Optimization, Backups,
Replication, and more

Baron Schwartz, Peter Zaitsev,
o Vadim Tkachenko, Jeremy D. Zawodny),
O’REILLY Arjen Lentz & Derek J. Balling

9

Databases

O’REILLY"

High Performance MySQL

High Performance MySQL teaches you how to build
fast, reliable systems with MySQL. Written by noted
experts with years of real-world experience building
large systems, this second edition covers MySQL
performance in detail and focuses on robustness, security, and
data integrity.

High Performance MySQL teaches you advanced techniques in
depth so you can take advantage of MySQL’s full power. You'll
learn how to design schemas, indexes, queries, and advanced
MySQL features for maximum performance. In addition, you'll get

detailed guidance for tuning your MySQL server, operating system,

and hardware to their fullest potential. Practical, safe, high-
performance ways Lo scale your applications with replication,
load balancing, high availability, and failover are also included.
This second edition is completely revised and greatly expanded,
with deeper coverage of all areas. Major additions include:

* Emphasis throughout on performance and reliability

* Thorough coverage of storage engines, including in-depth
tuning and optimizations for the InnoDB storage engine

» Effects of new features in MySQL 5.0 and 5.1, including

stored procedures, partitioned databases, triggers, and views

* Detailed discussion of how to build very large, highly
scalable systems with MySQL

* New options for backups and replication

* Optimization of advanced querying features, such as
full-text searches

* Four new appendixes

This book also includes chapters on benchmarking, profiling,

backups, security, and tools and techniques to help you measure,

monitor, and manage your MySQL installations.

www.oreilly.com

US $49.99 CAN $49.99
ISBN: 978-0-596-10171-8

54999
I AEIRTE L g

780596710171

Safari

Books Online

“I recommend this book

both for new users of
MySQL who have played
with the server a little and
now are ready to write
their first real applications,
and for experienced users
who already bave well-
tuned MySQL-based
applications but need to get
a little more out of them.”

—Michael Widenius,
original developer
of MySQL

**2 Free online edition
for 45 days with
purchase of this book.
Details on last page.

High Performance MySQL

Other Microsoft .NET resources from 0’Reilly

Related titles

.NET Books
Resource Center

O'REILLY*

ONDotnet.com

DIVE DEEP INTO .NET (R

Conferences

O’REILLY NETWORK
Safari
Bookshelf.

Managing and Using MySQL ~ PHP Cookbook™

MySQL Cookbook™ Practical PostgreSQL
MySQL Pocket Reference Programming PHP

MySQL Reference Manual SQL Tuning

Learning PHP Web Database Applications
PHP 5 Essentials with PHP and MySQL

dotnet.oreilly.com is a complete catalog of O’Reilly’s books on
NET and related technologies, including sample chapters and
code examples.

ONDotnet.com provides independent coverage of fundamental,
interoperable, and emerging Microsoft .NET programming and
web services technologies.

O’Reilly Media bring diverse innovators together to nurture the
ideas that spark revolutionary industries. We specialize in docu-
menting the latest tools and systems, translating the innovator’s
knowledge into useful skills for those in the trenches. Visit con-
ferences.oreilly.com for our upcoming events.

Safari Bookshelf (safari.oreilly.com) is the premier online refer-
ence library for programmers and IT professionals. Conduct
searches across more than 1,000 books. Subscribers can zero in
on answers to time-critical questions in a matter of seconds.
Read the books on your Bookshelf from cover to cover or sim-
ply flip to the page you need. Try it today for free.

SECOND EDITION

High Performance MySQL

Baron Schwartz, Peter Zaitsev, Vadim Tkachenko,
Jeremy D. Zawodny, Arjen Lentz,
and Derek J. Balling

O’REILLY"

Beijing - Cambridge - Farnham - Koln - Sebastopol - Taipei - Tokyo

High Performance MySQL, Second Edition
by Baron Schwartz, Peter Zaitsev, Vadim Tkachenko, Jeremy D. Zawodny,
Arjen Lentz, and Derek J. Balling

Copyright © 2008 O’Reilly Media, Inc. All rights reserved.
Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O’Reilly books may be purchased for educational, business, or sales promotional use. Online editions
are also available for most titles (safari.oreilly.com). For more information, contact our
corporate/institutional sales department: (800) 998-9938 or corporate@oreilly.com.

Editor: Andy Oram Indexer: Angela Howard
Production Editor: Loranah Dimant Cover Designer: Karen Montgomery
Copyeditor: Rachel Wheeler Interior Designer: David Futato
Proofreader: Loranah Dimant lllustrators: Jessamyn Read
Printing History:

April 2004: First Edition.

June 2008: Second Edition.

Nutshell Handbook, the Nutshell Handbook logo, and the O’Reilly logo are registered trademarks of
O’Reilly Media, Inc. High Performance MySQL, the image of a sparrow hawk, and related trade dress
are trademarks of O’Reilly Media, Inc.

Many of the designations used by manufacturers and sellers to distinguish their products are claimed as
trademarks. Where those designations appear in this book, and O’Reilly Media, Inc. was aware of a
trademark claim, the designations have been printed in caps or initial caps.

While every precaution has been taken in the preparation of this book, the publisher and authors
assume no responsibility for errors or omissions, or for damages resulting from the use of the
information contained herein.

RepKover,
‘Eﬂphé This book uses RepKover', a durable and flexible lay-flat binding.

ISBN: 978-0-596-10171-8
[(M]

http://safari.oreilly.com
mailto:corporate@oreilly.com

Table of Contents

Foreword ix
Preface Xi
1. MySQL Architecture 1
MySQL’s Logical Architecture 1
Concurrency Control 3
Transactions 6
Multiversion Concurrency Control 12
MySQL’s Storage Engines 14

2. Finding Bottlenecks: Benchmarking and Profiling 32
Why Benchmark? 33
Benchmarking Strategies 33
Benchmarking Tactics 37
Benchmarking Tools 42
Benchmarking Examples 44
Profiling 54
Operating System Profiling 76

3. SchemaOptimizationandIndexing 80
Choosing Optimal Data Types 80
Indexing Basics 95
Indexing Strategies for High Performance 106

An Indexing Case Study 131
Index and Table Maintenance 136
Normalization and Denormalization 139
Speeding Up ALTER TABLE 145
Notes on Storage Engines 149

Query Performance Optimization 152

Slow Query Basics: Optimize Data Access 152
Ways to Restructure Queries 157
Query Execution Basics 160
Limitations of the MySQL Query Optimizer 179
Optimizing Specific Types of Queries 188
Query Optimizer Hints 195
User-Defined Variables 198
Advanced MySQL Features, 204
The MySQL Query Cache 204
Storing Code Inside MySQL 217
Cursors 224
Prepared Statements 225
User-Defined Functions 230
Views 231
Character Sets and Collations 237
Full-Text Searching 244
Foreign Key Constraints 252
Merge Tables and Partitioning 253
Distributed (XA) Transactions 262
Optimizing Server Settings 265
Configuration Basics 266
General Tuning 271
Tuning MySQL’s 1/0O Behavior 281
Tuning MySQL Concurrency 295
Workload-Based Tuning 298
Tuning Per-Connection Settings 304
Operating System and Hardware Optimization 305
What Limits MySQL’s Performance? 306
How to Select CPUs for MySQL 306
Balancing Memory and Disk Resources 309
Choosing Hardware for a Slave 317
RAID Performance Optimization 317
Storage Area Networks and Network-Attached Storage 325
Using Multiple Disk Volumes 326
Network Configuration 328

Table of Contents

10.

11.

Choosing an Operating System
Choosing a Filesystem
Threading

Swapping

Operating System Status

Replication
Replication Overview

Setting Up Replication

Replication Under the Hood

Replication Topologies

Replication and Capacity Planning

Replication Administration and Maintenance

Replication Problems and Solutions

How Fast Is Replication?

The Future of MySQL Replication

Scaling and High Availability
Terminology

Scaling MySQL

Load Balancing

High Availability

Application-Level Optimization.....................................
Application Performance Overview

Web Server Issues

Caching

Extending MySQL

Alternatives to MySQL

BackupandRecovery
Overview

Considerations and Tradeoffs

Managing and Backing Up Binary Logs

Backing Up Data

Recovering from a Backup

Backup and Recovery Speed

Backup Tools

Scripting Backups

330
331
334
334
336

343
347
355
362
376
378
388
405
407

410
412
436
447

457
460
463
470
471

473
477
486
488
499
510
511
518

Table of Contents

vii

12, Security 521

Terminology 521
Account Basics 522
Operating System Security 541
Network Security 542

Data Encryption 550
MySQL in a chrooted Environment 554

13. MySQLServerStatus 557
System Variables 557
SHOW STATUS 558
SHOW INNODB STATUS 565
SHOW PROCESSLIST 578
SHOW MUTEX STATUS 579
Replication Status 580
INFORMATION_SCHEMA 581

14. Tools for High Performance 583
Interface Tools 583
Monitoring Tools 585
Analysis Tools 595
MySQL Utilities 598
Sources of Further Information 601

A. TransferringlargeFiles..... 603
B. UsingEXPLAIN 607
C. Using SphinxwithMySQL 623
D. Debugginglocks 650
Indexo 659

viii | Table of Contents

Foreword

I have known Peter, Vadim, and Arjen a long time and have witnessed their long his-
tory of both using MySQL for their own projects and tuning it for a lot of different
high-profile customers. On his side, Baron has written client software that enhances
the usability of MySQL.

The authors’ backgrounds are clearly reflected in their complete reworking in this
second edition of High Performance MySQL: Optimizations, Replication, Backups,
and More. It’s not just a book that tells you how to optimize your work to use
MySQL better than ever before. The authors have done considerable extra work, car-
rying out and publishing benchmark results to prove their points. This will give you,
the reader, a lot of valuable insight into MySQL’s inner workings that you can’t eas-
ily find in any other book. In turn, that will allow you to avoid a lot of mistakes in
the future that can lead to suboptimal performance.

I recommend this book both to new users of MySQL who have played with the
server a little and now are ready to write their first real applications, and to experi-
enced users who already have well-tuned MySQL-based applications but need to get
“a little more” out of them.

—Michael Widenius
March 2008

Preface

We had several goals in mind for this book. Many of them were derived from think-
ing about that mythical perfect MySQL book that none of us had read but that we
kept looking for on bookstore shelves. Others came from a lot of experience helping
other users put MySQL to work in their environments.

We wanted a book that wasn’t just a SQL primer. We wanted a book with a title that
didn’t start or end in some arbitrary time frame (“...in Thirty Days,” “Seven Days To
a Better...”) and didn’t talk down to the reader. Most of all, we wanted a book that
would help you take your skills to the next level and build fast, reliable systems with
MySQL—one that would answer questions like “How can I set up a cluster of
MySQL servers capable of handling millions upon millions of queries and ensure that
things keep running even if a couple of the servers die?”

We decided to write a book that focused not just on the needs of the MySQL appli-
cation developer but also on the rigorous demands of the MySQL administrator,
who needs to keep the system up and running no matter what the programmers or
users may throw at the server. Having said that, we assume that you are already rela-
tively experienced with MySQL and, ideally, have read an introductory book on it.
We also assume some experience with general system administration, networking,
and Unix-like operating systems.

This revised and expanded second edition includes deeper coverage of all the topics
in the first edition and many new topics as well. This is partly a response to the
changes that have taken place since the book was first published: MySQL is a much
larger and more complex piece of software now. Just as importantly, its popularity
has exploded. The MySQL community has grown much larger, and big corporations
are now adopting MySQL for their mission-critical applications. Since the first edi-
tion, MySQL has become recognized as ready for the enterprise.” People are also

* We think this phrase is mostly marketing fluff, but it seems to convey a sense of importance to a lot of people.

Xi

using it more and more in applications that are exposed to the Internet, where down-
time and other problems cannot be concealed or tolerated.

As a result, this second edition has a slightly different focus than the first edition. We
emphasize reliability and correctness just as much as performance, in part because we
have used MySQL ourselves for applications where significant amounts of money are
riding on the database server. We also have deep experience in web applications, where
MySQL has become very popular. The second edition speaks to the expanded world of
MySQL, which didn’t exist in the same way when the first edition was written.

How This Book Is Organized

We fit a lot of complicated topics into this book. Here, we explain how we put them
together in an order that makes them easier to learn.

A Broad Overview

Chapter 1, MySQL Architecture, is dedicated to the basics—things you’ll need to be
familiar with before you dig in deeply. You need to understand how MySQL is orga-
nized before you’ll be able to use it effectively. This chapter explains MySQL’s archi-
tecture and key facts about its storage engines. It helps you get up to speed if you
aren’t familiar with some of the fundamentals of a relational database, including
transactions. This chapter will also be useful if this book is your introduction to
MySQL but you’re already familiar with another database, such as Oracle.

Building a Solid Foundation

The next four chapters cover material you’ll find yourself referencing over and over
as you use MySQL.

Chapter 2, Finding Bottlenecks: Benchmarking and Profiling, discusses the basics of
benchmarking and profiling—that is, determining what sort of workload your server
can handle, how fast it can perform certain tasks, and so on. You’ll want to bench-
mark your application both before and after any major change, so you can judge how
effective your changes are. What seems to be a positive change may turn out to be a
negative one under real-world stress, and you’ll never know what’s really causing
poor performance unless you measure it accurately.

In Chapter 3, Schema Optimization and Indexing, we cover the various nuances of
data types, table design, and indexes. A well-designed schema helps MySQL per-
form much better, and many of the things we discuss in later chapters hinge on how
well your application puts MySQL’s indexes to work. A firm understanding of
indexes and how to use them well is essential for using MySQL effectively, so you’ll
probably find yourself returning to this chapter repeatedly.

xi | Preface

Chapter 4, Query Performance Optimization, explains how MySQL executes queries
and how you can take advantage of its query optimizer’s strengths. Having a firm
grasp of how the query optimizer works will do wonders for your queries and will
help you understand indexes better. (Indexing and query optimization are sort of a
chicken-and-egg problem; reading Chapter 3 again after you read Chapter 4 might be
useful.) This chapter also presents specific examples of virtually all common classes
of queries, illustrating where MySQL does a good job and how to transform queries
into forms that take advantage of its strengths.

Up to this point, we’ve covered the basic topics that apply to any database: tables,
indexes, data, and queries. Chapter 5, Advanced MySQL Features, goes beyond the
basics and shows you how MySQL’s advanced features work. We examine the query
cache, stored procedures, triggers, character sets, and more. MySQL’s implementa-
tion of these features is different from other databases, and a good understanding of
them can open up new opportunities for performance gains that you might not have
thought about otherwise.

Tuning Your Application

The next two chapters discuss how to make changes to improve your MySQL-based
application’s performance.

In Chapter 6, Optimizing Server Settings, we discuss how you can tune MySQL to
make the most of your hardware and to work as well as possible for your specific
application. Chapter 7, Operating System and Hardware Optimization, explains how
to get the most out of your operating system and hardware. We also suggest hard-
ware configurations that may provide better performance for larger-scale applications.

Scaling Upward After Making Changes

One server isn’t always enough. In Chapter 8, Replication, we discuss replication—
that is, getting your data copied automatically to multiple servers. When combined
with the scaling, load-balancing, and high availability lessons in Chapter 9, Scaling
and High Availability, this will provide you with the groundwork for scaling your
applications as large as you need them to be.

An application that runs on a large-scale MySQL backend often provides significant
opportunities for optimization in the application itself. There are better and worse ways
to design large applications. While this isn’t the primary focus of the book, we don’t
want you to spend all your time concentrating on MySQL. Chapter 10, Application-
Level Optimization, will help you discover the low-hanging fruit in your overall archi-
tecture, especially if it’s a web application.

Preface | xiii

Making Your Application Reliable

The best-designed, most scalable architecture in the world is no good if it can’t sur-
vive power outages, malicious attacks, application bugs or programmer mistakes,
and other disasters.

In Chapter 11, Backup and Recovery, we discuss various backup and recovery strate-
gies for your MySQL databases. These strategies will help minimize your downtime
in the event of inevitable hardware failure and ensure that your data survives such
catastrophes.

Chapter 12, Security, provides you with a firm grasp of some of the security issues
involved in running a MySQL server. More importantly, we offer many suggestions
to allow you to prevent outside parties from harming the servers you’ve spent all this
time trying to configure and optimize. We explain some of the rarely explored areas
of database security, showing both the benefits and performance impacts of various
practices. Usually, in terms of performance, it pays to keep security policies simple.

Miscellaneous Useful Topics

In the last few chapters and the book’s appendixes, we delve into several topics that
either don’t “fit” in any of the earlier chapters or are referenced often enough in mul-
tiple chapters that they deserve a bit of special attention.

Chapter 13, MySQL Server Status shows you how to inspect your MySQL server.
Knowing how to get status information from the server is important; knowing what
that information means is even more important. We cover SHOW INNODB STATUS in par-
ticular detail, because it provides deep insight into the operations of the InnoDB
transactional storage engine.

Chapter 14, Tools for High Performance covers tools you can use to manage MySQL
more efficiently. These include monitoring and analysis tools, tools that help you
write queries, and so on. This chapter covers the Maatkit tools Baron created, which
can enhance MySQL’s functionality and make your life as a database administrator
easier. It also demonstrates a program called innotop, which Baron wrote as an easy-
to-use interface to what your MySQL server is presently doing. It functions much like
the Unix top command and can be invaluable at all phases of the tuning process to
monitor what’s happening inside MySQL and its storage engines.

Appendix A, Transferring Large Files, shows you how to copy very large files from
place to place efficiently—a must if you are going to manage large volumes of data.
Appendix B, Using EXPLAIN, shows you how to really use and understand the all-
important EXPLAIN command. Appendix C, Using Sphinx with MySQL, is an intro-
duction to Sphinx, a high-performance full-text indexing system that can comple-
ment MySQL’s own abilities. And finally, Appendix D, Debugging Locks, shows you

xiv | Preface

how to decipher what’s going on when queries are requesting locks that interfere
with each other.

Software Versions and Availability

MySQL is a moving target. In the years since Jeremy wrote the outline for the first edi-
tion of this book, numerous releases of MySQL have appeared. MySQL 4.1 and 5.0
were available only as alpha versions when the first edition went to press, but these
versions have now been in production for years, and they are the backbone of many of
today’s large online applications. As we completed this second edition, MySQL 5.1
and 6.0 were the bleeding edge instead. (MySQL 5.1 is a release candidate, and 6.0 is
alpha.)

We didn’t rely on one single version of MySQL for this book. Instead, we drew on
our extensive collective knowledge of MySQL in the real world. The core of the book
is focused on MySQL 5.0, because that’s what we consider the “current” version.
Most of our examples assume you’re running some reasonably mature version of
MySQL 5.0, such as MySQL 5.0.40 or newer. We have made an effort to note fea-
tures or functionalities that may not exist in older releases or that may exist only in
the upcoming 5.1 series. However, the definitive reference for mapping features to
specific versions is the MySQL documentation itself. We expect that you’ll find your-
self visiting the annotated online documentation (http://dev.mysql.com/doc/) from
time to time as you read this book.

Another great aspect of MySQL is that it runs on all of today’s popular platforms:
Mac OS X, Windows, GNU/Linux, Solaris, FreeBSD, you name it! However, we are
biased toward GNU/Linux” and other Unix-like operating systems. Windows users
are likely to encounter some differences. For example, file paths are completely dif-
ferent. We also refer to standard Unix command-line utilities; we assume you know
the corresponding commands in Windows.T

Perl is the other rough spot when dealing with MySQL on Windows. MySQL comes
with several useful utilities that are written in Perl, and certain chapters in this book
present example Perl scripts that form the basis of more complex tools you’ll build.
Maatkit is also written in Perl. However, Perl isn’t included with Windows. In order
to use these scripts, you’ll need to download a Windows version of Perl from
ActiveState and install the necessary add-on modules (DBI and DBD::mysql) for
MySQL access.

* To avoid confusion, we refer to Linux when we are writing about the kernel, and GNU/Linux when we are
writing about the whole operating system infrastructure that supports applications.

1 You can get Windows-compatible versions of Unix utilities at hitp://unxutils.sourceforge.net or http://
gnuwin32.sourceforge.net.

Preface | xv

http://unxutils.sourceforge.net
http://gnuwin32.sourceforge.net.
http://gnuwin32.sourceforge.net.
http://dev.mysql.com/doc/

Conventions Used in This Book

The following typographical conventions are used in this book:

Italic
Used for new terms, URLs, email addresses, usernames, hostnames, filenames,
file extensions, pathnames, directories, and Unix commands and utilities.

Constant width
Indicates elements of code, configuration options, database and table names,
variables and their values, functions, modules, the contents of files, or the out-
put from commands.

Constant width bold
Shows commands or other text that should be typed literally by the user. Also
used for emphasis in command output.

Constant width italic
Shows text that should be replaced with user-supplied values.

N
MG
N

s
[ﬁ?*
:

This icon indicates a warning or caution.
R - i

This icon signifies a tip, suggestion, or general note.

Using Code Examples

This book is here to help you get your job done. In general, you may use the code in
this book in your programs and documentation. You don’t need to contact us for
permission unless you’re reproducing a significant portion of the code. For example,
writing a program that uses several chunks of code from this book doesn’t require
permission. Selling or distributing a CD-ROM of examples from O’Reilly books does
require permission. Answering a question by citing this book and quoting example
code doesn’t require permission. Incorporating a significant amount of example code
from this book into your product’s documentation does require permission.

Examples are maintained on the site http://www.highperfmysql.com and will be
updated there from time to time. We cannot commit, however, to updating and test-
ing the code for every minor release of MySQL.

We appreciate, but don’t require, attribution. An attribution usually includes the
title, author, publisher, and ISBN. For example: “High Performance MySQL: Optimi-
zation, Backups, Replication, and More, Second Edition, by Baron Schwartz et al.
Copyright 2008 O’Reilly Media, Inc., 9780596101718.”

xi | Preface

http://www.highperformancemysql.com

If you feel your use of code examples falls outside fair use or the permission given
above, feel free to contact us at permissions@oreilly.com.

Safari® Books Online

..5 When you see a Safari® Books Online icon on the cover of your
Safa rL “ favorite technology book, that means the book is available online
Bosksontine through the O’Reilly Network Safari Bookshelf.

Safari offers a solution that’s better than e-books. It’s a virtual library that lets you
easily search thousands of top tech books, cut and paste code samples, download
chapters, and find quick answers when you need the most accurate, current informa-
tion. Try it for free at http://safari.oreilly.com.

How to Contact Us

Please address comments and questions concerning this book to the publisher:

O’Reilly Media, Inc.

1005 Gravenstein Highway North

Sebastopol, CA 95472

800-998-9938 (in the United States or Canada)
707-829-0515 (international or local)
707-829-0104 (fax)

We have a web page for this book, where we list errata, examples, and any addi-
tional information. You can access this page at:

http://www.oreilly.com/catalog/9780596101718/
To comment or ask technical questions about this book, send email to:
bookquestions@oreilly.com

For more information about our books, conferences, Resource Centers, and the
O’Reilly Network, see our web site at:

http:/fwww.oreilly.com

You can also get in touch with the authors directly. Baron’s weblog is at http://www.
xaprb.com.

Peter and Vadim maintain two weblogs, the well-established and popular http://www.
mysqlperformanceblog.com and the more recent http://www.webscalingblog.com. You
can find the web site for their company, Percona, at http://www.percona.com.

Arjen’s company, OpenQuery, has a web site at http://openquery.com.au. Arjen also
maintains a weblog at http://arjen-lentz.livejournal.com and a personal site at http:/
lentz.com.au.

Preface | xvii

permissions@oreilly.com
http://www.oreilly.com/catalog/9780596101718/
bookquestions@oreilly.com
http://www.oreilly.com
http://www.xaprb.com
http://www.xaprb.com
http://www.mysqlperformanceblog.com
http://www.mysqlperformanceblog.com
http://www.webscalingblog.com
http://www.percona.com
http://openquery.com.au
http://arjen-lentz.livejournal.com
http://lentz.com.au
http://lentz.com.au

Acknowledgments for the Second Edition

Sphinx developer Andrew Aksyonoff wrote Appendix C, Using Sphinx with MySQL
We’d like to thank him first for his in-depth discussion.

We have received invaluable help from many people while writing this book. It’s
impossible to list everyone who gave us help—we really owe thanks to the entire
MySQL community and everyone at MySQL AB. However, here’s a list of people
who contributed directly, with apologies if we’ve missed anyone: Tobias Asplund,
Igor Babaev, Pascal Borghino, Roland Bouman, Ronald Bradford, Mark Callaghan,
Jeremy Cole, Britt Crawford and the HiveDB Project, Vasil Dimov, Harrison Fisk,
Florian Haas, Dmitri Joukovski and Zmanda (thanks for the diagram explaining
LVM snapshots), Alan Kasindorf, Sheeri Kritzer Cabral, Marko Makela, Giuseppe
Maxia, Paul McCullagh, B. Keith Murphy, Dhiren Patel, Sergey Petrunia, Alexander
Rubin, Paul Tuckfield, Heikki Tuuri, and Michael “Monty” Widenius.

A special thanks to Andy Oram and Isabel Kunkle, our editor and assistant editor at
O’Reilly, and to Rachel Wheeler, the copyeditor. Thanks also to the rest of the
O’Reilly staff.

From Baron

I would like to thank my wife Lynn Rainville and our dog Carbon. If you’ve written a
book, I'm sure you know how grateful I am to them. I also owe a huge debt of grati-
tude to Alan Rimm-Kaufman and my colleagues at the Rimm-Kaufman Group for
their support and encouragement during this project. Thanks to Peter, Vadim, and
Arjen for giving me the opportunity to make this dream come true. And thanks to
Jeremy and Derek for breaking the trail for us.

From Peter

I've been doing MySQL performance and scaling presentations, training, and con-
sulting for years, and I've always wanted to reach a wider audience, so I was very
excited when Andy Oram approached me to work on this book. I have not written a
book before, so I wasn’t prepared for how much time and effort it required. We first
started talking about updating the first edition to cover recent versions of MySQL,

but we wanted to add so much material that we ended up rewriting most of the
book.

This book is truly a team effort. Because I was very busy bootstrapping Percona,
Vadim’s and my consulting company, and because English is not my first language,
we all had different roles. I provided the outline and technical content, then I
reviewed the material, revising and extending it as we wrote. When Arjen (the former
head of the MySQL documentation team) joined the project, we began to fill out the

xviii | Preface

outline. Things really started to roll once we brought in Baron, who can write high-
quality book content at insane speeds. Vadim was a great help with in-depth MySQL
source code checks and when we needed to back our claims with benchmarks and
other research.

As we worked on the book, we found more and more areas we wanted to explore in
more detail. Many of the book’s topics, such as replication, query optimization,
InnoDB, architecture, and design could easily fill their own books, so we had to stop
somewhere and leave some material for a possible future edition or for our blogs,
presentations, and articles.

We got great help from our reviewers, who are the top MySQL experts in the world,
from both inside and outside of MySQL AB. These include MySQL’s founder,
Michael Widenius; InnoDB’s founder, Heikki Tuuri; Igor Babaev, the head of the
MySQL optimizer team; and many others.

I would also like to thank my wife, Katya Zaytseva, and my children, Ivan and
Nadezhda, for allowing me to spend time on the book that should have been Family
Time. I'm also grateful to Percona’s employees for handling things when 1 disap-
peared to work on the book, and of course to Andy Oram and O’Reilly for making
things happen.

From Vadim

I would like to thank Peter, who I am excited to have worked with on this book and
look forward to working with on other projects; Baron, who was instrumental in get-
ting this book done; and Arjen, who was a lot of fun to work with. Thanks also to
our editor Andy Oram, who had enough patience to work with us; the MySQL team
that created great software; and our clients who provide me the opportunities to fine
tune my MySQL understanding. And finally a special thank you to my wife, Valerie,
and our sons, Myroslav and Timur, who always support me and help me to move
forward.

From Arjen

I would like to thank Andy for his wisdom, guidance, and patience. Thanks to Baron
for hopping on the second edition train while it was already in motion, and to Peter
and Vadim for solid background information and benchmarks. Thanks also to Jer-
emy and Derek for the foundation with the first edition; as you wrote in my copy,
Derek: “Keep ‘em honest, that’s all T ask.”

Also thanks to all my former colleagues (and present friends) at MySQL AB, where I
acquired most of what I know about the topic; and in this context a special mention
for Monty, whom I continue to regard as the proud parent of MySQL, even though

Preface | xix

his company now lives on as part of Sun Microsystems. I would also like to thank
everyone else in the global MySQL community.

And last but not least, thanks to my daughter Phoebe, who at this stage in her young
life does not care about this thing called “MySQL,” nor indeed has she any idea
which of The Wiggles it might refer to! For some, ignorance is truly bliss, and they
provide us with a refreshing perspective on what is really important in life; for the
rest of you, may you find this book a useful addition on your reference bookshelf.
And don’t forget your life.

Acknowledgments for the First Edition

A book like this doesn’t come into being without help from literally dozens of peo-
ple. Without their assistance, the book you hold in your hands would probably still
be a bunch of sticky notes on the sides of our monitors. This is the part of the book
where we get to say whatever we like about the folks who helped us out, and we
don’t have to worry about music playing in the background telling us to shut up and
go away, as you might see on TV during an awards show.

We couldn’t have completed this project without the constant prodding, begging,
pleading, and support from our editor, Andy Oram. If there is one person most
responsible for the book in your hands, it’s Andy. We really do appreciate the weekly
nag sessions.

Andy isn’t alone, though. At O’Reilly there are a bunch of other folks who had some
part in getting those sticky notes converted to a cohesive book that you’d be willing
to read, so we also have to thank the production, illustration, and marketing folks for
helping to pull this book together. And, of course, thanks to Tim O’Reilly for his
continued commitment to producing some of the industry’s finest documentation
for popular open source software.

Finally, we’d both like to give a big thanks to the folks who agreed to look over the
various drafts of the book and tell us all the things we were doing wrong: our review-
ers. They spent part of their 2003 holiday break looking over roughly formatted ver-
sions of this text, full of typos, misleading statements, and outright mathematical
errors. In no particular order, thanks to Brian “Krow” Aker, Mark “JDBC” Mat-
thews, Jeremy “the other Jeremy” Cole, Mike “VBMySQL.com” Hillyer, Raymond
“Rainman” De Roo, Jeffrey “Regex Master” Friedl, Jason DeHaan, Dan Nelson,
Steve “Unix Wiz” Friedl, and, last but not least, Kasia “Unix Girl” Trapszo.

From Jeremy

I would again like to thank Andy for agreeing to take on this project and for continu-
ally beating on us for more chapter material. Derek’s help was essential for getting
the last 20-30% of the book completed so that we wouldn’t miss yet another target

xx | Preface

date. Thanks for agreeing to come on board late in the process and deal with my spo-
radic bursts of productivity, and for handling the XML grunt work, Chapter 10,
Appendix C, and all the other stuff I threw your way.

I also need to thank my parents for getting me that first Commodore 64 computer so
many years ago. They not only tolerated the first 10 years of what seems to be a life-
long obsession with electronics and computer technology, but quickly became sup-
porters of my never-ending quest to learn and do more.

Next, I'd like to thank a group of people I've had the distinct pleasure of working
with while spreading MySQL religion at Yahoo! during the last few years. Jeffrey
Friedl and Ray Goldberger provided encouragement and feedback from the earliest
stages of this undertaking. Along with them, Steve Morris, James Harvey, and Sergey
Kolychev put up with my seemingly constant experimentation on the Yahoo!
Finance MySQL servers, even when it interrupted their important work. Thanks also
to the countless other Yahoo!s who have helped me find interesting MySQL prob-
lems and solutions. And, most importantly, thanks for having the trust and faith in
me needed to put MySQL into some of the most important and visible parts of
Yahoo!’s business.

Adam Goodman, the publisher and owner of Linux Magazine, helped me ease into
the world of writing for a technical audience by publishing my first feature-length
MySQL articles back in 2001. Since then, he’s taught me more than he realizes about
editing and publishing and has encouraged me to continue on this road with my own
monthly column in the magazine. Thanks, Adam.

Thanks to Monty and David for sharing MySQL with the world. Speaking of MySQL
AB, thanks to all the other great folks there who have encouraged me in writing this:
Kerry, Larry, Joe, Marten, Brian, Paul, Jeremy, Mark, Harrison, Matt, and the rest of
the team there. You guys rock.

Finally, thanks to all my weblog readers for encouraging me to write informally
about MySQL and other technical topics on a daily basis. And, last but not least,
thanks to the Goon Squad.

From Derek

Like Jeremy, I've got to thank my family, for much the same reasons. I want to thank
my parents for their constant goading that I should write a book, even if this isn’t
anywhere near what they had in mind. My grandparents helped me learn two valu-
able lessons, the meaning of the dollar and how much I would fall in love with com-
puters, as they loaned me the money to buy my first Commodore VIC-20.

I can’t thank Jeremy enough for inviting me to join him on the whirlwind book-
writing roller coaster. It’s been a great experience and I look forward to working with
him again in the future.

Preface | xxi

A special thanks goes out to Raymond De Roo, Brian Wohlgemuth, David
Calafrancesco, Tera Doty, Jay Rubin, Bill Catlan, Anthony Howe, Mark O’Neal,
George Montgomery, George Barber, and the myriad other people who patiently lis-
tened to me gripe about things, let me bounce ideas off them to see whether an out-
sider could understand what I was trying to say, or just managed to bring a smile to
my face when I needed it most. Without you, this book might still have been writ-
ten, but I almost certainly would have gone crazy in the process.

xxii | Preface

CHAPTER 1
MySQL Architecture

MySQL’s architecture is very different from that of other database servers, and
makes it useful for a wide range of purposes. MySQL is not perfect, but it is flexible
enough to work well in very demanding environments, such as web applications. At
the same time, MySQL can power embedded applications, data warehouses, content
indexing and delivery software, highly available redundant systems, online transac-
tion processing (OLTP), and much more.

To get the most from MySQL, you need to understand its design so that you can
work with it, not against it. MySQL is flexible in many ways. For example, you can
configure it to run well on a wide range of hardware, and it supports a variety of data
types. However, MySQL’s most unusual and important feature is its storage-engine
architecture, whose design separates query processing and other server tasks from
data storage and retrieval. In MySQL 5.1, you can even load storage engines as run-
time plug-ins. This separation of concerns lets you choose, on a per-table basis, how
your data is stored and what performance, features, and other characteristics you
want.

This chapter provides a high-level overview of the MySQL server architecture, the
major differences between the storage engines, and why those differences are impor-
tant. We've tried to explain MySQL by simplifying the details and showing exam-
ples. This discussion will be useful for those new to database servers as well as
readers who are experts with other database servers.

MySQL's Logical Architecture

A good mental picture of how MySQL’s components work together will help you
understand the server. Figure 1-1 shows a logical view of MySQL’s architecture.

The topmost layer contains the services that aren’t unique to MySQL. They’re ser-
vices most network-based client/server tools or servers need: connection handling,
authentication, security, and so forth.

Clients

bbb
Connection/thread handling

' -

Query |_
cache

Parser

.

Optimizer

uiujulsly

Storage engines

Figure 1-1. A logical view of the MySQL server architecture

The second layer is where things get interesting. Much of MySQL’s brains are here,
including the code for query parsing, analysis, optimization, caching, and all the
built-in functions (e.g., dates, times, math, and encryption). Any functionality pro-
vided across storage engines lives at this level: stored procedures, triggers, and views,
for example.

The third layer contains the storage engines. They are responsible for storing and
retrieving all data stored “in” MySQL. Like the various filesystems available for
GNU/Linux, each storage engine has its own benefits and drawbacks. The server
communicates with them through the storage engine API. This interface hides differ-
ences between storage engines and makes them largely transparent at the query layer.
The API contains a couple of dozen low-level functions that perform operations such
as “begin a transaction” or “fetch the row that has this primary key.” The storage
engines don’t parse SQL" or communicate with each other; they simply respond to
requests from the server.

Connection Management and Security

Each client connection gets its own thread within the server process. The connec-
tion’s queries execute within that single thread, which in turn resides on one core or
CPU. The server caches threads, so they don’t need to be created and destroyed for
each new connection.t

* One exception is InnoDB, which does parse foreign key definitions, because the MySQL server doesn’t yet
implement them itself.

t MySQL AB plans to separate connections from threads in a future version of the server.

2 | Chapter1: MySQL Architecture

When clients (applications) connect to the MySQL server, the server needs to
authenticate them. Authentication is based on username, originating host, and pass-
word. X.509 certificates can also be used across an Secure Sockets Layer (SSL) con-
nection. Once a client has connected, the server verifies whether the client has
privileges for each query it issues (e.g., whether the client is allowed to issue a SELECT
statement that accesses the Country table in the world database). We cover these top-
ics in detail in Chapter 12.

Optimization and Execution

MySQL parses queries to create an internal structure (the parse tree), and then
applies a variety of optimizations. These may include rewriting the query, determin-
ing the order in which it will read tables, choosing which indexes to use, and so on.
You can pass hints to the optimizer through special keywords in the query, affecting
its decision-making process. You can also ask the server to explain various aspects of
optimization. This lets you know what decisions the server is making and gives you a
reference point for reworking queries, schemas, and settings to make everything run
as efficiently as possible. We discuss the optimizer in much more detail in Chapter 4.

The optimizer does not really care what storage engine a particular table uses, but
the storage engine does affect how the server optimizes query. The optimizer asks the
storage engine about some of its capabilities and the cost of certain operations, and
for statistics on the table data. For instance, some storage engines support index
types that can be helpful to certain queries. You can read more about indexing and
schema optimization in Chapter 3.

Before even parsing the query, though, the server consults the query cache, which
can store only SELECT statements, along with their result sets. If anyone issues a query
that’s identical to one already in the cache, the server doesn’t need to parse, opti-
mize, or execute the query at all—it can simply pass back the stored result set! We
discuss the query cache at length in “The MySQL Query Cache” on page 204.

Concurrency Control

Anytime more than one query needs to change data at the same time, the problem of
concurrency control arises. For our purposes in this chapter, MySQL has to do this
at two levels: the server level and the storage engine level. Concurrency control is a
big topic to which a large body of theoretical literature is devoted, but this book isn’t
about theory or even about MySQL internals. Thus, we will just give you a simpli-
fied overview of how MySQL deals with concurrent readers and writers, so you have
the context you need for the rest of this chapter.

We'll use an email box on a Unix system as an example. The classic mbox file for-
mat is very simple. All the messages in an mbox mailbox are concatenated together,

Concurrency Control | 3

one after another. This makes it very easy to read and parse mail messages. It also
makes mail delivery easy: just append a new message to the end of the file.

But what happens when two processes try to deliver messages at the same time to the
same mailbox? Clearly that could corrupt the mailbox, leaving two interleaved mes-
sages at the end of the mailbox file. Well-behaved mail delivery systems use locking
to prevent corruption. If a client attempts a second delivery while the mailbox is
locked, it must wait to acquire the lock itself before delivering its message.

This scheme works reasonably well in practice, but it gives no support for concur-
rency. Because only a single process can change the mailbox at any given time, this
approach becomes problematic with a high-volume mailbox.

Read/Write Locks

Reading from the mailbox isn’t as troublesome. There’s nothing wrong with multi-
ple clients reading the same mailbox simultaneously; because they aren’t making
changes, nothing is likely to go wrong. But what happens if someone tries to delete
message number 25 while programs are reading the mailbox? It depends, but a
reader could come away with a corrupted or inconsistent view of the mailbox. So, to
be safe, even reading from a mailbox requires special care.

If you think of the mailbox as a database table and each mail message as a row, it’s
easy to see that the problem is the same in this context. In many ways, a mailbox is
really just a simple database table. Modifying rows in a database table is very similar
to removing or changing the content of messages in a mailbox file.

The solution to this classic problem of concurrency control is rather simple. Systems
that deal with concurrent read/write access typically implement a locking system that
consists of two lock types. These locks are usually known as shared locks and exclu-
sive locks, or read locks and write locks.

Without worrying about the actual locking technology, we can describe the concept
as follows. Read locks on a resource are shared, or mutually nonblocking: many cli-
ents may read from a resource at the same time and not interfere with each other.
Write locks, on the other hand, are exclusive—i.e., they block both read locks and
other write locks—Dbecause the only safe policy is to have a single client writing to
the resource at given time and to prevent all reads when a client is writing.

In the database world, locking happens all the time: MySQL has to prevent one cli-
ent from reading a piece of data while another is changing it. It performs this lock
management internally in a way that is transparent much of the time.

Lock Granularity

One way to improve the concurrency of a shared resource is to be more selective
about what you lock. Rather than locking the entire resource, lock only the part that

4 | Chapter1: MySQL Architecture

contains the data you need to change. Better yet, lock only the exact piece of data
you plan to change. Minimizing the amount of data that you lock at any one time
lets changes to a given resource occur simultaneously, as long as they don’t conflict
with each other.

The problem is locks consume resources. Every lock operation—getting a lock,
checking to see whether a lock is free, releasing a lock, and so on—has overhead. If
the system spends too much time managing locks instead of storing and retrieving
data, performance can suffer.

A locking strategy is a compromise between lock overhead and data safety, and that
compromise affects performance. Most commercial database servers don’t give you
much choice: you get what is known as row-level locking in your tables, with a vari-
ety of often complex ways to give good performance with many locks.

MySQL, on the other hand, does offer choices. Its storage engines can implement
their own locking policies and lock granularities. Lock management is a very impor-
tant decision in storage engine design; fixing the granularity at a certain level can give
better performance for certain uses, yet make that engine less suited for other pur-
poses. Because MySQL offers multiple storage engines, it doesn’t require a single
general-purpose solution. Let’s have a look at the two most important lock strategies.

Table locks

The most basic locking strategy available in MySQL, and the one with the lowest
overhead, is table locks. A table lock is analogous to the mailbox locks described ear-
lier: it locks the entire table. When a client wishes to write to a table (insert, delete,
update, etc.), it acquires a write lock. This keeps all other read and write operations
at bay. When nobody is writing, readers can obtain read locks, which don’t conflict
with other read locks.

Table locks have variations for good performance in specific situations. For exam-
ple, READ LOCAL table locks allow some types of concurrent write operations. Write
locks also have a higher priority than read locks, so a request for a write lock will
advance to the front of the lock queue even if readers are already in the queue (write
locks can advance past read locks in the queue, but read locks cannot advance past
write locks).

Although storage engines can manage their own locks, MySQL itself also uses a vari-
ety of locks that are effectively table-level for various purposes. For instance, the
server uses a table-level lock for statements such as ALTER TABLE, regardless of the
storage engine.

Concurrency Control | 5

Row locks

The locking style that offers the greatest concurrency (and carries the greatest over-
head) is the use of row locks. Row-level locking, as this strategy is commonly known,
is available in the InnoDB and Falcon storage engines, among others. Row locks are
implemented in the storage engine, not the server (refer back to the logical architec-
ture diagram if you need to). The server is completely unaware of locks imple-
mented in the storage engines, and, as you’ll see later in this chapter and throughout
the book, the storage engines all implement locking in their own ways.

Transactions

You can’t examine the more advanced features of a database system for very long
before transactions enter the mix. A transaction is a group of SQL queries that are
treated atomically, as a single unit of work. If the database engine can apply the
entire group of queries to a database, it does so, but if any of them can’t be done
because of a crash or other reason, none of them is applied. It’s all or nothing.

Little of this section is specific to MySQL. If you’re already familiar with ACID trans-
actions, feel free to skip ahead to “Transactions in MySQL” on page 10, later in this
chapter.

A banking application is the classic example of why transactions are necessary. Imag-
ine a bank’s database with two tables: checking and savings. To move $200 from
Jane’s checking account to her savings account, you need to perform at least three
steps:

1. Make sure her checking account balance is greater than $200.
2. Subtract $200 from her checking account balance.
3. Add $200 to her savings account balance.

The entire operation should be wrapped in a transaction so that if any one of the
steps fails, any completed steps can be rolled back.

You start a transaction with the START TRANSACTION statement and then either make
its changes permanent with COMMIT or discard the changes with ROLLBACK. So, the SQL
for our sample transaction might look like this:

START TRANSACTION;

SELECT balance FROM checking WHERE customer id = 10233276;

UPDATE checking SET balance = balance - 200.00 WHERE customer id = 10233276;
UPDATE savings SET balance = balance + 200.00 WHERE customer_id = 10233276;
COMMIT;

(O I SR UVR SR N

But transactions alone aren’t the whole story. What happens if the database server
crashes while performing line 42 Who knows? The customer probably just lost $200.
And what if another process comes along between lines 3 and 4 and removes the

6 | Chapter1: MySQL Architecture

entire checking account balance? The bank has given the customer a $200 credit
without even knowing it.

Transactions aren’t enough unless the system passes the ACID test. ACID stands for
Atomicity, Consistency, Isolation, and Durability. These are tightly related criteria
that a well-behaved transaction processing system must meet:

Atomicity
A transaction must function as a single indivisible unit of work so that the entire
transaction is either applied or rolled back. When transactions are atomic, there
is no such thing as a partially completed transaction: it’s all or nothing.

Consistency
The database should always move from one consistent state to the next. In our
example, consistency ensures that a crash between lines 3 and 4 doesn’t result in
$200 disappearing from the checking account. Because the transaction is never
committed, none of the transaction’s changes is ever reflected in the database.

Isolation
The results of a transaction are usually invisible to other transactions until the
transaction is complete. This ensures that if a bank account summary runs after
line 3 but before line 4 in our example, it will still see the $200 in the checking
account. When we discuss isolation levels, you’ll understand why we said usu-
ally invisible.

Durability
Once committed, a transaction’s changes are permanent. This means the
changes must be recorded such that data won’t be lost in a system crash. Dura-
bility is a slightly fuzzy concept, however, because there are actually many lev-
els. Some durability strategies provide a stronger safety guarantee than others,
and nothing is ever 100% durable. We discuss what durability really means in
MySQL in later chapters, especially in “InnoDB I/O Tuning” on page 283.

ACID transactions ensure that banks don’t lose your money. It is generally extremely
difficult or impossible to do this with application logic. An ACID-compliant data-
base server has to do all sorts of complicated things you might not realize to provide
ACID guarantees.

Just as with increased lock granularity, the downside of this extra security is that the
database server has to do more work. A database server with ACID transactions also
generally requires more CPU power, memory, and disk space than one without
them. As we’ve said several times, this is where MySQL’s storage engine architecture
works to your advantage. You can decide whether your application needs transac-
tions. If you don’t really need them, you might be able to get higher performance
with a nontransactional storage engine for some kinds of queries. You might be able
to use LOCK TABLES to give the level of protection you need without transactions. It’s
all up to you.

Transactions | 7

Isolation Levels

Isolation is more complex than it looks. The SQL standard defines four isolation lev-
els, with specific rules for which changes are and aren’t visible inside and outside a
transaction. Lower isolation levels typically allow higher concurrency and have lower
overhead.

A w
y

Each storage engine implements isolation levels slightly differently,
and they don’t necessarily match what you might expect if you’re used

% to another database product (thus, we won’t go into exhaustive detail
in this section). You should read the manuals for whichever storage
engine you decide to use.

Let’s take a quick look at the four isolation levels:

READ UNCOMMITTED

In the READ UNCOMMITTED isolation level, transactions can view the results of
uncommitted transactions. At this level, many problems can occur unless you
really, really know what you are doing and have a good reason for doing it. This
level is rarely used in practice, because its performance isn’t much better than
the other levels, which have many advantages. Reading uncommitted data is also
known as a dirty read.

READ COMMITTED

The default isolation level for most database systems (but not MySQL!) is READ
COMMITTED. It satisfies the simple definition of isolation used earlier: a transaction
will see only those changes made by transactions that were already committed
when it began, and its changes won’t be visible to others until it has committed.
This level still allows what’s known as a nonrepeatable read. This means you can
run the same statement twice and see different data.

REPEATABLE READ

REPEATABLE READ solves the problems that READ UNCOMMITTED allows. It guarantees
that any rows a transaction reads will “look the same” in subsequent reads
within the same transaction, but in theory it still allows another tricky problem:
phantom reads. Simply put, a phantom read can happen when you select some
range of rows, another transaction inserts a new row into the range, and then
you select the same range again; you will then see the new “phantom” row.
InnoDB and Falcon solve the phantom read problem with multiversion concur-
rency control, which we explain later in this chapter.

REPEATABLE READ is MySQL’s default transaction isolation level. The InnoDB and
Falcon storage engines respect this setting, which you’ll learn how to change in
Chapter 6. Some other storage engines do too, but the choice is up to the engine.

8

Chapter 1: MySQL Architecture

SERTALIZABLE
The highest level of isolation, SERIALIZABLE, solves the phantom read problem by
forcing transactions to be ordered so that they can’t possibly conflict. In a nut-
shell, SERIALIZABLE places a lock on every row it reads. At this level, a lot of time-
outs and lock contention may occur. We've rarely seen people use this isolation
level, but your application’s needs may force you to accept the decreased concur-
rency in favor of the data stability that results.

