “). Changing this field has no effect
on the device driver but simply forces the kernel software to respect the new MTU and to handle fragmentation accordingly.

void (*tx_timeout)(...)

The method invoked at the expiration of the watchdog timer, which determines whether a transmission is taking a

sr:/iwsjugmi tim ete. The watchdog timer is not even started unless this method is defined. See the section
"Watchdog timey" in Chapter 11 for more information.

int (*accept_fastpath)(...)

Fast switching (also called FASTROUTE) was a kernel feature that allowed device drivers to route incoming traffic during

interrupt context using a small cache (bypassing all the software layers). Fast switching is no longer supported, starting with
the 2.6.8 kernel. This method was used to test whether the fast-switching feature could be used on the device.

file:///C:/DOCUME~1/%B9%DA%B9%AE%B1%B9/LOCALS~1/Temp/Oreilly,%20Understanding%20Linux%20Network%20Internals%20(2005)%20Bbl%20Lotb.chm/0596002556/9961536.html
file:///C:/DOCUME~1/%B9%DA%B9%AE%B1%B9/LOCALS~1/Temp/Oreilly,%20Understanding%20Linux%20Network%20Internals%20(2005)%20Bbl%20Lotb.chm/0596002556/9961536.html

MNEXT B

|Vhis document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

=2 wEXT

2.3. Files Mentioned in This Chapter

shows the main files referenced in this chapter. The missing ones will be introduced in upcoming chapters.

Figure 2-11. Files referenced in this chapter

Root
{usually fusr/src/linux)
| — T T T
Documentation include kernal mm drivers net
—f— time.c slabc —— 4=
limux dma.c net core
ith 355 skbuff.c
if packet.h tulip.c
if_etherh syse00.c
skbuffh
netdevice.h
slabh
if_arp.h

=2 wExT

file:///C:/DOCUME~1/%B9%DA%B9%AE%B1%B9/LOCALS~1/Temp/Oreilly,%20Understanding%20Linux%20Network%20Internals%20(2005)%20Bbl%20Lotb.chm/0596002556/9961536.html

his document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

=2 wEXT

Chapter 3. User-Space-to-Kernel Interface

In this chapter, I'll briefly introduce the main mechanisms that user-space applications can use to communicate with the kernel or read
information exported by it. We will not look at the details of their implementations, because each mechanism would deserve a chapter of
its own. The purpose of this chapter is to give you enough pointers to the code and to external documentation so that you can further
investigate the topic if interested. For example, with this chapter, you have the information you need to find how and where a given
directory is added to /proc, kernel handler which processes a givenioctl command, and what functions are provided by Netlink, currently
the preferred interface for user-space network configuration.

This chapter focuses only on the mechanisms that | will often mention in the book when talking about the interface between the
user-space configuration commands such as ifconfig and route and the kernel handlers that apply the requested configurations. For an
analysis of the generic messaging systems available for intrakernel communication as well as kernel-to-user-space communication,
please refer to Understanding the Linux Kernel (O'Reilly).

The discussion of each feature in this book ends with a set of sections that show how user-space configuration tools and the kernel
communicate. The information in this chapter can help you understand those sections better.

e prey | NEXT B

file:///C:/DOCUME~1/%B9%DA%B9%AE%B1%B9/LOCALS~1/Temp/Oreilly,%20Understanding%20Linux%20Network%20Internals%20(2005)%20Bbl%20Lotb.chm/0596002556/9961536.html

NEXT B

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

3.1. Overview

The kernel exports internal information to user space via different interfaces. Besides the classic set of system calls the application
programmer can use to ask for specific information, there are three special interfaces, two of which are virtual filesystems:

procfs (/proc filesystem)

This is a virtual filesystem, usually mounted in /proc, that allows the kernel to export internal information to user space in the
form of files. The files don't actually exist on disk, but they can be read through cat or more and written to with the > shell
redirector; they even can be assigned permission like real files. The components of the kernel that create these files can
therefore say who can read from or write to any file. Directories cannot be written (i.e., no user can add or remove a file or a
directory to or from any directory in /proc).

The default kernel that comes with most (if not all) Linux distributions includes support for procfs. It cannot be compiled as a

module. The associated kernel option from the configuration menu is "Filesystems Pseudo filesystems ; Iproc
file system support.”

sysctl (/proc/sys directory)

This interface allows user space to read and modify the value of kernel variables. You cannot use it for every kernel variable:
the kernel has to explicitly say what variables are visible through this interface. From user space, you can access the
variables exported by sysctl in two ways. One is thesysctl system call (seeman sysctl) and the other one isprocfs. When the
kernel has support for procfs, it adds a special directory (proc/sys) to /proc that includes a file for each kernel variable
exported by sysctl.

The sysctl command that comes with theprocps package can be used to configure variables exported with thesysctl interface.
The command talks to the kernel by writing to /proc/sys.

The default kernel that comes with most (if not all) Linux distributions includes support for sysctl. It cannot be compiled as a

module. The associated kernel option from the configuration menu is "General setup Sysctl support.”

sysfs (/sys filesystem)

procfs and sysctl have been abused over the years, and this has led to the introduction of a newer filesystemsysfs. sysfs
exports plenty of information in a very clean and organized way. You can expect part of the information currently exported
with sysctl to migrate to sysfs.

sysfs is available only with kernels starting at 2.6. The default kernel that comes with most (if not all) Linux distributions
includes support for sysfs. It cannot be compiled as a module. The associated kernel option from the configuration menu is

"Filesystems i Pseudo filesystems i sysfs filesystem support (NEW)." The option is visible only if you first enable

the following option: "General setup Configure standard kernel features (for small systems)."

You can find a detailed analysis of sysfs in the latest edition of the O'Reilly bookLinux Device Drivers. In , we will
see how the bridging code uses it.

You also use the following interfaces to send commands to the kernel, either to configure something or to dump the configuration of
something else:

his document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

ioctl system call

The ioctl (input/output control) system call operates on a file and is usually used to implement operations needed by special
devices that are not provided by the standard filesystem calls. ioctl can be passed a socket descriptor too, as returned by the
socket system call, and that is how it is used by the networking code. This interface is used by old-generation commands like
ifconfig and route, among others.

Netlink socket

This is the newest and preferred mechanism for networking applications to communicate with the kernel. Most commands in
the IPROUTE2 package use it. Netlink represents for Linux what the routing socket represents in the BSD world.

Most network kernel features can be configured using either Netlink or ioctl interfaces, because the kernel supports both the newer
configuration tools (IPROUTEZ2) and the legacy ones (ifconfig, route, etc.).

=2 wEXT

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

=2 wEXT

3.2. procfs Versus sysctl

Both procfs and sysctl export kernel-internal information, but procfs mainly exports read-only data, while mostsysctl information is
writable too (but only by the superuser).

As far as exporting read-only data, the choice between procfs and sysctl depends on how much information is supposed to be exported.
Files associated with a simple kernel variable or data structure are exported with sysctl. The others, which are associated with more
complex data structures and may need special formatting, are exported with procfs. Examples of the latter category are caches and
statistics.

3.2.1. procfs

Most networking features register one or more files in /proc when they get initialized, either at boot time or at module load time. When a
user reads the file, it causes the kernel to indirectly run a set of kernel functions that return some kind of output. The files registered by
the networking code are located in /proc/net.

Directories in /proc can be created with proc_mkdir. Files in/proc/net can be registered and unregistered withproc_net_fops_create and
proc_net_remove, defined ininclude/linux/proc_fs.h. These two routines are wrappers around the generic APIxreate_proc_entry and
remove_proc_entry. In particular, proc_net_fops_create takes care of creating the file (withproc_net_create) and initializing its file
operation handlers. Let's look at an example.

This is how the ARP protocol registers its arp file in/proc/net:

static struct file_operations arp_seq_fops = {
.owner =THIS_MODULE,
.open = arp_seq_open,
.read = seq_read,
llseek =seq_lseek,
.release = seq_release_private,

static int _ _init arp_proc_init(void)
{
if (proc_net_fops_create("arp”, S_IRUGO, &arp_seq_fops))
return -ENOMEM;
return O;

The three input parameters to proc_net_fops_create tell you that the filename isarp, it must be assigned read permission only, and the
set of file operation handlers is arp_seq_ops. When a user reads the file, the use of thdile_operations data structure allowsprocfs to
return data to the user in chunks. This is useful when the data consists of a collection of objects of the same type. For example, the ARP
cache is returned one entry at a time, the routing table is returned one route at a time, etc.

The routine to which open is initialized (arp_seq_open in the previous example) makes another important initialization: it registers an
array of function pointers that includes all the routines procfs uses to walk through the data that is to be returned to the user: one routine

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

to start the dump, another to advance one item, and another one to dump one item. Those routines internally take care of saving the
necessary context information (in this example, how much of the ARP cache has been dumped already) needed to remember what point
the dump is at and to resume it from the right position.

static struct seq_operations arp_seq_ops = {
.start = clip_seq_start,
.next = neigh_seq_next,
.stop = neigh_seq_stop,
.show =clip_seq_show,

static int arp_seq_open(struct inode *inode, struct file *file)

{

rc = seq_open(file, &arp_seq_ops);

3.2.2. sysctl: Directory /proc/sys

What the user sees as a file somewhere under /proc/sys is actually a kernel variable. For each variable, the kernel can define:

® \Where to place it in /proc/sys. Variables associated with the same kernel component or feature are usually located within a
common directory. For instance, in /proc/sys/net/ipv4 you can find IPv4-related files.

® \what name to give it. Most of the time, the files are simply given the same name as the associated kernel variables, but
sometimes their name is changed to be a little more user friendly.

® The permission. A file may, for instance, be readable by anyone but modified only by the superuser.

The content of the variables exported in /proc/sys can be read or written by accessing the associated file (provided that you have the
necessary permissions), or more directly with the sysctl system call.

Some directories and files are defined statically at boot time; others are added at runtime. Examples of events that lead to the runtime
creation of directories or files are:

® \When a kernel module implements a new feature or a protocol is loaded or unloaded.

® \When a new network device is registered or unregistered. There are configuration parameters (and tiﬂ;proclsys)

that have one instance per device. Fop_example. the directories /proc/sys/net/ipv4/conf (discussed in[Chapter 3¢) and
Iproc/sys/net/ipv4/neigh (discussed in have one subdirectory for each registered network device.

Both files and directories in /proc/sys are defined withctl_table structures. ctl_table structures are registered and unregistered with the
register_sysctl_table and unregister_sysctl_table functions, defined inkernel/sysctl.c.

Here are the key fields of ctl_data:

const char *procname

Filename that will be used in /proc/sys.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

int maxlen

Size of the kernel variable that is exported.

mode_t mode

Permissions to be assigned to the associated file or directory in /proc/sys.

ctl_table *child

Used to build the parent-child relationships between directories and files. We will see examples later in this section.

proc_handler

Function that performs the read or write operation when you read from or write to a file in /proc/sys. All ctl_instances
associated with files (i.e., the leaves of the tree) must have proc_handler initialized. Directories are assigned a default one by
the kernel.

strategy
Function that can optionally be initialized to a routine that performs additional formatting of data before displaying or storing it.
It is invoked when the file in /proc/sys is accessed with the sysctl system call.

extral

extra2

Two optional parameters commonly used to define the minimum and maximum values for the variable. I'll often refer to these
two parameters as the min/max parameters.

Depending on what kind of variable is associated with a file, proc_handler and strategy are initialized differently. For examp
-

e,
‘andg list

some of the routines that can be used to initialize proc_handler and strategy, respectively. All routines are defined and well commented in

proc_dointvec is the proc_handler routine to use when the kernel variable consists of one or more integer values

kernel/sysctl.c.

Table 3-1. Routines for initializing proc_handler

Function Description
proc_dostring Reads/writes a string.
proc_dointvec Reads/writes an array of one or more integers.

. . Similar to proc_dointvec, but makes sure the input falls within a min/max range. Values that do
proc_dointvec_minmax

not respect the range are rejected.

proc_dointvec, jiffies Reads/writes an array of integers. The kernel variable is expressed in jiffies but is converted

into seconds before being returned to the user, and vice versa.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

Function Description

. . Reads/writes an array of integers. The kernel variable is expressed injiffies but is converted
proc_dointvec_ms_jiffies
into milliseconds before being returned to the user, and vice versa.

proc_doulongvec_minmax Similar to proc_dointvec_minmax, but the values are longs rather than integers.

Reads/writes an array of longs. The kernel variable is expressed in jiffies but is converted into
proc_doulongvec_ms_jiffies_minmax | mijlliseconds before being returned to the user, and vice versa. The kernel variable must be
assigned values within a min/max range.

Table 3-2. Routines for initializing strategy

Function Description

sysctl_string Reads/writes a string

sysctl_intvec Reads/writes an array of integers and makes sure that they respect the min/max range
sysctl_jiffies Reads/writes a value expressed injiffies and converts it into seconds

sysctl_ms_jiffies Reads/writes a value expressed injiffies and converts it into milliseconds

It is not uncommon for a strategy or proc_handler function to be initialized to a routine that is a wrapper around one of the routines in
[Fables 3-1] or B-4. The wrapper may be necessary to add some kind of logic or sanity check that depends on the meaning of the
associated kernel variable. An example is in the next section.

Anytime we look at the procfs interface for the configuration of any of the features covered in this book, | will always refer to the
proc_handler function for simplicity.

3.2.2.1. Examples of ctl_table initialization

Let's first see what the initialization of a ctl_table structure for a file and a directory looks like, and then how they are actually used.

This is the initialization of the ctl_table instance used for the/proc/sys/net/ipv4/conf/default/forwarding file, defined innet/ipv4/devinet.c. Its

use is described in .

{
.ct_name = NET_IPV4_CONF_FORWARDING,
.procname = "forwarding",
.data = &ipv4_devconf.forwarding,
.maxlen = sizeof(int),
.mode = 0644,

.proc_handler = &devinet_sysctl_forward,

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

From this snapshot, you can't really tell where in /proc/sys the file will be placed. We will see in a moment how you can find that
information. What you can tell from the code is that the file is called forwarding, the kernel variable whose value is exported with the
forwarding file is ipv4_devconf.forwarding (a field within a more complex structure), the parameter is declared as an integer, the
permissions on the file are 0644 (i.e., read permission for anyone, write permission for the superuser only), and the proc_handler routine
is initialized to devinet_sysctl_forward.

Now let's see an example of a declaration of a directory from kernel/sysctl.c:

{
.ctl_name =CTL_NET,
.procname = "net",
.mode = 0555,
.child = net_table,

}

This is the ctl_table instance that defines the directory /proc/sys/net. No proc_handler is needed this time (the kernel provides a default
one that suits the needs of all directories), but there is a child field instead. child is a pointer to anotherctl_table instance, which is nothing
but the head element of a list of ctl_table instances (there will be one instance for each file or subdirectory created within theet
directory).

3.2.2.2. Registering afile in /proc/sys

We saw that a file can be registered to and unregistered from /proc/sys with register_sysctl_table and unregister_sysctl_table,
respectively. The registration function, well documented in the source code, requires two input parameters:

® A pointer to a ctl_table instance

® A flag that tells where to put the new element in the list of ctl_table instances located in the same directory: at the head (1) or
at the tail (0)

Note that the input to register_sysctl_table does not include a reference to the location in thdproc/sys filesystem where the inputctl_table
is added. The reason is that all insertions are made into the /proc/sys directory. If you wanted to register a file into a subdirectory of
Iproc/sys, you would need to provide the full path by building a tree (by means of multipletl_table instances linked with the child field) and
pass to register_sysctl_table the ctl_table instance that represents the root of the tree you have built. When any of the nodes of the tree
do not exist already, they are created.

Let's take two examples, starting with a simpler one. This piece of code from drivers/scsi/scsi_sysctl.c shows how the file logging_level is
defined and placed in the /proc/sys/dev/scsi/ directory:

static ctl_table scsi_table[] = {
{.ct_name =DEV_SCSI_LOGGING_LEVEL,

.procname = "logging_level",
.data = &scsi_logging_level,
.maxlen = sizeof(scsi_logging_level),
.mode = 0644,
.proc_handler = &proc_dointvec },

{1

3

static ctl_table scsi_dir_table[] = {
{.ct_name =DEV_SCSI,
.prochame = "scsi",
.mode = 0555,

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

.child

{}
k

= scsi_table },

static ctl_table scsi_root_table[] = {
{.ct_name =CTL_DEV,

.procname = "dev",
.mode = 0555,
.child = scsi_dir_table },
{}
h
int _ _init scsi_init_sysctl(void)
{
scsi_table_header = register_sysctl_table(scsi_root_table, 1) :
}
Note that register_sysctl_table is passed scsi_root_table, which is the root of thectl_table tree defined in the code. The result is shown in
Figure 3-1.

o _:I:_ e scsi_dir_table

I o b , procname=logging_level j,._

Figure 3-1. Registration of the /proc/sys/dev/scsi/logging_level file

| scsi_root_table
proc procname=dev j |

—_—t LChild _l

I
I -
| : PrOCRame=scsl |IlI — instances of
: «hild — struct ctl_table
scsi : |
i
]
i
i

scsi_table

Note also that if later you wanted to add another file to the same directorysay, abcyou would need to define a similar tree (i.e., the same
two ctl_table instances for the dev and scsi directories, plus one new ctl_table instance for the new fileabc).

What developers sometimes do to simplify the addition of new files to an already existing directory is to define a template and reuse it
any time a new file is to be added to the same directory. The good part about using templates is that thectl_table instances that are used

to navigate the directories (e.g., scsi_root_table and scsi_dir_table in the previous example) need to be initialized only once: after that,

every time you add a new file you will initialize only the leaf nodes (i.e., the real files). See, for example,_how the neighboring subsystem
defines neigh_sysctl_template and uses it withneigh_sysctl_register in net/core/neighbour.c (see also [Chapter 29).

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

3.2.2.3. Core networking files and directories

shows the main directories used by the networking code inproc/sys. For each one, it tells you in what chapter its files are
described.

Figure 3-2. Core directories in /proc/sys/net

bridge ipvd core
(Chapter 17) (Chapter 23) (Chapter 12}
|

route neigh conf
{Chapter 36) (Chapter 29) (Chapter 36)

Let's see, based on what we saw in the previous section, how the tree rooted imet is defined and registered at boot time.

For each directory in , and for each file in those directories, there is an instance o€tl_table. shows where the

ctl_table instances of most of the directories in are defined, and what the child-parent relationships are. Not all directories have

been included to make the figure more readable.

The three boxes in show three examples of ctl_table initializations. Note that:

® The netdev_max_backlog file is assigned aproc_handler routine but not astrategy routine. Because netdev_max_backlog is
an integer, the input from the user is read with proc_dointvec.

® The min_delay file is assigned both theproc_handler and strategy routines. Because the kernel variableip_rt_min_delay is
expressed in jiffies but the user input and output are in seconds, the two routines take care of converting seconds fiffies.

® The ip_local_port_range file is an interesting case. It is used to allow the user to configure a range, defined as two values.
The range must respect a minimum and a maximum value. Therefore, the strategy and proc_handler routines selected are
able to manage an array of integer values (two of them in this case). These values, extral and exTRa2, express the range
and are used to make sure that the input from the user respects it.

NEXT B

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

K==1 wExT

3.3.ioctl

At the top of , you can see how anioct call is issued. Let's see an example involvingifconfig.

We said earlier that the ifconfig command uses iocti to communicate with the kernel. For example, when the system administrator types a
command like ifconfig ethO mtu 1250 to change the MTU of the interfaceeth0, ifconfig opens a socket, initializes a local data structure with
the information received from the system administrator (data in the example), and passes it to the kernel with anoct call. siocsiFvtu is the
command identifier.

struct ifreq data;

fd = socket(PF_INET, SOCK_DGRAM, 0);
< ...Initialize "data" ...>

err = joctl(fd, SIOCSIFMTU, &data);

ioctt commands are processed by the kernel in different places shows how the most common ioctt cOmmands used by the
networking code are dispatched by sock_ioctt and routed to the right function handler. We will not see howsock_ioctl is invoked or how transport
protocols like UDP and TCP register their handlers. If you desire to dig into this part of the code, you can use the figure as a starting point.
For the routines that we cover in this book, the figure provides a reference to the right chapter.

Figure 3-3. Creation of the core directories in /proc/sys/net

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

kermel/sysctl.c
root_table

e procname= "nel” 5%
Lhild= net_table ----

netfsysctl_net.c

net_table =----

Jprocname="core” e promame="ipv4"
«child= core_table - - -, «hild=ipvd_table - - - -
net/core/sysctl_net_core net/fovd/sysctl_net.c '
core_table -=---- ipvd_table =----'

l I ! |

i procname="route" . .
hild=ipv4_route_table - -

procmame ="netdev_max_hacklog")
Mata =&netdev_max_backlog :
maxlen =sizeaflint) [
.mode =(ddiie., -rw-i-r-) nelipvd/route.c :
proc_handler =&proc_dointve ipvd_route_table - -

procname ="min_delay”

data =Hip_rt_min_delay

maxlen =sizeof{int)

.mode =064Hi.e., -rw-r-r-)

proc_handler =&proc_dointvec_jiffies

strategy =8&sysctel_jiffies
procname ="ip_local_port_range”
Adata =Rsysctel_local_port_range
maxlen =sizeof{sysct]_local_port_range}
.mode =0644(i.e., -rw-1-r-)
proc_handler =&proc_dointvec_minmax
Atrategy =&sysctl_invec
£xlra =ip_local_port_range_min
extral =ip_local_port_range_max

The name of the ioct commands in the figure is parsed (split into components) for your convenience. For example, the command used to
add a route to a routing table, siocapprr, is shown as SIOC ADD RT to emphasize the two interesting components: ADD, which says you
are adding something, and RT, which says a route is what you are adding. Most commands follow this syntax. Often, when a given object
type can be both read and written, you have one more component in the command name: G for get or S for set. The two commands that
add and remove an IP address from an interface, sioceiFapbbr and siocsiFabpr, are an example.siocsirmtu, which we saw in the earlierifconfig

example, sets (S) the interface's (IF) maximum transport unit (MTU). siocsirmTu, Which is taken care of bydev_ioct, does not appear infigure

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

Figure 3-4. Dispatching ioctl commands

sockfd = socket{family, type, protocol);
err = loctl{sockld, command, .);

User space
Kernel !
SIOC G IFBR ¥
SIOCSIFER sock_ioctl From SI0C DEV PRIVATE to SI0C DEV PRIVATE+15
SI0CBR ADD BR and
SIOC BR DEL BR ioctl From SIOC IW FIRST to SI0C IW LAST
command
SIOCGIFVLAN / \SIDCG IF DIVERT SIOC ADD DLCI
SIOC S IFVLAN SI0C S IF DIVERT SIOC S DEL DLCI
br_ioctl_hook br_vlan_hook divert_ioctl did_ioctl_hook O
(Chapter 17) Anything else
) {sack - ops -> ioctl)
Socket
| family
ol l PF_INET
Socket
| type
y SOCK_STREAM « -
SOCK_DGRAM &
SOCK_RAW |
v
inet_ioctl
ioctl Anything else
S50 GIF ADDR command
SI0C S IF ADDR
SIOC D ARP SIOCADDRT
SI0C G IF BR ADDR SI0C G ARP SIQC DEL RT
SIOCS IFBR ADDR SIOCS ARP SIQC BT M5G
10C G IF NETMASK IPPROTO_TCP ?;EEE;I IPPROTO_LIDP
SH0C S IF NETMASK p ‘
SIOC GIF DST ADDR pp ol Yy, st ioc]
SIOCS IFDST ADDR Is the mmmdi;nd ——— [sthe com 21da?nd
supported? supported?
SI0CS IF P FLAGS e ness
SH0C GIF P FLAGS [tes Yes)
Let the protocol Let the protocol
SI0CS IF FLAGS process the process the
command comrmand
v L) Y Q L
devinet_ioct! arp_ioctl i rt ioctl dev_ioctl
{Chapter 29) Ehapta 36)

his document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

Networking ioct cOmmands are listed ininclude/linux/sockios.h. Device drivers can define new (private) commands with codes in the range
siocpevPRIVATE through siocpeverivaTe+15. See, for example, how the four private commands used with (virtual) tunnel devices are defined in
include/linux/if_tunnel.h. The use of private iocct coOmmands is deprecated and discouraged, however.

Protocols can also define private commands in the rangesiocprotorrivaTE through siocproToPRIVATE+15.

K==1 wExT

file:///C:/DOCUME~1/%B9%DA%B9%AE%B1%B9/LOCALS~1/Temp/Oreilly,%20Understanding%20Linux%20Network%20Internals%20(2005)%20Bbl%20Lotb.chm/0596002556/9961536.html

his document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

=2 wEXT

3.4. Netlink

The Netlink socket, well described in RFC 3549, represents the preferred interface between user space and kernel for IP networking
configuration. Netlink can also be used as an intrakernel messaging system as well as between multiple user-space processes.

With Netlink sockets you can use the standard socket APIs to open, close, transmit on, and receive from a socket. Let's quickly review
the prototype of the socket system call:

int socket(int domain, int type, int protocol)

For details on what the three arguments are initialized to with TCP/IP sockets (i.e., domain PF_INET), you can use the man socket
command.

As with any other socket, when you open a Netlink socket, you need to provide the domain, type, and protocol arguments. Netlink uses
the new PF_NETLINK protocol family (domain), supports only the SOCK_DGRAM type, and defines several protocols, each one used for
a different component (or a set of components) of the networking stack. For example, the NETLINK_ROUTE protocol is used for most
networking features, such as routing and neighboring protocols, and NETLINK_FIREWALL is used for the firewall (Netfilter). The Netlink
protocols are listed in the NETLINK_XXX enumeration list ininclude/linux/netlink.h.

With Netlink sockets, endpoints are usually identified by the ID of the process that opened the sockets (PID), where the special value 0
identifies the kernel. Among Netlink's features is the ability to send both unicast and multicast messages: the destination endpoint
address can be a PID, a multicast group ID, or a combination of the two. The kernel defines Netlink multicast groups for the purpose of
sending out notifications about particular kinds of events, and user programs can register to those groups if they are interested in them.
The groups are listed in the enumeration list RTMGRP_XXX in include/linux/rtnetlink.h. Among them are theRTMGRP_IPV4_ROUTE
and RTMGRP_NEIGH groups, used respectively for notifications regarding changes to the routing tables and to the L3-to-L2 address
mappings. We will see how these two groups are used in Parts VI and VII.

Another interesting feature is the ability to send both positive and negative acknowledgments.

One of the advantages of Netlink over other user-kernel interfaces such asioctl is that the kernel can initiate a transmission instead of
just returning information in answer to user-space requests.

=2 wEXT

his document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

=2 wEXT

3.5. Serializing Configuration Changes

Any time you apply a configuration change, the handler that takes care of it inside the kernel acquires a semaphore (rtnl_sem) that
ensures exclusive access to the data structures that store the networking configuration. This is true regardless of whether the
configuration is applied via ioctl or Netlink.

=2 wEXT

file:///C:/DOCUME~1/%B9%DA%B9%AE%B1%B9/LOCALS~1/Temp/Oreilly,%20Understanding%20Linux%20Network%20Internals%20(2005)%20Bbl%20Lotb.chm/0596002556/9961536.html

his document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

=2 wEXT

Part Il: System Initialization

In this part of the book, we will see how and when network devices are initialized and registered with the kernel. I'l
put special emphasis on Peripheral Component Interconnect (PCI) devices, both because they are increasingly
common and because they have special requirements.

Many tasks related to the network interface card (NIC) have to be accomplished before getting a network up and
running. First, key kernel components need to be initialized. Then device drivers must initialize and register all the
devices they are responsible for and allocate the resources the kernel will use to communicate with them (IRQ, 1/0
ports, etc.).

It's important to distinguish between two kinds of registration. First, when a device is discovered, it is registered
with the kernel as a generic device. Second, an NIC device is registered with the network stack as a network
device. For example, a PCI Ethernet card is registered both as a generic PCI device with the PCI layer, and as an

Ethernet card (where the device gets a | Ich as eth0) with the network stack. The first kind of registration is
covered in Chapter § and the second in‘.

Here is what is covered in each chapter:

Notification Chains

The mechanism that kernel components use to notify each other about specific events.

Network Device Initialization

How network devices are initialized.

The PCI Layer and Network Interface Cards

How PCI device drivers register with the kernel, and how PCI devices are identified and associated
with their drivers.

Kernel Infrastructure for Component Initialization

The kernel mechanism that ensures that the necessary initialization functions are invoked at boot time
or module load time. We'll learn how initialization routines can be tagged with special macros to
optimize memory usage and therefore reduce the size of the kernel image. We will also see how the
kernel can be passed boot options and how these can be used to configure NICs.

Device Registration and Initialization

How devices are registered with the kernel and initialized.

NEXT B

his document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

=2 wEXT

Chapter 4. Notification Chains

The kernel's many subsystems are heavily interdependent, so an event detected or generated by one of them could be of interest to
others. To fulfill the need for interaction, Linux uses so-called notification chains .

In this chapter, we will see:

® jow notification chains are declared and what chains are defined by the networking code
® How a kernel subsystem can register to a notification chain

® iow akemnel subsystem generates a notification on a chain

Note that notification chains are used only between kernel subsystems. Notifications between kernel and user space rely on other
mechanisms, such as those introduced in

" prey wEXT

file:///C:/DOCUME~1/%B9%DA%B9%AE%B1%B9/LOCALS~1/Temp/Oreilly,%20Understanding%20Linux%20Network%20Internals%20(2005)%20Bbl%20Lotb.chm/0596002556/9961536.html

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

K==1 wexT

4.1. Reasons for Notification Chains

Suppose we had the Linux router in with four interfaces. The figure shows the relationship between the router and five
networks, along with a simplified version of its routing table.

Let's look at some examples of the topology in . Network A is directly connected to RT on interfaceethO, and network F is not
directly connected to RT, but RT's eth3 is directly connected to another router that has an interface with address IP1, and that second
router knows how to reach network F. The other cases are similar. In short, some networks are directly connected and others require the
help of one or more additional routers to be reached.

For a detailed description of how the routing code handles this situation, refer to . In this chapter, we will concentrate on the role of
notification chains. Suppose that interface eth3 went down, due to a break in the network, an administrative command (such agconfig eth3
down) or a hardware failure. Networks D, E, and F would become unreachable by RT (and by systems in A, B, and C relying on RT for
their connections) and should be removed from the routing table. Who is going to tell the routing subsystem about that interface failure? A
notification chain.

Figure 4-1. Example of Linux router

Network F Network A
a Network | Gateway | Interface
u PN, ethd Wil peors A TR
' N =4 B none ethi
Metwaork E eih2 C none eth
D 1P gth3
E none eth3
Network D Network C F IP eth3
RT's routing table

shows a slightly more colicated example where the routing subsystem interacts with dynamic routing protocolsprotocols that

*
can adjust the routing table or tables™ to the network topology and therefore cope with interface failures when the topology allows it (i.e.,

when there are redundant paths).

Mitis possible to have multiple routing tables at the same time. We will cover this feature .

his document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

Figure 4-2. Example of a Linux router with dynamic routing protocols

Network F L1
P2 Network A
ethi
1)
T eh3 g eth!
oy
‘Heman:E |Elh2

Z

RT's routing table

Network Gateway | Interface

A none ethi)

B nane ethl

[nane eth?

] [P eth3

[S— T

F IP1 ethl

F P2 ethl)

In , network F could be reached by RT by passing through both network A and network E. E was chosen initially because of its

i

smaller cost,

but now that E is no longer reachable, the routing table should update the route for network F to go through network A.

The basis for such a decision could include local host events, such as device registration and unregistration, as well as complex factors in

router configuration and the routing protocols used. In any case, the routing subsystem that manages the tables must be informed of the

relevant information by some other subsystem, demonstrating the need for notification chains.

[1-] .

The cost of a link is one of the metrics that routing protocols can use to compare links and choose among them.
See Chapter 3Q.

his document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

=2 wEXT

4.2. Overview

A notification chain is simply a list of functions to execute when a given event occurs. Each function lets one other subsystem know
about an event that occurred within, or was detected by, the subsystem calling the function.

Thus, for each natification chain there is a passive side (the notified) and an active side (the notifier), as in the so-called
publish-and-subscribe model:

® The notified are the subsystems that ask to be notified about the event and that provide a callback function to invoke.

® The notifier is the subsystem that experiences an event and calls the callback function.

The functions executed are chosen by the notified subsystems. It is never up to the owner of the chain (the subsystem that generates the
notifications) to decide what functions to execute. The owner simply defines the list; any kernel subsystem can register a callback
function with that chain to receive the notification.

The use of notification chains makes the source code easier to write and maintain. Imagine how a generic routine might notify external
subsystems about an event without using notification chains:

If (subsystem_X_enabled) {
do_something_1

}
if (subsystem_Y_enabled) {

do_something_2

}
If (subsystem_Z_enabled) {

do_something_3

In other words, a conditional clause would have to be included for every possible subsystem that might be interested in an event, and the
maintainer of this subsystem would have to add a new clause every time somebody else added a subsystem to the kernel.

No subsystem maintainer is expected to keep track of every subsystem added to the kernel. However, each subsystem maintainer
should know:

® The kinds of events from other subsystems he is interested in

® The kinds of events he knows about and that other subsystems may be interested in

Thus, notification chains allow each subsystem to share the occurrence of an event with others, without having to know what the others
are and why they are interested.

" prey wEXT

his document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

e prey | NEXT

4.3. Defining a Chain

The elements of the notification chain's list are of typenatifier_block, whose definition is the following:

struct notifier_block

{

int (*notifier_call)(struct notifier_block *self, unsigned long, void *);
struct notifier_block *next;
int priority;

h

notifier_call is the function to execute, next is used to link together the elements of the list, andpriority represents the priority of the
function. Functions with higher priority are executed first. But in practice, almost all registrations leave the priority out of the notifier_block

definition, which means it gets the default value of 0 and execution order ends up depenﬁm@mﬁgﬂﬂmﬁﬂ order (i.e.,itisa
semirandom order). The return values of notifier_call are listed in the upcoming section, Notifying Events on a Chain"

Common names fornotifier_block instances are xxx_chain, xxx_notifier_chain, and xxx_notifier_list.

" prey | NEXT

file:///C:/DOCUME~1/%B9%DA%B9%AE%B1%B9/LOCALS~1/Temp/Oreilly,%20Understanding%20Linux%20Network%20Internals%20(2005)%20Bbl%20Lotb.chm/0596002556/9961536.html

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

=2 wEXT

4.4. Registering with a Chain

When a kernel component is interested in the events of a given notification chain, it can register it with the general function
notifier_chain_register. The kernel also provides a set of wrappers aroundnotifier_chain_register, some of which are shown i

lists the main APIs and the associated wrappers used to register and unregister to the three chainsmetaddr_chain ,
inetéaddr_chain , and netdev_chain.

Table 4-1. Main functions and wrappers for a few chains

Operation Function prototype
Registration int notifier_chain_register(struct notifier_block **list, struct notifier_block *n)
Wrappers
inetaddr_chain register_inetaddr_notifier
inetéaddr_chain register_inet6addr_notifier
netdev_chain register_netdevice_notifier
Unregistration int notifier_chain_unregister(struct notifier_block **nl, struct notifier_block *n)
Wrappers
inetaddr_chain unregister_inetaddr_notifier
inetéaddr_chain unregister_inet6addr_notifier
netdev_chain unregister_netdevice_notifier
Notification int notifier_call_chain(struct notifier_block **n, unsigned long val, void *v)

For each chain, the notifier_block instances are inserted into a list, which is sorted by priority. Elements with the same priority are sorted
based on insertion time: new ones go to the tail.

Accesses to the natification chains are protected by the notifier_lock lock. The use of a single lock for all the notification chains is not a
big constraint and does not affect performance, because subsystems usually register their notifier_call functions only at boot time or at
module load time, and from that moment on access the lists in a read-only manner (that is, shared).

Because the notifier_chain_register function is called to insert callbacks into all lists, it requires that the list be specified as an input
parameter. However, this function is rarely called directly; generic wrappers are used instead.

int notifier_chain_register(struct notifier_block **list, struct notifier_block *n)

{
write_lock(¬ifier_lock);
while(*list)

his document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

if(n->priority > (*list)->priority)
break;

list= &((*list)->next);
}
n->next = *list;
*list=n;
write_unlock(¬ifier_lock);
return O;

=2 NEXT

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

4.5. Notifying Events on a Chain

NEXT B

Notifications are generated with notifier_call_chain, defined inkernel/sys.c. This function simply invokes, in order of priority, all the

callback routines registered against the chain. Note that callback routines are executed in the context of the process that calls

notifier_call_chain. A callback routine could, however, be implemented so that it queues the notification somewhere and wakes up a

process that will look at it.

int notifier_call_chain(struct notifier_block **n, unsigned long val, void *v)

{

This is the meaning of its three input parameters:

int ret = NOTIFY_DONE;
struct notifier_block *nb = *n;

while (nb)

{
ret = nb->notifier_call(nb, val, v);
if (ret & NOTIFY_STOP_MASK)

{

return ret;

}

nb = nb->next;

}

return ret;

Notification chain.

val

Event type. The chain itself identifies a class of events; val unequivocally identifies an event type (i.e. NETDEV_REGISTER).

Input parameter that can be used by the handlers registered by the various clients. This can be used in different ways under
different circumstances. For instance, when a new network device is registered with the kernel, the associated notification

uses v to identify the net_device data structure.

The callback routines called by notifier_call_chain can return any of the NOTIFY_XXX values defined ininclude/linux/notifier.h:

NOTIFY_OK

his document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

Notification was processed correctly.

NOTIFY_DONE

Not interested in the notification®

*
[l This return value is sometimes improperly used in place ofnoTiFy_ok.

NOTIFY_BAD

Something went wrong. Stop calling the callback routines for this event.

NOTIFY_STOP

Routine invoked correctly. However, no further callbacks need to be called for this event.

NOTIFY_STOP_MASK

This flag is checked by notifier_call_chain to see whether to stop invoking the callback routines, or keep going. Both
NOTIFY_BAD and NOTIFY_STOP include this flag in their definitions.

notifier_call_chain captures and returns the return value received by the last callback routine invoked. This is true regardless of whether
all the callbacks have been invoked, or one of them interrupted the loop due to a return value of NOTIFY_BAD or NOTIFY_STOP.

Note that it is possible for notifier_call_chain to be called for the same natification chain on different CPUs at the same time. It is the
responsibility of the callback functions to take care of mutual exclusion and serialization where needed.

=2 wEXT

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

=2 wEXT

4.6. Notification Chains for the Networking Subsystems

The kernel defines at least 10 different notification chains. Here we are interested in the ones that are used to signal events of particular
importance to the networking code. The main ones are:

inetaddr_chain

Sends notifications about the insertion, removal, and change of an Internet Protocol Version 4 (IPv4) address on a local
interface. describes when such naotifications are generated. Internet Protocol Version 6 (IPv6) uses a similar chain
(inetéaddr_chain).

netdev_chain

Sends notifications about the registration status of network devices. describes when such notifications are
generated.

For these chains, and others used by the networking subsystems, their purposes and uses are described in the chapter about the
relevant notifier subsystem.

The networking code can register to notifications generated by other kernel components, too. For example, some NIC device drivers
register with the reboot_notifier_list chain, which is a chain that warns when the system is about to reboot.

4.6.1. Wrappers

Most notification chains come with a set of wrappers used to register to them and unregister from them. For example, this is the wrapper
used to register to netdev_chain:

int register_netdevice_notifier(struct notifier_block *nb)

{

return notifier_chain_register(&netdev_chain, nb);

Common names for wrappers include [un]register_xxx_natifier, xxx_[un]register_notifier, and xxx_[un]register.

his document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

4.6.2. Examples

Registrations to notification chains usually take place when the interested kernel component is initialized. For example, the following
snhapshot from net/ipv4/fib_frontend.c shows ip_fib_init, which is the initialization routine used by the routing code that is described in the

section 'l?outinq Subsystem Initializatior]' in Chapter 3%:

static struct notifier_block fib_inetaddr_notifier = {
.notifier_call = fib_inetaddr_event,

k

static struct notifier_block fib_netdev_notifier = {
.notifier_call = fib_netdev_event,

h
void _ _init ip_fib_init(void)

register_netdevice_notifier(&fib_netdev_notifier);
register_inetaddr_notifier(&fib_inetaddr_notifier);

The routing code registers to both of the chains introduced in the earlier section, “'\Iotification Chains for the Networking Subsvstemsl'
The routing tables are affected both by changes to locally configured IP addresses and by changes to the registration status of local
devices.

=2 wExT

his document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

=2 wEXT

4.7. Tuning via /proc Filesystem

There is no file of interest in/proc as far as this chapter is concerned.

=2 wEXT

file:///C:/DOCUME~1/%B9%DA%B9%AE%B1%B9/LOCALS~1/Temp/Oreilly,%20Understanding%20Linux%20Network%20Internals%20(2005)%20Bbl%20Lotb.chm/0596002556/9961536.html

his document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

=2 wEXT

4.8. Functions and Variables Featured in This Chapter

summarizes the functions and data structures introduced in this chapter.

Table 4-2. Functions, macros, and data structures used for notification chains

Name Description

Functions and macros

notifier_chain_register +
wrappers

The first two functions register and unregister a callback handler for a notification chain. The third

notifier_chain_unregister + .) .
sends out all the notifications about events in a specific class.

wrappers

notifier_call_chain

Data structure

struct notifier_block Defines the handler for a notification. It includes the callback function to invoke.

e prey | NEXT B

|Vhis document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

4.9. Files and Directories Featured in This Chapter

lists the files referred to in this chapter.

Figure 4-3. Files related to notification chains

root
(wsually/use/sre/linux)

|
net kernel include
|
I I .
core ipvd sl linux
I I I
tev.c devinet.c notifierh

NEXT B

MNEXT B

his document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

=2 wEXT

Chapter 5. Network Device Initialization

The flexibility of modern operating systems introduces complexity into initialization . First, a device driver can be loaded as either a
module or a static component of the kernel. Furthermore, devices can be present at boot time or inserted (and removed) at runtime: the
latter type of device, called a hot-pluggable device, includes USB, PCI CardBus, IEEE 1394 (also called FireWire by Apple), and others.
We'll see how hot-plugging affects what happens in both the kernel and the user space.

In this first chapter, we will cover:

® A piece of the core networking code initialization.
® The initialization of an NIC.

® ow an NIC uses interrupts, and how IRQ handlers can be allocated and released. We will also look at how drivers can
share IRQs.

® iow the user can provide configuration parameters to device drivers loaded as modules.
® |nteraction between user space and kernel during device initialization and configuration. We will look at how the kernel can
run a user-space helper to either load the correct device driver for an NIC or apply a user-space configuration. In particular,

we will look at the Hotplug feature.

® iow virtual devices differ from real ones with regard to configuration and interaction with the kernel.

=2 wExT

file:///C:/DOCUME~1/%B9%DA%B9%AE%B1%B9/LOCALS~1/Temp/Oreilly,%20Understanding%20Linux%20Network%20Internals%20(2005)%20Bbl%20Lotb.chm/0596002556/9961536.html

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

=2 wEXT

5.1. System Initialization Overview

It's important to know where and how the main network-related subsystems are initialized, including device drivers. However, because
this book is concerned only with the networking aspect of such initializations, | will not cover device drivers in general, or generic kernel
services (e.g., memory management). For an understanding of that background, | recommend that you read Linux Device Drivers and
Understanding the Linux Kernel, both published by O'Reilly.

shows briefly where, and in what sequence, some of the kernel subsystems are initialized at boot time (se@it/main.c).

Figure 5-1. Kernel initialization

<start_kemel> ----- = <ipit> ------ » <do_basic_setup>

user modehelper_init()

;:bérl!'.&_earlg.r_pa ram();

L parse_args(...) ! do_basic_setup(); driver_init()
parse_argsf. . .} : ooty
sas : free_init_mem(); sock_init(); = e 1
init_IRQ(); . g |
init_timers{); : run_init_process(. . .} do_initcallst); - - - - mfn i {net_dev_init)
softirg_init{); : i
ok | -----#ffin

rest _init(};
Lo kernel_thread(init,...)