Table 1-1 summarizes the various isolation levels and the drawbacks associated with
each one.

Table 1-1. ANSI SQL isolation levels

Nonrepeatable Phantom reads

Isolation level Dirty reads possible reads possible possible Locking reads
READ Yes Yes Yes No
UNCOMMITTED

READ COMMITTED No Yes Yes No
REPEATABLE READ No No Yes No
SERIALIZABLE No No No Yes

Deadlocks

A deadlock is when two or more transactions are mutually holding and requesting
locks on the same resources, creating a cycle of dependencies. Deadlocks occur when
transactions try to lock resources in a different order. They can happen whenever
multiple transactions lock the same resources. For example, consider these two
transactions running against the StockPrice table:

Transaction #1
START TRANSACTION;
UPDATE StockPrice SET close = 45.50 WHERE stock id = 4 and date = '2002-05-01';
UPDATE StockPrice SET close = 19.80 WHERE stock id = 3 and date = '2002-05-02';
COMMIT;

Transaction #2
START TRANSACTION;
UPDATE StockPrice SET high = 20.12 WHERE stock_id = 3 and date
UPDATE StockPrice SET high = 47.20 WHERE stock_id = 4 and date
COMMIT;

'2002-05-02";
'2002-05-01";

If you’re unlucky, each transaction will execute its first query and update a row of
data, locking it in the process. Each transaction will then attempt to update its sec-
ond row, only to find that it is already locked. The two transactions will wait forever
for each other to complete, unless something intervenes to break the deadlock.

To combat this problem, database systems implement various forms of deadlock
detection and timeouts. The more sophisticated systems, such as the InnoDB storage

Transactions | 9

engine, will notice circular dependencies and return an error instantly. This is actu-
ally a very good thing—otherwise, deadlocks would manifest themselves as very slow
queries. Others will give up after the query exceeds a lock wait timeout, which is not
so good. The way InnoDB currently handles deadlocks is to roll back the transaction
that has the fewest exclusive row locks (an approximate metric for which will be the
easiest to roll back).

Lock behavior and order are storage engine-specific, so some storage engines might
deadlock on a certain sequence of statements even though others won’t. Deadlocks
have a dual nature: some are unavoidable because of true data conflicts, and some
are caused by how a storage engine works.

Deadlocks cannot be broken without rolling back one of the transactions, either par-
tially or wholly. They are a fact of life in transactional systems, and your applica-
tions should be designed to handle them. Many applications can simply retry their
transactions from the beginning.

Transaction Logging

Transaction logging helps make transactions more efficient. Instead of updating the
tables on disk each time a change occurs, the storage engine can change its in-
memory copy of the data. This is very fast. The storage engine can then write a
record of the change to the transaction log, which is on disk and therefore durable.
This is also a relatively fast operation, because appending log events involves sequen-
tial I/O in one small area of the disk instead of random I/O in many places. Then, at
some later time, a process can update the table on disk. Thus, most storage engines
that use this technique (known as write-ahead logging) end up writing the changes to
disk twice.”

If there’s a crash after the update is written to the transaction log but before the
changes are made to the data itself, the storage engine can still recover the changes
upon restart. The recovery method varies between storage engines.

Transactions in MySQL

MySQL AB provides three transactional storage engines: InnoDB, NDB Cluster, and
Falcon. Several third-party engines are also available; the best-known engines right
now are solidDB and PBXT. We discuss some specific properties of each engine in
the next section.

* The PBXT storage engine cleverly avoids some write-ahead logging.

10 | Chapter1: MySQL Architecture

AUTOCOMMIT

MySQL operates in AUTOCOMMIT mode by default. This means that unless you’ve
explicitly begun a transaction, it automatically executes each query in a separate
transaction. You can enable or disable AUTOCOMMIT for the current connection by set-
ting a variable:

mysql> SHOW VARIABLES LIKE 'AUTOCOMMIT';

Hmmmmmm e Hmmmmm +
| Variable name | Value |
Fmmm oo Hmmmmmm +
| autocommit | ON |
Hmmm i meen Hmmmmmn +

1 row in set (0.00 sec)

mysql> SET AUTOCOMMIT = 1;
The values 1 and ON are equivalent, as are 0 and OFF. When you run with
AUTOCOMMIT=0, you are always in a transaction, until you issue a COMMIT or ROLLBACK.
MySQL then starts a new transaction immediately. Changing the value of AUTOCOMMIT
has no effect on nontransactional tables, such as MyISAM or Memory tables, which
essentially always operate in AUTOCOMMIT mode.

Certain commands, when issued during an open transaction, cause MySQL to com-
mit the transaction before they execute. These are typically Data Definition Lan-
guage (DDL) commands that make significant changes, such as ALTER TABLE, but LOCK
TABLES and some other statements also have this effect. Check your version’s docu-
mentation for the full list of commands that automatically commit a transaction.

MySQL lets you set the isolation level using the SET TRANSACTION ISOLATION LEVEL
command, which takes effect when the next transaction starts. You can set the isola-
tion level for the whole server in the configuration file (see Chapter 6), or just for
your session:

mysql> SET SESSION TRANSACTION ISOLATION LEVEL READ COMMITTED;

MySQL recognizes all four ANSI standard isolation levels, and InnoDB supports all
of them. Other storage engines have varying support for the different isolation levels.

Mixing storage engines in transactions

MySQL doesn’t manage transactions at the server level. Instead, the underlying stor-
age engines implement transactions themselves. This means you can’t reliably mix
different engines in a single transaction. MySQL AB is working on adding a higher-
level transaction management service to the server, which will make it safe to mix
and match transactional tables in a transaction. Until then, be careful.

If you mix transactional and nontransactional tables (for instance, InnoDB and
MyISAM tables) in a transaction, the transaction will work properly if all goes well.
However, if a rollback is required, the changes to the nontransactional table can’t be

Transactions | 11

undone. This leaves the database in an inconsistent state from which it may be diffi-
cult to recover and renders the entire point of transactions moot. This is why it is
really important to pick the right storage engine for each table.

MySQL will not usually warn you or raise errors if you do transactional operations
on a nontransactional table. Sometimes rolling back a transaction will generate the
warning “Some nontransactional changed tables couldn’t be rolled back,” but most
of the time, you’ll have no indication you’re working with nontransactional tables.

Implicit and explicit locking

InnoDB uses a two-phase locking protocol. It can acquire locks at any time during a
transaction, but it does not release them until a COMMIT or ROLLBACK. It releases all the
locks at the same time. The locking mechanisms described earlier are all implicit.
InnoDB handles locks automatically, according to your isolation level.

However, InnoDB also supports explicit locking, which the SQL standard does not
mention at all:

® SELECT ... LOCK IN SHARE MODE
* SELECT ... FOR UPDATE

MySQL also supports the LOCK TABLES and UNLOCK TABLES commands, which are
implemented in the server, not in the storage engines. These have their uses, but they
are not a substitute for transactions. If you need transactions, use a transactional
storage engine.

We often see applications that have been converted from MyISAM to InnoDB but
are still using LOCK TABLES. This is no longer necessary because of row-level locking,
and it can cause severe performance problems.

The interaction between LOCK TABLES and transactions is complex, and
there are unexpected behaviors in some server versions. Therefore, we
recommend that you never use LOCK TABLES unless you are in a transac-
tion and AUTOCOMMIT is disabled, no matter what storage engine you are
using.

Multiversion Concurrency Control

Most of MySQL’s transactional storage engines, such as InnoDB, Falcon, and PBXT,
don’t use a simple row-locking mechanism. Instead, they use row-level locking in
conjunction with a technique for increasing concurrency known as multiversion con-
currency control (MVCC). MVCC is not unique to MySQL: Oracle, PostgreSQL, and
some other database systems use it too.

You can think of MVCC as a twist on row-level locking; it avoids the need for lock-
ing at all in many cases and can have much lower overhead. Depending on how it is

12 | Chapter1: MySQL Architecture

implemented, it can allow nonlocking reads, while locking only the necessary
records during write operations.

MVCC works by keeping a snapshot of the data as it existed at some point in time.
This means transactions can see a consistent view of the data, no matter how long
they run. It also means different transactions can see different data in the same tables
at the same time! If you’ve never experienced this before, it may be confusing, but it
will become easier to understand with familiarity.

Each storage engine implements MVCC differently. Some of the variations include
optimistic and pessimistic concurrency control. We'll illustrate one way MVCC works
by explaining a simplified version of InnoDB’s behavior.

InnoDB implements MVCC by storing with each row two additional, hidden values
that record when the row was created and when it was expired (or deleted). Rather
than storing the actual times at which these events occurred, the row stores the sys-
tem version number at the time each event occurred. This is a number that incre-
ments each time a transaction begins. Each transaction keeps its own record of the
current system version, as of the time it began. Each query has to check each row’s
version numbers against the transaction’s version. Let’s see how this applies to par-
ticular operations when the transaction isolation level is set to REPEATABLE READ:

SELECT
InnoDB must examine each row to ensure that it meets two criteria:

* InnoDB must find a version of the row that is at least as old as the transac-
tion (i.e., its version must be less than or equal to the transaction’s version).
This ensures that either the row existed before the transaction began, or the
transaction created or altered the row.

* The row’s deletion version must be undefined or greater than the transac-

tion’s version. This ensures that the row wasn’t deleted before the transac-
tion began.

Rows that pass both tests may be returned as the query’s result.
INSERT
InnoDB records the current system version number with the new row.

DELETE
InnoDB records the current system version number as the row’s deletion ID.

UPDATE
InnoDB writes a new copy of the row, using the system version number for the
new row’s version. It also writes the system version number as the old row’s
deletion version.

The result of all this extra record keeping is that most read queries never acquire
locks. They simply read data as fast as they can, making sure to select only rows that
meet the criteria. The drawbacks are that the storage engine has to store more data

Multiversion Concurrency Control | 13

with each row, do more work when examining rows, and handle some additional
housekeeping operations.

MVCC works only with the REPEATABLE READ and READ COMMITTED isolation levels. READ
UNCOMMITTED isn’t MVCC-compatible because queries don’t read the row version
that’s appropriate for their transaction version; they read the newest version, no mat-
ter what. SERIALIZABLE isn’t MVCC-compatible because reads lock every row they
return.

Table 1-2 summarizes the various locking models and concurrency levels in MySQL.

Table 1-2. Locking models and concurrency in MySQL using the default isolation level

Locking strategy Concurrency Overhead Engines

Table level Lowest Lowest MyISAM, Merge, Memory

Row level High High NDB Cluster

Row level with MVCC Highest Highest InnoDB, Falcon, PBXT,
solidDB

MySQL's Storage Engines

This section gives an overview of MySQL’s storage engines. We won’t go into great
detail here, because we discuss storage engines and their particular behaviors
throughout the book. Even this book, though, isn’t a complete source of documenta-
tion; you should read the MySQL manuals for the storage engines you decide to use.
MySQL also has forums dedicated to each storage engine, often with links to addi-
tional information and interesting ways to use them.

If you just want to compare the engines at a high level, you can skip ahead to
Table 1-3.

MySQL stores each database (also called a schema) as a subdirectory of its data direc-
tory in the underlying filesystem. When you create a table, MySQL stores the table
definition in a .frm file with the same name as the table. Thus, when you create a
table named MyTable, MySQL stores the table definition in MyTable.frm. Because
MySQL uses the filesystem to store database names and table definitions, case sensi-
tivity depends on the platform. On a Windows MySQL instance, table and database
names are case insensitive; on Unix-like systems, they are case sensitive. Each stor-
age engine stores the table’s data and indexes differently, but the server itself han-
dles the table definition.

To determine what storage engine a particular table uses, use the SHOW TABLE STATUS
command. For example, to examine the user table in the mysql database, execute the
following;:

14 | Chapter1: MySQL Architecture

mysql> SHOW TABLE STATUS LIKE ‘user' \G
Bkl] oy Rk okok

Name: user
Engine: MyISAM
Row format: Dynamic
Rows: 6
Avg_row_length: 59
Data_length: 356
Max_data length: 4294967295
Index_length: 2048
Data_free: 0
Auto_increment: NULL
Create_time: 2002-01-24 18:07:17
Update time: 2002-01-24 21:56:29
Check_time: NULL
Collation: utf8_bin
Checksum: NULL
Create_options:
Comment: Users and global privileges
1 row in set (0.00 sec)
The output shows that this is a MyISAM table. You might also notice a lot of other

information and statistics in the output. Let’s briefly look at what each line means:

Name
The table’s name.

Engine
The table’s storage engine. In old versions of MySQL, this column was named
Type, not Engine.

Row format
The row format. For a MyISAM table, this can be Dynamic, Fixed, or Compressed.
Dynamic rows vary in length because they contain variable-length fields such as
VARCHAR or BLOB. Fixed rows, which are always the same size, are made up of
fields that don’t vary in length, such as CHAR and INTEGER. Compressed rows exist
only in compressed tables; see “Compressed MyISAM tables” on page 18.

Rows
The number of rows in the table. For nontransactional tables, this number is
always accurate. For transactional tables, it is usually an estimate.

Avg row length
How many bytes the average row contains.

Data_length
How much data (in bytes) the entire table contains.

Max_data_length
The maximum amount of data this table can hold. See “Storage” on page 16 for
more details.

MySQL’s Storage Engines | 15

Index_length
How much disk space the index data consumes.

Data free
For a MyISAM table, the amount of space that is allocated but currently unused.
This space holds previously deleted rows and can be reclaimed by future INSERT
statements.

Auto_increment
The next AUTO_INCREMENT value.

Create_time

When the table was first created.
Update time

When data in the table last changed.

Check_time
When the table was last checked using CHECK TABLE or myisamchk.

Collation
The default character set and collation for character columns in this table. See
“Character Sets and Collations” on page 237 for more on these features.

Checksum
A live checksum of the entire table’s contents if enabled.

Create options
Any other options that were specified when the table was created.

Comment
This field contains a variety of extra information. For a MyISAM table, it con-
tains the comments, if any, that were set when the table was created. If the table
uses the InnoDB storage engine, the amount of free space in the InnoDB
tablespace appears here. If the table is a view, the comment contains the text
“VIEW.”

The MyISAM Engine

As MySQL’s default storage engine, MyISAM provides a good compromise between
performance and useful features, such as full-text indexing, compression, and spatial
(GIS) functions. MyISAM doesn’t support transactions or row-level locks.

Storage

MyISAM typically stores each table in two files: a data file and an index file. The two
files bear .MYD and .MYT extensions, respectively. The MyISAM format is platform-
neutral, meaning you can copy the data and index files from an Intel-based server to
a PowerPC or Sun SPARC without any trouble.

16 | Chapter1: MySQL Architecture

MyISAM tables can contain either dynamic or static (fixed-length) rows. MySQL
decides which format to use based on the table definition. The number of rows a
MyISAM table can hold is limited primarily by the available disk space on your data-
base server and the largest file your operating system will let you create.

MyISAM tables created in MySQL 5.0 with variable-length rows are configured by
default to handle 256 TB of data, using 6-byte pointers to the data records. Earlier
MySQL versions defaulted to 4-byte pointers, for up to 4 GB of data. All MySQL ver-
sions can handle a pointer size of up to 8 bytes. To change the pointer size on a
MyISAM table (either up or down), you must specify values for the MAX_ROWS and
AVG_ROW_LENGTH options that represent ballpark figures for the amount of space you
need:
CREATE TABLE mytable (
a INTEGER NOT NULL PRIMARY KEY,

b CHAR(18) NOT NULL
) MAX_ROWS = 1000000000 AVG_ROW_LENGTH = 32;

In this example, we’ve told MySQL to be prepared to store at least 32 GB of data in
the table. To find out what MySQL decided to do, simply ask for the table status:
mysql> SHOW TABLE STATUS LIKE 'mytable' \G
skl koo oy kel kst ko

Name: mytable

Engine:

Row format:
Rows:
Avg_row_length:
Data_length:
Max_data length:
Index_length:
Data_free:
Auto_increment:
Create_time:
Update time:
Check_time:

MyISAM

Fixed

0

0

0

98784247807

1024

0

NULL

2002-02-24 17:36:57
2002-02-24 17:36:57
NULL

Create_options:
Comment:
1 row in set (0.05 sec)

max_rows=1000000000 avg_row_length=32

As you can see, MySQL remembers the create options exactly as specified. And it
chose a representation capable of holding 91 GB of data! You can change the pointer
size later with the ALTER TABLE statement, but that will cause the entire table and all of
its indexes to be rewritten, which may take a long time.

MyISAM features

As one of the oldest storage engines included in MySQL, MyISAM has many fea-
tures that have been developed over years of use to fill niche needs:

MySQL’s Storage Engines | 17

Locking and concurrency
MyISAM locks entire tables, not rows. Readers obtain shared (read) locks on all
tables they need to read. Writers obtain exclusive (write) locks. However, you
can insert new rows into the table while select queries are running against it
(concurrent inserts). This is a very important and useful feature.

Automatic repair
MySQL supports automatic checking and repairing of MyISAM tables. See
“MyISAM I/O Tuning” on page 281 for more information.

Manual repair
You can use the CHECK TABLE mytable and REPAIR TABLE mytable commands to
check a table for errors and repair them. You can also use the myisamchk
command-line tool to check and repair tables when the server is offline.

Index features
You can create indexes on the first 500 characters of BLOB and TEXT columns in
MyISAM tables. MyISAM supports full-text indexes, which index individual
words for complex search operations. For more information on indexing, see
Chapter 3.

Delayed key writes

MyISAM tables marked with the DELAY KEY WRITE create option don’t write
changed index data to disk at the end of a query. Instead, MyISAM bulffers the
changes in the in-memory key buffer. It flushes index blocks to disk when it
prunes the buffer or closes the table. This can boost performance on heavily
used tables that change frequently. However, after a server or system crash, the
indexes will definitely be corrupted and will need repair. You should handle this
with a script that runs myisamchk before restarting the server, or by using the
automatic recovery options. (Even if you don’t use DELAY KEY WRITE, these safe-
guards can still be an excellent idea.) You can configure delayed key writes glo-
bally, as well as for individual tables.

Compressed MyISAM tables

Some tables—for example, in CD-ROM- or DVD-ROM-based applications and
some embedded environments—never change once they’re created and filled with
data. These might be well suited to compressed MyISAM tables.

You can compress (or “pack”) tables with the myisampack utility. You can’t modify
compressed tables (although you can uncompress, modify, and recompress tables if
you need to), but they generally use less space on disk. As a result, they offer faster
performance, because their smaller size requires fewer disk seeks to find records.
Compressed MyISAM tables can have indexes, but they’re read-only.

The overhead of decompressing the data to read it is insignificant for most applica-
tions on modern hardware, where the real gain is in reducing disk I/O. The rows are

18 | Chapter1: MySQL Architecture

compressed individually, so MySQL doesn’t need to unpack an entire table (or even
a page) just to fetch a single row.

The MyISAM Merge Engine

The Merge engine is a variation of MyISAM. A Merge table is the combination of
several identical MyISAM tables into one virtual table. This is particularly useful
when you use MySQL in logging and data warehousing applications. See “Merge
Tables and Partitioning” on page 253 for a detailed discussion of Merge tables.

The InnoDB Engine

InnoDB was designed for transaction processing—specifically, processing of many
short-lived transactions that usually complete rather than being rolled back. It
remains the most popular storage engine for transactional storage. Its performance
and automatic crash recovery make it popular for nontransactional storage needs,
too.

InnoDB stores its data in a series of one or more data files that are collectively known
as a tablespace. A tablespace is essentially a black box that InnoDB manages all by
itself. In MySQL 4.1 and newer versions, InnoDB can store each table’s data and
indexes in separate files. InnoDB can also use raw disk partitions for building its
tablespace. See “The InnoDB tablespace” on page 290 for more information.

InnoDB uses MVCC to achieve high concurrency, and it implements all four SQL
standard isolation levels. It defaults to the REPEATABLE READ isolation level, and it has a
next-key locking strategy that prevents phantom reads in this isolation level: rather
than locking only the rows you’ve touched in a query, InnoDB locks gaps in the
index structure as well, preventing phantoms from being inserted.

InnoDB tables are built on a clustered index, which we will cover in detail in
Chapter 3. InnoDB’s index structures are very different from those of most other
MySQL storage engines. As a result, it provides very fast primary key lookups. How-
ever, secondary indexes (indexes that aren’t the primary key) contain the primary key
columns, so if your primary key is large, other indexes will also be large. You should
strive for a small primary key if you’ll have many indexes on a table. InnoDB doesn’t
compress its indexes.

At the time of this writing, InnoDB can’t build indexes by sorting, which MyISAM
can do. Thus, InnoDB loads data and creates indexes more slowly than MyISAM.
Any operation that changes an InnoDB table’s structure will rebuild the entire table,
including all the indexes.

InnoDB was designed when most servers had slow disks, a single CPU, and limited
memory. Today, as multicore servers with huge amounts of memory and fast disks
are becoming less expensive, InnoDB is experiencing some scalability issues.

MySQL’s Storage Engines | 19

InnoDB’s developers are addressing these issues, but at the time of this writing, sev-
eral of them remain problematic. See “InnoDB Concurrency Tuning” on page 296
for more information about achieving high concurrency with InnoDB.

Besides its high-concurrency capabilities, InnoDB’s next most popular feature is for-
eign key constraints, which the MySQL server itself doesn’t yet provide. InnoDB also
provides extremely fast lookups for queries that use a primary key.

InnoDB has a variety of internal optimizations. These include predictive read-ahead
for prefetching data from disk, an adaptive hash index that automatically builds hash
indexes in memory for very fast lookups, and an insert buffer to speed inserts. We
cover these extensively later in this book.

InnoDB’s behavior is very intricate, and we highly recommend reading the “InnoDB
Transaction Model and Locking” section of the MySQL manual if you’re using
InnoDB. There are many surprises and exceptions you should be aware of before
building an application with InnoDB.

The Memory Engine

Memory tables (formerly called HEAP tables) are useful when you need fast access to
data that either never changes or doesn’t need to persist after a restart. Memory
tables are generally about an order of magnitude faster than MyISAM tables. All of
their data is stored in memory, so queries don’t have to wait for disk I/O. The table
structure of a Memory table persists across a server restart, but no data survives.

Here are some good uses for Memory tables:

* For “lookup” or “mapping” tables, such as a table that maps postal codes to
state names

* For caching the results of periodically aggregated data

* For intermediate results when analyzing data

Memory tables support HASH indexes, which are very fast for lookup queries. See
“Hash indexes” on page 101 for more information on HASH indexes.

Although Memory tables are very fast, they often don’t work well as a general-
purpose replacement for disk-based tables. They use table-level locking, which gives
low write concurrency, and they do not support TEXT or BLOB column types. They
also support only fixed-size rows, so they really store VARCHARs as CHARs, which can
waste memory.

MySQL uses the Memory engine internally while processing queries that require a
temporary table to hold intermediate results. If the intermediate result becomes too
large for a Memory table, or has TEXT or BLOB columns, MySQL will convert it to a
MyISAM table on disk. We say more about this in later chapters.

20 | Chapter1: MySQL Architecture

People often confuse Memory tables with temporary tables, which are

ephemeral tables created with CREATE TEMPORARY TABLE. Temporary

1kt tables can use any storage engine; they are not the same thing as tables

" that use the Memory storage engine. Temporary tables are visible only
to a single connection and disappear entirely when the connection
closes.

The Archive Engine

The Archive engine supports only INSERT and SELECT queries, and it does not sup-
port indexes. It causes much less disk I/O than MyISAM, because it buffers data
writes and compresses each row with zlib as it’s inserted. Also, each SELECT query
requires a full table scan. Archive tables are thus ideal for logging and data acquisi-
tion, where analysis tends to scan an entire table, or where you want fast INSERT que-
ries on a replication master. Replication slaves can use a different storage engine for
the same table, which means the table on the slave can have indexes for faster perfor-
mance on analysis. (See Chapter 8 for more about replication.)

Archive supports row-level locking and a special buffer system for high-concurrency
inserts. It gives consistent reads by stopping a SELECT after it has retrieved the num-
ber of rows that existed in the table when the query began. It also makes bulk inserts
invisible until they’re complete. These features emulate some aspects of transac-
tional and MVCC behaviors, but Archive is not a transactional storage engine. It is
simply a storage engine that’s optimized for high-speed inserting and compressed
storage.

The CSV Engine

The CSV engine can treat comma-separated values (CSV) files as tables, but it does
not support indexes on them. This engine lets you copy files in and out of the data-
base while the server is running. If you export a CSV file from a spreadsheet and save
it in the MySQL server’s data directory, the server can read it immediately. Similarly, if
you write data to a CSV table, an external program can read it right away. CSV tables
are especially useful as a data interchange format and for certain kinds of logging.

The Federated Engine

The Federated engine does not store data locally. Each Federated table refers to a
table on a remote MySQL server, so it actually connects to a remote server for all
operations. It is sometimes used to enable “hacks” such as tricks with replication.

There are many oddities and limitations in the current implementation of this engine.
Because of the way the Federated engine works, we think it is most useful for single-
row lookups by primary key, or for INSERT queries you want to affect a remote server.
It does not perform well for aggregate queries, joins, or other basic operations.

MySQL'’s Storage Engines | 21

The Blackhole Engine

The Blackhole engine has no storage mechanism at all. It discards every INSERT
instead of storing it. However, the server writes queries against Blackhole tables to its
logs as usual, so they can be replicated to slaves or simply kept in the log. That
makes the Blackhole engine useful for fancy replication setups and audit logging.

The NDB Cluster Engine

MySQL AB acquired the NDB Cluster engine from Sony Ericsson in 2003. It was
originally designed for high speed (real-time performance requirements), with redun-
dancy and load-balancing capabilities. Although it logged to disk, it kept all its data
in memory and was optimized for primary key lookups. MySQL has since added
other indexing methods and many optimizations, and MySQL 5.1 allows some col-
umns to be stored on disk.

The NDB architecture is unique: an NDB cluster is completely unlike, for example,
an Oracle cluster. NDB’s infrastructure is based on a shared-nothing concept. There
is no storage area network or other big centralized storage solution, which some
other types of clusters rely on. An NDB database consists of data nodes, manage-
ment nodes, and SQL nodes (MySQL instances). Each data node holds a segment
(“fragment”) of the cluster’s data. The fragments are duplicated, so the system has
multiple copies of the same data on different nodes. One physical server is usually
dedicated to each node for redundancy and high availability. In this sense, NDB is
similar to RAID at the server level.

The management nodes are used to retrieve the centralized configuration, and for
monitoring and control of the cluster nodes. All data nodes communicate with each
other, and all MySQL servers connect to all data nodes. Low network latency is criti-
cally important for NDB Cluster.

A word of warning: NDB Cluster is very “cool” technology and definitely worth
some exploration to satisfy your curiosity, but many technical people tend to look
for excuses to use it and attempt to apply it to needs for which it’s not suitable. In
our experience, even after studying it carefully, many people don’t really learn what
this engine is useful for and how it works until they’ve installed it and used it for a
while. This commonly results in much wasted time, because it is simply not designed
as a general-purpose storage engine.

One common shock is that NDB currently performs joins at the MySQL server level,
not in the storage engine layer. Because all data for NDB must be retrieved over the
network, complex joins are extremely slow. On the other hand, single-table lookups
can be very fast, because multiple data nodes each provide part of the result. This is
just one of many aspects you’ll have to consider and understand thoroughly when
looking at NDB Cluster for a particular application.

22 | Chapter1: MySQL Architecture

NDB Cluster is so large and complex that we won’t discuss it further in this book.
You should seek out a book dedicated to the topic if you are interested in it. We will
say, however, that it’s generally not what you think it is, and for most traditional
applications, it is not the answer.

The Falcon Engine

Jim Starkey, a database pioneer whose earlier inventions include Interbase, MVCC,
and the BLOB column type, designed the Falcon engine. MySQL AB acquired the Fal-
con technology in 2006, and Jim currently works for MySQL AB.

Falcon is designed for today’s hardware—specifically, for servers with multiple 64-
bit processors and plenty of memory—but it can also operate in more modest envi-
ronments. Falcon uses MVCC and tries to keep running transactions entirely in
memory. This makes rollbacks and recovery operations extremely fast.

Falcon is unfinished at the time of this writing (for example, it doesn’t yet synchro-
nize its commits with the binary log), so we can’t write about it with much author-
ity. Even the initial benchmarks we’ve done with it will probably be outdated when
it’s ready for general use. It appears to have good potential for many online applica-
tions, but we’ll know more about it as time passes.

The solidDB Engine

The solidDB engine, developed by Solid Information Technology (http://www.
soliddb.com), is a transactional engine that uses MVCC. It supports both pessimistic
and optimistic concurrency control, which no other engine currently does. solidDB
for MySQL includes full foreign key support. It is similar to InnoDB in many ways,
such as its use of clustered indexes. solidDB for MySQL includes an online backup
capability at no charge.

The solidDB for MySQL product is a complete package that consists of the solidDB
storage engine, the MyISAM storage engine, and MySQL server. The “glue” between
the solidDB storage engine and the MySQL server was introduced in late 2006. How-
ever, the underlying technology and code have matured over the company’s 15-year
history. Solid certifies and supports the entire product. It is licensed under the GPL
and offered commercially under a dual-licensing model that is identical to the
MySQL server’s.

The PBXT (Primebase XT) Engine

The PBXT engine, developed by Paul McCullagh of SNAP Innovation GmbH in
Hamburg, Germany (http://www.primebase.com), is a transactional storage engine
with a unique design. One of its distinguishing characteristics is how it uses its trans-
action logs and data files to avoid write-ahead logging, which reduces much of the

MySQL’s Storage Engines | 23

http://www.soliddb.com
http://www.soliddb.com
http://www.primebase.com

overhead of transaction commits. This architecture gives PBXT the potential to deal
with very high write concurrency, and tests have already shown that it can be faster
than InnoDB for certain operations. PBXT uses MVCC and supports foreign key
constraints, but it does not use clustered indexes.

PBXT is a fairly new engine, and it will need to prove itself further in production
environments. For example, its implementation of truly durable transactions was
completed only recently, while we were writing this book.

As an extension to PBXT, SNAP Innovation is working on a scalable “blob stream-
ing” infrastructure (http://www.blobstreaming.org). It is designed to store and retrieve
large chunks of binary data efficiently.

The Maria Storage Engine

Maria is a new storage engine being developed by some of MySQL’s top engineers,
including Michael Widenius, who created MySQL. The initial 1.0 release includes
only some of its planned features.

The goal is to use Maria as a replacement for MyISAM, which is currently MySQL’s
default storage engine, and which the server uses internally for tasks such as privi-
lege tables and temporary tables created while executing queries. Here are some
highlights from the roadmap:

* The option of either transactional or nontransactional storage, on a per-table
basis

* Crash recovery, even when a table is running in nontransactional mode
* Row-level locking and MVCC
* Better BLOB handling

Other Storage Engines

Various third parties offer other (sometimes proprietary) engines, and there are a
myriad of special-purpose and experimental engines out there (for example, an
engine for querying web services). Some of these engines are developed informally,
perhaps by just one or two engineers. This is because it’s relatively easy to create a
storage engine for MySQL. However, most such engines aren’t widely publicized, in
part because of their limited applicability. We’ll leave you to explore these offerings
on your own.

Selecting the Right Engine

When designing MySQL-based applications, you should decide which storage engine
to use for storing your data. If you don’t think about this during the design phase,
you will likely face complications later in the process. You might find that the default

24 | Chapter1: MySQL Architecture

http://www.blobstreaming.org

engine doesn’t provide a feature you need, such as transactions, or maybe the mix of
read and write queries your application generates will require more granular locking
than MyISAM’s table locks.

Because you can choose storage engines on a table-by-table basis, you’ll need a clear
idea of how each table will be used and the data it will store. It also helps to have a
good understanding of the application as a whole and its potential for growth.
Armed with this information, you can begin to make good choices about which stor-
age engines can do the job.

N
It’s not necessarily a good idea to use different storage engines for dif-

.‘s ferent tables. If you can get away with it, it will usually make your life
.0 ® .. .
112, a lot easier if you choose one storage engine for all your tables.

Considerations

Although many factors can affect your decision about which storage engine(s) to use,
it usually boils down to a few primary considerations. Here are the main elements
you should take into account:

Transactions
If your application requires transactions, InnoDB is the most stable, well-
integrated, proven choice at the time of this writing. However, we expect to see
the up-and-coming transactional engines become strong contenders as time
passes.

MyISAM is a good choice if a task doesn’t require transactions and issues prima-
rily either SELECT or INSERT queries. Sometimes specific components of an appli-
cation (such as logging) fall into this category.

Concurrency
How best to satisfy your concurrency requirements depends on your workload.
If you just need to insert and read concurrently, believe it or not, MyISAM is a
fine choice! If you need to allow a mixture of operations to run concurrently
without interfering with each other, one of the engines with row-level locking
should work well.

Backups
The need to perform regular backups may also influence your table choices. If
your server can be shut down at regular intervals for backups, the storage
engines are equally easy to deal with. However, if you need to perform online
backups in one form or another, the choices become less clear. Chapter 11 deals
with this topic in more detail.

Also bear in mind that using multiple storage engines increases the complexity of
backups and server tuning.

MySQL’s Storage Engines | 25

Crash recovery
If you have a lot of data, you should seriously consider how long it will take to
recover from a crash. MyISAM tables generally become corrupt more easily and
take much longer to recover than InnoDB tables, for example. In fact, this is one
of the most important reasons why a lot of people use InnoDB when they don’t
need transactions.

Special features

Finally, you sometimes find that an application relies on particular features or
optimizations that only some of MySQL’s storage engines provide. For example,
a lot of applications rely on clustered index optimizations. At the moment, that
limits you to InnoDB and solidDB. On the other hand, only MyISAM supports
full-text search inside MySQL. If a storage engine meets one or more critical
requirements, but not others, you need to either compromise or find a clever
design solution. You can often get what you need from a storage engine that
seemingly doesn’t support your requirements.

You don’t need to decide right now. There’s a lot of material on each storage
engine’s strengths and weaknesses in the rest of the book, and lots of architecture
and design tips as well. In general, there are probably more options than you realize
yet, and it might help to come back to this question after reading more.

Practical Examples

These issues may seem rather abstract without some sort of real-world context, so
let’s consider some common database applications. We’ll look at a variety of tables
and determine which engine best matches with each table’s needs. We give a sum-
mary of the options in the next section.

Logging

Suppose you want to use MySQL to log a record of every telephone call from a cen-
tral telephone switch in real time. Or maybe you’ve installed mod_log_sql for
Apache, so you can log all visits to your web site directly in a table. In such an appli-
cation, speed is probably the most important goal; you don’t want the database to be
the bottleneck. The MyISAM and Archive storage engines would work very well
because they have very low overhead and can insert thousands of records per sec-
ond. The PBXT storage engine is also likely to be particularly suitable for logging
purposes.

Things will get interesting, however, if you decide it’s time to start running reports to
summarize the data you’ve logged. Depending on the queries you use, there’s a good
chance that gathering data for the report will significantly slow the process of insert-
ing records. What can you do?

26 | Chapter1: MySQL Architecture

One solution is to use MySQL’s built-in replication feature to clone the data onto a
second (slave) server, and then run your time- and CPU-intensive queries against the
data on the slave. This leaves the master free to insert records and lets you run any
query you want on the slave without worrying about how it might affect the real-
time logging.

You can also run queries at times of low load, but don’t rely on this strategy continu-
ing to work as your application grows.

Another option is to use a Merge table. Rather than always logging to the same table,
adjust the application to log to a table that contains the year and name or number of
the month in its name, such as web_logs 2008 01 or web_logs 2008 jan. Then define
a Merge table that contains the data you’d like to summarize and use it in your que-
ries. If you need to summarize data daily or weekly, the same strategy works; you
just need to create tables with more specific names, such as web_logs 2008 01 01.
While you’re busy running queries against tables that are no longer being written to,
your application can log records to its current table uninterrupted.

Read-only or read-mostly tables

Tables that contain data used to construct a catalog or listing of some sort (jobs, auc-
tions, real estate, etc.) are usually read from far more often than they are written to.
This makes them good candidates for MyISAM—if you don’t mind what happens
when MyISAM crashes. Don’t underestimate how important this is; a lot of users
don’t really understand how risky it is to use a storage engine that doesn’t even try
very hard to get their data written to disk.

It’s an excellent idea to run a realistic load simulation on a test server

as and then literally pull the power plug. The firsthand experience of
& - - . -

11 recovering from a crash is priceless. It saves nasty surprises later.

Don’t just believe the common “MyISAM is faster than InnoDB” folk wisdom. It is
not categorically true. We can name dozens of situations where InnoDB leaves
MyISAM in the dust, especially for applications where clustered indexes are useful or
where the data fits in memory. As you read the rest of this book, you’ll get a sense of
which factors influence a storage engine’s performance (data size, number of 1/0
operations required, primary keys versus secondary indexes, etc.), and which of them
matter to your application.

Order processing

When you deal with any sort of order processing, transactions are all but required.
Half-completed orders aren’t going to endear customers to your service. Another
important consideration is whether the engine needs to support foreign key

MySQL’s Storage Engines | 27

constraints. At the time of this writing, InnoDB is likely to be your best bet for order-
processing applications, though any of the transactional storage engines is a candidate.

Stock quotes

If you’re collecting stock quotes for your own analysis, MyISAM works great, with
the usual caveats. However, if you’re running a high-traffic web service that has a
real-time quote feed and thousands of users, a query should never have to wait.
Many clients could be trying to read and write to the table simultaneously, so row-
level locking or a design that minimizes updates is the way to go.

Bulletin boards and threaded discussion forums

Threaded discussions are an interesting problem for MySQL users. There are hun-
dreds of freely available PHP and Perl-based systems that provide threaded discus-
sions. Many of them aren’t written with database efficiency in mind, so they tend to
run a lot of queries for each request they serve. Some were written to be database
independent, so their queries do not take advantage of the features of any one data-
base system. They also tend to update counters and compile usage statistics about
the various discussions. Many of the systems also use a few monolithic tables to store
all their data. As a result, a few central tables become the focus of heavy read and
write activity, and the locks required to enforce consistency become a substantial
source of contention.

Despite their design shortcomings, most of the systems work well for small and
medium loads. However, if a web site grows large enough and generates significant
traffic, it may become very slow. The obvious solution is to switch to a different stor-
age engine that can handle the heavy read/write volume, but users who attempt this
are sometimes surprised to find that the systems run even more slowly than they did
before!

What these users don’t realize is that the system is using a particular query, nor-
mally something like this:

mysql> SELECT COUNT(*) FROM table;

The problem is that not all engines can run that query quickly: MyISAM can, but
other engines may not. There are similar examples for every engine. Chapter 2 will
help you keep such a situation from catching you by surprise and show you how to
find and fix the problems if it does.

CD-ROM applications

If you ever need to distribute a CD-ROM- or DVD-ROM-based application that uses
MySQL data files, consider using MyISAM or compressed MyISAM tables, which
can easily be isolated and copied to other media. Compressed MyISAM tables use far
less space than uncompressed ones, but they are read-only. This can be problematic

28 | Chapter1: MySQL Architecture

in certain applications, but because the data is going to be on read-only media any-
way, there’s little reason not to use compressed tables for this particular task.

Storage Engine Summary

Table 1-3 summarizes the transaction- and locking-related traits of MySQL’s most
popular storage engines. The MySQL version column shows the minimum MySQL
version you’ll need to use the engine, though for some engines and MySQL versions
you may have to compile your own server. The word “All” in this column indicates
all versions since MySQL 3.23.

Table 1-3. MySQL storage engine summary

Storage engine
MyISAM

MyISAM Merge

Memory (HEAP)

InnoDB
Falcon

Archive

v

Blackhole
Federated
NDB Cluster
PBXT
solidDB

Maria (planned)

MySQL version
Al

Al

Al

Al
6.0

41

41

41
50
50
5.0
5.0

6.x

Transactions
No

No

No

Yes

Yes

Yes

No

Yes

N/A

Yes

Yes

Yes

Yes

Lock granularity

Table with con-
current inserts

Table with con-
current inserts

Table

Row-level with
MVCC

Row-level with
MVCC

Row-level with
MVCC

Table

Row-level with
MvCC

N/A

Row-level

Row-level with
MVCC

Row-level with
MvCC

Row-level with
MvCC

Key
applications
SELECT,

INSERT, bulk
loading

Segmented
archiving, data
warehousing
Intermediate cal-
culations, static
lookup data

Transactional
processing

Transactional
processing

Logging, aggre-
gate analysis

Logging, bulk
loading of exter-
nal data

Logged or repli-
cated archiving

Distributed data
sources

High availability
Transactional
processing,
logging
Transactional
processing

MylISAM
replacement

Counter-
indications

Mixed read/write
workload

Many global
lookups

Large datasets,
persistent
storage

None
None

Random access
needs, updates,
deletes

Random access
needs, indexing

Any but the
intended use

Any but the
intended use

Most typical uses

Need for clus-
tered indexes

None

None

MySQL’s Storage Engines | 29

Table Conversions

There are several ways to convert a table from one storage engine to another, each
with advantages and disadvantages. In the following sections, we cover three of the
most common ways.

ALTER TABLE

The easiest way to move a table from one engine to another is with an ALTER TABLE
statement. The following command converts mytable to Falcon:

mysql> ALTER TABLE mytable ENGINE = Falcon;

This syntax works for all storage engines, but there’s a catch: it can take a lot of time.
MySQL will perform a row-by-row copy of your old table into a new table. During
that time, you’ll probably be using all of the server’s disk I/O capacity, and the origi-
nal table will be read-locked while the conversion runs. So, take care before trying
this technique on a busy table. Instead, you can use one of the methods discussed
next, which involve making a copy of the table first.

When you convert from one storage engine to another, any storage engine-specific
features are lost. For example, if you convert an InnoDB table to MyISAM and back
again, you will lose any foreign keys originally defined on the InnoDB table.

Dump and import

To gain more control over the conversion process, you might choose to first dump
the table to a text file using the mysqldump utility. Once you’ve dumped the table,
you can simply edit the dump file to adjust the CREATE TABLE statement it contains. Be
sure to change the table name as well as its type, because you can’t have two tables
with the same name in the same database even if they are of different types—and
mysqldump defaults to writing a DROP TABLE command before the CREATE TABLE, so you
might lose your data if you are not careful!

See Chapter 11 for more advice on dumping and reloading data efficiently.

CREATE and SELECT

The third conversion technique is a compromise between the first mechanism’s
speed and the safety of the second. Rather than dumping the entire table or convert-
ing it all at once, create the new table and use MySQL’s INSERT ... SELECT syntax to
populate it, as follows:

mysql> CREATE TABLE innodb_table LIKE myisam_table;

mysql> ALTER TABLE innodb_table ENGINE=InnoDB;
mysql> INSERT INTO innodb_table SELECT * FROM myisam_table;

30 | Chapter1: MySQL Architecture

That works well if you don’t have much data, but if you do, it’s often more efficient
to populate the table incrementally, committing the transaction between each chunk
so the undo logs don’t grow huge. Assuming that id is the primary key, run this
query repeatedly (using larger values of x and y each time) until you’ve copied all the
data to the new table:

mysql> START TRANSACTION;

mysql> INSERT INTO innodb_table SELECT * FROM myisam_table

-> WHERE id BETWEEN x AND y;

mysql> COMMIT;
After doing so, you’ll be left with the original table, which you can drop when you’re
done with it, and the new table, which is now fully populated. Be careful to lock the
original table if needed to prevent getting an inconsistent copy of the data!

MySQL's Storage Engines | 31

CHAPTER 2

Finding Bottlenecks: Benchmarking
and Profiling

At some point, you're bound to need more performance from MySQL. But what
should you try to improve? A particular query? Your schema? Your hardware? The
only way to know is to measure what your system is doing, and test its performance
under various conditions. That’s why we put this chapter early in the book.

The best strategy is to find and strengthen the weakest link in your application’s
chain of components. This is especially useful if you don’t know what prevents bet-
ter performance—or what will prevent better performance in the future.

Benchmarking and profiling are two essential practices for finding bottlenecks. They
are related, but they’re not the same. A benchmark measures your system’s perfor-
mance. This can help determine a system’s capacity, show you which changes mat-
ter and which don’t, or show how your application performs with different data.

In contrast, profiling helps you find where your application spends the most time or
consumes the most resources. In other words, benchmarking answers the question
“How well does this perform?” and profiling answers the question “Why does it per-
form the way it does?”

We've arranged this chapter in two parts, the first about benchmarking and the sec-
ond about profiling. We begin with a discussion of reasons and strategies for bench-
marking, then move on to specific benchmarking tactics. We show you how to plan
and design benchmarks, design for accurate results, run benchmarks, and analyze
the results. We end the first part with a look at benchmarking tools and examples of
how to use several of them.

The rest of the chapter shows how to profile both applications and MySQL. We
show detailed examples of real-life profiling code we’ve used in production to help
analyze application performance. We also show you how to log MySQL’s queries,
analyze the logs, and use MySQL’s status counters and other tools to see what
MySQL and your queries are doing.

32

Why Benchmark?

Many medium to large MySQL deployments have staff dedicated to benchmarking.
However, every developer and DBA should be familiar with basic benchmarking
principles and practices, because they’re broadly useful. Here are some things bench-
marks can help you do:

Measure how your application currently performs. If you don’t know how fast it
currently runs, you can’t be sure any changes you make are helpful. You can also
use historical benchmark results to diagnose problems you didn’t foresee.

Validate your system’s scalability. You can use a benchmark to simulate a much
higher load than your production systems handle, such as a thousand-fold
increase in the number of users.

Plan for growth. Benchmarks help you estimate how much hardware, network
capacity, and other resources you’ll need for your projected future load. This can
help reduce risk during upgrades or major application changes.

Test your application’s ability to tolerate a changing environment. For example,
you can find out how your application performs during a sporadic peak in con-
currency or with a different configuration of servers, or you can see how it han-
dles a different data distribution.

Test different hardware, software, and operating system configurations. Is RAID
5 or RAID 10 better for your system? How does random write performance
change when you switch from ATA disks to SAN storage? Does the 2.4 Linux
kernel scale better than the 2.6 series? Does a MySQL upgrade help perfor-
mance? What about using a different storage engine for your data? You can
answer these questions with special benchmarks.

You can also use benchmarks for other purposes, such as to create a unit test suite
for your application, but we focus only on performance-related aspects here.

Benchmarking Strategies

There are two primary benchmarking strategies: you can benchmark the application
as a whole, or isolate MySQL. These two strategies are known as full-stack and
single-component benchmarking, respectively. There are several reasons to measure
the application as a whole instead of just MySQL:

You’re testing the entire application, including the web server, the application
code, and the database. This is useful because you don’t care about MySQL’s
performance in particular; you care about the whole application.

MySQL is not always the application bottleneck, and a full-stack benchmark can
reveal this.

Benchmarking Strategies | 33

* Only by testing the full application can you see how each part’s cache behaves.

* Benchmarks are good only to the extent that they reflect your actual applica-
tion’s behavior, which is hard to do when you’re testing only part of it.

On the other hand, application benchmarks can be hard to create and even harder to
set up correctly. If you design the benchmark badly, you can end up making bad
decisions, because the results don’t reflect reality.

Sometimes, however, you don’t really want to know about the entire application.
You may just need a MySQL benchmark, at least initially. Such a benchmark is use-

ful if:

* You want to compare different schemas or queries.
* You want to benchmark a specific problem you see in the application.

* You want to avoid a long benchmark in favor of a shorter one that gives you a
faster “cycle time” for making and measuring changes.

It’s also useful to benchmark MySQL when you can repeat your application’s que-
ries against a real dataset. The data itself and the dataset’s size both need to be realis-
tic. If possible, use a snapshot of actual production data.

Unfortunately, setting up a realistic benchmark can be complicated and time-
consuming, and if you can get a copy of the production dataset, count yourself lucky.
Of course, this might be impossible—for example, you might be developing a new
application that has few users and little data. If you want to know how it’ll perform
when it grows very large, you’ll have no option but to simulate the larger applica-
tion’s data and workload.

What to Measure

You need to identify your goals before you start benchmarking—indeed, before you
even design your benchmarks. Your goals will determine the tools and techniques
you’ll use to get accurate, meaningful results. Frame your goals as a questions, such
as “Is this CPU better than that one?” or “Do the new indexes work better than the
current ones?”

It might not be obvious, but you sometimes need different approaches to measure
different things. For example, latency and throughput might require different
benchmarks.

Consider some of the following measurements and how they fit your performance
goals:

Transactions per time unit
This is one of the all-time classics for benchmarking database applications. Stan-
dardized benchmarks such as TPC-C (see http://www.tpc.org) are widely quoted,

34 | Chapter2: Finding Bottlenecks: Benchmarking and Profiling

http://www.tpc.org

and many database vendors work very hard to do well on them. These bench-
marks measure online transaction processing (OLTP) performance and are most
suitable for interactive multiuser applications. The usual unit of measurement is
transactions per second.

The term throughput usually means the same thing as transactions (or another
unit of work) per time unit.

Response time or latency
This measures the total time a task requires. Depending on your application, you
might need to measure time in milliseconds, seconds, or minutes. From this you
can derive average, minimum, and maximum response times.

Maximum response time is rarely a useful metric, because the longer the bench-
mark runs, the longer the maximum response time is likely to be. It’s also not at
all repeatable, as it’s likely to vary widely between runs. For this reason, many
people use percentile response times instead. For example, if the 95th percentile
response time is 5 milliseconds, you know that the task finishes in less than 5
milliseconds 95% of the time.

It’s usually helpful to graph the results of these benchmarks, either as lines (for
example, the average and 95th percentile) or as a scatter plot so you can see how
the results are distributed. These graphs help show how the benchmarks will
behave in the long run.

Suppose your system does a checkpoint for one minute every hour. During the
checkpoint, the system stalls and no transactions complete. The 95th percentile
response time will not show the spikes, so the results will hide the problem.
However, a graph will show periodic spikes in the response time. Figure 2-1
illustrates this.

Figure 2-1 shows the number of transactions per minute (NOTPM). This line
shows significant spikes, which the overall average (the dotted line) doesn’t
show at all. The first spike is because the server’s caches are cold. The other
spikes show when the server spends time intensively flushing dirty pages to the
disk. Without the graph, these aberrations are hard to see.

Scalability
Scalability measurements are useful for systems that need to maintain perfor-
mance under a changing workload.

“Performance under a changing workload” is a fairly abstract concept. Perfor-
mance is typically measured by a metric such as throughput or response time,
and the workload may vary along with changes in database size, number of con-
current connections, or hardware.

Scalability measurements are good for capacity planning, because they can show
weaknesses in your application that other benchmark strategies won’t show. For

Benchmarking Strategies | 35

12000

10000

8000

6000

NOTPM

4000

2000

0 LIRS A A A B A B

| B i B B B b | |
123 456 7 8 9101 121314151617 18 19 20 21 22 23 24 25 26 27 28 29 30
Time, minutes

Figure 2-1. Results from a 30-minute dbt2 benchmark run

example, if you design your system to perform well on a response-time bench-
mark with a single connection (a poor benchmark strategy), your application
might perform badly when there’s any degree of concurrency. A benchmark that
looks for consistent response times under an increasing number of connections
would show this design flaw.

Some activities, such as batch jobs to create summary tables from granular data,
just need fast response times, period. It’s fine to benchmark them for pure
response time, but remember to think about how they’ll interact with other
activities. Batch jobs can cause interactive queries to suffer, and vice versa.

Concurrency

Concurrency is an important but frequently misused and misunderstood metric.
For example, it’s popular to say how many users are browsing a web site at the
same time. However, HTTP is stateless and most users are simply reading what’s
displayed in their browsers, so this doesn’t translate into concurrency on the
web server. Likewise, concurrency on the web server doesn’t necessarily trans-
late to the database server; the only thing it directly relates to is how much data
your session storage mechanism must be able to handle. A more accurate mea-
surement of concurrency on the web server is how many requests per second the
users generate at the peak time.

You can measure concurrency at different places in the application, too. The
higher concurrency on the web server may cause higher concurrency at the data-
base level, but the language and toolset will influence this. For example, Java
with a connection pool will probably cause a lower number of concurrent con-
nections to the MySQL server than PHP with persistent connections.

36

| Chapter2: Finding Bottlenecks: Benchmarking and Profiling

More important still is the number of connections that are running queries at a
given time. A well-designed application might have hundreds of connections
open to the MySQL server, but only a fraction of these should be running que-
ries at the same time. Thus, a web site with “50,000 users at a time” might
require only 10 or 15 simultaneously running queries on the MySQL server!

In other words, what you should really care about benchmarking is the working
concurrency, or the number of threads or connections doing work simulta-
neously. Measure whether performance drops much when the concurrency
increases; if it does, your application probably can’t handle spikes in load.

You need to either make sure that performance doesn’t drop badly, or design the
application so it doesn’t create high concurrency in the parts of the application
that can’t handle it. You generally want to limit concurrency at the MySQL
server, with designs such as application queuing. See Chapter 10 for more on
this topic.

Concurrency is completely different from response time and scalability: it’s not a
result, but rather a property of how you set up the benchmark. Instead of mea-
suring the concurrency your application achieves, you measure the application’s
performance at various levels of concurrency.

In the final analysis, you should benchmark whatever is important to your users.
Benchmarks measure performance, but “performance” means different things to dif-
ferent people. Gather some requirements (formally or informally) about how the sys-
tem should scale, what acceptable response times are, what kind of concurrency you
expect, and so on. Then try to design your benchmarks to account for all the require-
ments, without getting tunnel vision and focusing on some things to the exclusion of
others.

Benchmarking Tactics

With the general behind us, let’s move on to the specifics of how to design and exe-
cute benchmarks. Before we discuss how to do benchmarks well, though, let’s look
at some common mistakes that can lead to unusable or inaccurate results:

* Using a subset of the real data size, such as using only one gigabyte of data when
the application will need to handle hundreds of gigabytes, or using the current
dataset when you plan for the application to grow much larger.

* Using incorrectly distributed data, such as uniformly distributed data when the
real system’s data will have “hot spots.” (Randomly generated data is often unre-
alistically distributed.)

* Using unrealistically distributed parameters, such as pretending that all user pro-
files are equally likely to be viewed.

* Using a single-user scenario for a multiuser application.

Benchmarking Tactics | 37

* Benchmarking a distributed application on a single server.

* Failing to match real user behavior, such as “think time” on a web page. Real
users request a page and then read it; they don’t click on links one after another
without pausing.

* Running identical queries in a loop. Real queries aren’t identical, so they cause
cache misses. Identical queries will be fully or partially cached at some level.

* Failing to check for errors. If a benchmark’s results don’t make sense—e.g., if a
slow operation suddenly completes very quickly—check for errors. You might
just be benchmarking how quickly MySQL can detect a syntax error in the SQL
query! Always check error logs after benchmarks, as a matter of principle.

* Ignoring how the system performs when it’s not warmed up, such as right after a
restart. Sometimes you need to know how long it’ll take your server to reach
capacity after a restart, so you’ll want to look specifically at the warm-up period.
Conversely, if you intend to study normal performance, you’ll need to be aware
that if you benchmark just after a restart many caches will be cold, and the
benchmark results won’t reflect the results you’ll get under load when the caches
are warmed up.

* Using default server settings. See Chapter 6 for more on optimizing server
settings.

Merely avoiding these mistakes will take you a long way toward improving the qual-
ity of your results.

All other things being equal, you should typically strive to make the tests as realistic
as you can. Sometimes, though, it makes sense to use a slightly unrealistic bench-
mark. For example, say your application is on a different host from the database
server. It would be more realistic to run the benchmarks in the same configuration,
but doing so would add more variables, such as how fast and how heavily loaded the
network is. Benchmarking on a single node is usually easier, and, in some cases, it’s
accurate enough. You’ll have to use your judgment as to when this is appropriate.

Designing and Planning a Benchmark

The first step in planning a benchmark is to identify the problem and the goal. Next,
decide whether to use a standard benchmark or design your own.

If you use a standard benchmark, be sure to choose one that matches your needs. For
example, don’t use TCP to benchmark an e-commerce system. In TCP’s own words,
TCP “illustrates decision support systems that examine large volumes of data.”
Therefore, it’s not an appropriate benchmark for an OLTP system.

Designing your own benchmark is a complicated and iterative process. To get
started, take a snapshot of your production data set. Make sure you can restore this
data set for subsequent runs.

38 | Chapter2: Finding Bottlenecks: Benchmarking and Profiling

Next, you need queries to run against the data. You can make a unit test suite into a
rudimentary benchmark just by running it many times, but that’s unlikely to match
how you really use the database. A better approach is to log all queries on your pro-
duction system during a representative time frame, such as an hour during peak load
or an entire day. If you log queries during a small time frame, you may need to
choose several time frames. This will let you cover all system activities, such as
weekly reporting queries or batch jobs you schedule during off-peak times.”

You can log queries at different levels. For example, you can log the HTTP requests
on a web server if you need a full-stack benchmark. You can also enable MySQL’s
query log, but if you replay a query log, be sure to recreate the separate threads
instead of just replaying each query linearly. It’s also important to create a separate
thread for each connection in the log, instead of shuffling queries among threads.
The query log shows which connection ran each query.

Even if you don’t build your own benchmark, you should write down your bench-
marking plan. You’re going to run the benchmark many times over, and you need to
be able to reproduce it exactly. Plan for the future, too. You may not be the one who
runs the benchmark the next time around, and even if you are, you may not remem-
ber exactly how you ran it the first time. Your plan should include the test data, the
steps taken to set up the system, and the warm-up plan.

Design some method of documenting parameters and results, and document each
run carefully. Your documentation method might be as simple as a spreadsheet or
notebook, or as complex as a custom-designed database (keep in mind that you’ll
probably want to write some scripts to help analyze the results, so the easier it is to
process the results without opening spreadsheets and text files, the better).

You may find it useful to make a benchmark directory with subdirectories for each
run’s results. You can then place the results, configuration files, and notes for each
run in the appropriate subdirectory. If your benchmark lets you measure more than
you think you’re interested in, record the extra data anyway. It’s much better to have
unneeded data than to miss important data, and you might find the extra data useful
in the future. Try to record as much additional information as you can during the
benchmarks, such as CPU usage, disk I/O, and network traffic statistics; counters
from SHOW GLOBAL STATUS; and so on.

Getting Accurate Results

The best way to get accurate results is to design your benchmark to answer the ques-
tion you want to answer. Have you chosen the right benchmark? Are you capturing
the data you need to answer the question? Are you benchmarking by the wrong crite-

* All this is provided that you want a perfect benchmark, of course. Real life usually gets in the way.

Benchmarking Tactics | 39

ria? For example, are you running a CPU-bound benchmark to predict the perfor-
mance of an application you know will be I/O-bound?

Next, make sure your benchmark results will be repeatable. Try to ensure that the
system is in the same state at the beginning of each run. If the benchmark is impor-
tant, you should reboot between runs. If you need to benchmark on a warmed-up
server, which is the norm, you should also make sure that your warm-up is long
enough and that it’s repeatable. If the warm-up consists of random queries, for
example, your benchmark results will not be repeatable.

If the benchmark changes data or schema, reset it with a fresh snapshot between
runs. Inserting into a table with a thousand rows will not give the same results as
inserting into a table with a million rows! The data fragmentation and layout on disk
can also make your results nonrepeatable. One way to make sure the physical layout
is close to the same is to do a quick format and file copy of a partition.

Watch out for external load, profiling and monitoring systems, verbose logging, peri-
odic jobs, and other factors that can skew your results. A typical surprise is a cron
job that starts in the middle of a benchmark run, or a Patrol Read cycle or scheduled
consistency check on your RAID card. Make sure all the resources the benchmark
needs are dedicated to it while it runs. If something else is consuming network
capacity, or if the benchmark runs on a SAN that’s shared with other servers, your
results might not be accurate.

Try to change as few parameters as possible each time you run a benchmark. This is
called “isolating the variable” in science. If you must change several things at once,
you risk missing something. Parameters can also be dependent on one another, so
sometimes you can’t change them independently. Sometimes you may not even
know they are related, which adds to the complexity.

It generally helps to change the benchmark parameters iteratively, rather than mak-
ing dramatic changes between runs. For example, use techniques such as divide-and-
conquer (halving the differences between runs) to hone in on a good value for a
server setting.

We see a lot of benchmarks that try to predict performance after a migration, such as
migrating from Oracle to MySQL. These are often troublesome, because MySQL
performs well on completely different types of queries than Oracle. If you want to
know how well an application built on Oracle will run after migrating it to MySQL,
you usually need to redesign the schema and queries for MySQL. (In some cases,
such as when you’re building a cross-platform application, you might want to know
how the same queries will run on both platforms, but that’s unusual.)

* Sometimes, this doesn’t really matter. For example, if you’re thinking about migrating from a Solaris system
on SPARC hardware to GNU/Linux on x86, there’s no point in benchmarking Solaris on x86 as an interme-
diate step!

40 | Chapter2: Finding Bottlenecks: Benchmarking and Profiling

You can’t get meaningful results from the default MySQL configuration settings
either, because they’re tuned for tiny applications that consume very little memory.

Finally, if you get a strange result, don’t simply dismiss it as a bad data point. Investi-
gate and try to find out what happened. You might find a valuable result, a huge
problem, or a flaw in your benchmark design.

Running the Benchmark and Analyzing Results

Once you’ve prepared everything, you're ready to run the benchmark and begin
gathering and analyzing data.

It’s usually a good idea to automate the benchmark runs. Doing so will improve your
results and their accuracy, because it will prevent you from forgetting steps or acci-
dentally doing things differently on different runs. It will also help you document
how to run the benchmark.

Any automation method will do; for example, a Makefile or a set of custom scripts.
Choose whatever scripting language makes sense for you: shell, PHP, Perl, etc. Try to
automate as much of the process as you can, including loading the data, warming up
the system, running the benchmark, and recording the results.

R

3y

When you have it set up correctly, benchmarking can be a one-step
process. If you’re just running a one-off benchmark to check some-
% w

1k thing quickly, you might not want to automate it.

You’ll usually run a benchmark several times. Exactly how many runs you need
depends on your scoring methodology and how important the results are. If you
need greater certainty, you need to run the benchmark more times. Common prac-
tices are to look for the best result, average all the results, or just run the benchmark
five times and average the three best results. You can be as precise as you want. You
may want to apply statistical methods to your results, find the confidence interval,
and so on, but you often don’t need that level of certainty.” If it answers your ques-
tion to your satisfaction, you can simply run the benchmark several times and see
how much the results vary. If they vary widely, either run the benchmark more times
or run it longer, which usually reduces variance.

Once you have your results, you need to analyze them—that is, turn the numbers
into knowledge. The goal is to answer the question that frames the benchmark. Ide-
ally, you’d like to be able to make a statement such as “Upgrading to four CPUs
increases throughput by 50% with the same latency” or “The indexes made the que-
ries faster.”

* If you really need scientific, rigorous results, you should read a good book on how to design and execute
controlled tests, as the subject is much larger than we can cover here.

Benchmarking Tactics | 41

How you “crunch the numbers” depends on how you collect the results. You should
probably write scripts to analyze the results, not only to help reduce the amount of
work required, but for the same reasons you should automate the benchmark itself:
repeatability and documentation.

Benchmarking Tools

You don’t have to roll your own benchmarking system, and in fact you shouldn’t
unless there’s a good reason why you can’t use one of the available ones. There are a
wide variety of tools ready for you to use. We show you some of them in the follow-
ing sections.

Full-Stack Tools

Recall that there are two types of benchmarks: full-stack and single-component. Not
surprisingly, there are tools to benchmark full applications, and there are tools to
stress-test MySQL and other components in isolation. Testing the full stack is usu-
ally a better way to get a clear picture of your system’s performance. Existing full-
stack tools include:

ab
ab is a well-known Apache HTTP server benchmarking tool. It shows how many
requests per second your HTTP server is capable of serving. If you are bench-
marking a web application, this translates to how many requests per second the
entire application can satisfy. It’s a very simple tool, but its usefulness is also lim-
ited because it just hammers one URL as fast as it can. More information on ab
is available at http://httpd.apache.org/docs/2.0/programs/ab.html.

http_load
This tool is similar in concept to ab; it is also designed to load a web server, but
it’s more flexible. You can create an input file with many different URLs, and
http_load will choose from among them at random. You can also instruct it to
issue requests at a timed rate, instead of just running them as fast as it can. See
http://www.acme.com/software/http_load/ for more information.

JMeter
JMeter is a Java application that can load another application and measure its
performance. It was designed for testing web applications, but you can also use
it to test FTP servers and issue queries to a database via JDBC.

JMeter is much more complex than ab and http_load. For example, it has fea-
tures that let you simulate real users more flexibly, by controlling such parame-
ters as ramp-up time. It has a graphical user interface with built-in result
graphing, and it offers the ability to record and replay results offline. For more
information, see http://jakarta.apache.org/jmeter/.

42 | Chapter2: Finding Bottlenecks: Benchmarking and Profiling

http://httpd.apache.org/docs/2.0/programs/ab.html
http://www.acme.com/software/http_load/
http://jakarta.apache.org/jmeter/

Single-Component Tools

Here are some useful tools to test the performance of MySQL and the system on
which it runs. We show example benchmarks with some of these tools in the next
section:

mysqlslap

mysqlslap (http://dev.mysql.com/doc/refman/5.1/en/mysqlslap.html) simulates
load on the server and reports timing information. It is part of the MySQL 5.1
server distribution, but it should be possible to run it against MySQL 4.1 and
newer servers. You can specify how many concurrent connections it should use,
and you can give it either a SQL statement on the command line or a file con-
taining SQL statements to run. If you don’t give it statements, it can also auto-
generate SELECT statements by examining the server’s schema.

sysbench

sysbench (http://sysbench.sourceforge.net) is a multithreaded system benchmark-
ing tool. Its goal is to get a sense of system performance, in terms of the factors
important for running a database server. For example, you can measure the per-
formance of file I/O, the OS scheduler, memory allocation and transfer speed,
POSIX threads, and the database server itself. sysbench supports scripting in the
Lua language (http://www.lua.org), which makes it very flexible for testing a vari-
ety of scenarios.

Database Test Suite

The Database Test Suite, designed by The Open-Source Development Labs
(OSDL) and hosted on SourceForge at http://sourceforge.net/projects/osdldbt/, is a
test kit for running benchmarks similar to some industry-standard benchmarks,
such as those published by the Transaction Processing Performance Council
(TPQ). In particular, the dbt2 test tool is a free (but uncertified) implementation
of the TPC-C OLTP test. It supports InnoDB and Falcon; at the time of this writ-
ing, the status of other transactional MySQL storage engines is unknown.

MySQL Benchmark Suite (sql-bench)
MySQL distributes its own benchmark suite with the MySQL server, and you
can use it to benchmark several different database servers. It is single-threaded
and measures how quickly the server executes queries. The results show which
types of operations the server performs well.

The main benefit of this benchmark suite is that it contains a lot of predefined
tests that are easy to use, so it makes it easy to compare different storage engines
or configurations. It’s useful as a high-level benchmark, to compare the overall
performance of two servers. You can also run a subset of its tests (for example,
just testing UPDATE performance). The tests are mostly CPU-bound, but there are
short periods that demand a lot of disk 1/0.

Benchmarking Tools | 43

http://dev.mysql.com/doc/refman/5.1/en/mysqlslap.html
http://sysbench.sourceforge.net
http://www.lua.org
http://sourceforge.net/projects/osdldbt/

The biggest disadvantages of this tool are that it’s single-user, it uses a very small
dataset, you can’t test your site-specific data, and its results may vary between
runs. Because it’s single-threaded and completely serial, it will not help you
assess the benefits of multiple CPUs, but it can help you compare single-CPU
servers.

Perl and DBD drivers are required for the database server you wish to bench-
mark. Documentation is available at hitp://dev.mysql.com/doc/en/mysql-
benchmarks.html/.

Super Smack

Super Smack (http://vegan.net/tony/supersmack/) is a benchmarking, stress-
testing, and load-generating tool for MySQL and PostgreSQL. It is a complex,
powerful tool that lets you simulate multiple users, load test data into the data-
base, and populate tables with randomly generated data. Benchmarks are con-
tained in “smack” files, which use a simple language to define clients, tables,
queries, and so on.

Benchmarking Examples

In this section, we show you some examples of actual benchmarks with tools we
mentioned in the preceding sections. We can’t cover each tool exhaustively, but
these examples should help you decide which benchmarks might be useful for your
purposes and get you started using them.

http_load

Let’s start with a simple example of how to use http_load, and use the following
URLs, which we saved to a file called urls.txt:

http://www.mysqglperformanceblog.com/
http://www.mysqglperformanceblog.com/page/2/
http://www.mysqlperformanceblog.com/mysql-patches/
http://www.mysqglperformanceblog.com/mysql-performance-presentations/
http://www.mysqglperformanceblog.com/2006/09/06/slow-query-log-analyzes-tools/

The simplest way to use http_load is to simply fetch the URLs in a loop. The pro-
gram fetches them as fast as it can:

$ http_load -parallel 1 -seconds 10 urls.txt
19 fetches, 1 max parallel, 837929 bytes, in 10.0003 seconds
44101.5 mean bytes/connection
1.89995 fetches/sec, 83790.7 bytes/sec
msecs/connect: 41.6647 mean, 56.156 max, 38.21 min
msecs/first-response: 320.207 mean, 508.958 max, 179.308 min
HTTP response codes:

code 200 - 19

44

Chapter 2: Finding Bottlenecks: Benchmarking and Profiling

http://dev.mysql.com/doc/en/mysql-benchmarks.html/
http://dev.mysql.com/doc/en/mysql-benchmarks.html/
http://vegan.net/tony/supersmack/

MySQL's BENCHMARK() Function

MySQL has a handy BENCHMARK () function that you can use to test execution speeds for
certain types of operations. You use it by specifying a number of times to execute and
an expression to execute. The expression can be any scalar expression, such as a scalar
subquery or a function. This is convenient for testing the relative speed of some oper-

ations, such as seeing whether MD5() is faster than SHA1():

mysql> SET @input := 'hello world';
mysql> SELECT BENCHMARK(1000000, MD5(@input));

B L P TR PP P e +
| BENCHMARK (1000000, MD5(@input)) |
B e e e +
| 0 |
R e e e T +

1 row in set (2.78 sec)
mysql> SELECT BENCHMARK(1000000, SHA1(@input));

B e e e e T +
| BENCHMARK (1000000, SHA1(@input)) |
e L L +
| 0|
R et e +

1 row in set (3.50 sec)

The return value is always 0; you time the execution by looking at how long the client
application reported the query took. In this case, it looks like MD5() is faster. However,
using BENCHMARK() correctly is tricky unless you know what it’s really doing. It simply
measures how fast the server can execute the expression; it does not give any indication
of the parsing and optimization overhead. And unless the expression includes a user
variable, as in our example, the second and subsequent times the server executes the

expression might be cache hits.2

Although it’s handy, we don’t use BENCHMARK() for real benchmarks. It’s too hard to fig-
ure out what it really measures, and it’s too narrowly focused on a small part of the

overall execution process.

a One of the authors made this mistake and found that 10,000 executions of a certain expression ran just as

fast as 1 execution. It was a cache hit. In general, this type of behavior should always make you suspect either

a cache hit or an error.

The results are pretty self-explanatory; they simply show statistics about the
requests. A slightly more complex usage scenario is to fetch the URLs as fast as possi-

ble in a loop, but emulate five concurrent users:

$ http_load -parallel 5 -seconds 10 urls.txt

94 fetches, 5 max parallel, 4.75565e+06 bytes, in 10.0005 seconds
50592 mean bytes/connection

9.39953 fetches/sec, 475541 bytes/sec

msecs/connect: 65.1983 mean, 169.991 max, 38.189 min
msecs/first-response: 245.014 mean, 993.059 max, 99.646 min

Benchmarking Examples

45

HTTP response codes:
code 200 - 94

Alternatively, instead of fetching as fast as possible, we can emulate the load for a
predicted rate of requests (such as five per second):

$ http_load -rate 5 -seconds 10 urls.txt

48 fetches, 4 max parallel, 2.50104e+06 bytes, in 10 seconds

52105 mean bytes/connection

4.8 fetches/sec, 250104 bytes/sec

msecs/connect: 42.5931 mean, 60.462 max, 38.117 min

msecs/first-response: 246.811 mean, 546.203 max, 108.363 min

HTTP response codes:
code 200 - 48

Finally, we emulate even more load, with an incoming rate of 20 requests per sec-
ond. Notice how the connect and response times increase with the higher load:

$ http_load -rate 20 -seconds 10 urls.txt

111 fetches, 89 max parallel, 5.91142e+06 bytes, in 10.0001 seconds

53256.1 mean bytes/connection

11.0998 fetches/sec, 591134 bytes/sec

msecs/connect: 100.384 mean, 211.885 max, 38.214 min

msecs/first-response: 2163.51 mean, 7862.77 max, 933.708 min

HTTP response codes:
code 200 -- 111

sysbench

The sysbench tool can run a variety of benchmarks, which it refers to as “tests.” It
was designed to test not only database performance, but also how well a system is
likely to perform as a database server. We start with some tests that aren’t MySQL-
specific and measure performance for subsystems that will determine the system’s
overall limits. Then we show you how to measure database performance.

The sysbench CPU benchmark

The most obvious subsystem test is the CPU benchmark, which uses 64-bit integers to
calculate prime numbers up to a specified maximum. We run this on two servers,
both running GNU/Linux, and compare the results. Here’s the first server’s hardware:

[server1l ~]$ cat /proc/cpuinfo

model name : AMD Opteron(tm) Processor 246
stepping 11

cpu MHz 1 1992.857

cache size 1 1024 KB

And here’s how to run the benchmark:

[server1l ~]$ sysbench --test=cpu --cpu-max-prime=20000 run
sysbench v0.4.8: multi-threaded system evaluation benchmark

Test execution summary:

46 | Chapter2: Finding Bottlenecks: Benchmarking and Profiling

~

total time: 121.7404s
The second server has a different CPU:

[server2 ~]$ cat /proc/cpuinfo

model name : Intel(R) Xeon(R) CPU 5130 @ 2.00GHz
stepping : 6
cpu MHz * 1995.005

Here’s its benchmark result:

[server1 ~]$ sysbench --test=cpu --cpu-max-prime=20000 run
sysbench v0.4.8: multi-threaded system evaluation benchmark

Test execution summary:
total time: 61.8596s
The result simply indicates the total time required to calculate the primes, which is
very easy to compare. In this case, the second server ran the benchmark about twice
as fast as the first server.

The sysbench file /0 benchmark

The fileio benchmark measures how your system performs under different kinds of
I/O loads. It is very helpful for comparing hard drives, RAID cards, and RAID
modes, and for tweaking the I/O subsystem.

The first stage in running this test is to prepare some files for the benchmark. You
should generate much more data than will fit in memory. If the data fits in memory,
the operating system will cache most of it, and the results will not accurately repre-
sent an I/O-bound workload. We begin by creating a dataset:

$ sysbench --test=fileio --file-total-size=150G prepare
The second step is to run the benchmark. Several options are available to test differ-
ent types of I/O performance:
sequr

Sequential write

seqrewr
Sequential rewrite
seqrd
Sequential read
rndrd
Random read
rndwr
Random write
rndrw
Combined random read/write

Benchmarking Examples | 47

~

The following command runs the random read/write access file I/O benchmark:

$ sysbench --test=fileio --file-total-size=150G --file-test-mode=rndrw
--init-rnd=on --max-time=300 --max-requests=0 run

Here are the results:

sysbench v0.4.8: multi-threaded system evaluation benchmark

Running the test with following options:
Number of threads: 1
Initializing random number generator from timer.

Extra file open flags: 0

128 files, 1.1719Gb each

150Gb total file size

Block size 16Kb

Number of random requests for random IO: 10000
Read/Write ratio for combined random IO test: 1.50
Periodic FSYNC enabled, calling fsync() each 100 requests.
Calling fsync() at the end of test, Enabled.

Using synchronous I/0 mode

Doing random r/w test

Threads started!

Time limit exceeded, exiting...

Done.

Operations performed: 40260 Read, 26840 Write, 85785 Other = 152885 Total
Read 629.06Mb Written 419.38Mb Total transferred 1.0239Gb (3.4948Mb/sec)
223.67 Requests/sec executed

Test execution summary:
total time: 300.0004s
total number of events: 67100
total time taken by event execution: 254.4601
per-request statistics:

min: 0.0000s
avg: 0.0038s
max: 0.5628s
approx. 95 percentile: 0.0099s

Threads fairness:
events (avg/stddev): 67100.0000/0.00
execution time (avg/stddev): 254.4601/0.00
There’s a lot of information in the output. The most interesting numbers for tuning
the I/O subsystem are the number of requests per second and the total throughput.
In this case, the results are 223.67 requests/sec and 3.4948 MB/sec, respectively.
These values provide a good indication of disk performance.

When you’re finished, you can run a cleanup to delete the files sysbench created for
the benchmarks:

$ sysbench --test=fileio --file-total-size=150G cleanup

48 | Chapter2: Finding Bottlenecks: Benchmarking and Profiling

The sysbench OLTP benchmark

The OLTP benchmark emulates a transaction-processing workload. We show an
example with a table that has a million rows. The first step is to prepare a table for

the test:

$ sysbench --test=oltp --oltp-table-size=1000000 --mysql-db=test --mysql-user=root

prepare
sysbench v0.4.8:

No DB drivers specified, using mysql
Creating table 'sbtest'...

multi-threaded system evaluation benchmark

Creating 1000000 records in table 'sbtest'...

That’s all you need to do to prepare the test data. Next, we run the benchmark in
read-only mode for 60 seconds, with 8 concurrent threads:

$ sysbench --test=oltp --oltp-table-size=1000000 --mysql-db=test --mysql-user=root --
max-time=60 --oltp-read-only=on --max-requests=0 --num-threads=8 run

sysbench v0.4.8:

No DB drivers specified, using mysql

multi-threaded system evaluation benchmark

WARNING: Preparing of "BEGIN" is unsupported, using emulation

(last message repeated 7 times)
Running the test with following options:
Number of threads: 8

Doing OLTP test.
Running mixed OLTP test
Doing read-only test

Using Special distribution (12 iterations,

cases)

Using "BEGIN" for starting transactions
Using auto_inc on the id column

Threads started!

Time limit exceeded, exiting...

(last message repeated 7 times)

Done.

OLTP test statistics:

queries performed:

read:

write:

other:

total:
transactions:
deadlocks:
read/write requests:
other operations:

Test execution summary:
total time:
total number of events:
total time taken by event execution:

1 pct of values are returned in 75 pct

179606
0
25658
205264
12829
0
179606
25658

213.07 per sec.)
0.00 per sec.)
2982.92 per sec.)
426.13 per sec.)

—~ o~~~

60.2114s
12829
480.2086

Benchmarking Examples | 49

per-request statistics:

min: 0.0030s
avg: 0.0374s
max: 1.9106s
approx. 95 percentile: 0.1163s

Threads fairness:
events (avg/stddev): 1603.6250/70.66
execution time (avg/stddev): 60.0261/0.06

As before, there’s quite a bit of information in the results. The most interesting parts
are:

* The transaction count

* The rate of transactions per second

* The per-request statistics (minimal, average, maximal, and 95th percentile time)

The thread-fairness statistics, which show how fair the simulated workload was

Other sysbench features

The sysbench tool can run several other system benchmarks that don’t measure a
database server’s performance directly:

memory
Exercises sequential memory reads or writes.

threads
Benchmarks the thread scheduler’s performance. This is especially useful to test
the scheduler’s behavior under high load.

mutex
Measures mutex performance by emulating a situation where all threads run
concurrently most of the time, acquiring mutex locks only briefly. (A mutex is a
data structure that guarantees mutually exclusive access to some resource, pre-
venting concurrent access from causing problems.)

seqwr
Measures sequential write performance. This is very important for testing a sys-
tem’s practical performance limits. It can show how well your RAID controller’s
cache performs and alert you if the results are unusual. For example, if you have
no battery-backed write cache but your disk achieves 3,000 requests per second,
something is wrong, and your data is not safe.

In addition to the benchmark-specific mode parameter (--test), sysbench accepts
some other common parameters, such as --num-threads, --max-requests, and --max-
time. See the documentation for more information on these.

50 | Chapter2: Finding Bottlenecks: Benchmarking and Profiling

dbt2 TPC-C on the Database Test Suite

The Database Test Suite’s dbt2 tool is a free implementation of the TPC-C test. TPC-
C is a specification published by the TPC organization that emulates a complex
online transaction-processing load. It reports its results in transactions per minute
(tpmC), along with the cost of each transaction (Price/tpmC). The results depend
greatly on the hardware, so the published TPC-C results contain detailed specifica-
tions of the servers used in the benchmark.

v
NN

The dbt2 test is not really TPC-C. It’s not certified by TPC, and its
results aren’t directly comparable with TPC-C results.

N
. +
152

Let’s look at a sample of how to set up and run a dbt2 benchmark. We used version
0.37 of dbt2, which is the most recent version we were able to use with MySQL
(newer versions contain fixes that MySQL does not fully support). The following are
the steps we took:

1. Prepare data.

The following command creates data for 10 warehouses in the specified direc-
tory. The warehouses use a total of about 700 MB of space. The amount of space
required will change in proportion to the number of warehouses, so you can
change the -w parameter to create a dataset with the size you need.

src/datagen -w 10 -d /mnt/data/dbt2-w10
warehouses = 10

districts = 10

customers = 3000

items = 100000

orders = 3000

stock = 100000

new_orders = 900

Output directory of data files: /mnt/data/dbt2-w10

Generating data files for 10 warehouse(s)...
Generating item table data...

Finished item table data...

Generating warehouse table data...

Finished warehouse table data...

Generating stock table data...

2. Load data into the MySQL database.

The following command creates a database named dbt2w10 and loads it with the
data we generated in the previous step (-d is the database name and -f is the
directory with the generated data):

scripts/mysql/mysql_load_db.sh -d dbt2wio -f /mnt/data/dbt2-wi0 -s /var/lib/
mysql/mysql.sock

Benchmarking Examples | 51

3. Run the benchmark.

The final step is to execute the following command from the scripts directory:

run_mysql.sh -c 10 -w 10 -t 300 -n dbt2w10 -u root -o /var/lib/mysql/mysql.sock
-e
Skeskok ok ok sk sk ok ko ok sk sk sk sk sk sk sk sk sk sk sk skok sk sk sk sk sk skokosk sk sk sk sk sk skok sk sk sk sk skok sk sk sk sk sk skokok sk sk sk sk skokok sk sk sk skskokosk sk sk sk sk k

* DBT2 test for MySQL started *
* *
* Results can be found in output/9 directory *

Skokokokokoskok sk ok sk ok sk skokokokokok sk ok ok sk skokokokok sk sk sk ok skoskokokosksk sk sk sk ok skokokokosksk sk sk ok sk skokokokokok sk sk sk skkokokokok sk sk sk ok ok ok

Test consists of 4 stages:

. Start of client to create pool of databases connections

. Start of driver to emulate terminals and transactions generation
. Test

. Processing of results

I S T S S
B W N R

* K X X X X KX ¥

Skokoskokokoskok sk ok sk ok ok skokokokoskok sk ok ok skoskokokokok sk sk ok ok sk skokokosksk sk sk sk ok skokokokoksk sk sk ok sk skokokokokok sk sk sk skokokokokok sk sk sk ok ok ok

DATABASE NAME: dbt2w10

DATABASE USER: root

DATABASE SOCKET: /var/1ib/mysql/mysql.sock
DATABASE CONNECTIONS: 10

TERMINAL THREADS: 100

SCALE FACTOR (WARHOUSES) : 10

TERMINALS PER WAREHOUSE: 10

DURATION OF TEST(in sec): 300

SLEEPY in (msec) 300

ZERO DELAYS MODE: 1

Stage 1. Starting up client...

Delay for each thread - 300 msec. Will sleep for 4 sec to start 10 database
connections

CLIENT PID = 12962

Stage 2. Starting up driver...

Delay for each thread - 300 msec. Will sleep for 34 sec to start 100 terminal
threads

All threads has spawned successfuly.

Stage 3. Starting of the test. Duration of the test 300 sec
Stage 4. Processing of results...

Shutdown clients. Send TERM signal to 12962.
Response Time (s)

Transaction % Average : 90th % Total Rollbacks %
Delivery 3.53 2.224 : 3.059 1603 0 0.00

New Order 41.24 0.659 : 1.175 18742 172 0.92
Order Status 3.86 0.684 : 1.228 1756 0 0.00
Payment 39.23 0.644 : 1.161 17827 0 0.00
Stock Level 3.59 0.652 : 1.147 1630 0 0.00

52 | Chapter2: Finding Bottlenecks: Benchmarking and Profiling

3396.95 new-order transactions per minute (NOTPM)
5.5 minute duration

0 total unknown errors

31 second(s) ramping up

The most important result is this line near the end:
3396.95 new-order transactions per minute (NOTPM)

This shows how many transactions per minute the system can process; more is bet-
ter. (The term “new-order” is not a special term for a type of transaction; it simply
means the test simulated someone placing a new order on the imaginary e-commerce
web site.)

You can change a few parameters to create different benchmarks:

-¢ The number of connections to the database. You can change this to emulate dif-
ferent levels of concurrency and see how the system scales.

-¢ This enables zero-delay mode, which means there will be no delay between que-
ries. This stress-tests the database, but it can be unrealistic, as real users need
some “think time” before generating new queries.

-t The total duration of the benchmark. Choose this time carefully, or the results
will be meaningless. Too short a time for benchmarking an I/O-bound work-
load will give incorrect results, because the system will not have enough time to
warm the caches and start to work normally. On the other hand, if you want to
benchmark a CPU-bound workload, you shouldn’t make the time too long, or
the dataset may grow significantly and become I/O bound.

This benchmark’s results can provide information on more than just performance.
For example, if you see too many rollbacks, you’ll know something is likely to be
wrong.

MySQL Benchmark Suite

The MySQL Benchmark Suite consists of a set of Perl benchmarks, so you’ll need
Perl to run them. You’ll find the benchmarks in the sql-bench/ subdirectory in your
MySQL installation. On Debian GNU/Linux systems, for example, they’re in /usr/
share/mysql/sql-bench/.

Before getting started, read the included README file, which explains how to use
the suite and documents the command-line arguments. To run all the tests, use com-
mands like the following:

$ cd /usx/share/mysql/sql-bench/

sql-bench$./run-all-tests --server=mysql --user=root --log --fast

Test finished. You can find the result in:

output/RUN-mysql fast-Linux 2.4.18 686 smp 1686
The benchmarks can take quite a while to run—perhaps over an hour, depending on
your hardware and configuration. If you give the --log command-line option, you can

Benchmarking Examples | 53

monitor progress while they’re running. Each test logs its results in a subdirectory
named output. Each file contains a series of timings for the operations in each bench-
mark. Here’s a sample, slightly reformatted for printing:

sql-bench$ tail -5 output/select-mysql_fast-Linux_2.4.18_686_smp_i686
Time for count_distinct_group on_key (1000:6000):

34 wallclock secs (0.20 usr 0.08 sys + 0.00 cusr 0.00 csys = 0.28 CPU)
Time for count distinct group on_key parts (1000:100000):

34 wallclock secs (0.57 usr 0.27 sys + 0.00 cusr 0.00 csys = 0.84 CPU)
Time for count distinct group (1000:100000):

34 wallclock secs (0.59 usr 0.20 sys + 0.00 cusr 0.00 csys = 0.79 CPU)
Time for count_distinct_big (100:1000000):

8 wallclock secs (4.22 usr 2.20 sys + 0.00 cusr 0.00 csys = 6.42 CPU)
Total time:

868 wallclock secs (33.24 usr 9.55 sys + 0.00 cusr 0.00 csys = 42.79 CPU)

As an example, the count_distinct group on key (1000:6000) test took 34 wall-clock
seconds to execute. That’s the total amount of time the client took to run the test.
The other values (usr, sys, cursr, csys) that added up to 0.28 seconds constitute the
overhead for this test. That’s how much of the time was spent running the bench-
mark client code, rather than waiting for the MySQL server’s response. This means
that the figure we care about—how much time was tied up by things outside the cli-
ent’s control—was 33.72 seconds.

Rather than running the whole suite, you can run the tests individually. For exam-
ple, you may decide to focus on the insert test. This gives you more detail than the
summary created by the full test suite:

sql-bench$./test-insert
Testing server 'MySQL 4.0.13 log' at 2003-05-18 11:02:39

Testing the speed of inserting data into 1 table and do some selects on it.
The tests are done with a table that has 100000 rows.

Generating random keys
Creating tables
Inserting 100000 rows in order
Inserting 100000 rows in reverse order
Inserting 100000 rows in random order
Time for insert (300000):
42 wallclock secs (7.91 usr 5.03 sys + 0.00 cusr 0.00 csys = 12.94 CPU)
Testing insert of duplicates
Time for insert duplicates (100000):
16 wallclock secs (2.28 usr 1.89 sys + 0.00 cusr 0.00 csys = 4.17 CPU)

Profiling

Profiling shows you how much each part of a system contributes to the total cost of
producing a result. The simplest cost metric is time, but profiling can also measure

54 | Chapter2: Finding Bottlenecks: Benchmarking and Profiling

the number of function calls, I/O operations, database queries, and so forth. The
goal is to understand why a system performs the way it does.

Profiling an Application

Just like with benchmarking, you can profile at the application level or on a single
component, such as the MySQL server. Application-level profiling usually yields bet-
ter insight into how to optimize the application and provides more accurate results,
because the results include the work done by the whole application. For example, if
you’re interested in optimizing the application’s MySQL queries, you might be
tempted to just run and analyze the queries. However, if you do this, you’ll miss a lot
of important information about the queries, such as insights into the work the appli-
cation has to do when reading results into memory and processing them.”

Because web applications are such a common use case for MySQL, we use a PHP
web site as our example. You’ll typically need to profile the application globally to
see how the system is loaded, but you’ll probably also want to isolate some sub-
systems of interest, such as the search function. Any expensive subsystem is a good
candidate for profiling in isolation.

When we need to optimize how a PHP web site uses MySQL, we prefer to gather sta-
tistics at the granularity of objects (or modules) in the PHP code. The goal is to mea-
sure how much of each page’s response time is consumed by database operations.
Database access is often, but not always, the bottleneck in applications. Bottlenecks
can also be caused by any of the following:

* External resources, such as calls to web services or search engines

* Operations that require processing large amounts of data in the application,
such as parsing big XML files
* Expensive operations in tight loops, such as abusing regular expressions

* Badly optimized algorithms, such as naive search algorithms to find items in lists

Before looking at MySQL queries, you should figure out the actual source of your
performance problems. Application profiling can help you find the bottlenecks, and
it’s an important step in monitoring and improving overall performance.

How and what to measure

Time is an appropriate profiling metric for most applications, because the end user
cares most about time. In web applications, we like to have a debug mode that

* If you’re investigating a bottleneck, you might be able to take shortcuts and figure out where it is by exam-
ining some basic system statistics. If the web servers are idle and the MySQL server is at 100% CPU usage,
you might not need to profile the whole application, especially if it’s a crisis. You can look into the whole
application after you fix the crisis.

Profiling | 55

makes each page display its queries along with their times and number of rows. We
can then run EXPLAIN on slow queries (you’ll find more information about EXPLAIN in
later chapters). For deeper analysis, we combine this data with metrics from the
MySQL server.

We recommend that you include profiling code in every new project you start. It
might be hard to inject profiling code into an existing application, but it’s easy to
include it in new applications. Many libraries contain features that make it easy. For
example, Java’s JDBC and PHP’s mysqli database access libraries have built-in fea-
tures for profiling database access.

Profiling code is also invaluable for tracking down odd problems that appear only in
production and can’t be reproduced in development.

Your profiling code should gather and log at least the following:
* Total execution time, or “wall-clock time” (in web applications, this is the total
page render time)
* Each query executed, and its execution time
* Each connection opened to the MySQL server

* Every call to an external resource, such as web services, memcached, and exter-
nally invoked scripts

* Potentially expensive function calls, such as XML parsing
* User and system CPU time

This information will help you monitor performance much more easily. It will give
you insight into aspects of performance you might not capture otherwise, such as:

* Overall performance problems
* Sporadically increased response times
* System bottlenecks, which might not be MySQL

* Execution time of “invisible” users, such as search engine spiders

A PHP profiling example

To give you an idea of how easy and unobtrusive profiling a PHP web application
can be, let’s look at some code samples. The first example shows how to instrument
the application, log the queries and other profiling data in a MySQL log table, and
analyze the results.

To reduce the impact of logging, we capture all the logging information in memory,
then write it to a single row when the page finishes executing. This is a better
approach than logging every query individually, because logging every query dou-
bles the number of queries you need to send to the MySQL server. Logging each bit
of profiling data separately would actually make it harder to analyze bottlenecks, as

56 | Chapter2: Finding Bottlenecks: Benchmarking and Profiling

Will Profiling Slow Your Servers?

Yes. Profiling and routine monitoring add overhead. The important questions are how
much overhead they add and whether the extra work is worth the benefit.

Many people who design and build high-performance applications believe that you
should measure everything you can and just accept the cost of measurement as a part
of your application’s work. Even if you don’t agree, it’s a great idea to build in at least
some lightweight profiling that you can enable permanently. It’s no fun to hit a perfor-
mance bottleneck you never saw coming, just because you didn’t build your systems
to capture day-to-day changes in their performance. Likewise, when you find a prob-
lem, historical data is invaluable. You can also use the profiling data to help you plan
hardware purchases, allocate resources, and predict load for peak times or seasons.

What do we mean by “lightweight” profiling? Timing all SQL queries, plus the total
script execution time, is certainly cheap. And you don’t have to do it for every page
view. If you have a decent amount of traffic, you can just profile a random sample by
enabling profiling in your application’s setup file:

<?php

$profiling_enabled = rand(0, 100) > 99;

2>
Profiling just 1% of your page views should help you find the worst problems.

Be sure to account for the cost of logging, profiling, and measuring when you’re run-
ning benchmarks, because it can skew your benchmark results.

you rarely have that much granularity to identify and troubleshoot problems in the
application.

We start with the code you’ll need to capture the profiling information. Here’s a sim-
plified example of a basic PHP 5 logging class, class. Timer.php, which uses built-in
functions such as getrusage() to determine the script’s resource usage:

1
2
3
4
5
6
7
8

9
10
n
12
13
14
15
16
17

<?php

/*

* Class Timer, implementation of time logging in PHP
*/

class Timer {
private $aTIMES = array();

function startTime($point)

{
$dat = getrusage();

$this->aTIMES[$point]['start'] = microtime(TRUE);

$this->aTIMES[$point]['start utime'] =
$dat["ru_utime.tv_sec"]*1eb6+$dat["ru_utime.tv_usec"];

$this->aTIMES[$point]['start stime'] =
$dat["ru_stime.tv_sec"]*1e6+$dat["ru_stime.tv_usec"];

Profiling |

57

18 }

19

20 function stopTime($point, $comment="")

21 {

n $dat = getrusage();

23 $this->aTIMES[$point]['end'] = microtime(TRUE);

24 $this->aTIMES[$point]['end utime'] =

25 $dat["ru_utime.tv_sec"] * 1e6 + $dat["ru_utime.tv_usec"];
26 $this->aTIMES[$point]['end stime'] =

277 $dat["ru_stime.tv _sec"] * 1e6 + $dat["ru_stime.tv_usec"];
28

29 $this->aTIMES[$point]['comment'] .= $comment;

30

31 $this->aTIMES[$point]['sum'] +=

32 $this->aTIMES[$point]['end'] - $this->aTIMES[$point]['start'];
33 $this->aTIMES[$point]['sum utime'] +=

34 ($this->aTIMES[$point]['end utime'] -

35 $this->aTIMES[$point]['start utime']) / 1e6;

36 $this->aTIMES[$point]['sum_stime'] +=

37 ($this->aTIMES[$point]['end stime'] -

38 $this->aTIMES[$point]['start stime']) / 1e6;

3}

40

4 function logdata() {

4

43 $query logger = DBQuerylog::getInstance('DBQuerylLog');

4 $data["'utime'] = $this->aTIMES['Page']['sum_utime'];

45 $data['wtime'] = $this->aTIMES['Page']['sum'];

46 $data['stime'] = $this->aTIMES['Page']['sum stime'];

47 $data[‘mysql time'] = $this->aTIMES['MySQL']['sum'];

48 $data["mysql count queries'] = $this->aTIMES['MySQL']['cnt'];
49 $data['mysql queries'] = $this->aTIMES['MySQL']['comment'];
50 $data["'sphinx_time'] = $this->aTIMES['Sphinx']['sum'];

51

52 $query logger->logProfilingData($data);

53

54 }

55

56 // This helper function implements the Singleton pattern
57 function getInstance() {

58 static $instance;

59

60 if(lisset($instance)) {

61 $instance = new Timer();
62 }

63

64 return($instance);

65}

6 }

67 >

It’s easy to use the Timer class in your application. You just need to wrap a timer
around potentially expensive (or otherwise interesting) calls. For example, here’s

58 | Chapter2: Finding Bottlenecks: Benchmarking and Profiling

how to wrap a timer around every MySQL query. PHP’s new mysqli interface lets
you extend the basic mysqli class and redeclare the query method:
68 <?php

69 class mysqlx extends mysqli {
70 function query($query, $resultmode) {

71 $timer = Timer::getInstance();

72 $timer->startTime('MySQL');

73 $res = parent::query($query, $resultmode);

74 $timer->stopTime('MySQL', "Query: $query\n");
75 return $res;

76}

7}

78 >

This technique requires very few code changes. You can simply change mysqli to
mysqlx globally, and your whole application will begin logging all queries. You can
use this approach to measure access to any external resource, such as queries to the
Sphinx full-text search engine:

$timer->startTime('Sphinx');

$this->sphinxres = $this->sphinx_client->Query ($query, "index");

$timer->stopTime('Sphinx', "Query: $query\n");
Next, let’s see how to log the data you’re gathering. This is an example of when it’s
wise to use the MyISAM or Archive storage engine. Either of these is a good candi-
date for storing logs. We use INSERT DELAYED when adding rows to the logs, so the
INSERT will be executed as a background thread on the database server. This means
the query will return instantly, so it won’t perceptibly affect the application’s
response time. (Even if we don’t use INSERT DELAYED, inserts will be concurrent unless
we explicitly disable them, so external SELECT queries won’t block the logging.)
Finally, we hand-roll a date-based partitioning scheme by creating a new log table
each day.