When the kernel boots up, it executes start_kernel, which initializes a bunch of subsystems, as partially shown i. Before
start_kernel terminates, it invokes theinit kernel thread, which takes care of the rest of the initializations. Most of the initialization activities
related to this chapter happen to be inside do_basic_setup.

Among the various initialization tasks, we are mainly interested in three:

Boot-time options

Two calls to parse_args, one direct and one indirect vigparse_early _param, handle configuration parameters that a boot

IEa_dgLs_um_as_l_LmLG_ljUB has passed to the kernel at boot time. We will see how this task is handled in the section
"Boot-Time Kernel Optiong"

his document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

Interrupts and timers

Hardware and software interrupts are initialized withinit_IRQ and softirg_init, respectively. Interrupts are covered i
In this chapter, we will see just how device drivers register a handler with an IRQ and how IRQ handlers are organized in
memory. Timers are also initialized early in the boot process so that later tasks can use them.

Initialization routines

Kernel subsystems and built-in device drivers are initialized by do_initcalls. free_init_mem frees a piece of memory that holds
unneeded code. This optimization is possible thanks to smart routine tagging. See ‘ for more details.

run_init_process determines the first process run on the system, the parent of all other processes; it has a PID of 1 and never halts until

the system is done. Normally the program run is init, part of the SysVinit package. However, the administrator can specify a different
program through the init= boot time option. When no such option is provided, the kernel tries to execute theinit command from a set of

well-knogmmmm_H it cannot find any. The user can also provide boot-time options that will be passed to init (see the
section "Boot-Time Kernel Optiond').
KI==3 NEXT

file:///C:/DOCUME~1/%B9%DA%B9%AE%B1%B9/LOCALS~1/Temp/Oreilly,%20Understanding%20Linux%20Network%20Internals%20(2005)%20Bbl%20Lotb.chm/0596002556/9961536.html

his document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

=2 wEXT

5.2. Device Registration and Initialization

For a network device to be usable, it must be recognized by the kernel and associated with the correct driver. The driver stores, in
private data structures, all the information needed to drive the device and interact with other kernel components that require the device.
The registration and initialization tasks are taken care of partially by the core kernel and partially by the device driver. Let's go over the
initialization phases:

Hardware initialization

This is done by the device driver in cooperation with the generic bus layer (e.g., PCI or USB). The driver, sometimes alone
and sometimes with the help of user-supplied parameters, configures such features of each device as the IRQ and 1/0
address so that they can interact with the kernel. Because this activity is closer to the device drivers than to the higher-layer
protocols and features, we will not spend much time on it. We will see one example for the PClI layer.

Software initialization

Before the device can be used, depending on what network protocols are enabled and configured, the user may need to
provide some other configuration parameters, such as IP addresses. This task is addressed in other chapters.

Feature initialization

The Linux kernel comes with lots of networking options. Because some of them need per-device configuration, the device
initialization boot sequence must take care of them. One example is Traffic Control, the subsystem that implements Quality of
Service (QoS) and that decides, therefore, how packets are queued on and dequeued from the device egress's queue (and
with some limitations, also queued on and dequeued from the ingress's queue).

We already saw in that the net_device data structure includes a set of function pointers that the kernel uses to interact with the
device driver and special kernel features. The initialization of these functions depends in part on the type of device (e.g., Ethernet) and
in part on the device's make and model. Given the popularity of Ethernet, this chapter focuses on the initialization of Ethernet devices
(but other devices are handled very similarly).

goes into more detail on how device drivers register their devices with the networking code.

e prey | NEXT B

his document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

=2 wEXT

5.3. Basic Goals of NIC Initialization

Each network device is represented in the Linux kernel by an instance of the net_device data structure. In, you will see how
net_device data structures are allocated and how their fields are initialized, partly by the device driver and partly by core kernel routines.
In this chapter, we focus on how device drivers allocate the resources needed to establish device/kernel communication, such as:

IRQ line

As you will see in the section 'interaction Between Devices and Kernel" NICs need to be assigned an IRQ and to use it to call
for the kernel's attention when needed. Virtual devices, however, do no
an example because its activity is totally internal (see the later section "

0 igned an IRQ: the loopback device is

€ea 10 1
irtual Deviced").

0 request and release IRQ lines are introduced in the later section 'Hardware Interruptgd." As you will
uning via /proc Filesysten]" the /proc/interrupts file can be used to view the status of the current

The two functions used {
see in the later section '}
assignments.

1/0 ports and memory registration
It is common for a driver to map an area of its device's memory (its configuration registers, for example) into the system

memory so that read/write operations by the driver will be made on system memory addresses directly; this can simplify the
code. /O ports and memory are registered and released with request_region and release_region, respectively.

=2 wEXT

file:///C:/DOCUME~1/%B9%DA%B9%AE%B1%B9/LOCALS~1/Temp/Oreilly,%20Understanding%20Linux%20Network%20Internals%20(2005)%20Bbl%20Lotb.chm/0596002556/9961536.html

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

=2 wEXT

5.4. Interaction Between Devices and Kernel

Nearly all devices (including NICs) interact with the kernel in one of two ways:

Polling

Driven on the kernel side. The kernel checks the device status at regular intervals to see if it has anything to say.

Interrupt

Driven on the device side. The device sends a hardware signal (by generating an interrupt) to the kernel when it needs the
kernel's attention.

In , you can find a detailed discussion of NIC driver design alternatives as well as software interrupts. You will also see how
Linux can use a combination of polling and interrupts to increase performance. In this chapter, we will look only at the interrupt-based
case.

| won't go into detail on how interrupts are reported by the hardware, the difference between hardware exceptions and device interrupts,
how the driver and bus kernel infrastructures are designed, etc.; you can refer to Linux Device Drivers and Understanding the Linux
Kernel for those topics. But I'll give a brief overview on interrupts to help you understand how device drivers initialize and register the
devices they are responsible for, with special attention to the networking aspect.

5.4.1. Hardware Interrupts

You do not need to know the low-level background about how hardware interrupts are handled. However, there are details worth
mentioning because they can make it easier to understand how NIC device drivers are written, and therefore how they interact with the
upper networking layers.

Every interrupt runs a function called an interrupt handler, which must be tailored to the device and therefore is installed by the device
driver. Typically, when a device driver registers an NIC, it requests and assigns an IRQ. It then registers and (if the driver is unloaded)
unregisters a handler for a given IRQ with the following two architecture-dependent functions. They are defined in kernel/irg/manage.c
and are overridden by architecture-specific functions in arch/XXX/kernel/irg.c, where XXX is the architecture-specific directory:

int request_irq(unsigned int irq, void (*handler)(int, void*, struct pt_regs*), unsigned long irgflags, const char * devname, void *dev_id)

This function registers a handler, first making sure that the requested interrupt is a valid one, ang that it is not a

eady
allocated to another device unless both devices understand shared IRQs (see the later section "

o

void free_irg(unsigned_int irq, void *dev_id)

Given the device identified by dev_id, this function removes the handler and disables the IRQ line if no more devices are

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

registered for that IRQ. Note that to identify the handler, the kernel needs b ber and the device identifier. This
is especially important with shared IRQs, as explained in the later section "|nterrupt sharind."

When the kernel receives an interrupt notification, it uses the IRQ number to find out the driver's handler and then executes this handler.
To find handlers, the kernel stores the associations between IRQ numbers and function handlers in a global table. The association can
-many, because the Linux kernel allows multiple devices to use the same IRQ, a feature described in the

In the following sections, you will see common examples of the information exchanged between devices and drivers by means of
interrupts, and how an IRQ can be shared by multiple devices under some conditions.

5.4.1.1. Interrupt types

With an interrupt, an NIC can tell its driver several different things. Among them are:

Reception of a frame

This is the most common and standard situation.

Transmission failure

This kind of notification is generated on Ethernet devices only after a feature called exponential binary backoff has failed (this
feature is implemented at the hardware level by the NIC). Note that the driver will not relay this notification to higher network
layers; they will come to know about the failure by other means (timer timeouts, negative ACKs, etc.).

DMA transfer has completed successfully

Given a frame to send, the buffer that holds it is released by the driver once the frame has been uploaded into the NIC's
memory for transmission on the medium. With synchronous transmissions (no DMA), the driver knows right away when the
frame has been uploaded on the NIC. But with DMA, which uses asynchronous transmissions, the device ver needs to wait

*|
for an explicit interrupt from the NIC. You can find an example of each case at points where dev_kfree_skb™ is called within

the driver code drivers/net/3c59x.c (DMA) and drivers/net/3c509.c (non-DMA).

[*] describes this function in detail.

Device has enough memory to handle a new transmission

It is common for an NIC device driver to disable transmissions by stopping the egress queue when that queue does not have
sufficient free space to hold a frame of maximum size (e.g., 1,536 bytes for an Ethernet NIC). The queue is then re-enabled
when memory becomes available. The rest of this section goes into this case in more detail.

The final case in the previous list covers a sophisticated way of throttling transmissions in a manner that can improve efficiency if done
properly. In this system, a device driver disables transmissions for lack of queuing space, asks the NIC to issue an interrupt when the
available memory is bigger than a given amount (typically the device's Maximum Transmission Unit, or MTU), and then re-enables
transmissions when the interrupt comes.

A device driver can also disable the egress queue before a transmission (to prevent the kernel from generating another transmission
request on the device), and re-enable it only if there is enough free memory on the NIC; if not, the device asks for an interrupt that allows
it to resume transmission at a later time. Here is an example of this logic, taken from the el3_start_xmit routine, which the

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

drivers/net/3c509.c driver installs as itshard_start_xmiim function in itsnet_device structure:

[T] The nhard_start_xmit Virtual function is described in .

static int
el3_start_xmit(struct sk_buff *skb, struct net_device *dev)

if (inw(ioaddr + TX_FREE) > 1536)
netif_start_queue(dev);

else
outw(SetTxThreshold + 1536, ioaddr + EL3_CMD);

The driver stops the device queue with netif_stop_queue, thus inhibiting the kernel from submitting further transmission requests. The
driver then checks whether the device's memory has enough free space for a packet of 1,536 bytes. If so, the driver starts the queue to
allow the kernel once again to submit transmission requests; otherwise, it instructs the device (by writing to a configuration register with
an outw call) to generate an interrupt when that condition will be met. An interrupt handler will then re-enable the device queue with
netif_start_queue so that the kernel can restart transmissions.

The netif_xxx_queue routines are described in the section Enablinq and Disabling Transmissioné in bhagter 1i.

5.4.1.2. Interrupt sharing

IRQ lines are a limited resource. A simple way to increase the number of devices a system can host is to allow multiple devices to share
a common IRQ. Normally, each driver registers its own handler to the kernel for that IRQ. Instead of having the kernel receive the
interrupt notification, find the right device, and invoke its handler, the kernel simply invokes all the handlers of those devices that
registered for the same shared IRQ. It is up to the handlers to filter spurious invocations, such as by reading a registry on their devices.

For a group of devices to share an IRQ line, all of them must have device drivers capable of handling shared IRQs. In other words, each
time a device registers for an IRQ line, it needs to explicitly say whether it supports interrupt sharing. For example, the first device that
registers for one IRQ, saying something like "assign me IRQ n and use this routinefn as the handler," must also specify whether it is
willing to share the IRQ with other devices. When another device driver tries to register the same IRQ number, it is refused if either it, or
the driver to which the IRQ is currently assigned, is incapable of sharing IRQs.

5.4.1.3. Organization of IRQs to handler mappings

The mapping of IRQs to handlers is stored in a vector of lists, one list of handlers for each IRQ (see). A list includes more than
one element only when multiple devices share the same IRQ. The size of the vector (i.e., the number of possible IRQ numbers) is
architecture dependent and can vary from 15 (on an x86) to more than 200. With the introduction of interrupt sharing, even more devices

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

can be supported on a system at once.

The section "Hardware Interruptd" already introduced the two functions provided by the kernel to register and unregister a handler,

respectively. Let's now see the data structure used to store the mappings.

Mappings are defined with irgaction data structures. Therequest_irg function introduced in the earlier section Hardware Interrupty" is a

wrapper around setup_irg, which takes anirgaction structure as input and inserts it into the globairg_desc vector. irq_desc is defined in
kernel/irg/handler.c and can be overridden in the per-architecture filesarch/XXX/kernell/irg.c. setup_irqg is defined inkernel/irg/manage.c
and can be overridden in the per-architecture files arch/XXX/kernel/irg.c.

The kernel function that handles interrupts and passes them to drivers is architecture dependent. It is called handle_IRQ_event on most
architectures.

shows how irgaction instances are stored: there is an instance ofirq_desc for each possible IRQ and an instance ofirgaction
for each successfully registered IRQ handler. The vector of irq_desc instances is called irq_desc as well, and its size is given by the
architecture-dependent symbol NR_IRQS.

Note that when you have more than one irgaction instance for a given IRQ number (that is, for a given element of thérq_desc vector),
interrupt sharing is required (each structure must have the SA_SHIRQ flag set).

Figure 5-2. Organization of IRQ handlers

irg_desc

<+
*action -
*next
2 struct irg_action
g,_dl *action > . >
“next *nexl
SA_SHIRD SA_SHIRD
e | structirg_desc structirg_action struct irg_action

Let's see now what information is stored about IRQ handlers in the fields of an irgaction data structure:

void (*handler)(int irg, void *dev_id, struct pt_regs *regs)

Function provided by the device driver to handle notifications of interrupts: whenever the kernel receives an interrupt on line
irq, it invokes handler. Here are the function's input parameters:

intirg

IRQ number that generated the notification. Most of the time it is not used by the NICs' device drivers to
accomplish their job; the device ID is sufficient.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

void *dev_id

Device identifier. The same driver can be responsible for different devices at the same time, so it needs the device
ID to process the notification correctly.

struct pt_regs *regs

Structure used to save the content of the processor's registers at the moment the interrupt interrupted the current
process. It is normally not used by the interrupt handler.

unsigned long flags

Set of flags. The possible values SA_XXX are defined ininclude/asm-XXX/signal.h. Here are the main ones from the x86
architecture file:

SA_SHIRQ

When set, the device driver can handle shared IRQs.

SA_SAMPLE_RANDOM

When set, the device is making itself available as a source of random events. This can be useful to help the kernel
generate random ny i i ibuti system entropy. This is further described
in the later section "|nitializing the Device Handling Layer: net _dev_inif'

SA_INTERRUPT

When set, the handler runs with interrupts disabled on the local processor. This should be specified only for
handlers that can get done very quickly. See one of the handle_IRQ_event instances for an example (for instance,
/kernel/irg/handle.c).

There are other values, but they are either obsolete or used only by particular architectures.

void *dev_id

Pointer to the net_device data structure associated with the device. The reason it is declaredvoid * is that NICs are not the
only devices to use IRQs. Because various device types use different data structures to identify and represent device
instances, a generic type declaration is used.

struct irgaction *next

All the devices sharing the same IRQ number are linked together in a list with this pointer.

const char *name

Device name. You can read it by dumping the contents of proc/interrupts.

NEXT B

his document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

=2 wEXT

5.5. Initialization Options

Both components built into the kernel and components loaded as modules can be passed input parameters so that users can fine-tune
the functionality implemented by the components, override defaults compiled into them, or change them from one system boot to the
next. The kernel provides two kinds of macros to define options :

Module options (macros of the module_param family)

These define options you can provide when you load a module. When a component is built into the kernel, you cannot

provide values for these options at kernel boot time. However, with the introduction of the /sys filesystem, you can configure

the options via those files at runtime. The /sys interface is relatively new, compared to the/proc interface. The later section
' goes into a little more detail on these options.

Boot-time kernel options (macros of the _ _setup family)

These define options you can provide at boot time with a boot loader. They are used mainly by modules that the user can
uild into the kernel. and ke niﬂlmm,ents that cannot be compiled as modules. You will see those macros in the section
oot-Time Kernel Optiond' in Chapter 7

=

It is interesting to note that a module can define an initialization option in both ways: one is effective when the module is built-in and the
other is effective when the module is loaded separately. This can be a little confusing, especially because different modules can define
passing parameters of the same name at module load time without any risk of name collision (i.e., the parameters are passed just to the
module being loaded), but if you pass those parameters at kernel boot time, you must make sure there is no name collision between the
various modules' options.

We will not go into detail on the pros and cons of the two approaches. You can look at the drivers/block/loop.c driver for a clear example
using both module_param and _ _setup.

=2 wExT

file:///C:/DOCUME~1/%B9%DA%B9%AE%B1%B9/LOCALS~1/Temp/Oreilly,%20Understanding%20Linux%20Network%20Internals%20(2005)%20Bbl%20Lotb.chm/0596002556/9961536.html

his document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

=2 wEXT

5.6. Module Options

Kernel modules define their parameters by means of macros such as module_param; see include/linux/moduleparam.h for a list.
module_param requires three input parameters, as shown in the following example frondrivers/net/sis900.c:

module_param(multicast_filter_limit, int 0444);
module_param(max_interrupt_work, int, 0444);
module_param(debug, int, 0444);

The first input parameter is the name of the parameter to be offered to the user. The second is the type of the parameter (e.g., integer),
and the third represents the permissions assigned to the file in /sys to which the parameter will be exported.

This is what you would get when listing the module's directory in/sys:

[root@localhost srcl# Is -la /sys/module/sis900/parameters/
total O

drwxr-xr-x 2 rootroot 0 Apr 918:31.

drwxr-xr-x 4 rootroot 0 Apr 918:31 ..

-r--r--r-- 1rootroot 0 Apr 9 18:31 debug

-r--r--r-- 1 root root 4096 Apr 9 18:31 max_interrupt_work
-r--r--r-- 1 root root 4096 Apr 9 18:31 multicast_filter_limit
[root@Ilocalhost srcl#

Each module is assigned a directory in /sys/modules. The subdirectory/sys/modules/module/parameters holds a file for each parameter
exported by module. The previous snapshot fromdrivers/net/sis900.c shows three options that are readable by anyone, but not writable
(they cannot be changed).

Permissions on /sys files (and on/proc files, incidentally) are defined using the same syntax as common files, so you can specify read,
write, and execute permissions for the owner, the group, and everybody else. A value of 400 means, for example, read access for the
owner (who is the root user) and no other access for anyone. When a value of 0 is assigned, no one has any permissions and you would
not even see the file in /sys.

If the component programmer wants the user to be able to read the values of parameters, she must give at least read permission. She
can also provide write permission to allow users to modify values. However, take into account that the module that exports the parameter
is not notified about any change to the file, so the module must have a mechanism to detect the change or be able to cope with changes.

For a detailed description of the/sys interface, refer to Linux Device Drivers

=2 NEXT

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

=2 wEXT

5.7. Initializing the Device Handling Layer: net_dev_init

An important part of initialization for the networking code, including Traffic Control and per-CPU ingress queues, is performed at boot
time by net_dev_init, defined innet/core/dev.c:

static int _ _init net_dev_init(void)

{

}

subsys_initcall(net_dev_init);

See for how the subsys_initcall macros ensure thatnet_dev_init runs before any NIC device drivers register themselves, and
why this is important. You also will see why net_dev_init is tagged with the_ _init macro.

Let's walk through the main parts of net_dev_init:

® The per-CPU data structures used by the two networking software interrupts (softirgs) are initialized. In , we will see
what a softirg is and go into detail on how the networking code uses softirgs.

® \When the kernel is compiled with support for the /proc filesystem ichi iguration), a few files are added to
/proc with dev_proc_initand dev_mcast_init. See the later section [Tuning via /proc Filesysten]' for more details.

® netdev_sysfs_init registers the net class with sysfs. This creates the directory/sys/class/net, under which you will find a

subdirectory for each registered network device. These directories include lots of files, some of which used to be in /proc.

L4 net_random_init initializes a per-CPU vector of seeds that will be used when generating random numbers with the@et_random
routine. net_random is used in different contexts, described later in this section.

® The protocol-independent destination cache (DST), described in , is initialized with dst_init.
® The protocol handler vector ptype_base, used to demultiplex ingress traffic, is initialized. Se for more details.

® \When the OFFLINE_SAMPLE symbol is defined, the kernel sets up a function to run at regular intervals to collect statistics
about the devices' gueue lengths. In this case, net dev_init needs to create the timer that runs the function regularly. See the
section ‘lAveraqe Queue Length and Congestion-Level Computatior{ inChapter 1q.

® A callback handler is registered with the notification chain that issues notifications about CPU hotplug events. The callback
used is dev_cpu_callback. Currently, the only event processed is the halting of a CPU. When this notification is received, the
buffers in the CPU's ingress queue are dequeued and are passed to netif_rx. See ‘ for more detail on per-CPU
ingress queues.

Random number generation is a support function that the kernel performs to help randomize some of its own activity. You will see in this
book that many networking subsystems use randomly generated values. For instance, they often add a random component to the delay
of timers, making it less likely for timers to run simultaneously and load down the CPU with background processing. Randomization can
also defend against a Denial of Service (DoS) attack by someone who tries to guess the organization of certain data structures.

The degree to which the kernel's numbers can be considered truly random is called system entropy . It is improved through contributions
by kernel components whose activity has a nondeterministic aspect, and networking often falls in this category. Currently, only a few NIC
device drivers contribute to system entropy (see earlier discussion on SA_SAMPLE_RANDOM). A patch for kernel 2.4 adds a compile

his document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

time option that you can use to enable or disable the contribution to system entropy by NICs. Search the Web using the keyword
"SA_SAMPLE_NET_RANDOM," and you will find the current version.

5.7.1. Legacy Code

| mentioned in the previous section that the subsys_initcall macros ensure thatnet_dev_init is executed before any device driver has a
chance to register its devices. Before the introduction of this mechanism, the order of execution used to be enforced differently, using the
old-fashioned mechanism of a one-time flag.

The global variable dev_boot_phase was used as a Boolean flag to remember whethenet_dev_init had to be executed. It was initialized
to 1 (i.e., net_dev_init had not been executed yet) and was cleared byet_dev_init. Each timeregister_netdevice was invoked by a device
driver, it checked the value of dev_boot_phase and executednet_dev_init if the flag was set, indicating the function had not yet been
executed.

This mechanism is not needed anymore, because register_netdevice cannot be called before net_dev_init if the correct tagging is
applied to key device drivers' routines, as described in . However, to detect wrong tagging or buggy code,net_dev_init still
clears the value of dev_boot_phase, and register_netdevice uses the macroBUG_ON to make sure it is never called when

%

dev_boot_phase is set.

* . . oy
Ml The use of the macros BUG_ON and BuG_TrAP is @ common mechanism to make sure necessary conditions are met
at specific code points, and is useful when transitioning from one design to another.

=2 wExT

file:///C:/DOCUME~1/%B9%DA%B9%AE%B1%B9/LOCALS~1/Temp/Oreilly,%20Understanding%20Linux%20Network%20Internals%20(2005)%20Bbl%20Lotb.chm/0596002556/9961536.html

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

K==1 wExT

5.8. User-Space Helpers

There are cases where it makes sense for the kernel to invoke a user-space application to handle events. Two such helpers are
particularly important:

/shin/modprobe

Invoked when the kernel needs to load a module. This helper is part of the module-init-tools package.

/sbin/hotplug

Invoked when the kernel detects that a new device has been plugged or unplugged from the system. Its main job is to load the
correct device driver (module) based on the device identifier. Devices are identified by the bus they are plugged into (e.g., PCI)

and the associated ID defined by the bus specification ¥~ This helper is part of the hotplug package.

['] See the section 'l?eqisterinq a PCI NIC Device Driveil in IChapter d for an example involving PCI.

The kernel provides a function named cail_usermodehelper to €xecute such user-space helpers. The function allows the caller to pass the
application a variable number of both arguments in argg and environment variables inenvg. For example, the first argumentargo; tells
call_usermodehelper What user-space helper to launch, andarg) can be used to tell the helper itself what configuration script to use (often called

the user-space agent). We will see an example in the later section '{sbin/hotplud.”

igure 5-3 shows how two kernel routines, request_module and kobject_hotplug, iNVOKE call_usermodehelper t0 iNvoke /shin/modprobe and /shin/hotplug,
respectively. It also shows examples of how argg and envppg are initialized in the two cases. The following subsections go into a little more
detail on each of those two user-space helpers.

Figure 5-3. Event propagation from kernel to user space

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

kobject_hotplug
(i kobject_vevent.c)
a@ﬂ]:#ihimmpiug
arg{ 1] = x, with x from {net, pei, ush, isee1394, .}
request_model env{(] ROME =/
(kernel/lmod.c) e [1]PATH=. . .

ACTION = add
argl0l=/shin/modprabe Em[l] d.temove, ...}
env]i] INTERFACE = [i.e. eth0}

argli}=<module_name>{ie, eth(’)

Yoy

call_usermodehelper
arg[0]
Kernel
User space
-2 222:/shin/modprobe /shin/hotplug
' ethd”
e, »/ete/modprobe.conf angl1l
T et jecei94 | pu ush
i ¥ L * L))
:-ahinnmdiﬁh % sacti IE"E'E"|3‘?:4-.JQEI'Il p{:.atg:eiﬁ _____ u ?}.?geajl""_“?
i : :'Direﬂutrfmhﬂrpﬂrg
No_ s SINTERFACE REGISTER R
initalized?. Ty . *CON e
TYvy
uunEﬁlsnsn* i
[ewon] podies e
Invoke the right modules.eee 1 3Mmap
configuration seript e
(e fshinf{ifup, ifdown, etc])
Birectory=/lib/modoles/ <kernel_version>

5.8.1. kmod

kmod IS the kernel module loader that allows kernel components to request the loadingof a module. The kernel provides more than one
routine, but here we'll look only at request_modute. This function initializesargrz) with the name of the module to load./sbin/modprobe uses the

configuration file /etc/modprobe.confto d things, one of which is to see whether the module name received from the kernel is
actually an alias to something else (see FiSure 5—3).

Here are two examples of events that would lead the kernel to ask /sbin/modprobe to load a module:

® \When the administrator uses ifconfig to configure a network card whose device driver has not been loaded yetsay, for device

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

ethhe kernel sends a request to/shin/modprobe to load the module whose name is the stringetho. If/etc/prorobe.conf
contains the entry -alias etho 3c59x, /sbin/modprobe tries loading the module 3c59x.ko.

[l Note that because the device driver has not been loaded yetethO does not exist yet either.

® \When the administrator configures Traffic Control on a device with the IPROUTE2 package's tc command, it may refer to a
gueuing discipline or a classifier that is not in the kernel. In this case, the kernel sends /shin/modprobe a request to load the
relevant module.

For more details on modules and kmod, refer to Linux Device Drivers.

5.8.2. Hotplug

Hotplug was introduced into the Linux kernel to implement the popular consumer feature known as Plug and Play (PnP) . This feature
allows the kernel to detect the insertion or removal of hot-pluggable devices and to notify a user-space application, giving the latter
enough details to make it able to load the associated driver if needed, and to apply the associated configuration if one is present.

Hotplug can actually be used to take care of non-hot-pluggable devices as well, at boot time. The idea is that it does not matter whether a
device was hot-plugged on a running system or if it was already plugged in at boot time; the user-space helper is notified in both cases.
The user-space application decides whether the event requires any action on its part.

Linux systems, like most Unix systems, execute a set of scripts at boot time to initialize peripherals, including network devices. The syntax,
names, and locations of these scripts change with different Linux distributions. (For example, distributions using the System V init model
have a directory per run level in /etc/rc.d/, each one with its own configuration file indicating what to start. Other distributions are either
based on the BSD model, or follow the BSD model in compatibility mode with System V.) Therefore, notifications for devices already
present at boot time may be ignored because the scripts will eventually configure the associated devices.

When you compile the kernel modules, the object files are placed by default in the directory /lib/modules/kemel_version/, Where kemel_version IS,
for instance, 2.6.12. In tsame directory you can find two interesting files: modules.pcimap and modules.usbmap. These files contain,

respectively, the PCI IDS - and USB IDs of the devices supported by the kernel. The same files include, for each device ID, a reference to
the associated kernel module. When the user-space helper receives a notification about a hot-pluggable device being plugged, it uses

these files to find out the correct device driver.

M The section 'Examgle of PCI NIC Driver Registratiod' in bhagter d gives a brief description of a PCI device identifier.
The modules.xxmap files are populated from ID vectors provided by device drivers. For example, you will see in the sectiorgxample of PCI
h

IC Driver Registratior]" in how the Vortex driver initializes its instance ofpci_device_id. Because that driver is written for a PCI

device, the contents of that table go into the modules.pcimap file.

If you are interested in the latest code, you can find more information at Iﬁttp://linux—hotpluq.sourceforqe.nel.

5.8.2.1. /shin/hotplug

The default user-space helper for Hotplug is the scrip(m /sbin/hotplug, part of the Hotplug package. This package can be configured with
the files located in the default directories /etc/hotplug/ and /etc/hotplug.d/.

[T] The administrator can write his own scripts or use the ones provided by the most common Linux distributions.

http://linux-hotplug.sourceforge.net

his document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

The kobject_hotplug function is invoked by the kernel to respond to the insertion and removal of a device, among other eventsobject_hotplug
initializes argjo] to /shin/hotplug and argi1) to the agent to be used:/shin/hotplug is a simple script that delegates the processing of the event to
another script (the agent) based on arg1.

The user-space helper agents can be more or less complex based on how fancy you want the auto-configuration to be. The scripts
provided with the Hotplug package try to recognize the Linux distribution and adapt the actions to their configuration file's syntax and
location.

Let's take networking, the subject of this book, as an example of hotplugging. When an NIC is added to or removed from the system,
kobject_hotplug initializes arg[1] to net, leading /shin/hotplug to execute the net.agent agent.

Unlike the other agents shown in , net.agent does not represent a medium or bus type. While thenet agent is used to configure a
device, other agents are used to load the correct modules (device drivers) based on the device identifiers.

net.agent is supposed to apply any configuration associated with the new device, so it needs the kernel to provide at least the device
identifier. In the example shown in , the device identifier is passed by the kernel through thenterrace environment variable.

To be able to configure a device, it must first be created and registered with the kernel. This task is normally driven by the associated
device driver, which must therefore be loaded first. For instance, adding a PCMCIA Ethernet card causes several calls to /shin/hotplug;
among them:

® One leading to the execution of /sbin/modprobe, which will take care of loading the right module device driver. In the case of
PCMCIA, the driver is loaded by the pci.agent agent (using the action Aop).

[Unlike /sbin/hotplug, which is a shell script/sbhin/modprobe is a binary executable file. If you want to give it
a look, download the source code of the modutil package.

® One configuring the new device. This is done by thenet.agent agent (again using the actionaop).

K==1 wExT

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

e prcy |

5.9. Virtual Devices

A virtual device is an abstraction built on top of ope or more real devices. The association between virtual devices and real devices can be

many-to-many, as shown by the three models in Eigure 5-4. It is also possible to build virtual devices on top of other virtual devices.
However, not all combinations are meaningful or are supported by the kernel.

Figure 5-4. Possible relationship between virtual and real devices

(a) (b) (c)

Virtual Virtual Virtual Virtual
device 1 device 2 device 3 device 4

HIC1 I

=
™
P
=
o
b
=
T —
i
=
e —
L

5.9.1. Examples of Virtual Devices

Linux allows you to define different kinds of virtual devices. Here are a few examples:

Bonding

With this feature, a virtual device bundles a group of physical devices and makes them behave as one.

802.1Q

This is an IEEE standard that extends the 802.3/Ethernet header with the so-called VLAN header, allowing for the creation of
Virtual LANSs.

Bridging

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

A bridge interface is a virtual representation of a bridge. Details are i.

Aliasing interfaces

Originally, the main purpose for this feature was to allow a single real Ethernet interface to span several virtual interfaces
(eth0:0, eth0:1, etc.), each with its own IP configuration. Now, thanks to improvements to the networking code, there is no need
to define a new virtual interface to configure multiple IP addresses on the same NIC. However, there may be cases (notably
routing) where i ifferent virtual NICs on the same NIC would make life easier, perhaps allowing simpler configuration.
Details are in .Chagter 325

True equalizer (TEQL)

This is a queuing discipline that can be used with Traffic Control. Its implementation requires the creation of a special device.
The idea behind TEQL is a bit similar to Bonding.

Tunnel interfaces

The implementation of IP-over-IP tunneling (IPIP) and the Generalized Routing Encapsulation (GRE) protocol is based on the
creation of a virtual device.

This list is not complete. Also, given the speed with which new features are included into the Linux kernel, you can expect to see new
virtual devices being added to the kernel.

ﬁﬂng bridging, arwvices are examples of the model in . Aliasing interfaces are examples of the model in
p-4(b]. igure 5-4(a

The model in can be seen as a special case of the other two.

5.9.2. Interaction with the Kernel Network Stack

Virtual devices and real devices interact with the kernel in slightly different ways. For example, they differ with regard to the following

points:
Initialization
Most virtual devices are assigned a net_device data structure, as real devices are. Often, most of the virtual device's
net_device's function pointers are initialized to routines implemented as wrappers, more or less complex, around the function
pointers used by the associated real devices.
However, not all virtual devices are assigned anet_device instance. Aliasing devices are an example; they are implemented as
simple labels on the associated real device (see the section "Pld-generation configuration: aliasing interfaceq" in Chapter 30).
Configuration

It is common to provide ad hoc user-space tools to configure virtual devices, especially for the high-level fields that apply only
to those devices and which could not be configured using standard tools such as ifconfig.

his document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

External interface

Each virtual device usually exports a file, or a directory with a few files, to the /proc filesystem. How complex and detailed the
information exported with those files is deg kind of virtual device and on the design. You will see the ones used by
each virtual device listed in the section in their associated chapters (for those devices covered in this book).
Files associated with virtual devices are extra files; they do not replace the ones associated with the physical devices. Aliasing
devices, which do not have their own net_device instances, are again an exception.

Transmission

When the relationship of virtual device to real devi is not one-to-one, the routine used to transmit may need to include, among

%]
other tasks, the selection of the real device to use.= Because QoS is enforced on a per-device basis, the multiple relationships
between virtual devices and associated real devices have implications for the Traffic Control configuration.

* -
[see [chapter 11 for more details on packet transmission in general, andiev_queue_xmit in particular.

Reception

Because virtual devices are software objects, they do not need to engage in interactions with real resources on the system,
such as registering an IRQ handler or allocating 1/0O ports and 1/0O memory. Their traffic comes secondhand from the physical
devices that perform those tasks. Packet reception happens differently for different types of virtual devices. For instance,
802.1Q interfaces register an Ethertype and are passed only those packets received by the associated real devices that carry

ﬁ right protocol ID. In contrast, bridge interfaces receive any packet that arrives from the associated devices (se
)

[] discusses the demultiplexing of ingress traffic based on the protocol identifier.

External notifications

Notifications from other kernel components about specific events taking place in the kernelE are of interest as much to virtual
devices as to real ones. Because virtual devices' logic is implemented on top of real devices, the latter have no knowledge
about that logic and therefore are not able to pass on those notifications. For this reason, notifications need to go directly to the
virtual devices. Let's use Bonding as an example: if one device in the bundle goes down, the algorithms used to distribute traffic
among the bundle's members have to be made aware of that so that they do not select the devices that are no longer available.

+
M defines notification chains and explains what kind of notifications they can be used for.

Unlike these software-triggered notifications, hardware-triggered notifications (e.g., PCI power management) cannot reach
virtual devices directly because there is no hardware associated with virtual devices.

6 prcy |

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

=2 wEXT

5.10. Tuning via /proc Filesystem

shows the files that can be used either to tune or to view the status of configuration parameters related to the topics covered in
this chapter.

kernel are the filesmodprobe and hotplug that can change the pathnames of the two programs introduced earlier in the

ser-Space Helperg

A few files in /proc export the values within internal data structures and CE;DI'QNI:.QI'QD parameters, which rre useful to track what
resources were allocated by device drivers, shown earlier in the section "Basic Goals of NIC Initializatior]." For some of these data
structures, a user-space command is provided to print their contents in a more user-friendly format. For example, Ismod lists the modules
currently loaded, using /proc/modules as its source of information.

In /proc/
section '

n /proc/net, you can find the files created by net_dev_init, viadev_proc_initand dev_mcast_init (see the earlier section [nitializing the
Device Handling Layer: net_dev_init"):

dev
Displays, for each network device registered with the kernel, a few statistics about reception and transmission, such as bytes
received or transmitted, number of packets, errors, etc.

dev_mcast
Displays, for each network device registered with the kernel, the values of a few parameters used by IP multicast.

wireless

Similarly to dev, for each wireless device, prints the values of a few parameters from the wireless block returned by the
dev->get_wireless_stats virtual function. Note thatdev->get_wireless_stats returns something only for wireless devices,
because those allocate a data structure to keep those statistics (and so /proc/net/wireless will include only wireless devices).

softnet_stat

Exports statistics about the software interrupts used by the networking code. See .

Figure 5-5. /proc files related to the routing subsystem

his document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

/proc
|
interrupts 5Ys net
jomem
oparts
pal kemnel dey
modules dev_mcast
wireless
modprobe softnet_stat

hotplug

There are other interesting directories, including /proc/drivers, /proc/bus, and /proclirq, for which | refer you toLinux Device Drivers. In
addition, kernel parameters are gradually being moved out of /proc and into a directory called/sys, but | won't describe the new system
for lack of space.

=2 wEXT

his document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

NEXT B

5.11. Functions and Variables Featured in This Chapter

summarizes the functions, macros, variables, and data structures introduced in this chapter.

Table 5-1. Functions, macros, variables, and data structures related to system initialization

Name

Description

Functions and macros

request_irq

free_irq

Registers and releases, respectively, a callback handler for an IRQ line. The registration can be exclusive or
shared.

request_region

release_region

Allocates and releases I/0O ports and 1/0O memory.

call_usermodehelper

Invokes a user-space helper application.

module_param

Macro used to define configuration parameters for modules.

net_dev_init

Initializes a piece of the networking code at boot time.

Global variables

dev_boot_phase

Boolean flag used by legacy code to enforce the execution of net_dev_init before NIC device drivers register
themselves.

irq_desc

Pointer to the vector of IRQ descriptors.

Data structure

struct irg_action

Each IRQ line is defined by an instance of this structure. Among other fields, it includes a callback function.

net_device

Describes a network device.

MNEXT B

|Vhis document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

=2 wEXT

5.12. Files and Directories Featured in This Chapter

lists the files and directories referred to in this chapter.

Figure 5-6. Files and directories featured in this chapter

Root
{usually fusr/src/linux)

drivers net init include
| 1 | main.c i
block net cora linux
loopc 3¢5%c dev.c moduleparam.h
5900,

" prey wEXT

file:///C:/DOCUME~1/%B9%DA%B9%AE%B1%B9/LOCALS~1/Temp/Oreilly,%20Understanding%20Linux%20Network%20Internals%20(2005)%20Bbl%20Lotb.chm/0596002556/9961536.html

his document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

=2 wEXT

Chapter 6. The PCI Layer and Network Interface
Cards

Given the popularity of the PCI bus, on the x86 as well as other architectures, we will spend a few pages on it so that you can
understand how PCI devices are managed by the kernel, wi_lf fiffi emphasis on network devices. This chapter will help you find a
context for the code about device registration we will see in [Chapter §. You will also learn a bit about how PCI handles some nifty kernel
features such as probing and power management. For an in-depth discussion of PCI, such as device driver design, PCI bus features,
and implementation details, refer to Linux Device Drivers and Understanding the Linux Kernel, as well as PCI specifications.

The PCI subsystem (also known as the PCI layer) in the kernel provides all the generic functions that are used in common by various
PCI device drivers. This subsystem takes a lot of work off the shoulders of the programmer for each individual device, lets drivers be
written in a clean manner, and makes it easier for the kernel to collect and maintain information about the devices, such as accounting
information and statistics.

In this chapter, we will see the meaning of a few key data structures used by the PCI layer and how these structures are initialized by
one common NIC device driver. I'll conclude with a few words on the PCI power management and Wake-on-LAN features.

" prey wEXT

file:///C:/DOCUME~1/%B9%DA%B9%AE%B1%B9/LOCALS~1/Temp/Oreilly,%20Understanding%20Linux%20Network%20Internals%20(2005)%20Bbl%20Lotb.chm/0596002556/9961536.html

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

=2 wEXT

6.1. Data Structures Featured in This Chapter

Here are a few key data structure types used by the PCI layer. There are many others, but the following ones are all we need to know for
our overview in this book. The first one is defined in include/linux/mod_devicetable.h, and the other two are defined irnclude/linux/pci.h.

pci_device_id

Device identifier, This is not a local ID used by Linux, but an ID defined accordingly t
Registering a PCI NIC Device Drivell shows the ID's definition, and the later section

presents an example.

pci_dev
Each PCI device is assigned a pci_dev instance, just as network devices are assignednet_device instances. This is the
structure used by the kernel to refer to a PCI device.

pci_driver
Defines the interface between the PCllayer and the device drivers. This smfcture consists mostly of function pointers. All PCI
devices use it. See the later section "Example of PCI NIC Driver Registrationy' for its definition and an example of its
initialization.

PCI device drivers are defined by an instance of a pci_driver structure. Here is a description of its main fields, with special attention paid
to the case of NIC devices. The function pointers are initialized by the device driver to point to appropriate functions within that driver.

char *name

Name of the driver.

const struct pci_device_id *id_table

Vector of IDs the kernel will use to associate devices to this driver. The section "Examgle of PCI NIC Driver Registratiod'

shows an example.

int (*probe)(struct pci_dev *dev, const struct pci_device_id *id)
Function invoked by the PCI layer when it finds a match between a device ID for which it is seeking a driver and the id_table
mentioned previously. This function should enable the hardware, allocate the net_device structure, and initialize and register

%
the new device.— In this function, the driver also allocates any additional data structures (e.g., buffer rings used during
transmission or reception) that it may need to work properly.

MTnic registration is covered in.

his document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

void (*remove)(struct pci_dev *dev)

Function invoked by the PCI layer when the driver is unregistered from the kernel or when a hot-pluggable device is removed.
It is the counterpart of probe and is used to clean up any data structure and state.

Network devices use this function to release the allocated 1/O ports and 1/0O memory, to unregister the device, and to free the
net_device data structure and any other auxiliary data structure that could have been allocated by the device driver, usually in

its probe function.
int (*suspend)(struct pci_dev *dev, pm_message_t state)

int (*resume)(struct pci_dev *dev)

Functions invﬁﬂmmuwmihwﬁgoes into suspend mode and when it is resumed, respectively. See the
later section "Power Management and Wake-on-LAN"

int (*enable_wake)(struct pci_dev *dev, u32 state, int enable)

With this function, a driver can enable or disable the capabhili i p by generating specific
Power Management Event signals. See the later section "Power Management and Wake-on-LAN/'

struct pci_dynids dynids

Dynamic IDs. See the following section.

See the later section lExampIe of PCI NIC Driver Reqistratior{' for an example of initialization of apci_driver instance.

e prey | NEXT B

file:///C:/DOCUME~1/%B9%DA%B9%AE%B1%B9/LOCALS~1/Temp/Oreilly,%20Understanding%20Linux%20Network%20Internals%20(2005)%20Bbl%20Lotb.chm/0596002556/9961536.html

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

=2 wEXT

6.2. Registering a PCI NIC Device Driver

PCI devices are uniquely identified by a combination of parameters, including vendor, model, etc. These parameters are stored by the
kernel in a data structure of type pci_device_id, defined as follows:

struct pci_device_id {
unsigned int vendor, device;
unsigned int subvendor, subdevice;
unsigned int class, class_mask;
unsigned long driver_data;

Most of the fields are self-explanatory. vendor and device are usually sufficient to identify the device subvendor and subdevice are rarely
needed and are usually set to a wildcard value (PCI_ANY_ID). class and class_mask represent the class the device belongs to;
NETWORK is the class that covers the devices we discuss in this chapter. driver_data is not part of the PCI ID; it is a private parameter
used by the driver.

Each device driver registers with the kernel a vector of pci_device_id instances that lists the IDs of the devices it can handle.