Here’s a CREATE TABLE statement for our logging table:
CREATE TABLE logs.performance log_template (

ip INT UNSIGNED NOT NULL,
page VARCHAR(255) NOT NULL,
utime FLOAT NOT NULL,

wtime FLOAT NOT NULL,
mysql_time FLOAT NOT NULL,
sphinx_time FLOAT NOT NULL,

mysql count queries INT UNSIGNED NOT NULL,
mysql_queries TEXT NOT NULL,

stime FLOAT NOT NULL,

logged TIMESTAMP NOT NULL

default CURRENT_TIMESTAMP on update CURRENT TIMESTAMP,

user_agent VARCHAR(255) NOT NULL,
referer VARCHAR(255) NOT NULL

) ENGINE=ARCHIVE;

Profiling | 59

We never actually insert any data into this table; it’s just a template for the CREATE
TABLE LIKE statements we use to create the table for each day’s data.

We explain more about this in Chapter 3, but for now, we’ll just note that it’s a good
idea to use the smallest data type that can hold the desired data. We’re using an
unsigned integer to store the IP address. We're also using a 255-character column to
store the page and the referrer. These values can be longer than 255 characters, but
the first 255 are usually enough for our needs.

The final piece of the puzzle is logging the results when the page finishes executing.
Here’s the PHP code needed to log the data:

79 <2php

80 // Start of the page execution
81 $timer = Timer::getInstance();
82 $timer->startTime('Page');

8 // ... other code ...

84 // End of the page execution

85 $timer->stopTime('Page');

86 $timer->logdata();

87

The Timer class uses the DBQueryLog helper class, which is responsible for logging to
the database and creating a new log table every day. Here’s the code:

88 <?php

89 /*

90 * Class DBQuerylog logs profiling data into the database

91 */

92 class DBQuerylog {

93

94 // constructor, etc, etc...

95

96 /*

97 * Logs the data, creating the log table if it doesn't exist. Note

98 * that it's cheaper to assume the table exists, and catch the error
99 * if it doesn't, than to check for its existence with every query.
100 */

101 function logProfilingData($data) {

102 $table name = "logs.performance log " . @date("ymd");

103

104 $query = "INSERT DELAYED INTO $table_name (ip, page, utime,

105 wtime, stime, mysql time, sphinx_time, mysql count queries,
106 mysql_queries, user_agent, referer) VALUES (.. data ..)";
107

108 $res = $this->mysqlx->query($query);

109 // Handle "table not found" error - create new table for each new day
110 if (('$res) 88 ($this->mysqlx->errno == 1146)) { // 1146 is table not found
m $res = $this->mysqlx->query(

12 "CREATE TABLE $table_name LIKE logs.performance_ log_template");
113 $res = $this->mysqlx->query($query);

114 }

ns

60 | Chapter2: Finding Bottlenecks: Benchmarking and Profiling

116
17

}

?>

Once we’ve logged some data, we can analyze the logs. The beauty of using MySQL
for logging is that you get the flexibility of SQL for analysis, so you can easily write
queries to get any report you want from the logs. For instance, to find a few pages
whose execution time was more than 10 seconds on the first day of February 2007:

mysql> SELECT page, wtime, mysql_time
-> FROM performance_log_070201 WHERE wtime > 10 LIMIT 7;

R e e e T TP el B ettt +
| page | wtime | mysqgl time |
o oo R i +
/pagel.php	50.9295	0.000309
/pagel.php	32.0893	0.000305
/pagel.php	40.4209	0.000302
/page3.php	11.5834	0.000306
/login.php	28.5507	28.5257
/access.php	13.0308	13.0064
/page4.php	32.0687	0.000333
R e e e T fo-mo oo R] +

(We’d normally select more data in such a query, but we’ve shortened it here for the
purpose of illustration.)

If you compare the wtime (wall-clock time) and the query time, you’ll see that
MySQL query execution time was responsible for the slow response time in only two
of the seven pages. Because we're storing the queries with the profiling data, we can
retrieve them for examination:

mysql> SELECT mysql_queries

-> FROM performance_log 070201 WHERE mysql_time > 10 LIMIT 1\G
skokokokosk sk skskokokok sk sk sk skokokosk skk sk skokokok ok k 1. TOW skskskskokokosk sksk sk skokokok sk sk skskokokok sk sk sk kk ok
mysql_queries:
Query: SELECT id, chunk_id FROM domain WHERE domain = 'domain.com'
Time: 0.00022602081298828
Query: SELECT server.id sid, ip, user, password, domain map.id as chunk_id FROM
server JOIN domain map ON (server.id = domain map.master id) WHERE domain map.id = 24
Time: 0.00020599365234375
Query: SELECT id, chunk_id, base url,title FROM site WHERE id = 13832
Time: 0.00017690658569336
Query: SELECT server.id sid, ip, user, password, site map.id as chunk id FROM server
JOIN site map ON (server.id = site map.master id) WHERE site map.id = 64
Time: 0.0001990795135498
Query: SELECT from_site_id, url_from, count(*) cnt FROM link24.1link_in24 FORCE INDEX
(domain_message) WHERE domain_id=435377 AND message_day IN (...) GROUP BY from_site_
id ORDER BY cnt desc LIMIT 10
Time: 6.3193740844727
Query: SELECT revert domain, domain_id, count(*) cnt FROM art64.1link out64 WHERE
from_site id=13832 AND message day IN (...) GROUP BY domain_id ORDER BY cnt desc
LIMIT 10
Time: 21.3649559021

Profiling | 61

This reveals two problematic queries, with execution times of 6.3 and 21.3 seconds,
that need to be optimized.

Logging all queries in this manner is expensive, so we usually either log only a frac-
tion of the pages or enable logging only in debug mode.

How can you tell whether there’s a bottleneck in a part of the system that you’re not
profiling? The easiest way is to look at the “lost time.” In general, the wall-clock time
(wtime) is the sum of the user time, system time, SQL query time, and every other
time you can measure, plus the “lost time” you can’t measure. There’s some over-
lap, such as the CPU time needed for the PHP code to process the SQL queries, but
this is usually insignificant. Figure 2-2 is a hypothetical illustration of how wall-clock
time might be divided up.

[User time

[System time

[Queries

[Network /0
24% B Lost time

2%

38%

Figure 2-2. Lost time is the difference between wall-clock time and time for which you can account

Ideally, the “lost time” should be as small as possible. If you subtract everything
you’ve measured from the wtime and you still have a lot left over, something you’re
not measuring is adding time to your script’s execution. This may be the time needed
to generate the page, or there may be a wait somewhere.”

There are two kinds of waits: waiting in the queue for CPU time, and waiting for
resources. A process waits in the queue when it is ready to run, but all the CPUs are
busy. It’s not usually possible to figure out how much time a process spends waiting
in the CPU queue, but that’s generally not the problem. More likely, you’re making
some external resource call and not profiling it.

If your profiling is complete enough, you should be able to find bottlenecks easily.
It’s pretty straightforward: if your script’s execution time is mostly CPU time, you
probably need to look at optimizing your PHP code. Sometimes some measurements
mask others, though. For example, you might have high CPU usage because you

* Assuming the web server buffers the result, so your script’s execution ends and you don’t measure the time
it takes to send the result to the client.

62 | Chapter2: Finding Bottlenecks: Benchmarking and Profiling

have a bug that makes your caching system inefficient and forces your application to
do too many SQL queries.

As this example demonstrates, profiling at the application level is the most flexible
and useful technique. If possible, it’s a good idea to insert profiling into any applica-
tion you need to troubleshoot for performance bottlenecks.

As a final note, we should mention that we’ve shown only basic application profiling
techniques here. Our goal for this section is to show you how to figure out whether
MySQL is the problem. You might also want to profile your application’s code itself.
For example, if you decide you need to optimize your PHP code because it’s using
too much CPU time, you can use tools such as xdebug, Valgrind, and cachegrind to
profile CPU usage.

Some languages have built-in support for profiling. For example, you can profile
Ruby code with the -r command-line option, and Perl as follows:

$ perl -d:DProf <script file>
$ dprofpp tmon.out

A quick web search for “profiling <Ianguage>” is a good place to start.

MySQL Profiling

We go into much more detail about MySQL profiling, because it’s less dependent on
your specific application. Application profiling and server profiling are sometimes
both necessary. Although application profiling can give you a more complete picture
of the entire system’s performance, profiling MySQL can provide a lot of informa-
tion that isn’t available when you look at the application as a whole. For example,
profiling your PHP code won’t show you how many rows MySQL examined to exe-
cute queries.

As with application profiling, the goal is to find out where MySQL spends most of its
time. We won’t go into profiling MySQL’s source code; although that’s useful some-
times for customized MySQL installations, it’s a topic for another book. Instead, we
show you some techniques you can use to capture and analyze information about the
different kinds of work MySQL does to execute queries.

You can work at whatever level of granularity suits your purposes: you can profile
the server as a whole or examine individual queries or batches of queries. The kinds
of information you can glean include:

* Which data MySQL accesses most

» What kinds of queries MySQL executes most

* What states MySQL threads spend the most time in

* What subsystems MySQL uses most to execute a query

* What kinds of data accesses MySQL does during a query

Profiling | 63

* How much of various kinds of activities, such as index scans, MySQL does

We start at the broadest level—profiling the whole server—and work toward more
detail.

Logging queries

MySQL has two kinds of query logs: the general log and the slow log. They both log
queries, but at opposite ends of the query execution process. The general log writes
out every query as the server receives it, so it contains queries that may not even be
executed due to errors. The general log captures all queries, as well as some non-
query events such as connecting and disconnecting. You can enable it with a single
configuration directive:

log = <file name>

By design, the general log does not contain execution times or any other information
that’s available only after a query finishes. In contrast, the slow log contains only
queries that have executed. In particular, it logs queries that take more than a speci-
fied amount of time to execute. Both logs can be helpful for profiling, but the slow
log is the primary tool for catching problematic queries. We usually recommend
enabling it.

The following configuration sample will enable the log, capture all queries that take
more than two seconds to execute, and log queries that don’t use any indexes. It will
also log slow administrative statements, such as OPTIMIZE TABLE:

log-slow-queries = <file name>

long_query_time =2

log-queries-not-using-indexes

log-slow-admin-statements
You should customize this sample and place it in your my.cnf server configuration
file. For more on server configuration, see Chapter 6.

The default value for long_query time is 10 seconds. This is too long for most set-
ups, so we usually use two seconds. However, even one second is too long for many
uses. We show you how to get finer-grained logging in the next section.

In MySQL 5.1, the global slow query log and slow query log file system variables
provide runtime control over the slow query log, but in MySQL 5.0, you can’t turn
the slow query log on or off without restarting the MySQL server. The usual
workaround for MySQL 5.0 is the long query time variable, which you can change
dynamically. The following command doesn’t really disable slow query logging, but
it has practically the same effect (if any of your queries takes longer than 10,000 sec-
onds to execute, you should optimize it anyway!):

mysql> SET GLOBAL long_query time = 10000;

A related configuration variable, log queries not_using indexes, makes the server
log to the slow log any queries that don’t use indexes, no matter how quickly they

64 | Chapter2: Finding Bottlenecks: Benchmarking and Profiling

execute. Although enabling the slow log normally adds only a small amount of log-
ging overhead relative to the time it takes a “slow” query to execute, queries that
don’t use indexes can be frequent and very fast (for example, scans of very small
tables). Thus, logging them can cause the server to slow down, and even use a lot of
disk space for the log.

Unfortunately, you can’t enable or disable logging of these queries with a dynami-
cally settable variable in MySQL 5.0. You have to edit the configuration file, then
restart MySQL. One way to reduce the burden without a restart is to make the log file
a symbolic link to /dev/null when you want to disable it (in fact, you can use this trick
for any log file). You just need to run FLUSH LOGS after making the change to ensure
that MySQL closes its current log file descriptor and reopens the log to /dev/null.

In contrast to MySQL 5.0, MySQL 5.1 lets you change logging at runtime and lets
you log to tables you can query with SQL. This is a great improvement.

Finer control over logging

The slow query log in MySQL 5.0 and earlier has a few limitations that make it use-
less for some purposes. One problem is that its granularity is only in seconds, and
the minimum value for long_query time in MySQL 5.0 is one second. For most inter-
active applications, this is way too long. If you're developing a high-performance
web application, you probably want the whole page to be generated in much less
than a second, and the page will probably issue many queries while it’s being gener-
ated. In this context, a query that takes 150 milliseconds to execute would probably
be considered a very slow query indeed.

Another problem is that you cannot log all queries the server executes into the slow
log (in particular, the slave thread’s queries aren’t logged). The general log does log
all queries, but it logs them before they’re even parsed, so it doesn’t contain informa-
tion such as the execution time, lock time, and number of rows examined. Only the
slow log contains that kind of information about a query.

Finally, if you enable the log_queries not_using_indexes option, your slow log may
be flooded with entries for fast, efficient queries that happen to do full table scans.
For example, if you generate a drop-down list of states from SELECT * FROM STATES,
that query will be logged because it’s a full table scan.

When profiling for the purpose of performance optimization, you’re looking for que-
ries that cause the most work for the MySQL server. This doesn’t always mean slow
queries, so the notion of logging “slow” queries might not be useful. As an example,
a 10-millisecond query that runs a 1,000 times per second will load the server more
than a 10-second query that runs once every second. To identify such a problem,
you’d need to log every query and analyze the results.

It’s usually a good idea to look both at slow queries (even if they’re not executed
often) and at the queries that, in total, cause the most work for the server. This will

Profiling | 65

help you find different types of problems, such as queries that cause a poor user
experience.

We've developed a patch to the MySQL server, based on work by Georg Richter,
that lets you specify slow query times in microseconds instead of seconds. It also lets
you log all queries to the slow log, by setting long query time=0. The patch is avail-
able from http://'www.mysqlperformanceblog.com/mysql-patches/. Tts major drawback
is that to use it you may need to compile MySQL yourself, because the patch isn’t
included in the official MySQL distribution in versions prior to MySQL 5.1.

At the time of this writing, the version of the patch included with MySQL 5.1
changes only the time granularity. A new version of the patch, which is not yet
included in any official MySQL distribution, adds quite a bit more useful functional-
ity. It includes the query’s connection ID, as well as information about the query
cache, join type, temporary tables, and sorting. It also adds InnoDB statistics, such as
information on I/O behavior and lock waits.

The new patch lets you log queries executed by the slave SQL thread, which is very
important if you’re having trouble with replication slaves that are lagging (see
“Excessive Replication Lag” on page 399 for more on how to help slaves keep up). It
also lets you selectively log only some sessions. This is usually enough for profiling
purposes, and we think it’s a good practice.

This patch is relatively new, so you should use it with caution if you apply it your-
self. We think it’s pretty safe, but it hasn’t been battle-tested as much as the rest of
the MySQL server. If you're worried about the patched server’s stability, you don’t
have to run the patched version all the time; you can just start it for a few hours to
log some queries, and then go back to the unpatched version.

When profiling, it’s a good idea to log all queries with long_query time=0. If much of
your load comes from very simple queries, you’ll want to know that. Logging all
these queries will impact performance a bit, and it will require lots of disk space—
another reason you might not want to log every query all the time. Fortunately, you
can change long query time without restarting the server, so it’s easy to get a sample
of all the queries for a little while, then revert to logging only very slow queries.

How to read the slow query log
Here’s an example from a slow query log:

1 # Time: 030303 0:51:27

2 # User@Host: root[root] @ localhost []

3 # Query_time: 25 Lock_time: 0 Rows_sent: 3949 Rows_examined: 378036
4 SELECT ...

Line 1 shows when the query was logged, and line 2 shows who executed it. Line 3
shows how many seconds it took to execute, how long it waited for table locks at the
MySQL server level (not at the storage engine level), how many rows the query

66 | Chapter2: Finding Bottlenecks: Benchmarking and Profiling

http://www.mysqlperformanceblog.com/mysql-patches/

returned, and how many rows it examined. These lines are all commented out, so
they won’t execute if you feed the log into a MySQL client. The last line is the query.

Here’s a sample from a MySQL 5.1 server:

Time: 070518 9:47:00

User@Host: root[root] @ localhost []

Query time: 0.000652 Lock time: 0.000109 Rows sent: 1 Rows examined: 1
4 SELECT ...

w N =

The information is mostly the same, except the times in line 3 are high precision. A
newer version of the patch adds even more information:

Time: 071031 20:03:16

1

2 # User@Host: root[root] @ localhost []

3 # Thread id: 4

4 # Query time: 0.503016 Lock time: 0.000048 Rows sent: 56 Rows examined: 1113
5 # QC_Hit: No Full_scan: No Full join: No Tmp_table: Yes Disk_tmp_table: No
6 # Filesort: Yes Disk filesort: No Merge passes: O

7 # InnoDB IO r ops: 19 InnoDB IO r bytes: 311296 InnoDB IO r wait: 0.382176
8 # InnoDB_rec_lock_wait: 0.000000 InnoDB_queue_wait: 0.067538

9 # InnoDB_pages distinct: 20

10 SELECT ...

Line 5 shows whether the query was served from the query cache, whether it did a
full scan of a table, whether it did a join without indexes, whether it used a tempo-
rary table, and if so whether the temporary table was created on disk. Line 6 shows
whether the query did a filesort and, if so, whether it was on disk and how many sort
merge passes it performed.

Lines 7, 8, and 9 will appear if the query used InnoDB. Line 7 shows how many page
read operations InnoDB scheduled during the query, along with the corresponding
value in bytes. The last value on line 7 is how long it took InnoDB to read data from
disk. Line 8 shows how long the query waited for row locks and how long it spent
waiting to enter the InnoDB kernel.”

Line 9 shows approximately how many unique InnoDB pages the query accessed.
The larger this grows, the less accurate it is likely to be. One use for this information
is to estimate the query’s working set in pages, which is how the InnoDB buffer pool
caches data. It can also show you how helpful your clustered indexes really are. If the
query’s rows are clustered well, they’ll fit in fewer pages. See “Clustered Indexes” on
page 110 for more on this topic.

Using the slow query log to troubleshoot slow queries is not always straightforward.
Although the log contains a lot of useful information, one very important bit of infor-
mation is missing: an idea of why a query was slow. Sometimes it’s obvious. If the
log says 12,000,000 rows were examined and 1,200,000 were sent to the client, you
know why it was slow to execute—it was a big query! However, it’s rarely that clear.

* See “InnoDB Concurrency Tuning” on page 296 for more information on the InnoDB kernel.

Profiling | 67

Be careful not to read too much into the slow query log. If you see the same query in
the log many times, there’s a good chance that it’s slow and needs optimization. But
just because a query appears in the log doesn’t mean it’s a bad query, or even neces-
sarily a slow one. You may find a slow query, run it yourself, and find that it exe-
cutes in a fraction of a second. Appearing in the log simply means the query took a
long time then; it doesn’t mean it will take a long time now or in the future. There
are many reasons why a query can be slow sometimes and fast at other times:

* A table may have been locked, causing the query to wait. The Lock_time indi-
cates how long the query waited for locks to be released.

* The data or indexes may not have been cached in memory yet. This is common
when MySQL is first started or hasn’t been well tuned.

* A nightly backup process may have been running, making all disk I/O slower.

* The server may have been running other queries at the same time, slowing down
this query.

As a result, you should view the slow query log as only a partial record of what’s
happened. You can use it to generate a list of possible suspects, but you need to
investigate each of them in more depth.

The slow query log patches are specifically designed to try to help you understand
why a query is slow. In particular, if you’re using InnoDB, the InnoDB statistics can
help a lot: you can see if the query was waiting for I/O from the disk, whether it had
to spend a lot of time waiting in the InnoDB queue, and so on.

Log analysis tools

Now that you’ve logged some queries, it’s time to analyze the results. The general
strategy is to find the queries that impact the server most, check their execution
plans with EXPLAIN, and tune as necessary. Repeat the analysis after tuning, because
your changes might affect other queries. It’s common for indexes to help SELECT que-
ries but slow down INSERT and UPDATE queries, for example.

You should generally look for the following three things in the logs:

Long queries
Routine batch jobs will generate long queries, but your normal queries shouldn’t
take very long.

High-impact queries
Find the queries that constitute most of the server’s execution time. Recall that
short queries that are executed often may take up a lot of time.

New queries
Find queries that weren’t in the top 100 yesterday but are today. These might be
new queries, or they might be queries that used to run quickly and are suffering
because of different indexing or another change.

68 | Chapter2: Finding Bottlenecks: Benchmarking and Profiling

If your slow query log is fairly small this is easy to do manually, but if you’re logging
all queries (as we suggested), you really need tools to help you. Here are some of the
more common tools for this purpose:

mysqldumpslow
MySQL provides mysqldumpslow with the MySQL server. It’s a Perl script that
can summarize the slow query log and show you how many times each query
appears in the log. That way, you won’t waste time trying to optimize a 30-
second slow query that runs once a day when there are many other shorter slow
queries that run thousands of time per day.

The advantage of mysqldumpslow is that it’s already installed; the disadvantage
is that it’s a little less flexible than some of the other tools. It is also poorly docu-
mented, and it doesn’t understand logs from servers that are patched with the
microsecond slow-log patch.

mysql_slow_log_filter
This tool, available from hitp://www.mysqlperformanceblog.com/filestutils/mysql_
slow_log_filter, does understand the microsecond log format. You can use it to
extract queries that are longer than a given threshold or that examine more than
a given number of rows. It’s great for “tailing” your log file if you’re running the
microsecond patch, which can make your log grow too quickly to follow with-
out filtering. You can run it with high thresholds for a while, optimize until the
worst offenders are gone, then change the parameters to catch more queries and
continue tuning.

Here’s a command that will show queries that either run longer than half a sec-
ond or examine more than 1,000 rows:
$ tail -f mysql-slow.log | mysql_slow_log_filter -T 0.5 -R 1000
mysql_slow_log_parser

This is another tool, available from http://www.mysqlperformanceblog.com/files/
utils/mysql_slow_log_parser, that can aggregate the microsecond slow log. In
addition to aggregating and reporting, it shows minimum and maximum values
for execution time and number of rows analyzed, prints the “canonicalized”
query, and prints a real sample you can EXPLAIN. Here’s a sample of its output:

##H# 3579 Queries

#H Total time: 3.348823, Average time: 0.000935686784017883
#i## Taking 0.000269 to 0.130820 seconds to complete

Rows analyzed 1 - 1

SELECT id FROM forum WHERE id=XXX;

SELECT id FROM forum WHERE id=12345;

mysqlsla
The MySQL Statement Log Analyzer, available from http://hackmysql.com/
mysqlsla, can analyze not only the slow log but also the general log and “raw”
logs containing delimited SQL statements. Like mysql_slow_log_parser, it can

Profiling | 69

http://www.mysqlperformanceblog.com/files/utils/mysql_slow_log_filter
http://www.mysqlperformanceblog.com/files/utils/mysql_slow_log_filter
http://www.mysqlperformanceblog.com/files/utils/mysql_slow_log_parser
http://www.mysqlperformanceblog.com/files/utils/mysql_slow_log_parser
http://hackmysql.com/mysqlsla
http://hackmysql.com/mysqlsla

canonicalize and summarize; it can also EXPLAIN queries (it rewrites many non-
SELECT statements for EXPLAIN) and generate sophisticated reports.

You can use the slow log statistics to predict how much you’ll be able to reduce the
server’s resource consumption. Suppose you sample queries for an hour (3,600 sec-
onds) and find that the total combined execution time for all the queries in the log is
10,000 seconds (the total time is greater than the wall-clock time because the que-
ries execute in parallel). If log analysis shows you that the worst query accounts for
3,000 seconds of execution time, you’ll know that this query is responsible for 30%
of the load. Now you know how much you can reduce the server’s resource con-
sumption by optimizing this query.

Profiling a MySQL Server

One of the best ways to profile a server—that is, to see what it spends most of its
time doing—is with SHOW STATUS. SHOW STATUS returns a lot of status information, and
we mention only a few of the variables in its output here.

A

SHOW STATUS has some tricky behaviors that can give bad results in
MySQL 5.0 and newer. Refer to Chapter 13 for more details on SHOW
Wit STATUS’s behavior and pitfalls.

To see how your server is performing in near real time, periodically sample SHOW
STATUS and compare the result with the previous sample. You can do this with the
following command:

mysqladmin extended -r -i 10
Some of the variables are not strictly increasing counters, so you may see odd output

such as a negative number of Threads_running. This is nothing to worry about; it just
means the counter has decreased since the last sample.

Because the output is extensive, it might help to pass the results through grep to fil-
ter out variables you don’t want to watch. Alternatively, you can use innotop or
another of the tools mentioned in Chapter 14 to inspect its results. Some of the more
useful variables to monitor are:

Bytes_received and Bytes_sent
The traffic to and from the server
Com_*
The commands the server is executing
Created *
Temporary tables and files created during query execution

Handler *
Storage engine operations

70 | Chapter2: Finding Bottlenecks: Benchmarking and Profiling

Select *
Various types of join execution plans

Sort *
Several types of sort information

You can use this approach to monitor MySQL’s internal operations, such as number
of key accesses, key reads from disk for MyISAM, rate of data access, data reads from
disk for InnoDB, and so on. This can help you determine where the real or potential
bottlenecks are in your system, without ever looking at a single query. You can also
use tools that analyze SHOW STATUS, such as mysqlreport, to get a snapshot of the
server’s overall health.

We won’t go into detail on the meaning of the status variables here, but we explain
them when we use them in examples, so don’t worry if you don’t know what all of
them mean.

Another good way to profile a MySQL server is with SHOW PROCESSLIST. This enables
you not only to see what kinds of queries are executing, but also to see the state of
your connections. Some things, such as a high number of connections in the Locked
state, are obvious clues to bottlenecks. As with SHOW STATUS, the output from SHOW
PROCESSLIST is so verbose that it’s usually more convenient to use a tool such as inno-
top than to inspect it manually.

Profiling Queries with SHOW STATUS

The combination of FLUSH STATUS and SHOW SESSION STATUS is very helpful to see what
happens while MySQL executes a query or batch of queries. This is a great way to
optimize queries.

Let’s look at an example of how to interpret what a query does. First, run FLUSH
STATUS to reset your session status variables to zero, so you can see how much work
MySQL does to execute the query:

mysql> FLUSH STATUS;

Next, run the query. We add SQL_NO_CACHE, so MySQL doesn’t serve the query from
the query cache:
mysql> SELECT SQL_NO_CACHE film_actor.actor_id, COUNT(*)
-> FROM sakila.film_actor
-> INNER JOIN sakila.actor USING(actor_id)

-> GROUP BY film_actor.actor_id
-> ORDER BY COUNT(*) DESC;

200 rows in set (0.18 sec)

The query returned 200 rows, but what did it really do? SHOW STATUS can give some
insight. First, let’s see what kind of query plan the server chose:

mysql> SHOW SESSION STATUS LIKE 'Select%';
R LEEEEE R ommmm- +

Profiling | 71

Fmmm e ommmm - +
| Select full join | o \
| Select full range join | 0 \
| Select_range | o |
| Select range check | o \
| Select scan | 2 \
Fmmm e ommmm - +

It looks like MySQL did a full table scan (actually, it looks like it did two, but that’s
an artifact of SHOW STATUS; we come back to that later). If the query had involved
more than one table, several variables might have been greater than zero. For exam-
ple, if MySQL had used a range scan to find matching rows in a subsequent table,
Select_full range join would also have had a value. We can get even more insight
by looking at the low-level storage engine operations the query performed:

mysql> SHOW SESSION STATUS LIKE 'Handler%';

|

+

| Handler commit |

| Handler delete |

| Handler discover |

| Handler_prepare |

| Handler read first |

| Handler read key |

| Handler read next |

| Handler read prev | o
| Handler read rnd |

| Handler_read_rnd_next |

| Handler rollback |

| Handler_ savepoint |

| Handler savepoint rollback |

| Handler update |

| Handler write | |
e +

The high values of the “read” operations indicate that MySQL had to scan more than
one table to satisfy this query. Normally, if MySQL read only one table with a full

table scan, we’d see high values for Handler read rnd next and Handler read rnd
would be zero.

In this case, the multiple nonzero values indicate that MySQL must have used a tem-
porary table to satisfy the different GROUP BY and ORDER BY clauses. That’s why there
are nonzero values for Handler write and Handler update: MySQL presumably wrote
to the temporary table, scanned it to sort it, and then scanned it again to output the
results in sorted order. Let’s see what MySQL did to order the results:

mysql> SHOW SESSION STATUS LIKE 'Sort%';

Frmmm e Fommm——- +

| Variable name | value |
Hmmmmmm e 4mmmmmee +

72 | Chapter2: Finding Bottlenecks: Benchmarking and Profiling

| Sort merge passes | 0

|
Sort_range	o
Sort_rows	200
Sort_scan	1
Hmmmmm s S +

As we guessed, MySQL sorted the rows by scanning a temporary table containing
every row in the output. If the value were higher than 200 rows, we’d suspect that it
sorted at some other point during the query execution. We can also see how many
temporary tables MySQL created for the query:

mysql> SHOW SESSION STATUS LIKE 'Created%’;

oo tommme- +
| Variable name | Value |
o Hommme +
Created tmp disk tables	0
Created tmp files	o
Created tmp tables	5
oo tommme- +

It’s nice to see that the query didn’t need to use the disk for the temporary tables,
because that’s very slow. But this is a little puzzling; surely MySQL didn’t create five
temporary tables just for this one query?

In fact, the query needs only one temporary table. This is the same artifact we
noticed before. What’s happening? We’re running the example on MySQL 5.0.45,
and in MySQL 5.0 SHOW STATUS actually selects data from the INFORMATION SCHEMA
tables, which introduces a “cost of observation.” This is skewing the results a little,
as you can see by running SHOW STATUS again:

mysql> SHOW SESSION STATUS LIKE 'Created%’;

R LR tommm e +
| Variable name | value |
T TR tommme- +
Created tmp disk tables	0
Created tmp files	0
Created tmp tables	6
R LR tommm e +

Note that the value has incremented again. The Handler and other variables are simi-
larly affected. Your results will vary, depending on your MySQL version.

You can use this same process—FLUSH STATUS, run the query, and run SHOW STATUS—
in MySQL 4.1 and older versions as well. You just need an idle server, because older
versions have only global counters, which can be changed by other processes.

The best way to compensate for the “cost of observation” caused by running SHOW
STATUS is to calculate the cost by running it twice and subtracting the second result
from the first. You can then subtract this from SHOW STATUS to get the true cost of the

* The “cost of observation” problem is fixed in MySQL 5.1 for SHOW SESSION STATUS.

Profiling | 73

query. To get accurate results, you need to know the scope of the variables, so you
know which have a cost of observation; some are per-session and some are global.
You can automate this complicated process with mk-query-profiler.

You can integrate this type of automatic profiling in your application’s database con-
nection code. When profiling is enabled, the connection code can automatically
flush the status before each query and log the differences afterward. Alternatively,
you can profile per-page instead of per-query. Either strategy is useful to show you
how much work MySQL did during the queries.

SHOW PROFILE

SHOW PROFILE is a patch Jeremy Cole contributed to the Community version of
MySQL, as of MySQL 5.0.37." Profiling is disabled by default but can be enabled at
the session level. Enabling it makes the MySQL server collect information about the
resources the server uses to execute a query. To start collecting statistics, set the
profiling variable to 1:

mysql> SET profiling = 1;
Now let’s run a query:

mysql> SELECT COUNT(DISTINCT actor.first_name) AS cnt_name, COUNT(*) AS cnt
-> FROM sakila.film_actor
-> INNER JOIN sakila.actor USING(actor_id)
-> GROUP BY sakila.film actor.film_id
-> ORDER BY cnt_name DESC;

997 rows in set (0.03 sec)

This query’s profiling data was stored in the session. To see queries that have been
profiled, use SHOW PROFILES:

mysql> SHOW PROFILES\G
skl kRl ok] oy ekl kol ok ok

Query_ID: 1
Duration: 0.02596900
Query: SELECT COUNT(DISTINCT actor.first name) AS cnt_name,...

You can retrieve the stored profiling data with the SHOW PROFILE statement. When you
run it without an argument, it shows status values and durations for the most recent
statement:

mysql> SHOW PROFILE;

g e +
| Status | Duration |
e Hmmmm e +
| (initialization) | 0.000005 |

* At the time of this writing, SHOW PROFILE is not yet included in the Enterprise versions of MySQL, even those
newer than 5.0.37.

74 | Chapter2: Finding Bottlenecks: Benchmarking and Profiling

Opening tables .000033

System lock .000037
Table lock .000024
init .000079
optimizing .000024
statistics .000079
preparing .00003

Creating tmp table .000124
executing 000008

.010048
.004769
.0084880

|

|

|

|

|

|

|

|

|
Copying to tmp table |
|
|
.001136 |
|
|
|
|
|
|
|
|
|
|
|
|

\

\

\

\

\

\

\

\

\

\

| Creating sort index

| Copying to group table
| Sorting result
\
\
\
\
\
\
\
\
\
\
\
\

O O OO0 0000000000000 O0OO0OO0OO0OoOOoOOo

|
|
|
|
|
|
|
|
|
|
|
|
|
|
end |
|
|
|
|
|
|
|
|
|
|
+

Sending data .000925

.00001
removing tmp table .00004
end .000005
removing tmp table 00001
end .000011
query end .00001
freeing items .000025
removing tmp table .00001
freeing items .000016
closing tables .000017
logging slow query .000006

R et +

Each row represents a change of state for the process and indicates how long it
stayed in that state. The Status column corresponds to the State column in the out-
put of SHOW FULL PROCESSLIST. The values come from the thd->proc_info variable, so
you’re looking at values that come directly from MySQL’s internals. These are docu-
mented in the MySQL manual, though most of them are intuitively named and
shouldn’t be hard to understand.

You can specify a query to profile by giving its Query ID from the output of SHOW
PROFILES, and you can specify additional columns of output. For example, to see user
and system CPU usage times for the preceding query, use the following command:

mysql> SHOW PROFILE CPU FOR QUERY 1;

SHOW PROFILE gives a lot of insight into the work the server does to execute a query,
and it can help you understand what your queries really spend their time doing.
Some of the limitations are its unimplemented features, the inability to see and pro-
file another connection’s queries, and the overhead caused by profiling.

Other Ways to Profile MySQL

We've shown you just enough detail in this chapter to illustrate how to use MySQL’s
internal status information to see what’s happening inside the server. You can do
some profiling with several of MySQL’s other status outputs as well. Other useful

Profiling | 75

commands include SHOW INNODB STATUS and SHOW MUTEX STATUS. We go into these and
other commands in much more detail in Chapter 13.

When You Can’t Add Profiling Code

Sometimes you can’t add profiling code or patch the server, or even change the
server’s configuration. However, there’s usually a way to do at least some type of
profiling. Try these ideas:

* Customize your web server logs, so they record the wall-clock time and CPU
time each request uses.

* Use packet sniffers to catch and time queries (including network latency) as they
cross the network. Freely available sniffers include mysqglsniffer (http://
hackmysql.com/mysqlsniffer) and tcpdump; see hitp://forge.mysql.com/snippets/
view.php?id=15 for an example of how to use tcpdump.

* Use a proxy, such as MySQL Proxy, to capture and time queries.

Operating System Profiling

It’s often useful to peek into operating system statistics and try to find out what the
operating system and hardware are doing. This can help not only when profiling an
application, but also when troubleshooting.

This section is admittedly biased toward Unix-like operating systems, because that’s
what we work with most often. However, you can use the same techniques on other
operating systems, as long as they provide the statistics.

The tools we use most frequently are vmstat, iostat, mpstat, and strace. Each of these
shows a slightly different perspective on some combination of process, CPU, mem-
ory, and I/O activity. These tools are available on most Unix-like operating systems.
We show examples of how to use them throughout this book, especially at the end
of Chapter 7.

Be careful with strace on GNU/Linux on production servers. It seems
to have issues with multithreaded processes sometimes, and we’ve
crashed servers with it.

Troubleshooting MySQL Connections and Processes

One set of tools we don’t discuss elsewhere in detail is tools for discovering network
activity and doing basic troubleshooting. As an example of how to do this, we show
how you can track a MySQL connection back to its origin on another server.

Begin with the output of SHOW PROCESSLIST in MySQL, and note the Host column in
one of the processes. We use the following example:

76 | Chapter2: Finding Bottlenecks: Benchmarking and Profiling

http://hackmysql.com/mysqlsniffer
http://hackmysql.com/mysqlsniffer
http://forge.mysql.com/snippets/view.php?id=15
http://forge.mysql.com/snippets/view.php?id=15

Fkkkskskskklollokokololololookokskskskskokkok 99 |y RRERRRRRRkkokolokokokskskskeskskokskokokokok

Id: 91296

User: web

Host: sargon.cluster3:37636
db: main

Command: Sleep

Time: 10

State:

Info: NULL

The Host column shows where the connection originated and, just as importantly,
the TCP port from which it came. You can use that information to find out which
process opened the connection. If you have root access to sargon, you can use net-
stat and the port number to find out which process opened the connection:

root@sargon#t netstat -ntp | grep :37636

tcp 0 0 192.168.0.12:37636 192.168.0.21:3306 ESTABLISHED 16072/apache2
The process number and name are in the last field of output: process 16072 started
this connection, and it came from Apache. Once you know the process ID you can
branch out to discover many other things about it, such as which other network con-
nections the process owns:

root@sargontt netstat -ntp | grep 16072/apache2

tcp 0 0 192.168.0.12:37636 192.168.0.21:3306 ESTABLISHED 16072/apache2

tcp 0 0 192.168.0.12:37635 192.168.0.21:3306 ESTABLISHED 16072/apache2

tcp 0 0 192.168.0.12:57917 192.168.0.3:389 ESTABLISHED 16072/apache2
It looks like that Apache worker process has two MySQL connections (port 3306)
open, and something to port 389 on another machine as well. What is port 389?
There’s no guarantee, but many programs do use standardized port numbers, such
as MySQL’s default port of 3306. A list is often in /etc/services, so let’s see what that
says:

root@sargon# grep 389 /etc/services

ldap 389/tcp # Lightweight Directory Access Protocol

ldap 389/udp
We happen to know this server uses LDAP authentication, so LDAP makes sense.
Let’s see what else we can find out about process 16072. It’s pretty easy to see what
the process is doing with ps. The fancy pattern to grep we use here is so you can see
the first line of output, which shows column headings:

root@sargontt ps -eaf | grep 'UID\|16072'

UID PID PPID C STIME TTY TIME CMD
apache 16072 22165 0 09:20 ? 00:00:00 /usr/sbin/apache2 -D DEFAULT VHOST...

You can potentially use this information to find other problems. Don’t be surprised,
for example, to find that a service such as LDAP or NFS is causing problems for
Apache and manifesting as slow page-generation times.

Operating System Profiling | 77

You can also list a process’s open files using the Isof command. This is great for find-
ing out all sorts of information, because everything is a file in Unix. We won’t show
the output here because it’s very verbose, but you can run Isof | grep 16072 to find
the process’s open files. You can also use Isof to find network connections when net-
stat isn’t available. For example, the following command uses Isof to show approxi-
mately the same information we found with netstat. We’ve reformatted the output
slightly for printing:
root@sargontt lsof -i -P | grep 16072
apache2 16072 apache 3u IPv4 25899404 TCP *:80 (LISTEN)
apache2 16072 apache 15u IPv4 33841089 TCP sargon.cluster3:37636->
hammurabi.cluster3:3306 (ESTABLISHED)
apache2 16072 apache 27u IPv4 33818434 TCP sargon.cluster3:57917->
romulus.cluster3:389 (ESTABLISHED)
apache2 16072 apache 29u IPv4 33841087 TCP sargon.cluster3:37635->
hammurabi.cluster3:3306 (ESTABLISHED)
On GNU/Linux, the /proc filesystem is another invaluable troubleshooting aid. Each
process has its own directory under /proc, and you can see lots of information about
it, such as its current working directory, memory usage, and much more.

Apache actually has a feature similar to the Unix ps command: the /server-status/
URL. For example, if your intranet runs Apache at http://intranet/, you can point
your web browser to http://intranet/server-status/ to see what Apache is doing. This
can be a helpful way to find out what URL a process is serving. The page has a leg-
end that explains its output.

Advanced Profiling and Troubleshooting

If you need to dig deeper into a process to find out what it’s doing—for example,
why it’s in uninterruptible sleep status—you can use strace -p and/or gdb -p. These
commands can show system calls and backtraces, which can give more information
about what the process was doing when it got stuck. Lots of things could make a
process get stuck, such as NFS locking services that crash, a call to a remote web ser-
vice that’s not responding, and so on.

You can also profile systems or parts of systems in more detail to find out what
they’re doing. If you really need high performance and you start having problems,
you might even find yourself profiling MySQL’s internals. Although this might not
seem to be your job (it’s the MySQL developer team’s job, right?), it can help you
isolate the part of a system that’s causing trouble. You may not be able or willing to
fix it, but at least you can design your application to avoid a weakness.

Here are some tools you might find useful:

OProfile
OProfile (http://oprofile.sourceforge.net) is a system profiler for Linux. It consists
of a kernel driver and a daemon for collecting sample data, and several tools to

78 | Chapter2: Finding Bottlenecks: Benchmarking and Profiling

http://intranet/
http://intranet/server-status/
http://oprofile.sourceforge.net

help you analyze the profiling data you collected. It profiles all code, including
interrupt handlers, the kernel, kernel modules, applications, and shared librar-
ies. If an application is compiled with debug symbols, OProfile can annotate the
source, but this is not necessary; you can profile a system without recompiling
anything. It has relatively low overhead, normally in the range of a few percent.

gprof
gprof is the GNU profiler, which can produce execution profiles of programs
compiled with the -pg option. It calculates the amount of time spent in each rou-
tine. gprof can produce reports on function call frequency and durations, a call
graph, and annotated source listings.

Other tools
There are many other tools, including specialized and/or proprietary programs.
These include Intel VTune, the Sun Performance Analyzer (part of Sun Studio),
and DTrace on Solaris and other systems.

Operating System Profiling | 79

CHAPTER 3
Schema Optimization and Indexing

Optimizing a poorly designed or badly indexed schema can improve performance by
orders of magnitude. If you require high performance, you must design your schema
and indexes for the specific queries you will run. You should also estimate your per-
formance requirements for different kinds of queries, because changes to one query
or one part of the schema can have consequences elsewhere. Optimization often
involves tradeoffs. For example, adding indexes to speed up retrieval will slow
updates. Likewise, a denormalized schema can speed up some types of queries but
slow down others. Adding counter and summary tables is a great way to optimize
queries, but they may be expensive to maintain.

Sometimes you may need to go beyond the role of a developer and question the busi-
ness requirements handed to you. People who aren’t experts in database systems
often write business requirements without understanding their performance impacts.
If you explain that a small feature will double the server hardware requirements, they
may decide they can live without it.

Schema optimization and indexing require a big-picture approach as well as atten-
tion to details. You need to understand the whole system to understand how each
piece will affect others. This chapter begins with a discussion of data types, then cov-
ers indexing strategies and normalization. It finishes with some notes on storage
engines.

You will probably need to review this chapter after reading the chapter on query
optimization. Many of the topics discussed here—especially indexing—can’t be con-
sidered in isolation. You have to be familiar with query optimization and server tun-
ing to make good decisions about indexes.

Choosing Optimal Data Types

MySQL supports a large variety of data types, and choosing the correct type to store
your data is crucial to getting good performance. The following simple guidelines can
help you make better choices, no matter what type of data you are storing:

80

Smaller is usually better.
In general, try to use the smallest data type that can correctly store and repre-
sent your data. Smaller data types are usually faster, because they use less space
on the disk, in memory, and in the CPU cache. They also generally require fewer
CPU cycles to process.

Make sure you don’t underestimate the range of values you need to store,
though, because increasing the data type range in multiple places in your schema
can be a painful and time-consuming operation. If you’re in doubt as to which is
the best data type to use, choose the smallest one that you don’t think you’ll
exceed. (If the system is not very busy or doesn’t store much data, or if you’re at
an early phase in the design process, you can change it easily later.)
Simple is good.

Fewer CPU cycles are typically required to process operations on simpler data
types. For example, integers are cheaper to compare than characters, because
character sets and collations (sorting rules) make character comparisons compli-
cated. Here are two examples: you should store dates and times in MySQL’s
built-in types instead of as strings, and you should use integers for IP addresses.
We discuss these topics further later.

Avoid NULL if possible.
You should define fields as NOT NULL whenever you can. A lot of tables include
nullable columns even when the application does not need to store NULL (the
absence of a value), merely because it’s the default. You should be careful to
specify columns as NOT NULL unless you intend to store NULL in them.

It’s harder for MySQL to optimize queries that refer to nullable columns,
because they make indexes, index statistics, and value comparisons more com-
plicated. A nullable column uses more storage space and requires special pro-
cessing inside MySQL. When a nullable column is indexed, it requires an extra
byte per entry and can even cause a fixed-size index (such as an index on a sin-
gle integer column) to be converted to a variable-sized one in MyISAM.

Even when you do need to store a “no value” fact in a table, you might not need
to use NULL. Consider using zero, a special value, or an empty string instead.

The performance improvement from changing NULL columns to NOT NULL is usu-
ally small, so don’t make finding and changing them on an existing schema a pri-
ority unless you know they are causing problems. However, if you’re planning to
index columns, avoid making them nullable if possible.

The first step in deciding what data type to use for a given column is to determine
what general class of types is appropriate: numeric, string, temporal, and so on. This
is usually pretty straightforward, but we mention some special cases where the
choice is unintuitive.

Choosing Optimal Data Types | 81

The next step is to choose the specific type. Many of MySQL’s data types can store
the same kind of data but vary in the range of values they can store, the precision
they permit, or the physical space (on disk and in memory) they require. Some data
types also have special behaviors or properties.

For example, a DATETIME and a TIMESTAMP column can store the same kind of data:
date and time, to a precision of one second. However, TIMESTAMP uses only half as
much storage space, is time zone—aware, and has special autoupdating capabilities.
On the other hand, it has a much smaller range of allowable values, and sometimes
its special capabilities can be a handicap.

We discuss base data types here. MySQL supports many aliases for compatibility,
such as INTEGER, BOOL, and NUMERIC. These are only aliases. They can be confusing,
but they don’t affect performance.

Whole Numbers

There are two kinds of numbers: whole numbers and real numbers (numbers with a
fractional part). If you're storing whole numbers, use one of the integer types:
TINYINT, SMALLINT, MEDIUMINT, INT, or BIGINT. These require 8, 16, 24, 32, and 64 bits
of storage space, respectively. They can store values from —2"-1) to 2W-1)—1, where N
is the number of bits of storage space they use.

Integer types can optionally have the UNSIGNED attribute, which disallows negative
values and approximately doubles the upper limit of positive values you can store.
For example, a TINYINT UNSIGNED can store values ranging from 0 to 255 instead of
from —128 to 127.

Signed and unsigned types use the same amount of storage space and have the same
performance, so use whatever’s best for your data range.

Your choice determines how MySQL stores the data, in memory and on disk. How-
ever, integer computations generally use 64-bit BIGINT integers, even on 32-bit archi-
tectures. (The exceptions are some aggregate functions, which use DECIMAL or DOUBLE
to perform computations.)

MySQL lets you specify a “width” for integer types, such as INT(11). This is mean-
ingless for most applications: it does not restrict the legal range of values, but simply
specifies the number of characters MySQL’s interactive tools (such as the command-
line client) will reserve for display purposes. For storage and computational pur-
poses, INT(1) is identical to INT(20).

A w
< The Falcon storage engine is different from other storage engines
.‘s MySQL AB provides in that it stores integers in its own internal for-
.0 @ .
112 mat. The user has no control over the actual size of the stored data.

" Third-party storage engines, such as Brighthouse, also have their own
storage formats and compression schemes.

82 | Chapter3: Schema Optimization and Indexing

Real Numbers

Real numbers are numbers that have a fractional part. However, they aren’t just for
fractional numbers; you can also use DECIMAL to store integers that are so large they
don’t fit in BIGINT. MySQL supports both exact and inexact types.

The FLOAT and DOUBLE types support approximate calculations with standard floating-
point math. If you need to know exactly how floating-point results are calculated,
you will need to research your platform’s floating-point implementation.

The DECIMAL type is for storing exact fractional numbers. In MySQL 5.0 and newer, the
DECIMAL type supports exact math. MySQL 4.1 and earlier used floating-point math to
perform computations on DECIMAL values, which could give strange results because of
loss of precision. In these versions of MySQL, DECIMAL was only a “storage type.”

The server itself performs DECIMAL math in MySQL 5.0 and newer, because CPUs
don’t support the computations directly. Floating-point math is somewhat faster,
because the CPU performs the computations natively.

Both floating-point and DECIMAL types let you specify a precision. For a DECIMAL col-
umn, you can specify the maximum allowed digits before and after the decimal point.
This influences the column’s space consumption. MySQL 5.0 and newer pack the dig-
its into a binary string (nine digits per four bytes). For example, DECIMAL(18, 9) will
store nine digits from each side of the decimal point, using nine bytes in total: four for
the digits before the decimal point, one for the decimal point itself, and four for the
digits after the decimal point.

A DECIMAL number in MySQL 5.0 and newer can have up to 65 digits. Earlier MySQL
versions had a limit of 254 digits and stored the values as unpacked strings (one byte
per digit). However, these versions of MySQL couldn’t actually use such large num-
bers in computations, because DECIMAL was just a storage format; DECIMAL numbers
were converted to DOUBLEs for computational purposes,

You can specify a floating-point column’s desired precision in a couple of ways,
which can cause MySQL to silently choose a different data type or to round values
when you store them. These precision specifiers are nonstandard, so we suggest that
you specify the type you want but not the precision.

Floating-point types typically use less space than DECIMAL to store the same range of
values. A FLOAT column uses four bytes of storage. DOUBLE consumes eight bytes and
has greater precision and a larger range of values. As with integers, you’re choosing
only the storage type; MySQL uses DOUBLE for its internal calculations on floating-
point types.

Because of the additional space requirements and computational cost, you should
use DECIMAL only when you need exact results for fractional numbers—for example,
when storing financial data.

Choosing Optimal DataTypes | 83

String Types

MySQL supports quite a few string data types, with many variations on each. These
data types changed greatly in versions 4.1 and 5.0, which makes them even more
complicated. Since MySQL 4.1, each string column can have its own character set
and set of sorting rules for that character set, or collation (see Chapter 5 for more on
these topics). This can impact performance greatly.

VARCHAR and CHAR types

The two major string types are VARCHAR and CHAR, which store character values.
Unfortunately, it’s hard to explain exactly how these values are stored on disk and in
memory, because the implementations are storage engine-dependent (for example,
Falcon uses its own storage formats for almost every data type). We assume you are
using InnoDB and/or MyISAM. If not, you should read the documentation for your
storage engine.

Let’s take a look at how VARCHAR and CHAR values are typically stored on disk. Be
aware that a storage engine may store a CHAR or VARCHAR value differently in memory
from how it stores that value on disk, and that the server may translate the value into
yet another storage format when it retrieves it from the storage engine. Here’s a gen-
eral comparison of the two types:

VARCHAR
VARCHAR stores variable-length character strings and is the most common string
data type. It can require less storage space than fixed-length types, because it
uses only as much space as it needs (i.e., less space is used to store shorter val-
ues). The exception is a MyISAM table created with ROW_FORMAT=FIXED, which
uses a fixed amount of space on disk for each row and can thus waste space.

VARCHAR uses 1 or 2 extra bytes to record the value’s length: 1 byte if the col-
umn’s maximum length is 255 bytes or less, and 2 bytes if it’s more. Assuming
the latin1 character set, a VARCHAR(10) will use up to 11 bytes of storage space. A
VARCHAR(1000) can use up to 1002 bytes, because it needs 2 bytes to store length
information.

VARCHAR helps performance because it saves space. However, because the rows
are variable-length, they can grow when you update them, which can cause extra
work. If a row grows and no longer fits in its original location, the behavior is
storage engine-dependent. For example, MyISAM may fragment the row, and
InnoDB may need to split the page to fit the row into it. Other storage engines
may never update data in place at all.

It’s usually worth using VARCHAR when the maximum column length is much
larger than the average length; when updates to the field are rare, so fragmenta-
tion is not a problem; and when you’re using a complex character set such as
UTF-8, where each character uses a variable number of bytes of storage.

84 | Chapter3: Schema Optimization and Indexing

In version 5.0 and newer, MySQL preserves trailing spaces when you store and
retrieve values. In versions 4.1 and older, MySQL strips trailing spaces.

CHAR

CHAR is fixed-length: MySQL always allocates enough space for the specified
number of characters. When storing a CHAR value, MySQL removes any trailing
spaces. (This was also true of VARCHAR in MySQL 4.1 and older versions—CHAR
and VARCHAR were logically identical and differed only in storage format.) Values
are padded with spaces as needed for comparisons.

CHAR is useful if you want to store very short strings, or if all the values are nearly
the same length. For example, CHAR is a good choice for MD5 values for user pass-
words, which are always the same length. CHAR is also better than VARCHAR for
data that’s changed frequently, because a fixed-length row is not prone to frag-
mentation. For very short columns, CHAR is also more efficient than VARCHAR; a
CHAR(1) designed to hold only Y and N values will use only one byte in a single-
byte character set,” but a VARCHAR(1) would use two bytes because of the length
byte.

This behavior can be a little confusing, so we illustrate with an example. First, we
create a table with a single CHAR(10) column and store some values in it:

mysql> CREATE TABLE char_test(char_col CHAR(10));
mysql> INSERT INTO char_test(char_col) VALUES
-> ('string1'), (' string2'), ('string3 ');

When we retrieve the values, the trailing spaces have been stripped away:

mysql> SELECT CONCAT("'", char_col, "'") FROM char_test;

e +
| CONCAT("'", char col, "'") |
e +
| 'string1' |
| ' string2' |
| 'string3’ |
e +

If we store the same values into a VARCHAR(10) column, we get the following result
upon retrieval:

mysql> SELECT CONCAT("'", varchar_col, "'") FROM varchar_test;

mmm e e e +
| CONCAT("'", varchar col, "'") |
e +
| 'string1’

| ' string2'

| 'string3 '

mmm e e e +

* Remember that the length is specified in characters, not bytes. A multibyte character set can require more
than one byte to store each character.

Choosing Optimal Data Types | 85

How data is stored is up to the storage engines, and not all storage engines handle
fixed-length and variable-length data the same way. The Memory storage engine uses
fixed-size rows, so it has to allocate the maximum possible space for each value even
when it’s a variable-length field. On the other hand, Falcon uses variable-length col-
umns even for fixed-length CHAR fields. However, the padding and trimming behav-
ior is consistent across storage engines, because the MySQL server itself handles that.

The sibling types for CHAR and VARCHAR are BINARY and VARBINARY, which store binary
strings. Binary strings are very similar to conventional strings, but they store bytes
instead of characters. Padding is also different: MySQL pads BINARY values with \o
(the zero byte) instead of spaces and doesn’t strip the pad value on retrieval.”

These types are useful when you need to store binary data and want MySQL to com-
pare the values as bytes instead of characters. The advantage of byte-wise compari-
sons is more than just a matter of case insensitivity. MySQL literally compares BINARY
strings one byte at a time, according to the numeric value of each byte. As a result,
binary comparisons can be much simpler than character comparisons, so they are
faster.

Generosity Can Be Unwise

Storing the value 'hello' requires the same amount of space in a VARCHAR(5) and a
VARCHAR (200) column. Is there any advantage to using the shorter column?

As it turns out, there is a big advantage. The larger column can use much more mem-
ory, because MySQL often allocates fixed-size chunks of memory to hold values inter-
nally. This is especially bad for sorting or operations that use in-memory temporary
tables. The same thing happens with filesorts that use on-disk temporary tables.

The best strategy is to allocate only as much space as you really need.

BLOB and TEXT types

BLOB and TEXT are string data types designed to store large amounts of data as either
binary or character strings, respectively.

In fact, they are each families of data types: the character types are TINYTEXT,
SMALLTEXT, TEXT, MEDIUMTEXT, and LONGTEXT, and the binary types are TINYBLOB,
SMALLBLOB, BLOB, MEDIUMBLOB, and LONGBLOB. BLOB is a synonym for SMALLBLOB, and TEXT
is a synonym for SMALLTEXT.

* Be careful with the BINARY type if the value must remain unchanged after retrieval. MySQL will pad it to the
required length with \os.

86 | Chapter3: Schema Optimization and Indexing

Unlike with all other data types, MySQL handles each BLOB and TEXT value as an
object with its own identity. Storage engines often store them specially; InnoDB may
use a separate “external” storage area for them when they’re large. Each value
requires from one to four bytes of storage space in the row and enough space in
external storage to actually hold the value.

The only difference between the BLOB and TEXT families is that BLOB types store binary
data with no collation or character set, but TEXT types have a character set and
collation.

MySQL sorts BLOB and TEXT columns differently from other types: instead of sorting
the full length of the string, it sorts only the first max_sort_length bytes of such col-
umns. If you need to sort by only the first few characters, you can either decrease the
max_sort_length server variable or use ORDER BY SUBSTRING(column, length).

MySQL can’t index the full length of these data types and can’t use the indexes for
sorting. (You’ll find more on these topics later in the chapter.)

How to Avoid On-Disk Temporary Tables

Because the Memory storage engine doesn’t support the BLOB and TEXT types, queries
that use BLOB or TEXT columns and need an implicit temporary table will have to use on-
disk MyISAM temporary tables, even for only a few rows. This can result in a serious
performance overhead. Even if you configure MySQL to store temporary tables on a
RAM disk, many expensive operating system calls will be required. (The Maria storage
engine should alleviate this problem by caching everything in memory, not just the
indexes.)

The best solution is to avoid using the BLOB and TEXT types unless you really need them.
If you can’t avoid them, you may be able to use the ORDER BY SUBSTRING(column, length)
trick to convert the values to character strings, which will permit in-memory temporary
tables. Just be sure that you’re using a short enough substring that the temporary table
doesn’t grow larger than max_heap_table size or tmp table size, or MySQL will con-
vert the table to an on-disk MyISAM table.

If the Extra column of EXPLAIN contains “Using temporary,” the query uses an implicit
temporary table.

Using ENUM instead of a string type

Sometimes you can use an ENUM column instead of conventional string types. An ENUM
column can store up to 65,535 distinct string values. MySQL stores them very com-
pactly, packed into one or two bytes depending on the number of values in the list. It
stores each value internally as an integer representing its position in the field defini-
tion list, and it keeps the “lookup table” that defines the number-to-string correspon-
dence in the table’s .frm file. Here’s an example:

Choosing Optimal Data Types | 87

mysql> CREATE TABLE enum_test(
-> e ENUM('fish', 'apple', 'dog') NOT NULL
-);
mysql> INSERT INTO enum_test(e) VALUES('fish'), ('dog'), ('apple');
The three rows actually store integers, not strings. You can see the dual nature of the
values by retrieving them in a numeric context:

mysql> SELECT e + 0 FROM enum_test;

e +
| e +0 |
Hmmmmm +
\ 1|
\ 3 |
| 2 |
e +

This duality can be terribly confusing if you specify numbers for your ENUM con-
stants, as in ENUM('1", '2', '3"). We suggest you don’t do this.

Another surprise is that an ENUM field sorts by the internal integer values, not by the
strings themselves:

mysql> SELECT e FROM enum_test ORDER BY e;

| fish |
| apple |
| dog |

You can work around this by specifying ENUM members in the order in which you
want them to sort. You can also use FIELD() to specify a sort order explicitly in your
queries, but this prevents MySQL from using the index for sorting:

mysql> SELECT e FROM enum_test ORDER BY FIELD(e, 'apple', 'dog', 'fish');

The biggest downside of ENUM is that the list of strings is fixed, and adding or remov-
ing strings requires the use of ALTER TABLE. Thus, it might not be a good idea to use
ENUM as a string data type when the list of allowed string values is likely to change in
the future. MySQL uses ENUM in its own privilege tables to store Y and N values.

Because MySQL stores each value as an integer and has to do a lookup to convert it
to its string representation, ENUM columns have some overhead. This is usually offset
by their smaller size, but not always. In particular, it can be slower to join a CHAR or
VARCHAR column to an ENUM column than to another CHAR or VARCHAR column.

88 | Chapter3: Schema Optimization and Indexing

To illustrate, we benchmarked how quickly MySQL performs such a join on a table
in one of our applications. The table has a fairly wide primary key:

CREATE TABLE webservicecalls (
day date NOT NULL,
account smallint NOT NULL,
service varchar(10) NOT NULL,
method varchar(50) NOT NULL,
calls int NOT NULL,
items int NOT NULL,
time float NOT NULL,
cost decimal(9,5) NOT NULL,
updated datetime,
PRIMARY KEY (day, account, service, method)
) ENGINE=InnoDB;

The table contains about 110,000 rows and is only about 10 MB, so it fits entirely in
memory. The service column contains 5 distinct values with an average length of 4
characters, and the method column contains 71 values with an average length of 20
characters.

We made a copy of this table and converted the service and method columns to ENUM,
as follows:

CREATE TABLE webservicecalls enum (
. omitted ...
service ENUM(...values omitted...) NOT NULL,
method ENUM(...values omitted...) NOT NULL,
. omitted ...
) ENGINE=InnoDB;

We then measured the performance of joining the tables by the primary key col-
umns. Here is the query we used:

mysql> SELECT SQL_NO_CACHE COUNT(*)
-> FROM webservicecalls
-> JOIN webservicecalls USING(day, account, service, method);

We varied this query to join the VARCHAR and ENUM columns in different combina-
tions. Table 3-1 shows the results.

Table 3-1. Speed of joining VARCHAR and ENUM columns

Test Queries per second
VARCHAR joined to VARCHAR 26
VARCHAR joined to ENUM 1.7
ENUM joined to VARCHAR 1.8
ENUM joined to ENUM 3.5

The join is faster after converting the columns to ENUM, but joining the ENUM columns
to VARCHAR columns is slower. In this case, it looks like a good idea to convert these
columns, as long as they don’t have to be joined to VARCHAR columns.

Choosing Optimal Data Types | 89

However, there’s another benefit to converting the columns: according to the Data_
length column from SHOW TABLE STATUS, converting these two columns to ENUM made
the table about 1/3 smaller. In some cases, this might be beneficial even if the ENUM
columns have to be joined to VARCHAR columns. Also, the primary key itself is only
about half the size after the conversion. Because this is an InnoDB table, if there are
any other indexes on this table, reducing the primary key size will make them much
smaller too. We explain this later in the chapter.

Date and Time Types

MySQL has many types for various kinds of date and time values, such as YEAR and
DATE. The finest granularity of time MySQL can store is one second. However, it can
do temporal computations with microsecond granularity, and we show you how to
work around the storage limitations.

Most of the temporal types have no alternatives, so there is no question of which one
is the best choice. The only question is what to do when you need to store both the
date and the time. MySQL offers two very similar data types for this purpose:
DATETIME and TIMESTAMP. For many applications, either will work, but in some cases,
one works better than the other. Let’s take a look:

DATETIME
This type can hold a large range of values, from the year 1001 to the year 9999,
with a precision of one second. It stores the date and time packed into an inte-
ger in YYYYMMDDHHMMSS format, independent of time zone. This uses
eight bytes of storage space.

By default, MySQL displays DATETIME values in a sortable, unambiguous format,
such as 2008-01-16 22:37:08. This is the ANSI standard way to represent dates
and times.

TIMESTAMP
As its name implies, the TIMESTAMP type stores the number of seconds elapsed
since midnight, January 1, 1970 (Greenwich Mean Time)—the same as a Unix
timestamp. TIMESTAMP uses only four bytes of storage, so it has a much smaller
range than DATETIME: from the year 1970 to partway through the year 2038.
MySQL provides the FROM_UNIXTIME() and UNIX TIMESTAMP() functions to con-
vert a Unix timestamp to a date, and vice versa.

Newer MySQL versions format TIMESTAMP values just like DATETIME values, but
older MySQL versions display them without any punctuation between the parts.
This is only a display formatting difference; the TIMESTAMP storage format is the
same in all MySQL versions.

The value a TIMESTAMP displays also depends on the time zone. The MySQL
server, operating system, and client connections all have time zone settings.

90 | Chapter3: Schema Optimization and Indexing

Thus, a TIMESTAMP that stores the value 0 actually displays as 1969-12-31 19:00:00
in Eastern Daylight Time, which has a five-hour offset from GMT.

TIMESTAMP also has special properties that DATETIME doesn’t have. By default,
MySQL will set the first TIMESTAMP column to the current time when you insert a
row without specifying a value for the column.” MySQL also updates the first
TIMESTAMP column’s value by default when you update the row, unless you assign
a value explicitly in the UPDATE statement. You can configure the insertion and
update behaviors for any TIMESTAMP column. Finally, TIMESTAMP columns are NOT
NULL by default, which is different from every other data type.

Special behavior aside, in general if you can use TIMESTAMP you should, as it is more
space-efficient than DATETIME. Sometimes people store Unix timestamps as integer
values, but this usually doesn’t gain you anything. As that format is often less conve-
nient to deal with, we do not recommend doing this.

What if you need to store a date and time value with subsecond resolution? MySQL
currently does not have an appropriate data type for this, but you can use your own
storage format: you can use the BIGINT data type and store the value as a timestamp
in microseconds, or you can use a DOUBLE and store the fractional part of the second
after the decimal point. Both approaches will work well.

Bit-Packed Data Types

MySQL has a few storage types that use individual bits within a value to store data
compactly. All of these types are technically string types, regardless of the underly-
ing storage format and manipulations:

BIT
Before MySQL 5.0, BIT is just a synonym for TINYINT. But in MySQL 5.0 and
newer, it’s a completely different data type with special characteristics. We dis-
cuss the new behavior here.

You can use a BIT column to store one or many true/false values in a single col-
umn. BIT(1) defines a field that contains a single bit, BIT(2) stores two bits, and
so on; the maximum length of a BIT column is 64 bits.

BIT behavior varies between storage engines. MyISAM packs the columns
together for storage purposes, so 17 individual BIT columns require only 17 bits
to store (assuming none of the columns permits NULL). MyISAM rounds that to
three bytes for storage. Other storage engines, such as Memory and InnoDB,
store each column as the smallest integer type large enough to contain the bits,
so you don’t save any storage space.

* The rules for TIMESTAMP behavior are complex and have changed in various MySQL versions, so you should
verify that you are getting the behavior you want. It’s usually a good idea to examine the output of SHOW
CREATE TABLE after making changes to TIMESTAMP columns.

Choosing Optimal Data Types | 91

SET

MySQL treats BIT as a string type, not a numeric type. When you retrieve a
BIT(1) value, the result is a string but the contents are the binary value 0 or 1,
not the ASCII value “0” or “1”. However, if you retrieve the value in a numeric
context, the result is the number to which the bit string converts. Keep this in
mind if you need to compare the result to another value. For example, if you
store the value b'00111001" (which is the binary equivalent of 57) into a BIT(8)
column and retrieve it, you will get the string containing the character code 57.
This happens to be the ASCII character code for “9”. But in a numeric context,
you’ll get the value 57:

mysql> CREATE TABLE bittest(a bit(8));
mysql> INSERT INTO bittest VALUES(b'00111001');
mysql> SELECT a, a + 0 FROM bittest;

FRE ERE +
| a | a+o0|
FR— FR—— +
lo | 57|
R R — +

This can be very confusing, so we recommend that you use BIT with caution. For
most applications, we think it is a better idea to avoid this type.

If you want to store a true/false value in a single bit of storage space, another
option is to create a nullable CHAR(0) column. This column is capable of storing
either the absence of a value (NULL) or a zero-length value (the empty string).

If you need to store many true/false values, consider combining many columns
into one with MySQL’s native SET data type, which MySQL represents inter-
nally as a packed set of bits. It uses storage efficiently, and MySQL has functions
such as FIND IN SET() and FIELD() that make it easy to use in queries. The
major drawback is the cost of changing the column’s definition: this requires an
ALTER TABLE, which is very expensive on large tables (but see the workaround
later in this chapter). In general, you also can’t use indexes for lookups on SET
columns.

Bitwise operations on integer columns

An alternative to SET is to use an integer as a packed set of bits. For example, you
can pack eight bits in a TINYINT and manipulate them with bitwise operators.
You can make this easier by defining named constants for each bit in your appli-
cation code.

The major advantage of this approach over SET is that you can change the “enu-
meration” the field represents without an ALTER TABLE. The drawback is that your
queries are harder to write and understand (what does it mean when bit 5 is
set?). Some people are comfortable with bitwise manipulations and some aren’t,
so whether you’ll want to try this technique is largely a matter of taste.

92

Chapter 3: Schema Optimization and Indexing

An example application for packed bits is an access control list (ACL) that stores per-
missions. Each bit or SET element represents a value such as CAN_READ, CAN_WRITE, or
CAN_DELETE. If you use a SET column, you’ll let MySQL store the bit-to-value map-
ping in the column definition; if you use an integer column, you’ll store the mapping
in your application code. Here’s what the queries would look like with a SET column:
mysql> CREATE TABLE acl (
-> perms SET('CAN READ', 'CAN_WRITE', 'CAN_DELETE') NOT NULL
-);
mysql> INSERT INTO acl(perms) VALUES ('CAN_READ,CAN_DELETE');
mysql> SELECT perms FROM acl WHERE FIND_IN_SET('CAN_READ', perms);

e +
| perms

Hmm e +
| CAN_READ,CAN DELETE
T T ET T +

If you used an integer, you could write that example as follows:

mysql> SET @CAN_READ := 1 << 0,
-> @CAN_WRITE := 1 << 1,
-> @CAN_DELETE := 1 << 2;

mysql> CREATE TABLE acl (
-> perms TINYINT U
-);

mysql> INSERT INTO acl(perms) VALUES(@CAN_READ + @CAN_DELETE);

mysql> SELECT perms FROM acl WHERE perms & @CAN_READ;

NSIGNED NOT NULL DEFAULT o

s +
| perms |
Hmmmmm e +
\ 5 |
Hmmm e +

We've used variables to define the values, but you can use constants in your code
instead.

Choosing Identifiers

Choosing a good data type for an identifier column is very important. You’re more
likely to compare these columns to other values (for example, in joins) and to use
them for lookups than other columns. You’re also likely to use them in other tables
as foreign keys, so when you choose a data type for an identifier column, you’re
probably choosing the type in related tables as well. (As we demonstrated earlier in
this chapter, it’s a good idea to use the same data types in related tables, because
you're likely to use them for joins.)

When choosing a type for an identifier column, you need to consider not only the
storage type, but also how MySQL performs computations and comparisons on that
type. For example, MySQL stores ENUM and SET types internally as integers but con-
verts them to strings when doing comparisons in a string context.

Choosing Optimal DataTypes | 93

Once you choose a type, make sure you use the same type in all related tables. The
types should match exactly, including properties such as UNSIGNED.” Mixing different
data types can cause performance problems, and even if it doesn’t, implicit type con-
versions during comparisons can create hard-to-find errors. These may even crop up
much later, after you’ve forgotten that you’re comparing different data types.

Choose the smallest size that can hold your required range of values, and leave room
for future growth if necessary. For example, if you have a state id column that
stores U.S state names, you don’t need thousands or millions of values, so don’t use
an INT. A TINYINT should be sufficient and is three bytes smaller. If you use this value
as a foreign key in other tables, three bytes can make a big difference.

Integer types
Integers are usually the best choice for identifiers, because they’re fast and they
work with AUTO_INCREMENT.

ENUM and SET
The ENUM and SET types are generally a poor choice for identifiers, though they
can be good for static “definition tables” that contain status or “type” values.
ENUM and SET columns are appropriate for holding information such as an order’s
status, a product’s type, or a person’s gender.

As an example, if you use an ENUM field to define a product’s type, you might
want a lookup table primary keyed on an identical ENUM field. (You could add
columns to the lookup table for descriptive text, to generate a glossary, or to
provide meaningful labels in a pull-down menu on a web site.) In this case,
you’ll want to use the ENUM as an identifier, but for most purposes you should
avoid doing so.
String types

Avoid string types for identifiers if possible, as they take up a lot of space and are
generally slower than integer types. Be especially cautious when using string
identifiers with MyISAM tables. MyISAM uses packed indexes for strings by
default, which may make lookups much slower. In our tests, we’ve noted up to
six times slower performance with packed indexes on MyISAM.

You should also be very careful with completely “random” strings, such as those
produced by MD5(), SHA1(), or WID(). Each new value you generate with them
will be distributed in arbitrary ways over a large space, which can slow INSERT
and some types of SELECT queries:T

* If you’re using the InnoDB storage engine, you may not be able to create foreign keys unless the data types
match exactly. The resulting error message, “ERROR 1005 (HY000): Can’t create table,” can be confusing
depending on the context, and questions about it come up often on MySQL mailing lists. (Oddly, you can
create foreign keys between VARCHAR columns of different lengths.)

T On the other hand, for some very large tables with many writers, such pseudorandom values can actually
help eliminate “hot spots.”

94 | Chapter3: Schema Optimization and Indexing

* They slow INSERT queries because the inserted value has to go in a random
location in indexes. This causes page splits, random disk accesses, and clus-
tered index fragmentation for clustered storage engines.

* They slow SELECT queries because logically adjacent rows will be widely dis-
persed on disk and in memory.

* Random values cause caches to perform poorly for all types of queries
because they defeat locality of reference, which is how caching works. If the
entire data set is equally “hot,” there is no advantage to having any particu-
lar part of the data cached in memory, and if the working set does not fit in
memory, the cache will have a lot of flushes and misses.

If you do store UUID values, you should remove the dashes or, even better, con-
vert the UUID values to 16-byte numbers with UNHEX() and store them in a
BINARY(16) column. You can retrieve the values in hexadecimal format with the
HEX() function.

Values generated by UUID() have different characteristics from those generated
by a cryptographic hash function such ash SHA1(): the UUID values are unevenly
distributed and are somewhat sequential. They’re still not as good as a monoton-
ically increasing integer, though.

Special Types of Data

Some kinds of data don’t correspond directly to the available built-in types. A time-
stamp with subsecond resolution is one example; we showed you some options for
storing such data earlier in the chapter.

Another example is an IP address. People often use VARCHAR(15) columns to store IP
addresses. However, an IP address is really an unsigned 32-bit integer, not a string.
The dotted-quad notation is just a way of writing it out so that humans can read it
more easily. You should store IP addresses as unsigned integers. MySQL provides the
INET_ATON() and INET NTOA() functions to convert between the two representations.
Future versions of MySQL may provide a native data type for IP addresses.

Indexing Basics

Indexes are data structures that help MySQL retrieve data efficiently. They are criti-
cal for good performance, but people often forget about them or misunderstand
them, so indexing is a leading cause of real-world performance problems. That’s why
we put this material early in the book—even earlier than our discussion of query
optimization.

Indexes (also called “keys” in MySQL) become more important as your data gets
larger. Small, lightly loaded databases often perform well even without proper
indexes, but as the dataset grows, performance can drop very quickly.

Indexing Basics | 95

Beware of Autogenerated Schemas

We’ve covered the most important data type considerations (some with serious and
others with more minor performance implications), but we haven’t yet told you about
the evils of autogenerated schemas.

Badly written schema migration programs and programs that autogenerate schemas
can cause severe performance problems. Some programs use large VARCHAR fields for
everything, or use different data types for columns that will be compared in joins. Be
sure to double-check a schema if it was created for you automatically.

Object-relational mapping (ORM) systems (and the “frameworks” that use them) are
another frequent performance nightmare. Some of these systems let you store any type
of data in any type of backend data store, which usually means they aren’t designed to
use the strengths of any of the data stores. Sometimes they store each property of each
object in a separate row, even using timestamp-based versioning, so there are multiple
versions of each property!

This design may appeal to developers, because it lets them work in an object-oriented
fashion without needing to think about how the data is stored. However, applications
that “hide complexity from developers” usually don’t scale well. We suggest you think
carefully before trading performance for developer productivity, and always test on a
realistically large dataset, so you don’t discover performance problems too late.

The easiest way to understand how an index works in MySQL is to think about the
index in a book. To find out where a particular topic is discussed in a book, you look
in the index, and it tells you the page number(s) where that term appears.

MySQL uses indexes in a similar way. It searches the index’s data structure for a
value. When it finds a match, it can find the row that contains the match. Suppose
you run the following query:

mysql> SELECT first_name FROM sakila.actor WHERE actor_id = 5;

There’s an index on the actor_id column, so MySQL will use the index to find rows
whose actor_id is 5. In other words, it performs a lookup on the values in the index
and returns any rows containing the specified value.

An index contains values from a specified column or columns in a table. If you index
more than one column, the column order is very important, because MySQL can only
search efficiently on a leftmost prefix of the index. Creating an index on two columns
is not the same as creating two separate single-column indexes, as you’ll see.

96 | Chapter3: Schema Optimization and Indexing

Types of Indexes

There are many types of indexes, each designed to perform well for different pur-
poses. Indexes are implemented in the storage engine layer, not the server layer.
Thus, they are not standardized: indexing works slightly differently in each engine,
and not all engines support all types of indexes. Even when multiple engines support
the same index type, they may implement it differently under the hood.

That said, let’s look at the index types MySQL currently supports, their benefits, and
their drawbacks.

B-Tree indexes

When people talk about an index without mentioning a type, they’re probably refer-
ring to a B-Tree index, which typically uses a B-Tree data structure to store its data.”
Most of MySQL’s storage engines support this index type. The Archive engine is the
exception: it didn’t support indexes at all until MySQL 5.1, when it started to allow a
single indexed AUTO_INCREMENT column.

We use the term “B-Tree” for these indexes because that’s what MySQL uses in
CREATE TABLE and other statements. However, storage engines may use different stor-
age structures internally. For example, the NDB Cluster storage engine uses a T-Tree
data structure for these indexes, even though they’re labeled BTREE.

Storage engines store B-Tree indexes in various ways on disk, which can affect per-
formance. For instance, MyISAM uses a prefix compression technique that makes
indexes smaller, while InnoDB leaves indexes uncompressed because it can’t use
compressed indexes for some of its optimizations. Also, MyISAM indexes refer to the
indexed rows by the physical positions of the rows as stored, but InnoDB refers to
them by their primary key values. Each variation has benefits and drawbacks.

The general idea of a B-Tree is that all the values are stored in order, and each leaf
page is the same distance from the root. Figure 3-1 shows an abstract representation
of a B-Tree index, which corresponds roughly to how InnoDB’s indexes work
(InnoDB uses a B+Tree structure). MyISAM uses a different structure, but the princi-
ples are similar.

A B-Tree index speeds up data access because the storage engine doesn’t have to
scan the whole table to find the desired data. Instead, it starts at the root node (not
shown in this figure). The slots in the root node hold pointers to child nodes, and the
storage engine follows these pointers. It finds the right pointer by looking at the val-
ues in the node pages, which define the upper and lower bounds of the values in the

* Many storage engines actually use a B+Tree index, in which each leaf node contains a link to the next for
fast range traversals through nodes. Refer to computer science literature for a detailed explanation of B-Tree
indexes.

Indexing Basics | 97

[Value in page Pointer from

) . higher-level
[Pointer to child page node page
I Pointer to next leaf
keyN | i

Leaf page:values < key1

Val1.1 | Val1.2

key1 <= values < key2

Val2.1 | Val2.2 § %
values >= keyN
VaIN1 ValN.2 § %VaIN m l

|<— Logical page. Size —»
depends on storage
engine. 16K for InnoDB.

Pointers to data (varies
by storage engine)

Figure 3-1. An index built on a B-Tree (technically, a B+Tree) structure

child nodes. Eventually, the storage engine either determines that the desired value
doesn’t exist or successfully reaches a leaf page.

Leaf pages are special, because they have pointers to the indexed data instead of
pointers to other pages. (Different storage engines have different types of “pointers”
to the data.) Our illustration shows only one node page and its leaf pages, but there
may be many levels of node pages between the root and the leaves. The tree’s depth
depends on how big the table is.

Because B-Trees store the indexed columns in order, they’re useful for searching for
ranges of data. For instance, descending the tree for an index on a text field passes
through values in alphabetical order, so looking for “everyone whose name begins
with I through K” is efficient.

Suppose you have the following table:

CREATE TABLE People (
last _name varchar(50) not null,
first_name varchar(50) not null,
dob date not null,
gender enum('m', 'f') not null,
key(last_name, first_name, dob)

)s
The index will contain the values from the last _name, first name, and dob columns for
every row in the table. Figure 3-2 illustrates how the index arranges the data it stores.

98 | Chapter3: Schema Optimization and Indexing

Allen Astaire Barrymore
Cuba Angelina Julia
1960-01-01 1980-03-04 2000-05-16

Akroyd Akroyd Akroyd
Christian Debbie Kirsten
1958-12-07 | 1990-03-18 1978-11-02
Allen Allen Allen
Cuba Kim Meryl
1960-01-01 | 1930-07-12 1980-12-12

et
B arrymore Basinger Basinger
Julia Viven Vivien
2000-05-16 | 1976-12-08 1979-01-24

Figure 3-2. Sample entries from a B-Tree (technically, a B+Tree) index

Notice that the index sorts the values according to the order of the columns given in
the index in the CREATE TABLE statement. Look at the last two entries: there are two
people with the same name but different birth dates, and they’re sorted by birth date.

Types of queries that can use a B-Tree index. B-Tree indexes work well for lookups by the
full key value, a key range, or a key prefix. They are useful only if the lookup uses a
leftmost prefix of the index.” The index we showed in the previous section will be
useful for the following kinds of queries:

Match the full value
A match on the full key value specifies values for all columns in the index. For
example, this index can help you find a person named Cuba Allen who was born
on 1960-01-01.

Match a leftmost prefix
This index can help you find all people with the last name Allen. This uses only
the first column in the index.

* This is MySQL-specific, and even version-specific. Other databases can use nonleading index parts, though
it’s usually more efficient to use a complete prefix. MySQL may offer this option in the future; we show
workarounds later in the chapter.

Indexing Basics | 99

Match a column prefix
You can match on the first part of a column’s value. This index can help you
find all people whose last names begin with J. This uses only the first column in
the index.

Match a range of values
This index can help you find people whose last names are between Allen and
Barrymore. This also uses only the first column.

Match one part exactly and match a range on another part
This index can help you find everyone whose last name is Allen and whose first
name starts with the letter K (Kim, Karl, etc.). This is an exact match on last
name and a range query on first_name.

Index-only queries
B-Tree indexes can normally support index-only queries, which are queries that
access only the index, not the row storage. We discuss this optimization in
“Covering Indexes” on page 120.

Because the tree’s nodes are sorted, they can be used for both lookups (finding val-
ues) and ORDER BY queries (finding values in sorted order). In general, if a B-Tree can
help you find a row in a particular way, it can help you sort rows by the same crite-
ria. So, our index will be helpful for ORDER BY clauses that match all the types of look-
ups we just listed.

Here are some limitations of B-Tree indexes:

* They are not useful if the lookup does not start from the leftmost side of the
indexed columns. For example, this index won’t help you find all people named
Bill or all people born on a certain date, because those columns are not leftmost
in the index. Likewise, you can’t use the index to find people whose last name
ends with a particular letter.

* You can’t skip columns in the index. That is, you won’t be able to find all peo-
ple whose last name is Smith and who were born on a particular date. If you
don’t specify a value for the first_name column, MySQL can use only the first
column of the index.

* The storage engine can’t optimize accesses with any columns to the right of the
first range condition. For example, if your query is WHERE last_name="Smith" AND
first_name LIKE 'J%' AND dob='1976-12-23", the index access will use only the
first two columns in the index, because the LIKE is a range condition (the server
can use the rest of the columns for other purposes, though). For a column that
has a limited number of values, you can often work around this by specifying
equality conditions instead of range conditions. We show detailed examples of
this in the indexing case study later in this chapter.

Now you know why we said the column order is extremely important: these limita-
tions are all related to column ordering. For high-performance applications, you

100 | Chapter3: Schema Optimization and Indexing

might need to create indexes with the same columns in different orders to satisty
your queries.

Some of these limitations are not inherent to B-Tree indexes, but are a result of how
the MySQL query optimizer and storage engines use indexes. Some of them may be
removed in the future.

Hash indexes

A hash index is built on a hash table and is useful only for exact lookups that use
every column in the index.” For each row, the storage engine computes a hash code of
the indexed columns, which is a small value that will probably differ from the hash
codes computed for other rows with different key values. It stores the hash codes in
the index and stores a pointer to each row in a hash table.

In MySQL, only the Memory storage engine supports explicit hash indexes. They are
the default index type for Memory tables, though Memory tables can have B-Tree
indexes too. The Memory engine supports nonunique hash indexes, which is
unusual in the database world. If multiple values have the same hash code, the index
will store their row pointers in the same hash table entry, using a linked list.

Here’s an example. Suppose we have the following table:

CREATE TABLE testhash (
fname VARCHAR(50) NOT NULL,
1name VARCHAR(50) NOT NULL,
KEY USING HASH(fname)

) ENGINE=MEMORY;

containing this data:

mysql> SELECT * FROM testhash;
Hmmmmmmne Hmmm e +

| fname | lname \
Hmmmmmmm- Hmmmmmmmeens +

| Arjen | Lentz

| Baron | Schwartz
| Peter | Zaitsev

| Vadim | Tkachenko
Hmmm e Hmmm e +

Now suppose the index uses an imaginary hash function called (), which returns
the following values (these are just examples, not real values):

f('Arjen') = 2323

f('Baron') = 7437

f('Peter') = 8784

f('vadim') = 2458

* See the computer science literature for more on hash tables.

Indexing Basics | 101

The index’s data structure will look like this:

Slot Value

2323 Pointer to row 1
2458 Pointer to row 4
7437 Pointer to row 2
8784 Pointer to row 3

Notice that the slots are ordered, but the rows are not. Now, when we execute this
query:
mysql> SELECT lname FROM testhash WHERE fname='Peter';

MySQL will calculate the hash of 'Peter' and use that to look up the pointer in the
index. Because f('Peter') = 8784, MySQL will look in the index for 8784 and find
the pointer to row 3. The final step is to compare the value in row 3 to 'Peter’, to
make sure it’s the right row.

Because the indexes themselves store only short hash values, hash indexes are very
compact. The hash value’s length doesn’t depend on the type of the columns you
index—a hash index on a TINYINT will be the same size as a hash index on a large
character column.

As a result, lookups are usually lightning-fast. However, hash indexes have some
limitations:

* Because the index contains only hash codes and row pointers rather than the val-
ues themselves, MySQL can’t use the values in the index to avoid reading the
rows. Fortunately, accessing the in-memory rows is very fast, so this doesn’t usu-
ally degrade performance.

* MySQL can’t use hash indexes for sorting because they don’t store rows in
sorted order.

* Hash indexes don’t support partial key matching, because they compute the
hash from the entire indexed value. That is, if you have an index on (A,B) and
your query’s WHERE clause refers only to A, the index won’t help.

* Hash indexes support only equality comparisons that use the =, IN(), and <=>
operators (note that <> and <=> are not the same operator). They can’t speed up
range queries, such as WHERE price > 100.

* Accessing data in a hash index is very quick, unless there are many collisions
(multiple values with the same hash). When there are collisions, the storage
engine must follow each row pointer in the linked list and compare their values
to the lookup value to find the right row(s).

* Some index maintenance operations can be slow if there are many hash colli-
sions. For example, if you create a hash index on a column with a very low selec-
tivity (many hash collisions) and then delete a row from the table, finding the

102 | Chapter3: Schema Optimization and Indexing

pointer from the index to that row might be expensive. The storage engine will
have to examine each row in that hash key’s linked list to find and remove the
reference to the one row you deleted.

These limitations make hash indexes useful only in special cases. However, when
they match the application’s needs, they can improve performance dramatically. An
example is in data-warehousing applications where a classic “star” schema requires
many joins to lookup tables. Hash indexes are exactly what a lookup table requires.

In addition to the Memory storage engine’s explicit hash indexes, the NDB Cluster
storage engine supports unique hash indexes. Their functionality is specific to the
NDB Cluster storage engine, which we don’t cover in this book.

The InnoDB storage engine has a special feature called adaptive hash indexes. When
InnoDB notices that some index values are being accessed very frequently, it builds a
hash index for them in memory on top of B-Tree indexes. This gives its B-Tree
indexes some properties of hash indexes, such as very fast hashed lookups. This pro-
cess is completely automatic, and you can’t control or configure it.

Building your own hash indexes. If your storage engine doesn’t support hash indexes,
you can emulate them yourself in a manner similar to that InnoDB uses. This will
give you access to some of the desirable properties of hash indexes, such as a very
small index size for very long keys.

The idea is simple: create a pseudohash index on top of a standard B-Tree index. It
will not be exactly the same thing as a real hash index, because it will still use the B-
Tree index for lookups. However, it will use the keys’ hash values for lookups,
instead of the keys themselves. All you need to do is specify the hash function manu-
ally in the query’s WHERE clause.

An example of when this approach works well is for URL lookups. URLs generally
cause B-Tree indexes to become huge, because they’re very long. You’d normally
query a table of URLs like this:

mysql> SELECT id FROM url WHERE url="http://www.mysql.com";

But if you remove the index on the url column and add an indexed url_crc column
to the table, you can use a query like this:
mysql> SELECT id FROM url WHERE url="http://www.mysql.com"
-> AND url_crc=CRC32("http://www.mysql.com);

This works well because the MySQL query optimizer notices there’s a small, highly
selective index on the url crc column and does an index lookup for entries with that
value (1560514994, in this case). Even if several rows have the same url crc value,
it’s very easy to find these rows with a fast integer comparison and then examine
them to find the one that matches the full URL exactly. The alternative is to index
the full URL as a string, which is much slower.

Indexing Basics | 103

http://www.mysql.com
http://www.mysql.com

One drawback to this approach is the need to maintain the hash values. You can do
this manually or, in MySQL 5.0 and newer, you can use triggers. The following
example shows how triggers can help maintain the url crc column when you insert
and update values. First, we create the table:
CREATE TABLE pseudohash (
id int unsigned NOT NULL auto_increment,
url varchar(255) NOT NULL,

url_crc int unsigned NOT NULL DEFAULT o,
PRIMARY KEY(id)

)s
Now we create the triggers. We change the statement delimiter temporarily, so we
can use a semicolon as a delimiter for the trigger:

DELIMITER

CREATE TRIGGER pseudohash crc_ins BEFORE INSERT ON pseudohash FOR EACH ROW BEGIN
SET NEW.url crc=crc32(NEW.url);
END;

CREATE TRIGGER pseudohash crc_upd BEFORE UPDATE ON pseudohash FOR EACH ROW BEGIN
SET NEW.url crc=crc32(NEW.url);
END;

DELIMITER ;
All that remains is to verify that the trigger maintains the hash:

mysql> INSERT INTO pseudohash (url) VALUES ('http://www.mysql.com');
mysql> SELECT * FROM pseudohash;

b, GLET TR Hmmm e +
| id | url | url crc |
e R L Hmmm e +
| 1| http://www.mysql.com | 1560514994 |
e GEETTETEEEEE R e +

mysql> UPDATE pseudohash SET url='http://www.mysql.com/' WHERE id=1;
mysql> SELECT * FROM pseudohash;

e e — +
| id | url | url crc \
e e +
| 1| http://www.mysql.com/ | 1558250469

e T Hmmmm e +

If you use this approach, you should not use SHA1() or MD5() hash functions. These
return very long strings, which waste a lot of space and result in slower compari-
sons. They are cryptographically strong functions designed to virtually eliminate col-
lisions, which is not your goal here. Simple hash functions can offer acceptable
collision rates with better performance.

If your table has many rows and CRC32() gives too many collisions, implement your
own 64-bit hash function. Make sure you use a function that returns an integer, not a

104 | Chapter3: Schema Optimization and Indexing

string. One way to implement a 64-bit hash function is to use just part of the value
returned by MD5(). This is probably less efficient than writing your own routine as a
user-defined function (see “User-Defined Functions” on page 230), but it'll do in a
pinch:

mysql> SELECT CONV(RIGHT(MD5('http://www.mysql.com/'), 16), 16, 10) AS HASH64;

Fommmmme e n +
| HASH64 |
Fommm oo +
| 9761173720318281581 |
R G EL L LR E L +

Maatkit (http://maatkit.sourceforge.net) includes a UDF that implements a Fowler/
Noll/Vo 64-bit hash, which is very fast.

Handling hash collisions. When you search for a value by its hash, you must also
include the literal value in your WHERE clause:
mysql> SELECT id FROM url WHERE url_crc=CRC32("http://www.mysql.com")
-> AND url="http://www.mysql.com";
The following query will not work correctly, because if another URL has the CRC32()
value 1560514994, the query will return both rows:

mysql> SELECT id FROM url WHERE url_crc=CRC32("http://www.mysql.com");

The probability of a hash collision grows much faster than you might think, due to
the so-called Birthday Paradox. CRC32() returns a 32-bit integer value, so the proba-
bility of a collision reaches 1% with as few as 93,000 values. To illustrate this, we
loaded all the words in /usr/share/dict/words into a table along with their CRC32() val-
ues, resulting in 98,569 rows. There is already one collision in this set of data! The
collision makes the following query return more than one row:

mysql> SELECT word, crc FROM words WHERE crc = CRC32('gnu');

Hmmmmm e Hmmmmm e +
| word | crc |
Hmmmmmm e Hmmm e +
| codding | 1774765869 |
| gnu | 1774765869 |
Hmmmmmm e Hmmm e +

The correct query is as follows:

mysql> SELECT word, crc FROM words WHERE crc = CRC32('gnu') AND word = 'gnu’;

Fommmo- ommmmmme- +
| word | crc |
R R e EEE +
| gnu | 1774765869 |
e mmmmm e +

To avoid problems with collisions, you must specify both conditions in the WHERE
clause. If collisions aren’t a problem—for example, because you’re doing statistical

Indexing Basics | 105

http://www.mysql.com/
http://maatkit.sourceforge.net
http://www.mysql.com
http://www.mysql.com
http://www.mysql.com

queries and you don’t need exact results—you can simplify, and gain some effi-
ciency, by using only the CRC32() value in the WHERE clause.

Spatial (R-Tree) indexes

MyISAM supports spatial indexes, which you can use with geospatial types such as
GEOMETRY. Unlike B-Tree indexes, spatial indexes don’t require your WHERE clauses to
operate on a leftmost prefix of the index. They index the data by all dimensions at
the same time. As a result, lookups can use any combination of dimensions effi-
ciently. However, you must use the MySQL GIS functions, such as MBRCONTAINS(),
for this to work.

Full-text indexes

FULLTEXT is a special type of index for MyISAM tables. It finds keywords in the text
instead of comparing values directly to the values in the index. Full-text searching is
completely different from other types of matching. It has many subtleties, such as
stopwords, stemming and plurals, and Boolean searching. It is much more analo-
gous to what a search engine does than to simple WHERE parameter matching.

Having a full-text index on a column does not eliminate the value of a B-Tree index
on the same column. Full-text indexes are for MATCH AGAINST operations, not ordinary
WHERE clause operations.

We discuss full-text indexing in more detail in “Full-Text Searching” on page 244.

Indexing Strategies for High Performance

Creating the correct indexes and using them properly is essential to good query per-
formance. We've introduced the different types of indexes and explored their
strengths and weaknesses. Now let’s see how to really tap into the power of indexes.

There are many ways to choose and use indexes effectively, because there are many
special-case optimizations and specialized behaviors. Determining what to use when
and evaluating the performance implications of your choices are skills you’ll learn
over time. The following sections will help you understand how to use indexes effec-
tively, but don’t forget to benchmark!

Isolate the Column

If you don’t isolate the indexed columns in a query, MySQL generally can’t use indexes
on columns unless the columns are isolated in the query. “Isolating” the column means
it should not be part of an expression or be inside a function in the query.

For example, here’s a query that can’t use the index on actor_id:

mysql> SELECT actor_id FROM sakila.actor WHERE actor_id + 1 = 5;

106 | Chapter3: Schema Optimization and Indexing

A human can easily see that the WHERE clause is equivalent to actor_id = 4, but
MySQL can’t solve the equation for actor id. It’s up to you to do this. You should
get in the habit of simplifying your WHERE criteria, so the indexed column is alone on
one side of the comparison operator.

Here’s another example of a common mistake:
mysql> SELECT ... WHERE TO_DAYS(CURRENT DATE) - TO_DAYS(date_col) <= 10;

This query will find all rows where the date_col value is newer than 10 days ago, but
it won’t use indexes because of the T0O DAYS(') function. Here’s a better way to write
this query:

mysql> SELECT ... WHERE date_col »>= DATE_SUB(CURRENT DATE, INTERVAL 10 DAY);

This query will have no trouble using an index, but you can still improve it in
another way. The reference to CURRENT DATE will prevent the query cache from cach-
ing the results. You can replace CURRENT _DATE with a literal to fix that problem:

mysql> SELECT ... WHERE date_col >= DATE_SUB('2008-01-17', INTERVAL 10 DAY);

See Chapter 5 for details on the query cache.