PCI device drivers register and unregister with the kernel with pci_register_driver and pci_unregister_driver, respectively. These
functions are defined in drivers/pci/pci.c. There is also pci_module_init, an alias forpci_register_driver. A few drivers still use
pci_module_init, which is the name of the routine the kernel provided in older kernel versions before the introduction of
pci_register_driver.

pci_register_driver requires apci_driver data structure as an argument. Thanks to thepci_driver'sid_table vector, the kernel knows what
devices the driver can handle, and thanks to all the virtual functions that are part of pci_driver, the kernel has a mechanism to interact
with any device that will be associated with the driver.

One of the great advantages of PCl is its elegant support for probing to find the IRQ and other resources each device needs. A module
can be passed input parameters at load time to tell it how to configure all the devices for which it is responsible, but sometimes
(especially with buses such as PCI) it is easier to let the driver itself check the devices on the system and configure the ones for which it
is responsible. The user can still fall back on manual configuration if necessary.

The /sys filesystem exports information about system buses (PCI, USB, etc.), including the various devices and relationships between
them. /sys also allows an administrator to define new IDs for a given device driver so that besides the static IDs registered by the drivers
with their pci_driver structures' id_table vector, the kernel can use the user-configured parameters.

We will not cover the probing mechanism used by the kernel to look up a driver based on the device IDs. However, it is worth mentioning
that there are two types of probing:

Static

Given a device PCI ID, the kernel can look up the right PCI driver (i.e., the pci_driver instance) based on theid_table vectors.
This is called static probing.

Dynamic

his document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

This is a lookup based on IDs the user configures manually, a rare practice but one that is occasionally useful, as for
debugging. Dynamic refers to the system administrator's ability to add an ID; it does not mean the ID can change on its own.

Since dynamic IDs are configured on a running system, they are useful only when the kernel is compiled with support for Hotplug.

=2 wExT

his document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

=2 wEXT

6.3. Power Management and Wake-on-LAN

PCI power management events are processed by thesuspend and resume functions of the pci_driver data structure. Besides taking care
of the PCI state, by saving and restoring it, respectively, these functions need to take special steps in the case of NICs:

® suspend mainly stops the device egress queue so that no transmission will be allowed on the device.

® esume re-enables the egress queue so that the device is available again for transmissions.

Wake-on-LAN (WOL) is a feature that allows an NIC to wake up a system that's in standby mode when it receives a specific type of
frame. WOL is normally disabled by default. The feature can be turned on and off with pci_enable_wake.

When the WOL feature was first introduced, only one kind of frame could wake up a system: "Magic Packets."— These special frames

have two main characteristics:
FTwoL was introduced by AMD with the name "Magic Packet Technology."

® The destination MAC address belongs to the receiving NIC (whether the address is unicast, multicast, or broadcast).

® Somewhere (anywhere) in the frame a sequence of 48 bits is set (i.e., FF:FF:FF:FF:FF:FF) followed by the NIC MAC address
repeated at least 16 times in a row.

Now it is possible to allow other frame types to wake up the system, too. A handful of devices can enable or disable the WOL feature
based on a parameter that can be set at module load time (see drivers/net/3c59x.c for an example).The ethtool tool allows an
administrator to configure ﬁmal kind Tf frames can wake up the system. One choice is ARP packets, as described in the section
"Wake-on-LAN Eventd' in [Chapter 2§. The net-utils package includes a command,ether-wake, that can be used to generate WOL
Ethernet frames.

Whenever a WOL-enabled device recognizes a frame whose type is allowed to wake up the system, it generates a power management
notification that does the job.

For more details on power management, refer to the later section Ihteractions with Power Manaqemen{' in bhagter d

=2 wExT

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

6.4. Example of PCI NIC Driver Registration

Let's use the Intel PRO/100 Ethernet driver in drivers/net/e100.c to illustrate a driver registration:

#define INTEL_8255X_ETHERNET_DEVICE(device_id, ich) {\
PCI_VENDOR_ID_INTEL, device_id, PCI_ANY_ID, PCI_ANY_ID, \
PCI_CLASS_NETWORK_ETHERNET << 8, OxFFFFOO, ich }

static struct pci_device_id €100 _id_table[] = {
INTEL_8255X_ETHERNET_DEVICE(0x1029, 0),
INTEL_8255X_ETHERNET_DEVICE(0x1030, 0),

We saw in the section "I?eqisterinq a PCI NIC Device Drivell that a PCI NIC device driver registers

NEXT B

with the kernel a vector of

pci_device_id structures that lists the devices it can handle.e100_id_table is, for instance, the structure used by thee100.c driver. Note

that:

® The first field (which corresponds to vendor in the structure's definition) has the fixed value of PCI_VENDOR_ID_INTEL which

%
is initialized to the vendor ID assigned to Intel.

M You can find an updated list atIjttg://Qciids.sourceforge.nel.

® The third and fourth fields (subvendor and subdevice) are often initialized to the wildcard valuePCI_ANY_ID, because the first

two fields (vendor and device) are sufficient to identify the devices.

® Many devices use the macro___devinitdata on the table of devices to mark it as initialization data, althoughe100 _id_table

does not. You will see in exactly what that macro is used for.

%
The module is initialized by e100_init_module, as specified by themodule_init macro.l When the f

unction is executed by the kernel at

boot time or at module loading time, it calls pci_module_init, the function introduced in the section

Reqistering a PCI NIC Device Driverl'

This function registers the driver, and, indirectly, all the associated NICs, as briefly described in the later section | he Big Picturé“

] See for more details on module initialization code.

The following snapshot shows the key parts of the e100 driver with regard to the PCI layer interface:

NAME "e100"

static int _ _devinit e100_probe(struct pci_dev *pdev,
const struct pci_device_id *ent)

}

static void _ _devexit e100_remove(struct pci_dev *pdev)

{

http://pciids.sourceforge.net

his document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

#ifdef CONFIG_PM
static int e100_suspend(struct pci_dev *pdev, u32 state)

{
}
static int e100_resume(struct pci_dev *pdev)

{

}
#endif

static struct pci_driver e100_driver = {

.name = DRV_NAME,
.id_table = e100_id_table,
.probe = e100_probe,
.remove = _ _devexit_p(e100_remove),
#ifdef CONFIG_PM
.suspend = e100_suspend,
.resume = e100_resume,
#endif
h
static int _ _init e100_init_module(void)
{
return pci_module_init(&e100_driver);
}
static void _ _exit e100_cleanup_module(void)
{
pci_unregister_driver(&el100_driver);
}

module_init(e100_init_module);
module_exit(e100_cleanup_module);

Also note that:

L4 suspend and resume are initialized only when the kernel has support for power management, so the two routines
€100_suspend and e100_resume are included in the image only when that condition is true.

® The remove field of pci_driver is tagged with the_ _devexit_p macro, ande100_remove is tagged with_ _devexit.

° e100_probe is tagged with_ _devinit

You will see inwhat the _ _devXXX macros mentioned in the list are used for.

=2 NEXT

file:///C:/DOCUME~1/%B9%DA%B9%AE%B1%B9/LOCALS~1/Temp/Oreilly,%20Understanding%20Linux%20Network%20Internals%20(2005)%20Bbl%20Lotb.chm/0596002556/9961536.html

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

K==a wExT

6.5. The Big Picture

Let's pugether what we saw in the previous sections and see what happens at boot time in a system with a PCI bus and a few PCI
%

devices.
[l other buses behave in a similar way. Please refer td.inux Device Drivers for details.
When the system boots, it creates a sort of database that associates each bus to a list of detected devices that use the busﬂﬁ,
Reqgistering a|

,Mmdm&uhi[im bus includes, among other parameters, a list of detected PCI devices. As we saw in the section "}
PCI NIC Device Drivel," each PCI device is uniquely identified by a large collection of fields in the structureci_device_id, although only a

few are usually necessary. We also saw how PCI device drivers define an instance of pci_driver and register with the PCI layer with

pci_register_driver (or its alias, pci_module_init). By the time device drivers are loaded, the kernel has already built its databasﬂl let's
—

then take the example of Figure 6-1(a] with three PCI devices and see what happens when device drivers A and B are loaded.

[This may not be possible for all bus types.

When device driver A is loaded, it registers with the PCI layer by calling pci_register_driver and providing its instance ofpci_driver. The
pci_driver structure includes a vector with the IDs of those PCI devices it can drive. The PCI layer then uses that table to see what devices
match in its list of detected PCI devices. It thus creates the driver's device list shown in . In addition, for each matching
device, the PCI layer invokes the probe function provided by the matching driver in itspci_driver structure. The probe function creates and

registers the associated network device. In this case,_device Dev3 needs an additional device driver, called B. When driver B eventually
registers with the kernel, Dev3 will be assigned to it. shows the results of loading the driver.

Figure 6-1. Binding between bus and drivers, and between driver and devices

(a) Device descriptors

BUS descriptor v W , ¥
List of devices Dev 1 I Dev 2 I ‘ Dev 3 I

List of drivers

(b)
BUS descriptor

List of devices > - -
List of drivers Dev 1 Dev2 ' ‘ Dev3 I

. Driver descriptor (i.e., pci_driver)

Mame=driver &
probe
rermawe
TABLE IDs
list of devices

£

(c)
BUS descriptor . ”
List of devices Dev 1 Doy 2 Dev 3
List of drivers u u u

- Driver descriptor (i.e., pei_driver)

Y

Name=driver A * | Name=driver B
probe probe
remove remove
TABLE IDs TABLE IDs
list of devices - list of devices

Dev 1

his document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

L.

Dev 2

When the driver is unloaded later, the module's module_exit routine invokes pci_unregister_driver. The PCI layer then, thanks to its

database, goes through all the devices associated with the driver and invokes the driver's remove function. This function unregisters the
network device.

You can find more details about the internals of theprobe and remove functions in

K==a

file:///C:/DOCUME~1/%B9%DA%B9%AE%B1%B9/LOCALS~1/Temp/Oreilly,%20Understanding%20Linux%20Network%20Internals%20(2005)%20Bbl%20Lotb.chm/0596002556/9961536.html

his document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

=2 wEXT

6.6. Tuning via /proc Filesystem

The /proc/pci file can be used to dump information about registered PCI devices. Thdspci command, part of the pciutils package, can also
be used to print useful information about the local PCI devices, but it retrieves its information from /sys.

=2 wEXT

his document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

=2 wEXT

6.7. Functions and Variables Featured in This Chapter

summarizes the functions, macros, and data structures introduced in this chapter.

Table 6-1. Functions, macros, and data structures related to PCl device handling

Name Description

Functions and
macros

pci_register_driver Register, unregister, and initialize a PCI driver.
pci_unregister_driver

pci_module_init

Data structure

struct pci_driver The first data structure defines a PCI driver (and consists mostly of virtual function callbacks). The second

stores the universal ID associated with a PCI device. The last one represents a PCI device in kernel space.
struct pci_device_id

struct pci_dev

=2 wEXT

|Vhis document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

6.8. Files and Directories Featured in This Chapter

NEXT B

lists the files and directories referred to in the chapter. The figure does not include all the files used by the topics covered in

the chapter. For example, the drivers/pci/ directory includes several other files.

Figure 6-2. Files and directories featured in this chapter

{usually fust/sre/linux)

include

drivers
|
|, |
pai net
I |
pei.c el A

linux

|

pei.h
pei-dynids.h
mod_devicetable.b

NEXT B

his document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

=2 wEXT

Chapter 7. Kernel Infrastructure for Component
Initialization

To fully understand a kernel component, you have to know not only what a given set of routines does, but also when those routines are
invoked and by whom. The initialization of a subsystem is one of the basic tasks handled by the kernel according to its own model. This
infrastructure is worth studying to help you understand how core components of the networking stack are initialized, including NIC device
drivers.

The purpose of this chapter is to show how the kernel handles routines used to initialize kernel components, both for components
statically included into the kernel and those loaded as kernel modules, with a special emphasis on network devices. We will therefore
see:

® How initialization functions are named and identified by special macros

® How these macros are defined, based on the kernel configuration, to optimize memory usage and make sure that the various
initializations are done in the correct order

® \when and how the functions are executed

We will not cover all details of the initialization infrastructure, but you'll have a sufficient overview to navigate the source code comfortably.

e prey | NEXT B

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

=2 wEXT

7.1. Boot-Time Kernel Options

Linux allows users to pass kernel configuration options to their bo loaders, which then pass the options to the kernel; experienced

%]
users can use this mechanism to fine-tune the kernel at boot time.= During the boot phase, as shown irlfigure S-JI in bhagter ﬂ the two
calls to parse_args take care of the boot-time configuration input. We will see in the next section whparse_args is called twice, with

details in the later section '[Two-Pass Parsin

[You can find some documentation and examples of the use of boot options in th&inux BootPrompt HOWTO.

parse_args is a routine that parses an input string with parameters in the formame_variable=value, looking for specific keywords and
invoking the right handlers. parse_args is also used when loading a module, to parse the command-line parameters provided (if any).

We do not need to know the details of how parse_args implements the parsing, but it is interesting to see how a kernel component can
register a handler for a keyword and how the handler is invoked. To have a clear picture we need to learn:

® ow akemel component can register a keyword, along with the associated handler that will be executed when that keyword
is provided with the boot string.

® iow the kernel resolves the association between keywords and handlers. | will offer a high-level overview of how the kernel
parses the input string.

® How the networking device subsystem uses this feature.

All the parsing code is in kernel/params.c. We'll cover the points in the list one by one.

7.1.1. Registering a Keyword

Kernel components can register a keyword and the associated handler with the _ _setup macro, defined ininclude/linux/init.h. This is its
syntax:

_ _setup(string, function_handler)

where string is the keyword and function_handler is the associated handler. The example just shown instructs the kernel to execute
function_handler when the input boot-time string includesstring. string has to end with the = character to make the parsing easier for
parse_args. Any text following the = will be passed as input tofunction_handler.

The following is an example from net/core/dev.c, where netdev_boot_setup is registered as the handler for theneTDev= keyword:

_ _setup("netdev=", netdev_boot_setup);

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

The same handler can be associated with different keywords. For instance net/ethernet/eth.c registers the same handler,
netdev_boot_setup, for the ether= keyword.

When a piece of code is compiled as a module, the _ _setup macro is ignored (i.e., defined as a no-op). You can check how the
definition of the _ _setup macro changes ininclude/linux/init.h depending on whether the code that includes the latter file is a module.

The reason why start_kernel calls parse_args twice to parse the boot configuration string is that boot-time options are actually divided
into two classes, and each call takes care of one class:

Default options

Most options fall into this category. These options are defined with the _ _setup macro and are handled by the second call to
parse_args.

Early options

Some options need to be handled earlier than others during the kernel boot. The kernel provides the early_param macro to
declare these options instead of _ _setup. They are then taken care of byparse_early_params. The only difference between
early_param and _ _setup is that the former sets a special flag so that the kernel will be able to distinguish between the two
cases. The flag is part of the obs_kernel_param data structure that we will see in the sectionl'lnit.setup Memory Sectiorl."

The handling of boot-time options has changed with the 2.6 kernel, but not all the kernel code has been updated accordingly. Before the
latest changes, there used to be only the _ _setup macro. Because of this, legacy code that is to be updated now uses the macro_
_obsolete_setup. When the user passes the kernel an option that is declared with the__obsolete_setup macro, the kernel prints a
message warning about its obsolete status and provides a pointer to the file and source code line where the latter is declared.

summarizes the relationship between the various macros: all of them are wrappers around the generic routine _setup_param.

Note that the input routine passed to___setup is placed into the.init.setup memory section. The effect of this action will become clear in

the section "boot-Time Initialization Routined"

Figure 7-1. setup_param macro and its wrappers

early_param __setup __ obsolete_setup

L
__setup_param

Y
Section “.init.setup”

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

7.1.2. Two-Pass Parsing

Because boot-time options used to be handled differently in previous kernel versions, and not all of them have been converted to the
new model, the kernel handles both models. When the new infrastructure fails to recognize a keyword, it asks the obsolete infrastructure
to handle it. If the obsolete infrastructure also fails, the keyword and value are passed on to the init process that will be invoked at the
end of the init kernel thread via run_init_process (shown in inChapter §). The keyword and value are added either to thearg
parameter list or to the envp environment variable list.

The previous section explained that, to allow eafly options to be handled in the necessary order, boot-string parsing and_handle
invocation are handled in two passes, shown in figure 7-4 (the figure shows a snapshot fromstart_kernel, introduced in):

1. The first pass looks only for higher-priority options that must be handled early, which are identified by a special flag (early).

2. The second pass takes care of all other options. Most of the options fall into this category. All options following the obsolete
model are handled in this pass.

The second pass first checks whether there is a match with the options implemented according to the nevy infrastru e, _The jons
are stored in kernel_param data structures, filled in by themodule_param macro introduced in the section Module Optiong' in [Chapter §.

The same macro makes sure that all of those data structures are placed into a specific memory section (_ _param), delimited by the
pointers _ _ start__ _paramand_ _stop_ _ _param.

When one of these options is recognized, the associated parameter is initialized to the value provided with the boot string. Whe, e is
no match for an option, unknown_bootoption tries to see whether the option should be handled by the obsolete model handlerfigure

).

Figure 7-2. Two-pass option parsing

- <parse_early_param=
L <parse_args>
L <do_early_param=>

lL— LOOP:__setup_start..._ _sefup_end
L run handler if earfy flag set

—— <[arse_angs>

L—» LOOP: _start_param, .._stop_param

— |F match: Initialize parameter

—— |F not: <unknown_bootoption>

—a <nbsolete_checksetup=; LOOP_ _setup_start..._ _ sefup_end
L run handler if early flag NOT set

—— [fNOT obsolete, update angu/enp

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

Obsolete and new model options are placed into two different memory areas:

_ _setup_start ... _ _setup_end

We will see in a later section that this area is freed at the end of the boot phase: once the kernel has booted, these options
are not needed anymore. The user cannot view or change them at runtime.

_ _start__ _param..._ _stop__ _param

This area is not freed. Its content is exported to /sys, where the options are exposed to the user.

See Chapter § for more details on module parameters.

Also note that all obsolete model options, regardless of whether they have the early flag set, are placed into the_ _setup_start ... _
_setup_end memory area.

7.1.3. .init.setup Memory Section

The two inputs to the _ _setup macro we introduced in the previous section are placed into a data structure of typebs_kernel_param,
defined in include/linux/init.h:

struct obs_kernel_param {
const char *str;
int (*setup_func)(char*);
int early;

3

str is the keyword, setup_func is the handler, andearly is the flag we introduced in the section "

The _ _setup_param macro places all of theobs_kernel_params instances into a dedicated memory area. This is done mainly for two

reasons:

® i is easier to walk through all of the instancesfor instance, when doing a lookup based on the str keyword. We will see how
the kernel uses the two pointers _ _setup start and _ _setup_end, that point respectively to the start and end of the previously
‘

mentioned area (as shown later in , when doing a keyword lookup.

® The kern
section '}

el can quick ee all of the data structures when they are not needed anymore. We will go back to this point in the

emory Optimizationg.

7.1.4. Use of Boot Options to Configure Network Devices

In light of what we saw in the previous sections, let's see how the networking code uses boot options.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

We already mentioned in the section 'Eegistering a Keyworgl' that both theether= and netdev= keywords are registered to use the same
handler, netdev_boot_setup. When this handler is invoked to process the input parameters (i.e., the string that follows the matching
keyword), it stores the result into data structures of type neTDev_boot_setup, defined ininclude/linux/netdevice.h. The handler and the
data structure type happen to share the same name, so make sure you do not confuse the two.

struct netdev_boot_setup {
char name[IFNAMSIZ];
struct ifmap map;

h

name is the device's name, andifmap, defined ininclude/linux/if.h, is the data structure that stores the input configuration:

struct ifmap

{
unsigned long mem_start;
unsigned long mem_end;
unsigned short base_addr;
unsigned char irg;
unsigned char dma;
unsigned char port;
/* 3 bytes spare */

The same keyword can be provided multiple times (for different devices) in the boot-time string, as in the following example:
LILO: linux ether=5,0x260,ethO ether=15,0x300,eth1l

However, the maximum number of devices that can be configured at boot time with this mechanism is NEtdEV_BOOT_SETUP_MAX,
which is also the size of the static array dev_boot_setup used to store the configurations:

static struct netdev_boot_setup dev_boot_setup[NETDEV_BOOT_SETUP_MAX];

neTDev_boot_setup is pretty simple: it extracts the input parameters from the string, fills in aifmap structure, and adds the latter to the
dev_boot_setup array withnetdev_boot_setup_add.

At the end of the booting phase, the networking code can use the neTDev_boot_setup_check function to check whether a given
interface is associated with a boot-time configuration. The lookup on the array dev_boot_setup is based on the device name dev->name:

int netdev_boot_setup_check(struct net_device *dev)
{
struct netdev_boot_setup *s = dev_boot_setup;
inti;

for (i=0; i < NETDEV_BOOT_SETUP_MAX; i++) {
if (s[i].name[0] != \0' && s[i].name[0] |="" &&

Istrncmp(dev->name, s[i].name, strlen(s[i].name))) {
dev->irq = g[il.map.irq;
dev->base_addr = s[i].map.base_addr;
dev->mem_start = s[i].map.mem_start;
dev->mem_end = s[i].map.mem_end;
return 1;

}

return O;

his document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

Devices with special capabilities, features, or limitations can define their own keywords and handlers if they need additional parameters
on top of the basic ones provided by ether= and netdev= (one driver that does this is PLIP).

" prey | NEXT

file:///C:/DOCUME~1/%B9%DA%B9%AE%B1%B9/LOCALS~1/Temp/Oreilly,%20Understanding%20Linux%20Network%20Internals%20(2005)%20Bbl%20Lotb.chm/0596002556/9961536.html

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

=2 wEXT

7.2. Module Initialization Code

Because the examples in the following sections often refer to modules , a couple of initial concepts have to be made clear.

Kernel code can be either statically linked to the main image or loaded dynamically as a module when needed. Not all kernel
components are suitable to be compiled as modules. Device drivers and extensions to basic functionalities are good examples of kernel
components often compiled as modules. You can refer to Linux Device Drivers for a detailed discussion of the advantages and
disadvantages of modules, as well as the mechanisms that the kernel can use to dynamically load them when they are needed and
unload them when they are no longer needed.

Every module must provide two special functions, called init_module and cleanup_module. The first one is called at module load time to
initialize the module. The second one is invoked by the kernel when removing the module, to release any resources (memory included)
that have been allocated for use by the module.

The kernel provides two macros, module_init and module_exit, that allow developers to use arbitrary names for the two routines. The
following snapshot is an example from the drivers/net/3c59x.c Ethernet driver:

module_init(vortex_init);
module_exit(vortex_cleanup);

In the section “i\/lemory Optimizationsl," we will see how those two macros are defined and how their definition can change based on the
kernel configuration. Most of the kernel uses these two macros, but a few modules still use the old default names init_module and

cleanup_module. In the rest of this chapter, | will usemodule_init and module_exit to refer to the initialization and cleanup functions.

Let's first see how module initialization code used to be written with older kernels, and then how the current kernel model, based on a set
of new macros, works.

7.2.1. Old Model: Conditional Code

Regardless of whether a kernel component is compiled as a module or is built statically into the kernel, it needs to be initialized. Because
of that, the initialization code of a kernel component may need to distinguish between the two cases by means of conditional directives to
the compiler. In the old model, this forced developers to use conditional directives like #ifdef all over the place.

Here is a snapshot from the drivers/net/3c59x.c driver of kernel 2.2.14: note how many times#ifdef MODULE and #if defined (MODULE)

are used.

#if defined(MODULE) && LINUX_VERSION_CODE > 0x20115
MODULE_AUTHOR("Donald Becker <becker@cesdis.gsfc.nasa.gov>");
MODULE_DESCRIPTION("3Com 3¢c590/3c900 series Vortex/Boomerang driver");
MODULE_PARM(debug, "i");

#endif

#ifdef MODULE

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

int init_module(void)

{

}

#else
int tc59x_probe(struct device *dev)

{

}
#endif /* not MODULE */

static int vortex_scan(struct device *dev, struct pci_id_info pci_tbl[])

{
#if defined(CONFIG_PCI) || (defined(MODULE) &&. 'defined(NO_PCI))

#ifdef MODULE
if (compag_ioaddr) {
vortex_probel(0, 0, dev, compag_ioaddr, compaqg_irq,
compag_device_id, cards_found++);
dev = 0;

}
#endif

return cards_found ? 0 : -ENODEV;
}

#ifdef MODULE
void cleanup_module(void)

#endif

This snapshot shows how the old model let a programmer specify some of the things done differently, depending on whether the code is
compiled as a module or statically into the kernel image:

The initialization code is executed differently

The snapshot shows that the cleanup_module routine is defined (and therefore used) only when the driver is compiled as a
module.

Pieces of code could be included or excluded from the module

For example, vortex_scan calls vortex_probel only when the driver is compiled as a module.

This model made source code harder to follow, and therefore to debug. Moreover, the same logic is repeated in every module.

7.2.2. New Model: Macro-Based Tagging

his document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

Now let's compare the snapshot from the previous section to its counterpart from the same file from a 2.6 kernel:

static char version[] _ _devinitdata = DRV_NAME " ... ";

static struct vortex_chip_info {

} vortex_info_tbl[] _ _devinitdata = {
{"3c590 Vortex 10Mbps",

static int _ _init vortex_init (void)

{

}

static void _ _exit vortex_cleanup (void)

{

module_init(vortex_init);
module_exit(vortex_cleanup);

You can see that#ifdef directives are no longer necessary.

To remove the mess introduced by conditional code, and therefore make code more readable, kernel developers introduced a set of
macros that module developers now can use to write cleaner initialization code (most drivers are good candidates for the use of those
macros). The snapshot just shown uses a few of them: _ _init, _ _exit, and_ _devinitdata.

Later sections describe how some of the new macros are used and how they work.
These macros allow the kernel to determine behind the scenes, for each module, what code is to be included in the kernel image, what

*

code is to be excluded because it is not needed, what code is to bxecuted only at initialization time, etc. This removes the burden
from each programmer to replicate the same logic in each module.

[l Note that the use of these macros does not eliminate completely the use of conditional directives. The kernel
still uses conditional directives to set off options that the user can configure when compiling the kernel.

It should be clear that for these macros to allow programmers to replace the old conditional directives, as shown in the example of the
previous section, they must be able to provide at least the following two services:

® Define routines that need to be executed when a new kernel component is enabled, either because it is statically included in
the kernel or because it is loaded at runtime as a module

® Define some kind of order between initialization functions so that dependencies between kernel components can be
respected and enforced

=2 wEXT

file:///C:/DOCUME~1/%B9%DA%B9%AE%B1%B9/LOCALS~1/Temp/Oreilly,%20Understanding%20Linux%20Network%20Internals%20(2005)%20Bbl%20Lotb.chm/0596002556/9961536.html

NEXT B

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

7.3. Optimized Macro-Based Tagging

The Linux kernel uses a variety of different macros to mark functions and data structures with special properties: for instance, to mark an
initialization routine. Most of those macros are defined in include/linux/init.h. Some of those macros tell the linker to place code or data
structures with common properties into specific, dedicated memory areas (memory sections) as well. By doing so, it becomes easier for
the kernel to take care of an_entire class of objects (routines or data structures) with a common property in a simple manner. We will see

Memory Optimizationg

shows some of the kernel memory sections: on the left side are the names of the pointers that delimit the beginning and the
end of each area section (when meaningful).

an example in the section "

Figure 7-3. Some of the memory sections used by initialization code

Macros

_init_begin ———-

Jnit.text _ _init
Jnit.data __initdata
_setup_start *
Jnitsetup _ _Setup_param
_ _Setup_end - i
_initcall_start—""_initcall .init core_initcall
Jnitcall 2.init postcore_initcall
Jnitcall3.init arch_initcall
dnitcall4.init subsys_initcall
Jnitcall5.init fs_initall
Jnitcallb.init device_initcall
dnitcall7 init late_initcall |

_ _initcall_end -

__init_end ———=

On the right side are the names of the macros used to place data and code into the associated sections. The figure does not include all
the memory sections and associated macros; there are too many to list conveniently.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

and@ list some of the macros used to tag routines and data structures, respectively, along with a brief description. We will
not look at all of them for lack of space, but we will spend a few words on the xxx_initcall macros in the section kxx_initcall Macrod" and
on_ _initand_ _exitin the section | initand ___exit Macrog"

The purpose of this section is not to describe how the kernel image is built, how modules are handled, etc., but rather to give you just a
few hints about why those macros exist, and how the ones most commonly used by device drivers work.

Table 7-1. Macros for routines

Macro Kind of routines the macro is used for

_ _init Boot-time initialization routine: for routines that are not needed anymore at the end of the boot phase.

Eﬂon can be used to get rid of the routine under some conditions (see the later section '
timizationg

~

__exit Counterpart to _ _init. Called when the associated kernel component is shut down. Often used to marknodule_exit
functions.

w,on can be used to get rid of the routine under some conditions (see the later section '
timizationd

~

core_initcall Set of macros, listed in decreasing order of priority, used to tag initialization routines that need to be executed at

boot time. See the later section "kxx_initcall Macrod.

postcore_initcall
arch_initcall
subsys_initcall
fs_initcall
device_initcall

late_initcall

_ _initcall Obsolete macro, defined as an alias todevice_initcall. See the later section f.egacy codd."

One-shot exit function, called when the associateg shut down. So far, it has been used only to

mponent i
mark module_exit routines. See the later section

_ _exitcalg

_ _exitcalland _ _initcall are defined on top of _ _exit_calland _ _init_call.

Table 7-2. Macros for initialized data structures

Macro Kind of data the macro is used for

. Initialized data structure used at boot time only.
_initdata

_ Data structure used only by routines tagged with _ _exitcall. It follows that if a routine tagged with _exitcall is not going to

_exitdata [pe ysed, the same is true of data tagged with __exitdata. The same kind of optimization can therefore be applied to_
_exitdataand _ _exitcall.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

Before we go into some more detail on a few of the macros listed in and E it is worth stressing the following points:

® \ost macros come in couples: one (or a set of them) takes care of initialization, and a sister macro (or a sister set) takes care
of removal. For example, _ _exitis _ _init's sister; _ _exitcallsis _ _initcall's sister, etc.

® \acros take care of two points (one or the other, not both): one is when a routine is to be executed (i.e., _ _initcall, _
_exitcall); the other is the memory section a routine or a data structure is to be placed in (i.e., _init, _ _exit).

® The same routine can be tagged with more than one macro. For example, the following snapshot says that pci_proc_init is to
be run at boot time (_ _initcall), and can be freed once it is executed (_init):

static int _ _init pci_proc_init(void)

{

_ _initcall(pci_proc_init)

7.3.1. Initialization Macros for Device Initialization Routines

lists a set of macros commonly used to tag routines used by device drivers to injitialize their devices, and that can introduce
] ptimizations when the kernel does not have support for Hotplug, In the sectio i
Chagter g you can find an example of their use. In the later section "you can see when the macros in
facilitate memory optimizations.

his document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

Table 7-3. Macros for device initialization routines

Name Description

_ _devinit Used to tag routines that initialize a device.
For instance, for a PCI driver, the routine to whictpci_driver->probe is initialized is tagged with this macro.
Routines that are exclusively invoked by another routine tagged with _ _devinit are commonly tagged with_ _devinit as
well.

_ _devexit Used to tag routines to be invoked when a device is removed.

_ _devexit_p | Used to initialize pointers to routines tagged with__devexit.
_ _devexit_p(fn) returns fn if the kernel supports both modules and Hotplug, and returns NULL otherwise. See the
later section '"Pther. Ogtimizationé"

_ _devinitdata | Used to tag initialized data structures that are used by functions that take care of device initialization (i.e., are tagged
with _ _devinit), and that therefore share their properties .

-) Same as_ _devinitdata but associated with_ _devexit.

_devexitdata - -

NEXT B

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

=2 wEXT

7.4. Boot-Time Initialization Routines

Most initialization routines have two interesting properties:

® They need to be executed at boot time, when all the kernel components get initialized.

® They are not needed once they are executed.

The next section, "kxx_initcall Macrog," describes the mechanism used t initializati nes at boot time, taking into consideration

these properties as well as priorities among modules. The later section "Memory Optimizationg" shows how routines and data structures
that are no longer needed can be freed at link time or runtime by using smart tagging.

7.4.1. xxx_initcall Macros

The early phase of the kernel boot consists of two main blocks of initializations:

® The initialization of various critical and mandatory subsystems that need to be done in a specific order. For instance, the
| initiali i iver before the PCI layer has been initialized. See the later section ‘

Hependency between initialization routineg" for another example.

® The initialization of other kernel components that do not need a strict order: routines in the same priority level can be run in
any order.

The first part is taken care of by the code that comes before do_initcalls in I:iqure 5-:‘ ink}hapter E] The second part is taken care of by
the invocation of do_initcalls shown close to the end ofdo_basic_setup in the same figure. The initialization routines of this second part

are classified based on their role and priority. The kernel executes those initialization routines one by one, starting from the ones placed
in the highest-priority class (core_initcall). The addresses of those routines, which are needed to invoke them, are placed in the
‘ by tagging them with one of thexxx_initcall macros in[lable 7-1].

.initcallN..init memory sections of

The area used to store the addresses of the routines tagged with the xxx_initcall macros is delimited by a starting address (.
_initcall_start) and an ending address (_ _initcall_end). In the excerpt of the do_initcalls function that follows, you can see that it simply
takes the function addresses one by one from that area and executes the functions they point to:

static void _ _init do_initcalls(void)

{
initcall_t *call;
int count = preempt_count();

for (call = _ _initcall_start; call < _ _initcall_end; call++) {

flush_scheduled_work();

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

The routines invoked by do_initcalls are not supposed to change the preemption status or disable IRQs. Because of that, after each
routine execution, do_initcalls checks whether the routine has made any changes, and adjusts the preemption and IRQ status if
necessary (not shown in the previous snapshot).

It is possible for the xxx_initcall routines to schedule some work that takes place later. This means that the tasks handled by those
routines may terminate asynchronously, at unknown times. The call to flush_scheduled_work is used to makedo_initcalls wait for those
asynchronous tasks to complete before returning.

Note that do_initcalls itself is marked with__ _init: because it is used only once withindo_basic_setup during the booting phase, the kernel
can discard it once the latter is done.

_ _exitcallis the counterpart of _ _initcall. It is not used much directly, but rather via other macros defined as aliases to it, such as

module_exit, which we introduced in the section [Module Initialization Codg."

7.4.1.1. Example of _ _initcall and _ _exitcall routines: modules

| said in the section ‘i\/lodule Initialization Codel" that the module_init and module_exit macros, respectively, are used to tag routines to be

executed when the module is initialized (either at boot time if built into the kernel or at runtime if loaded separately) and unloaded.

This makes a module the perfect candidate for our _ _initcall and _ _exitcall macros: in light of what I just said, the following definition
from include/linux/init.h of the macros module_init and module_exit should not come as a surprise:

#ifndef MODULE

#deflne module_init(x) _ _initcall(x);
#define module_exit(x) _ _exitcall(x);
#else

sendit

module_init is defined as an alias to_ _initcall for code statically linked to the kernel: its input function is classified as a boot-time
initialization routine.

module_exit follows the same scheme: when the code is built into the kernelmodule_exit becomes a shutdown routine. At the moment,

%]
shutdown routines are not called when the system goes down, but the code is in place to allow it.

[l yser-Mode Linux is the only architecture that actually makes use of shutdown routines. It does not use _exitcal

] i i mi_exitcall. The home page of the User-Mode Linux project is
pttp://user-mode-linux.sourceforge.net.

7.4.1.2. Example of dependency between initialization routines

net_dev_init was introduced in. Device drivers register with the kernel with theimodule_init routine, which, as described in the

http://user-mode-linux.sourceforge.net

his document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

section | he Big Picturé' in bhagter d registers its devices with the networking code. Bothnet_dev_init and the various module_init
functions for built-in drivers are invoked at boot time by do_initcalls. Because of that, the kernel needs to make sure no device
registrations take place before net_dev_init has been executed. This is enforced transparently thanks to the marking of device driver
initialization routines with the macro device_initcall (or its alias, _ _initcall), while net_dev_init is marked with subsys_initcall. In ,
you can see that subsys_initcall routines are executed earlier thardevice_initcall routines (the memory sections are sorted in priority
order).

7.4.1.3. Legacy code

Before the introduction of the set of xxx_initcall macros, there was only one macro to mark initialization functions;_ _initcall. The use of
only a single macro created a heavy limitation: no execution order could be enforced by simply marking routines with the macro. In many
cases, this limitation is not acceptable due to intermodule dependencies, and other considerations. Therefore, the use of _ _initcall could
not be extended to all the initialization functions.

_ _initcall used to be employed mostly by device drivers. For backward compatibility with pieces of code not yet updated to the new
model, it still exists and is simply defined as an alias to device_initcall.

Another limitation, which is still present in the current model, is that no parameters can be provided to the initialization routines.
However, this does not seem to be an important limitation.

e prcy | NEXT

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

K==1 wExT

7.5. Memory Optimizations

Unlike user-space code and data, kernel code and data reside permanently in main memory, so it is important to reduce memory waste in
every way possible. Initialization code is a good candidate for memory optimization . Given their nature, most initialization routines are
executed either just once or not at all, depending on the kernel configuration. For example:

® The module_init routines are executed only once when the associated module is loaded. When the module is statically included in
the kernel, the kernel can free the module_init routine right at boot time, after it runs.

® The module_exit routines are never executed when the associated modules are included statically in the kernel. In this case,
therefore, there is no need to include module_exit routines into the kernel image (i.e., the routines can be discarded at link time).

The first case is a runtime optimization, and the second one is a link-time optimization.

de and data that are used only during the boot and are not needed thereafter are placed in one of the memory sections shown in
. Once e kernel has completed the initialization phase, it can discard that entire memory area. This is accomplished by the call to
%

free_init_mem,—= as shown inkigure 5-j inbhagter d Different macros are used to place code into the different memory sections ofigure 7-3.

Ml This is the memory that boot-time messages of the following sort refer to: "Freeing unused kernel memory: 120k
freed".

If you look at the example in the earlier section "'\Iew Model: Macro-Based TaqqincJ" you can see that the two input routines tamodule_init and
module_exit are (usually) tagged with__init and __exit, respectively: this is done precisely to take advantage of the two properties mentioned at

the start of this section.

7.5.1. _ _initand _ _exit Macros

The initialization routines executed in the early phase of the kernel are tagged with the macro _ _init.

As mentioned in the previous section, most module_init input routines are tagged with this macro. For example, most of the functions
in (before the call tofree_intmem) are marked with _ _init.

As shown by its definition here, the __init macro places the input routine into thetextinit memory section:

#define _ _init _attribute_ _ ((_ _section_ _ (".text.init")))

This section is one of the memory areas freed at runtime by free_initmem.

__exit IS the counterpart of __init. Routines used to shut down a module are placed into theextexit Section. This section can be discarded at link
time directly for modules build into the kernel. However, a few architectures discard it a runtime to deal with cross-references. Note that the
same section, for modules loaded separately, can be removed at load time when the kernel does not support module unloading. (There is
a kernel option that keeps the user from unloading modules.)

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

7.5.2. xxx_initcall and _ _exitcall Sections

The memory sections where the kernel places the addresses to the routines tagged with the xxx_initcall and _ _exitcal macros are also
discarded:

® The w_initcall SE€CtioNs shown infigure 7-4 are discarded at runtime by free_initmen.

® The textexit Section used for__exicall functions is discarded at link time because right now the kernel does not call the _exitcal
routines on system shutdown (i.e., it does not use a mechanism similar to do_initcalls).

7.5.3. Other Optimizations

Other examples of optimizations include the macros in :

_ _devinit

When the kernel is not compiled with support for Hotplug, routines tagged with __devinit are not needed anymore at the end of the
boot phase (after all the devices have been initialized). Because of this, when there is no support for Hotplug, _ _devinit becomes

an alias to __init.

__devexit

When a PCI driver is built into a kernel without support for Hotplug, the routine to which pci_driver->remove is initialized, and which is
tagged with __devexit, can be discarded because it is not needed. The routine can be discarded also when the module is loaded
separately into a kernel that does not have support for module unloading.

_ _devinitdata

When there is no support for Hotplug, this data too is needed only at boot time. Normally, device drivers use this macro to tag
the banner strings that the pci_driver-> probe functions print when initializing a device. PCI drivers, for instance, tag theci_device_id tables
with __devinitdata: ONce the system has finished booting and there is no support for Hotplug, the kernel does not need the tables
anymore.

This section has given you only a few examples of removing code. You can learn more by browsing the source code, starting, for instance,
from the architecture-dependent definitions of the /DISCARD/ section.

7.5.4. Dynamic Macros' Definition

In the previous sections, | introduced a few macros, such as __init and the various versions of xo_initcal. We have also seen that the routines
passed to the module_init macro are tagged with macros such as _inical. Because most kernel components can be either compiled as modules

or statically linked to the kernel, the choice made changes the definitions of these macros to apply the memory optimizations introduced in
the previous section.

In particular, the definition of the macros in , as you can see ininclude/linux/init.h, change depending on whether the following
symbols are defined within the scope of the file that includes include/linux/init.h:

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

CONFIG_MODULE

Defined when there is support for a loadable module in the kernel (the "Loadable module support" configuration option)

MODULE

Defined when the kernel component that the file belongs to is compiled as a module

CONFIG_HOTPLUG
Defined when the kernel is compiled with "Support for hot-pluggable devices" (an option in the "General setup" menu)

While moouLe can have different values for different files, the other two symbols are kernel-wide properties and therefore are either set or
not set consistently throughout a kernel.

Among the macros in and E we are mostly interested in the following ones from the perspective of NIC driver initialization:
initcall, and _ _exitcall. Summarizing what was discussed so farfigure 7-4 shows the effectiveness of the macros in the previous list

exit

in saving memory, based on whether the symbols mopuLe and conric_roTpLuc are defined (let's suppose the kernel had support for loadable

_init

modulesi.e., that conric_mopuLe is defined). As you can see from the figure, there is a lot going on when the kernel does not have support
for both loadable modules and Hotplug, compared to when both of those options are supported: the more restrictions you have, the more
optimizations you get.

Figure 7-4. Effect of macros in , following numbered lists in text

COMFIG_HOTPLUG T(t)@ Ng (ONFIG_HOTPLUG T‘
®

O =
Ll =

oe

Let's see one by one i i 6in , keeping in mind the generic structure of a device driver as shown
eljﬂj_er in the section "New Model: Macro-Based Taggind' and the definitions of __initcal and _ _exitcall that we saw earlier in the section
"Memory Optimizationg."

Here are the optimizations that can be applied when compiling a module as part of the kernel:

1. module_exit routines will never be used; so by tagging them with _exit, the programmer makes sure they will not be included in the
image at link time.

2. module_init routines will be executed only once at boot time, so by tagging them with _init, the programmer lets them be discarded
once they are executed.

his document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

3. module_initn) becomes an alias to__initcaliin), which makes surem will be executed bydo_initcalls, as we saw in the section kxx_initcall
acrog."

4. module_exitn) becomes an alias to__exitcal(n). This places the address to the input function in theexitcall.exit memory section, which
makes it easier for the kernel to run it at shutdown time, but the section is actually discarded at link time.

Let's use PCI devices as a reference, and see what other optimizations the lack of support for Hotplug introduces. These
concern the pcifdriﬁ[gmmﬂﬂijn, ich is called when a module is unloaded, once for each device registered by that module
(see the section '[The Big Picturg' in Chapter).

5. Regardless of whether mopute is defined, when there is no support for Hotplug in the kernel, devices cannot be removed from a
running system. Therefore, the remove function will never be invoked by the PCI layer and can be initialized to a NULL pointer.
This is indicated by the __devexit p macro.

6. When there is no support for Hotplug or for modules in the kernel, the driver's routine that would be used to initialize
pei_driver->remove iS NOt needed by the module. This is indicated by the _devexit macro. Note that this is not true when there is support
for modules. Because a user is allowed to load and unload a module, the kernel needs the remove routine.

Note that point 5 is a consequee of point 6: if you do not include a routine in the kernel, you cannot refer to it (i.e., you cannot initialize a

*
function pointer to that routine).