Prefix Indexes and Index Selectivity

Sometimes you need to index very long character columns, which makes your
indexes large and slow. One strategy is to simulate a hash index, as we showed ear-
lier in this chapter. But sometimes that isn’t good enough. What can you do?

You can often save space and get good performance by indexing the first few charac-
ters instead of the whole value. This makes your indexes use less space, but it also
makes them less selective. Index selectivity is the ratio of the number of distinct
indexed values (the cardinality) to the total number of rows in the table (#7), and
ranges from 1/#T to 1. A highly selective index is good because it lets MySQL filter
out more rows when it looks for matches. A unique index has a selectivity of 1,
which is as good as it gets.

A prefix of the column is often selective enough to give good performance. If you're
indexing BLOB or TEXT columns, or very long VARCHAR columns, you must define prefix
indexes, because MySQL disallows indexing their full length.

The trick is to choose a prefix that’s long enough to give good selectivity, but short
enough to save space. The prefix should be long enough to make the index nearly as
useful as it would be if you’d indexed the whole column. In other words, you’d like
the prefix’s cardinality to be close to the full column’s cardinality.

To determine a good prefix length, find the most frequent values and compare that
list to a list of the most frequent prefixes. There’s no good table to demonstrate this
in the Sakila sample database, so we derive one from the city table, just so we have
enough data to work with:

Indexing Strategies for High Performance | 107

CREATE TABLE sakila.city demo(city VARCHAR(50) NOT NULL);
INSERT INTO sakila.city demo(city) SELECT city FROM sakila.city;
-- Repeat the next statement five times:
INSERT INTO sakila.city demo(city) SELECT city FROM sakila.city demo;
-- Now randomize the distribution (inefficiently but conveniently):
UPDATE sakila.city demo

SET city = (SELECT city FROM sakila.city ORDER BY RAND() LIMIT 1);

Now we have an example dataset. The results are not realistically distributed, and we
used RAND(), so your results will vary, but that doesn’t matter for this exercise. First,
we find the most frequently occurring cities:

mysql> SELECT COUNT(*) AS cnt, city
-> FROM sakila.city_demo GROUP BY city ORDER BY cnt DESC LIMIT 10;

Hmmm Hmm e +
| cnt | city

fmmmm fmm i mm e +
65	London
49	Hiroshima
48	Teboksary
48	Pak Kret
48	Yaound
47	Tel Aviv-Jaffa
47	Shimoga
45	Cabuyao
45	Callao
45	Bislig
PN e +

Notice that there are roughly 45 to 65 occurrences of each value. Now we find the
most frequently occurring city name prefixes, beginning with three-letter prefixes:

mysql> SELECT COUNT(*) AS cnt, LEFT(city, 3) AS pref
-> FROM sakila.city_demo GROUP BY pref ORDER BY cnt DESC LIMIT 10;

oo oo +
| cnt | pref |
- Fmmmm e +
| 483 | San |
| 195 | Cha |
| 177 | Tan |
| 167 | Sou |
| 163 | al- |
| 163 | Sal |
| 146 | Shi |
| 136 | Hal

| 130 | val |
| 129 | Bat |
ommm- ommmm- +

There are many more occurrences of each prefix, so there are many fewer unique
prefixes than unique full-length city names. The idea is to increase the prefix length
until the prefix becomes nearly as selective as the full length of the column. A little
experimentation shows that 7 is a good value:

108 | Chapter3: Schema Optimization and Indexing

mysql> SELECT COUNT(*) AS cnt, LEFT(city, 7) AS pref
-> FROM sakila.city_demo GROUP BY pref ORDER BY cnt DESC LIMIT 10;

Hmmmme Hmmmmmm e m +
| cnt | pref |
Hmmm- Hmmmmm e +
70	Santiag
68	San Fel
65	London
61	valle d
49	Hiroshi

48	Teboksa
48	Pak Kre
48	Yaound
47	Tel Avi

| 47 | Shimoga |
Homm - Hmmmmmm e +

Another way to calculate a good prefix length is by computing the full column’s
selectivity and trying to make the prefix’s selectivity close to that value. Here’s how
to find the full column’s selectivity:

mysql> SELECT COUNT(DISTINCT city)/COUNT(*) FROM sakila.city_demo;

o e +
| COUNT(DISTINCT city)/COUNT(*) |
R e L e e +
\ 0.0312 |
e L L E L P PP PP P +

The prefix will be about as good, on average, if we target a selectivity near .031. It’s
possible to evaluate many different lengths in one query, which is useful on very
large tables. Here’s how to find the selectivity of several prefix lengths in one query:

mysql> SELECT COUNT(DISTINCT LEFT(city, 3))/COUNT(*) AS sel3,
-> COUNT(DISTINCT LEFT(city, 4))/COUNT(*) AS sels,
-> COUNT(DISTINCT LEFT(city, 5))/COUNT(*) AS sels,
-> COUNT(DISTINCT LEFT(city, 6))/COUNT(*) AS sele6,
-> COUNT(DISTINCT LEFT(city, 7))/COUNT(*) AS sel7
-> FROM sakila.city_demo;

Fommmmm- Fommmmm- Fommmmm- Fommmmm- Fommmmm- +
| sel3 | sela | sel5 | sele | sel7 |
EEEEEEEEE EEEEEEEEE EEEEEEEEE EEEEEEEEE EEEEEEEEE +
| 0.0239 | 0.0293 | 0.0305 | 0.0309 | 0.0310 |
Fommmm - Fommmm - Fommmm - Fommmm - Fommmm - +

This query shows that increasing the prefix length results in successively smaller
improvements as it approaches seven characters.

It’s not a good idea to look only at average selectivity. You also need to think about
worst-case selectivity. The average selectivity might make you think a four- or five-
character prefix is good enough, but if your data is very uneven, that could be a trap.
If you look at the number of occurrences of the most common city name prefixes
using a value of 4, you’ll see the unevenness clearly:

Indexing Strategies for High Performance | 109

mysql> SELECT COUNT(*) AS cnt, LEFT(city, 4) AS pref
-> FROM sakila.city demo GROUP BY pref ORDER BY cnt DESC LIMIT 5;
Homo-- Homme- +
| cnt | pref |
Homo-- Homme- +
205	San
200	Sant
135	Sout
104	Chan
91	Toul
Homo-- Homme- +

With four characters, the most frequent prefixes occur quite a bit more often than
the most frequent full-length values. That is, the selectivity on those values is lower
than the average selectivity. If you have a more realistic dataset than this randomly
generated sample, you're likely to see this effect even more. For example, building a
four-character prefix index on real-world city names will give terrible selectivity on
cities that begin with “San” and “New,” of which there are many.

Now that we’ve found a good value for our sample data, here’s how to create a pre-
fix index on the column:

mysql> ALTER TABLE sakila.city demo ADD KEY (city(7));

Prefix indexes can be a great way to make indexes smaller and faster, but they have
downsides too: MySQL cannot use prefix indexes for ORDER BY or GROUP BY queries,
nor can it use them as covering indexes.

A
Sometimes suffix indexes make sense (e.g., for finding all email
.‘s\ . addresses from a certain domain). MySQL does not support reversed
~* %l indexes natively, but you can store a reversed string and index a prefix
* of it. You can maintain the index with triggers; see “Building your own
hash indexes” on page 103, earlier in this chapter.

Clustered Indexes

Clustered indexes™ aren’t a separate type of index. Rather, they’re an approach to data
storage. The exact details vary between implementations, but InnoDB’s clustered
indexes actually store a B-Tree index and the rows together in the same structure.

When a table has a clustered index, its rows are actually stored in the index’s leaf
pages. The term “clustered” refers to the fact that rows with adjacent key values are
stored close to each other.T You can have only one clustered index per table, because
you can’t store the rows in two places at once. (However, covering indexes let you
emulate multiple clustered indexes; more on this later.)

* Oracle users will be familiar with the term “index-organized table,” which means the same thing.
T This isn’t always true, as you’ll see in a moment.

110 | Chapter3: Schema Optimization and Indexing

Because storage engines are responsible for implementing indexes, not all storage
engines support clustered indexes. At present, solidDB and InnoDB are the only ones
that do. We focus on InnoDB in this section, but the principles we discuss are likely
to be at least partially true for any storage engine that supports clustered indexes
now or in the future.

Figure 3-3 shows how records are laid out in a clustered index. Notice that the leaf
pages contain full rows but the node pages contain only the indexed columns. In this
case, the indexed column contains integer values.

1 2§
Akroyd Akroyd § Akroyd

Christian Debbie Kirsten
1958-12-07 | 1990-03-18 1978-11-02

1 o $ 2

Allen Allen Allen

Cuba Kim Meryl

1960-01-01 | 1930-07-12 1980-12-12
91 2§ 100
Barrymore Basinger Basinger
Julia Vivien Viven
2000-05-16 | 1976-12-08 1979-01-24

Figure 3-3. Clustered index data layout

Some database servers let you choose which index to cluster, but none of MySQL’s
storage engines does at the time of this writing. InnoDB clusters the data by the pri-
mary key. That means that the “indexed column” in Figure 3-3 is the primary key
column.

If you don’t define a primary key, InnoDB will try to use a unique nonnullable index
instead. If there’s no such index, InnoDB will define a hidden primary key for you
and then cluster on that.” InnoDB clusters records together only within a page. Pages
with adjacent key values may be distant from each other.

* The solidDB storage engine does this too.

Indexing Strategies for High Performance | 111

A clustering primary key can help performance, but it can also cause serious perfor-
mance problems. Thus, you should think carefully about clustering, especially when
you change a table’s storage engine from InnoDB to something else or vice versa.

Clustering data has some very important advantages:

You can keep related data close together. For example, when implementing a
mailbox, you can cluster by user_id, so you can retrieve all of a single user’s
messages by fetching only a few pages from disk. If you didn’t use clustering,
each message might require its own disk I/0O.

Data access is fast. A clustered index holds both the index and the data together
in one B-Tree, so retrieving rows from a clustered index is normally faster than a
comparable lookup in a nonclustered index.

Queries that use covering indexes can use the primary key values contained at
the leaf node.

These benefits can boost performance tremendously if you design your tables and que-
ries to take advantage of them. However, clustered indexes also have disadvantages:

Clustering gives the largest improvement for I/O-bound workloads. If the data
fits in memory the order in which it’s accessed doesn’t really matter, so cluster-
ing doesn’t give much benefit.

Insert speeds depend heavily on insertion order. Inserting rows in primary key
order is the fastest way to load data into an InnoDB table. It may be a good idea
to reorganize the table with OPTIMIZE TABLE after loading a lot of data if you
didn’t load the rows in primary key order.

Updating the clustered index columns is expensive, because it forces InnoDB to
move each updated row to a new location.

Tables built upon clustered indexes are subject to page splits when new rows are
inserted, or when a row’s primary key is updated such that the row must be
moved. A page split happens when a row’s key value dictates that the row must
be placed into a page that is full of data. The storage engine must split the page
into two to accommodate the row. Page splits can cause a table to use more
space on disk.

Clustered tables can be slower for full table scans, especially if rows are less
densely packed or stored nonsequentially because of page splits.

Secondary (nonclustered) indexes can be larger than you might expect, because
their leaf nodes contain the primary key columns of the referenced rows.

Secondary index accesses require two index lookups instead of one.

The last point can be a bit confusing. Why would a secondary index require two
index lookups? The answer lies in the nature of the “row pointers” the secondary
index stores. Remember, a leaf node doesn’t store a pointer to the referenced row’s
physical location; rather, it stores the row’s primary key values.

112

| Chapter3: Schema Optimization and Indexing

That means that to find a row from a secondary index, the storage engine first finds
the leaf node in the secondary index and then uses the primary key values stored
there to navigate the primary key and find the row. That’s double work: two B-Tree
navigations instead of one. (In InnoDB, the adaptive hash index can help reduce this
penalty.)

Comparison of InnoDB and MyISAM data layout

The differences between clustered and nonclustered data layouts, and the corre-
sponding differences between primary and secondary indexes, can be confusing and
surprising. Let’s see how InnoDB and MyISAM lay out the following table:
CREATE TABLE layout test (
coll int NOT NULL,
col2 int NOT NULL,

PRIMARY KEY(col1),
KEY(col2)

)s
Suppose the table is populated with primary key values 1 to 10,000, inserted in ran-
dom order and then optimized with OPTIMIZE TABLE. In other words, the data is
arranged optimally on disk, but the rows may be in a random order. The values for
col2 are randomly assigned between 1 and 100, so there are lots of duplicates.

MyISAM'’s data layout. MyISAM’s data layout is simpler, so we illustrate that first.
MyISAM stores the rows on disk in the order in which they were inserted, as shown
in Figure 3-4.

Row number col1 col2

0] 99 8

1 12 56

2| 3000 62
InaaAaan

9997 18 8
9998 | 4700 13
9999 3 93

Figure 3-4. MyISAM data layout for the layout_test table

We’ve shown the row numbers, beginning at 0, beside the rows. Because the rows
are fixed-size, MyISAM can find any row by seeking the required number of bytes
from the beginning of the table. (MyISAM doesn’t always use “row numbers,” as
we've shown; it uses different strategies depending on whether the rows are fixed-
size or variable-size.)

Indexing Strategies for High Performance | 113

This layout makes it easy to build an index. We illustrate with a series of diagrams,
abstracting away physical details such as pages and showing only “nodes” in the
index. Each leaf node in the index can simply contain the row number. Figure 3-5
illustrates the table’s primary key.

[Column value

Row number
= Internal nodes

e 3 _ 9 R 4700 o Leafnodes,
\ 9999 0 9998 . incoll order

Figure 3-5. MyISAM primary key layout for the layout_test table

We've glossed over some of the details, such as how many internal B-Tree nodes
descend from the one before, but that’s not important to understanding the basic
data layout of a nonclustered storage engine.

What about the index on col2? Is there anything special about it? As it turns out,
no—it’s just an index like any other. Figure 3-6 illustrates the col2 index.

] Column value

1 Row number
Internal nodes

//_> 8 8 . 13 :‘\ Leaf nodes,
\ 0 9997 9998 }incol2 order

Figure 3-6. MyISAM col2 index layout for the layout_test table

In fact, in MyISAM, there is no structural difference between a primary key and any
other index. A primary key is simply a unique, nonnullable index named PRIMARY.

InnoDB’s data layout. InnoDB stores the same data very differently because of its clus-
tered organization. InnoDB stores the table as shown in Figure 3-7.

114 | Chapter3: Schema Optimization and Indexing

[Primary key columns (col1)
Transaction ID

Rollback Pointer

[Non-PK columns (col2) AN

Internal nodes

e 3 99 a0) e

/! TID TID TID "
] —> — — > _ . InnoDB clustered
' RP RP RP 1 index leaf nodes

9% 8 13 '

Figure 3-7. InnoDB primary key layout for the layout_test table

At first glance, that might not look very different from Figure 3-5. But look again,
and notice that this illustration shows the whole table, not just the index. Because the

clustered index “is” the table in InnoDB, there’s no separate row storage as there is
for MyISAM.

Each leaf node in the clustered index contains the primary key value, the transaction
ID and rollback pointer InnoDB uses for transactional and MVCC purposes, and the
rest of the columns (in this case, col2). If the primary key is on a column prefix,
InnoDB includes the full column value with the rest of the columns.

Also in contrast to MyISAM, secondary indexes are very different from clustered
indexes in InnoDB. Instead of storing “row pointers,” InnoDB’s secondary index leaf
nodes contain the primary key values, which serve as the “pointers” to the rows. This
strategy reduces the work needed to maintain secondary indexes when rows move or
when there’s a data page split. Using the row’s primary key values as the pointer
makes the index larger, but it means InnoDB can move a row without updating
pointers to it.

Figure 3-8 illustrates the col2 index for the example table.

Each leaf node contains the indexed columns (in this case just col2), followed by the
primary key values (col1).

These diagrams have illustrated the B-Tree leaf nodes, but we intentionally omitted
details about the non-leaf nodes. InnoDB’s non-leaf B-Tree nodes each contain the
indexed column(s), plus a pointer to the next deeper node (which may be either
another non-leaf node or a leaf node). This applies to all indexes, clustered and
secondary.

Indexing Strategies for High Performance | 115

[Key columns (col2)

[Primary key columns (col1) Internal nodes

,/’/ 8 8 13 93 ISR
/ > . » InnoDB secondary
N 18 99 4700 3 ,+ index leaf nodes

Figure 3-8. InnoDB secondary index layout for the layout_test table

Figure 3-9 is an abstract diagram of how InnoDB and MyISAM arrange the table.
This illustration makes it easier to see how differently InnoDB and MyISAM store
data and indexes.

Primary key Primary key Secondary key

5%

T

3\ %\ %

s

Secondary key

O
QN
RO

RN

z

[D_
X\@\}\ D_
[D_

X X X
% % % %
InnoDB (clustered) table layout MyISAM (non-lustered) table layout

Figure 3-9. Clustered and nonclustered tables side-by-side

116 | Chapter3: Schema Optimization and Indexing

If you don’t understand why and how clustered and nonclustered storage are differ-
ent, and why it’s so important, don’t worry. It will become clearer as you learn more,
especially in the rest of this chapter and in the next chapter. These concepts are com-
plicated, and they take a while to understand fully.

Inserting rows in primary key order with InnoDB

If you’re using InnoDB and don’t need any particular clustering, it can be a good idea
to define a surrogate key, which is a primary key whose value is not derived from
your application’s data. The easiest way to do this is usually with an AUTO_INCREMENT
column. This will ensure that rows are inserted in sequential order and will offer bet-
ter performance for joins using primary keys.

It is best to avoid random (nonsequential) clustered keys. For example, using UUID
values is a poor choice from a performance standpoint: it makes clustered index
insertion random, which is a worst-case scenario, and does not give you any helpful
data clustering.

To demonstrate, we benchmarked two cases. The first is inserting into a userinfo
table with an integer ID, defined as follows:

CREATE TABLE userinfo (

id int unsigned NOT NULL AUTO INCREMENT,
name varchar(64) NOT NULL DEFAULT '',

email varchar(64) NOT NULL DEFAULT '',
password varchar(64) NOT NULL DEFAULT '',

dob date DEFAULT NULL,

address varchar(255) NOT NULL DEFAULT '',

city varchar(64) NOT NULL DEFAULT '',
state_id tinyint unsigned NOT NULL DEFAULT 'o0',
zip varchar(8) NOT NULL DEFAULT "',
country id smallint unsigned NOT NULL DEFAULT 'o',
gender ('"M',"F") NOT NULL DEFAULT 'M',
account_type varchar(32) NOT NULL DEFAULT '',
verified tinyint NOT NULL DEFAULT '0',
allow_mail tinyint unsigned NOT NULL DEFAULT 'o0',

parrent_account int unsigned NOT NULL DEFAULT 'o',
closest_airport varchar(3) NOT NULL DEFAULT "',
PRIMARY KEY (id),
UNIQUE KEY email (email),
KEY country id (country id),
KEY state_id (state id),
KEY state id 2 (state id,city,address)
) ENGINE=InnoDB

Notice the autoincrementing integer primary key.

The second case is a table named userinfo_uuid. It is identical to the userinfo table,
except that its primary key is a UUID instead of an integer:

Indexing Strategies for High Performance | 117

CREATE TABLE userinfo uuid (
uuid varchar(36) NOT NULL,

We benchmarked both table designs. First, we inserted a million records into both
tables on a server with enough memory to hold the indexes. Next, we inserted three
million rows into the same tables, which made the indexes bigger than the server’s
memory. Table 3-2 compares the benchmark results.

Table 3-2. Benchmark results for inserting rows into InnoDB tables

Table Rows Time (sec) Index size (MB)
userinfo 1,000,000 137 342
userinfo_uuid 1,000,000 180 544
userinfo 3,000,000 1233 1036
userinfo_uuid 3,000,000 4525 1707

Notice that not only does it take longer to insert the rows with the UUID primary
key, but the resulting indexes are quite a bit bigger. Some of that is due to the larger
primary key, but some of it is undoubtedly due to page splits and resultant fragmen-
tation as well.

To see why this is so, let’s see what happened in the index when we inserted data
into the first table. Figure 3-10 shows inserts filling a page and then continuing on a
second page.

Sequential insertion into the page: each new record When the page is full, insertion continues in a new page
is inserted after the previous one R
1 [2] 3 v | 300)| E
4 T 301 T
5 302

Figure 3-10. Inserting sequential index values into a clustered index

As Figure 3-10 illustrates, InnoDB stores each record immediately after the one
before, because the primary key values are sequential. When the page reaches its
maximum fill factor (InnoDB’s initial fill factor is only 15/16 full, to leave room for
modifications later), the next record goes into a new page. Once the data has been
loaded in this sequential fashion, the pages are packed nearly full with in-order
records, which is highly desirable.

Contrast that with what happened when we inserted the data into the second table
with the UUID clustered index, as shown in Figure 3-11.

118 | Chapter3: Schema Optimization and Indexing

Inserting UUIDs: new records may be inserted between previously
inserted records, forcing them to be moved

000944 | 0016¢9 | 002f21
16-6175 | 1a-6175 | 8e-6177

002775
......... 64-6178

000e2f
......................... 20-6180

Pages that were filled and flushed to disk may
have to be read again

000944 | 000e2f | 0016c9 | 002775 | 002f21
16-6175 | 20-6180 | 1a-6175 | 64-6178 | 8e-6177

001475
PR 64-6181

*Only the first 13 characters
of the UUID are shown

Figure 3-11. Inserting nonsequential values into a clustered index

Because each new row doesn’t necessarily have a larger primary key value than the
previous one, InnoDB cannot always place the new row at the end of the index. It
has to find the appropriate place for the row—on average, somewhere near the mid-
dle of the existing data—and make room for it. This causes a lot of extra work and
results in a suboptimal data layout. Here’s a summary of the drawbacks:

* The destination page might have been flushed to disk and removed from the
caches, in which case, InnoDB will have to find it and read it from the disk
before it can insert the new row. This causes a lot of random 1/0.

* InnoDB sometimes has to split pages to make room for new rows. This requires
moving around a lot of data.

* Pages become sparsely and irregularly filled because of splitting, so the final data
is fragmented.

After loading such random values into a clustered index, you should probably do an
OPTIMIZE TABLE to rebuild the table and fill the pages optimally.

The moral of the story is that you should strive to insert data in primary key order
when using InnoDB, and you should try to use a clustering key that will give a mono-
tonically increasing value for each new row.

Indexing Strategies for High Performance | 119

When Primary Key Order Is Worse

For high-concurrency workloads, inserting in primary key order can actually create a
single point of contention in InnoDB, as it is currently implemented. This “hot spot”
is the upper end of the primary key. Because all inserts take place there, concurrent
inserts may fight over next-key locks and/or AUTO_INCREMENT locks (either or both can
be a hot spot). If you experience this problem, you may be able to redesign your table
or application, or tune InnoDB to perform better for this specific workload. See
Chapter 6 for more on InnoDB tuning.

Covering Indexes

Indexes are a way to find rows efficiently, but MySQL can also use an index to

ret

rieve a column’s data, so it doesn’t have to read the row at all. After all, the

index’s leaf nodes contain the values they index; why read the row when reading the
index can give you the data you want? An index that contains (or “covers”) all the
data needed to satisfy a query is called a covering index.

Covering indexes can be a very powerful tool and can dramatically improve perfor-
mance. Consider the benefits of reading only the index instead of the data:

Index entries are usually much smaller than the full row size, so MySQL can
access significantly less data if it reads only the index. This is very important for
cached workloads, where much of the response time comes from copying the
data. It is also helpful for I/O-bound workloads, because the indexes are smaller
than the data and fit in memory better. (This is especially true for MyISAM,
which can pack indexes to make them even smaller.)

Indexes are sorted by their index values (at least within the page), so I/O-bound
range accesses will need to do less I/O compared to fetching each row from a
random disk location. For some storage engines, such as MyISAM, you can even
OPTIMIZE the table to get fully sorted indexes, which will let simple range queries
use completely sequential index accesses.

Most storage engines cache indexes better than data. (Falcon is a notable excep-
tion.) Some storage engines, such as MyISAM, cache only the index in MySQL’s
memory. Because the operating system caches the data for MyISAM, accessing it
typically requires a system call. This may cause a huge performance impact,
especially for cached workloads where the system call is the most expensive part
of data access.

Covering indexes are especially helpful for InnoDB tables, because of InnoDB’s
clustered indexes. InnoDB’s secondary indexes hold the row’s primary key val-
ues at their leaf nodes. Thus, a secondary index that covers a query avoids
another index lookup in the primary key.

120

| Chapter3: Schema Optimization and Indexing

In all of these scenarios, it is typically much less expensive to satisfy a query from an
index instead of looking up the rows.

A covering index can’t be just any kind of index. The index must store the values
from the columns it contains. Hash, spatial, and full-text indexes don’t store these
values, so MySQL can use only B-Tree indexes to cover queries. And again, different
storage engines implement covering indexes differently, and not all storage engines
support them (at the time of this writing, the Memory and Falcon storage engines
don’t).

When you issue a query that is covered by an index (an index-covered query), you’ll
see “Using index” in the Extra column in EXPLAIN.” For example, the sakila.
inventory table has a multicolumn index on (store_id, film id). MySQL can use
this index for a query that accesses only those two columns, such as the following:

mysql> EXPLAIN SELECT store_id, film_id FROM sakila.inventory\G
Fokkkkskskkkklkkololololokokokokskskskkkk] oy SRRk skokokokokokokokokokskskskokokok ok
id: 1
select type: SIMPLE
table: inventory
type: index
possible keys: NULL
key: idx_store_id_film_id
key len: 3
ref: NULL
rows: 4673
Extra: Using index

Index-covered queries have subtleties that can disable this optimization. The MySQL
query optimizer decides before executing a query whether an index covers it. Sup-
pose the index covers a WHERE condition, but not the entire query. If the condition
evaluates as false, MySQL 5.1 and earlier will fetch the row anyway, even though it
doesn’t need it and will filter it out.

Let’s see why this can happen, and how to rewrite the query to work around the
problem. We begin with the following query:

mysql> EXPLAIN SELECT * FROM products WHERE actor='SEAN CARREY'
-> AND title like '%APOLLO%'\G
skokokok ok ok ok sk sk sk ok ok ok sk skokok ok ok ok sk sk skok sk k ok 1. TOW kokskskokok ok ok ok sk sk skok ok ok ok sk sk skokok sk sk k sk sk sk
id: 1
select type: SIMPLE
table: products
type: ref
possible keys: ACTOR,IX PROD ACTOR
key: ACTOR
key len: 52

* It’s easy to confuse “Using index” in the Extra column with “index” in the type column. However, they are
completely different. The type column has nothing to do with covering indexes; it shows the query’s access
type, or how the query will find rows.

Indexing Strategies for High Performance | 121

ref: const
Tows: 10
Extra: Using where

The index can’t cover this query for two reasons:

* No index covers the query, because we selected all columns from the table and

no index covers all columns. There’s still a shortcut MySQL could theoretically
use, though: the WHERE clause mentions only columns the index covers, so
MySQL could use the index to find the actor and check whether the title
matches, and only then read the full row.

MySQL can’t perform the LIKE operation in the index. This is a limitation of the
low-level storage engine API, which allows only simple comparisons in index
operations. MySQL can perform prefix-match LIKE patterns in the index because
it can convert them to simple comparisons, but the leading wildcard in the query
makes it impossible for the storage engine to evaluate the match. Thus, the
MySQL server itself will have to fetch and match on the row’s values, not the
index’s values.

There’s a way to work around both problems with a combination of clever indexing
and query rewriting. We can extend the index to cover (artist, title, prod id) and
rewrite the query as follows:

mysql> EXPLAIN SELECT *
-> FROM products

-> JOIN (

-> SELECT prod_id

-> FROM products

-> WHERE actor='SEAN CARREY' AND title LIKE '%APOLLO%’

->) AS t1 ON (t1.prod_id=products.prod_id)\G
tcolokstoolokskofolokstofolokstofokokskokokokskok gy RRsSRoRekstokokokskoskokokstofokokskokokoskskokokoksk
id: 1
select type: PRIMARY
table: <derived2>
...omitted...
skskokokosk sk sk skokokok sk sk sk skokokosk sk k sk skokok sk k >k 2. TOW kokskskokokosk sk sk sk skokokosk sk sk sk skokokok sk sk sk kkk
id: 1
select type: PRIMARY
table: products
...omitted...
skokokosk ok sk sk sk okok ok sk sk sk skokokok sk sk sk skokok ok ok k 3. row skeskoskskokokok skosk sk sk skokok sk sk sk skokokok sk sk sk kokok
id: 2
select_type: DERIVED
table: products
type: ref
possible keys: ACTOR,ACTOR_2,IX PROD_ACTOR
key: ACTOR 2
key len: 52
ref:
Tows: 11
Extra: Using where; Using index

122

| Chapter3: Schema Optimization and Indexing

Now MySQL uses the covering index in the first stage of the query, when it finds
matching rows in the subquery in the FROM clause. It doesn’t use the index to cover
the whole query, but it’s better than nothing.

The effectiveness of this optimization depends on how many rows the WHERE clause
finds. Suppose the products table contains a million rows. Let’s see how these two
queries perform on three different datasets, each of which contains a million rows:

1. In the first, 30,000 products have Sean Carrey as the actor, and 20,000 of those
contain Apollo in the title.

2. In the second, 30,000 products have Sean Carrey as the actor, and 40 of those
contain Apollo in the title.

3. In the third, 50 products have Sean Carrey as the actor, and 10 of those contain
Apollo in the title.

We used these three datasets to benchmark the two variations on the query and got
the results shown in Table 3-3.

Table 3-3. Benchmark results for index-covered queries versus non-index-covered queries

Dataset Original query Optimized query
Example 1 5 queries per sec 5 queries per sec
Example 2 7 queries per sec 35 queries per sec
Example 3 2400 queries per sec 2000 queries per sec

Here’s how to interpret these results:

* In example 1 the query returns a big result set, so we can’t see the optimiza-
tion’s effect. Most of the time is spent reading and sending data.

* Example 2, where the second condition filter leaves only a small set of results
after index filtering, shows how effective the proposed optimization is: perfor-
mance is five times better on our data. The efficiency comes from needing to
read only 40 full rows, instead of 30,000 as in the first query.

* Example 3 shows the case when the subquery is inefficient. The set of results left
after index filtering is so small that the subquery is more expensive than reading
all the data from the table.

This optimization is sometimes an effective way to help avoid reading unnecessary
rows in MySQL 5.1 and earlier. MySQL 6.0 may avoid this extra work itself, so you
might be able to simplify your queries when you upgrade.

In most storage engines, an index can cover only queries that access columns that are
part of the index. However, InnoDB can actually take this optimization a little bit
further. Recall that InnoDB’s secondary indexes hold primary key values at their leaf
nodes. This means InnoDB’s secondary indexes effectively have “extra columns” that
InnoDB can use to cover queries.

Indexing Strategies for High Performance | 123

For example, the sakila.actor table uses InnoDB and has an index on last_name, so
the index can cover queries that retrieve the primary key column actor id, even
though that column isn’t technically part of the index:

mysql> EXPLAIN SELECT actor_id, last_name

-> FROM sakila.actor WHERE last_name = "HOPPER'\G
skokokokosk sk sk sk oskok ok sk sk sk skokokosk sk k sk skokok sk k >k 1. TOW skskskskokokok sk skskokokok sk sk sk skokokok sk sk sk kokok

id: 1
select type: SIMPLE
table: actor
type: ref
possible keys: idx actor last name
key: idx_actor last name
key len: 137
ref: const
TOoWS: 2
Extra: Using where; Using index

Using Index Scans for Sorts

MySQL has two ways to produce ordered results: it can use a filesort, or it can scan
an index in order.” You can tell when MySQL plans to scan an index by looking for
“index” in the type column in EXPLAIN. (Don’t confuse this with “Using index” in the
Extra column.)

Scanning the index itself is fast, because it simply requires moving from one index
entry to the next. However, if MySQL isn’t using the index to cover the query, it will
have to look up each row it finds in the index. This is basically random I/O, so read-
ing data in index order is usually much slower than a sequential table scan, espe-
cially for I/O-bound workloads.

MySQL can use the same index for both sorting and finding rows. If possible, it’s a
good idea to design your indexes so that they’re useful for both tasks at once.

Ordering the results by the index works only when the index’s order is exactly the
same as the ORDER BY clause and all columns are sorted in the same direction (ascend-
ing or descending). If the query joins multiple tables, it works only when all columns
in the ORDER BY clause refer to the first table. The ORDER BY clause also has the same
limitation as lookup queries: it needs to form a leftmost prefix of the index. In all
other cases, MySQL uses a filesort.

One case where the ORDER BY clause doesn’t have to specify a leftmost prefix of the
index is if there are constants for the leading columns. If the WHERE clause or a JOIN
clause specifies constants for these columns, they can “fill the gaps” in the index.

* MySQL has two filesort algorithms; you can read more about them in “Sort optimizations” on page 176.

124 | Chapter3: Schema Optimization and Indexing

For example, the rental table in the standard Sakila sample database has an index on
(rental date, inventory id, customer id):

CREATE TABLE rental (

PRIMARY KEY (rental id),

UNIQUE KEY rental date (rental date,inventory id,customer id),
KEY idx fk_inventory id (inventory id),

KEY idx_fk_customer id (customer id),

KEY idx_fk_staff id (staff_id),

N

MySQL uses the rental date index to order the following query, as you can see from
the lack of a filesort in EXPLAIN:
mysql> EXPLAIN SELECT rental_id, staff_id FROM sakila.rental

-> WHERE rental_date = '2005-05-25'

-> ORDER BY inventory id, customer_id\G
FhkRRkkRkk ook okk kR | pop Rk Rk kookk Rk kR ok ok

type: ref
possible keys: rental date
key: rental date
Tows: 1
Extra: Using where

This works, even though the ORDER BY clause isn’t itself a leftmost prefix of the index,
because we specified an equality condition for the first column in the index.

Here are some more queries that can use the index for sorting. This one works
because the query provides a constant for the first column of the index and specifies
an ORDER BY on the second column. Taken together, those two form a leftmost prefix
on the index:

. WHERE rental date = '2005-05-25' ORDER BY inventory id DESC;

The following query also works, because the two columns in the ORDER BY are a left-
most prefix of the index:

. WHERE rental date > '2005-05-25' ORDER BY rental date, inventory id;
Here are some queries that cannot use the index for sorting:
* This query uses two different sort directions, but the index’s columns are all
sorted ascending:

. WHERE rental date = '2005-05-25' ORDER BY inventory id DESC, customer id ASC;
e Here, the ORDER BY refers to a column that isn’t in the index:

. WHERE rental date = '2005-05-25' ORDER BY inventory id, staff id;
* Here, the WHERE and the ORDER BY don’t form a leftmost prefix of the index:

. WHERE rental_date = '2005-05-25' ORDER BY customer_id;

Indexing Strategies for High Performance | 125

* This query has a range condition on the first column, so MySQL doesn’t use the
rest of the index:
. WHERE rental date > '2005-05-25' ORDER BY inventory_id, customer_ id;
* Here there’s a multiple equality on the inventory id column. For the purposes of
sorting, this is basically the same as a range:
. WHERE rental date = '2005-05-25"' AND inventory id IN(1,2) ORDER BY customer
id;
* Here’s an example where MySQL could theoretically use an index to order a
join, but doesn’t because the optimizer places the film_actor table second in the
join (Chapter 4 shows ways to change the join order):

mysql> EXPLAIN SELECT actor_id, title FROM sakila.film_actor
-> INNER JOIN sakila.film USING(film_id) ORDER BY actor_id\G

Hmmm e e s +
| table | Extra |
Hmmmmmmm e e e e +
| film | Using index; Using temporary; Using filesort |
| film_actor | Using index \
Hmmmmmmm e e e e +

One of the most important uses for ordering by an index is a query that has both an
ORDER BY and a LIMIT clause. We explore this in more detail later.

Packed (Prefix-Compressed) Indexes

MyISAM uses prefix compression to reduce index size, allowing more of the index to
fit in memory and dramatically improving performance in some cases. It packs string
values by default, but you can even tell it to compress integer values.

MyISAM packs each index block by storing the block’s first value fully, then storing
each additional value in the block by recording the number of bytes that have the
same prefix, plus the actual data of the suffix that differs. For example, if the first
value is “perform” and the second is “performance,” the second value will be stored
analogously to “7,ance”. MyISAM can also prefix-compress adjacent row pointers.

Compressed blocks use less space, but they make certain operations slower. Because
each value’s compression prefix depends on the value before it, MyISAM can’t do
binary searches to find a desired item in the block and must scan the block from the
beginning. Sequential forward scans perform well, but reverse scans—such as ORDER
BY DESC—don’t work as well. Any operation that requires finding a single row in the
middle of the block will require scanning, on average, half the block.

Our benchmarks have shown that packed keys make index lookups on MyISAM
tables perform several times more slowly for a CPU-bound workload, because of
the scans required for random lookups. Reverse scans of packed keys are even
slower. The tradeoff is one of CPU and memory resources versus disk resources.

126 | Chapter3: Schema Optimization and Indexing

Packed indexes can be about one-tenth the size on disk, and if you have an 1/0O-
bound workload they can more than offset the cost for certain queries.

You can control how a table’s indexes are packed with the PACK KEYS option to
CREATE TABLE.

Redundant and Duplicate Indexes

MySQL allows you to create multiple indexes on the same column; it does not
“notice” and protect you from your mistake. MySQL has to maintain each duplicate
index separately, and the query optimizer will consider each of them when it opti-
mizes queries. This can cause a serious performance impact.

Duplicate indexes are indexes of the same type, created on the same set of columns
in the same order. You should try to avoid creating them, and you should remove
them if you find them.

Sometimes you can create duplicate indexes without knowing it. For example, look
at the following code:
CREATE TABLE test (
ID INT NOT NULL PRIMARY KEY,
UNIQUE (ID),
INDEX(ID)
)s
An inexperienced user might think this identifies the column’s role as a primary key,
adds a UNIQUE constraint, and adds an index for queries to use. In fact, MySQL
implements UNIQUE constraints and PRIMARY KEY constraints with indexes, so this actu-
ally creates three indexes on the same column! There is typically no reason to do this,
unless you want to have different types of indexes on the same column to satisfy
different kinds of queries.”

Redundant indexes are a bit different from duplicated indexes. If there is an index on
(A, B), another index on (A) would be redundant because it is a prefix of the first
index. That is, the index on (A, B) can also be used as an index on (A) alone. (This
type of redundancy applies only to B-Tree indexes.) However, an index on (B, A)
would not be redundant, and neither would an index on (B), because B is not a left-
most prefix of (A, B). Furthermore, indexes of different types (such as hash or full-
text indexes) are not redundant to B-Tree indexes, no matter what columns they
cover.

Redundant indexes usually appear when people add indexes to a table. For example,
someone might add an index on (A, B) instead of extending an existing index on (A)
to cover (A, B).

* An index is not necessarily a duplicate if it’s a different type of index; there are often good reasons to have
KEY(col) and FULLTEXT KEY(col).

Indexing Strategies for High Performance | 127

In most cases you don’t want redundant indexes, and to avoid them you should
extend existing indexes rather than add new ones. Still, there are times when you’ll
need redundant indexes for performance reasons. The main reason to use a redun-
dant index is when extending an existing index, the redundant index will make it
much larger.

For example, if you have an index on an integer column and you extend it with a
long VARCHAR column, it may become significantly slower. This is especially true if
your queries use the index as a covering index, or if it’s a MyISAM table and you per-
form a lot of range scans on it (because of MyISAM’s prefix compression).

Consider the userinfo table, which we described in “Inserting rows in primary key
order with InnoDB” on page 117, earlier in this chapter. This table contains 1,000,000
rows, and for each state id there are about 20,000 records. There is an index on
state_id, which is useful for the following query. We refer to this query as Q1:

mysql> SELECT count(*) FROM userinfo WHERE state_id=5;

A simple benchmark shows an execution rate of almost 115 queries per second
(QPS) for this query. We also have a related query that retrieves several columns
instead of just counting rows. This is Q2:

mysql> SELECT state_id, city, address FROM userinfo WHERE state_id=5;

For this query, the result is less than 10 QPS.” The simple solution to improve its per-
formance is to extend the index to (state id, city, address), so the index will
cover the query:
mysql> ALTER TABLE userinfo DROP KEY state_id,
-> ADD KEY state_id_2 (state_id, city, address);

After extending the index, Q2 runs faster, but Q1 runs more slowly. If we really care
about making both queries fast, we should leave both indexes, even though the
single-column index is redundant. Table 3-4 shows detailed results for both queries
and indexing strategies, with MyISAM and InnoDB storage engines. Note that
InnoDB’s performance doesn’t degrade as much for Q1 with only the state id 2
index, because InnoDB doesn’t use key compression.

Table 3-4. Benchmark results in QPS for SELECT queries with various index strategies

Both state_id and

state_id only state_id_2 only state_id_2
MylSAM, Q1 114.96 25.40 112.19
MyISAM, Q2 9.97 16.34 16.37
InnoDB, Q1 108.55 100.33 107.97
InnoDB, Q2 12.12 28.04 28.06

* We’ve used an in-memory example here. When the table is bigger and the workload becomes I/0O-bound,
the difference between the numbers will be much larger.

128 | Chapter3: Schema Optimization and Indexing

The drawback of having two indexes is the maintenance cost. Table 3-5 shows how
long it takes to insert a million rows into the table.

Table 3-5. Speed of inserting a million rows with various index strategies

state_id only Both state_id and state_id_2
InnoDB, enough memory for both 80 seconds 136 seconds
indexes
MyISAM, enough memory for only 72 seconds 470 seconds
one index

As you can see, inserting new rows into the table with more indexes is dramatically
slower. This is true in general: adding new indexes may have a large performance
impact for INSERT, UPDATE, and DELETE operations, especially if a new index causes
you to hit memory limits.

Indexes and Locking

Indexes play a very important role for InnoDB, because they let queries lock fewer
rows. This is an important consideration, because in MySQL 5.0 InnoDB never
unlocks a row until the transaction commits.

If your queries never touch rows they don’t need, they’ll lock fewer rows, and that’s
better for performance for two reasons. First, even though InnoDB’s row locks are
very efficient and use very little memory, there’s still some overhead involved in row
locking. Secondly, locking more rows than needed increases lock contention and
reduces concurrency.

InnoDB locks rows only when it accesses them, and an index can reduce the number
of rows InnoDB accesses and therefore locks. However, this works only if InnoDB
can filter out the undesired rows at the storage engine level. If the index doesn’t per-
mit InnoDB to do that, the MySQL server will have to apply a WHERE clause after
InnoDB retrieves the rows and returns them to the server level. At this point, it’s too
late to avoid locking the rows: InnoDB will already have locked them, and the server
won’t be able to unlock them.

This is easier to see with an example. We use the Sakila sample database again:

mysql> SET AUTOCOMMIT=0;

mysql> BEGIN;

mysql> SELECT actor_id FROM sakila.actor WHERE actor_id < 5
-> AND actor_id <> 1 FOR UPDATE;

e —— +
| actor_id |
Hmmmmmmmmee +
| 2 |
\ 3|
| 4|
e —— +

Indexing Strategies for High Performance | 129

This query returns only rows 2 through 4, but it actually gets exclusive locks on rows
1 through 4. InnoDB locked row 1 because the plan MySQL chose for this query was
an index range access:

mysql> EXPLAIN SELECT actor_id FROM sakila.actor

R SECEE R Hmmmm - oo Hmmmm - B EE +
| id | select type | table | type | key | Extra |
R e ST EE R Fommmmme ommmm e Fmmmmmm—me o m - +
| 1| SIMPLE | actor | range | PRIMARY | Using where; Using index |
B SEEEEEEEEEEE Hommmm - ommmmm- Hommmmm o B T LT E T +

In other words, the low-level storage engine operation was “begin at the start of the
index and fetch all rows until actor_id < 5 is false.” The server didn’t tell InnoDB
about the WHERE condition that eliminated row 1. Note the presence of “Using where”
in the Extra column in EXPLAIN. This indicates that the MySQL server is applying a
WHERE filter after the storage engine returns the rows.

Summary of Indexing Strategies

Now that you’ve learned more about indexing, perhaps you’re wondering where to get
started with your own tables. The most important thing to do is examine the queries
you’re going to run most often, but you should also think about less-frequent opera-
tions, such as inserting and updating data. Try to avoid the common mistake of creat-
ing indexes without knowing which queries will use them, and consider whether all
your indexes together will form an optimal configuration.

Sometimes you can just look at your queries, and see which indexes they need, add
them, and you’re done. But sometimes you’ll have enough different kinds of queries
that you can’t add perfect indexes for them all, and you’ll need to compromise. To find
the best balance, you should benchmark and profile.

The first thing to look at is response time. Consider adding an index for any query
that’s taking too long. Then examine the queries that cause the most load (see
Chapter 2 for more on how to measure this), and add indexes to support them. If your
system is approaching a memory, CPU, or disk bottleneck, take that into account. For
example, if you do a lot of long aggregate queries to generate summaries, your disks
might benefit from covering indexes that support GROUP BY queries.

Where possible, try to extend existing indexes rather than adding new ones. It is usu-
ally more efficient to maintain one multicolumn index than several single-column
indexes. If you don’t yet know your query distribution, strive to make your indexes as
selective as you can, because highly selective indexes are usually more beneficial.

Here’s a second query that proves row 1 is locked, even though it didn’t appear in
the results from the first query. Leaving the first connection open, start a second con-
nection and execute the following:

130 | Chapter3: Schema Optimization and Indexing

mysql> SET AUTOCOMMIT=0;

mysql> BEGIN;

mysql> SELECT actor_id FROM sakila.actor WHERE actor_id = 1 FOR UPDATE;
The query will hang, waiting for the first transaction to release the lock on row 1.
This behavior is necessary for statement-based replication (discussed in Chapter 8)
to work correctly.

As this example shows, InnoDB can lock rows it doesn’t really need even when it
uses an index. The problem is even worse when it can’t use an index to find and lock
the rows: if there’s no index for the query, MySQL will do a full table scan and lock
every row, whether it “needs” it or not.”

Here’s a little-known detail about InnoDB, indexes, and locking: InnoDB can place
shared (read) locks on secondary indexes, but exclusive (write) locks require access
to the primary key. That eliminates the possibility of using a covering index and can
make SELECT FOR UPDATE much slower than LOCK IN SHARE MODE or a nonlocking query.

An Indexing Case Study

The easiest way to understand indexing concepts is with an illustration, so we’ve pre-
pared a case study in indexing.

Suppose we need to design an online dating site with user profiles that have many
different columns, such as the user’s country, state/region, city, sex, age, eye color,
and so on. The site must support searching the profiles by various combinations of
these properties. It must also let the user sort and limit results by the last time the
profile’s owner was online, ratings from other members, etc. How do we design
indexes for such complex requirements?

Oddly enough, the first thing to decide is whether we have to use index-based sort-
ing, or whether filesorting is acceptable. Index-based sorting restricts how the
indexes and queries need to be built. For example, we can’t use an index for a WHERE
clause such as WHERE age BETWEEN 18 AND 25 if the same query uses an index to sort
users by the ratings other users have given them. If MySQL uses an index for a range
criterion in a query, it cannot also use another index (or a suffix of the same index)
for ordering. Assuming this will be one of the most common WHERE clauses, we’ll take
for granted that many queries will need a filesort.

Supporting Many Kinds of Filtering

Now we need to look at which columns have many distinct values and which col-
umns appear in WHERE clauses most often. Indexes on columns with many distinct

* This is supposed to be fixed in MySQL 5.1 with row-based binary logging and the READ COMMITTED transaction
isolation level, but it applies to all MySQL versions we tested, up to and including 5.1.22.

An Indexing Case Study | 131

values will be very selective. This is generally a good thing, because it lets MySQL fil-
ter out undesired rows more efficiently.

The country column may or may not be selective, but it’ll probably be in most que-
ries anyway. The sex column is certainly not selective, but it’ll probably be in every
query. With this in mind, we create a series of indexes for many different combina-
tions of columns, prefixed with (sex,country).

The traditional wisdom is that it’s useless to index columns with very low selectiv-
ity. So why would we place a nonselective column at the beginning of every index?
Are we out of our minds?

We have two reasons for doing this. The first reason is that, as stated earlier, almost
every query will use sex. We might even design the site such that users can choose to
search for only one sex at a time. But more importantly, there’s not much downside
to adding the column, because we have a trick up our sleeves.

Here’s the trick: even if a query that doesn’t restrict the results by sex is issued, we
can ensure that the index is usable anyway by adding AND sex IN('m", 'f') to the
WHERE clause. This won’t actually filter out any rows, so it’s functionally the same as
not including the sex column in the WHERE clause at all. However, we need to include
this column, because it’ll let MySQL use a larger prefix of the index. This trick is use-
ful in situations like this one, but if the column had many distinct values, it wouldn’t
work well because the IN() list would get too large.

This case illustrates a general principle: keep all options on the table. When you’re
designing indexes, don’t just think about the kinds of indexes you need for existing
queries, but consider optimizing the queries, too. If you see the need for an index but
you think some queries might suffer because of it, ask yourself whether you can
change the queries. You should optimize queries and indexes together to find the
best compromise; you don’t have to design the perfect indexing scheme in a vacuum.