[see the snapshot in the section Examgle of PCI NIC Driver Registratior_‘l' in bhagter d

=1 wExT

his document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

=2 wEXT

7.6. Tuning via /proc Filesystem

There is no file of interest in/proc as far as this chapter is concerned.

=2 NEXT

file:///C:/DOCUME~1/%B9%DA%B9%AE%B1%B9/LOCALS~1/Temp/Oreilly,%20Understanding%20Linux%20Network%20Internals%20(2005)%20Bbl%20Lotb.chm/0596002556/9961536.html

his document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

=2 wEXT

7.7. Functions and Variables Featured in This Chapter

summarizes the functions, macros, structures, and variables introduced in the chapter.

Table 7-4. Functions, macros, variables, and data structures introduced in this chapter

Name Description

Functions and macros

_ _init, _ _exit,_ _initcall, _ _exitcall, _ _initdata, _ Macros used to tag pieces of code with special characteristics. These
_exitdata, _ _devinit, _ _devexit, _ _devexit_p, _ tags can be used to optimize the kernel image size, leaving out unneeded
_devinitdata, _ _devexitdata, xxx_initcall code, for instance.

do_initcalls Executes at boot time all the functions tagged with thexxx_initcall macros.
init_module, cleanup_module, module_init, module_exit The first two are the names of the functions that each module should

provide to respectively initialize and remove a module. The other two are
macros that allow device driver writers to use an arbitrary name for the
previous two routines.

netdev_boot, setup_check, neTDev_boot_setup_add Apply the boot-time configuration (if any) to a specific device.
module_param Defines optional module parameters that can be provided when loading
the module.

Data structures

kernel_param Stores the input to themodule_param macro.
obs_kernel_param Stores the input to the_ _setup macro.
netdev_boot_setup, ifmap netdev_boot_setup stores boot-time parameters for theether= and

netdev= options.

ifmap is one of the fields of netdev_boot_setup.

Variables
dev_boot_setup Array of netdev_boot_setup structures.
NETDEV_BOOT_SETUP_MAX Size of dev_boot_setup.

=2 wEXT

|Vhis document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

7.8. Files and Directories Featured in This Chapter

lists the files and directories referred to in the chapter.

NEXT B

Figure 7-5. Files and directories featured in this chapter

Root

(usually fusr/sreflinux)

drivers

net

5%

include

linux
]

icore

ethernet
l

init.h
ith
netdeviceh

dev.c

eth.c

NEXT B

his document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

=2 wEXT

Chapter 8. Device Registration and Initialization

In and H we saw how NICs are recognized by the kernel, and the initialization that the kernel performs so that the NICs can
talk to their device drivers. In this chapter, we will discuss additional stages of initialization:

® \When and how network devices register with the kernel

® 1iow a network device registers with the network device database and gets assigned an instance of aet_device structure
® ow net_device structures are organized into hash tables and lists to allow different kinds of lookups

® How net_device instances are initialized, partly by kernel core routines and partly by their device drivers

® How virtual devices differ from real ones with regard to registration

This chapter does not strive to be a guide on how to write NIC device drivers. | sometimes go into detail on an NIC device driver's code,
but I will not cover the entire design of an NIC device driver. We are interested here only in registration and in the interface between
device drivers and features such as link state change detection and power management. Refer to Linux Device Drivers (O'Reilly) for a
detailed discussion of device drivers.

Before an NIC can be used, its associated net_device data structure must be initialized, added to the kernel network device database,
configured, and enabled. It is important not to confuse registration and unregistration with enabling and disabling. They are two different
concepts:

o Registration and unregistration, if we exclude the act of loading a device driver module, are user independent; the kernel
drives them. A device that haﬁf&nwm;ngjoperatmmuuwlaj:ﬁice is registered and
unregistered in the sections "When a Device Is Registered' and 'When a Device Is Unregistered"

® Enabling and disabling a device require user intervention. Once a device has beg
it by means of user commands, configure it, and enable it. See the later section ']

Let's start by seeing what events trigger the registration and unregistration of network devices.

" prey wEXT

file:///C:/DOCUME~1/%B9%DA%B9%AE%B1%B9/LOCALS~1/Temp/Oreilly,%20Understanding%20Linux%20Network%20Internals%20(2005)%20Bbl%20Lotb.chm/0596002556/9961536.html

his document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

=2 wEXT

8.1. When a Device Is Registered

The registration of a network device takes place in the following situations:

Loading an NIC's device driver

An NIC's device driver is initialized at boot time if it is built into the kernel, and at runtime if it is loaded as a module. Whenever
initialization occurs, all the NICs controlled by that driver are registered.

Inserting a hot-pluggable network device

When a user inserts a hot-pluggable NIC, the kernel notifies its driver, which then registers the device. (For the sake of
simplicity, we'll assume the device driver is already loaded.)

In the first situation, the registration model that applies is described in the later section “lSkeIeton of NIC Registration and Unreqistratiorl."
It applies to all bus types, and is the same whetheration routine ends up being called by the bus infrastructure or by the

module initialization code. For example, we saw in [Chapter § how loading a PCI device driver leads to the execution of the
pci_driver->probe routine, usually named something like xxx_probe, which is provided by the driver and which takes care of device
registration. In this chapter, we will look at how those probe routines are implemented.

The registration of devices using other bus types (USB, PCMCIA, etc.) shares the same skeleton, \We will not look at how the
infrastructure of those buses ends up calling their probe counterpart, as we saw for PCI i&. Older buses may not be able to
automatically detect the presence of devices and may require the devicdrivers to do it by manually probing specific memory addresses,

%]
using default parameters or boot-time parameters provided by the user.= We will not look at this case either.

] See, for example.net olddevs_init in drivers/net/Space.c. This function, which is tagged with thedevice_initcall macro
introduced in , is executed at boot time. The same function takes care of the registration of the loopback

device.

=2 wExT

file:///C:/DOCUME~1/%B9%DA%B9%AE%B1%B9/LOCALS~1/Temp/Oreilly,%20Understanding%20Linux%20Network%20Internals%20(2005)%20Bbl%20Lotb.chm/0596002556/9961536.html

his document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

=2 wEXT

8.2. When a Device Is Unregistered

Two main conditions trigger the unregistration of a device:

Unloading an NIC device driver

This can be done only for drivers loaded as modules, of course, not for those built into the kernel. When the administrator
unloads an NIC's device driver, all the associated NICs must be unregistered.

For example, we saw in how unloading a PCI device driver leads to the execution of thepci_driver->remove routine
provided by the driver, often called something like xxx_remove_one, which will take care of device unregistration. This routine

is invoked by the PCI layer once for each device registered against the driver being unloaded. In this chapter, we will look at
how those routines are implemented.

Removing a hot-pluggable network device

When a user removes a hot-pluggable NIC from a system whose running kernel has support for hot-pluggable devices, the
network device is unregistered.

=2 wEXT

file:///C:/DOCUME~1/%B9%DA%B9%AE%B1%B9/LOCALS~1/Temp/Oreilly,%20Understanding%20Linux%20Network%20Internals%20(2005)%20Bbl%20Lotb.chm/0596002556/9961536.html

NEXT B

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

8.3. Allocating net_device Structures

Network devices are defined with net_device structures. Because they are usually nameddev in the kernel code, | use that name
frequently in this chapter for a net_device. These data structures are allocated withalloc_netdev, defined innet/core/dev.c, which requires
three input parameters:

Size of private data structure

We will see in the section "brganization of net_device Structureé‘ that the net_device data structure can be extended by

device drivers with a private data block to store the driver's parameters. This parameter specifies the size of the block.

Device name

This may be a partial name that the kernel will complete through some scheme that ensures unique device names.

Setup routine

This routine is used to initialize a portion of the net_device's fields. See the sections bevice Initializatiorl" and 'IDevice Type

nitialization: xxx_setup Functiond" for more details.

The return value is a pointer to the net_device structure allocated, or NULL in case of errors.

Every device is assigned a name that depends on the device type and that, to be unique, contains a number that is assigned
sequentially as devices of the same type are registered. Ethernet devices, for instance, are called eth0, ethl, and so on. A single device
may be called with different names depending on the order with which the devices are registered. For instance, if you had two cards
handled by two different modules, the names of the devices would depend on the order in which the two modules were loaded.
Hot-pluggable devices lend themselves particularly to unanticipated name changes.

Because user-space configuration tools refer to the kernel-assigned device name, the order with which devices register is important. As
this is a user-space detail, | will not bother with it further, except to mention that there are tools, such as nameif from the net-tools
package, that allow you to assign fixed names to interfaces based on the MAC address.

When the name of the device passed to alloc_netdev is in the formname%d (e.g., "eth%d"), the kernel completes the name using the
function dev_alloc_name. The latter changes %d to the first unassigned number for that device type.

The kernel also provides a set of wrappers around alloc_netdev, a few of which are listed i , which can be used to feed

%

alloc_netdev the correct parameters for a set of common device type For example, alloc_etherdev is used for Ethernet devices, and
therefore creates a device name in the form of the string eth followed by a unique number. As its second argument, it specifies
ether_setup as the setup routine, which initializes a portion of thenet_device structure to values common to all Ethernet devices.

M There are other, similar wrappers that do not follow theiioc_xxxdev Naming convention. Furthermore, some devices
call aoc_netdev directly to register with the kernel instead of using a wrapper.

his document was created by an unregistered ChmMagic, please go to http:/iwww.bisenter.com to register it. Thank

Table 8-1. Wrappers for the alloc_netdev function

Network device type

Wrapper name

Wrapper definition

Ethernet

alloc_etherdev

return alloc_netdev(sizeof_priv, "eth%d", ether_setup);

Fiber Distributed Data Interface

alloc_fddidev

return alloc_netdev(sizeof_priv, "fddi%d", fddi_setup);

High Performace Parallel Interface

alloc_hippi_dev

return alloc_netdev(sizeof_priv, "hip%d", hippi_setup);

Token Ring

alloc_trdev

return alloc_netdev(sizeof_priv, "tr%d", tr_setup);

Fibre Channel

alloc_fcdev

return alloc_netdev(sizeof_priv, "fc%d", fc_setup);

Infrared Data Association

alloc_irdadev

return alloc_netdev(sizeof_priv, “irda%d", irda_device_setup);

NEXT B

file:///C:/DOCUME~1/%B9%DA%B9%AE%B1%B9/LOCALS~1/Temp/Oreilly,%20Understanding%20Linux%20Network%20Internals%20(2005)%20Bbl%20Lotb.chm/0596002556/9961536.html

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

K==1 wExT

8.4. Skeleton of NIC Registration and Unregistration

shows the generic scheme for an NIC's device driver to register with the networking code shows the

complementary action that takes place for unregistration. Although the example shows a PCI Ethernet NIC, the scheme is the same for

other device types; only the name of the routine that takes care of it, or the way that routine is invoked, may change depending on how the
bus code is implemented.

(a)

Figure 8-1. (a) Device registration model; (b) device unregistration model

(b)

Joox_probe/module_init xxx_remove_one/module exit

= dev=alloc_etherdev(sizeof{driver_private_structure))

unregister_netdev(dev)

L unregister_netdevice(d
- alloc_etherdev{sizeofpriv,"eth%%d", ether_setup) UARBCEY. Teldovicnper)

dev=kmalloc(sizeofinet_device)+sizeofpriv+padding)
ether_setupidev)

strepyldev-=name, "eth%d")
return|dev)

free_netdev(dev)

= netdev_boot_setup_checkdey)

ET R T EX |

L» reqister_netdev/dev/

L register_netdevice(dev)

The function starts by allocating the net_device Structure with ailoc_etherdev. alloc_etherdev alS0 initializes all the parameters that are common to all

Ethernet devices. The driver then initializes another portion of the net_device Structure, and concludes the device registration with a call to the

register_netdev routine.

Note that:

The driver calls the appropriate wrapper around ailoc_netdev (alloc_etherdev in the example), and provides only the size of its private
data block. A few wrappers are listed in[Table 8-1.

The wrapper calls alloc_netdev Using the parameter provided by the driver, and adds the other two (the device name and the
initialization routine).

The size of the memory block allocated by alloc_netdev includes the net_device structure, the driver's private block, and some padding
to force an alignment. See later in the chapter.

Some drivers _call netoev_boot_setup_check t0 check whether the user provided any boot-time parameter when loading the kernel. See
the section "lee of Boot Options to Configure Network Devicesl in .

his document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

® The new net_device instance is inserted into the device database withregister_netdevice (See the later section ").
Incidentally, | use the term database here, and in other parts of the book, to refer loosely to a combination of data structures that
provides convenient access to information on the terms the kernel needs.

The unregistration of a device, shown in its simple form in Eigure 8-1(b), always includes a _call tounregister_netdevice and free_netdev. The call to

free_netdev IS SOMetimes made explicitly, and sometimes indirectly via thedev->destructor function,= as shown later infigure 8-4. The device driver

also needs to release any resources used by the device (IRQ, memory mappings, etc.), but we are not interested in those details in this
chapter.

[l The device drivers of only a few virtual devices use this approach (see, for examplenet/8021qg/vlan.c). The two calls
in are mutually exclusive.

K==1 wExT

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

=2 wEXT

8.5. Device Initialization

In the section “Mhen a Device Is Registered" we saw what needs to be initialized for the kernel to communicate to the NIC. In the rest of
this chapter we will look at higher-level initialization tasks.

The net_device structure is pretty big. Its fields are initialized in chunks by different routines, each one responsible for a different subset

i

of fields. In particular:

'l an interesting exception is the loopback device, whose initialization is hardcoded in th@oopback_dev definition in
drivers/net/loopback.c.

Device drivers

Parameters such as IRQ, /O memory, and I/O port, whose values depend on the hardware configuration, are taken care of
by the device driver. See Chapter §.

Device type

The initialization of fields common to all the devices of a device type family is taken care by thexxx _setup routines. For

example, Ethernet devices use ether_setup. See the section bevice Type Initialization: xxx_setup Function

Features

Mandatory and optional features also need to bf initialized. For example, ﬁ\e queuing discipline (i.e., QoS) is initialized in
register_netdevice, as described in the section fegister netdevice Function." Other features can be initialized when the

; i modules are notified about the registration of the new device (see the section "bevice Registration Statusl
.Notificatiog").

The device type initialization is done as part of the device driver initialization (that is, xxx_setup is called by xxx_probe) so that the driver

has a chance to overwrite the default device type's initializations. See the section "bptional Initializations and Special Cases]' for an
example.

*|
shows the function pointers that are initialized by thexxx_setup routines and what is left to the device drve XXX_probe): what
‘

is device-type specific and what is device-model specific. Note that not all device drivers respect the distinction in[Table 8-3. For

instance, there are cases where the xxx_setup function does not initialize any function pointer (an example isrda_device_setup in
net/irda/irda_device.c) and others where it initializes all of them (an example iswifi_setup in drivers/net/wireless/airo.c).

1 contains a detailed description of all the parameters of thenet_device data structure.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

Table 8-2. net_device function pointers initialized by xxx_setup and xxx_probe

Initializer Function pointer name

XXX_setup change_mtu
set_mac_address
rebuild_header
hard_header
hard_header_cache
header_cache_update
hard_header_parse

Device driver's probe routine open

stop
hard_start_xmit
tx_timeout
watchdog_timeo
get_stats
get_wireless_stats
set_multicast_list
do_ioctl

init

uninit

poll

ethtool_ops (this is actually an array of routines)

is similar to , but instead of function pointers it lists some of the othemet_device fields.

Table 8-3. net_device fields initialized by xxx_setup and xxx_probe

Initializer Variable name

XXX_setup type
hard_header_len
mtu

addr_len
tx_queue_len
broadcast

flags

Device driver's probe routine base_addr
irq

if_port
priv
features

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

For more details on the meaning of the fields in and B refer to.

8.5.1. Device Driver Initializations

The net_device fields initialized by the device driver are usually taken care of by thexx_probe function introduced in the section

IDicturd" in khapter d and depicted in.

Some drivers can handle different device models; so the same parameters can be initialized differently based on the device model and
capabilities. The following snapshot, from the drivers/net/3c59x.c driver, shows that the functionhard_start_xmit, which we will introduce

in , is initialized differently depending on the device's capabilities

[l Capabilities can be hardcoded into the driver or retrieved by reading a register on the NIC.

if (vp->capabilities & CapBusMaster) {
vp->full_bus_master_tx = 1,

if (vp->full_bus_master_tx) {
dev->hard_start_xmit = boomerang_start_xmit;

}else {
dev->hard_start_xmit = vortex_start_xmit;

8.5.2. Device Type Initialization: xxx_setup Functions

For the most common network device types there is an xxx_setup function to initialize the fields of thenet_device structure (both
parameters and function pointers) that are common to all the devices of the same typefor instance, all Ethernet cards.

In , you saw how the variousalloc_ xxxdev functions pass the rightxxx_setup routine to alloc_netdev (as the third input
parameter). Here is the ether_setup routine, which is the xxx_setup routine used by Ethernet devices:

void ether_setup(struct net_device *dev)

{
dev->change_mtu = eth_change_mtu;
dev->hard_header = eth_header;
dev->rebuild_header = eth_rebuild_header;
dev->set_mac_address = eth_mac_addr;

dev->hard_header_cache = eth_header_cache;
dev->header_cache_update = eth_header_cache_update;
dev->hard_header_parse = eth_header_parse;

dev->type = ARPHRD_ETHER;
dev->hard_header_len = ETH_HLEN;

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

dev->mtu = 1500;

dev->addr_len =ETH_ALEN;

dev->tx_queue_len =1000;

dev->flags = IFF_BROADCAST|IFF_MULTICAST;

memset(dev->broadcast,0xFF, ETH_ALEN);

As you can see, this function initializes only the fields and function pointers that can be sharey any Ethernet card: an MTU of 1,500, a

*
link-layer broadcast address of FF:FF:FF:FF:FF:FF, an egress queue length of 1,000 packets,— etc.

[This is Linux's implementation choice; it is not derived from any protocol specification. Depending on the egress
queuing discipline configured, this value may not be used.

The use of a generic allocation wrapper and the xxx_setup routine, as shown in , is the most common approach. However:

® Some classes of devices define setup functions but do not provide a generic wrapper similar to the ones i . Among

them are ARCNETm devices (seearcdev_setup in drivers/net/arcnet/arcnet.c) and IrDA" " devices (seeirda_device_setup
in net/irda/irda_device.c).

[T] ARCNET (Attached Resource Computer) is a LAN technology based on a token bus design
(similar to 802.4) that has found its natural habit in the industrial automation industry thanks to its
deterministic performance. Linux provides a general layer for ARCNET and a few device drivers.

+

(¥ IrDA (Infrared Data Association) is a standard for infrared wireless communication.

® A generic xxx_setup may be used by devices that do not belong to the indicated classether_setup is an example: it is used by
non-Ethernet devices as well. When most of the initializations of a particular xxx_setup routine suit the needs of a device
driver, the latter may use that xxx_setup routine and simply override those initializations that are not correct. But this
approach is not common.

® An Ethernet driver can use the default initialization provided by ether_setup (which is invoked indirectly byalloc_etherdev) but
override some of the initializations. For example, the 3c59x.c driver does not use thenet_device->mtu value set by
ether_setup, but overrides it with a local variable. This variable is initialized to the same default that would be set by
ether_setup, but the driver can set bigger values for NIC models that can handle them.

8.5.3. Optional Initializations and Special Cases

There are cases when some net_device parameters are not initialized simply because they are meaningless for that type of device; the
associated function pointer or value is not initialized and therefore is left to NULL.

[
To avoid NULL pointer references, the kernel always makes sure that optional function pointers are initialized before invoking them,= as
in the following example from register_netdevice:

Min , you can find some more details on the use of VFTs.

if (dev->init && dev->init(dev) != 0) {

his document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

It is important to note that external factors could also change how and where the fields of and@ are initialized. One example
involves the net_device->mtu field. Virtual devices usually inherit configuration parameters from the real devices they are associated
with, and then adjust them if needed. For example, virtual tunnel interfaces created by the IP-over-IP protocol inherit dev->mtu from the
real devices they are associated with. (This is not automatic; the virtual device driver takes care of it.) However, due to the extra IP
header needed by the IP-over-IP protocol, the MTU needs to be lowered accordingly (see ipip_tunnel_xmit in net/ipv4/ipip.c, which

assumes an underlying Ethernet device).

=2 NEXT

file:///C:/DOCUME~1/%B9%DA%B9%AE%B1%B9/LOCALS~1/Temp/Oreilly,%20Understanding%20Linux%20Network%20Internals%20(2005)%20Bbl%20Lotb.chm/0596002556/9961536.html

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

e prey NExT B

8.6. Organization of net_device Structures

Some of the subtler aspects of the net_device Structure include the following:

We saw in the section "Igllocating net_device StructureJ“ that when alloc_netdev is called to allocate anet_device Structure, it is passed

the size of the driver's private data block (whose size depends on the driversome do not even use private data at all). alloc_netdev
appends the private data to the net_device structure. fFigure 8-1 showed how that parameter is passed an(] shows the

effect on the memory allocation.

also shows the relationship between the net_device data structure and the optional driver's private data structure.
Normally, the second part is allocated together with the first one so that a single kmailoc is sufficient, but there are also cases
where the driver prefers to allocate its private block by itself (see driver C in .

As shown in the example in , the size of the driver's private block and its content change not only from one device
type to another (e.g., Token Ring versus Ethernet) but also among devices of the same type (e.g., two different Ethernet cards).

dev_base (introduced later in this section) and theiext pointer innet_device point to the beginning of the net_device Structure, not to the
beginning of the allocated block. However, the size of the initial padding is saved in dev->padded, which allows the kernel to release
the whole memory block when it is time to do so.

net_device data structures are inserted both in a global list, as shown , and in two hash tables, as shown i. These

different structures allow the kernel to easily browse or look up the net_device database as required. Here are the details:

dev_base

This global list of all ret_device instances allows the kernel to easily browse devices in case, for instance, it has to get some
statistics, change a configuration across all devices as a consequence of a user command, or find devices matching given
search criteria.

Because each driver has its own definition for the private data structure, the global list of net_device Structures may link together

elements of different sizes (see Eigure 8-3).

Figure 8-2. Global list of registered devices

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

dev_base —/

TRy

1]

{alignment padding) P

struct net_device

driver A

driver B

g

driver (

el

padded=FP
“priv

1
.,

driver’s private block

Iy

dev_name_head

L)

.

“next J

*next

padded=F
*priv

This is a hash table indexed on the device name. It is useful, for instance, when applying a configuration change via the ioct
interface. The old-generation configuration tools that talk to the kernel via the ioct interface usually refer to devices by their

names.

dev_index_head

This is a hash table indexed on the device ID dev->ifindex. Cross-references to net_device structures usually store either device IDs or

pointers to net_device Structures; dev_index_head is useful for the former. Also, the new-generation configuration toolip (from the

IPROUTE?2 package), which talks to the kernel via the Netlink socket, usually refers to devices by their ID.

Figure 8-3. Hash tables used to search net_device instances based on device name and device index

his document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

JNETDEV_HASHBITS(8}_ 355

i
dev_name_head
Ei
'T[
=
=2
=
E L J
%I *| index_hlist | index_hlist
=—1
=] name_hlist name_hlist —
= = =
% struct net_device struct net_device
L - .
el index_hlist
dev_index_head
name_hlist
struct net_device

8.6.1. Lookups

The most common lookups are based either on the device name or on the device ID. These two lookup types are implemented by
dev_get_by_name and dev_get_by_index, Which use the two hash tables discussed in the previous section. It is also possible to searckt_device

instances based on their device type, MAC address, etc. These kinds of lookups use the dev_base list.
All lookups, both on thedev_base list and on the two hash tables, are protected by th@ev_base_ock loCk.

All' lookup routines are defined innet/core/dev.c.

e ey NExT B

file:///C:/DOCUME~1/%B9%DA%B9%AE%B1%B9/LOCALS~1/Temp/Oreilly,%20Understanding%20Linux%20Network%20Internals%20(2005)%20Bbl%20Lotb.chm/0596002556/9961536.html

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

=2 wEXT

8.7. Device State

The net_device structure includes different fields that define the current state of the device. These include:

flags
Bitmap used to store different flags. Most of them represent a device's capabilities. However, one of them, IFF_UP, is used to
say whether the device is enabled (up) or disabled (down). You can find the list of IFF_XXX flags ininclude/linux/if.h. See
also the section "Enabling and Disabling a Network Devicel'

reg_state
Device registration state. The section lists the values this field can be assigned and when its value
changes.

state

Device state with regard to its queuing discipline . See the section bueuing Discipline Statd."

You may find a little bit of overlap sometimes between these variables. For example, every time IFF_UP is set in flags, _
_LINK_STATE_START is set in state, and vice versa. Both of them are set and cleared, respectively, bylev_open and dev_close.
However, their domains are different, and a little bit of overlap may sometimes be introduced when writing modular code.

8.7.1. Queuing Discipline State

Each network device is assigned a queuing discipline, which is used by Traffic Control to implement its QoS mechanisms. The state field
of net_device is one of the structure's fields used by Traffic Control.state is a bitmap, and the following list shows the flags that can be
set. They are defined in include/linux/netdevice.h.

__LINK_STATE_START

The device is up. This flag can be checked with netif_running. See the section tnabling and Disabling a Network Devicé'

__LINK_STATE_PRESENT

The device is present. This flag may look superfluous; but take into account that hot-pluggable devices can be temporally

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

e em goes into pend mode and then resumes.

egister _netdevice Functior].

removed. The flag is also cleared and restored, respectively, when th
The flag can be checked with netif_device_present. See the section

__LINK_STATE_NOCARRIER

There is no carrier. The flag can be checked with netif_carrier_ok. See the section ‘Link State Change Detectior{"

__LINK_STATE_LINKWATCH_EVENT

The device's link state has changed. See the section "bchedulinq and processing link state change eventsl'

__LINK_STATE_XOFF

__LINK_STATE_SHED

__LINK_STATE_RX_SCHED

These three flags are used by the code that manages ingress and egress traffic on the device. We will see how they are used

inPart 11].

8.7.2. Registration State

The state of a device with regard to its registration with the network stack is saved in theeg_state field of the net_device structure. The
NETREG_XXX values it can take are defined ininclude/linux/netdevice.h, within thenet_device structure definition. In the next section, we
will see how they relate to each other. Here is a brief description:

NETREG_UNINITIALIZED

Defined as 0. When the net_device data structure is allocated and its contents zeroed, this value represents the 0 in

dev->reg_state.

NETREG_REGISTERING

The net_device structure has been added to the structures listed in the later section brganization of net_device Structureg"

but the kernel still needs to add an entry to the /sys filesystem.

NETREG_REGISTERED

The device has been fully registered.

NETREG_UNREGISTERING

his document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

The net device structure has been removed from the structures listed in the later sectionbrganization of net devicel
tructureg.’

NETREG_UNREGISTERED

The device has been fully unregistered (which includes removing the entry from /sys), but the net_device structure has not
been freed yet.

NETREG_RELEASED

All the references to the net_device structure have been released. The data structure can be freed, from the networking

code's perspective. However, it will be up to sysfs to take care of it. See the section

" prey wEXT

file:///C:/DOCUME~1/%B9%DA%B9%AE%B1%B9/LOCALS~1/Temp/Oreilly,%20Understanding%20Linux%20Network%20Internals%20(2005)%20Bbl%20Lotb.chm/0596002556/9961536.html

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

k=1 ExT

8.8. Registering and Unregistering Devices

Network devices are registered and unregistered with the kernel with register_netdev and unregister_netdev, respectively. These are
simple wrappers that take care of locking and then invoke the routines register_netdevice and unregister_netdevice, respectively. We
already briefly introduced these functions in . All of them are defined innet/core/dev.c.

shows the registration states anet_device can be set to, and shows where the aforementioned routines come into the picture. It
also shows where other key routines are called. All of them will be described in later sections. In particular, note that:

® Changes of state may use intermediate states between NETREG_UNINITIALIZED and NETREG REGISTERED. These
progressions are handled by netdev_run_todo, described in the section Bplit Operations: netdev_run_todg"

® The two net_device virtual functionsinit and uninit can be used by device drivers to initialize and clean up private data,
espectively, when registering and unregistering a device. They are mainly used by virtual devices. See the sectioA

Deviceq.

® The unregistration of a device cannot be completed until all references to the associated net device data structure have been
released: neTDev_wait_allrefs does not return until that condition is met. See the sectionReference Countg."

® Both the registration and unregistration of a device are completed by neTDev_run_todo. We will see in the section
Operations: netdev_run todol" how register_netdevice and unregister_netdevice interact withneTDev_run_todo.

Figure 8-4. net_device's registration state machine

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

register_netdevice

|—|-tiev -= init

v

UNINITIALIZED REGISTERING

netdev_run_todo

REGISTERED

unregister_netdevice
—= dev_close

UNREGISTERING |—"' dev - stop
e ey - > unit

netdev_run_todo

tdev_wait_allrefs
RELEASED |- UNREGISTERED | [= =
free_netdev

L dey -2 destruct or
L free net dev

8.8.1. Split Operations: netdev_run_todo

register_netdevice takes care of a portion of the registration, and then letsietdev_run_todo complete it. At first, it may not be clear how this
happens by looking at the code. Let's see how it works with the help of .

Changes to net_device structures are protected with the Routing Netlink semaphore viatnl_lock and rtnl_unlock, which is wh

register_netdev acquires the lock (semaphore) at the beginning and releases it before returning (more details in the sectior{l_‘bckin).
Once register_netdevice is done with its job, it adds the newnet_device structure to net_todo_list with net_set_todo. That list contains the
devices whose registration (or unregistration, as we will see in a moment) has to be completed. The list is not processed by a separate
kernel thread or by means of a periodic timer; it will be up to register_netdev to indirectly process it when releasing the lock.

*|
Thus, rtnl_unlock not only releases the lock, but also callsnetdev_run_todo. The latter function browses the net_todo_list array and
completes the registration of all its net_device instances.

[l rtnl_unlock IS @ wrapper around the semaphore primitiveup. When up is called directly, as inrnetlink_rcv, netdev_run_todo iS
called explicitly. See also the section "Locking

Only one CPU can be running net_run_todo at any one time. Serialization is enforced with thenet_todo_run_mutex mutex.

The unregistration of a device is handled exactly the same way (as shown in).

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

Figure 8-5. Structure of register_netdev and unregister_netdev

(a) (b)

register_netdev unregister_netdev

— LOCK — LOCK
=o s
—— register_netdevice —— Lnreqister_neldevice

—— Start registration —— start unregistration

e 0l rief_dievice structure to TODO list e 0l riet_device structure to TODO list
L UNLOCK L UNLOCK

L process TODO list L process TODO list

(i.e., complete registration) (i.e., complete unregistration)

What netdev_run_todo does, exactly, to complete the registration or unregistration of a device is described at the end of the sections

"Iegister _netdevice Functior]" and 'Linregister_netdevice Function," respectively.

Note that since the registration and unregistration tasks handled by netdev_run_todo do not hold the lock, this function can safely sleep

and leave the semaphore available. You will see one example why this is a good thing in the section

Given the model of , it may seem that the kernel cannot have more than on@et_device instance in net_todo_list by the time
netdev_run_todo is called. How can there be more than one element ifegister_netdev and unregister_netdev add only one net_device
instance to the list and then process the latter right away when releasing the lock? Well, for example, it is possible for a device driver to
use a loop like the following to unregister all of its devices in one shot (see, for instance, tun_cleanup in drivers/net/tun.c):

rtnl_lock();
loop for each device driven by this driver {

rtnl_unlock();

This is better than the following approach, which gets and releases the lock and processes net_todo_list at each iteration of the loop:

loop for each device driven by this driver {

8.8.2. Device Registration Status Notification

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

Both kernel components and user-space applications may be interested in knowing when a network device is registered, unregistered,
goes down, or comes up. Notifications about these events are sent via two channels:

netdev_chain

Kernel components can register with this notification chain. See the following section, "hetdev chain notification chair{"

Netlink's RTMGRP_LINK multicast group

User-space applications, such as monitoring tools or routing protocols, can register with RTnetlink's RTMGRP_LINK multicast
group. See the section "ETnetIink link notificationl"

8.8.2.1. netdev_chain notification chain

We saw what notification chains are and how they are used in . The progress through the various stages of registering and
unregistering a device is reported with the netdev_chain notification chain. This chain is defined innet/core/dev.c, and kernel components
interested in these kinds of events register and unregister with the chain with register_netdevice_notifier and unregister_netdevice_notifier,
respectively.

All the NETDEV_XXX events that are reported vianeTDev_chain are listed ininclude/linux/notifier.h. Here are the ones we have seen in
this chapter, together with the conditions that trigger them:

NETDEV_UP
NETDEV_GOING_DOWN

NETDEV_DOWN
NEtdEV_UP is sent to report about a device that has been enabled, and is generated bydev_open.

NEtdEV_GOING_DOWN is sent when the device is about to be disabled.NETDEV_DOWN is sent when the device has been
disabled. They are both generated by dev_close.

For more details on these three events, see the section 'iEnainnq and Disabling a Network Devicel'

NETDEV_REGISTER

The device has been registered. This event is generated by register_netdevice. See the section leqister netdevice Functiorl."

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

NETDEV_UNREGISTER

The device has been unregistered. This event is generated by unregister_netdevice. See the section 'Lnregister netdevicel

unctiony.

And here are the other ones:

NETDEV_REBOOT

The device has restarted due to a hardware failure. Currently not used.

NETDEV_CHANGEADDR

The hardware address (or the associated broadcast address) of the device has changed.

NETDEV_CHANGENAME

The device has changed its name.

NETDEV_CHANGE

The device status or configuration of the device has changed. This is used in all the cases not covered by
NETDEV_CHANGEADDR and NEtdEV_CHANGENAME. It is currently used when something changes indev->flags.

The NETDEV_CHANGEXXX notifications are usually generated in response to a user configuration change.

Note that register_netdevice_notifier, when registering with the chain, also replays (to the new registrant only) all the past
NETDEV_REGISTER and NETDEV_UP notifications for the devices currently registered in the system. This gives the new registrant a
clear picture of the current status of the registered devices.

Quite a few kernel components register to netdev_chain. Among them are:

Routing

For instance, the routing subsystem uses this notification to add or remove all the routing entries associated with the device.
See Chapter 33

Firewall

For example, if the firewall had buffered any packet from a device that now is down, it has to either drop the packet or take
another action according to its policies.

Protocol code (i.e., ARP, IP, etc.)

For example, when you change the MAC address of a local device, the ARP table must be updated accordingly. See the
associated protocol chapters for more details.

Virtual devices

See the section

his document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

RTnetlink

See the following section, "RTnetlink link notifications."

8.8.2.2. RTnetlink link notifications

Notifications are sent to the Link multicast group RTMGRP_LINK with rtmsg_ifinfo when something changed in the device's state or
configuration. Among these notifications are:

® \When a notification is received on the netdev_chain notification chain. RTnetlink registers to theneTDev_chain chain introduced
in the previous section and replays the naotifications it receives.

® \When a disabled device is enabled or vice versa (seeneTDev_state_change).

® \whena flag innet_device->flags is changed, for example, via a user configuration command (sealev_change_flags).

netplugd is a daemon, part of thenet-utils package, that listens to these notifications and reacts according to a user configuration file. See
the netplugs manpage for details.

K==1 wexT

file:///C:/DOCUME~1/%B9%DA%B9%AE%B1%B9/LOCALS~1/Temp/Oreilly,%20Understanding%20Linux%20Network%20Internals%20(2005)%20Bbl%20Lotb.chm/0596002556/9961536.html

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

=2 wEXT

8.9. Device Registration

Device registration, whose basic model is shown in Fiqure 8—1(a], does not consist simply of inserting thenet_device structure into the
global list and hash tables introduced in the section "brqanization of net_device Structuresl" It also involves the initialization of some
parameters in the net_device structure, the generation of a broadcast notification that will inform other kernel components about the
registration, and other tasks. Devices are registered with register_netdev, which is a simple wrapper aroundregister _netdevice. The
wrapper mainly takes care of locking and name completion as described earlier in the section 'lAIIocatinq net device Structuresl." The
lock protects the dev_base list of registered devices.

8.9.1. register_netdevice Function

As described in , register_netdevice starts device registration and callsnet_set_todo, which ultimately asksnetdev_run_todo
to complete the registration.

Here are the main tasks carried out by register_netdevice:

® |nitialize some of the net_device's fields, including the ones used for locking, listed in the section."

® \When the kernel has support for the Divert feature, allocate a configuration block needed by the feature and link it to
dev->divert. This is taken care of byalloc_divert_blk.

® |fthe device driver had initialized dev->init, execute that function. See the section

® Assign the device a unique identifier with dev_new_index. The identifier is generated using a counter that is incremented
every time a new device is added to the system. This counter is a 32-bit variable, so dev_new_index includes anif clause to
handle wraparound as well as another if clause to handle the possibility that the variable hits a value that was already
assigned.

® Append net_device to the global listdev_base and insert it into the two hash tables described in the section
het device StructureJ." Even though adding the structure at the head ofdev_base would be faster, the kernel has a chance to
check for duplicate device names by browsing the entire list. The device name is checked against invalid names with
dev_valid_name.

® Check the feature flags for invalid combinations. For example:

O scather/Gather-DMA is useless without L4 hardware checksumming support and is therefore disabled in that
situation.

O Tcp Segmentation Offload (TSO) requires Scather/Gather-DMA, and is therefore disabled when the latter is not
supported.

See for more details on L4 checksums.

® Set the _ _LINK_STATE_PRESENT flag in dev->state to make the device available (visible and usable) to the system. The
flag is cleared, for example, when a hot-pluggable device is unplugged. or when a system with support for power

management goes into suspend mode. See the section "RQueuing Discipline Statq.

The initialization of this flag does not trigger any action; instead, its value is checked in well-defined cases to filter out illegal
requests or to get the device state.

his document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

® |nitialize the device's queuing discipline , used by Traffic Control to implement QoS, withdev_init_scheduler. The queuing

discipline defines how egress packets are queued to and deq e, d_aﬂngs_h_omj many packets can
be queued before starting to drop them, etc. See the section "Queuing Discipline Interfacqg' in Chapter 11.

® Notify all the subsystems interested in device registration via the netdev_chain notification chain. Notification chains are
described in .

When neTDev_run_todo is called to complete the registration, it just updatesdev->reg_state and registers the device in thesysfs

filesystem.

Aside from memory allocation problems, device registration can fail only if the device name is invalid or is a duplicate, or when dev->init

fails for some reason.

=2 wExT

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

=2 wEXT

8.10. Device Unregistration

To unregister a device, the kernel and the associated device driver need to undo all the operations that were executed during its
registration, and more:

others. See the section "

Disable the device with dev_close, described in the section ‘lEnainnq and Disabling a Network Devicel'

Release all the allocated resources (IRQ, /0O memory, I/O port, etc.)

Remove the net _device structure from the global listdev_base and the two hash tables introduced in the section
pf net device Structures{."

Once all the references to the structure have been released, free the net_device data structure, the driver's private data
structure, and any other memory block linked to it (see . The net_device structure is freed withfree_netdev. When
the kernel is compiled with support for sysfs, free_netdev lets it take care of freeing the structure.

Remove any file that may have been added to the /proc and /sys filesystems.

Note that whenever therﬂncy between devices, unregistering one of them may force the unregistration of all (or part) of the
irtual Deviceg

{' for an example.

Three function pointers in net_device (represented by a variable nameddev) come into the picture when unregistering a device:

dev->stop

This function pointer is initialized by the device driver to one of its local routines. It is invoked bydev_stop when disabling a

device (see the section "Enahling and Disabling a Network Devicg). Common tasks handled here include stopping the egress

%]
queue with netif_stop_queue,— releasing hardware resources, stopping any timers used by the device driver, etc.

* . . .
[l netif_xxx_queue routines are described inChapter 11.

Virtual devices dg not need to release any hardware resources, but they may need to take care of other, high-level issues.

See the section

dev->uninit

This function pointer is also initialized by the device driver to one of its local routines. Only a few, tunneling virtual devices
currently initialize it; they point it to a routine that mainly takes care of reference counts.

dev->destructor

When used, this is normally initialized to free_netdev or to a wrapper around it. However,destructor is not commonly
initialized; only a few virtual devices use it. Most device drivers call free_netdev directly after unregister_netdevice.

shows when and in what order these three routines are invoked.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

8.10.1. unregister_netdevice Function

unregister_netdevice accepts one parameter, the pointer to thenet_device structure it is to remove:

int unregister_netdevice(struct net_device *dev)

In , we will see in detail how the networking code uses software interrupts (softirgs) to handle packet transmission
(net_tx_action) and reception (net_rx_action). You can look at those functions, for now, as the interface between device drivers and
upper-layer protocols. Two calls to synchronize_net are used to synchronize unregister_netdevice with the receive engine (net_rx_action)
so that it will not access old data after it has been updated by unregister_netdevice.

Other tasks taken care of by unregister_netdevice include:

® i the device was not disabled, it has to be disabled first with dev_close (see the section tnabling and Disabling a Networkl

Devicq").

® The net device instance is then removed from the global listdev_base and the two hash tables introduced in the section

“brganization of net_device Structureg" Note that this is not sufficient to forbid kernel subsystems from using the device: they

may still hold a pointer to the net_device data structure. This is whfnet device uses a reference count to keep track of how

many references are left to the structure (see the section "Reference Countg").
® Al the instances of queuing discipline associated with the device are destroyed with dev_shutdown.

L\ NETDEV_UNREGISTER noatification is sent on thenetdev_chain notification chain to let other kernel components know
about it. See the section "Device Registration Status Notification}"

® User space has to be notified about the unregistration. For instance, in a system with two hﬁg_s;hﬂmlgmmaccess
,%t, this notification could be used to start the secondary device. See the section "Device Registration Status

Notification.”

° Any data block linked to the net_device structure is freed. For example, the multicast datadev->mc_list is removed with
dev_mc_discard, the Divert block is removed withfree_divert_blk, etc. The ones that are not explicitly removed in
unregister_netdevice are supposed to be removed by the function handlers that process the notifications mentioned in the
previous bullet.

® \Whatever was done by dev->init in register_netdevice is undone here with dev->uninit.

® rcatures such as bonding allow you to group a set of devices together and treat them as a single virtual device with special
characteristics. Among those devices, one is often elected master because it plays a special role within the group. For
obvious reasons, the device being removed should release any reference to the master device: having dev->master
non-NULL at this point would be a bug. If we stick to the bonding example, the dev->master reference is cleared thanks to the
NEtdEV_UNREGISTER notifications sent just a few lines of code earlier.

Finallf net set todo is called to letnet_run_todo complete the unregistration, as described in the section [Split Operations:

pbetdev_run todd," and the reference count is decreased withdev_put. net_run_todo unregisters the device fromsysfs, changes

dev->reg_state to NETREG_UNREGISTERED, waits until all the references are gone, and completes the unregistration with a call to
dev->destructor.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

8.10.2. Reference Counts

net_device structures cannot be freed until all the references to it are released. The reference count for the structure is kept idev->refcnt,
which is updated every time a reference is added or removed, respectively, with dev_hold and dev_put.

When a device is registered with register_netdevice, dev->refcnt is initialized to 1. This first reference is therefore kept by the kernel code
that is responsible for the network devices database. This reference will be released only with a call to unregister_netdevice. This means
that dev->refcnt will never drop to zero until the device is to be unregistered. Therefore, unlike other kernel objects that are freed by the

Xxx_put routine when the reference count drops to zero,net_device data structures are not freed until you unregister the device from the
kernel. We saw already the conditions that lead to the unregistration of a device in the section "When a Device Is Unregistered"

In summary, the call to dev_put at the end of unregister_netdevice is not sufficient to make anet_device instance eligible for deletion: the

kernel still needs to wait until all the references are released. But because the device is no longer usable after it is unregistered, the
kernel needs to notify all the reference holders so that they can release their references. This is done by sending a
NEtdEV_UNREGISTER noatification to the netdev_chain notification chain. This also means that reference holders should register to the
notification chain; otherwise, they will not be able to receive such notifications and take action accordingly.

As we mentioned in the section “lSpIit Operations: netdev_run todd“ unregister_netdevice starts the unregistration process and lets

netdev_run_todo complete it.netdev_run_todo calls netdev_wait_allrefs to indefinitely wait until all references to the net_device structure
have been released. The next section goes into detail on the internals of neTDev_wait_allrefs.

8.10.2.1. Function netdev_wait_allrefs

netdev_wait_allrefs, depicted in, consists of a loop that ends only when the value ofdev->refcnt drops to zero. Every second it
sends out a NEtdEV_UNREGISTER notification, and every 10 seconds it prints a warning on the console. The rest of the time it sleeps.
The function does not give up until all the references to the input net_device structure have been released.

Two common cases that would require more than one notification to be sent are:

A bug

For example, a piece of code could hold references to net_device structures, but it may not release them because it has not
registered to the netdev_chain notification chain, or because it does not process notifications correctly.

A pending timer

For example, suppose the routine that is executed when some timer expires needs to access data that includes references to
net_device structures. In this case, you would need to wait until the timer expires and its handler hopefully releases its
references.

Note that since neTDev_run_todo is started byunregister_netdevice when it releases the lock, as described in the section
Dperations: netdev_run todd,“ it means that whoever started the unregistration, most probably the driver, is going to sleep waiting for
neTDev_run_todo to complete its job.

When the fupcti ification, it also processes the pending link state change events. Link state change events are covered in

the section "Link State Change Detectior]." Here, suffice it to say that when a device is being unregistered, the kernel does not need to

do anything when informed about a link state change event on the device. When the current device state is that the device is about to be
removed, events associated with devices being removed are associated with no-ops when the link state change event list is processed,

his document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

so the result is that the event list is cleared and only events for other devices are actually processed. This is just an easy way to clean up
the link state change queue from events associated with a device about to disappear.

=2 wEXT

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

K==a

8.11. Enabling and Disabling a Network Device

Once a device has been registered it is available for use, but it will not transmit and receive traffic until it is explicitly enabled by the user (or
a user-space application). Requests to enable a device are taken care of by dev_open, defined innet/core/dev.c. Enabling a device consists
of the following tasks:

® Call dev->open if it is defined. Not all device drivers initialize this function.

® Setthe __Link_sTATE_START flag in dev->state to mark the device as up and running.

Figure 8-6. Function netdev_wait_allrefs

Yos Is it time for 3

* new notification?
LOCK
{rini_lock) *Hu
J Take a litle nap
Send notification
(MET_DEV_UNREGISTER)

*Hu

Yes Any finkwatch
event pending on the Is it time for a Ves
device! new warning!
Process linkwatch event No No
event [ist Print warning
-
UNLOCK

(rtnl_unlock)
|

his document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

® Set the irr_up flag in dev->flags to mark the device as up.

%
® Call dev_activate to initialize the egress queuing discipline used by Traffic Control, and start the watchdog tim If there is no user
configuration for Traffic Control, assign a default First In, First Out (FIFO) queue.

[see for more details on the watchdog timer.

® Send anewdev_up notification to the netdev_chain Notification chain to notify interested kernel components that the device is now
enabled.

While a device needs to be explicitly enabled, it can be disabled either explicj d or implicitly by other events. For
example, before a device is unregistered, it is first disabled (see the section "Device Unregistratior]"). Network devices are disabled with

dev_close. Disabling a device consists of the following tasks:

® Send a NETDEV_GOING_DOWN Notification to the netdev_chain Notification chain to notify interested kernel components that the device is
about to be disabled.

® Call dev_deactivate to disable the egress queuing discipline, thus making sure the device cannot be used for transmission anymore,
and stop the watchdog timer because it is not needed anymore.

® Clear the __Link_sTaTe_sTarT flag in dev->state to mark the device as down.

® |f a polling action was scheduled to read ingress packets on the device, wait for that action to complete. Because the _
_LINK_STATE_START flag has been cleared, no more receive polling will be scheduled on the device, but one could have been pending
before the flag was cleared. See EhaEter 1Q for more detail on receive polling.

® Call dev->stop if it is defined. Not all device drivers initialize this function.
® Clear the irr_u flag in dev->fiags to mark the device as down.

® Send aneev_pown notification to the netdev_chain Notification chain to notify interested kernel components that the device is now
disabled.

=2

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

K==1 wExT

8.12. Updating the Device Queuing Discipline State

We saw in the section "bueuinq Discipline Statel" which flags can be set indev->state to define the device queuing discipline state. In this

section, we will see how two of those flags are used to handle power management and link state changes.

8.12.1. Interactions with Power Management

When the kernel has support for power mt?aggmgm, NIC device drivers can be Totif, the system goes into suspend mode, when
it is resumed, etc. We saw in the section "Example of PCI NIC Driver Registration)' in _Chazter ; how the suspend and resume function pointers
of the pci_driver Structures are initialized depending on whether the kernel has support for power management. This is, for example, how the
drivers/net/3c59x.c device driver initializes itspci_driver instance:

static struct pci_driver vortex_driver = {

.name "3c59x",
.probe vortex_init_one,
.remove _ _devexit_p(vortex_remove_one),

.id_table vortex_pci_tbl,
#ifdef CONFIG_PM

.suspend vortex_suspend,

.-resume vortex_resume,
#endif

3

When the system goes into suspend mode, the suspend routines provided by device drivers are executed to let drivers take action
accordingly. Power management state changes do not affect the registration status dev->reg_state, but the device statedev->state Needs to be
changed.

8.12.1.1. Suspending a device

When a device is suspended, its device driver handles the event, by calling, for example, the pci_driver's suspend routine for PCI devices.
Besides the driver-specific actions, a few additional actions must be performed by every device driver:

® Clear the __Link_sTaTE_PreseNT flag from dev->state because the device is temporarily not going to be operational.
® |f the device was enabled, disable its egress queue with nellfislopfqueue to prevent the device from being used to transmit any
other packet. Note that a device that is registered is not necessarily enabled: when a device is recognized, it gets assigned to its

device driver by the kernel and is registered; however, the device will not be enabled (and therefore usable) until an explicit user
configuration requests it.

[see for more detail on the routines used to start, stop, and restart the egress queue.

These tasks are succinctly implemented by netit_device_detach:

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

static inline void netif_device_detach(struct net_device *dev)

{
if (test_and_clear_bit(_ _LINK_STATE_PRESENT, &dev->state) &&
netif_running(dev)) {
netif_stop_queue(dev);

8.12.1.2. Resuming a device

When a device is resumed, its device driver handles the event, by calling, for example, the pci_driver's resume routine for PCI devices. Again, a
few tasks are shared by all device drivers:

® Setthe __LNk_STATE_PRESENT flag in dev->state because the device is now available again.
® |f the device was enabled before being suspended, re-enable its egress queue with netit_wake_queve, and restart a watchdog timer
used by Traffic Control (see the section "Watchdog timel" in Chapter 17).

These tasks are implemented by netif_device_attach:

static inline void netif_device_attach(struct net_device *dev)
{
if (test_and_set_bit(_ _LINK_STATE_PRESENT, &dev->state) &&
netif_running(dev)) {
netif_wake_queue(dev);
_ _netdev_watchdog_up(dev);

8.12.2. Link State Change Detection

When an NIC device driver detects the presence or absence of a carrier or signal, either because it was notified by the NIC or via an
explicit check by reading a configuration register on the NIC, it can notify the kernel with netit_carrier_on and netit_carrier_off, respectively. These
routines are to be called when there is a change in the carrier status; therefore, they do nothing when they are invoked inappropriately.

Here are a few common cases that may lead to a link state change:

® A cable is plugged into or unplugged from an NIC.

® The device at the other end of the cable is powered down or disabled. Examples of devices include hubs, bridges, routers, and
PC NICs.

When netit_cariier_on is called by a device driver that has detected the carrier on one of its devices, the function:

® Clears the __LINK_STATE_NOCARRIER flag from dev->state.

® Generates a link state change event and submits it for processing with linkwatch_fire_event. See the section Bcheduling and

rocessing link state change eventd."

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

® |f the device was enabled, starts a watchdog timer. The timer is used b affic Control to detect whether a transmission fails and
gets stuck (in which case the timer times out). See the section in Chapter 11.
static inline netif_carrier_on(struct net_device *dev)
{
if (test_and_clear_bit(_ _LINK_STATE_NOCARRIER, &dev->state))
linkwatch_fire_event(dev);
if (netif_running(dev)
_ _netdev_watchdog_up(dev);

When netit_carrier_off is called by a device driver that has detected the loss of a carrier from one of its devices, the function:

® Sets the __LINK_STATE_NOCARRIER flag in dev->state.

® Generates a link state change event and submits it for processing with linkwatch_fire_event. See the section Bcheduling and

l)rocessinq link state change eventd."

Note that both routines generate a link state change event and submit it for processing with iinkwatch_fire_event, described in the next section.

static inline netif_carrier_off(struct net_device *dev)

{
if (Itest_and_set_bit(_ _LINK_STATE_NOCARRIER, &dev->state))

linkwatch_fire_event(dev);

8.12.2.1. Scheduling and processing link state change events

Link state change events are defined with m_event Structures. It's a pretty simple structure: it includes just a pointer to the associategkt_device
structure and another field used to link the structure to the global list of pending link state change events, weventist. The list is protected by
the iweventist_lock lock.

Note that the w_event Structure does not include any parameter to distinguish between detection and loss of carrier. This is because no
differentiation is needed. All the kernel needs to know is that there was a change in the link status, so a reference to the device is
sufficient. There will never be more than one w_event instance in weventist for any device, because there's no reason to record a history or
track changes: either the link is operational or it isn't, so the link state is either on or off. Two state changes equal no change, three
changes equal one, etc., so new events are not queued when the device already has a pending link ﬁf flf?ge event. The condition can
be detected by checking the __tink_sTaTe_LinkwaTcH_PENDING flag in dev->state, @S shown in the flowchart infigure 8-1

Figure 8-7. linkwatch_fire_event function

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

Any linkwatch
event pend ingrfur —
this device!

Mo Iweventlist

LOCK

—‘F-*- n-__“

- -
‘ L ; L
= =

Add new event to global .
aventlist g Sk o] struct hw_event

-
-- f-
L e
o

UNLOCK
(lweventlist_lock)

'

s processing Yes
= - routine already scheduled——
for execution!?

luu

semmmamead Schedule it

v

kevent_wq

FEsss S E s S s RS S S S eSS S s SRR EEREREEEES
'
&+
L

wirk_struct

ELEE L L E L

-~
-

Once the w_event data structure has been initialized with a reference to the rightet_device instance and it has been added to theweventist list,
and the __uink_sTaTE_LinkwATCH_PENDING flag has been set in dev->state, linkwatch_fire_event Needs to launch the routine that will actually process the
elements on the weventist list. This routine, iinkwatch_event, is not called directly. It is scheduled for execution by submitting a request to the
kevenTD_wq Kernel thread: awork_stuct data structure is initialized with a reference to theinkwatch_event routine and is submitted to kevenTo_wa.

To avoid having the processing routine iinkwatch_event run too often, its execution is rate limited to once per second.

linkwatch_event processes the elements of theiweventiist list with linkwatch_run_queue, under the protection of therni lock described in the section
"Lockind." Processing w_event instances consists simply of:

® Clearing the __LINK_STATE_LINKWATCH_PENDING flag 0N dev-state.

® Sending a NEwEv_cHANGE Notification on the netdev_chain Notification chain

® Sending an rrv_NeEwLink Notification to the rrvere_Link RTnetlink group. See the section ‘anetIink link notificationsl."

The two notifications are sent with netdev_state_change, but only when the device is enabled fev->flags & IFF_uR: N0 one cares about link state
changes on disabled devices.

his document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

8.12.2.2. Linkwatch flags

The code in net/core/linkwatch.c defines two flags that can be set in the global variableinkwatch_flags:

LW_RUNNING

When this flag is set, inkwatch_event has been scheduled for execution. The flag is cleared byinkwatch_event itself.

LW_SE_USED

Because weventist usually has at most one element, the code optimizesiw_event data structure allocations by statically allocating one
and always using it as the first element of the list. Only when the kernel needs to keep track of more than one pending event
(events on more than one device) does it allocate additional w_event Structures; otherwise, it simply recycles the same one.

K==a wExT

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

K==1 wExT

8.13. Configuring Device-Related Information from User Space

Different tools can be used to configure or dump the current status of media and hardware parameters for network devices. Among them
are:

® ifconfig and mii-tool, from the net-tools package
® cthtool, from the ethtool package

® ip link, from the IPROUTE2 package

You can refer to the associated manpages for detai mands. The section describes the interface
between ethtool and the kernel, and the section Media Independent Interface (MII]' describes the interface between mii-tool and the kernel.
Later chapters return to the ifconfig and ip commands for the L3 configuration.

is a high-level overview of what we will cover in these sections. The figure does not show the locking details. Suffice it to say
that both dev_ethtool and the call todev->do_iocti are protected with the routing Netlink lock (see the sectio ").

8.13.1. Ethtool

This section gives an overview of ethtool along with its relationship tomii-tool and the do_ioct function pointer innet_device.

The net_device data structure includes a pointer to a VFT of typethtool_ops. The latter structure is a collection of function pointers that can be
used to both read and initialize a bunch of parameters on the net_device Structure, or to trigger an action (i.e., restart auto-negotiation).

Not all device drivers currently support this feature; and those that do support it don't always support all of its functions. The initialization of
dev->ethtool_ops iS normally done in theprobe routine introduced at the beginning of the chapter.

The interface between user space and the functions is the old iocti System caII. shows how the user-space commandethtool ends
up invoking dev_ethtool ON the kernel side. The figure also shows the skeleton of dev_ethtool, and_how this function interfaces to the generic

Media Independent Interface Kernel library. We will address the last point in the section "&edia Inde;endent Interface ;MII "

Without going into too much detail on how the kernel dispatches ioct cOmmands to the right handlers, I'll just say that the request first
arrives to inet_ioct, Which invokesdev_ioctl, which ends up callingdev_ethtool. (YOu can browse the code and see how it works step by step; the

code is pretty clear.)

Figure 8-8. ioctl interface for device configuration

Return - ENOPERM

Return - ENODEV

ethtool mii-tools

A & SIOCGMIPHY

SIOCETHIOOL

—

<>

inet_ioct!

s
y_ v

A
dev_joctl

W

SIOCETHTOOL |
\J Y
dev_ethtool

a0 Supenuser?

#m
Na

4—— lodevice prasent?

*‘Ees

Does the driver

Ho

support ethtood?

&'ﬂﬁ

e
provide a begin
function?

¥es

Executeit

an

Execute the ethtool XXX
helper routine (*)

v

Daes the driver
provide a complete
function

¥es

i BErecute it |

SIOCGMITPHY
SIOCGMIIRG
SIDCGMIIRG

generic_mii_ioctl

Does the device
support do_joctl?

|

Yfog

Return -E0PNOTSUPP

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

No |-]

Rturmn retum-coda
from (*)

dev_ethtool runs with the routing Netlink lock held (see the section"). The function starts with a few sanity checks. Then, based on the
command type received from user space via an ireq data structure, it invokes the right helper routinettool_xxx, which consists of a simple
wrapper around a dev->ethtool_ops->xxx Virtual function. Because a driver that supports Ethtool does not necessarily support all thethtool_ops

functions, the helper routine can return -eopnotsupp (Operation not supported). This is not shown i ure 8-9.

Note also that dev_ethtool calls the ethtool_ops functions begin and complete, respectively, before and after the execution of theethtool_xx support
routine. Those functions, however, are optional, and therefore are invoked only if provided by the device driver. Not many drivers use
them, and it is also possible for a driver to use only one. Some PCI NIC device drivers use them to power up the NIC before sending it the
command (if the NIC is powered down) and then to power it down again.

The skeleton of an ethtool_xxx helper routine is pretty simple: move data from user space to kernel space (or vice versa, if it is a "get"
command), and call one of the ethtool_ops functions.

8.13.1.1. Drivers that do not support ethtool

When dev_ethtool is called to process a command for a device whose driver does not support Ethtool, it tries to let the driver process the
command via the dev->do_ioctl function. It is possible that the driver does not support the latter either. In such a casejev_ethtool returns

-EOPNOTSUPP.

It is also possible for do_ioct to issue a call back to dev_ethtool (as shown with a dotted line irfgigure 8-§): this is done, for instance, by virtual

devices that simply want to let the device driver of the associated real device take care of the command (see vian_dev_ioctl in
net/8021g/vlan_dev.c for an example).

8.13.2. Media Independent Interface (Mll)

MIl is an IEEE standard specification that describes the interface between network controller chips and physical media chips. With this
interface, the user can, for instance, enable, disable, and configure auto-negotiation. Not all NICs have it.

The most common tool used to interact with MIl on Linux is mii-tools. Like ethtool, this interacts with the kernel viaioct, as shown in
. The kernel provides a set ofioctt coOmmands to handle MIl. These commands consist mainly of read and write operations on specific
NIC registers.

As shown in , the ioct commands are passed to thedev->do_iocti function provided by the device driver. The function can handle them
in one of two ways:

® Recognize only the three Mll ioct commands and process them with device driver code. This is the most common case.

® Rely on the kernel MIl library drivers/net/mii.c by processing the input command withgeneric_mii_ioctl.

It is also possible, especially for virtual devices , to have dev->do_iocti functions that recognize and process other commands besides the Mll
ones.

his document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

The following is a common model for the dev->do_iocit function for those drivers that rely on the kernel Ml library and do not implement special
commands:

if ('netif_running(dev)) {

return -EINVAL,;
}
<lock private data structure>
err = generic_mii_ioctl(...);
<unlock private data structure>
return err;

Note in that an ethtool command may end up invoking a routine from the MII kernel library (for example, to restart
auto-negotiation).

K==1 wExT

file:///C:/DOCUME~1/%B9%DA%B9%AE%B1%B9/LOCALS~1/Temp/Oreilly,%20Understanding%20Linux%20Network%20Internals%20(2005)%20Bbl%20Lotb.chm/0596002556/9961536.html

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

=2 wEXT

8.14. Virtual Devices

In the section "kirtual DeviceJ“ in bhagter d we saw how virtual devices differ from real ones with regard to initialization. As far as
registration is concerned, virtual devices need to be registered and enabled just like real ones, to be used. However, there are
differences:

® \virtual devices sometimes call register_netdevice and unregister_netdevice rather than their wrappers, and take care of
locking by themselves. They may need to handle locking to keep the lock for a little longer than a real device does. With this
approach, the lock could also be misused and hold longer than needed, by making it protect additional pieces of code
(besides register_netdev) that could be protected in other ways.

® Real devices cannot be unregistered (i.e., destroyed) with user commands; they can only be disabled. Real devices are
unregistered at the time their drivers are unloaded (when loaded as modules, of course). Virtual devices, in contrast, may be
created and unregistered with user commands, too. Whether this is possible depends on the virtual device driver's design.

We also saw in the sections "I'eqister netdevice Functior{“ and ‘bevice Unreqistratiori" that virtual devices, unlike most real ones, use
dev->init, dev->uninit, and dev->destructor. Because most virtual devices implement some kind of more or less complex logic on top of
real devices, they use dev->init and dev->uninit to take care of extra initialization and cleanup.dev->destructor is often initialized to
free_netdev (as shown in) so that the driver does not need to explicitly call the latter function after unregistration.

We saw in the section "Device Initializatior]" how the initialization of net_device structures is split between the device driver'sprobe routine

and generic setup routines. Because virtual devices do not have a probe routine, the classification in[Tables 8-4 and B-3 does not apply
to them.

Virtual device drivers register to the neTDev_chain notification chain described in the section bevice Registration Status Notificatior{'
because most virtual devices are defined on top of real devices, so changes to real devices affect virtual ones, too. Let's see two
examples:

Bonding

Bonding is a virtual device that allows you to bundle a set of interfaces and make them look like a single one. Traffic can be
distributed hetween the set of interfaces using different algorithms, one of which is a simple round robin. Let's take the
example in . When eth0 goes down, the bonding interfacebond0 needs to know about it to take it into account
when distributing traffic between the real devices. In case ethl went down too, bond0 would have to be disabled because
there would not be any working real device left.

VLAN interfaces

Li supports the 802.1Q protocol and allows you to define Virtual LAN (VLAN) interfaces. Consider the example in
B-9(b], where the user has defined two VLAN interfaces onethO. When ethO goes down, all virtual (VLAN) interfaces must go
down, too.

|Vhis document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to reqgister it. Thanks

Figure 8-9. a) Bonding interface b) VLAN interfaces

(a) (b)

bond0 ethi. 1 eth0.2

ethd I ethi I ethd

=2 wEXT

his document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

=2 wEXT

8.15. Locking

We saw in the section "brganization of net_device Structureg' that the dev_base list and the two hash tablesdev_name_head and

dev_name_index are protected by thedev_base_list lock. That lock, however, is used only to serialize accesses to the list and tables, not
to serialize changes to the contents of net_device data structures.net_device content changes are taken care of by the Routing Netlink

*
semaphore (rtnl_sem), which is acquired and released withrtnl_lock and rtnl_unlock, respectively.— This semaphore is used to serialize
changes to net_device instances from:

[l Other routines can also be used to acquire and release the semaphore. Seénclude/linux/rtnetlink.h for more
details.

Runtime events

For example, when the link state changes (e.g., a network cable is plugged or unplugged), the kernel needs to change the
device state by modifying dev->flags.

Configuration changes

When the user applies a configuration change with commands such as ifconfig and route from the net-tools package, orip
from the IPROUTEZ2 package, the kernel is notified viaioctl commands and the Netlink socket, respectively. The routines
invoked via these interfaces must use locks.

The net_device data structure includes a few fields used for locking, among them:
ingress_lock

queue_lock

Used by Traffic Control when dealing with ingress and egress traffic scheduling, respectively.
xmit_lock

xmit_lock_owner

Used to synchronize accesses to the device driver hard_start_xmit function.

For more details on these locks, please refer t.
=1 NEXT ®

his document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

=2 wEXT

8.16. Tuning via /proc Filesystem

There are no files in/proc that can be used to tune the device registration and unregistration tasks.

=2 wEXT

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

¢ ey | uexr 9

8.17. Functions and Variables Featured in This Chapter

summarizes the functions, data structures, and variables introduced in this chapter.

Table 8-4. Functions, data structures, and variables introduced in this chapter

Name Description
Functions
alloc_netdev alloc_ Allocate and partially initialize anet_device structure.

xxxdev wrappers

free_netdev Frees anet_device structure.
dev_alloc_name Completes a device name.
register_netdevice, Register and unregister a network device. Thexxx_neTDev APIs are wrappers for thexxx_neTDevice APIs.

register_netdev

unregister_netdevice,

unregister_netdev

XXx_setup Helper routines used to initialize part of the net_device structure. There is one for each of the most common
interface types.

dev_hold Increment and decrement the reference count on anet_device structure.
dev_put
netif_carrier_on Called when the carrier on a device is detected, lost, or to be read, respectively.

netif_carrier_off

netif_carrier_ok

netif_device_attach L) .
- - Called when a device is plugged into and unplugged from the system, respectively. Called also when the

netif_device_detach system goes into suspend mode and then resumes.

netif_start_queue Called to start, stop, and check the status of the device egress queue, respectively.
netif_stop_queue

netif_queue_stopped

dev_ethtool Processes ioctl commands from the ethtool user-space command.

Variables

his document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

Name Description

dev_base dev_base is a flat list of registered network devices.dev_xxx_head are two hash tables fomet_device
structures, indexed on the device's name and ID. The previous three structures are protected by the

dev_name_head dev_base_lock lock.

dev_index_head

dev_base_lock

lweventlist lweventlist is a list of pendinglw_event events. The list is protected bylweventlist_lock.

Iweventlist_lock

Data structure

Iw_event Link state change event.

¢ ey | next

file:///C:/DOCUME~1/%B9%DA%B9%AE%B1%B9/LOCALS~1/Temp/Oreilly,%20Understanding%20Linux%20Network%20Internals%20(2005)%20Bbl%20Lotb.chm/0596002556/9961536.html

|Vhis document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

=2 wEXT

8.18. Files and Directories Featured in This Chapter

shows where the files and directories mentioned in this chapter are located in the kernel source tree.

Figure 8-10. Files and directories featured in this chapter

Root
(usually fuse/src i)
drivers net include
l l
| | I
block net irda core linux
genh.c ' | e devicec dev netdevice.h
- linkwatch.c ith
mil.c airo.c arcnet.c miih
airg_es.c

e prey | NEXT B

file:///C:/DOCUME~1/%B9%DA%B9%AE%B1%B9/LOCALS~1/Temp/Oreilly,%20Understanding%20Linux%20Network%20Internals%20(2005)%20Bbl%20Lotb.chm/0596002556/9961536.html

his document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

=2 wEXT

Part Ill: Transmission and Reception

The aim of these five chapters is to put into context all the features that can influence the path of a packet inside
the kernel, and to give you an idea of the big picture. You will see what each subsystem is supposed to do and
when it comes into the picture. This chapter will not touch upon routing, which has a large chapter of its own, or
firewalling, which is beyond the scope of this book.

In general usage, the term transmission is often used to refer to communications in any direction. But in kernel
discussions, transmission refers only to sending frames outward, whereas reception refers to frames coming in. In
some places, | use the terms ingress for reception andegress for transmission.

Forwarded packetswhich both originate and terminate in remote systems but use the local system for
routingconstitute yet another category that combines elements of reception and transmission. Some aspects of
forwarding are presented in ; a more thorough discussion appears in Parts V and VII.

We saw in the difference between the termsframe, datagram, and packet. Because the chapters in Part
Il discuss the interface between L2 and L3, both the terms frame and packet would be correct in most cases.

Even though I'll mostly use the term frame, | may sometimes use packet when referring to a data unit with no
reference to any particular layer. The word packet is the one most commonly seen in the code we are discussing.

Here is what we will see in each chapter of Part IlI:

Interrupts and Network Drivers

In this chapter, you will be given an overview on both bottom half handlers and kernel synchronization
mechanisms.

Frame Reception

This chapter goes on to describe the path through the L2 layer of a received frame.

Frame Transmission
does the same a, but for a transmitted (outgoing) frame.

General and Reference Material About Interrupts

This is a repository of reference material for the previous chapters.

Protocol Handlers

This chapter will conclude this part of the book with a discussion of how ingress frames are handed to
the right L3 protocol receive routines.

file:///C:/DOCUME~1/%B9%DA%B9%AE%B1%B9/LOCALS~1/Temp/Oreilly,%20Understanding%20Linux%20Network%20Internals%20(2005)%20Bbl%20Lotb.chm/0596002556/9961536.html
file:///C:/DOCUME~1/%B9%DA%B9%AE%B1%B9/LOCALS~1/Temp/Oreilly,%20Understanding%20Linux%20Network%20Internals%20(2005)%20Bbl%20Lotb.chm/0596002556/9961536.html

NEXT B

his document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

=2 wEXT

Chapter 9. Interrupts and Network Drivers

The previous chapters gave an overview of how the initialization of core components in the networking code is taken care of. The
remainder of the book offers a feature-by-feature or subsystem-by-subsystem analysis of how networking is implemented, why features
were introduced, and, when meaningful, how they interact with each other.

hi apter begins an explanation of how packets travel between the L2 or driver layer and the IP or network layer described in detail in
. I'll be referring a lot to the data structures introduced i andf, so you should be ready to turn back to those chapters as
needed.

Even before the kernel is ready to handle the frame that is coming from or going to the L2 layer, it must deal with the subtle and complex
system of interrupts set up to make the handling of thousands of frames per second possible. That is the subject of this chapter.

A couple of other general issues affect the discussion in this chapter:

® \When the Linux kernel is compiled with support for symmetric multiprocessing (SMP) and runs on a multiprocessor system,
the code for receiving and transmitting packets takes full advantage of that power. The data structures involved are designed
with that goal in mind. In this chapter, we will look at one aspect of SMP support in particular: the differences between the
new softirqg queues and the old backlog queue.

® \When talking about the ingress path, | will cover both the old interface, which is still used by most network drivers, and the
new interface, called NAPI, which can significantly increase performance under medium to high loads.

In this chapter, you will be given an overview on both bottom half handlers and kernel synchronization mechanisms. However, for a more
detailed discussion, you can refer to the other two O'Reilly books, Understanding the Linux Kernel and Linux Device Drivers.

=2 wEXT

file:///C:/DOCUME~1/%B9%DA%B9%AE%B1%B9/LOCALS~1/Temp/Oreilly,%20Understanding%20Linux%20Network%20Internals%20(2005)%20Bbl%20Lotb.chm/0596002556/9961536.html

his document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

=2 wEXT

9.1. Decisions and Traffic Direction

The paths taken by packets through the network stack differ for received, transmitted, and forwarded packets (se.
Differences in processing also depend on the features compiled into the kernel and how they are configured. Finally, the devices
involved can make a difference because different devices support different features.

Figure 9-1. Traffic directions

Application layer L5+ A

L4

13 Routing

i
12 (MAC) Brdging |

L1 Y Y

INPUT FORWARD OUTPUT

Virtual devices, such as the familiar loopback interface (o), tend to use shortcuts inside the network stack. These devices are software
only. For instance, the loopback interface is not associated with any piece of hardware, but bonding interfaces are associated indirectly
with one or more network cards. Some virtual interfaces can therefore dispense with some of the limitations found with hardware (such
as the Maximum Transmission Unit, or MTU) and thus speed up performance.

gives an a of the big picture. It is certainly very sketchy; for instance, it the does not show all of the conditions that can lead
%

to dropping a frame.= The figure includes extra details about the ingress path; you can find more detailed graphs about the egress path
in Parts V, VI, and VII. We will go through all the links that should be part of the graph in the rest of this chapter.

[l Frames can be dropped for a variety of reasons: no memory in the input queue, no memory in the output queue
(only for forwarded or transmitted frames), no route to destination, firewall policy, a failed sanity check, etc.

=2 NEXT

file:///C:/DOCUME~1/%B9%DA%B9%AE%B1%B9/LOCALS~1/Temp/Oreilly,%20Understanding%20Linux%20Network%20Internals%20(2005)%20Bbl%20Lotb.chm/0596002556/9961536.html

NEXT B

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

9.2. Notifying Drivers When Frames Are Received

In , | mentioned that devices and the kernel can use two main techniques for exchanging data: polling and interrupts. | also said
that a combination of the two is also a valid option. This section offers a brief overview of the most common ways for a driver to notify the
kernel about the reception of a frame, along with the main pros and cons for each one. Some approaches depend on the availability of
specific features on the devices (such as ad hoc timers), and some need changes to the driver, the operating system, or both.

Figure 9-2. Ingress path (frame reception)

Deliver a copy to any
registered protocol handler
fi.e.ip_rov)

t

Deliver a copy to any ' £
interested tap -

NnT-q----------.---------.--..

; Yoo ¢ . - e,
> rande e e SR R
netil_receive_skb : ; i
4 TraficContol

do_softirg/NET_RX_ACTION

s T
device driver “!ﬂf_ﬂ-l’nﬂif_wﬂg_qum hard_start_xmit | -

IRQ
(i.e., RxComplete)

ethd ethi ethn

This discussion could theoretically apply to any device type, but it best describes those devices like network cards that can generate a
high number of interactions (that is, the reception of frames).

9.2.1. Polling

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

With this technique, the kernel constantly keeps checking whether the device has anything to say. It can do that by continually reading a
memory register on the device, for instance, or returning to check it when a timer expires. As you can imagine, this approach can easily
waste quite a lot of system resources, and is rarely employed if the operating system and device can use other techniques such as
interrupts. Still, there are cases where polling is the best approach. We will come back to this point later.

9.2.2. Interrupts

Here the device driver, on behalf of the kernel, instructs the device to generate a hardware interrupt when specific events occur. The
kernel, interrupted from its other activities, will then invoke a handler registered by the driver to take care of the device's needs. When the
event is the reception of a frame, the handler queues the frame somewhere and notifies the kernel about it. This technique, which is quite
common, still represents the best option under low traffic loads. Unfortunately, it does not perform well under high traffic loads: forcing an
interrupt for each frame received can easily make the CPU waste all of its time handling interrupts.

The code that takes care of an input frame is split into two parts: first the driver copies the frame into an input queue accessible by the
kernel, and then the kernel processes it (usually passing it to a handler dedicated to the associated protocol such as IP). The first part is
executed in interrupt context and can preempt the execution of the second part. This means that the code that accepts input frames and
copies them into the queue has higher priority than the code that actually processes the frames.

Under a high traffic load, the interrupt code would keep preempting the processing code. The consequence is obvious: at some point the
input queue will be full, but since the code that is supposed to dequeue and process those frames does not have a chance to run due to its
lower priority, the system collapses. New frames cannot be queued since there is no space, and old frames cannot be processed because
there is no CPU available for them. This condition is called receive-livelock in the literature.

In summary, this technique has the advantage of very low latency between the reception of the frame and its processing, but does not
work well under high loads. Most network drivers use interrupts, and a large section later in this chapter will discuss how they work.

9.2.3. Processing Multiple Frames During an Interrupt

This approach is used by quite a few Linux device drivers. When an interrupt is notified and the driver handler is executed, the latter keeps
downloading frames and queuing them to the kernel input queue, up to a maximum number of frames (or a window of time). Of course, it
would be possible to keep doing that until the queue gets empty, but let's remember that device drivers should behave as good citizens.
They have to share the CPU with other subsystems and IRQ lines with other devices. Polite behavior is especially important because
interrupts are disabled while the driver handler is running.

Storage limitations also apply, as they did in the previous section. Each device has a limited amount of memory, and therefore the number
of frames it can store is limited. If the driver does not process them in a timely manner, the buffers can get full and new frames (or old
ones, depending on the driver policies) could be dropped. If a loaded device kept processing incoming frames until its queue emptied out,
this form of starvation could happen to other devices.

This technique does not require any change to the operating system; it is implemented entirely within the device driver.

There could be other variations to this approach. Instead of keeping all interrupts disabled and having the driver queue frames for the
kernel to handle, a driver could disable interrupts only for a device that has frames in its ingress queue and delegate the task of polling the
driver's queue to a kernel handler. This is exactly what Linux does with its new interface, NAPI. However, unlike the approach described in
this section, NAPI requires changes to the kernel.

9.2.4. Timer-Driven Interrupts

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

This technigue is an enhancement to the previous ones. Instead of having the device asynchronously notify the driver about frame
receptions, the driver instructs the device to generate an interrupt at regular intervals. The handler will then check if any frames have
arrived since the previous interrupt, and handles all of them in one shot. Even better would be to have the driver generate interrupts at
intervals, but only if it has something to say.

Based on the granularity of the timer (which is implemented in hardware by the device itself; it is not a kernel timer), the frames that are
received by the device will experience different levels of latency. For instance, if the device generated an interrupt every 100 ms, the
notification of the reception of a frame would have an average delay of 50 ms and a maximum one of 105. This delay may or may not

%
be acceptable depending on the applications running on top of the network connections using the device.

[This discussion applies mainly to Ethernet devices, which already do not guarantee an upper bound on the
transmission time (and therefore on the reception) because of the congestion algorithm they use.

The granularity available to a driver depends on what the device has to offer, since the timer is implemented in hardware. Only a few
devices provide this capability currently, so this solution is not available for all the drivers in the Linux kernel. One could simulate that
capability by disabling interrupts for the device and using a kernel timer instead. However, one would not have the support of the
hardware, and the CPU cannot spend as much of its resources as the device can on handling timers, so one would not be able to
schedule the timers nearly as often. This workaround would, in the end, become a polling approach.

9.2.5. Combinations

Each approach described in the previous sections has some advantages and disadvantages. Sometimes, it is possible to combine them
and obtain something even better. We said that under low load, the pure interrupt model guarantees a low latency, but that under high
load it performs terribly. On the other hand, the timer-driven interrupt may introduce too much latency and waste too much CPU time under
low load, but it helps a lot in reducing the CPU usage and solving the receive-livelock problem under high load. A good combination would
use the interrupt technique under low load and switch to the ti-driven interrupt under high load. The tulip driver included in the Linux

%
kernel, for instance, can do this (see drivers/net/tulip/interrupt.c=).

[This is not a trivial driver. Going through the other three chapters of this part of the book first is advisable.

9.2.6. Example

A balanced approach to processing multiple frames is shown in the following piece of code, taken from the drivers/net/3c59x.c Ethernet
driver. It is a selection of key lines from vortex_interrupt, the function registered by the driver as the handler of interrupts from devices in 3Com's
Vortex family:

static irgreturn_t vortex_interrupt(int irq, void *dev_id, struct pt_regs *regs)
{
int work_done = max_interrupt_work;
ioaddr = dev->base_addr;
status = inw(ioaddr + EL3_STATUS);
do{
if (status & RxComplete)
vortex_rx(dev);
if (--work_done < 0) {
/* Disable all pending interrupts. */

his document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

/* The timer will re-enable interrupts. */
mod_timer(&vp->timer, jiffies + 1*HZ);
break;

Other drivers that follow the same model will have something very similar. They probably will call the eLs_status and rxcomplete Symbols
something different, and their implementation of an xxx_n« function may be different, but the skeleton will be very close to the one shown
here.

In vortex_interrupt, the driver reads from the device the reasons for the interrupt and stores it inteatus. Network devices can generate an interrupt
for different reasons, and several reasons can be grouped together in a single interrupt. If RxCompIetia symbol specially defined by this

*
driver to mean a new frame has been received) is among those reasons, the code invokes vortex_n<*= During its execution, interrupts are
disabled for the device. However, the driver can read a hardware register on the card and find out if in the meantime, a new interrupt was

posted. The intateh flag is true when a new interrupt has been posted (and it is cleared by the driver when it is done processing it).

[l vortex_rx IS passed the device as an input parameter because a device driver can handle more instances of the same
device type or family. Therefore, when it is invoked it needs to know which device it is dealing with.

vortex_interrupt keeps processing incoming frames until the register says there is an interrupt pending igtatch) and that it is due to the reception
of a frame (rxcomplete). This also means that only multiple occurrences ofrxcomplete interrupts can be handled in one shot. Other types of
interrupts, which are much less frequent, can wait.

Finallyhere is where good citizenship entersthe loop terminates if it reaches the maximum number of input frames that can be processed,
stored in work_done. This driver uses a default value of 32 and allows that value to be tuned at module load time.

6 prey | NExXT

file:///C:/DOCUME~1/%B9%DA%B9%AE%B1%B9/LOCALS~1/Temp/Oreilly,%20Understanding%20Linux%20Network%20Internals%20(2005)%20Bbl%20Lotb.chm/0596002556/9961536.html

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

e prey NExT B

9.3. Interrupt Handlers

A good deal of the frame handling we discuss in this chapter takes place in response to interrupts from network hardware. The scheduling
of functions triggered by interrupts is a complicated topic and deserves some study, even though it doesn't concern networking in
particular. Therefore, in this section, we discuss the various ways that interrupts are handled by different network drivers and introduce the
concepts of bottom halves and softirgs.

In , we saw how device drivers register their handlers with an IRQ number, but we did not see how hardware interrupts delegate
frame processing to software interrupt handlers. This section will describe how an interrupt request associated with the reception of a
frame is handled all the way to the point where protocol handlers discussed in receive their packets. We will see the
relationship between hardware IRQs and software IRQs and why the latter category is needed. We will briefly see how interrupts were
handled with the old kernels and then compare the old approach to the new one introduced with kernel version 2.4. This discussion will
show the advantages of the new model over the old one, especially in the area of performance.

Before launching into softirgs, we need a small introduction to the concept of bottom half handlers . However, | will not go into much
detail about them because they are documented in other resources, notably Understanding the Linux Kernel and Linux Device Drivers.

9.3.1. Reasons for Bottom Half Handlers

Whenever a CPU receives an interrupt notification, it invokes the handler associated with that interrupt, which is identified by a number.
During the handler's executionin which the kernel code is said to be in interrupt context interrupts are disabled for the CPU serving the
interr. This means that if a CPU is busy serving one interrupt, it cannot receive other interrupts, whether of the same type or of different

*
types!= Nor can the CPU execute any other process: it belongs totally to the interrupt handler and cannot be preempted.

[Twe saw in that an interrupt handler that is declared as a slow handler is executed with the interrupts
enabled on the local CPU.

In the simplest situation, these are the main events touched off by an interrupt:
1. The device generates an interrupt and the hardware notifies the kernel.
2. If the kernel is not serving another interrupt (and if interrupts are not disabled for other reasons) it will see the notification.
3. The kernel disables interrupts for the local CPU and executes the handler associated with the interrupt type received.
4. The kernel exits the interrupt handler and re-enables interrupts for the local CPU.

In short, interrupt handlers are nonpreemptible and non-reentrant. (A function is defined as non-reentrant when it cannot be interrupted by
another invocation of itself. In the case of interrupt handlers, it simply means that they are executed with interrupts disabled.) This design
choice helps reduce the likelihood of race conditions. However, because the CPU is so limited in what it can do, the nonpreemptible
design has potentially serious effects on performance by the kernel as well as the processes waiting to be served by the CPU.

Therefore, the work done by interrupt handlers should be as quick as possible. The amount of processing needed by the interrupt handlers
during interrupt context depends on the type of event. A keyboard, for instance, may simply send an interrupt every time a key is pressed,
which requires very little effort to be handled: the handler simply needs to store the code of the key somewhere, and run a few times per
second at most. At other times, the actions required to handle an interrupt are not trivial and their executions could require much CPU time.
Network devices, for instance, have a relatively complex job: they need to allocate a buffer (sk_buff), copy the received data into it, initialize a
few parameters within the buffer structure (protocot) to tell the higher-layer protocol handlers what kind of data is coming from the driver, and
S0 on.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

Here is where the concept of a bottom half handler comes into play. Even if the action triggered by an interrupt needs a lot of CPU time,
most of this action can usually wait. Interrupts are allowed to preempt the CPU in the first place because if the operating system makes the
hardware wait too long, it may lose data. This is obviously true of real-time streaming data, but also is true of any hardware that has to
store incoming data in fixed-size buffers. And if the hardware loses data, there is usually no way to get it back.

On the other hand, if the kernel or a user-space process has to be delayed or preempted, no data will be lost (with the exception of
real-time systems, which entail a completely different way of handling processes as well as interrupts). In light of these considerations,
modern interrupt handlers are divided into a top half and a bottom half. The top half consists of everything that has to be executed before
releasing the CPU, to preserve data. The bottom half contains everything that can be done at relative leisure.

One can define a bottom half as an asynchronous request to execute a particular function. Normally, when you want to execute a function,
you do not have to request anythingyou simply invoke it. When an interrupt arrives, you have a lot to do and don't want to do it right away.
Thus, you package most of the work into a function that you submit as a bottom half.

The following model allows the kernel to keep interrupts disabled for much less time than the simple model shown previously:
1. The device signals the CPU to notify it of the interrupt.
2. The CPU executes the associated top half, disabling further interrupt notifications until this handler has finished its job.
3. Typically, a top half performs the following:
a. It saves somewhere in RAM all the information that the kernel will need later to process the interrupt event.

b. It marks a flag somewhere (or triggers something using another kernel mechanism) to make sure the kernel will know
about the interrupt and will use the data saved by the handler to complete the event processing.

c. Before terminating, it re-enables the interrupt notifications for the local CPU.

4. At some later point, when the kernel is free of more pressing matters, it checks the flag set by the interrupt handler (signaling the
presence of data to be processed) and calls the associated bottom half handler. It also clears the flag so that it can later
recognize when the interrupt handler sets the flag again.

Over time, Linux developers have tried different types of bottom halves, which obey different rules. Networking has played a large role in
the development of new implementations, because of networking's need for low latencythat is, a minimal amount of time between the
reception of a frame and its delivery. Low latency is more important for network device drivers than fqrother fypes of devices because of
the high number of tasks involved in reception and transmission. As described earlier in the section it can be disastrous to let
a large number of frames build up while waiting to be handled. Sound cards are another example of devices requiring fast response.

9.3.2. Bottom Halves Solutions

The kernel provides different mechanism for implementing bottom halves and for deferring work in general. These mechanisms differ
mainly with regard to the following points:

Running context

Interrupts are seen by the kernel as having a different running context from user-space processes or other kernel code. When
the function executed by a bottom half is capable of going to sleep, it is restricted to mechanisms allowed in process context, as
opposed to interrupt context.