Next, we think about what other combinations of WHERE conditions we’re likely to see
and consider which of those combinations would be slow without proper indexes.
An index on (sex, country, age) is an obvious choice, and we’ll probably also need
indexes on (sex, country, region, age) and (sex, country, region, city, age).

That’s getting to be a lot of indexes. If we want to reuse indexes and it won’t gener-
ate too many combinations of conditions, we can use the IN() trick, and scrap the
(sex, country, age) and (sex, country, region, age) indexes. If they’re not specified
in the search form, we can ensure the index prefix has equality constraints by speci-
fying a list of all countries, or all regions for the country. (Combined lists of all coun-
tries, all regions, and all sexes would probably be too large.)

These indexes will satisfy the most frequently specified search queries, but how can
we design indexes for less common options, such as has_pictures, eye color, hair_
color, and education? If these columns are not very selective and are not used a lot,

132 | Chapter3: Schema Optimization and Indexing

we can simply skip them and let MySQL scan a few extra rows. Alternatively, we can
add them before the age column and use the IN() technique described earlier to han-
dle the case where they are not specified.

You may have noticed that we’re keeping the age column at the end of the index.
What makes this column so special, and why should it be at the end of the index?
We're trying to make sure that MySQL uses as many columns of the index as possi-
ble, because it uses only the leftmost prefix, up to and including the first condition
that specifies a range of values. All the other columns we’ve mentioned can use
equality conditions in the WHERE clause, but age is almost certain to be a range (e.g.,
age BETWEEN 18 AND 25).

We could convert this to an IN() list, such as age IN(18, 19, 20, 21, 22, 23, 24, 25),
but this won’t always be possible for this type of query. The general principle we’re
trying to illustrate is to keep the range criterion at the end of the index, so the opti-
mizer will use as much of the index as possible.

We’ve said that you can add more and more columns to the index and use IN() lists
to cover cases where those columns aren’t part of the WHERE clause, but you can
overdo this and get into trouble. Using more than a few such lists explodes the num-
ber of combinations the optimizer has to evaluate, and this can ultimately reduce
query speed. Consider the following WHERE clause:
WHERE eye_color IN('brown','blue','hazel')

AND hair color IN('black','red','blonde','brown")

AND sex IN('M','FY)
The optimizer will convert this into 4*3*2 = 24 combinations, and the WHERE clause
will then have to check for each of them. Twenty-four is not an extreme number of
combinations, but be careful if that number approaches thousands. Older MySQL
versions had more problems with large numbers of IN() combinations: query opti-
mization could take longer than execution and consume a lot of memory. Newer
MySQL versions stop evaluating combinations if the number of combinations gets
too large, but this limits how well MySQL can use the index.

Avoiding Multiple Range Conditions
Let’s assume we have a last online column and we want to be able to show the
users who were online during the previous week:

WHERE eye color IN('brown','blue','hazel')
AND hair color IN('black','red','blonde’, 'brown")

AND sex IN('M','FY)
AND last online > DATE_SUB('2008-01-17', INTERVAL 7 DAY)
AND age BETWEEN 18 AND 25

There’s a problem with this query: it has two range conditions. MySQL can use
either the last_online criterion or the age criterion, but not both.

An Indexing Case Study | 133

What Is a Range Condition?

EXPLAIN’s output can sometimes make it hard to tell whether MySQL is really looking
for a range of values, or for a list of values. EXPLAIN uses the same term, “range,” to indi-
cate both. For example, MySQL calls the following a “range” query, as you can see in
the type column:

mysql> EXPLAIN SELECT actor_id FROM sakila.actor

-> WHERE actor_id > 45\G
skskokokoskok sk skskokok sk sk kskskokokosk ok kkskokok 1. TOW skskokokosko sk sk skskokokosk sk k sk skokokosk ok kkskokk

id: 1
select type: SIMPLE
table: actor
type: range

But what about this one?

mysql> EXPLAIN SELECT actor_id FROM sakila.actor

-> WHERE actor_id IN(1, 4, 99)\G
skskokok sk sk sk sk skokokok sk sk sk skokokok sk sk sk kokok 1. TOW skokokok sk sk sk sk skokokok sk sk sk skokokok sk sk sk kokok

id: 1
select_type: SIMPLE
table: actor
type: range
There’s no way to tell the difference by looking at EXPLAIN, but we draw a distinction
between ranges of values and multiple equality conditions. The second query is a mul-
tiple equality condition, in our terminology.

We’re not just being picky: these two kinds of index accesses perform differently. The
range condition makes MySQL ignore any further columns in the index, but the mul-
tiple equality condition doesn’t have that limitation.

If the last_online restriction appears without the age restriction, or if last_online is
more selective than age, we may wish to add another set of indexes with last_online
at the end. But what if we can’t convert the age to an IN() list, and we really need the
speed boost of restricting by last_online and age simultaneously? At the moment
there’s no way to do this directly, but we can convert one of the ranges to an equal-
ity comparison. To do this, we add a precomputed active column, which we’ll main-
tain with a periodic job. We’'ll set the column to 1 when the user logs in, and the job
will set it back to 0 if the user doesn’t log in for seven consecutive days.

This approach lets MySQL use indexes such as (active, sex, country, age). The col-
umn may not be absolutely accurate, but this kind of query might not require a high
degree of accuracy. If we do need accuracy, we can leave the last_online condition
in the WHERE clause, but not index it. This technique is similar to the one we used to
simulate HASH indexes for URL lookups earlier in this chapter. The condition won’t
use any index, but because it’s unlikely to throw away many of the rows that an

134 | Chapter3: Schema Optimization and Indexing

index would find an index wouldn’t really be beneficial anyway. Put another way,
the lack of an index won’t hurt the query noticeably.

By now, you can probably see the pattern: if a user wants to see both active and inac-
tive results, we can add an IN() list. We’ve added a lot of these lists, but the alterna-
tive is to create separate indexes that can satisfy every combination of columns on
which we need to filter. We’d have to use at least the following indexes:
(active,sex,country,age), (active,country,age), (sex,country,age), and
(country,age). Although such indexes might be more optimal for each specific
query, the overhead of maintaining them all, combined with all the extra space
they’d require, would likely make this a poor strategy overall.

This is a case where optimizer changes can really affect the optimal indexing strat-
egy. If a future version of MySQL can do a true loose index scan, it should be able to
use multiple range conditions on a single index, so we won’t need the IN() lists for
the kinds of queries we’re considering here.

Optimizing Sorts

The last issue we want to cover in this case study is sorting. Sorting small result sets
with filesorts is fast, but what if millions of rows match a query? For example, what if
only sex is specified in the WHERE clause?

We can add special indexes for sorting these low-selectivity cases. For example, an
index on (sex,rating) can be used for the following query:

mysql> SELECT <cols> FROM profiles WHERE sex='M' ORDER BY rating LIMIT 10;

This query has both ORDER BY and LIMIT clauses, and it would be very slow without
the index.

Even with the index, the query can be slow if the user interface is paginated and
someone requests a page that’s not near the beginning. This case creates a bad com-
bination of ORDER BY and LIMIT with an offset:

mysql> SELECT <cols> FROM profiles WHERE sex='M' ORDER BY rating LIMIT 100000, 10;

Such queries can be a serious problem no matter how they’re indexed, because the
high offset requires them to spend most of their time scanning a lot of data that they
will then throw away. Denormalizing, precomputing, and caching are likely to be the
only strategies that work for queries like this one. An even better strategy is to limit
the number of pages you let the user view. This is unlikely to impact the user’s expe-
rience, because no one really cares about the 10,000th page of search results.

Another good strategy for optimizing such queries is to use a covering index to
retrieve just the primary key columns of the rows you’ll eventually retrieve. You can
then join this back to the table to retrieve all desired columns. This helps minimize
the amount of work MySQL must do gathering data that it will only throw away.
Here’s an example that requires an index on (sex, rating) to work efficiently:

An Indexing Case Study | 135

mysql> SELECT <cols> FROM profiles INNER JOIN (
-> SELECT <primary key cols> FROM profiles
-> WHERE x.sex='M' ORDER BY rating LIMIT 100000, 10
->) AS x USING(<primary key cols>);

Index and Table Maintenance

Once you've created tables with proper data types and added indexes, your work
isn’t over: you still need to maintain your tables and indexes to make sure they per-
form well. The three main goals of table maintenance are finding and fixing corrup-
tion, maintaining accurate index statistics, and reducing fragmentation.

Finding and Repairing Table Corruption

The worst thing that can happen to a table is corruption. With the MyISAM storage
engine, this often happens due to crashes. However, all storage engines can experi-
ence index corruption due to hardware problems or internal bugs in MySQL or the
operating system.

Corrupted indexes can cause queries to return incorrect results, raise duplicate-key
errors when there is no duplicated value, or even cause lockups and crashes. If you
experience odd behavior—such as an error that you think shouldn’t be happening—
run CHECK TABLE to see if the table is corrupt. (Note that some storage engines don’t
support this command, and others support multiple options to specify how thor-
oughly they check the table.) CHECK TABLE usually catches most table and index errors.

You can fix corrupt tables with the REPAIR TABLE command, but again, not all storage
engines support this. In these cases you can do a “no-op” ALTER, such as altering a
table to use the same storage engine it currently uses. Here’s an example for an
InnoDB table:

mysql> ALTER TABLE innodb_tbl ENGINE=INNODB;

Alternatively, you can either use an offline engine-specific repair utility, such as
myisamchk, or dump the data and reload it. However, if the corruption is in the sys-
tem area, or in the table’s “row data” area instead of the index, you may be unable to
use any of these options. In this case, you may need to restore the table from your
backups or attempt to recover data from the corrupted files (see Chapter 11).

Updating Index Statistics

The MySQL query optimizer uses two API calls to ask the storage engines how index
values are distributed when deciding how to use indexes. The first is the records_in_
range() call, which accepts range end points and returns the (possibly estimated)
number of records in that range. The second is info(), which can return various types
of data, including index cardinality (how many records there are for each key value).

136 | Chapter3: Schema Optimization and Indexing

When the storage engine doesn’t provide the optimizer with accurate information
about the number of rows a query will examine, the optimizer uses the index statis-
tics, which you can regenerate by running ANALYZE TABLE, to estimate the number of
rows. MySQL’s optimizer is cost-based, and the main cost metric is how much data
the query will access. If the statistics were never generated, or if they are out of date,
the optimizer can make bad decisions. The solution is to run ANALYZE TABLE.

Each storage engine implements index statistics differently, so the frequency with which

you’ll need to run ANALYZE TABLE differs, as does the cost of running the statement:

* The Memory storage engine does not store index statistics at all.

* MyISAM stores statistics on disk, and ANALYZE TABLE performs a full index scan
to compute cardinality. The entire table is locked during this process.

¢ InnoDB does not store statistics on disk, but rather estimates them with random
index dives the first time a table is opened. ANALYZE TABLE uses random dives for
InnoDB, so InnoDB statistics are less accurate, but they may not need manual
updates unless you keep your server running for a very long time. Also, ANALYZE
TABLE is nonblocking and relatively inexpensive in InnoDB, so you can update
the statistics online without affecting the server much.

You can examine the cardinality of your indexes with the SHOW INDEX FROM command.

For example:

mysql> SHOW INDEX FROM sakila.actor\G

Fokkokskskskokokkokdokokokokokokokokkokokokkk oy RRKKsKsRsokoRskokokokokkkokkokkokokkokok ok

Table:
Non_unique:
Key name:
Seq_in_index:
Column_name:
Collation:
Cardinality:
Sub_part:
Packed:
Null:
Index_type:
Comment:

actor

0
PRIMARY
1
actor_id
A

200

NULL
NULL

BTREE

Fokkkkskskskokkokkokkolololokokokokkkskokkk 9y RRkskssksksksokskokokokokokkokskokskokokokokok ok

Table:
Non_unique:
Key_name:
Seq_in_index:
Column_name:
Collation:
Cardinality:
Sub_part:
Packed:
Null:
Index_type:
Comment:

actor

1
idx_actor last name
1

last_name

A

200

NULL

NULL

BTREE

Index and Table Maintenance

137

This command gives quite a lot of index information, which the MySQL manual
explains in detail. We do want to call your attention to the Cardinality column,
though. This shows how many distinct values the storage engine estimates are in the
index. You can also get this data from the INFORMATION SCHEMA.STATISTICS table in
MySQL 5.0 and newer, which can be quite handy. For example, you can write que-
ries against the INFORMATION SCHEMA tables to find indexes with very low selectivity.

Reducing Index and Data Fragmentation

B-Tree indexes can become fragmented, which reduces performance. Fragmented
indexes may be poorly filled and/or nonsequential on disk.

By design B-Tree indexes require random disk accesses to “dive” to the leaf pages, so
random access is the rule, not the exception. However, the leaf pages can still per-
form better if they are physically sequential and tightly packed. If they are not, we
say they are fragmented, and range scans or full index scans can be many times
slower. This is especially true for index-covered queries.

The table’s data storage can also become fragmented. However, data storage frag-
mentation is more complex than index fragmentation. There are two types of data
fragmentation:

Row fragmentation
This type of fragmentation occurs when the row is stored in multiple pieces in
multiple locations. Row fragmentation reduces performance even if the query
needs only a single row from the index.

Intra-row fragmentation
This kind of fragmentation occurs when logically sequential pages or rows are
not stored sequentially on disk. It affects operations such as full table scans and
clustered index range scans, which normally benefit from a sequential data lay-
out on disk.

MyISAM tables may suffer from both types of fragmentation, but InnoDB never frag-
ments short rows.

To defragment data, you can either run OPTIMIZE TABLE or dump and reload the data.

These approaches work for most storage engines. For some, such as MyISAM, they
also defragment indexes by rebuilding them with a sort algorithm, which creates the
indexes in sorted order. There is currently no way to defragment InnoDB indexes, as
InnoDB can’t build indexes by sorting in MySQL 5.0.” Even dropping and recreating
InnoDB indexes may result in fragmented indexes, depending on the data.

For storage engines that don’t support OPTIMIZE TABLE, you can rebuild the table with
a no-op ALTER TABLE. Just alter the table to have the same engine it currently uses:

* The InnoDB developers are working on this problem at the time of this writing.

138 | Chapter3: Schema Optimization and Indexing

mysql> ALTER TABLE <table> ENGINE=<engine>;

Normalization and Denormalization

There are usually many ways to represent any given data, ranging from fully normal-
ized to fully denormalized and anything in between. In a normalized database, each
fact is represented once and only once. Conversely, in a denormalized database,
information is duplicated, or stored in multiple places.

If you’re not familiar with normalization, you should study it. There are many good
books on the topic and resources online; here, we just give a brief introduction to the
aspects you need to know for this chapter. Let’s start with the classic example of
employees, departments, and department heads:

EMPLOYEE DEPARTMENT HEAD
Jones Accounting Jones
Smith Engineering Smith
Brown Accounting Jones
Green Engineering Smith

The problem with this schema is that abnormalities can occur while the data is being
modified. Say Brown takes over as the head of the Accounting department. We need
to update multiple rows to reflect this change, and while those updates are being
made the data is in an inconsistent state. If the “Jones” row says the head of the
department is something different from the “Brown” row, there’s no way to know
which is right. It’s like the old saying, “A person with two watches never knows what
time it is.” Furthermore, we can’t represent a department without employees—if we
delete all employees in the Accounting department, we lose all records about the
department itself. To avoid these problems, we need to normalize the table by sepa-
rating the employee and department entities. This process results in the following
two tables for employees:

EMPLOYEE_NAME DEPARTMENT
Jones Accounting
Smith Engineering
Brown Accounting
Green Engineering

and departments:

DEPARTMENT HEAD
Accounting Jones
Engineering Smith

Normalization and Denormalization | 139

These tables are now in second normal form, which is good enough for many pur-
poses. However, second normal form is only one of many possible normal forms.

A s

We’re using the last name as the primary key here for purposes of
.‘s‘ . illustration, because it’s the “natural identifier” of the data. In prac-
~* ake tice, however, we wouldn’t do that. It’s not guaranteed to be unique,
* and it’s usually a bad idea to use a long string for a primary key.

Pros and Cons of a Normalized Schema

People who ask for help with performance issues are frequently advised to normalize
their schemas, especially if the workload is write-heavy. This is often good advice. It
works well for the following reasons:

* Normalized updates are usually faster than denormalized updates.

* When the data is well normalized, there’s little or no duplicated data, so there’s
less data to change.

* Normalized tables are usually smaller, so they fit better in memory and perform
better.

* The lack of redundant data means there’s less need for DISTINCT or GROUP BY que-
ries when retrieving lists of values. Consider the preceding example: it’s impossi-
ble to get a distinct list of departments from the denormalized schema without
DISTINCT or GROUP BY, but if DEPARTMENT is a separate table, it’s a trivial query.

The drawbacks of a normalized schema usually have to do with retrieval. Any non-
trivial query on a well-normalized schema will probably require at least one join, and
perhaps several. This is not only expensive, but it can make some indexing strategies
impossible. For example, normalizing may place columns in different tables that
would benefit from belonging to the same index.

Pros and Cons of a Denormalized Schema

A denormalized schema works well because everything is in the same table, which
avoids joins.

If you don’t need to join tables, the worst case for most queries—even the ones that
don’t use indexes—is a full table scan. This can be much faster than a join when the
data doesn’t fit in memory, because it avoids random I/O.

A single table can also allow more efficient indexing strategies. Suppose you have a
web site where users post their messages, and some users are premium users. Now
say you want to view the last 10 messages from each of the premium users. If you’ve
normalized the schema and indexed the publishing dates of the messages, the query
might look like this:

140 | Chapter3: Schema Optimization and Indexing

mysql> SELECT message_text, user_name

-> FROM message

-> INNER JOIN user ON message.user_id=user.id

-> WHERE user.account_type="premium’

-> ORDER BY message.published DESC LIMIT 10;
To execute this query efficiently, MySQL will need to scan the published index on
the message table. For each row it finds, it will need to probe into the user table and
check whether the user is a premium user. This is inefficient if only a small fraction
of users have premium accounts.

The other possible query plan is to start with the user table, select all premium users,
get all messages for them, and do a filesort. This will probably be even worse.

The problem is the join, which is keeping you from sorting and filtering simulta-
neously with a single index. If you denormalize the data by combining the tables and
add an index on (account_type, published), you can write the query without a join.
This will be very efficient:
mysql> SELECT message_text,user_name
-> FROM user_messages
-> WHERE account_type="premium’

-> ORDER BY published DESC
-> LIMIT 10;

A Mixture of Normalized and Denormalized

Given that both normalized and denormalized schemas have benefits and draw-
backs, how can you choose the best design?

The truth is, fully normalized and fully denormalized schemas are like laboratory
rats: they usually have little to do with the real world. In the real world, you often
need to mix the approaches, possibly using a partially normalized schema, cache
tables, and other techniques.

The most common way to denormalize data is to duplicate, or cache, selected col-
umns from one table in another table. In MySQL 5.0 and newer, you can use trig-
gers to update the cached values, which makes the implementation easier.

In our web site example, for instance, instead of denormalizing fully you can store
account_type in both the user and message tables. This avoids the insert and delete
problems that come with full denormalization, because you never lose information
about the user, even when there are no messages. It won’t make the user message
table much larger, but it will let you select the data efficiently.

However, it’s now more expensive to update a user’s account type, because you have
to change it in both tables. To see whether that’s a problem, you must consider how
frequently you’ll have to make such changes and how long they will take, compared
to how often you’ll run the SELECT query.

Normalization and Denormalization | 141

Another good reason to move some data from the parent table to the child table is
for sorting. For example, it would be extremely expensive to sort messages by the
author’s name on a normalized schema, but you can perform such a sort very effi-
ciently if you cache the author name in the message table and index it.

It can also be useful to cache derived values. If you need to display how many mes-
sages each user has posted (as many forums do), either you can run an expensive
subquery to count the data every time you display it, or you can have a num_messages
column in the user table that you update whenever a user posts a new message.

Cache and Summary Tables

Sometimes the best way to improve performance is to keep redundant data in the
same table as the data from which was derived. However, sometimes you’ll need to
build completely separate summary or cache tables, specially tuned for your retrieval
needs. This approach works best if you can tolerate slightly stale data, but some-
times you really don’t have a choice (for instance, when you need to avoid complex
and expensive real-time updates).

The terms “cache table” and “summary table” don’t have standardized meanings.
We use the term “cache tables” to refer to tables that contain data that can be easily,
if more slowly, retrieved from the schema (i.e., data that is logically redundant).
When we say “summary tables,” we mean tables that hold aggregated data from
GROUP BY queries (i.e., data that is not logically redundant). Some people also use the
term “roll-up tables” for these tables, because the data has been “rolled up.”

Staying with the web site example, suppose you need to count the number of mes-
sages posted during the previous 24 hours. It would be impossible to maintain an
accurate real-time counter on a busy site. Instead, you could generate a summary
table every hour. You can often do this with a single query, and it’s more efficient
than maintaining counters in real time. The drawback is that the counts are not
100% accurate.

If you need to get an accurate count of messages posted during the previous 24-hour
period (with no staleness), there is another option. Begin with a per-hour summary
table. You can then count the exact number of messages posted in a given 24-hour
period by adding the number of messages in the 23 whole hours contained in that
period, the partial hour at the beginning of the period, and the partial hour at the
end of the period. Suppose your summary table is called msg_per hr and is defined as
follows:
CREATE TABLE msg_per_hr (
hr DATETIME NOT NULL,

cnt INT UNSIGNED NOT NULL,
PRIMARY KEY(hr)

)s

142 | Chapter3: Schema Optimization and Indexing

You can find the number of messages posted in the previous 24 hours by adding the
results of the following three queries:”
mysql> SELECT SUM(cnt) FROM msg_per_hr
-> WHERE hr BETWEEN
-> CONCAT(LEFT(NOW(), 14), '00:00') - INTERVAL 23 HOUR
-> AND CONCAT(LEFT(NOW(), 14), '00:00') - INTERVAL 1 HOUR;
mysql> SELECT COUNT(*) FROM message
-> WHERE posted >= NOW() - INTERVAL 24 HOUR
-> AND posted < CONCAT(LEFT(NOW(), 14), '00:00') - INTERVAL 23 HOUR;
mysql> SELECT COUNT(*) FROM message
-> WHERE posted >= CONCAT(LEFT(NOW(), 14), '00:00');
Either approach—an inexact count or an exact count with small range queries to fill
in the gaps—is more efficient than counting all the rows in the message table. This is
the key reason for creating summary tables. These statistics are expensive to com-
pute in real time, because they require scanning a lot of data, or queries that will only
run efficiently with special indexes that you don’t want to add because of the impact
they will have on updates. Computing the most active users or the most frequent
“tags” are typical examples of such operations.

Cache tables, in turn, are useful for optimizing search and retrieval queries. These
queries often require a particular table and index structure that is different from the
one you would use for general online transaction processing (OLTP) operations.

For example, you might need many different index combinations to speed up vari-
ous types of queries. These conflicting requirements sometimes demand that you cre-
ate a cache table that contains only some of the columns from the main table. A
useful technique is to use a different storage engine for the cache table. If the main
table uses InnoDB, for example, by using MyISAM for the cache table you’ll gain a
smaller index footprint and the ability to do full-text search queries. Sometimes you
might even want to take the table completely out of MySQL and into a specialized
system that can search more efficiently, such as the Lucene or Sphinx search engines.

When using cache and summary tables, you have to decide whether to maintain their
data in real time or with periodic rebuilds. Which is better will depend on your
application, but a periodic rebuild not only can save resources but also can result in a
more efficient table that’s not fragmented and has fully sorted indexes.

When you rebuild summary and cache tables, you’ll often need their data to remain
available during the operation. You can achieve this by using a “shadow table,”
which is a table you build “behind” the real table. When you’re done building it, you
can swap the tables with an atomic rename. For example, if you need to rebuild my
summary, you can create my summary new, fill it with data, and swap it with the real

table:

* We're using LEFT(NOW(), 14) to round the current date and time to the nearest hour.

Normalization and Denormalization | 143

mysql> DROP TABLE IF EXISTS my_ summary_new, my_summary_old;

mysql> CREATE TABLE my_summary_new LIKE my_summary;

-- populate my summary new as desired

mysql> RENAME TABLE my_ summary TO my_summary old, my summary new TO my_summary;
If you rename the original my_summary table my_summary old before assigning the name
my_summary to the newly rebuilt table, as we’ve done here, you can keep the old ver-
sion until you’re ready to overwrite it at the next rebuild. It’s handy to have it for a
quick rollback if the new table has a problem.

Counter tables

An application that keeps counts in a table can run into concurrency problems when
updating the counters. Such tables are very common in web applications. You can
use them to cache the number of friends a user has, the number of downloads of a
file, and so on. It’s often a good idea to build a separate table for the counters, to
keep it small and fast. Using a separate table can help you avoid query cache invali-
dations and lets you use some of the more advanced techniques we show in this
section.

To keep things as simple as possible, suppose you have a counter table with a single
row that just counts hits on your web site:

mysql> CREATE TABLE hit_counter (
-> cnt int unsigned not null
->) ENGINE=InnoDB;

Each hit on the web site updates the counter:
mysql> UPDATE hit_counter SET cnt = cnt + 1;

The problem is that this single row is effectively a global “mutex” for any transac-
tion that updates the counter. It will serialize those transactions. You can get higher
concurrency by keeping more than one row and updating a random row. This
requires the following change to the table:
mysql> CREATE TABLE hit_counter (

-> slot tinyint unsigned not null primary key,

-> cnt int unsigned not null

->) ENGINE=InnoDB;
Prepopulate the table by adding 100 rows to it. Now the query can just choose a ran-
dom slot and update it:

mysql> UPDATE hit_counter SET cnt = cnt + 1 WHERE slot = RAND() * 100;
To retrieve statistics, just use aggregate queries:
mysql> SELECT SUM(cnt) FROM hit_counter;

A common requirement is to start new counters every so often (for example, once a
day). If you need to do this, you can change the schema slightly:

144 | Chapter3: Schema Optimization and Indexing

mysql> CREATE TABLE daily hit_counter (
-> day date not null,
-> slot tinyint unsigned not null,
-> cnt int unsigned not null,
-> primary key(day, slot)
->) ENGINE=InnoDB;

You don’t want to pregenerate rows for this scenario. Instead, you can use ON
DUPLICATE KEY UPDATE:
mysql> INSERT INTO daily hit_counter(day, slot, cnt)
-> VALUES(CURRENT DATE, RAND() * 100, 1)
-> ON DUPLICATE KEY UPDATE cnt = cnt + 1;
If you want to reduce the number of rows to keep the table smaller, you can write a
periodic job that merges all the results into slot 0 and deletes every other slot:

mysql> UPDATE daily hit_counter as c
-> INNER JOIN (

-> SELECT day, SUM(cnt) AS cnt, MIN(slot) AS mslot
-> FROM daily_hit_counter
-> GROUP BY day

->) AS x USING(day)
-> SET c.cnt = IF(c.slot = x.mslot, x.cnt, 0),
-> c.slot = IF(c.slot = x.mslot, 0, c.slot);
mysql> DELETE FROM daily_hit_counter WHERE slot <> 0 AND cnt = 0;

Faster Reads, Slower Writes

You’ll often need extra indexes, redundant fields, or even cache and summary tables
to speed up read queries. These add work to write queries and maintenance jobs, but
this is still a technique you’ll see a lot when you design for high performance: you
amortize the cost of the slower writes by speeding up reads significantly.

However, this isn’t the only price you pay for faster read queries. You also increase
development complexity for both read and write operations.

Speeding Up ALTER TABLE

MySQL’s ALTER TABLE performance can become a problem with very large tables.
MySQL performs most alterations by making an empty table with the desired new
structure, inserting all the data from the old table into the new one, and deleting the
old table. This can take a very long time, especially if you’re short on memory and
the table is large and has lots of indexes. Many people have experience with ALTER
TABLE operations that have taken hours or days to complete.

Speeding Up ALTERTABLE | 145

MySQL AB is working on improving this. Some of the upcoming improvements
include support for “online” operations that won’t lock the table for the whole oper-
ation. The InnoDB developers are also working on support for building indexes by
sorting. MyISAM already supports this technique, which makes building indexes
much faster and results in a compact index layout. (InnoDB currently builds its
indexes one row at a time in primary key order, which means the index trees aren’t
built in optimal order and are fragmented.)

Not all ALTER TABLE operations cause table rebuilds. For example, you can change or
drop a column’s default value in two ways (one fast, and one slow). Say you want to
change a film’s default rental duration from 3 to 5 days. Here’s the expensive way:
mysql> ALTER TABLE sakila.film
-> MODIFY COLUMN rental_duration TINYINT(3) NOT NULL DEFAULT 5;

Profiling that statement with SHOW STATUS shows that it does 1,000 handler reads and
1,000 inserts. In other words, it copied the table to a new table, even though the col-
umn’s type, size, and nullability didn’t change.

In theory, MySQL could have skipped building a new table. The default value for the
column is actually stored in the table’s .frm file, so you should be able to change it
without touching the table itself. MySQL doesn’t yet use this optimization, how-
ever: any MODIFY COLUMN will cause a table rebuild.

You can change a column’s default with ALTER COLUMN,” though:

mysql> ALTER TABLE sakila.film
-> ALTER COLUMN rental_duration SET DEFAULT 5;
This statement modifies the .frm file and leaves the table alone. As a result, it is very
fast.

Modifying Only the .frm File

We've seen that modifying a table’s .frm file is fast and that MySQL sometimes
rebuilds a table when it doesn’t have to. If you’re willing to take some risks, you can
convince MySQL to do several other types of modifications without rebuilding the

table.

The technique we’re about to demonstrate is unsupported, undocu-
mented, and may not work. Use it at your own risk. We advise you to
back up your data first!

You can potentially do the following types of operations without a table rebuild:

*ALTER TABLE lets you modify columns with ALTER COLUMN, MODIFY COLUMN, and CHANGE COLUMN. All three do dif-
ferent things.

146 | Chapter3: Schema Optimization and Indexing

* Remove (but not add) a column’s AUTO_INCREMENT attribute.
* Add, remove, or change ENUM and SET constants. If you remove a constant and
some rows contain that value, queries will return the value as the empty string.

The basic technique is to create a .frm file for the desired table structure and copy it
into the place of the existing table’s .frm file, as follows:

1. Create an empty table with exactly the same layout, except for the desired modi-
fication (such as added ENUM constants).

2. Execute FLUSH TABLES WITH READ LOCK. This will close all tables in use and prevent
any tables from being opened.

3. Swap the .frm files.
4. Execute UNLOCK TABLES to release the read lock.

As an example, we add a constant to the rating column in sakila.film. The current
column looks like this:

mysql> SHOW COLUMNS FROM sakila.film LIKE 'rating';

Hmmm e R R 4o +mm - Hmmmmm e o +
| Field | Type | Null | Key | Default | Extra |
Hmmmmmmne e R e Hmmmmm Hmmmmm e +
| rating | enum('G','PG','PG-13",'R",'NC-17") | YES | G \

Hmmmmmmm- i m e e e Hmmm 4mm e fmmmmmmme Hmmm e +

We add a PG-14 rating for parents who are just a little bit more cautious about films:

mysql> CREATE TABLE sakila.film_new LIKE sakila.film;

mysql> ALTER TABLE sakila.film_new
-> MODIFY COLUMN rating ENUM('G','PG','PG-13','R','NC-17', 'PG-14')
-> DEFAULT 'G';

mysql> FLUSH TABLES WITH READ LOCK;

Notice that we’re adding the new value at the end of the list of constants. If we placed

it in the middle, after PG-13, we’d change the meaning of the existing data: existing
R values would become PG-14, NC-17 would become R, and so on.

Now we swap the .frm files from the operating system’s command prompt:

root:/var/lib/mysql/sakila# mv film.frm film tmp.frm
root:/var/lib/mysql/sakila# mv film_new.frm film.frm
root:/var/lib/mysql/sakila# mv film_tmp.frm film_new.frm

Back in the MySQL prompt, we can now unlock the table and see that the changes
took effect:

mysql> UNLOCK TABLES;

mysql> SHOW COLUMNS FROM sakila.film LIKE ‘rating'\G
Fokkokskskskokkskokokkokokokokokokokokokokokkk oy RRKKRssRsskoRskokokokokokkokskokskokok kb ok ok

Field: rating
Type: enum('G",'PG','PG-13",'R", 'NC-17",'PG-14")
The only thing left to do is drop the table we created to help with the operation:
mysql> DROP TABLE sakila.film_new;

Speeding Up ALTERTABLE | 147

Building MyISAM Indexes Quickly

The usual trick for loading MyISAM tables efficiently is to disable keys, load the
data, and reenable the keys:

mysql> ALTER TABLE test.load_data DISABLE KEYS;

-- load the data

mysql> ALTER TABLE test.load_data ENABLE KEYS;
This works because it lets MyISAM delay building the keys until all the data is
loaded, at which point, it can build the indexes by sorting. This is much faster and
results in a defragmented, compact index tree.”

Unfortunately, it doesn’t work for unique indexes, because DISABLE KEYS applies only
to nonunique indexes. MyISAM builds unique indexes in memory and checks the
uniqueness as it loads each row. Loading becomes extremely slow as soon as the
index’s size exceeds the available memory.

As with the ALTER TABLE hacks in the previous section, you can speed up this process
if you’re willing to do a little more work and assume some risk. This can be useful for
loading data from backups, for example, when you already know all the data is valid
and there’s no need for uniqueness checks.

Again, this is an undocumented, unsupported technique. Use it at
your own risk, and back up your data first.

Here are the steps you’ll need to take:

1. Create a table of the desired structure, but without any indexes.
2. Load the data into the table to build the .MYD file.

3. Create another empty table with the desired structure, this time including the
indexes. This will create the .frm and .MYT files you need.

4. Flush the tables with a read lock.

5. Rename the second table’s .frm and .MYT files, so MySQL uses them for the first
table.

6. Release the read lock.

7. Use REPAIR TABLE to build the table’s indexes. This will build all indexes by sort-
ing, including the unique indexes.

This procedure can be much faster for very large tables.

* MyISAM will also build indexes by sorting when you use LOAD DATA INFILE and the table is empty.

148 | Chapter3: Schema Optimization and Indexing

Notes on Storage Engines

We close this chapter with some storage engine-specific schema design choices you
should keep in mind. We’re not trying to write an exhaustive list; our goal is just to
present some key factors that are relevant to schema design.

The MyISAM Storage Engine

Table locks
MyISAM tables have table-level locks. Be careful this doesn’t become a
bottleneck.

No automated data recovery
If the MySQL server crashes or power goes down, you should check and possi-
bly repair your MyISAM tables before using them. If you have large tables, this
could take hours.

No transactions
MyISAM tables don’t support transactions. In fact, MyISAM doesn’t even guar-
antee that a single statement will complete; if there’s an error halfway through a
multirow UPDATE, for example, some of the rows will be updated and some
won’t.

Only indexes are cached in memory
MyISAM caches only the index inside the MySQL process, in the key buffer. The
operating system caches the table’s data, so in MySQL 5.0 an expensive operat-
ing system call is required to retrieve it.

Compact storage
Rows are stored jam-packed one after another, so you get a small disk footprint
and fast full table scans for on-disk data.

The Memory Storage Engine

Table locks
Like MyISAM tables, Memory tables have table locks. This isn’t usually a prob-
lem though, because queries on Memory tables are normally fast.

No dynamic rows
Memory tables don’t support dynamic (i.e., variable-length) rows, so they don’t
support BLOB and TEXT fields at all. Even a VARCHAR(5000) turns into a
CHAR(5000)—a huge memory waste if most values are small.

Hash indexes are the default index type
Unlike for other storage engines, the default index type is hash if you don’t spec-
ify it explicitly.

Notes on Storage Engines | 149

No index statistics
Memory tables don’t support index statistics, so you may get bad execution
plans for some complex queries.

Content is lost on restart
Memory tables don’t persist any data to disk, so the data is lost when the server
restarts, even though the tables’ definitions remain.

The InnoDB Storage Engine

Transactional
InnoDB supports transactions and four transaction isolation levels.

Foreign keys
As of MySQL 5.0, InnoDB is the only stock storage engine that supports foreign
keys. Other storage engines will accept them in CREATE TABLE statements, but
won’t enforce them. Some third-party engines, such as solidDB for MySQL and
PBXT, support them at the storage engine level too; MySQL AB plans to add
support at the server level in the future.

Row-level locks
Locks are set at the row level, with no escalation and nonblocking selects—stan-
dard selects don’t set any locks at all, which gives very good concurrency.

Multiversioning
InnoDB uses multiversion concurrency control, so by default your selects may
read stale data. In fact, its MVCC architecture adds a lot of complexity and pos-
sibly unexpected behaviors. You should read the InnoDB manual thoroughly if
you use InnoDB.

Clustering by primary key
All InnoDB tables are clustered by the primary key, which you can use to your
advantage in schema design.

All indexes contain the primary key columns
Indexes refer to the rows by the primary key, so if you don’t keep your primary
key short, the indexes will grow very large.

Optimized caching
InnoDB caches both data and memory in the buffer pool. It also automatically
builds hash indexes to speed up row retrieval.

Unpacked indexes
Indexes are not packed with prefix compression, so they can be much larger
than for MyISAM tables.

150 | Chapter3: Schema Optimization and Indexing

Slow data load
As of MySQL 5.0, InnoDB does not specially optimize data load operations. It
builds indexes a row at a time, instead of building them by sorting. This may
result in significantly slower data loads.

Blocking AUTO_INCREMENT
In versions earlier than MySQL 5.1, InnoDB uses a table-level lock to generate

each new AUTO_INCREMENT value.

No cached COUNT (*) value
Unlike MyISAM or Memory tables, InnoDB tables don’t store the number of
rows in the table, which means COUNT(*) queries without a WHERE clause can’t be
optimized away and require full table or index scans. See“Optimizing COUNT()
Queries” on page 188 for more on this topic.

Notes on Storage Engines | 151

CHAPTER 4
Query Performance Optimization

In the previous chapter, we explained how to optimize a schema, which is one of the
necessary conditions for high performance. But working with the schema isn’t
enough—ryou also need to design your queries well. If your queries are bad, even the
best-designed schema will not perform well.

Query optimization, index optimization, and schema optimization go hand in hand.
As you gain experience writing queries in MySQL, you will come to understand how
to design schemas to support efficient queries. Similarly, what you learn about opti-
mal schema design will influence the kinds of queries you write. This process takes
time, so we encourage you to refer back to this chapter and the previous one as you
learn more.

This chapter begins with general query design considerations—the things you should
consider first when a query isn’t performing well. We then dig much deeper into
query optimization and server internals. We show you how to find out how MySQL
executes a particular query, and you’ll learn how to change the query execution plan.
Finally, we look at some places MySQL doesn’t optimize queries well and explore
query optimization patterns that help MySQL execute queries more efficiently.

Our goal is to help you understand deeply how MySQL really executes queries, so
you can reason about what is efficient or inefficient, exploit MySQL’s strengths, and
avoid its weaknesses.

Slow Query Basics: Optimize Data Access

The most basic reason a query doesn’t perform well is because it’s working with too
much data. Some queries just have to sift through a lot of data and can’t be helped.
That’s unusual, though; most bad queries can be changed to access less data. We've
found it useful to analyze a poorly performing query in two steps:

152

1. Find out whether your application is retrieving more data than you need. That
usually means it’s accessing too many rows, but it might also be accessing too
many columns.

2. Find out whether the MySQL server is analyzing more rows than it needs.

Are You Asking the Database for Data You Don’t Need?

Some queries ask for more data than they need and then throw some of it away. This
demands extra work of the MySQL server, adds network overhead,” and consumes
memory and CPU resources on the application server.

Here are a few typical mistakes:

Fetching more rows than needed

One common mistake is assuming that MySQL provides results on demand,
rather than calculating and returning the full result set. We often see this in
applications designed by people familiar with other database systems. These
developers are used to techniques such as issuing a SELECT statement that returns
many rows, then fetching the first N rows, and closing the result set (e.g., fetch-
ing the 100 most recent articles for a news site when they only need to show 10
of them on the front page). They think MySQL will provide them with these 10
rows and stop executing the query, but what MySQL really does is generate the
complete result set. The client library then fetches all the data and discards most
of it. The best solution is to add a LIMIT clause to the query.

Fetching all columns from a multitable join
If you want to retrieve all actors who appear in Academy Dinosaur, don’t write
the query this way:
mysql> SELECT * FROM sakila.actor
-> INNER JOIN sakila.film_actor USING(actor_id)
-> INNER JOIN sakila.film USING(film_id)
-> WHERE sakila.film.title = 'Academy Dinosaur’;
That returns all columns from all three tables. Instead, write the query as
follows:
mysql> SELECT sakila.actor.* FROM sakila.actor...;

Fetching all columns
You should always be suspicious when you see SELECT *. Do you really need all
columns? Probably not. Retrieving all columns can prevent optimizations such
as covering indexes, as well as adding 1/0, memory, and CPU overhead for the
server.

Some DBAs ban SELECT * universally because of this fact, and to reduce the risk
of problems when someone alters the table’s column list.

* Network overhead is worst if the application is on a different host from the server, but transferring data
between MySQL and the application isn’t free even if they’re on the same server.

Slow Query Basics: Optimize Data Access | 153

Of course, asking for more data than you really need is not always bad. In many
cases we've investigated, people tell us the wasteful approach simplifies develop-
ment, as it lets the developer use the same bit of code in more than one place. That’s
a reasonable consideration, as long as you know what it costs in terms of perfor-
mance. It may also be useful to retrieve more data than you actually need if you use
some type of caching in your application, or if you have another benefit in mind.
Fetching and caching full objects may be preferable to running many separate que-
ries that retrieve only parts of the object.

Is MySQL Examining Too Much Data?

Once you’re sure your queries retrieve only the data you need, you can look for que-
ries that examine too much data while generating results. In MySQL, the simplest
query cost metrics are:

¢ Execution time
¢ Number of rows examined

e Number of rows returned

None of these metrics is a perfect way to measure query cost, but they reflect roughly
how much data MySQL must access internally to execute a query and translate
approximately into how fast the query runs. All three metrics are logged in the slow
query log, so looking at the slow query log is one of the best ways to find queries that
examine too much data.

Execution time

As discussed in Chapter 2, the standard slow query logging feature in MySQL 5.0
and earlier has serious limitations, including lack of support for fine-grained logging.
Fortunately, there are patches that let you log and measure slow queries with micro-
second resolution. These are included in the MySQL 5.1 server, but you can also
patch earlier versions if needed. Beware of placing too much emphasis on query exe-
cution time. It’s nice to look at because it’s an objective metric, but it’s not consis-
tent under varying load conditions. Other factors—such as storage engine locks
(table locks and row locks), high concurrency, and hardware—can also have a con-
siderable impact on query execution times. This metric is useful for finding queries
that impact the application’s response time the most or load the server the most, but
it does not tell you whether the actual execution time is reasonable for a query of a
given complexity. (Execution time can also be both a symptom and a cause of prob-
lems, and it’s not always obvious which is the case.)

Rows examined and rows returned

It’s useful to think about the number of rows examined when analyzing queries,
because you can see how efficiently the queries are finding the data you need.

154 | Chapter4: Query Performance Optimization

However, like execution time, it’s not a perfect metric for finding bad queries. Not
all row accesses are equal. Shorter rows are faster to access, and fetching rows from
memory is much faster than reading them from disk.

Ideally, the number of rows examined would be the same as the number returned,
but in practice this is rarely possible. For example, when constructing rows with
joins, multiple rows must be accessed to generate each row in the result set. The ratio
of rows examined to rows returned is usually small—say, between 1:1 and 10:1—but
sometimes it can be orders of magnitude larger.

Rows examined and access types

When you’re thinking about the cost of a query, consider the cost of finding a single
row in a table. MySQL can use several access methods to find and return a row.
Some require examining many rows, but others may be able to generate the result
without examining any.

The access method(s) appear in the type column in EXPLAIN’s output. The access
types range from a full table scan to index scans, range scans, unique index lookups,
and constants. Each of these is faster than the one before it, because it requires read-
ing less data. You don’t need to memorize the access types, but you should under-
stand the general concepts of scanning a table, scanning an index, range accesses,
and single-value accesses.

If you aren’t getting a good access type, the best way to solve the problem is usually
by adding an appropriate index. We discussed indexing at length in the previous
chapter; now you can see why indexes are so important to query optimization.
Indexes let MySQL find rows with a more efficient access type that examines less
data.

For example, let’s look at a simple query on the Sakila sample database:
mysql> SELECT * FROM sakila.film_actor WHERE film_id = 1;

This query will return 10 rows, and EXPLAIN shows that MySQL uses the ref access
type on the idx_fk film id index to execute the query:

mysql> EXPLAIN SELECT * FROM sakila.film_actor WHERE film_id = 1\G
skokokokosk sk skskokokok sk sk sk skokokosk skk sk skokokok ok k 1. TOW skskskskokokosk sk sk sk skokokok sk sk skskokokok sk sk sk kk ok
id: 1
select _type: SIMPLE
table: film actor
type: ref
possible keys: idx_fk film id
key: idx_fk film id
key len: 2
ref: const
Tows: 10
Extra:

Slow Query Basics: Optimize Data Access | 155

EXPLAIN shows that MySQL estimated it needed to access only 10 rows. In other
words, the query optimizer knew the chosen access type could satisfy the query effi-
ciently. What would happen if there were no suitable index for the query? MySQL
would have to use a less optimal access type, as we can see if we drop the index and
run the query again:

mysql> ALTER TABLE sakila.film_actor DROP FOREIGN KEY fk_film_actor_film;

mysql> ALTER TABLE sakila.film_actor DROP KEY idx_fk_film_id;

mysql> EXPLAIN SELECT * FROM sakila.film_actor WHERE film_id = 1\G
skskokokosk sk skskokokok sk sk sk skokokosk sk k sk skokok sk k& 1. TOW skskskskokokosk sk ok sk skokokosk sk sk sk skokokok sk sk sk sk sk k

id: 1
select type: SIMPLE
table: film actor
type: ALL
possible keys: NULL
key: NULL
key len: NULL
ref: NULL
rows: 5073
Extra: Using where
Predictably, the access type has changed to a full table scan (ALL), and MySQL now
estimates it’ll have to examine 5,073 rows to satisfy the query. The “Using where” in
the Extra column shows that the MySQL server is using the WHERE clause to discard

rows after the storage engine reads them.
In general, MySQL can apply a WHERE clause in three ways, from best to worst:

* Apply the conditions to the index lookup operation to eliminate nonmatching
rows. This happens at the storage engine layer.

* Use a covering index (“Using index” in the Extra column) to avoid row accesses,
and filter out nonmatching rows after retrieving each result from the index. This
happens at the server layer, but it doesn’t require reading rows from the table.

* Retrieve rows from the table, then filter nonmatching rows (“Using where” in
the Extra column). This happens at the server layer and requires the server to
read rows from the table before it can filter them.

This example illustrates how important it is to have good indexes. Good indexes
help your queries get a good access type and examine only the rows they need. How-
ever, adding an index doesn’t always mean that MySQL will access and return the
same number of rows. For example, here’s a query that uses the COUNT() aggregate
function:”

mysql> SELECT actor_id, COUNT(*) FROM sakila.film_actor GROUP BY actor_id;

This query returns only 200 rows, but it needs to read thousands of rows to build the
result set. An index can’t reduce the number of rows examined for a query like this one.

* See “Optimizing COUNT() Queries” on page 188 for more on this topic.

156 | Chapter4: QueryPerformance Optimization

Unfortunately, MySQL does not tell you how many of the rows it accessed were used
to build the result set; it tells you only the total number of rows it accessed. Many of
these rows could be eliminated by a WHERE clause and end up not contributing to the
result set. In the previous example, after removing the index on sakila.film actor,
the query accessed every row in the table and the WHERE clause discarded all but 10 of
them. Only the remaining 10 rows were used to build the result set. Understanding
how many rows the server accesses and how many it really uses requires reasoning
about the query.

If you find that a huge number of rows were examined to produce relatively few rows
in the result, you can try some more sophisticated fixes:

* Use covering indexes, which store data so that the storage engine doesn’t have to
retrieve the complete rows. (We discussed these in the previous chapter.)

* Change the schema. An example is using summary tables (discussed in the previ-
ous chapter).

* Rewrite a complicated query so the MySQL optimizer is able to execute it opti-
mally. (We discuss this later in this chapter.)

Ways to Restructure Queries

As you optimize problematic queries, your goal should be to find alternative ways to
get the result you want—but that doesn’t necessarily mean getting the same result
set back from MySQL. You can sometimes transform queries into equivalent forms
and get better performance. However, you should also think about rewriting the
query to retrieve different results, if that provides an efficiency benefit. You may be
able to ultimately do the same work by changing the application code as well as the
query. In this section, we explain techniques that can help you restructure a wide
range of queries and show you when to use each technique.