Concurrency and locking

When a mechanism can take advantage of SMP, this has implications for how serialization is enforced (if necessary) and how
locking influences scalability.

In this chapter, we will look only at those mechanisms that do not need a process contextnamely, softirgs and tasklets. In the next section,

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

we will briefly see their implications for concurrency and locking.

When you need to defer the execution of a function that may sleep, you need to use a dedicated kernel thread or work queues . A work
gueue is simply a queue where you can queue a request to execute a function, and a kernel thread will take care of it. In this case, the

function would be executed in the context of a kernel thread, and therefore sleeping is allowed. Since the networking code mainly uses
softirg and tasklets, we will not look at work queues.

9.3.3. Concurrency and Locking

Before launching into the code that network drivers use to handle bottom halves, we need some background on concurrency, which refers
to functions that can interfere with each other either because they are scheduled on different CPUs or because one is suspended by the
kernel to run another. Related topics are locks and the disabling of interrupts. (Concurrency is discussed in detail in both Understanding
the Linux Kernel and Linux Device Drivers.)

Three different types of functions will be introduced in this chapter to handle interrupts, old-style bottom halves, softirgs, and tasklets. All of
them can be used to schedule the execution of a function, but they come with some big differences. As far as concurrency is concerned,
we can summarize the differences as follows:

® Only one old-style bottom half can run at any time, regardless of the number of CPUs (kernel 2.2).

® Only one instance of each tasklet can run at any time. Different tasklets can run concurrently on different CPUs. This means that
given any tasklet, there is no need to enforce any serialization because already it is enforced by the kernel: you cannot have
multiple instances of the same tasklet running concurrently.

® Only one instance of each softirg can run at the same time on a CPU. However, the same softirg can run on different CPUs
concurrently. This means that given any softirq you need to make sure that accesses to shared data by different CPUs use
proper locking. To increase parallelization, the softirgs should be designed to access only per-CPU data as much as possible,
reducing the need for locking considerably.

Therefore, these three features require different kinds of locking mechanisms. The higher the concurrency allowed, the more carefully the
programmer has to design the code executed, for the sake of both accuracy and performance. Whether a softirq or a tasklet represents
the best choice for any given context depends on both locking and concurrency requirements. In most cases, tasklets are the way to go.
But given the tight response requirements of the receive and transmit networking tasks, softirgs are preferred in those two specific cases.
We will see later in this chapter how the networking code uses softirgs.

In some cases, the programmer has to disable hardware interrupts, software interrupts , or both. A detailed discussion of the contexts
requires a background in SMP, preemption in the Linux kernel, and other matters outside the scope of this book. However, to understand
the networking code you need to know the meaning of the main functions used to enable and disable interrupts. m summarizes the
ones we need in this chapter (you can find many more in kernel/softirg.c, include/asm-xxx/hardirg.h, include/asm-xxx/spinlock.h, and
include/linux/spinlock.h). Some of them may be defined globally and others per architecture.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

Table 9-1. A few APIs related to software and hardware interrupts

Function/macro | Description

in_interrupt in_interrupt returns TRUE if the CPU is currently serving a hardware or software interrupt, or preemption is disabled.
in_softirq in_softirq returns TRUE if the CPU is currently serving a software interrupt.
in_irq in_irq returns TRUE if the CPU is currently serving a hardware interrupt.

In the section and with the help of, you can see how these three routines are implemented.
softirq_pending Returns TRUE if there is at least one softirq pending (i.e., scheduled for execution) for the CPU whose ID was

passed as the input argument.

local_softirq_pending Returns TRUE if there is at least one softirq pending for the local CPU.

- raise_softirq_rqoff | Sets the flag associated with the input softirg type to mark it pending.

raise_softirq_irqoff This is a wrapper around __raise_softirq_irqoff that also wakes up ksofirgd When in_interrupt() returns FALSE.

raise_softirq This is a wrapper around raise_sofiirq_irqoff that disables hardware interrupts before calling it and restores them to their

original status.

—local_bh_enable _ _local_bh_enable enables bottom halves (and thus softirgs/tasklets) on the local CPU, andocal_bh_enable also invokes

invoke_softirq if any softirq is pending andin_interrupt() returns FALSE.

local_bh_enable

local_bh_disable

local_bh_disable disables bottom halves on the local CPU.

local_irq_disable Disable and enable interrupts on the local CPU.

local_irq_enable

local_irq_save

local_irq_save first saves the current state of interrupts on the local CPU and then disables them.

local_irq_restore

local_irq_restore restores the state of interrupts on the local CPU thanks to the information previously saved withcal_irq_save.

spin_lock_bh Acquire and release a spinlock, respectively. Both functions disable and then re-enable bottom halves and

spin_unlock_bh preemption during the operation.

9.3.4. Preemption

In time-sharing systems, the kernel has always been able to preempt user processes at will, but the kernel itself is often nonpreemptive,
which means that once it starts running it will not be interrupted until it is ready to give up control. A nonpreemptive kernel sometimes
holds up high-priority processes when they are ready to run because the kernel is executing a system call for a lower-priority process. To
support real-time extensions and for other reasons, the Linux kernel was made fully preemptible during the 2.5 kernel development cycle.
With this new kernel feature, system calls and other kernel tasks can be preempted by other kernel tasks with higher priorities.

Because much work had already been done to eliminate critical sections (nonpreemptible code) from the kernel to support SMP locking
mechanisms, adding full preemption was not a major change to the kernel. Once preemption was added, developers just had to define
explicitly where to disable it (in hardware and software interrupt code, in the scheduler itself, in the code protected by spin locks and
read/write locks, etc.).

However, there are times when preemption, just like interrupts, must be disabled. In this section, I'll cover just a few functions related to

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

preemption that you may bump into while browsing the code, and then briefly show how some of the locking macros have been updated to
deal with preemption.

The following functions control preemption:

preempt_disable

Disables preemption for the current task. Can be called repeatedly, incrementing a reference counter.

preempt_enable

preempt_enable_no_resched

The reverse of preempt_disable, allowing preemption to be enabled again. preempt_enable_no_resched Simply decrements a reference
counter, which allows preemption to be re-enabled when it reaches zero. preempt_enable, in addition, checks whether the counter is
zero and forces a call to schedule() to allow any higher-priority task to run.

preempt_check_resched
This function is called by preempt_enable and differentiates it from preempt_enable_no_resched.

The networking code does not deal with these routines directly. However, preempt_enable and preempt_disable are indirectly called, for instance, by
locking primitives, like rcu_read_lock @nd rcu_read_unlock, spin_lock @nd spin_unlock, €tC. Routines used to access per-CPU data structures, likeyet_cpu and
get_cpu_var, also disable preemption before reading the data.

A counter for each process, named preempt_count and embedded in thetnread_info Structure, indicates whether a given process allows
preemption. The field can be read with preempt_count() @and is manipulated indirectly through theinc_preempt_count and dec_preempt_count functions
defined in include/linux/preempt.h. There are situations in which the kernel should not be preempted. These include when it is servicing
hardware, as well as when it uses one of the calls just shown to disable preemption. Therefore, preempt_count is split into three components.
Each byte is a counter for a different condition that requires ngnpreemption: hardware interrupts, software interrupts, and general
nonpreemption. The layout of preempt_count is shown in‘.

Figure 9-3. Structure of preempt_count

0 0000O0O0O0O0QO0QO0D0O0DO0CD0DT0O0O0CGO0O0DO0O0D0O0O0CO0OD0DO0O0O0 HARDIRQ _OFFSET
0 0O00000O0QO0QO0COQOQO0CO0QO0CO0OD0DO0O0CO0QO0OO0OO0QTO0OOQOO0OO0OD0O0O0 0 SOFTIRQ_OFFSET
0 0O0C0CO0OO00OQOQO0COQOO0OO0Q0DO0O0O0CO0COQQO0CO0OOQDO0O0OO0OO0D0O0OD0T PREEMPT_OFFSET

Hardware Software

interrupts interrupts Preemption

| - | -
PREEMPT_ACTIVE irq_enter local_bh_disable preempt_disable
irg_exit local_bh_enable preempt_enable

The figure shows, in addition to the purpose of each byte, the main functions that manipulate it. The high-order byte is not fully used at the

moment, but its cond least significant bit is set before calling the schedute function and tells that function that it has been called to preempt
*
the current task! In include/asm-xxx/hardirg.h iou can find several macros that make it easier to read and writepreempt_counter; Some of

these include the xxx_orrset variables shown infigure 9-3 and used by the functions listed in the figure to increment or decrement the right

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks
byte.
[

TThe preempT_AcTIVE flag is defined on a per-architecture basis. The figure shows the most common definition.

Despite all this complexity, whenever a check has to be done on the current process to see if it can be preempted, all the kernel needs to
know is whether preempt_countis NULL (it does not really matter why preemption is disabled).

9.3.5. Bottom-Half Handlers

The infrastructure for bottom halves must address the following needs:

Classifying the bottom half as the proper type
® Registering the association between a bottom half type and its handler

® Scheduling a bottom half for execution

Notifying the kernel about the presence of scheduled BHs

Let's first see how kernels up to version 2.2 handled bottom half handlers , and then how they are handled with the softirgs used by
kernels 2.4 and 2.6.

9.3.5.1. Bottom-half handlers in kernel 2.2

The 2.2 model for bottom-half handlers divides them into a large number of types, which are differentiated by when and how often the
kernel checks for them and runs them. The 2.2 list is as follows, taken from include/linux/interrupt.h. In this book, we are most interested in

NET_BH.

enum {
TIMER_BH =0,
CONSOLE_BH,
TQUEUE_BH,
DIGI_BH,
SERIAL_BH,
RISCOMS8_BH,
SPECIALIX_BH,
AURORA_BH,
ESP_BH,
NET_BH,
SCSI_BH,
IMMEDIATE_BH,
KEYBOARD_BH,
CYCLADES_BH,
CM206_BH,
JS_BH,
MACSERIAL_BH,
ISICOM_BH

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

Each bottom-half type is associated with a function handler by means of init bh. The networking code, for instance, initializes thener_sH

bottom-half type to the net_bh handler in net_dev_init, which is covered in.

_ _initfunc(int net_dev_init(void))

The main function used to unregister a BH handler is remove_bh. (There are other related functions too, such asnabie_bh/disable_bh, but we do not
need to see all of them.)

Whenever an interrupt handler wants to trigger the execution of a bottom half handler, it has to set the corresponding flag with mark_bh. This
function is very simple: it sets a bit into a global bitmap bh_active, which, as we will see in a moment, is tested in several places.

extern inline void mark_bh(int nr)

{
set_bit(nr, &bh_active);

For instance, you will see later in the chapter that every time a network device driver has successfully received a frame, it signals the
kernel about it with a call to neif_. The latter queues the newly received frame into the ingress queusackiog (shared by all the CPUs) and
marks the net_sH bottom-half handler flag.

skb_queue_tail(&backlog, skb);
mark_bh(NET_BH);
return

During several routine operations, the kernel checks whether any bottom halves are scheduled for execution. If any are waiting, the kernel
runs the function do_bottom_nait (currently inkernel/softirg.c), to execute them. The checks are performed during:

do_IRQ

Whenever the kernel is notified by an IRQ about a hardware interrupt, it calls do_irq to execute the associated handler. Since a
good number of bottom halves are scheduled for transmission by interrupt handlers, what could give them less latency than an
invocation right at the end of do_IrQ? For this reason, the regular timer interrupt that expires with frequencyz represents an upper
bound between two consecutive executions of do_bottom_haif.

Returns from interrupts and exceptions (which includes system calls)

See arch/xxx/kernellentry.S for the assembly language code that takes care of this case.

schedule

This function, which decides what to execute next on the CPU, checks if any bottom-half handlers are pending and gives them
higher priority over other tasks.

asmlinkage void schedule(void)

{

/* Do "administrative" work here while we don't hold any locks */

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

if (bh_mask & bh_active)
goto handle_bh;
handle_bh_back:
handle_bh:
do_bottom_half();
goto handle_bh_back;

run_bottom_half, the function used bydo_bottom_naif to execute the pending interrupt handlers, looks like this:

active = get_active_bhs();
clear_active_bhs(active);

bh = bh_base;
do {
if (active & 1)
(*bh)();
bh++;
active >>= 1;

} while (active);

The order in which the pending handlers are invoked depends on the positions of the associated flags inside the bitmap and the direction
used to scan those flags (returned by get_active_bhs). In other words, bottom halves are not run on a first-come-first-served basis. And since
networking bottom halves can take a long time, those that have the misfortune to be dequeued last can experience high latency.

Bottom halves in 2.2 and earlier kernels suffer from a ban on concurrency. Only one bottom half can run at any time, regardless of the
number of CPUs.

9.3.5.2. Bottom-half handlers in kernel 2.4 and above: the introduction of the softirq

The biggest improvement between kernels 2.2 and 2.4, as far as interrupt handling is concerned, was the introduction of software
interrupts (softirgs), which can be seen as the multithreaded version of bottom half handlers. Not only can many softirgs run concurrently,
but also the same softirg can run on different CPUs concurrently. The only restriction on concurrency is that only one instance of each
softirq can run at the same time on a CPU.

The new softirg model has only six types (from include/linux/interrupt.h):

enum

{
HI_SOFTIRQ=0,
TIMER_SOFTIRQ,
NET_TX_SOFTIRQ,
NET_RX_SOFTIRQ,
SCSI_SOFTIRQ,
TASKLET_SOFTIRQ

All the xxx_e+ bottom-half types in the old model are still available to old drivers, but have been reimplemented to run as softirgs of the
HI_SOFTIRQ type (which means they take priority over the other softirg types). The two types used by networking codeet_tx_sorTirq and

NET_RX_SOFTIRQ, are introduced in the later section illow the Networking Code Uses softirqsl" The next section will introduce tasklets.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

Softirgs, like the old bottom halves, run with interrupts enabled and therefore can be suspended at any time to handle a new, incoming
interrupt. However, the kernel does not allow a new request for a softirq to run on a CPU if another instance of that softirq has been
suspended on that CPU; this drastically reduces the amount of locking needed. Each softirq type can maintain an array of data structures

of type softnet_data, ONe per CPU, to hold state information about the current softirg; we'll see the contents of this structure in the section
"Boftnet data Structurg" Since different instances of the same type of softirq can run simultaneously on different CPUs, the functions run
by softirgs still need to lock other data structures that are shared, to avoid race conditions.

The functions used to register and schedule a softirg handler, and the logic behind them, are very similar to the ones used with 2.2 bottom
halves.

softirq handlers are registered with the open_sofiirg function, which, unlike init_bh, accepts an extra parameter so that the function handler can
be passed some input data if needed. None of the softirgs, however, currently uses that extra parameter, and a proposal has been floated
to remove it. open_sofiirg SIMmply copies the input parameters into the global arraysottirq_vec, declared in kernel/softirg.c, which holds the
associations between types and handlers.

static struct softirq_action softirq_vec[32] _ _cacheline_aligned_in_smp;

void open_softirg(int nr, void (*action)(struct softirg_action*), void *data)

{

softirq_vec[nr].data = data;
softirq_vec[nr].action = action;

A softirq can be scheduled for execution on the local CPU by the following functions:

_ _raise_softirg_irqoff

This function, the counterpart of mark_bh in 2.2, simply sets the bit flag associated to the softirg to run. Later on, when the flag is
checked, the associated handler will be invoked.

raise_softirg_irqoff

This is a wrapper around __cpu_raise_softirg that additionally schedules theksotirqd tHRead (discussed later in this chapter) if the
function is not called from a hardware or software interrupt context and preemption has not been disabled. If the function is
called from interrupt context, invoking the thread is not necessary because, as we will see, do_sofiirq Will be called anyway.

raise_softirq

This is a wrapper around raise_softirq_irqoff that executes the latter with hardware interrupts disabled.

%

The following code, taken from kernel 2.4.5, shows the model used at an early stage of softirq development. It is very similar to the 2.2
model, and invokes the function do_softirg, Which is a counterpart to the 2.2 functiondo_bottom_naif discussed in the previous section.do_softirq iS
called if at least one softirg has been scheduled for execution:

[It has been removed in 2.4.6.

asmlinkage void schedule(void)

{

/* Do "administrative" work here while we don't hold any locks */
if (softirg_active(this_cpu) & softirg_mask(this_cpu))
goto handle_softirq;
handle_softirg_back:

handle_softirq:

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

do_softirq();
goto handle_softirq_back;

The only difference between this early stage of softirgs and the 2.2 bottom-half model is that the softirq version has to check the flags on a
per-CPU basis, since each CPU has its own bitmap of pending softirgs.

The implementation of do_sottirq iS also very similar to its counterpartdo_bottom_naif in 2.2. The kernel also calls the function at some of the same
points, but not entirely the same. The main change is the introduction of a new per-CPU kernel thread, ksoftirqd.

%
Here are the main points where do_softirg may be invoked:

*
(] It is also possible to callinvoke_softirg iNstead of do_softirg directly. The former could be an alias todo_softirq OF to its helper
routine, __do_softirq, depending on whether the__arcHirRQ_ExiT_IRQs_bisasLED Symbol is defined.

do_IRQ
The skeleton for do_Irq, which is defined in the per-architecture filesarch/arch-name/kernel/irg.c, is:

fastcall unsigned int do_IRQ(struct pt_regs * regs)

{
irg_enter();

irg_exit();
return 1;

In kernel 2.4, the function also called do_sofiirq. FOr most architectures in 2.6, a call todo_softirq is made inside irq_exit instead. A
minority still have it inside do_IrQ.

Since nested calls to irq_enter are allowed, irq_exit calls invoke_softirg ONly when all the usual conditions are met (there are no softirgs
pending, etc.) and the reference count associated with the interrupt context has reached zero, indicating that the kernel is
leaving the interrupt context.

Here is the generic definition of irq_exit from kernel/softirq.c, but there are architectures that define their own versions:

void irg_exit(void)
{
sub_preempt_count(IRQ_EXIT_OFFSET);
if (lin_interrupt() && local_softirg_pending())

invoke_softirq();
preempt_enable_no_resched();

smp_apic_timer_interrupt, Which handles SMP timers inarch/xxx/kernel/apic.c, also uses irq_enterfirg_exit.

Returns from interrupts and exceptions (which include system calls)

This is the same as kernel 2.2.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

local_bh_enable

When softirgs are re-enabled on a CPU, pending requests are processed (if any) with a call to do_softirq.

The kernel threads, ksoftirgd_CPUn

To keep softirgs from monopolizing all the CPUs (which could happen easily on a heavily loaded network because the
NET_TX_SOFTIRQ and NET_Rx_SOFTIRQ interrupts have a higher priority than user processes), developers introduced a new set of
per-CPU threads. These have the nam

Ksoftirad Q. ksoftirad
these threads appear in the section "ksoftirgd Kernel Threadd

| have described i386 behavior in general; other architectures may use different naming conventions or have additional timers that also
invoke do_softirg.

pu1, and so on, and can be seen by s command. More details on

Another interesting place where do_softirg iS called is from withinnetit_rx_ni, which is briefly described in the section bld Interface Between

bevice Drivers and Kernel: First Part of netif r>l“ in Chapter ld. The traffic generator built into the kernel fet/core/pktgen.c) also calls

do_softirq.

9.3.6. Tasklets

Most of the bottom halves of the 2.2 kernel variety have been converted to either softirgs or tasklets . A tasklet is a function that some
interrupt or other task has deferred to execute later. Tasklets are built on top of softirgs and are usually kied off by interrupt handlers.

%
(But other parts of the kernel, such as the neighboring subsystem discussed in , also use tasklets).

Ml The kernel provides work queues as well. We will not cover them because they are not used much by the
networking code. Refer to Understanding the Linux Kernel for a discussion of work queues.

In the section "lBottom-haIf handlers in kernel 2.4 and above: the introduction of the softird“ we saw the list of softirgs.Hi_sorTirg is used to

implement high-priority tasklets, and TaskLeT_sorTIRQ is used for lower-priority ones. Each time a request for a deferred execution is issued,
an instance of a taskiet_struct Structure is queued onto either a list processed byHi_sorTirg Or another one that is instead processed by

TASKLET_SOFTIRQ.

Since softirgs are handled independently by each CPU, it should not be a surprise that there are two lists of pending tasklet_structs for each
CPU, one associated with Hi_sorTirg and one withTtaskLeT_sorTirg. These are their definitions fromkernel/softirg.c:

static DEFINE_PER_CPU(struct tasklet_head tasklet_vec) = { NULL };
static DEFINE_PER_CPU(struct tasklet_head tasklet_hi_vec) = { NULL };

At first sight, tasklets may seem to be just like the old bottom halves, but there actually are substantial differences:

® There is no limit on the number of different tasklets, whereas the old bottom halves were limited to one type for each bit flag of

bh_base.
® Tasklets provide two levels of priority.
® Different tasklets can run concurrently on different CPUs.

® Tasklets, unlike old bottom halves and softirgs, are dynamic and do not need to be statically declared in anxxx_sH OF xxx_SOFTIRQ
enumeration list.

The tasklet_struct data structure is defined ininclude/linux/interrupt.h as follows:

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

struct tasklet_struct

{

struct tasklet_struct *next;
unsigned long state;
atomic_t count;

void (*func)(unsigned long);
unsigned long data;

The following is the field-by-field description:

struct tasklet_struct *next

A pointer used to link together the pending structures associated with the same CPU. New elements are added at the head by
the functions taskiet_hi_schedule and tasklet_schedule.

unsigned long state

A bitmap flag whose possible values are represented by the TaskLeT_staTe_xxx enums listed ininclude/linux/interrupt.h:

TASKLET_STATE_SCHED

The tasklet has been scheduled for execution, and the data structure is already in the list associated with Hi_sorTirQ OF

TASKLET_SOFTIRQ, based on the priority assigned. The same tasklet cannot be scheduled concurrently on different CPUs.
If other requests to execute the tasklet arrive when the first one has not started its execution yet, they will be dropped.
Since for any given tasklet, there can be only one instance in execution, there is no reason to schedule it for execution
more than once.

TASKLET_STATE_RUN

The tasklet is being executed. This flag is used to prevent multiple instances of the same tasklet from being executed
concurrently. It is meaningful only for SMP systems. The flag is manipulated with the three locking functionstaskiet_trylock,

tasklet_unlock, and tasklet_unlock_wait.

atomic_t count

There are cases where you may need to temporarily disable and later re-enable a tasklet. This is accomplished by this counter:
a value of zero means that the tasklet is disabled (and thus not executable) and nonzero means the tasklet is enabled. Its value
is incremented and decremented by the taskietf_hil_enable and taskietf_hi]_disable functions described later in this section.

void (*func)(unsigned long)

unsigned long data

func IS the function to execute anddata is an optional input that can be passed tofunc.

The following are some important kernel functions that handle tasklets, from kernel/softirg.c and include/linux/interrupt.h:

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

tasklet_init

Fills in the fields of a taskiet_struct Structure with the func and data Values provided as arguments.

tasklet_action, tasklet_hi_action

Execute low-priority and high-priority tasklets, respectively.

tasklet_schedule, tasklet_hi_schedule

Schedule a low-priority and a high-priority tasklet, respectively, for execution. They add the taskiet_struct Structure to the list of
pending tasklets associated with the local CPU and then schedule the associated softirq (TASKLET_SOFTIRQ OF HI_SOFTIRQ). If the
tasklet is already scheduled (but not running), these APIs do nothing (see the TaskLeT_sTATE_scHeD flag).

tasklet_enable, tasklet_hi_enable

These two functions are identical and are used to enable a tasklet.

tasklet_disable, tasklet_disable_nosync

Both of these functions disable a tasklet and can be used with low- and high-priority tasklets. Taskiet_disable iS a wrapper to

tasklet_disable_nosync. While the latter returns right away (it is asynchronous), the former returns only when the tasklet has terminated

its execution in case it was running (it is synchronous).

tasklet_enable, tasklet_hi_enable, @Nd tasklet_disable_nosync manipulate the value of thecount field to declare the tasklet enabled or disabled.
Nested calls are allowed.

9.3.7. Softirqg Initialization

During kernel initialization, sofiirq_init initializes the software IRQ layer with the two general-purpose softirgsiaskiet_action and tasklet_hi_action, which

are associated with TaskLeT_sorTiRQ and Hi_sorTIrRQ, respectively.

void _ _init softirq_init()

{
open_softirg(TASKLET_SOFTIRQ, tasklet_action, NULL);
open_softirg(HI_SOFTIRQ, tasklet_hi_action, NULL);

The two softirgs used by the networking code NET_Rx_sorTiIRQ and NET_Tx_soFTIRQ are initialized innet_dev_init, one of the networking initialization

functions (see the section "How the Networking Code Uses softirqsl').

The other softirgs listed in the section 'l30tt0m-ha|f handlers in kernel 2.4 and above: the introduction of the softird are registered in the
associated subsystems (scsi_sorTirQ in drivers/scsi/scsi.c, TIMER_SOFTIRQ in kernel/timer.c, etc.).

*
HI_SOFTIRQ iS mainly used by sound card device driver

Mnoa kernels, all the bottom-half handlers of kernel version 2.2 were converted to high-priority tasklets by defining
the mark_bh function as a wrapper aroundtasklet_hi_schedule.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

Users of TaskLET_sorFTIrQ include:

® Drivers for network interface cards (not only Ethernets)

® Numerous other device drivers

Media layers (USB, IEEE 1394, etc.)

® Networking subsystems (Neighboring, ATM gdisc, etc.)

9.3.8. Pending softirg Handling

We explained in the section “laottom-half handlers in kernel 2.4 and above: the introduction of the softird when do_sottirg is invoked to take

care of the pending softirgs. Here we will see the internals of the function. You will notice how much it resembles the one used by kernel
2.2 described in the section "Bottom-half handlers in kernel 2.2}"

do_softirg Stops and does nothing if the CPU is currently serving a hardware or software interrupt. The function checks for this by calling
in_interrupt, Which is equivalent toi (in_irq() || in_softirq()).

If do_softirg decides to proceed, it saves pending softirgs inpending With local_softirq_pending.

#ifndef __ARCH_HAS_DO_SOFTIRQ

asmlinkage void do_softirg(void)
{
if (in_interrupt())
return;

local_irq_save(flags);
pending = local_softirq_pending();
if (pending)

_ _do_saoftirq();
local_irq_restore;

EXPORT_SYMBOL(do_softirq);
#endif

From the preceding snapshot, it could seem that do_sofiirq runs with IRQs disabled, but that's not true. IRQs are kept disabled only when
manipulating the bitmap of pending softirgs (i.e., accessing the softnet_data Structure). You will see in a moment that_ _do_sofirq internally

re-enables IRQs when running the softirq handlers.

9.3.8.1. _ _do_softirg function

It is possible for the same softirq type to be scheduled multiple times while do_sottirq is running. Since IRQs are enabled when running the
softirq handlers, the bitmap of pending softirg can be manipulated while serving an interrupt, and therefore any of the softirq handlers that
has been executed by __do_softirg could be re-scheduled during the execution of__do_softirq itself.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

For this reason, before __do_sottirg re-enables IRQs, it saves the current bitmap of the pending softirg on the local variablgending and clears it
from the softnet_data instance associated with the local CPU usingiocal_softirq_pending()=0. Then based on pending, it calls all the necessary handlers.

Once all the handlers have been called, __do_sofirqg checks whether in the meantime any softirqs were scheduled again (this request

disables IRQs). If there was at least one pending softirg, it will repeat the whole process. However, __do_sofiig repeats it only up to

MAX_SOFTIRQ_RESTART times (experimentation has found that 10 times works well).

The use of max_sorTiIRQ_RESTART IS @ design decision made to keep a single type of interruptparticularly a stream of networking interruptsfrom
starving other interrupts out of one of the CPUs. Without the limit in _ _do_softirq, Starvation could easily happen when a server is highly
loaded by network traffic and the number of NET_rx_soFTirQ interrupts goes through the roof.

Let's see how starvation could take place. do_irQ would raise anet_rx_sorTirRQ interrupt that would causedo_sofiirg to be executed. __do_softirg
would clear the NneT_rx_sorTirRQ flag, but before it ended it would be interrupted by an interrupt that would seket_rx_sorTirQ again, and so on,
indefinitely.

Let's see now how the central part of __do_sofirq manages to invoke the softirq handler. Every time one softirq type is served, its bit is
cleared from the local copy of the active softirgs, pending. h is initialized to point to the global data structuresotirg_vec that holds the associations
between softirg types and their function handlers (for instance, NeT_rx_sorTIrRQ is handled bynet _action). The loop ends when the bitmap is
cleared.

Finally, if there are pending softirgs that cannot be handled because do_sotirg must return, having repeated its jobvax_sorTIRQ_RESTART times
already, the ksoftirqd tHRead is awakened and given the responsibility of handling them later. Becauseio_sofiirq is invoked at so many points
within the kernel, it is actually likely that a later invocation of do_softirg Will handle these interrupts before theksotirqd tHRead is scheduled.

#define MAX_SOFTIRQ_RESTART 10

asmlinkage void _ _do_softirg(void)
{
struct softirg_action *h;
_ _u32 pending;
int max_restart = MAX_SOFTIRQ_RESTART;
int cpu;

pending = local_softirq_pending();

local_bh_disable();
cpu = smp_processor_id();
restart:
/* Reset the pending bitmask before enabling irgs */
local_softirg_pending() = 0;

local_irq_enable();
h = softirq_vec;

do {
if (pending & 1) {
h->action(h);
rcu_bh_gsctr_inc(cpu);
}
h++;
pending >>=1;
} while (pending);

local_irq_disable();
pending = local_softirq_pending();
if (pending && --max_restart)

goto restart;

if (pending)

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

wakeup_softirgd();

_ _local_bh_enable();

9.3.9. Per-Architecture Processing of softirq

The do_softirq function provided in kernel/softirg.c can be overridden by another function provided by the architecture code (which ends up
calling __do_softirg anyway). This explains why the definition ofdo_softirq in kernel/softirg.c is wrapped with the check on__arcH_HAS_DO_SOFTIRQ

(see the previous section).

A few architectures, including i386 (see arch/i386/kernel/irg.c), define their own version of do_sofirg. Such architecture versions are used
when the architectures use 4 KB stacks (instead of 8 KB) and use the remaining 4 K to implement stacked handling of both hard IRQs and
softirgs. Please refer to Understanding the Linux Kernel for more detail.

9.3.10. ksoftirgd Kernel Threads

Background kernel threads are assigned the job of checking for softirgs that have been left unexecuted by the functions previously
described, and executing as many of those softirgs as they can before needing to gjve that CPU back to other activities. There is one
kernel thread for each CPU, named ksoftirqd_cpuo, ksoftirgd_cpu1, and so on. The section [Starting the threadq' describes how these threads are
started at CPU boot time.

The function ksofirqd @associated to these threads is pretty simple and is defined in the same filesoftirg.c:

static int ksoftirgd(void *
{

set_user_nice(current, 19);

_bind_cpu)

while ('kthread_should_stop()) {
if (llocal_softirq_pending())
schedule();

__set_current_state(TASK_RUNNING);

while (local_softirq_pending()) {
/* Preempt disable stops cpu going offline.
If already offline, we'll be on wrong CPU:
don't process */
preempt_disable();
if (cpu_is_offline((long)_ _bind_cpu))
goto wait_to_die;
do_softirq();
preempt_enable();
cond_resched();
}
set_current_state(TASK_INTERRUPTIBLE);
}
_ _set_current_state(TASK_RUNNING);
return O;

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

There are a couple of small details | want to emphasize. The priority of a process, also called the nice priority, is a number ranging from
-20 (maximum) to +19 (minimum). The ksottirgd threads are given a low priority of 19. This is done so that frequently running softirgs such as
NET_RX_SOFTIRQ cannot completely kidnap the CPU, which would leave almost no resources to other processes. We already saw thaib_softirq
can be invoked from different places in the code, so this low priority doesn't represent a handicap. Once started, the loop simply keeps
calling do_softirq (always with preemption disabled) until one of the following conditions becomes true:

® There are no more pending softirgs to handle (local_softirq_pending() returns FALSE).

In this case, the function sets the thread's state to Task_iNnTErruPTIBLE @nd calls schedule() to release the CPU. The thread can be
awakened by means of wakeup_sofiirqd, Which can be called from both_ _do_sotiirq itself andraise_softirg_irqoff.

® The thread has run for too long and is asked to release the CPU.

The handler associated with the timer interrupt, among other things, sets the need_resched flag to signal that the current
process/thread has used its time slot. In this case, ksoftirqd releases the CPU, keeping its state asrask_running, and will soon be
resumed.

9.3.10.1. Starting the threads

There is one ksrqd thread for each CPU. When the system's first CPU comes online, the first thread is started at kernel boot time inside

do_pre_smp_initcalls. i The ksofirqd threads for the other CPUs that come up at boot time, and for any other CPU that may be enabled later on a

system that can handle hot-pluggable CPUs, are taken care of through the cpu_chain notification chain.

] See for details about how the kernel takes care of basic initializations at boot time.

Notification chains were introduced in . The cpu_chain chain lets various subsystems know when a CPU is up and running or when
one dies. The softirq subsystem registers to the cpu_chain With spawn_ksofiirqd, called from the functiondo_pre_smp_initcalls mentioned previously. The
callback routine cpu_caliback that processes notifications fromepu_chain is used to initialize the necessary per-CPU data structures and start the
ksoftirqd thread on the CPU.

The complete list of cpu_xxx notifications is ininclude/linux/notifier.h, but we need only four of them in the context of this chapter:

CPU_UP_PREPARE

Generated when the CPU starts coming up, but is not ready yet.

CPU_ONLINE

Generated when the CPU is ready.
CPU_UP_CANCELLED

CPU_DEAD

These two messages are generated only when the kernel is compiled with support for hot-pluggable CPUs. The first is used
when one of the tasks triggered by a previous cpu_up_rrepare notification failed and therefore does not allow the CPU to go
online. The second one is used when a CPU dies.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

cpu_PREPARE_UP Creates the thread and binds it to the associated CPU, but does not wake up the threadcru_oniine wakes up the thread.
When a CPU dies, its associated ksofiirqd instance is killed:

static int _ _devinit cpu_callback(struct notifier_block *nfb, unsigned long action,
void *hcpu)
{

switch(action) {

}
return NOTIFY_OK;

static struct notifier_block _ _devinitdata cpu_nfb = {
.notifier_call = cpu_callback

3

_ _init int spawn_ksoftirqd(void)

{
void *cpu = (void *)(long)smp_processor_id();
cpu_callback(&cpu_nfb, CPU_UP_PREPARE, cpu);
cpu_callback(&cpu_nfb, CPU_ONLINE, cpu);
register_cpu_notifier(&cpu_nfb);
return O;

Note that spawn_ksoftirgd places two direct calls tocpu_caliback before registering with cpu_chain via register_cpu_notifier. This is necessary because CPU
notifications are not generated for the first CPU that comes online.

9.3.11. Tasklet Processing

The two handlers for low-latency tasklets (taskLet_sormirg) and high-latency tasklets (Hi_sorTirg) are identical; they simply work on two
different lists. For this reason, we will describe only one of them: taskiet_action, the one associated withTaskLET_sorTIRQ.

Only one instance of each tasklet can be waiting for execution at any time. When taskiet_schedule OF tasklet_hi_schedule SChedules a tasklet, the
function sets the taskLeT sTATE_scHeD bit described earlier in the section Attempts to reschedule the same tasklet will be ignored
because TaskLeT_sTATE_scHeD IS already set. The bit is cleared only when the tasklet starts its execution; thus, during or after its execution
another instance can be scheduled.

%]
The taskiet_action function starts by copying the list of tasklets waiting to be processed into a local variable first; it then clears the global Ii
This is the only part of the function that is executed with interrupts disabled. Disabling them is necessary to avoid race conditions with
interrupt handlers that could add new elements to the list while taskiet_action accesses it.

[T we will see that one of the networking softirq handlers get_t_action) does something similar.
At this point, the function goes through the list tasklet by tasklet. For each element it invokes the handler if both of the following are true:

® The tasklet is not already runningin other words, TaskLeT_sTATE_RUN is clear. (The function runstaskiet_tylock to see whether
TASKLET_STATE_RUN iS already set; if not;taskiet_trylock Sets the bit.)

® The tasklet is enabled (count is zero).

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

The part of the function implementing these activities follows:

struct tasklet_struct *list;

local_irg_disable();

list=_ _get _cpu_var(tasklet_vec).list;

_ _get_cpu_var(tasklet_vec).list = NULL;
local_irq_enable();

while (list) {
struct tasklet_struct *t = list;

list = list->next;

if (tasklet_trylock(t)) {
if (latomic_read(&t->count)) {

At this stage, since the tasklet was not already being executed and it was extracted from the list of pending tasklets, it must have the

TASKLET_STATE_scHED flag set:

if (Itest_and_clear_bit(TASKLET_STATE_SCHED, &t->state))
BUG();

t->func(t->data);

tasklet_unlock(t);

continue;

}

tasklet_unlock(t);

If the handler cannot be executed, the tasklet is put back into the list and TaskLeT_sorTIrRq is rescheduled to take care of all of those tasklets
that for one of the two reasons listed earlier cannot be handled now:

local_irq_disable();

t->next = _ _get_cpu_var(tasklet_vec).list;

_ _get_cpu_var(tasklet_vec).list = t;

_ _raise_softirg_irqoff(TASKLET_SOFTIRQ);
local_irq_enable();

9.3.12. How the Networking Code Uses softirgs

The networking subsystem has been assigned two different softirgs. Net_rx_sorTirg handles incoming traffic andner_tx_sortirg handles
outgoing traffic. Both are registered in net_dev_init (described in through the following lines:

open_softirg(NET_TX_SOFTIRQ, net_tx_action, NULL);
open_softirg(NET_RX_SOFTIRQ, net_rx_action, NULL);

Because different instances of the same softirq handler can run concurrently on different CPUs (unlike tasklets), networking code is both

his document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

low latency and scalable.

Both networking softirgs are higher in priority than normal tasklets (taskLeT_sorTirQ) but are lower in priority than high-priority tasklets
(ni_sorFTirQ). This prioritization guarantees that other high-priority tasks can proceed in a responsive and timely manner even when a
system is under a high network load.

Tﬁﬂnﬁemmmmim&mmnj secti "Processing the NET RX SOFTIRQ: net rx actio 'ink;hagter 1§| and
"Processing the NET _TX SOFTIRQ: net tx_actior{ in [Chapter 11.
& prev NEXT

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

=2 wEXT

9.4. softnet_data Structure

We will see in that each CPU has its own queue for incoming frames. Because each CPU has its own data structure to
manage ingress and egress traffic, there is no need for any locking among different CPUs. The data structure for this queue,
softnet_data, is defined ininclude/linux/netdevice.h as follows:

struct softnet_data

{
int throttle;
int cng_level;
int avg_blog;
struct sk_buff_head input_pkt_queue;
struct list_head poll_list;
struct net_device *output_gqueue;
struct sk_buff *completion_queue;
struct net_device backlog_dev;

}

The structure includes both fields used for reception and fields used for transmission. In other wos, both the NET_RX_SOFTIRQ and

NET_TX_SOFTIRQ softirgs refer to the structure. Ingress frames are queued tanput_pkt_queue, ol and egress frames are placed into

the specialized queues handled by Traffic Control (the QoS layer) instead of being handled by softirgs and the softnet_data structure, but
softirgs are still used to clean up transmitted buffers afterward, to keep that task from slowing transmission.

T you will see inthat this is no longer true for drivers using NAPI.

9.4.1. Fields of softnet_data

The following is a brief field-by-field description of this data structure; details will be given in later chapters. Some drivers use the NAPI
interface, whereas others have not yet been updated to NAPI; both types of driver use this structure, but some fields are reserved for the
non-NAPI drivers.

throttle
avg_blog

cng_level

These three parameters are used by the congestion management algorithm and are further described following this list, as

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

well as in the "Congestion Management" section in . All three, by default, are updated with the reception of every
frame.

input_pkt_queue

This queue, initialized in net_dev_init, is where incoming frames are stored before being processed by the driver. It is used by
non-NAPI drivers; those that have been upgraded to NAPI use their own private queues.

backlog_dev

This is an entire embedded data structure (not just a pointer to one) of type net_device, which represents a device that has
scheduled net_rx_action for execution on the associated CPU. This field is used by non-NAPI drivers. The name stands fo

" g device." You will see how it is used in the section "bld Interface Between Device Drivers and Kernel: First Part of
etif ry" in[Chapter 1.

poll_list

jti processed. More details can be found in the section
in Chapter 1Q.

output_queue

completion_queue

output_queue is the list of devices that have something to transmit, andcompletion_queue is the list of buffers that have been

E;msmmmnmmm,ore an be released. More details are given in the section '
ET TX SOFTIRQ: net tx action"in .

throttle is treated as a Boolean variable whose value is true when the CPU is overloaded and false otherwise. Its value depends on the

number of frames in input_pkt_eue. When the throttle flag is set, all input frames received by this CPU are dropped, regardless of the

number of frames in the queue.
[brivers using NAPI might not drop incoming traffic under these conditions.

avg_blog represents the weighted average value of theinput_pkt_queue queue length; it can range from 0 to the maximum length
represented by netdev_max_backlog. avg_blog is used to compute cng_level.

cng_level, which represents the congestion level, can take any of the values shown i. As avg_blog hits one of the thresholds
shown in the figure, cng_level changes value. The definitions of theNET_RX_XXX enum values are ininclude/linux/netdevice.h, and the

definitions of the congestion levels mod_cong, lo_cong, and ro_con? are in jet/core/dev.c.m The strings within brackets (DROP and

/HIGH) are explained in the section Congestion Managemeny" in [Chapter 1Q. avg_blog and cng_level are recalculated with each frame,

by default, but recalculation can be postponed and tied to a timer to avoid adding too much overhead.

iy The NeT_rx_xxx Values are also used outside this context, and there are otheger rRX xxx values not used here.
The value no_cong_thresh is not used,; it used to be used byprocess_backiog (described in to remove a queue
from the throttle state under some conditions when the kernel still had support for the feature (which has been
dropped).

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

Figure 9-4. Congestion level (NET_RX_ XXX) based on the average backlog avg_blog

netdev_max_badklog (300)

mod_cong (290) NET_RX_CN_HIGH [/DROP]
NET_RX_CN_MOD [/HIGH]
lo_cong (100)
NET_RX_CN_LOW
no_cong (20}
no_cong_thresh (10) — |- --- MET_RX_SUCCESS- - - - 4
0

avg_blog and cng_level are associated with the CPU and therefore apply to non-NAPI devices, which share the queuénput_pkt_queue
that is used by each CPU.

9.4.2. Initialization of softnet_data

Each CPU's softnet_data structure is initialized by net_dev_init, which runs at boot time and is described i. The initialization
code is:

for (i=0;i < NR_CPUS; i++) {
struct softnet_data *queue;

queue = &per_cpu(softnet_data,i);
skb_queue_head_init(&queue->input_pkt_queue);
queue->throttle = 0;

queue->cng_level = 0;

queue->avg_blog = 10; /* arbitrary non-zero */
queue->completion_queue = NULL;
INIT_LIST_HEAD(&queue->poll_list);

set_bit(_ _LINK_STATE_START, &queue->backlog_dev.state);
queue->backlog_dev.weight = weight_p;
queue->backlog_dev.poll = process_backlog;
atomic_set(&queue->backlog_dev.refcnt, 1);

his document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

NR_CPUS is the maximum number of CPUs the Linux kernel can handle andsoftnet_data is a vector of struct softnet_data structures.

The code also initializes the fields of softnet _data->blog dev, a structure of typenet device, a special device representing non-NAPI
devices. The section "lBackloq Processing: The process _backlog Poll Virtual FunctioA' in describes how non-NAPI device
drivers are handled transparently with the old netif_rx interface.

=2 NEXT

file:///C:/DOCUME~1/%B9%DA%B9%AE%B1%B9/LOCALS~1/Temp/Oreilly,%20Understanding%20Linux%20Network%20Internals%20(2005)%20Bbl%20Lotb.chm/0596002556/9961536.html

his document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

=2 wEXT

Chapter 10. Frame Reception

In the previous chapter, we saw that the functions that deal with frames at the L2 layer are driven by interrupts. In this chapter, we start
our discussion about frame reception, where the hardware uses an interrupt to signal the CPU about the availability of the frame.

As shown in Eigure g-j inbhagter é the CPU that receives an interrupt executes thedo_IRQ function. The IRQ number causes the right
handler to be invoked. The handler is typically a function within the device driver registered at device driver initialization time. IRQ
function handlers are executed in interrupt mode, with further interrupts temporarily disabled.

As discussed in the section 'Interrugt Handlerg" in bhagter g the interrupt handler performs a few immediate tasks and schedules others
in a bottom half to be executed later. Specifically, the interrupt handler:

1. Copies the frame into ansk_buff data structure:

[11f DMA is used by the device, as is pretty common nowadays, the driver needs only to initialize a
pointer (no copying is involved).

2. Initializes some of the sk_buff parameters for use later by upper network layers (notablgkb->protocol, which identifies the
higher-layer protocol handler and will play a major role in).

3. Updates some other parameters private to the device, which we do not consider in this chapter because they do not influence
the frame's path inside the network stack.

4. Signals the kernel about the new frame by scheduling theNET_RX_SOFTIRQ softirg for execution.

Since a device can issue an interrupt for different reasons (new frame received, frame transmission successfully completed, etc.), the
kernel is given a code along with the interrupt notification so that the device driver handler can process the interrupt based on the type.

=2 wEXT

file:///C:/DOCUME~1/%B9%DA%B9%AE%B1%B9/LOCALS~1/Temp/Oreilly,%20Understanding%20Linux%20Network%20Internals%20(2005)%20Bbl%20Lotb.chm/0596002556/9961536.html

his document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

=2 wEXT

10.1. Interactions with Other Features

While perusing the routines introduced in this chapter, you will often see pieces of code for interacting with optional kernel features. For
features covered in this book, | will refer you to the chapter on that feature; for other features, | will not spend much time on the code.
Most of the flowcharts in the chapter also show where those optional features are handled in the routines.

Here are the optional features we'll see, with the associated kernel symbols:

802.1d Ethernet Bridging (CONFIG_BRIDGE/CONFIG_BRIDGE_MODULE)

Bridging is described in .
Netpoll (CONFIG_NETPOLL)

Netpoll is a generic framework for sending and receiving frames by polling the network interface cards (NICs), eliminating the
need for interrupts. Netpoll can be used by any kernel feature that benefits from its functionality; one prominent example is
Netconsole, which logs kernel messages (i.e., strings printed with printk) to a remote host via UDP. Netconsole and its

suboptions can be turned on from the make xconfig menu with the "Networking support ; Network console logging
support” option. To use Netpoll, devices must include support for it (which quite a few already do).

Packet Action (CONFIG_NET_CLS_ACT)

With this feature, Traffic Control can classify and apply actions to ingress traffic. Possible actions include dropping the packet
and consuming the packet. To see this option and all its suboptions from the make xconfig menu, you need first to select the

"Networking support i Networking options ; QoS and/or fair queueing i Packet classifier API" option.

=2 wExT

his document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

=2 wEXT

10.2. Enabling and Disabling a Device

A device can be considered enabled when the _ _LINK_STATE_START flag is set in net_device->state. The section '
Eisablinq a Devica" in [;hapter g covers the details of this flag. The flag is normally set when the device is opendev_open) and cleared
when the device is closed (dev_close). While there is a flag that is used to explicitly enable and disable transmission for a device (
_LINK_STATE_XOFF), there is none to enable and disable reception. That capability is achieved by other meansi.e., by disabling the
device, as described in[Chapter §. The status of the_ _LINK_STATE_START flag can be checked with the netif_running function.

Several functions shown later in this chapter provide simple wrappers that check the correct status of flags such as _
_LINK_STATE_START to make sure the device is ready to do what is about to be asked of it.

=2 wEXT

his document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

=2 wEXT

10.3. Queues

When discussing L2 behavior, | often talk about queues for frames being received (ingress queues) and transmitted (egress queues

). Each queue has a pointer to the devices associated with it, and to the skb_buff data structures that store the ingress/egress buffers.
Only a few specialized devices work without queues; an example is the loopback device. The loopback device can dispense with queues
because when you transmit a packet out of the loopback device, the packet is immediately delivered (to the local system) with no need
for intermediate queuing. Moreover, since transmissions on the loopback device cannot fail, there is no need to requeue the packet for
another transmission attempt.

Egress queues are assotly to devices; Traffic Control (the Quality of Service, or QoS, layer) defines one queue for each
nhater 1

device. As we will see in , the kernel keeps track of devices waiting to transmit frames, not the frames themselves. We will
also see that not all devices actually use Traffic Control. The situation with ingress queues is a bit more complicated, as we'll see later.

=2 NEXT

his document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

e prey NExT B

10.4. Notifying the Kernel of Frame Reception: NAPI and netif_rx

In version 2.5 (then backported to a late revision of 2.4 as well), a new API for handling ingress frames was introduced into the Linux
kernel, known (for lack of a better name) as NAPI. Since few devices have been upgraded to NAPI, there are two ways a Linux driver can
notify the kernel about a new frame:

By means of the old function netif_rx

his is the approach u‘se devices that follow the technique described in the section ‘brocessing Multiple Framesl
nhater g

in |. Most Linux device drivers still use this approach.

By means of the NAPI mechanism

This is tkmmwmmmmmmmmfe fﬁnmwadescribed in the variation introduced at the end of the
section "Processing Multiple Frames During an Interrupt in Chapter 9. This is new in the Linux kernel, and only a few drivers use

it. drivers/net/tg3.c was the first one to be converted to NAPI.

A few device drivers allow you to choose between the two types of interfaces when you configure the kernel options with tools such as
make xconfig.

The following piece of code comes from vortex_rx, Which still uses the old functionnetit_rx, and you can expect most of the network device
drivers not yet using NAPI to do something similar:

skb = dev_alloc_skb(pkt_len + 5);
if (skb '= NULL) {
skb->dev = dev;
skb_reserve(skb, 2); /* Align IP on 16 byte boundaries */

skb->protocol = eth_type_trans(skb, dev);
netif_rx(skb);
dev->last_rx = jiffies;

First, the sk_buff data structure is allocated withdev_alioc_skb (see, and the frame is copied into it. Note that before copying, the code
reserves two bytes to align the IP header to a 16-byte boundary. Each network device driver is associated with a given interface type; for
instance, the Vortex device driver driver/net/3c59x.c is associated with a specific family of Ethernet cards. Therefore, the driver knows the
length of the link layer's header and how to interpret it. Given a header length of 16*k+n, the driver can force an alignment to a 16-byte
boundary by simply calling skb_reserve with an offset of 16fn. An Ethernet header is 14 bytes, sok=0, n=14, and the offset requested by the
code is 2 (see the definition of NeT_ip_aLicn and the associated comment ininclude/linux/sk_buff.h).

Note also that at this stage, the driver does not make any distinction between different L3 protocols. It aligns the L3 header to a 16-byte
boundary regardless of the type. The L3 protocol is probably IP because of IP's widespread usage, but that is not guaranteed at this point;
it could be Netware's IPX or something else. The alignment is useful regardless of the L3 protocol to be used.

*|
eth_type_trans, Which is used to extract the protocol identifierskb->protocol, is described in .

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

[bifferent device types use different functions; for instance eth_type_trans is used by Ethernet devices andt_type_trans by
Token Ring interfaces.

Depending on the complexity of the driver's design, the block shown may be followed by other housekeeping tasks, but we are not
interested in those details in this book. The most important part of the function is the notification to the kernel about the frame's reception.

10.4.1. Introduction to the New API (NAPI)

Even though some of the NIC device drivers have not been converted to NAPI yet, the new infrastructure has been integrated into the
kernel, and even the interface between neif_x and the rest of the kernel has to take NAPI into account. Instead of introducing the old
approach (pure reti_rx) first and then talking about NAPI, we will first see NAPI and then show how the old drivers keep their old interface
(netit_rx) while sharing some of the new infrastructure mechanisms.

NAPI mixes interrupts with polling and gives higher performance under high traffic load than the old approach, by reducing significantly the
load on the CPU. The kernel developers backported that infrastructure to the 2.4 kernels.

In the old model, a device driver generates an interrupt for each frame it receives. Under a high traffic load, the time spent handling
interrupts can lead to a considerable waste of resources.

The main idea behind NAPI is simple: instead of using a pure interrupt-driven model, it uses a mix of interrupts and polling. If new frames
are received when the kernel has not finished handling the previous ones yet, there is no need for the driver to generate other interrupts: it
is just easier to have the kernel keep processing whatever is in the device input queue (with interrupts disabled for the device), and
re-enable interrupts once the queue is empty. This way, the driver reaps the advantages of both interrupts and polling:

® Asynchronous events, such as the reception of one or more frames, are indicated by interrupts so that the kernel does not have
to check continuously if the device's ingress queue is empty.

® |f the kernel knows there is something left in the device's ingress queue, there is no need to waste time handling interrupt
notifications. A simple polling is enough.

From the kernel processing point of view, here are some of the advantages of the NAPI approach:

Reduced load on the CPU (because there are fewer interrupts)

Given the same workload (i.e., number of frames per second), the load on the CPU is lower with NAPI. This is especially true at
high workloads. At low workloads, you may actually have slightly higher CPU usage with NAPI, according to tests posted by the
kernel developers on the kernel mailing list.

More fairness in the handling of devices

We will see later how devices that have something in their ingress queues are accessed fairly in a round-robin fashion. This
ensures that devices with low traffic can experience acceptable latencies even when other devices are much more loaded.

10.4.2. net_device Fields Used by NAPI

Before looking at NAPI's implementation and use, | need to describe a few fields of the net_device data structure, mentioned in the section

"Eoftnet data Structuré' in Chapter

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

Four new fields have been added to this structure for use by the net_rx_sorTirq softirg when dealing with devices whose drivers use the
NAPI interface. The other devices will not use them, but they will share the fields of the net_device Structure embedded in the softnet_data

structure as its backiog_dev field.

poll
A virtual function used to dequeue buffers from the device's ingress queue, The queue js a private one for devices using NAPI,
and softnet_data->input_pkt_queue for others. See the section Backlog Processing: The process backlog Poll Virtual Functior}"
poll_list
List of devices that have new frames in the ingress queue waiting to be processed. These devices are known as being in polling
state. The head of the list is softnet_data->polil_ist. Devices in this list have interrupts disabled and the kernel is currently polling them.
quota
weight

quota IS @n integer that represents the maximum number of buffers that can be dequeued by theon virtual function in one shot. Its
value is incremented in units of weight and it is used to enforce some sort of fairness among different devices. Lower quotas mean
lower potential latencies and therefore a lower risk of starving other devices. On the other hand, a low quota increases the
amount of switching among devices, and therefore overall overhead.

For devices associated with non-NAPI drivers, the default value of weight is 64, stored inweight_p at the top of net/core/dev.c. The
value of weight_p can be changed via/proc.

For devices associated with NAPI drivers, the default value is chosen by the drivers. The most common value is 64, but 16 and
32 are used, too. Its value can be tuned via sysfs.

For both the /proc and sysfs interfaces, see the section 'h‘uninq via /proc and sysfs Filesystemsl in thagter 1j.

The section 'jpld Versus New Driver Interfaces} describes how and when elements are added topoil_iist, and the section
IDrocessinq: The process backlog Poll Virtual Functior{" describes when the poi method extracts elements from the list and howquota is

updated based on the value of weignt.

Devices using NAPI initialize these four fields an ice fi dinc_mnﬂnétialization model described in . For the
Chapter

fake backiog_dev devices, introduced in the section fnitialization of softnet datd" in and described later in this chapter, the

initialization is taken care of by net dev_init (described in[Chapter d).

10.4.3. net_rx_action and NAPI

shows what happens each time the kernel polls for incoming network traffic. In the figure, you can see the relationships among
the poil_iist list of devices in polling state, thepon virtual function, and the software interrupt handlemet r_action. The following sections will go into

detail on each aspect of that diagram, but it is important to understand how the parts interact before moving to the source code.

Figure 10-1. net_rx_action function and NAPI overview

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

< Begin

P Nl e i i e :
< :
Any deviceleft g :
in IIm? stite |
poll_fist)? l |
¢ Yes ':-::____ E"j_ ___; E
No Is it time to Yes
release the (PU?]
'
Get the first device (dev) Schedule E
in poll_list MET_RX_SOFTIRQ]
Device's quata was sufficient to ¢ Device's quota was not sufficient : ______________ oy
| empty the RX queue | | toempty the RX queye |
lr ey -2 puﬂ: ﬁ
Remaove device dev Maove device dev at the
from poll_list end of poll_[ist
* I
Clear
_LINK_STATE_RX_SCHED
I

We already know that net_rx_action is the function associated with thener_rx_sorTirq flag. For the sake of simplicity, let's suppose that after a
period of very low activity, a few devices start receiving frames and that these somehow trigger the execution of net_r«_actionhow they do so is
not important for now.

net_rx_action browses the list of devices in polling state and calls the associatedol virtual function for each device to process the frames in the
ingress queue. | explained earlier that devices in that list are consulted in a round-robin fashion, and that there is a maximum number of
frames they can process each time their po method is invoked. If they cannot clear the queue during their slot, they have to wait for their
next slot to continue. This means that net_rx_action keeps calling the poi method provided by the device driver for a device with something in its
ingress queue until the latter empties out. At that point, there is no need anymore for polling, and the device driver can re-enable interrupt
notifications for the device. It is important to underline that interrupts are disabled only for those devices in poi_iist, which applies only to
devices that use NAPI and do not share backiog_dev.

net_rx_action limits its execution time and reschedules itself for execution when it passes a given limit of execution time or processed frames;
this is enforced to make net_<_action behave fairly in relation to other kernel tasks. At the same time, each device limits the number of frames
processed by each invocation of its po method to be fair in relation to other devices. When a device cannot clear out its ingress queue, it
has to wait until the next call of its poi method.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

10.4.4. Old Versus New Driver Interfaces

Now that the meaning of the NAPI-related fields of the net_device Structure, and the high-level idea behind NAPI, should be clear, we can get

closer to the source code.

shows the difference between a NAPI-aware driver and the others with regard to how the driver tells the kernel about the
reception of new frames.

From the device driver perspective, tht&wwﬂammri/veen NAPI and non-NAPI. The first is that NAPI drivers must provide
a poll method, described in the section 'het_device fields used by NAP" The second difference is the function called to schedule a frame:
non-NAPI drivers call netit_rx, whereas NAPI drivers call _ _netit_rx_schedule, defined ininclude/linux/netdevice.h. (The kernel provides a wrapper

function named netif_rx_schedule, Which checks to make sure that the device is running and that the softirg is not already scheduled, and then it
calls _ _netif_rx_schedule. These checks are done Withnetifjxﬁscheduleﬁprep. Some drivers call netif_rx_schedule, and others Ca”netifirxischeduleiprep explicitly

and then _ _netif_rx_schedule if needed).

As shown in , both types of drivers queue the input device to a polling listoli_iist), schedule the NeT_rx_sorTirQ software interrupt
for execution, and therefore end up being handled by net_rx_action. Even though both types of drivers ultimately call _netif_rx_schedule fnon—l\API

wmum,g&j dev'ﬁesgﬁga potentially much better performance for the reasons we saw in the sectiorNotifyin
Drivers When Frames Are Received" in [Chapter 9.

Figure 10-2. NAPIl-aware drivers versus non-NAPI-aware devices

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

4
_netif_rx_schedule E
']I'II?I if blacko _dﬂ 3 —» Add dev 1o CPU's poll list i Dﬂr!r' ifdevis
not already scheduled i S gt . not already schedeled
y e .= _raise_softirg_irqoff(NET_RX_SOFTIRQ) - et Y s i y
i : :
i Only if dev is not i :
! already scheduled 1 :
| : |
netif_r_schedule i netif _rx_schedule
[derrfrlaced with ' ¥
backlog_dev)]
netif_rx E
T (devis the real device) (devis the real device) | .+ (devis the real device)

interrupt handler interrupt handler

Device driver NOT NAPI-aware Device driver NAPl-aware

An important detail in is the net_device Structure that is passed to __netif_rx_schedule In the two cases. Non-NAPI devices use the one
that is built into the CPU's softnet_data Structure, and NAPI devices usenet_device Structures that refer to themselves.

10.4.5. Manipulating poll_list

We saw in the previous section that any device (including the fake one, backiog_dev) is added to the poi_list list with @ call tonetif_rx_schedule OF _

_netif_rx_schedule.

The reverse operation, removing a device from the list, is done with netif_rx_complete OF __netif_rx_complete (the_second one assumes interrupts are
_%Ied on the local CPU). We will see when these two routines are called in the section "Processing the NET RX SOFTIRQ:
het rx_action.”

A device can also temporarily disable and re-enable polling with netif_poll_disable and netif_poll_enable, respectively. This does not mean that the
device driver has decided to revert to an interrupt-based model. Polling might be disabled on a device, for instance, when the device
needs to be reset by the device driver to apply some kind of hardware configuration changes.

| already said that netit_r«_schedule filters requests for devices that are already in thewolil_iist (i.€., that have the__tink_state_rx_scHep flag set). For
this reason, if a driver sets that flag but does not add the device to poi_iist, it basically disables polling for the device: the device will never
be added to poil_iist. This is how netif_poll_disable WOrks: if __LINK_STATE_Rx_scHED was not set, it simply sets it and returns. Otherwise, it waits for it
to be cleared and then sets it.

his document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

static inline void netif_poll_disable(struct net_device *dev)
{
while (test_and_set_bit(_ _LINK_STATE_RX_SCHED, &dev->state)) {
/* No hurry. */
current->state = TASK_INTERRUPTIBLE:
schedule_timeout(1);

e NExT B

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

K==1 wExT

10.5. Old Interface Between Device Drivers and Kernel: First Part of netif_rx

kd
The netif_x function, defined innet/core/dev.c, is normally called by device drivers when new input frames are waiting to be processe its

job is to schedule the softirq that runs shortly to dequeue and handle the frames. Figure 10-3 shows what it checks for and the flow of its
events. The figure is practically longer than the code, but it is useful to help understand how netit_x reacts to its context.

M There is an interesting exception: when a CPU of an SMP system dies, theiev_cpu_callback routine drains the input_pkt_queue
gueue of the associated softnet_data iNStance. dev_cpu_caliback is the callback routine registered bynet_dev_init in the cpu_chain

introduced in .

netif_r« is usually called by a driver while in interrupt context, but there are exceptions, notably when the function is called by the loopback

device. For this reason, netif_x disables interrupts on the local CPU when it starts, and re-enables them when it finishem

e netif_rx_ni IS & Sister tonetif_rx and is used in noninterrupt contexts. Among the systems using it is the TUN (Universal
TUN/TAP) device driver in drivers/net/tun.c.

When looking at the code, one should keep in mind that different CPUs can run netit_« concurrently. This is not a problem, since each CPU
is associated with a private softnet_data Structure that maintains state information. Among other things, the CPU'Softnet_data Structure includes a

private input queue (see the section "goftnet_data Structurd' in Chapter 9).

Figure 10-3. netif_rx function

Begin

Does NETROLL
need to consume ———— 155kb > stamp
the frame? set?
* Yes ‘I’ﬁ¢
Free the buffer Disable IRQs on local
(kfree_skb) CPU (local _irg_save)
Return Get local CPU ID cpu and
MET_RX_DROP the associated softnet_data

CONFIG_NETPOLL

]

Update statistics
{total ++)

'

i

Is the

Imitialize it
{net_timestamp)

N
input queue full? —l

Isthe
mIIL il:Lg ? _l No input queue empty?
Yes Move cpu into the *Tﬁ
throttling state
Is cpu
Update statistics biroxthing! :
(throttlied ++} Y Mave cpu out of the
I lu.n throttling stats
¥ Is cpu - |
- Illmrﬁmg?
netif_rx_schedule
Y Hfi <]
Update statistics
dropped +-+) Increase the reference
* count for the device
Enable IRQs on local *
CPY (local_irg_restore) Enquewe the frame into
+ cpus input quee
Free the buffer *
(kfree_skb) Update congestion level

1

{get_sample_stats)

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

Y — —————— | UPPLINE_SAMFLE
Retum +
NET_RX_DROP Enable IRGs on local
CPU (local_irg_restore)
Retumn

congestion level

This is the function's prototype:

int netif_rx(struct sk_buff *skb)

Its only input parameter is the buffer received by the device, and the output value is an indication of the congestion level (you can find
details in the section 'Congestion Management").

The main tasks of netit_rx, whose detailed flowchart is depicted in, include:

® |nitializing some of the sk_butf data structure fields (such as the time the frame was received).

® Storing the received frame onto the CPU's private input queue and notifying the kernel about the frame by triggering the
associated softirg NeT_rx_sorTirRQ. This step takes place only if certain conditions are met, the most important of which is whether
there is space in the queue.

® Updating the statistics about the congestion level.

shows an example of a system with a bunch of CPUs and devices. Each CPU has its own instance ofofinet_data, Which includes
the private input queue where netit ix Will store ingress frames, and the completion_queue Where buffers are sent when they are not needed

anymore (see the section "Processing the NET _TX SOFTIRQ: net_tx_actiorf in Ehaéter 13). The figure shows an example where CPU 1
receives an rxcomplete interrupt from eth0. The associated driver stores the ingress frame into CPU 1's queue. CPU m receives amaDone

%
interrupt from ethn saying that the transmitted buffer is not needed anymore and can therefore be moved to theompletion_queue queue!

(] Both input_pkt_queue @and completion_queue keep only the pointers to the buffers, even if the figure makes it look as if they
actually store the complete buffers.

10.5.1. Initial Tasks of netif_rx

netif_rx Starts by saving the time the function was invoked (which also represents the time the frame was received) into theamp field of the
buffer structure:

if (skb->stamp.tv_sec == 0)
net_timestamp(&skb->stamp);

Saving the timestamp has a CPU costtherefore, net_timestamp initializes skb->stamp only if there is at least one interested user for that field.
Interest in the field can be advertised by calling net_enable_timestamp.

Do not confuse this assignment with the one done by the device driver right before or after it calls netit_rx

netif_rx(skb);
dev->last_rx = jiffies;

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

Figure 10-4. CPU's ingress queues

eth(o ethi .. ethn

RxComplete E DMADone ‘ -

CCPUT CPUm

30 (Bl |2 I -"%
= ", '_ = e =
softnet_data softnet_data

The device driver stores in the net_device Structure the time itsmost recent frame was received, andnetit_ stores the time the frame was
received in the buffer itself. Thus, one timestamp is associated with a device and the other one is associated with a frame. Note,
moreover, that the two timestamps use two different precisions. The device driver stores the timestamp of the most recent frame in jfies,
which in kernel 2.6 comes with a precision of 10 or 1 ms, depending on the architecture (for instance, before 2.6, the i386 used the value
10, but starting with 2.6 the value is 1). netit_rx, however, gets its timestamp by callingget_fast_time, Which returns a far more precise value.

The ID of the local CPU is retrieved with smp_processor_id() and is stored in the local variabletis_cpu:

this_cpu = smp_processor_id();

The local CPU ID is needed to retrieve the data structure associated with that CPU in a per-CPU vector, such as the following code in

netif_rx

queue = & __get _cpu_var(softnet_data);

The preceding line stores in queue @ pointer to thesoftnet_data Structure associated with the local CPU that is serving the interrupt triggered by
the device driver that called neti_rx.

Now netit_rx updates the total number of frames received by the CPU, including both the ones accepted and the ones discarded (because
there was no space in the queue, for instance):

netdev_rx_stat[this_cpu].total++

Each device driver also keeps statistics, storing them in the private data structure that dev->priv points to. These statistics, which include the
number of received frames, the number of dropped frames, etc., are kept on a per-device basis (see .), and the ones updated by

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

netif_rx are on a per-CPU basis.

10.5.2. Managing Queues and Scheduling the Bottom Half

The input queue is managed by softnet_data->input_pkt_queue. Each input queue has a maximum length given by the global variabl@etpev_max_backiog,
whose value is 300. This means t each CPU can have up to 300 frames in its input queue waiting to be processed, regardless of the

*
number of devices in the system.

Ml This applies to non-NAPI devices. Because NAPI devices use private queues, the devices can select the maximum
length they prefer. Common values are 16, 32, and 64. The 10-Gigabit Ethernet driver drivers/net/s2io.c uses a larger
value (90).

Common sense would say that the value of neTbev_max_backlog Should depend on the number of devices and their speeds. However, this is
hard to keep track of in an SMP system where the interrupts are distributed dynamically among the CPUs. It is not obvious which device
will talk to which CPU. Thus, the value of netbev_max_backiog is chosen through trial and error. In the future, we could imagine it being set
dynamically in a manner reflecting the types and number of interfa le is already configurable by the system administrator, as
described in the section "[funing via /proc and sysfs Filesystemq in Eha;ter 124 The performance issues are as follows: an unnecessarily
large value is a waste of memory, and a slow system may simply never be able to catch up. A value that is too small, on the other hand,
could reduce the performance of the device because a burst of traffic could lead to many dropped frames. The optimal value depends a lot
on the system's role (host, server, router, etc.).

In the previous kernels, when the softnet_data per-CPU data structure was not present, a single input queue, calledackiog, was shared by all
devices with the same size of 300 frames. The main gain with softnet_data IS not thatn CPUs leave room on the queues forn*300 frames, but
rather, that there is no need for locking among CPUs because each has its own queue.

The following code controls the conditions under which netif_rx inserts its new frame on a queue, and the conditions under which it schedules
the queue to be run:

if (queue->input_pkt_queue.glen <= netdev_max_backlog) {
if (queue->input_pkt_queue.glen) {
if (queue->throttle)
goto drop;

enqueue:

dev_hold(skb->dev);

_ _skb_queue_tail(&gueue->input_pkt_queue,skb);
#ifndef OFFLINE_SAMPLE

get_sample_stats(this_cpu);
#endif

local_irq_restore(flags);
return queue->cng_level;

if (queue->throttle)
gueue->throttle = 0;

netif_rx_schedule(&queue->backlog_dev);
goto enqueue;

drop:
_ _get_cpu_var(netdev_rx_stat).dropped++;
local_irq_restore(flags);

his document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

kfree_skb(skb);
return NET_RX_DROP;

The first it statement determines whether there is space. If the queue is full and the statement returns a false result, the CPU is put into a
throttle state , which means that it is overloaded by input traffic and therefore is dropping all further frames. The code instituting the throttle
is not shown here, but appears in the following section on congestion management.

If there is space on the queue, however, that is not sufficient to ensure that the frame is accepted. The CPU could already be in the
"throttle" state (as determined by the third it statement), in which case, the frame is dropped.

The throttle state can be lifted when the queue is empty. This is what the second it statement tests for. When there is data on the queue
and the CPU is in the throttle state, the frame is dropped. But when the queue is empty and the CPU is in the throttle state (which anif

*|
statement tests for in the second half of the code shown here), the throttle state is lifted.

[This case is actually rare becausenet_rx_action probably lifts the throttle state (indirectly Viaprocess_backiog) earlier. We will
see this later in this chapter.

The dev_nhold(skb->dev) call increases the reference count for the device so that the device cannot be removed until this buffer has been
completely processed. The corresponding decrement, done by dev_put, takes place inside ret_rx_action, Wwhich we will analyze later in this
chapter.

If all tests are satisfactory, the buffer is queued into the input queue with __skb_queue_tail@&queue->input_pkt_queue,skb), the IRQ's status is restored for
the CPU, and the function returns.

Queuing the frame is extremely fast because it does not involve any memory copying, just pointer manipulation. input_pkt_queue is @ list of
pointers. __skb_queue_tail 2dds the pointer to the new buffer to the list, without copying the buffer.

The neT_rx_sorTiRQ software interrupt is scheduled for execution withnetif_rx_schedule. NOte that netit_rx_schedule is called only when the new buffer
is added to an empty queue. The reason is that if the queue is not empty, neT_rx_sorTirQ has already been scheduled and there is no need
to do it again.

In the se w how the kernel takes care of scheduled software interrupts. In the upcoming

section "Processing the NET RX SOFTIRQ: net rx_actior}" we will see the internals of thener_rx_sorTirq softirg's handler.

e prey | NExT

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

=2 wEXT

10.6. Congestion Management

Congestion management is an important component jnput frame-processing task. An overloaded CPU can become unstable and
introduce a big latency into the system. The section "|nterruptd" in explained why the interrupts generated by a high load can

cripple the system. For this reason, congestion management mechanisms are needed to make sure the system's stability is not
compromised under high network load. Common ways to reduce the CPU load under high traffic loads include:

Reducing the number of interrupts if possible

isis a i ing drivers either {o process several frames with a single interrupt (see the section Processing
ultiple Frames During an Interrup{" in Chapter), or to use NAPI.

Discarding frames as early as possible in the ingress path

If code knows that a frame is going to be dropped by higher layers, it can save CPU time by dropping the frame quickly. For
instance, if a device driver knew that the ingress queue was full, it could drop a frame right away instead of relaying it to the
kernel and having the latter drop it.

The second point is what we cover in this section.
A similar optimization applies to the egress path: if a device driver does not have resources to accept new frames for transmission (that

is, if the device is out of memory), it would be a waste of CPU timtmngkwmas down to the driver for
transmission. This point is discussed in in the section 'Enabling and Disabling Transmissiong"

In both cases, reception and transmission, the kernel provides a set of functions to set, clear, and retrieve the status of the receive and
transmit queues, which allows device drivers (on reception) and the core kernel (on transmission) to perform the optimizations just
mentioned.

A good indication of the congestion level is the number of frames that have been received and are waiting to be processed. When a
device driver uses NAPI, it is up to the driver to implement any congestion control mechanism. This is because ingress frames are kept in
the NIC's memory or in the receive ring managed by the driver, and the kernel cannot keep track of traffic congestion. In contrast, when a
device driver does not use NAPI, frames are added to per-CPU queues (softnet_data->input_pkt_queue) and the kernel keeps track of
the congestion level of the queues. In this section, we cover this latter case.

Queue theory is a complex topic, and this book is not the place for the mathematical details. | will content myself with one simple point:
the current number of frames in the queue does not necessarily represent the real congestion level. An average queue length is a better
guide to the queue's status. Keeping track of the average keeps the system from wrongly classifying a burst of traffic as congestion. In
the Linux network stack, average queue length is reported by two fields of the softnet_data structure, cng_level and avg_blog, that were
introduced in "softnet_data Structure" in Ehaéter 9

Being an average, avg_blog could be both bigger and smaller than the length ofnput_pkt_queue at any time. The former represents
recent history and the latter represents the present situation. Because of that, they are used for two different purposes:

L4 By default, every time a frame is queued into input_pkt_queue, avg_blog is updated and an associated congestion level is
computed and saved into cng_level. The latter is used as the return value bynetif_rx so that the device driver that called this
function is given a feedback about the queue status and can change its behavior accordingly.

® The number of frames in input_pkt_queue cannot exceed a maximum size. When that size is reached, following frames are

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks
dropped because the CPU is clearly overwhelmed.

Let's go back to the computation and use of the congestion level. avg_blog and cng_level are updated inside get_sample_stats, which is
called by netif_rx.

At the moment, few device drivers use the feedback from netif_rx. The most common use of this feedback is to update statistics local to
the device drivers. For a more interesting use of the feedback, see drivers/net/tulip/de2104x.c: when netif_rx returns NET_RX_DROP, a
local variable drop is set to 1, which causes the main loop to start dropping the frames in the receive ring instead of processing them.

So long as the ingress queue input_pkt_queue is not full, it is the job of the device driver to use the feedback frormetif_rx to handle
congestion. When the situation gets worse and the input queue fills in, the kernel comes into play and uses the softnet_data->throttle flag
to disable frame reception for the CPU. (Remember that there is a softnet_data structure for each CPU.)

10.6.1. Congestion Management in netif_rx

Let's go back to netif_rx and look at some of the code that was omitted from the previous section of this chapter. The following two
excerpts include some of the code shown previously, along with new code that shows when a CPU is placed in the throttle state.

if (queue->input_pkt_queue.glen <= netdev_max_backlog) {
if (queue->input_pkt_queue.glen) {
if (queue->throttle)
goto drop;

if ('queue->throttle) {
queue->throttle = 1;
_ _get_cpu_var(netdev_rx_stat).throttled++;

softnet_data->throttle is cleared when the queue gets empty. To be exact, it is cleared byetif rx when the first frame is gueued into an
empty queue. It could also happen in process_backlog, as we will see in the section Backlog Processing: The process backlog Poll
Eirtual Function."

10.6.2. Average Queue Length and Congestion-Level Computation

The value of avg_blog and cng_level is always updated withinget_sample_stats. The latter can be invoked in two different ways:

® Every time a new frame is received (netif_rx). This is the default.

® \itha periodic timer. To use this technique, one has to define the OFFLINE_SAMPLE symbol. That's the reason why in

his document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

netif_rx, the execution ofget_sample_stats depends on the definition of the OFFLINE_SAMPLE symbol. It is disabled by
default.

The first approach ends up runningget_sample_stats more often than the second approach under medium and high traffic load.

In both cases, the formula used to compute avg_blog should be simple and quick, because it could be invoked frequently. The formula
used takes into account the recent history and the present:

new_value_for_avg_blog = (old_value_of_avg_blog + current_value_of_queue_len) / 2

How much to weight the present and the past is not a simple problem. The preceding formula can adapt quickly to changes in the
congestion level, since the past (the old value) is given only 50% of the weight and the present the other 50%.

get_sample_stats also updates cng_level, basing it onavg_blog through the mapping shown earlier inlfigure 9-4 inthagter é If the
RAND_LIE symbol is defined, the function performs an extra operation in which it can randomly decide to setng_level one level higher.
This random adjustment requires more time to calculate but, oddly enough, can cause the kernel to perform better under one specific
scenario.

Let's spend a few more words on the benefits of random lies. Do not confuse this behavior with Random Early Detection (RED).

In a system with only one interface, it does not really make sense to drop random frames here and there if there is no congestion; it
would simply lower the throughput. But let's suppose we have multiple interfaces sharing an input queue and one device with a traffic
load much higher than the others. Since the greedy device fills the shared ingress eue faster than the other devices, the latter will

%
often find no space in the ingress queue and therefore their frames will be dropped.— The greedy device will also see some of its frames
dropped, but not proportionally to its load. When a system with multiple interfaces experiences congestion, it should drop ingress frames
across all the devices proportionally to their loads. The RAND_LIE code adds some fairness when used in this context: dropping extra

frames randomly should end up dropping them proportionally to the load.

T when sharing a queue, it is up to the users to behave fairly with others, but that's not always possible. NAPI
does not encounter this problem because each device using NAPI has its own queue. However, non-NAPI drivers
still using the shared input queue input_pkt_queue have to live with the possibility of overloading by other devices.

=2 wEXT

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

K==1 wExT

10.7. Processing the NET_RX_SOFTIRQ: net_rx_action

net_rx_action IS the bottom-half function used to process incoming frames. Its execution is triggered whenever a driver notifies the kernel about

the presence of input frames. shows the flow of control through the function.

Frames can wait in two places for net_rx_action to process them:

A shared CPU-specific queue

Non-NAPI devices' interrupt handlers, which call retit_rx, place frames into thesoftnet_data->input_pkt_queve Of the CPU on which the
interrupt handlers run.

Device memory

The po method used by NAPI drivers extracts frames directly from the device (or the device driver receive rings).

The section 'bld Versus New Driver Interfaceé showed how the kernel is notified about the need to runnet_rx_action in both cases.

Figure 10-5. net_rx_action function

Disable IRQs on local

CPU {local_irg_disable)
1-14
Is poll_list Mo
empty? ‘
Yes
No Is ani.v budqet
eft?
l Yes
iz 5 it time to
l release the (PU?
'Ilp:larte shatistics N
LK 0
(fime_squeeze ++) 1
Enable IRQs on local
l CPU (local_irq_enable)
Schedule 'L
NET_RX_ACTION
(et device dev from
Y J’ poll_list
Enable IRQs on local
CPU (local_irg_enable) i
No - mﬂfﬂg”q’z ota 1 o, | Process backlog queue
l lefi? M“MI function)
Decrement reference
count on the dev Yes Has the
hacklog queue
i been emptied?
Disable IRQs on local ‘ Na
CPU (local_ing_ disable)
| Disable IRQs on local
(PU (local_irq_disable)
Move dev to the end
of poll_list

'

| Update dev’s quota ‘

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

| | |

The job of net_rx_action is pretty simple: to browse the poil_iist list of devices that have something in their ingress queue and invoke for each one
the associated poil virtual function until one of the following conditions is met:

® There are no more devices in the list.
® ..t _action has run for too long and therefore it is supposed to release the CPU so that it does not become a CPU hog.

® The number of frames already dequeued and processed has reached a given upper bound limit (budget). budget is initialized at the
beginning of the function to neTbev_max_backiog, Which is defined innet/core/dev.c as 300.

As we will see in the next section, net_rx_action calls the driver'spol virtual function and depends partly on this function to obey these
constraints.

The size of the queue, as we saw in the section "l\/lanaqinq Queues and Scheduling the Bottom Halj' is restricted to the value of
neTDev_max_backlog. This value is considered thebudget for net_rx_action. However, because net_rx_action runs with interrupts enabled, new frames
could be added to a device's input queue while net_rx_action is running. Thus, the number of available frames could become greater thamudget,
and net_rx_action has to take action to make sure it does not run too long in such cases.

Now we will see in detail what net_rx_action does inside:

static void net_rx_action(struct softirg_action *h)

{
struct softnet_data *queue = & __get_cpu_var(softnet_data);
unsigned long start_time = jiffies;
int budget = netdev_max_backlog;

local_irq_disable();

If the current device has not yet used its entire quota, it is given a chance to dequeue buffers from its queue with the poi virtual function:

while (!list_empty(&queue->poll_list)) {
struct net_device *dev;

if (budget <= 0 || jiffies - start_time > 1)
goto softnet_break;

local_irq_enable();

dev = list_entry(queue->poll_list.next, struct net_device, poll_list);

If dev->poll returns because the device quota was not large enough to dequeue all the buffers in the ingress queue (in which case, the return
value is nonzero), the device is moved to the end of poll_iist:

if (dev->quota <= 0 || dev->poli(dev, &budget)) {
local_irq_disable();
list_del(&dev->poll_list);
list_add_tail(&dev->poll_list, &queue->poll_list);
if (dev->quota < 0)
dev->quota += dev->weight;
else
dev->quota = dev->weight;
}else {

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

When instead pol manages to empty the device ingress queue,net_rx_action does not remove the device frompoi_ist: poll iS supposed to take
care of it with a call to netif_rx_complete (__netif_rx_complete can also be called if IRQs are disabled on the local CPU). This will be illustrated in the

process_backlog function in the next section.

Furthermore, note that budget was passed by reference to thepon virtual function; this is because that function will return a new budget that
reflects the frames it processed. The main l00p in net_rx_action Checks budget at each pass so that the overall limit is not exceeded. In other
words, budget allows net_rx_action and the poil function to cooperate to stay within their limit.

dev_put(dev);
local_irq_disable();

}

out:
local_irg_enable();
return;

This last piece of code is executed when net_rx_action is forced to return while buffers are still left in the ingress queue. In this case, the
NET_RX_SOFTIRQ SOftirq is scheduled again for execution so thatet_rx_action Will be invoked later and will take care of the remaining buffers:

softnet_break:
_ _get_cpu_var(netdev_rx_stat).time_squeeze++;
_ _raise_softirq_irqoff(NET_RX_SOFTIRQ);
goto out;

Note that net_r«_action disables interrupts withiocal_irq_disable Only while manipulating thepoll_iist list of devices to poll (i.e., when accessing its
softnet_data Structure instance). The netpoll_poll_lock and netpoll_poli_uniock calls, used by the NETPOLL feature, have been omitted. If you can access
the kernel source code, see net_rx_action in net/core/dev.c for details.

10.7.1. Backlog Processing: The process_backlog Poll Virtual Function

The poil virtual function of the ret_device data structure, which is executed bynet_rx_action to process the backlog queue of a device, is initialized
by default to process_backiog in net_dev_init for those devices not using NAPI.

As of kernel 2.6.12, only a few device drivers use NAPI, and initialize dev->poll With @ pointer to a function of its own: the Broadcom Tigon3
Ethernet driver in drivers/net/tg3.c was the first one to adopt NAPI and is a good example to look at. In this section, we will analyze the
default handler process_backiog defined innet/core/dev.c. Its implementation is very similar to that of awoil method of a device driver using NAPI
(you can, for instance, compare process_backlog tO tg3_poll).

However, since process_backiog can take care of a bunch of devices sharing the same ingress queue, there is one important difference to take
into account. When process_backiog runs, hardware interrupts are enabled, so the function could be preempted. For this reason, accesses to
the softnet_data Structure are always protected by disabling interrupts on the local CPU witlcal_irq_disable, especially the calls to_ _skb_dequeve. This

%]
lock is not needed by a device driver using NAPI:*X when its pol method is invoked, hardware interrupts are disabled for the device.
Moreover, each device has its own queue.

(] Because each CPU has its own instance Ofsoftnet_data, there is no need for extra locking to take care of SMP.

Let's see the main parts of process_backiog. shows its flowchart.

The function starts with a few initializations:

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

static int process_backlog(struct net_device *backlog_dev, int *budget)

{
int work = 0;
int quota = min(backlog_dev->quota, *budget);
struct softnet_data *queue = & _ _get_cpu_var(softnet_data);

unsigned long start_time = jiffies;

Then begins the main loop, which tries to dequeue all the buffers in the input queue and is interrupted only if one of the following
conditions is met:

® The queue becomes empty.
® The device's quota has been used up.

® The function has been running for too long.

The last two conditions are similar to the ones that constrain net_rx_action. BECauSse process_backlog iS called within a loop innet_rx_aciion, the latter
can respect its constraints only if process_backlog cOOperates. For this reason, net_rx_action passes its leftover budget toprocess_backiog, @and the latter
sets its quota to the minimum of that input parameter (budget) and its own quota.

budget iS initialized by net_rx_action to 300 when it starts. The default value fordev->quota is 64 (and most devices stick with the default). Let's
examine a case where several devices have full queues. The first four devices to run within this function receive a value of budget greater
than their internal quota of 64, and can empty their queues. The next device may have to stop after sending a part of its queue. That is, the
number of buffers dequeued by process_backiog depends both on the device configuration ev>quota), @and on the traffic load on the other devices
(budget). This ensures some more fairness among the devices.

Figure 10-6. process_backlog function

Compute the
device's quota

v

Get CPU 1D cpur and the
associated softnet_data

ha CPU hag?

| Yo

>y

Disable IRQs on local
(PU {local _irg_disable)

v

|s input queue
{input_pkt_queue)
emply?

¢Hﬂ

Yis

Degueue one frame

v

Enable IR{s on local
CPU {local_irg_enable)

v

Process packet
(netif_receive_skh)

v

Decrement refont
on device

v

Has the

device's quota
been reached?

I-¢ Yes

Update device's quota

!

Update input budget

!

Return -1

1

Update device's quota

v

Remove device from
pofi_fist

i

Cear fla
_LINK_STATE_RX_SCHED

i

Is cpu
throttling?

¢ Yesg

Move the CPU out of
the throttle state

l...—

Enable IROs on local
CPU (local_irg_enable)

!

Return

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

for (;;) {
struct sk_buff *skb;
struct net_device *dev;

local_irq_disable();
skb = _ _skb_dequeue(&queue->input_pkt_queue);
if (Iskb)
goto job_done;
local_irq_enable();

dev = skb->dev;
netif_receive_skb(skb);
dev_put(dev);

work++;
if (work >= quota || jiffies - start_time > 1)
break;

netif_receive_skb IS the function that processes the frame; it is described in the next section. It is used by agbn virtual functions, both NAPI and
non-NAPI.

The device's quota is updated based on the number of buffers successfully dequeued. As explained earlier, the input parameter budget is
also updated because it is needed by net_rx_action to keep track of how much work it can continue to do:

backlog_dev->quota -= work;
*budget -= work;
return -1;

The main loop shown earlier jumps to the label job_done if the input queue is emptied. If the function reaches this point, the throttle state can
be cleared (if it was set) and the device can be removed from poil_ist. The __Link_state_rx_scHep flag is also cleared since the device does not
have anything in the input queue and therefore it does not need to be scheduled for backlog processing.

job_done:
backlog_dev->quota -= work;
*budget -= work;

list_del(&backlog_dev->poll_list);
smp_mb_ _before_clear_bit();
netif_poll_enable(backlog_dev);

if (queue->throttle)

gueue->throttle = 0;
local_irg_enable();
return 0;

Actually, there is another difference between process_backlog and a NAPI driver'spoil method. Let's return to drivers/net/tg3.c as an example:

if (done) {
spin_lock_irqsave(&tp->lock, flags);
_ _netif_rx_complete(netdev);

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

tg3_restart_ints(tp);
spin_unlock_irgrestore(&tp->lock, flags);

done here is the counterpart ofjob_done in process_backiog, with the same meaning that the queue is empty. At this point, in the NAPI driver, the
_netif_rx_complete function (defined in the same file) removes the device from thepol_list list, a task thatprocess_backiog does directly. Finally, the NAPI
driver re-enables interrupts for the device. As we anticipated at the beginning of the section, process_backiog runs with interrupts enabled.

10.7.2. Ingress Frame Processing

As mentioned in the previous section, netif_receive_skb IS the helper function used by thepoi virtual function to process ingress frames. It is

illustrated in ..

Multiple protocols are allowed by both L2 and L3. Each device driver is associated with a specific hardware type (e.g., Ethernet), so it is
easy for it to interpret the L2 header and extract the information that tells it which L3 protocol is being used, if any (see . When

net_rx_action iS invoked, the L3 protocol identifier has already been extracted from the L2 header and stored int@ko->protocol by the device driver.

The three main tasks of netif_receive_skb are:

® passing a copy of the frame to each protocol tap, if any are running

%
® Ppassing a copy of the frame to the L3 protocol handler associated with skb->prmoco.

[1see for more details on protocol handlers.

® Taking care of those features that need to be handled at this layer, notably bridging (which is described in p

If no protocol handler is associated with skb->protocol and none of the features handled innetit_receive_skb (such as bridging) consumes the frame,
it is dropped because the kernel doesn't know how to process it.

Before delivering an input frame to these protocol handlers, netit_receive_skb must handle a few features that can change the destiny of the
frame.

Figure 10-7. The netif_receive_skb function

Does NETPOLL g Initialize skb -> stamp f
; need to consume ——i> : P
: thaframe? not set {rletltlmestamp:l
| Ves
: * Handle the bondi
: {Kfree_skb) +
| + Update statistics;
: Return (total++)
NET_R¥_DROP +
' Initialize
RORERL Sk skb -= {h,nh, mac_len}
Lock
(rcu_read_lock)
Give a copy of the frame to
each registered protacol sniffer
COMFIG_NET_CLS_ACT *
Frame has been consumed or :
must be dropped :-:'Egr?;:: f:fatrlﬁec
+ control classifier
Give a copy of the frame to
aach registered protocal sniffer Frarcr:ei'd can
pro
CONFIG_NET_DIVERT | Handle the diverter

|

feature (handle_diverter)

_________ =

Should the

Yes

Handle bridging

CONFIG_BRIDGE or

CONFIG_BRIDGE_MODULE

frame be bridged?

Mo

Give a copy of the frame to
each L3 registered protocol
handler (for skb-> protocol)

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

>y
Unlock
{reu_read_unlock)

v

\Use return code from last
protocol handler executed

Bonding allows a group of interfaces to be grouped together and be treated as a single interface. If the interface from which the frame was
received belonged to one such group, the reference to the receiving interface in the sk_buf data structure must be changed to the device in
the group with the role of master before netit_receive_skb delivers the packet to the L3 handler. This is the purpose 0fkb_bond.

skb_bond(skb);

The delivery of the frame to the sniffers and protocol handlers is covered in detail in .

Once all of the protocol sniffers have received their copy of the packet, and before the real protocol handler is given its copy, Diverter,
ingress Traffic Control, and bridging features must be handled (see the next section).

When neither the bridging code nor the ingress Traffic Control code consumes the frame, the latter is passed to the L3 protocol handlers

(usually there is only one handler per protocol, but multiple ones can be registered). In older kernel versions, this was the only processing
needed. The more the kernel network stack was enhanced and the more features that were added (in this layer and in others), the more

complex the path of a packet through the network stack became.

At this point, the reception part is complete and it will be up to the L3 protocol handlers to decide what to do with the packets:

® Deliver them to a recipient (application) running in the receiving workstation.
® Drop them (for instance, during a failed sanity check).

® rorward them.

The last choice is common for routers, but not for single-interface workstations. Parts V and VI cover L3 behavior in detail.

this process until 1I; let's take it for granted for the moment that somehow the packet will be delivered to the above layers (i.e., TCP,
UDP, ICMP, etc.) if it is addressed to the local system, and to ip_foward Otherwise (see in .

This finishes our long discussion of how frame reception works. The next chapter describes how frames are transmitted. This second path
includes both frames generated locally and received frames that need to be forwarded.

The kernel determ the destination L3 address whether the packet is addressed to its local system. | will postpone a discussion of
- art V|

10.7.2.1. Handling special features

netif_receive_skb Checks whether any Netpoll client would like to consume the frame.

Traffic Control has always been used to implement QoS on the egress path. However, with recent releases of the kernel, you can
configure filters and actions on ingress traffic, too. Based on such a configuration, ing_iiter may decide that the input buffer is to be dropped
or that it will be processed further somewhere else (i.e., the frame is consumed).

Diverter allows the kernel to change the L2 destination address of frames originally addre e frames can be
diverted to the local host. There are many possible uses for this feature, as discussed at pttp://diverter.sourceforge.nej. The kernel can be

http://diverter.sourceforge.net

his document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

configured to determine the criteria used by Diverter to decide whether to divert a frame. Common criteria used for Diverter include:

® All IP packets (regardless of L4 protocol)
® All TCP packets

® TCP packets with specific port numbers
® All UDP packets

® UDP packets with specific port numbers

The call to nandie_diverter decides whether to change the destination MAC address. In addition to the change to the destination MAC address,
skb->pkt_type Must be changed to packeT_HosT.

Yet another L2 feature could influence the destiny of the frame: Bridging. Bridging, the L2 counterpart of L3 routing, is addressed in.
Each net_device data structure has a pointer to a data structure of typeet_bridge_port that is used to store the extra information needed to
represent a bridge port. Its value is NULL when the interface has not enabled bridging. When a port is configured as a bridge port, the
kernel looks only at L2 headers. The only L3 information the kernel uses in this situation is information pertaining to firewalling.

Since net_rx_action represents the boundary between device drivers and the L3 protocol handlers, it is right in this function that the Bridging
feature must be handled. When the kernel has support for bridging, nandie_bridge is initialized to a function that checks whether the frame is to
be handed to the bridging code. When the frame is handed to the bridging code and the latter consumes it, handle_bridge returns 1. In all other
cases, handie_bridge returns O andnetif_receive_skb Will continue processing the framesko.

if (handle_bridge(skb, &pt_prev, &ret));
goto out;

K==1 wExT

file:///C:/DOCUME~1/%B9%DA%B9%AE%B1%B9/LOCALS~1/Temp/Oreilly,%20Understanding%20Linux%20Network%20Internals%20(2005)%20Bbl%20Lotb.chm/0596002556/9961536.html

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

=2 wEXT

Chapter 11. Frame Transmission

Transmission is the term used for frames that leave the system, either because they were sent by the system or because they are being
forwarded. In this chapter, we will cover the main tasks involved during the frame transmission data path:

® Enabling and disabling frame transmission for a device
® Scheduling a device for transmission
° Selecting the next frame to transmit among the ones waiting in the device's egress queue

® The transmission itself (we will examine the main function)

Much about transmission is symmetric to the reception process we discussed in : NET_TX_SOFTIRQ is the transmission
counterpart of the NET_RX_SOFTIRQ softirg, net_tx_action is the counterpart of net_rx_action, and so on. Thus, if you have studied the
earlier chapter, you should find it easy to follow this one. Eigure 11-1] compares the logic behind scheduling a device for reception and
scheduling a device for transmission. Here are some more similarities:

® poll_list is the list of devices that are polled because they have a nonempty receive queueoutput_queue is the list of devices
that have something to transmit. poll_list and output_queue are two fields of thesoftnet_data structure introduced in

® Only open devices (ones with the _ _LINK_STATE_START flag set) can be scheduled for reception. Only devices with
transmission enabled (ones with the _ _LINK_STATE_XOFF flag cleared) can be scheduled for transmission.

® \When a device is scheduled for reception, its __LINK_STATE_RX_SCHED flag is set. When a device is scheduled for
transmission, its_ _LINK_STATE_SCHED flag is set.

dev_queue_xmit plays the same role for the egress path thanetif_rx plays for the ingress path: each transfers one frame between the
driver's buffer and the kernel's queue. The net_tx_action function is called both when there are devices waiting to transmit something and
to do housekeeping with the buffers that are not needed anymore. Just as there are queues for ingress traffic, there are queues for
egress traffic. The egress queues , handled by Traffic Control (the QoS layer), are actually much more complex than the ingress ones:
while the latter are just ordinary First In, First Outs (FIFOs), the former can be hierarchical, represented by trees of queues. Even though
Traffic Control has support for ingress queueing too, it's used more for policing and management reasons rather than real queuing:
Traffic Control does not use real queues for ingress traffic, but only classifies and applies actions.

Figure 11-1. Scheduling a device: (a) for reception (RX); (b) for transmission (TX)

Is the device Yes

open (i.e, UP7)
{__LINK_STATE_START) |

Ko
s the device
dlready scheduled. g
or RX7
{_ LINK_STATE RX_SCHED)) +
Set the flag

Yes __LINK_STATE_RX_SCHED

Add device to
poll_list
Schedule the
NET_RX_SOFTIRQ softirg
-]
Y Y
Return
(a)
|s.the engress queus
dscbled?. S
{ - LINK_STATE_XOFF) I
Y
Is the device
alread'}&sfheduled No
r TX?
{__LINK_STATE_SCHED) #
Set the flag

Weg _ LINK_STATE SCHED
Add device to
ouiput_quete

Schedule the
NET _TX_SOFTIRQ softirg

Return

(b)

MNEXT B

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

K==1 wExT

11.1. Enabling and Disabling Transmissions

In the section "I:onqestion Manaqemenl" in I:hapter ld, we learned about some conditions under which frame reception must be disabled,
either on a single device or globally. Something similar applies to frame transmission as well.

The status of the egress queue is represented by the flag __LINK_STATE_xOFF iN net_device->state. ItS value can be manipulated and checked with

the following functions, defined in include/linux/netdevice.h: -

[The other flags in the list are described i and E

netif_start_queue

Enables transmission for the device. It is usually called when the device is activated and can be called again later if needed to
restart a stopped device.

netif_stop_queue

Disables transmission for the device. Any attempt to transmit something on the device will be denied. Later in this section is an
example of a common case where this function is used.

netif_queue_stopped

Returns the status of the egress queue: enabled or disabled. This function is simply:

static inline int netif_queue_stopped(const struct net_device *dev)

{
return test_bit(_ _LINK_STATE_XOFF, &dev->state);

Only device drivers enable and disable transmission of devices.

Why stop and start a queue once the device is running? One reason is that a device can temporarily us i Ising a
transmission attempt to fail. In the past, the transmitting function (which I introduce later in the section "Hev_gueue xmit Functionf") would

have to deal with this problem by putting the frame back into the queue (requeuing it). Now, thanks to the __Link_sTaTe_xorr flag, this extra

processing can be avoided. When the device driver realizes that it does not have enough space to store a frame of maximum size (MTU),
it stops the egress queue with neti_stop_queue. In this way, it is possible to avoid wasting resources with future transmissions that the kernel
already knows will fail. The following example of this throttling at work is taken fromvortex_start_xmit (the hard_start_ xmit method used by the
drivers/net/3c59x.c driver):

outsl(ioaddr + TX_FIFO, skb->data, (skb->len + 3) >> 2);
dev_kfree_skb (skb);
if (inw(ioaddr + TxFree) > 1536) {
netif_start_queue (dev); /* AKPM: redundant? */
}else {
* Interrupt us when the FIFO has room for max-sized packet. */
netif_stop_queue(dev);
outw(SetTxThreshold + (1536>>2), ioaddr + EL3_CMD);

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

Shortly after the transmission by outsi, the code checks whether there is space for a frame of maximum sizei6ss), and USES netif_stop_queue tO
stop the device's egress queue if there is not. This is a relatively crude technique used to avoid transmission failures due to a shortage of
memory. Of course, the transmission of a frame of 300 bytes would succeed when just a little more than 300 bytes are left; therefore,
checking for 1,536 bytes could disable transmission unnecessarily. The code could compromise by using a lower value, such as 500, but
in the end, the gain would not be that big and there could be failures when bigger frames arrive while transmission is enabled.

To cover all eventualities, the code calls retif_start_queue When there is enough memory on the device. Theredundant? comment in the code refers
to the practice of restarting the queue on two types of interrupts. The driver requests a restart to the queue when the device indicates that it
has finished transmitting, and when it indicates that there is enough space in its memory for another frame. Probably, the queue would be
restarted promptly if the driver did so on only one of these interrupts, but that's not guaranteed. So the request to restart the queue is
issued under both circumstances.

The code also sends a setTxthreshold command to the device, which instructs the device to generate an interrupt when a given amount of
memory (the size of the MTU, in this case) becomes available.

You may wonder when and how the queue will be re-enabled in the previous scenario. In the case of the Vortex driver, it asks the device
to generate an interrupt when a given amount of memory (the size of the MTU, in this case) becomes available. This is the piece of code
that handles such an interrupt:

static void vortex_interrupt(int irg, void *dev_id, struct pt_regs *regs)

{
if (status & TxAvailable) {
if (vortex_debug > 5)
printk(KERN_DEBUG " TX room bit was handled.\n");
/* There's room in the FIFO for a full-sized packet. */
outw(Ackintr | TxAvailable, ioaddr + EL3_CMD);
netif_wake_queue (dev);
}
}

The bits of the staws variable represent the reasons why the interrupt was generated by the card. Thexavailable bit indicates that space is
available and that it's therefore safe to wake up the device (this is called waking the queue, and is carried out by netit wake_gueue). Values
such as eLs_cwmp are simply offsets fromioaddr used by the driver to read or write the network card registers at the right positions.

Note that the egress queue is re-enabled with netif_wake_queue instead Of netit_start_queue. That new function, which we will see later in more
detail, not only enables the egress queue but also asks the kernel to check whether anything in that queue is waiting to be transmitted.
The reason is that during the time the queue was disabled, there could have been transmission attempts. In this case, they would have
failed, and those frames that could not be sent would have been put back into the egress queue.

11.1.1. Scheduling a Device for Transmission

When describing the ingress path, we saw that when a device receives a frame, its driver invokes a kernel function (the one invoked
depends on whether the driver uses NAPI) that adds the device to a polling list and schedules the neT_rx_sorTirq for execution.

Something very similar happens on the egress path. To transmit frames, the kernel provides the dev_queue_xmit function, described later in its
own section. This function dequeues a frame from the device's egress queue and feeds it to the device's hard_start_xmit method. However,
dev_queue_xmit Might not be able to transmit for various reasonsfor instance, because the device's egress queue is disabled, as we saw in the
previous section, or because the lock on the device queue is already taken. To handle the latter case, the kernel provides a function called
_ _netif_schedule that schedules a device for transmission (somewhat similar to whaieti_r<_schedule does on the reception path). This function is

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

never called directly, but through two wrappers shown later in this section.
Here is the function's definition from include/linux/netdevice.h:

static inline void _ _netif_schedule(struct net_device *dev)
{
if (test_and_set_bit(_ _LINK_STATE_SCHED, &dev->state)) {
unsigned long flags;
struct softnet_data *sd;

local_irq_save(flags);

sd = &__get_cpu_var(softnet_data);
dev->next_sched = sd->output_queue;
sd->output_queue = dev;
raise_softirg_irqoff(cpu, NET_TX_SOFTIRQ);
local_irq_restore(flags);

_ _netif_schedule @accomplishes two main tasks:

® |t adds the device to the head of the output_queue list. This list is the counterpart to thepoi_iist list used by reception. There is one
output_queve fOr each CPU, just as there is oneoll_iist for each CPU. However,output_qgueve is used by both NAPI and non-NAPI devices,
and poll_list Is used only to handle non i i i j e linked together with thenet_device->next_sched
pointer. You will see in the section "Processing the NET TX SOFTIRQ: net tx_actior how that list is used.

We already saw in the section 'Eoftnet data Structuré' in bhagter éthat output_queue represents a list of devices that have

something to send (because they failed on previous attempts, as described in the section "Queuing Discipline Interfacé‘) or
whose egress queues have been re-enabled after having been disabled for a while. Because _ _netif_schedule may be called both

inside and outside interrupt context, it disables interrupts while adding the input device to the output_queue list.

® |t schedules the NET_Tx_soFTIRQ Softirg for execution. __Link_sTaTe_scHeD is used to mark devices that are in theoutput_queue list because
they have something to send. (__uink_sTaTe_scHeD is the counterpart of the reception path's__ink_state_rx_scHep.) Note that if the
device was already scheduled for transmission, _ _netif_schedule Would not do anything.

Since it does not make sense to schedule a device for transmission if transmission is disabled on the device, the kernel provides two
functions to be used instead, both wrappers around _ _netif_schedule:

netif_schedul

Simply makes sure transmission is enabled on the device before scheduling it for transmission:

static inline void netif_schedule(struct net_device *dev)

{
if (Itest_bit(__LINK_STATE_XOFF, &dev->state))
_ _netif_schedule(dev);

netif_wake_queue

Enables transmission for the device and, if transmission was previously disabled, schedules the device for transmission. This
scheduling is needed because there could have been transmission attempts while the device queue was disabled. We saw an
example of its use in the previous section.

static inline void netif _wake_queue(struct net_device *dev)

{

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

if (test_and_clear_bit(_ _LINK_STATE_XOFF, &dev->state))
_ _netif_schedule(dev);

test_and_clear_bit Clears the __Link_sTaTe_xorrF flag if it is set, and returns the old value.

Note that a call to netif_wake_queue IS equivalent to a call to bothnetit_start_queue and netif_schedute. | Said in the section Enabling and Disablingl
Transmissiong" that it is the responsibility of the driver, not higher-layer functions, to disable and enable transmission on devices. Usually,
high-level functions schedule transmissions on devices, and device drivers disable and re-enable the queue when required, such as to
handle a shortage of memory. Therefore, it should not come surprise that netit wake_queue i the one used by device drivers, and

. * .
netif_schedule iS the one used elsewhere (for example, byset_tx_actiond and Traffic Control).

*
[l net_tx_action SChedules a device for transmission when it cannot grab thedev->queue_lock lock on the device's egress queue
and therefore cannot transmit.

A device driver uses netif_wake_queue in the following cases:

® We will see in the section that device drivers use a watchdog timer to recover from a transmission that hangs.
In such a situation, the virtual function net_device->tx_timeout usually resets the card. During that black hole in which the device is not
usable, there could be other transmission attempts, so the driver needs to first enable the device's queue and then schedule the
device for transmission. The same applies to interrupts that signal error conditions (look at drivers/net/3c59x.c for some
examples).

® \When (as previously requested by the driver itself) the device signals to the driver that it has enough memory to handle the
transmission of a frame of a given size, the device can be awakened. We already saw an example of this practice in the previous
section in relation to the Txavailable interrupt. The reason for using this function, again, is that during the time the driver has
disabled the queue, there could have been transmission attempts. A similar consideration applies to the interrupt type that tells
the driver when a driver-to-card DMA transfer has completed.

11.1.2. Queuing Discipline Interface

Almost all devices use a queue to schedule egress traffic, and the kernel can use algorithms known as queuing disciplines to arrange the
frames in the most efficient order for transmission. Although a detailed discussion of Traffic Control and its queuing disciplines is outside
the scope of this book, in this section I'll provide a brief overview of the interface between device drivers and the transmission layer
discussed in this chapter.

Each Traffic Control queuing discipline can provide different function pointers to be called by higher layers to accomplish different tasks.
Among the most important functions are:

enqueue

Adds an element to the queue

dequeue

Extracts an element from the queue

requeue

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

Puts back on the queue an element that was previously extracted (e.g., because of a transmission failure)

Whenever a device is scheduled for transmission, the next frame to transmit is selected by the qdisc_run function, which indirectly calls the
dequeue Virtual function of the associated queuing discipline.

Once again, the real job is actually done by another function, qdisc_restar. The qdisc_run function, defined ininclude/linux/pkt_sched.h, is simply
a wrapper that filters out requests for devices whose egress queues are disabled:

static inline void qdisc_run(struct net_device *dev)

{
while (Inetif_queue_stopped(dev) && qdisc_restart(dev) < 0)
/* NOTHING */;

11.1.2.1. gqdisc_restart function

We saw earlier the common cases where a device is scheduled for transmission. Sometimes it is because something in the egress queue
is waiting to be transmitted. But at other times, the device is scheduled because the queue has been disabled for a while and therefore
there could be something waiting in the queue from previous failed transmission attempts. The driver does not know whether anything has
actually arrived; it must schedule the device in case data is waiting. If in fact no data is waiting, the subsequent call to the dequeve method
fails. Even if data is waiting, the call can fail because complex queuing disciplines may decide not to transmit any of the data. Therefore,
qdisc_restart, defined innet/sched/sch_generic.c, takes various actions based on the return value of thedequeue method.

int qdisc_restart(struct net_device *dev)

{
struct Qdisc *q = dev->qdisc;
struct sk_buff *skb;

if ((skb = g->dequeue(q)) != NULL) {

The dequeve function is called at the very start. Let's suppose it succeeded. Transmitting a frame requires the acquisition of two locks:

® The lock that protects the queue (dev->queue_lock). This is acquired by the caller ofqdisc_restart (dev_queue_xmit).

® The lock on the driver's transmit routing hard_start_xmit (dev->xmit_lock). The lock is managed by this function. When the device driver
already implements its own locking, it indicates this by setting the netir_r_LLx flag (lockless transmission feature) indev->features to
tell the upper layers that there is no need to acquire the dev->xmit_lock lock as well. The use ofnetiF_r_LLTx allows the kernel to
optimize the transmit data path by not acquiring dev->xmit_lock When it is not needed. Of course, there is no need to acquire the lock
if the queue is empty.

Note that qdisc_restart dO€s not release thequeue_lock immediately after dequeuing a buffer, because the function might have to requeue the
buffer right away if it fails to acquire the lock on the driver. The function releases queue_lock When it has the driver lock in hand, and
reacquires queue_lock before returning. Ultimately, dev_queue_xmit Will take care of releasing it.

When the driver does not support neTiF_r_tLx and the driver lock is already taken (i.e.spin_trylock returns 0), transmission fails. Ifqdisc_restart fails
to grab the lock on the driver, it means that another CPU is transmitting through the same device. All thatqdisc_restat can do in this case is
put the frame back into the queue and reschedule the device for transmission, since it does not want to wait. If the function is running on
the same CPU that is holding the lock, a loop (i.e., a bug in the code) has been detected and the frame is dropped; otherwise, it is just a
collision.

if (!spin_trylock(&dev->xmit_lock)) {
collision:

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

goto requeue;

requeue:
g->ops->requeue(skb, q);
netif_schedule(dev);

Once the driver lock is successfully acquired, the lock on the queue is released so that other CPUs can access the queue. Sometimes,
there is no need to acquire the driver lock because NeTiF_F_LLTx is set. In either case, qdisc_restart is ready to start its real job.

if (Inetif_queue_stopped(dev)) {
int ret;
if (netdev_nit)
dev_queue_xmit_nit(skb, dev);

ret = dev->hard_start_xmit(skb, dev);
if (ret == NETDEV_TX_OK) {
if (nolock) {
dev->xmit_lock_owner = -1;
spin_unlock(&dev->xmit_lock);

}
spin_lock(&dev->queue_lock);
return -1;

}
if (ret == NETDEV_TX_LOCKED && nolock) {

spin_lock(&dev->queue_lock);
goto collision;

We saw in the previous section that qdisc_run has already checked the status of the egress queue withnetit_queue_stopped, but here qdisc_restart

checks it again. The second check is not superfluous. Consider this scenario: when qdisc_run called netif_queue_stopped, the lock on the driver was
not taken yet. By the time the lock is taken, another CPU could have sent something and the card could have run out of buffer space.
Therefore, netif_queue_stopped may have returned FALSE before but would now return TRUE.

neTDev_nit represents the number of protocol sniffers registered. If ani are rei istered dev_queue_xmit_nit is used to deliver a copy of the frame to

each. (We saw something similar for reception in netif_receive_skb in [Chapter 10.)

Finally we get to the invocation of the device driver's virtual function for

rame tran

smission. The function provided by the device driver is

dev->hard_start_xmit, Which is defined for each device at initialization time (seq

hapter

). The nEwev_Tx_xxx values returned by hard_start_xmit

routines are listed in include/linux/netdevice.h. Here is how qdisc_restart handles them:

NETDEV_TX_O K

The transmission succeeded. The buffer is not released yet (kiree_skb iS not issued). We will see in the section
'\IET TX _SOFTIRQ: net tx actiorl" that the driver does not release the buffer itself but asks the kernel to do so by means of the
NET_TX_SOFTIRQ SOftirg. This provides more efficient memory handling than if each driver did its own freeing.

NETDEV_TX_BUSY

The driver has discovered that the NIC lacks_sufficient room in its fransmit buffer pool. When this condition is detected, the driver

often calls netit_stop_queue t00 (See the section Enabling and Disabling Transmissions).

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

NETDEV_TX_LOCKED
The driver is locked. This return value is used only by drivers that support NETIF_F_LLTX.

In summary, transmission fails and a frame must be put back onto the queue when one of the following conditions is true:

® The queue is disabled (netif_queue_stopped(dev) is true).
® Another CPU is holding the lock on the driver.

® The driver failed (hard_start_xmit did not return newev_tx_ok).

See for details of thedisc_restart function.

11.1.3. dev_queue_xmit Function

This function is the interface to the device driver that performs a transmission. As shown in Eigure 9-j inbhagter é dev_queue_xmit can lead to
the execution of the driver transmit function hard_start_xmit tHRough two alternate paths:

Interfacing to Traffic Control (the QoS layer)

This is done through the qdisc_run function that we already described in the previous section.

Invoking hard_start_xmit directly
This is done only for devices that do not use the Traffic Control infrastructures (i.e., virtual devices).
We will look at these cases soon, but let's start with the checks and tasks common to both.

When dev_queue_xmit is called, all the information required to transmit the frame, such as the outgoing device, the next hop, and its link layer
address, is ready. Parts VI and VIl describe how those parameters are initialized.

Ifigures 11-3(ai and [L1-3(b) describe dev_queue_xmit.

dev_queue_xmit receives only an sk_buff Structure as input. This contains all the information the function needsskb->dev, for instance, is the

outgoing device, and skv->data points to the beginning of the payload, whose length isskb->len.

int dev_queue_xmit(struct sk_buff *skb)

The main tasks of dev_queue_xmit are:

® Checking whether the frame is composed of fragments and whether_the device can handle them through scatter/gather DMA,;
combining the fragments if the device is incapable of doing so. See ‘ for a discussion of fragmented buffers.

® Maki e the L4 checksum (that is, TCP/UDP) is computed, unless the device computes the checksum in hardware. See
Chapter 1§ for more details on checksumming.

® Selecting which frame to transmit (the one pointed to by the input sk_butt may not be the one to transmit because there is a queue
to honor).

In the following code, the data payload is a list of fragments when skb_shinfo(skb)->frag_list is non-NULL; otherwise, the payload is a single block.
If there are fragments, the code checks whether scatter/gather DMA is a feature supported by the device, and if not, combines the
fragments into a single buffer itself. The function must also combine the fragments if any of them are stored in a memory area whose

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

*|
address is too big to be addressed by the device (that is, ifillegal_highdma(dev, skb) iS true).

[Some devices can use only 16-bit addresses, which constrains the portion of addressable memory.

if (skb_shinfo(skb)->frag_list &&
I(dev->features&NETIF_F_FRAGLIST) &&
__skb_linearize(skb, GFP_ATOMIC)) {
goto out_kfree_skb;

if (skb_shinfo(skb)->nr_frags &&
(!(dev->features&NETIF_F_SG) || illegal_highdma(dev, skb)) &&
__skb_linearize(skb, GFP_ATOMIC)) {
goto out_kfree_skb;

The defragmentation of fragments is done by _ _skb_linearize, which can fail for one of the following reasons:

® The new buffer required to store the joined fragments failed to be allocated.

® The s_nutt buffer is shared with some other subsystems (that is, the reference count is bigger than one). In this case, the function
does not actually fail, but generates a warning with a call to suc().

*

The L4 checksum can be calculated both in software and in hardware. Not all network cards can compute the checksum in hardware; the
ones that can will set the associated bit flag in net_device->features during device initialization. This tells higher network layers that they do not
need to worry about checksumming. The checksum must instead be calculated in software if:

M The algorithm used by each protocol to compute the checksum is analyzed in the associated chapters.

® There is no support for hardware checksumming.

® The interface can use hardware checksumming only for TCP/UDP packets over IP, but the packet being transmitted does not
use IP or uses another L4 protocol over IP.

The software checksum is calculated with skb_checksum_help:

if (skb->ip_summed == CHECKSUM_HW &&
(!(dev->features & (NETIF_F_HW_CSUM | NETIF_F_NO_CSUM)) &&
({(dev->features & NETIF_F_IP_CSUM) ||
skb->protocol != htons(ETH_P_IP))))
if (skb_checksum_help(skb, 0))
goto out_kfree_skb;

Figure 11-2. qdisc_restart function

Success — Dequeue one - Failure
buffer |
‘ (frame)
Return queue length
Does the
No driver support
v loddessTX
re{r gettingthe ¢ ccace
on the driver
de'u =xmit_lock) i
: Save lock owner info
*Fﬂ e (dew -=xmit_lock_owner)
® Lo
Yes s the lock held by -~ _No Redease lock on c|ueue
the current CPU? {dev ->queue_lock)
Update statistics
Free buffer {cpu_collision++) l
+ > + s TX \
5 TX queus £S
Return -1 Requeune frame m.pg.ed? @
+ No +
netif_schedule
* Is any sniffer s
registered?
Returmn -1
Give a copy of the frame
”ﬂl to each one
-— |
* METDEV_TX_BUSY hard_start x mit METDEV_TX_OK
@ NETDEY_Tx_LOCKED +
Does the Does the Yes
— driver support driver support —
lockless TX? [Does the lickless T
driver support
I ?
No * tockless TX? No #
Clear lock owner info Yes Clear lock owner info
{dev ->xmit_lock_owner) (dev ->xmit_lock_owner)
Release lock on driver Release lock on driver
[dau c~wmit Ineld Tdasi cmwermit el

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

| RTINS | .-:lln,_lu\.nj I l I_ UL E .a-nlul,_u.n,n.g J |

Lock queue Lock queue Lock queus
(dev ->queve_lock) {dev ->gueue_lock) {dev- >queue_lock)

' . v
@ Return -1

Figure 11-3a. dev_queue_xmit function

Defragment the buffer if
needed {_skb_linearize)

v

Compute the L4 checksum if
needed (skb_checksum_help)

v

Disable softirg
flocal_bh_disable)

v

Yes Does dev have Mo
+ a queue?

Lock queus
(dev -> queue_lock)

v

Enqueue frame
(dev -= gdisc - > enqueue)

v

Try sending something from
device’s queue {qdisc_ren)

v

Release lock on gueue
{dev - queue_lock)

v

Return the result of the
enqueus operation 4

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

Once the checksum has been handled, all the headers are ready; the next step is to decide which frame to transmit.

At this point, the behavior depends on whether the device uses the Traffic Control infrastructure and therefore has a queuing discipline
assigned. Yes, this may come as a surprise. The function has just processed one buffer (defragmenting and checksumming it if needed)
but depending on whether a queuing discipline is used and which one is used, and on the status of the outgoing queue, this buffer may not
be the one that will actually be sent next.

11.1.3.1. Queueful devices

When it exists, the queuing discipline of the device is accessible through dev->qdisc. The input frame is queued with theengueue Virtual function,
and one frame is then dequeued and transmitted via qdisc_run, described in detail in the section Queuing Discipline Interfacé"

local_bh_disable();

Figure 11-3b. dev_queue_xmit function

Mo ¥eg
Is dey LUP? _vL
Y4 ke by the oca
2ancal -
v & e
ERROR: LOCK DRIVER
Locking loop detected (HARD_TX_LOXK)
—>y : !
Re-enabde softirg q
Is TX queue Yes
.} stopped?
Free the buffer
{kfree_skb) *H-u
: e
Return -ENETDOWN nhics ’“-"*
NETDEV_TX_LOCKED
NETDEV_TX_QK it Start i METDEV _TX_BUSY
v ¥
UNLOCK_DRIVER UNLOCK_DRIVER
{(HARD_TX_UNLOCK) (HARD_TX_UNLOCK)
Re-enable sofirg @
Retum 0
HARD_TX_LOCK HARD_TX_UNLOCK.
uiEfrﬁ pe L ﬂlmm T
Fivesr SUppos [IVEr SUppor
lockless TX? l lockbess TH? }
Lock driver Clear lock owner info
Yes (dew -> xmit_lock) ¥es {dev -> wmit_lock_owner)
Save ok owner info Unlock driver
{dev - amit_lock_owner) {dev -> xmit_lock)
v ¥

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

g = rcu_dereference(dev->qdisc);

if (g->enqueue) {

spin_lock(&dev->queue_lock);

rc = g->enqueue(skb, q);

gdisc_run(dev);

spin_unlock_bh(&dev->queu

e_lock);

rc =rc == NET_XMIT_BYPASS ? NET_XMIT_SUCCESS : rc;

goto out;

Note that both enqueuing and dequeuing are protected by the queue_lock lock on the queue. Softirgs are also disabled withocal_bh_disable, which

also takes care of disabling preemption as required by read-copy-update (RCU).

11.1.3.2. Queueless devices

Some devices, such as the loopback device, do not have a queue: whenever a frame is transmitted, it is immediately delivered. (But

because there is no place to requeue them, frames are dropped if something goes wrong; they are not given a second chance.) If you look

at loopback_xmit in drivers/net/loopback.c, you will see at the end a direct call taweti_rx, bypassing all the queuing business. We saw i
that netif_rx is the API called by non-NAPI device drivers to put an incoming frame into the input queue and signal higher layers about the

event. Since there is no input que
receive on the other, as shown in

Ei;ure 11-4.

yopback device, the transmission function accomplishes two tasks: transmit on one side and

Figure 11-4. (a) Queueful device transmission; (b) loopback transmission

(a)

_ (b) : :
dev_queue_xmit dev_queue_xmi netif_x

l

1C

'

hard_start_xmit hard_start_xmit

l

¥

[Iunpha?h_:umit]

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

The last part of dev_queue_xmit is used to handle devices without a gueuing discipline and therefore without an egress queue. It closely
resembles the behavior of qdisc_run covered in the section Rueuing Discipline Interfacq" There are, however, two differences in the case
where no queue is used:

® \When a transmission fails, the driver cannot put the buffer back into any queue because there is no queue, so the buffer is
dropped by dev_queue_xmit. If the higher layers are using a reliable protocol such as TCP, the data will eventually be retransmitted;
otherwise, it will be lost.

® The neriF_r LLTx feature introduced in the section hdisc restart functior_‘l" is taken care of by the two macrosiaro_1x_Lock and
HARD_TX_UNLOCK. HARD_TX_LOCK USES spin_lock rather than spin_trylock: when the driver lock is already taken,dev_queue_xmit Spins, waiting for it
to be released.

11.1.4. Processing the NET_TX_SOFTIRQ: net_tx_action

We saw in that the net_rx_action function is the handler associated withner_rx_sorTirQ software interrupts. It is triggered by device
drivers (and by itself under some specific conditions) and handles the part of the input frame processing that is postponed by device
drivers to the "after interrupt handling phase." In this way, the code executed in interrupt context by the driver does only what is strictly
necessary (copy the data in memory and signal the kernel about its existence by generating a software interrupt) and does not force the
rest of the system to wait long; later on, the software interrupt takes care of that part of the frame processing that can wait.

net_tx_action WOrks in a similar way. It can be triggered withaise_softirg_irqoff(NET_TX_sSOFTIRQ) by devices in two different contexts, to accomplish two
main tasks:

® By neiif wake_queue When transmission is enabled on a device. In this case, it makes sure that frames waiting to be sent are actually
sent when all the needed conditions are met (for instance, when the device has enough memory).

® By gev_kiree_skb_irg When a transmission has completed and the device driver signals with the former routine that the associated
buffer can be released. In this case, it deallocates the sk_buff structures associated with successfully transmitted buffers.

The reason for the second task is as follows. We know that when code from the device driver runs in interrupt context, it needs to be as
quick as possible. Releasing a buffer can take time, so it is deferred by asking the net tx_action softirg to take care of it. Instead of using
dev_kfree_skb, device drivers use dev_kiree_skb_irq. While the former deallocates thesk_buit (Which actually consists of the buffer going back into a
per-CPU cache), the latter simply adds the pointer to the buffer being released to the completion_queue list Of the softnet_data Structure associated
with the CPU and lets net_tx_action do the real job later.

Let's see how net_tx_action accomplishes its two tasks.

It starts by deallocating all the buffers that have been added to the completion_queue list by the device drivers' calls todev_kiree_skb_irq. Because
net_tx_action IS running outside interrupt context, a device driver could add elements to the list at any time, S@et_tx_action must disable interrupts
while accessing the softnet_data Structure. To keep interrupts disabled as little as possible, it clears the list by settingmpletion_queve to NULL and
saves the pointer to the list in a local variable cist, which no one else can access (note also that each CPU has its own list). This way, it can
walk through the list and free each element with __kiree_skb, while drivers can continue adding new elements tOcompletion_queue.

if (sd->completion_queue) {
struct sk_buff *clist;

local_irq_disable();

clist = sd->completion_queue;
sd->completion_queue = NULL;
local_irg_enable();

while (clist '= NULL) {
struct sk_buff *skb = clist;
clist = clist->next;

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

BUG_TRAP(latomic_read(&skb->users));
__kfree_skb(skb);

The second half of the function, which transmits frames, works similarly: it uses a local variable to remain safe from hardware interrupts.
Note that for each device, before transmitting anything, the function needs to grab the lock on the output device's queue (dev->queue_lock). If
the function fails to grab the lock (because another CPU holds it), it simply reschedules the device for transmission with netif_schedule.

if (sd->output_queue) {
struct net_device *head;

local_irq_disable();
head = sd->output_queue;
sd->output_queue = NULL;
local_irq_enable();

while (head) {
struct net_device *dev = head;
head = head->next_sched,;

smp_mb_ _before_clear_bit();
clear_bit(_ _LINK_STATE_SCHED, &dev->state);

if (spin_trylock(&dev->queue_lock)) {
gdisc_run(dev);
spin_unlock(&dev->queue_lock);
}else {
netif_schedule(dev);

We already saw in the section 'bueuinq Discipline Interfacel' how qdisc_run works. Devices are handled in a sequential order starting from the
head of the list. Because the netif_schedule function (calling __netit_schedule internally) adds elements at the head of the list, devices are served in

Last In, First Out (LIFO) order, which in some conditions may be unfair.

That completes the net_tx_action function; let's look at some contexts where it can be invoked to free buffers. Some functions that desire to
release a buffer can be invoked in different contexts, inside or outside interrupt context. A wrapper is available to handle these cases
elegantly:

static inline void dev_kfree_skb_any(struct sk_buff *skb)
{
if (in_irg() || irgs_disabled())
dev_kfree_skb_irg(skb);
else
dev_kfree_skb(skb);

The dev_kfree_skb_irq function runs when the calling function is in interrupt context, and looks like this:

static inline void dev_kfree_skb_irq(struct sk_buff *skb)
{
if (atomic_dec_and_test(&skb->users)) {
struct softnet_data *sd;
unsigned long flags;

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

local_irq_save(flags);

sd = &__get_cpu_var(softnet_data);
skb->next = sd->completion_queue;
sd->completion_queue = skb;
raise_softirg_irqoff(NET_TX_SOFTIRQ);
local_irq_restore(flags);

A buffer can be freed only if there are no other references to it (that is, if sko->users is 0).

Let's see an example of how the execution of net_tx_action is triggered by an indirect call tocpu_raise_softirq(cpu, NET_TX_SOFTIRQ) by @ device driver.

(Another example can be found in the section "Enabling and Disabling Transmissions]")

Among the interrupt types handled by the vortex_interrupt function in drivers/net/3c59x.c we introduced earlier is an interrupt invoked by the
device to tell the driver that a DMA transfer from the CPU to the device is completed (omapone). Since the buffer has been transferred to the
device, the sk_buif Structure can now be freed. Because the interrupt handler is running in interrupt context, the driver callsiev_kiree_skb_irq.

if (status & DMADone) {
if (inw(ioaddr + Wn7_MasterStatus) & 0x1000) {
outw(0x1000, ioaddr + Wn7_MasterStatus); /* Ack the event. */
pci_unmap_single(VORTEX_PCI(vp), vp->tx_skb_dma,
(vp->tx_skb->len + 3) & ~3, PCI_DMA_TODEVICE);

dev_kfree_skb_irg(vp->tx_skb); /* Release the transferred buffer */

if (inw(ioaddr + TxFree) > 1536) {
netif_wake_queue(dev);

} else { /* Interrupt when FIFO has room for max-sized packet. */
outw(SetTxThreshold + (1536>>2), ioaddr + EL3_CMD);
netif_stop_queue(dev);

11.1.4.1. Watchdog timer

We saw in the section "Enabling and Disabling Transmissioné that transmission can be disabled by a device driver when certain

conditions are met. The disabling of transmission is supposed to be temporary, so when transmission is not re-enabled within a
reasonable amount of time, the kernel assumes the device is experiencing some problems and should be restarted.

This is achieved by a per-device timer that is started with dev_watchdog_up When the device is activated withdev_activate. The timer regularly
expires, makes sure everything is OK with the device, and restarts itself. When it detects a problembecause the device's egress queue is
disabled (netif_queue_stopped returns TRUE) and too much time has passed since the last frame transmission took placethe timer's handler
invokes a routine registered by the device driver, which resets the NIC.

Here are the net_device fields used to implement this mechanism:

trans_start

This is the timestamp initialized by the device driver when the last frame transmission started.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

watchdog_timer

This is the timer started by Traffic Control. The handler executed when the timer expires is dev_watchdog, defined in
net/sched/sch_generic.c.

watchdog_timeo

This is the amount of time to wait. This is initialized by the device driver. When it is set to 0, watchdog_timer iS NOt started.

tx_timeout

This is the routine provided by the device driver that will be invoked by dev_watchdog to reset the device.

When the timer expires, the kernel handler dev_watchdog takes action by calling the function to whichw_timeout points. The latter normally resets
the card and restarts the interface scheduler with netit wake_queue.

The proper value for watchdog_timeo depends on the interface. If the driver does not set it, it defaults to 5 seconds. The parameters to take into
account when defining the value are:

The likelihood of transmission collisions

This is zero for point-to-point links, but can be high on shared and overloaded Ethernet links plugged into hubs.

The interface speed
The slower the interface, the bigger the timeout should be.

The value of watchdog_timeo is usually defined as a multiple of the variableiz, which represents 1 second.Hz is a global variable whose value
depends on the platform (it is defined in the architecture-dependent file include/asm-XXX/param.h). As you can see in[Table 11-1, even
devices of the same type may take different values for the timeout. The table lists only a few examples; it is not a complete list.

his document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks

Table 11-1. Transmission timeout used by the most common network cards

Device driver watchdog_timeo (timeout used)
3c501 HZ

3c505 10*HZ

3c509 (400*HZ)/1000
3c515 (40