Complex Queries Versus Many Queries

One important query design question is whether it’s preferable to break up a com-
plex query into several simpler queries. The traditional approach to database design
emphasizes doing as much work as possible with as few queries as possible. This
approach was historically better because of the cost of network communication and
the overhead of the query parsing and optimization stages.

However, this advice doesn’t apply as much to MySQL, because it was designed to
handle connecting and disconnecting very efficiently and to respond to small and
simple queries very quickly. Modern networks are also significantly faster than they
used to be, reducing network latency. MySQL can run more than 50,000 simple que-
ries per second on commodity server hardware and over 2,000 queries per second

Ways to Restructure Queries | 157

from a single correspondent on a Gigabit network, so running multiple queries isn’t
necessarily such a bad thing.

Connection response is still slow compared to the number of rows MySQL can
traverse per second internally, though, which is counted in millions per second for
in-memory data. All else being equal, it’s still a good idea to use as few queries as
possible, but sometimes you can make a query more efficient by decomposing it and
executing a few simple queries instead of one complex one. Don’t be afraid to do
this; weigh the costs, and go with the strategy that causes less work. We show some
examples of this technique a little later in the chapter.

That said, using too many queries is a common mistake in application design. For
example, some applications perform 10 single-row queries to retrieve data from a
table when they could use a single 10-row query. We’ve even seen applications that
retrieve each column individually, querying each row many times!

Chopping Up a Query

Another way to slice up a query is to divide and conquer, keeping it essentially the
same but running it in smaller “chunks” that affect fewer rows each time.

Purging old data is a great example. Periodic purge jobs may need to remove quite a
bit of data, and doing this in one massive query could lock a lot of rows for a long
time, fill up transaction logs, hog resources, and block small queries that shouldn’t
be interrupted. Chopping up the DELETE statement and using medium-size queries
can improve performance considerably, and reduce replication lag when a query is
replicated. For example, instead of running this monolithic query:

mysql> DELETE FROM messages WHERE created < DATE_SUB(NOW(),INTERVAL 3 MONTH);
you could do something like the following pseudocode:

rows_affected = 0
do {
rows_affected = do_query(
"DELETE FROM messages WHERE created < DATE_SUB(NOW(),INTERVAL 3 MONTH)
LIMIT 10000")
} while rows_affected > 0

Deleting 10,000 rows at a time is typically a large enough task to make each query
efficient, and a short enough task to minimize the impact on the server” (transac-
tional storage engines may benefit from smaller transactions). It may also be a good
idea to add some sleep time between the DELETE statements to spread the load over
time and reduce the amount of time locks are held.

* Maatkit’s mk-archiver tool makes these types of jobs easy.

158 | Chapter4: QueryPerformance Optimization

Join Decomposition

Many high-performance web sites use join decomposition. You can decompose a join
by running multiple single-table queries instead of a multitable join, and then per-
forming the join in the application. For example, instead of this single query:

mysql> SELECT * FROM tag
-> JOIN tag_post ON tag_post.tag_id=tag.id
-> JOIN post ON tag_post.post_id=post.id
-> WHERE tag.tag="'mysql';

You might run these queries:

mysql> SELECT * FROM tag WHERE tag='mysql';
mysql> SELECT * FROM tag_post WHERE tag_id=1234;
mysql> SELECT * FROM post WHERE post.id in (123,456,567,9098,8904);

This looks wasteful at first glance, because you’ve increased the number of queries
without getting anything in return. However, such restructuring can actually give sig-
nificant performance advantages:

Caching can be more efficient. Many applications cache “objects” that map
directly to tables. In this example, if the object with the tag mysql is already
cached, the application can skip the first query. If you find posts with an id of
123, 567, or 9098 in the cache, you can remove them from the IN() list. The
query cache might also benefit from this strategy. If only one of the tables
changes frequently, decomposing a join can reduce the number of cache
invalidations.

For MyISAM tables, performing one query per table uses table locks more effi-
ciently: the queries will lock the tables individually and relatively briefly, instead
of locking them all for a longer time.

Doing joins in the application makes it easier to scale the database by placing
tables on different servers.

The queries themselves can be more efficient. In this example, using an IN() list
instead of a join lets MySQL sort row IDs and retrieve rows more optimally than
might be possible with a join. We explain this in more detail later.

You can reduce redundant row accesses. Doing a join in the application means
you retrieve each row only once, whereas a join in the query is essentially a
denormalization that might repeatedly access the same data. For the same rea-
son, such restructuring might also reduce the total network traffic and memory
usage.

To some extent, you can view this technique as manually implementing a hash
join instead of the nested loops algorithm MySQL uses to execute a join. A hash
join may be more efficient. (We discuss MySQL’s join strategy later in this
chapter.)

Ways to Restructure Queries | 159

Summary: When Application Joins May Be More Efficient

Doing joins in the application may be more efficient when:
* You cache and reuse a lot of data from earlier queries
* You use multiple MyISAM tables
* You distribute data across multiple servers
* You replace joins with IN() lists on large tables

* A join refers to the same table multiple times

Query Execution Basics

If you need to get high performance from your MySQL server, one of the best ways
to invest your time is in learning how MySQL optimizes and executes queries. Once
you understand this, much of query optimization is simply a matter of reasoning
from principles, and query optimization becomes a very logical process.

v
NN

This discussion assumes you’ve read Chapter 2, which provides a
foundation for understanding the MySQL query execution engine.

Figure 4-1 shows how MySQL generally executes queries.
Follow along with the illustration to see what happens when you send MySQL a
query:

1. The client sends the SQL statement to the server.

2. The server checks the query cache. If there’s a hit, it returns the stored result
from the cache; otherwise, it passes the SQL statement to the next step.

3. The server parses, preprocesses, and optimizes the SQL into a query execution
plan.

4. The query execution engine executes the plan by making calls to the storage
engine APIL.

5. The server sends the result to the client.
Each of these steps has some extra complexity, which we discuss in the following

sections. We also explain which states the query will be in during each step. The
query optimization process is particularly complex and important to understand.

160 | Chapter4: QueryPerformance Optimization

L

bl

Client

y

MySQL server

Client/server

protocol sat

Query
cache

Result

—>| Parser ﬁ—» Preprocessor

A

Result

Parse tree —» |FE_t|

Query
optimizer

l

Query execution plan —» D

l

Query execution engine

APl calls
A

Storage engines

“

Figure 4-1. Execution path of a query

The MySQL Client/Server Protocol

Though you don’t need to understand the inner details of MySQL’s client/server pro-
tocol, you do need to understand how it works at a high level. The protocol is half-
duplex, which means that at any given time the MySQL server can be either sending or
receiving messages, but not both. It also means there is no way to cut a message short.

This protocol makes MySQL communication simple and fast, but it limits it in some
ways too. For one thing, it means there’s no flow control; once one side sends a mes-
sage, the other side must fetch the entire message before responding. It’s like a game
of tossing a ball back and forth: only one side has the ball at any instant, and you

can’t toss the ball (send a message) unless you have it.

Query Execution Basics

161

The client sends a query to the server as a single packet of data. This is why the max_
packet_size configuration variable is important if you have large queries.” Once the
client sends the query, it doesn’t have the ball anymore; it can only wait for results.

In contrast, the response from the server usually consists of many packets of data.
When the server responds, the client has to receive the entire result set. It cannot
simply fetch a few rows and then ask the server not to bother sending the rest. If the
client needs only the first few rows that are returned, it either has to wait for all of
the server’s packets to arrive and then discard the ones it doesn’t need, or discon-
nect ungracefully. Neither is a good idea, which is why appropriate LIMIT clauses are
so important.

Here’s another way to think about this: when a client fetches rows from the server, it
thinks it’s pulling them. But the truth is, the MySQL server is pushing the rows as it
generates them. The client is only receiving the pushed rows; there is no way for it to
tell the server to stop sending rows. The client is “drinking from the fire hose,” so to
speak. (Yes, that’s a technical term.)

Most libraries that connect to MySQL let you either fetch the whole result set and
buffer it in memory, or fetch each row as you need it. The default behavior is gener-
ally to fetch the whole result and buffer it in memory. This is important because until
all the rows have been fetched, the MySQL server will not release the locks and other
resources required by the query. The query will be in the “Sending data” state
(explained in the following section, “Query states” on page 163). When the client
library fetches the results all at once, it reduces the amount of work the server needs
to do: the server can finish and clean up the query as quickly as possible.

Most client libraries let you treat the result set as though you’re fetching it from the
server, although in fact you’re just fetching it from the buffer in the library’s mem-
ory. This works fine most of the time, but it’s not a good idea for huge result sets
that might take a long time to fetch and use a lot of memory. You can use less mem-
ory, and start working on the result sooner, if you instruct the library not to buffer
the result. The downside is that the locks and other resources on the server will
remain open while your application is interacting with the library.t

Let’s look at an example using PHP. First, here’s how you’ll usually query MySQL
from PHP:

<?php
$link = mysql_connect('localhost', 'user', 'p4ssword');
$result = mysql query('SELECT * FROM HUGE TABLE', $1link);
while ($row = mysql fetch array($result)) {

// Do something with result
}

?>

* If the query is too large, the server will refuse to receive any more data and throw an error.
T You can work around this with SQL_BUFFER_RESULT, which we see a bit later.

162 | Chapter4: QueryPerformance Optimization

The code seems to indicate that you fetch rows only when you need them, in the
while loop. However, the code actually fetches the entire result into a buffer with the
mysql query() function call. The while loop simply iterates through the buffer. In
contrast, the following code doesn’t buffer the results, because it uses mysql_
unbuffered query() instead of mysql query():

<?php

$link = mysql_connect('localhost', 'user', 'p4ssword');

$result = mysql unbuffered query('SELECT * FROM HUGE TABLE', $link);

while ($row = mysql fetch array($result)) {
// Do something with result
}

>

Programming languages have different ways to override buffering. For example, the
Perl DBD: :mysql driver requires you to specify the C client library’s mysql _use result
attribute (the default is mysql _buffer result). Here’s an example:

#!/usr/bin/perl

use DBI;

my $dbh = DBI->connect('DBI:mysql:;host=localhost', 'user', 'p4ssword');

my $sth = $dbh->prepare('SELECT * FROM HUGE_TABLE', { mysql use result => 1 });

$sth->execute();

while (my $row = $sth->fetchrow array()) {

Do something with result

}
Notice that the call to prepare() specified to “use” the result instead of “buffering”
it. You can also specify this when connecting, which will make every statement

unbuffered:

my $dbh = DBI->connect('DBI:mysql:;mysql_use result=1', 'user', 'p4ssword');

Query states

Each MySQL connection, or thread, has a state that shows what it is doing at any
given time. There are several ways to view these states, but the easiest is to use the
SHOW FULL PROCESSLIST command (the states appear in the Command column). As a
query progresses through its lifecycle, its state changes many times, and there are
dozens of states. The MySQL manual is the authoritative source of information for
all the states, but we list a few here and explain what they mean:

Sleep
The thread is waiting for a new query from the client.
Query
The thread is either executing the query or sending the result back to the client.
Locked
The thread is waiting for a table lock to be granted at the server level. Locks that
are implemented by the storage engine, such as InnoDB’s row locks, do not
cause the thread to enter the Locked state.

Query Execution Basics | 163

Analyzing and statistics
The thread is checking storage engine statistics and optimizing the query.

Copying to tmp table [on disk]
The thread is processing the query and copying results to a temporary table,
probably for a GROUP BY, for a filesort, or to satisfy a UNION. If the state ends with
“on disk,” MySQL is converting an in-memory table to an on-disk table.

Sorting result
The thread is sorting a result set.

Sending data
This can mean several things: the thread might be sending data between stages
of the query, generating the result set, or returning the result set to the client.

It’s helpful to at least know the basic states, so you can get a sense of “who has the
ball” for the query. On very busy servers, you might see an unusual or normally brief
state, such as statistics, begin to take a significant amount of time. This usually
indicates that something is wrong.

The Query Cache

Before even parsing a query, MySQL checks for it in the query cache, if the cache is
enabled. This operation is a case sensitive hash lookup. If the query differs from a
similar query in the cache by even a single byte, it won’t match, and the query pro-
cessing will go to the next stage.

If MySQL does find a match in the query cache, it must check privileges before
returning the cached query. This is possible without parsing the query, because
MySQL stores table information with the cached query. If the privileges are OK,
MySQL retrieves the stored result from the query cache and sends it to the client,
bypassing every other stage in query execution. The query is never parsed, opti-
mized, or executed.

You can learn more about the query cache in Chapter 5.

The Query Optimization Process

The next step in the query lifecycle turns a SQL query into an execution plan for the
query execution engine. It has several sub-steps: parsing, preprocessing, and optimi-
zation. Errors (for example, syntax errors) can be raised at any point in the process.
We're not trying to document the MySQL internals here, so we’re going to take
some liberties, such as describing steps separately even though they’re often com-
bined wholly or partially for efficiency. Our goal is simply to help you understand
how MySQL executes queries so that you can write better ones.

164 | Chapter4: QueryPerformance Optimization

The parser and the preprocessor

To begin, MySQL’s parser breaks the query into tokens and builds a “parse tree”
from them. The parser uses MySQL’s SQL grammar to interpret and validate the
query. For instance, it ensures that the tokens in the query are valid and in the proper
order, and it checks for mistakes such as quoted strings that aren’t terminated.

The preprocessor then checks the resulting parse tree for additional semantics that
the parser can’t resolve. For example, it checks that tables and columns exist, and it
resolves names and aliases to ensure that column references aren’t ambiguous.

Next, the preprocessor checks privileges. This is normally very fast unless your server
has large numbers of privileges. (See Chapter 12 for more on privileges and security.)

The query optimizer

The parse tree is now valid and ready for the optimizer to turn it into a query execu-
tion plan. A query can often be executed many different ways and produce the same
result. The optimizer’s job is to find the best option.

MySQL uses a cost-based optimizer, which means it tries to predict the cost of vari-
ous execution plans and choose the least expensive. The unit of cost is a single ran-
dom four-kilobyte data page read. You can see how expensive the optimizer
estimated a query to be by running the query, then inspecting the Last_query cost
session variable:

mysql> SELECT SQL_NO_CACHE COUNT(*) FROM sakila.film_actor;

oo +
| count(*) |

Hommmmm e +

\ 5462 |

oo +

mysql> SHOW STATUS LIKE 'last_query cost';
T EE R +

| Variable name | Value |

R ERCEEEEEPEERES R R +

| Last_query cost | 1040.599000 |
e EEREEEEEEEEEEE +

This result means that the optimizer estimated it would need to do about 1,040 ran-
dom data page reads to execute the query. It bases the estimate on statistics: the
number of pages per table or index, the cardinality (number of distinct values) of
indexes, the length of rows and keys, and key distribution. The optimizer does not
include the effects of any type of caching in its estimates—it assumes every read will
result in a disk I/O operation.

The optimizer may not always choose the best plan, for many reasons:

* The statistics could be wrong. The server relies on storage engines to provide sta-
tistics, and they can range from exactly correct to wildly inaccurate. For

Query Execution Basics | 165

example, the InnoDB storage engine doesn’t maintain accurate statistics about
the number of rows in a table, because of its MVCC architecture.

* The cost metric is not exactly equivalent to the true cost of running the query, so
even when the statistics are accurate, the query may be more or less expensive
than MySQL’s approximation. A plan that reads more pages might actually be
cheaper in some cases, such as when the reads are sequential so the disk I/O is
faster, or when the pages are already cached in memory.

* MySQL’s idea of optimal might not match yours. You probably want the fastest
execution time, but MySQL doesn’t really understand “fast”; it understands
“cost,” and as we’ve seen, determining cost is not an exact science.

* MySQL doesn’t consider other queries that are running concurrently, which can
affect how quickly the query runs.

* MySQL doesn’t always do cost-based optimization. Sometimes it just follows the
rules, such as “if there’s a full-text MATCH() clause, use a FULLTEXT index if one
exists.” It will do this even when it would be faster to use a different index and a
non-FULLTEXT query with a WHERE clause.

* The optimizer doesn’t take into account the cost of operations not under its con-
trol, such as executing stored functions or user-defined functions.

* As we’ll see later, the optimizer can’t always estimate every possible execution
plan, so it may miss an optimal plan.

MySQL’s query optimizer is a highly complex piece of software, and it uses many
optimizations to transform the query into an execution plan. There are two basic
types of optimizations, which we call static and dynamic. Static optimizations can be
performed simply by inspecting the parse tree. For example, the optimizer can trans-
form the WHERE clause into an equivalent form by applying algebraic rules. Static opti-
mizations are independent of values, such as the value of a constant in a WHERE clause.
They can be performed once and will always be valid, even when the query is reexe-
cuted with different values. You can think of these as “compile-time optimizations.”

In contrast, dynamic optimizations are based on context and can depend on many
factors, such as which value is in a WHERE clause or how many rows are in an index.
They must be reevaluated each time the query is executed. You can think of these as
“runtime optimizations.”

The difference is important in executing prepared statements or stored procedures.
MySQL can do static optimizations once, but it must reevaluate dynamic optimiza-
tions every time it executes a query. MySQL sometimes even reoptimizes the query
as it executes it.’

* For example, the range check query plan reevaluates indexes for each row in a JOIN. You can see this query
plan by looking for “range checked for each record” in the Extra column in EXPLAIN. This query plan also
increments the Select_full range_join server variable.

166 | Chapter4: QueryPerformance Optimization

Here are some types of optimizations MySQL knows how to do:

Reordering joins
Tables don’t always have to be joined in the order you specify in the query.
Determining the best join order is an important optimization; we explain it in
depth in “The join optimizer” on page 173.

Converting OUTER JOINs to INNER JOINs
An OUTER JOIN doesn’t necessarily have to be executed as an OUTER JOIN. Some
factors, such as the WHERE clause and table schema, can actually cause an OUTER
JOIN to be equivalent to an INNER JOIN. MySQL can recognize this and rewrite the
join, which makes it eligible for reordering.

Applying algebraic equivalence rules
MySQL applies algebraic transformations to simplify and canonicalize expres-
sions. It can also fold and reduce constants, eliminating impossible constraints
and constant conditions. For example, the term (5=5 AND a>5) will reduce to just
a>5. Similarly, (a<b AND b=c) AND a=5 becomes b>5 AND b=c AND a=5. These rules are
very useful for writing conditional queries, which we discuss later in the chapter.

COUNT(), MIN(), and MAX() optimizations

Indexes and column nullability can often help MySQL optimize away these
expressions. For example, to find the minimum value of a column that’s left-
most in a B-Tree index, MySQL can just request the first row in the index. It can
even do this in the query optimization stage, and treat the value as a constant for
the rest of the query. Similarly, to find the maximum value in a B-Tree index, the
server reads the last row. If the server uses this optimization, you’ll see “Select
tables optimized away” in the EXPLAIN plan. This literally means the optimizer
has removed the table from the query plan and replaced it with a constant.

Likewise, COUNT(*) queries without a WHERE clause can often be optimized away
on some storage engines (such as MyISAM, which keeps an exact count of rows
in the table at all times). See “Optimizing COUNT() Queries” on page 188, later
in this chapter, for details.

Evaluating and reducing constant expressions
When MySQL detects that an expression can be reduced to a constant, it will do
so during optimization. For example, a user-defined variable can be converted to
a constant if it’s not changed in the query. Arithmetic expressions are another
example.

Perhaps surprisingly, even something you might consider to be a query can be
reduced to a constant during the optimization phase. One example is a MIN() on
an index. This can even be extended to a constant lookup on a primary key or
unique index. If a WHERE clause applies a constant condition to such an index, the
optimizer knows MySQL can look up the value at the beginning of the query. It
will then treat the value as a constant in the rest of the query. Here’s an example:

Query Execution Basics | 167

mysql> EXPLAIN SELECT film.film_id, film_actor.actor_id
-> FROM sakila.film
-> INNER JOIN sakila.film_actor USING(film_id)
-> WHERE film.film_id = 1;

i LT EE R Hmmmmm e S Hmmm e Hmmm e tmmmm- +
| id | select type | table | type | key | ref | rows |
B s ST EE R Hmmm e Hmmmmm Hmmm e s Hmmm - +
| 1| SIMPLE | film | const | PRIMARY | const | 1]
| 1| SIMPLE | film actor | ref | idx_fk film id | const | 10 |
B s ST EE R Hmmm e Hmmmmm Hmmm e s Hmmm - +

MySQL executes this query in two steps, which correspond to the two rows in
the output. The first step is to find the desired row in the film table. MySQL’s
optimizer knows there is only one row, because there’s a primary key on the
film_id column, and it has already consulted the index during the query optimi-
zation stage to see how many rows it will find. Because the query optimizer has a
known quantity (the value in the WHERE clause) to use in the lookup, this table’s
ref type is const.

In the second step, MySQL treats the film_id column from the row found in the
first step as a known quantity. It can do this because the optimizer knows that
by the time the query reaches the second step, it will know all the values from
the first step. Notice that the film actor table’s ref type is const, just as the film
table’s was.

Another way you’ll see constant conditions applied is by propagating a value’s
constant-ness from one place to another if there is a WHERE, USING, or ON clause
that restricts them to being equal. In this example, the optimizer knows that the
USING clause forces film_id to have the same value everywhere in the query—it
must be equal to the constant value given in the WHERE clause.

Covering indexes

MySQL can sometimes use an index to avoid reading row data, when the index
contains all the columns the query needs. We discussed covering indexes at
length in Chapter 3.

Subquery optimization

MySQL can convert some types of subqueries into more efficient alternative
forms, reducing them to index lookups instead of separate queries.

Early termination

MySQL can stop processing a query (or a step in a query) as soon as it fulfills the
query or step. The obvious case is a LIMIT clause, but there are several other
kinds of early termination. For instance, if MySQL detects an impossible condi-
tion, it can abort the entire query. You can see this in the following example:

mysql> EXPLAIN SELECT film.film_id FROM sakila.film WHERE film_id = -1;

Hmmm e e e e e e +
| id |...| Extra |
e T e R +
| 1]...| Impossible WHERE noticed after reading const tables |
Hmmm s b e e e e e +

168

| Chapter4: Query Performance Optimization

This query stopped during the optimization step, but MySQL can also terminate
execution sooner in some cases. The server can use this optimization when the
query execution engine recognizes the need to retrieve distinct values, or to stop
when a value doesn’t exist. For example, the following query finds all movies
without any actors:*
mysql> SELECT film.film_id
-> FROM sakila.film

-> LEFT OUTER JOIN sakila.film_actor USING(film_id)
-> WHERE film_actor.film_id IS NULL;

This query works by eliminating any films that have actors. Each film might have
many actors, but as soon as it finds one actor, it stops processing the current film
and moves to the next one because it knows the WHERE clause prohibits output-
ting that film. A similar “Distinct/not-exists” optimization can apply to certain
kinds of DISTINCT, NOT EXISTS(), and LEFT JOIN queries.
Equality propagation
MySQL recognizes when a query holds two columns as equal—for example, in a
JOIN condition—and propagates WHERE clauses across equivalent columns. For
instance, in the following query:
mysql> SELECT film.film_id

-> FROM sakila.film

-> INNER JOIN sakila.film_actor USING(film_id)

-> WHERE film.film_id > 500;
MySQL knows that the WHERE clause applies not only to the film table but to the
film_actor table as well, because the USING clause forces the two columns to
match.

If you’re used to another database server that can’t do this, you may have been
advised to “help the optimizer” by manually specifying the WHERE clause for both
tables, like this:

. WHERE film.film id > 500 AND film_actor.film id > 500
This is unnecessary in MySQL. It just makes your queries harder to maintain.

IN() list comparisons
In many database servers, IN() is just a synonym for multiple OR clauses, because
the two are logically equivalent. Not so in MySQL, which sorts the values in the
IN() list and uses a fast binary search to see whether a value is in the list. This is
O(log n) in the size of the list, whereas an equivalent series of OR clauses is O(n)
in the size of the list (i.e., much slower for large lists).

The preceding list is woefully incomplete, as MySQL performs more optimizations
than we could fit into this entire chapter, but it should give you an idea of the opti-
mizer’s complexity and intelligence. If there’s one thing you should take away from

* We agree, a movie without actors is strange, but the Sakila sample database lists no actors for “SLACKER
LIAISONS,” which it describes as “A Fast-Paced Tale of a Shark And a Student who must Meet a Crocodile
in Ancient China.”

Query Execution Basics | 169

this discussion, it’s don’t try to outsmart the optimizer. You may end up just defeat-
ing it, or making your queries more complicated and harder to maintain for zero ben-
efit. In general, you should let the optimizer do its work.

Of course, as smart as the optimizer is, there are times when it doesn’t give the best
result. Sometimes you may know something about the data that the optimizer
doesn’t, such as a fact that’s guaranteed to be true because of application logic. Also,
sometimes the optimizer doesn’t have the necessary functionality, such as hash
indexes; at other times, as mentioned earlier, its cost estimates may prefer a query
plan that turns out to be more expensive than an alternative.

If you know the optimizer isn’t giving a good result, and you know why, you can
help it. Some of the options are to add a hint to the query, rewrite the query,
redesign your schema, or add indexes.

Table and index statistics

Recall the various layers in the MySQL server architecture, which we illustrated in
Figure 1-1. The server layer, which contains the query optimizer, doesn’t store statis-
tics on data and indexes. That’s a job for the storage engines, because each storage
engine might keep different kinds of statistics (or keep them in a different way).
Some engines, such as Archive, don’t keep statistics at all!

Because the server doesn’t store statistics, the MySQL query optimizer has to ask the
engines for statistics on the tables in a query. The engines may provide the optimizer
with statistics such as the number of pages per table or index, the cardinality of
tables and indexes, the length of rows and keys, and key distribution information.
The optimizer can use this information to help it decide on the best execution plan.
We see how these statistics influence the optimizer’s choices in later sections.

MySQLs join execution strategy

MySQL uses the term “join” more broadly than you might be used to. In sum, it con-
siders every query a join—not just every query that matches rows from two tables,
but every query, period (including subqueries, and even a SELECT against a single
table). Consequently, it’s very important to understand how MySQL executes joins.

Consider the example of a UNION query. MySQL executes a UNION as a series of single
queries whose results are spooled into a temporary table, then read out again. Each
of the individual queries is a join, in MySQL terminology—and so is the act of read-
ing from the resulting temporary table.

At the moment, MySQL’s join execution strategy is simple: it treats every join as a
nested-loop join. This means MySQL runs a loop to find a row from a table, then
runs a nested loop to find a matching row in the next table. It continues until it has
found a matching row in each table in the join. It then builds and returns a row from
the columns named in the SELECT list. It tries to build the next row by looking for

170 | Chapter4: Query Performance Optimization

more matching rows in the last table. If it doesn’t find any, it backtracks one table
and looks for more rows there. It keeps backtracking until it finds another row in
some table, at which point, it looks for a matching row in the next table, and so on.”

This process of finding rows, probing into the next table, and then backtracking can
be written as nested loops in the execution plan—hence the name “nested-loop join.”
As an example, consider this simple query:

mysql> SELECT tbli.col1, tbl2.col2
-> FROM tbl1 INNER JOIN tbl2 USING(col3)
-> WHERE tbli.col1 IN(5,6);

Assuming MySQL decides to join the tables in the order shown in the query, the fol-
lowing pseudocode shows how MySQL might execute the query:

outer iter = iterator over tbli where col1l IN(5,6)
outer row = outer iter.next
while outer row
inner_iter = iterator over tbl2 where col3 = outer_row.col3
inner row = inner iter.next
while inner row
output [outer row.coll, inner row.col2]
inner _row = inner iter.next
end
outer_row = outer_iter.next
end

This query execution plan applies as easily to a single-table query as it does to a
many-table query, which is why even a single-table query can be considered a join—
the single-table join is the basic operation from which more complex joins are com-
posed. It can support OUTER JOINs, too. For example, let’s change the example query
as follows:

mysql> SELECT tbli.col1, tbl2.col2
-> FROM tbl1 LEFT OUTER JOIN tbl2 USING(col3)
-> WHERE tbl1.col1l IN(5,6);

Here’s the corresponding pseudocode, with the changed parts in bold:

outer iter = iterator over tbli where col1l IN(5,6)
outer row = outer iter.next
while outer row
inner_iter = iterator over tbl2 where col3 = outer_row.col3
inner row = inner iter.next
if inner_row
while inner_row
output [outer row.coll, inner row.col2]
inner row = inner iter.next
end
else

* As we show later, MySQL’s query execution isn’t quite this simple; there are many optimizations that com-
plicate it.

Query Execution Basics | 171

output [outer_row.coli, NULL]
end
outer row = outer iter.next
end

Another way to visualize a query execution plan is to use what the optimizer folks
call a “swim-lane diagram.” Figure 4-2 contains a swim-lane diagram of our initial
INNER JOIN query. Read it from left to right and top to bottom.

Tal1les

thl1 thi2 Result rows

col1=5, col3=1 lF \‘I col3=1,col2=1 h——»l col1=5, col2=1

"l col3=1, col2=2 h— —>| col1=5, col2=2

‘l c0l3=1, col2=3 h——»l col1=5, col2=3

col1=6, col3=1 lF \‘I col3=1,col2=1 h——»l col1=6, col2=1

"l col3=1, col2=2 h— —>| c01=6, col2=2

o P B B e

‘l c0l3=1, col2=3 h——»l col1=6, col2=3

Figure 4-2. Swim-lane diagram illustrating retrieving rows using a join

MySQL executes every kind of query in essentially the same way. For example, it
handles a subquery in the FROM clause by executing it first, putting the results into a
temporary table,” and then treating that table just like an ordinary table (hence the
name “derived table”). MySQL executes UNION queries with temporary tables too,
and it rewrites all RIGHT OUTER JOIN queries to equivalent LEFT OUTER JOIN. In short,
MySQL coerces every kind of query into this execution plan.

It’s not possible to execute every legal SQL query this way, however. For example, a
FULL OUTER JOIN can’t be executed with nested loops and backtracking as soon as a
table with no matching rows is found, because it might begin with a table that has no
matching rows. This explains why MySQL doesn’t support FULL OUTER JOIN. Still
other queries can be executed with nested loops, but perform very badly as a result.
We look at some of those later.

The execution plan

MySQL doesn’t generate byte-code to execute a query, as many other database prod-
ucts do. Instead, the query execution plan is actually a tree of instructions that the

* There are no indexes on the temporary table, which is something you should keep in mind when writing
complex joins against subqueries in the FROM clause. This applies to UNION queries, too.

172 | Chapter4: Query Performance Optimization

query execution engine follows to produce the query results. The final plan contains
enough information to reconstruct the original query. If you execute EXPLAIN
EXTENDED on a query, followed by SHOW WARNINGS, you’ll see the reconstructed query.”

Any multitable query can conceptually be represented as a tree. For example, it
might be possible to execute a four-table join as shown in Figure 4-3.

Jom

>a
-

| i1 thi2 | | thi3 | | thl4 |

Figure 4-3. One way to join multiple tables

This is what computer scientists call a balanced tree. This is not how MySQL exe-
cutes the query, though. As we described in the previous section, MySQL always
begins with one table and finds matching rows in the next table. Thus, MySQL’s
query execution plans always take the form of a left-deep tree, as in Figure 4-4.

Jom

‘ B

thi2

Figure 4-4. How MySQL joins multiple tables

I/'\

The join optimizer

The most important part of the MySQL query optimizer is the join optimizer, which
decides the best order of execution for multitable queries. It is often possible to join
the tables in several different orders and get the same results. The join optimizer
estimates the cost for various plans and tries to choose the least expensive one that
gives the same result.

* The server generates the output from the execution plan. It thus has the same semantics as the original query,
but not necessarily the same text.

Query Execution Basics | 173

Here’s a query whose tables can be joined in different orders without changing the
results:
mysql> SELECT film.film_id, film.title, film.release_year, actor.actor_id,

-> actor.first_name, actor.last_name

-> FROM sakila.film

-> INNER JOIN sakila.film_actor USING(film id)

-> INNER JOIN sakila.actor USING(actor_id);
You can probably think of a few different query plans. For example, MySQL could
begin with the film table, use the index on film_id in the film actor table to find
actor_id values, and then look up rows in the actor table’s primary key. This should
be efficient, right? Now let’s use EXPLAIN to see how MySQL wants to execute the

query:

Fokkskskskskskokskokkokkokokokokokokokokokokokkk oy RRKKRsSskoRskokokokokokkokskokskokok kb ok ok

id:

select type:
table:

type:

possible keys:
key:

key len:

ref:

TOWS:

Extra:
kpfookstofokokskokokokstofolokstokokokstokokkskok 5
id:
select_type:
table:

type:

possible keys:
key:

key len:

ref:

TOWS:

Extra:

1
SIMPLE
actor
ALL
PRIMARY
NULL
NULL
NULL
200

Tow FRRRRRkkkksk Rk Rk Rk Rk ok

1

SIMPLE

film actor

ref
PRIMARY,idx_fk_film id
PRIMARY

2
sakila.actor.actor_id
1

Using index

skokoskokokokoksk ok sk ok ok kokokokokok sk ok k ok kokokok ok 3. row okokokok sk ok ok okoskokokokokok ok sk ok ok kokokokokok sk k

id:

select type:
table:

type:

possible keys:
key:

key len:

ref:

TOWS :

Extra:

1

SIMPLE

film

eq_ref

PRIMARY

PRIMARY

2

sakila.film actor.film id
1

This is quite a different plan from the one suggested in the previous paragraph.
MySQL wants to start with the actor table (we know this because it’s listed first in
the EXPLAIN output) and go in the reverse order. Is this really more efficient? Let’s

174 | Chapter4: Query Performance Optimization

find out. The STRAIGHT JOIN keyword forces the join to proceed in the order speci-
fied in the query. Here’s the EXPLAIN output for the revised query:

mysql> EXPLAIN SELECT STRAIGHT_JOIN film.film_id...\G
Bkl] oy Rk kool okok

id:
select_type:
table:

type:
possible keys:
key:

key len:

ref:

TOWS:

Extra:

1
SIMPLE
film
ALL
PRIMARY
NULL
NULL
NULL
951

Fokkkkksskkklkkokolololokokokkskskskskkk 9 gy RRkksskskklkkokokokolokokokkokskskskskokokok

id:

select type:
table:

type:

possible keys:
key:

key len:

ref:

TOWS :

Extra:

1

SIMPLE

film actor

ref
PRIMARY,idx_fk_film_ id
idx_fk_film_id

2

sakila.film.film id

1

Using index

skoskokokokskok sk sk ok ok skokokokokok sk sk sk ok kokokokok 3. row Skokokokok sk sk okokoskokokoskok sk sk ok okoskokokoskoksk sk k ok

id:
select_type:
table:

type:
possible keys:
key:

key len:

ref:

TOWS:

Extra:

1

SIMPLE

actor

eq_ref

PRIMARY

PRIMARY

2

sakila.film actor.actor id
1

This shows why MySQL wants to reverse the join order: doing so will enable it to
examine fewer rows in the first table.” In both cases, it will be able to perform fast
indexed lookups in the second and third tables. The difference is how many of these
indexed lookups it will have to do:

* Placing film first will require about 951 probes into film actor and actor, one
for each row in the first table.

* If the server scans the actor table first, it will have to do only 200 index lookups
into later tables.

* Strictly speaking, MySQL doesn’t try to reduce the number of rows it reads. Instead, it tries to optimize for
fewer page reads. But a row count can often give you a rough idea of the query cost.

Query Execution Basics | 175

In other words, the reversed join order will require less backtracking and rereading.
To double-check the optimizer’s choice, we executed the two query versions and
looked at the Last_query cost variable for each. The reordered query had an esti-
mated cost of 241, while the estimated cost of forcing the join order was 1,154.

This is a simple example of how MySQL’s join optimizer can reorder queries to make
them less expensive to execute. Reordering joins is usually a very effective optimiza-
tion. There are times when it won’t result in an optimal plan, and for those times you
can use STRAIGHT JOIN and write the query in the order you think is best—but such
times are rare. In most cases, the join optimizer will outperform a human.

The join optimizer tries to produce a query execution plan tree with the lowest
achievable cost. When possible, it examines all potential combinations of subtrees,
beginning with all one-table plans.

Unfortunately, a join over n tables will have n-factorial combinations of join orders
to examine. This is called the search space of all possible query plans, and it grows
very quickly—a 10-table join can be executed up to 3,628,800 different ways! When
the search space grows too large, it can take far too long to optimize the query, so the
server stops doing a full analysis. Instead, it resorts to shortcuts such as “greedy”
searches when the number of tables exceeds the optimizer search depth limit.

MySQL has many heuristics, accumulated through years of research and experimen-
tation, that it uses to speed up the optimization stage. This can be beneficial, but it
can also mean that MySQL may (on rare occasions) miss an optimal plan and choose
a less optimal one because it’s trying not to examine every possible query plan.

Sometimes queries can’t be reordered, and the join optimizer can use this fact to
reduce the search space by eliminating choices. A LEFT JOIN is a good example, as are
correlated subqueries (more about subqueries later). This is because the results for
one table depend on data retrieved from another table. These dependencies help the
join optimizer reduce the search space by eliminating choices.

Sort optimizations

Sorting results can be a costly operation, so you can often improve performance by
avoiding sorts or by performing them on fewer rows.

We showed you how to use indexes for sorting in Chapter 3. When MySQL can’t
use an index to produce a sorted result, it must sort the rows itself. It can do this in
memory or on disk, but it always calls this process a filesort, even if it doesn’t actu-
ally use a file.

If the values to be sorted will fit into the sort buffer, MySQL can perform the sort
entirely in memory with a quicksort. If MySQL can’t do the sort in memory, it per-
forms it on disk by sorting the values in chunks. It uses a quicksort to sort each
chunk and then merges the sorted chunk into the results.

176 | Chapter4: Query Performance Optimization

There are two filesort algorithms:

Two passes (old)
Reads row pointers and ORDER BY columns, sorts them, and then scans the sorted
list and rereads the rows for output.

The two-pass algorithm can be quite expensive, because it reads the rows from
the table twice, and the second read causes a lot of random I/O. This is espe-
cially expensive for MyISAM, which uses a system call to fetch each row
(because MyISAM relies on the operating system’s cache to hold the data). On
the other hand, it stores a minimal amount of data during the sort, so if the rows
to be sorted are completely in memory, it can be cheaper to store less data and
reread the rows to generate the final result.
Single pass (new)

Reads all the columns needed for the query, sorts them by the ORDER BY col-
umns, and then scans the sorted list and outputs the specified columns.

This algorithm is available only in MySQL 4.1 and newer. It can be much more
efficient, especially on large I/O-bound datasets, because it avoids reading the
rows from the table twice and trades random 1/O for more sequential I/O. How-
ever, it has the potential to use a lot more space, because it holds all desired col-
umns from each row, not just the columns needed to sort the rows. This means
fewer tuples will fit into the sort buffer, and the filesort will have to perform
more SOrt merge passes.

MySQL may use much more temporary storage space for a filesort than you’d
expect, because it allocates a fixed-size record for each tuple it will sort. These
records are large enough to hold the largest possible tuple, including the full length
of each VARCHAR column. Also, if you’re using UTF-8, MySQL allocates three bytes
for each character. As a result, we’ve seen cases where poorly optimized schemas
caused the temporary space used for sorting to be many times larger than the entire
table’s size on disk.

When sorting a join, MySQL may perform the filesort at two stages during the query
execution. If the ORDER BY clause refers only to columns from the first table in the join
order, MySQL can filesort this table and then proceed with the join. If this happens,
EXPLAIN shows “Using filesort” in the Extra column. Otherwise, MySQL must store
the query’s results into a temporary table and then filesort the temporary table after
the join finishes. In this case, EXPLAIN shows “Using temporary; Using filesort” in the
Extra column. If there’s a LIMIT, it is applied after the filesort, so the temporary table
and the filesort can be very large.

See “Optimizing for filesorts” on page 300 for more on how to tune the server for
filesorts and how to influence which algorithm the server uses.

Query Execution Basics | 177

The Query Execution Engine

The parsing and optimizing stage outputs a query execution plan, which MySQL’s
query execution engine uses to process the query. The plan is a data structure; it is
not executable byte-code, which is how many other databases execute queries.

In contrast to the optimization stage, the execution stage is usually not all that com-
plex: MySQL simply follows the instructions given in the query execution plan.
Many of the operations in the plan invoke methods implemented by the storage
engine interface, also known as the handler API. Each table in the query is repre-
sented by an instance of a handler. If a table appears three times in the query, for
example, the server creates three handler instances. Though we glossed over this
before, MySQL actually creates the handler instances early in the optimization stage.
The optimizer uses them to get information about the tables, such as their column
names and index statistics.

The storage engine interface has lots of functionality, but it needs only a dozen or so
“building-block” operations to execute most queries. For example, there’s an opera-
tion to read the first row in an index, and one to read the next row in an index. This
is enough for a query that does an index scan. This simplistic execution method
makes MySQL’s storage engine architecture possible, but it also imposes some of the
optimizer limitations we’ve discussed.

A w

o Not everything is a handler operation. For example, the server man-
.‘s‘ ages table locks. The handler may implement its own lower-level lock-
Y ;‘ ing, as InnoDB does with row-level locks, but this does not replace the

server’s own locking implementation. As explained in Chapter 1, any-
thing that all storage engines share is implemented in the server, such
as date and time functions, views, and triggers.

To execute the query, the server just repeats the instructions until there are no more
rows to examine.

Returning Results to the Client

The final step in executing a query is to reply to the client. Even queries that don’t
return a result set still reply to the client connection with information about the
query, such as how many rows it affected.

If the query is cacheable, MySQL will also place the results into the query cache at
this stage.

The server generates and sends results incrementally. Think back to the single-sweep
multijoin method we mentioned earlier. As soon as MySQL processes the last table
and generates one row successfully, it can and should send that row to the client.

178 | Chapter4: Query Performance Optimization

This has two benefits: it lets the server avoid holding the row in memory, and it
means the client starts getting the results as soon as possible.”

Limitations of the MySQL Query Optimizer

MySQL’s “everything is a nested-loop join” approach to query execution isn’t ideal
for optimizing every kind of query. Fortunately, there are only a limited number of
cases where the MySQL query optimizer does a poor job, and it’s usually possible to
rewrite such queries more efficiently.

N
The information in this section applies to the MySQL server versions
to which we have access at the time of this writing—that is, up to
% MySQL 5.1. Some of these limitations will probably be eased or
* removed entirely in future versions, and some have already been fixed
in versions not yet released as GA (generally available). In particular,
there are a number of subquery optimizations in the MySQL 6 source
code, and more are in progress.

aqs
N
N

Correlated Subqueries

MySQL sometimes optimizes subqueries very badly. The worst offenders are IN()
subqueries in the WHERE clause. As an example, let’s find all films in the Sakila sample
database’s sakila.film table whose casts include the actress Penelope Guiness
(actor id=1). This feels natural to write with a subquery, as follows:
mysql> SELECT * FROM sakila.film
-> WHERE film_id IN(
-> SELECT film_id FROM sakila.film_actor WHERE actor_id = 1);
It’s tempting to think that MySQL will execute this query from the inside out, by
finding a list of actor_id values and substituting them into the IN() list. We said an
IN() list is generally very fast, so you might expect the query to be optimized to
something like this:
-- SELECT GROUP_CONCAT(film id) FROM sakila.film actor WHERE actor id = 1;
-- Result: 1,23,25,106,140,166,277,361,438,499,506,509,605,635,749,832,939,970,980
SELECT * FROM sakila.film
WHERE film id
IN(1,23,25,106,140,166,277,361,438,499,506,509,605,635,749,832,939,970,980) ;
Unfortunately, exactly the opposite happens. MySQL tries to “help” the subquery by
pushing a correlation into it from the outer table, which it thinks will let the sub-
query find rows more efficiently. It rewrites the query as follows:

SELECT * FROM sakila.film

* You can influence this behavior if needed—for example, with the SQL_BUFFER_RESULT hint. See the “Query
Optimizer Hints” on page 195, later in this chapter.

Limitations of the MySQL Query Optimizer | 179

WHERE EXISTS (
SELECT * FROM sakila.film actor WHERE actor id = 1
AND film_actor.film_id = film.film_id);
Now the subquery requires the film_id from the outer film table and can’t be exe-
cuted first. EXPLAIN shows the result as DEPENDENT SUBQUERY (you can use EXPLAIN
EXTENDED to see exactly how the query is rewritten):

mysql> EXPLAIN SELECT * FROM sakila.film ...;

e LT EEEP R tmmmmm e Hmmmmmmee Hmmmmm e +
| id | select type | table | type | possible keys

e e EREEEEEEEE Hmmmmm - Hmmm e +
| 1 | PRIMARY | film | ALL | NULL |
| 2 | DEPENDENT SUBQUERY | film actor | eq ref | PRIMARY,idx fk film id |
e e EREEEEEEEE Hmmmmm - Hmmm e +

According to the EXPLAIN output, MySQL will table-scan the film table and execute
the subquery for each row it finds. This won’t cause a noticeable performance hit on
small tables, but if the outer table is very large, the performance will be extremely
bad. Fortunately, it’s easy to rewrite such a query as a JOIN:
mysql> SELECT film.* FROM sakila.film

-> INNER JOIN sakila.film_actor USING(film_id)

-> WHERE actor_id = 1;
Another good optimization is to manually generate the IN() list by executing the
subquery as a separate query with GROUP_CONCAT(). Sometimes this can be faster than
a JOIN.

MySQL has been criticized thoroughly for this particular type of subquery execution
plan. Although it definitely needs to be fixed, the criticism often confuses two differ-
ent issues: execution order and caching. Executing the query from the inside out is
one way to optimize it; caching the inner query’s result is another. Rewriting the
query yourself lets you take control over both aspects. Future versions of MySQL
should be able to optimize this type of query much better, although this is no easy
task. There are very bad worst cases for any execution plan, including the inside-out
execution plan that some people think would be simple to optimize.

When a correlated subquery is good

MySQL doesn’t always optimize correlated subqueries badly. If you hear advice to
always avoid them, don’t listen! Instead, benchmark and make your own decision.
Sometimes a correlated subquery is a perfectly reasonable, or even optimal, way to
get a result. Let’s look at an example:

mysql> EXPLAIN SELECT film_id, language_id FROM sakila.film
-> WHERE NOT EXISTS(
-> SELECT * FROM sakila.film_actor
-> WHERE film_actor.film_id = film.film_id
->)\G
kpstookstofoloksksolokstololokstofolokskokokokskok oy RRSRReksskokskeskokokoketotokokekokokskokokokskek
id: 1

180 | Chapter4: QueryPerformance Optimization

select_type:
table:

type:
possible keys:
key:

key len:

ref:

TOWS:

Extra:

PRIMARY
film

ALL

NULL

NULL

NULL

NULL

951

Using where

Fokkkkskskkllkkokolololokokokskskskskskkk 9 gy RRkksskskkllkokokokolokokokokokoskskskskskokok

id:

select type:
table:

type:
possible keys:
key:

key len:

ref:

TOWS :

Extra:

2

DEPENDENT SUBQUERY

film actor

ref

idx_fk_film_ id
idx_fk_film id

2

film.film id

2

Using where; Using index

The standard advice for this query is to write it as a LEFT OUTER JOIN instead of using a
subquery. In theory, MySQL’s execution plan will be essentially the same either way.
Let’s see:

mysql> EXPLAIN SELECT film.film_id, film.language_id
-> FROM sakila.film
-> LEFT OUTER JOIN sakila.film_actor USING(film_id)
-> WHERE film_actor.film_id IS NULL\G
skokokok ok ok ok sk sksk ok ok ok sk skokok ok sk ok sk sk skok ok k ok 1. TOW kokskskokok ok ok ok sk sk skok ok ok ok sk sk skokok sk sk k sk sk sk
id: 1
select type: SIMPLE
table: film
type: ALL
possible keys: NULL
key: NULL
key len: NULL
ref: NULL
Tows: 951
Extra:
skskokokosk sk skskokokok sk sk sk skokokosk sk k sk skokok sk k& 2. TOW skskskskokokosk sk ok skskokokok sk sk sk skokokok sk sk sk kk ok
id: 1
select type: SIMPLE
table: film actor
type: ref
possible keys: idx_fk film id
key: idx fk film id
key len: 2
ref: sakila.film.film id
Tows: 2
Extra: Using where; Using index; Not exists

The plans are nearly identical, but there are some differences:

Limitations of the MySQL Query Optimizer | 181

* The SELECT type against film_actor is DEPENDENT SUBQUERY in one query and
SIMPLE in the other. This difference simply reflects the syntax, because the first
query uses a subquery and the second doesn’t. It doesn’t make much difference
in terms of handler operations.

* The second query doesn’t say “Using where” in the Extra column for the film
table. That doesn’t matter, though: the second query’s USING clause is the same
thing as a WHERE clause anyway.

* The second query says “Not exists” in the film_actor table’s Extra column. This
is an example of the early-termination algorithm we mentioned earlier in this
chapter. It means MySQL is using a not-exists optimization to avoid reading
more than one row in the film actor table’s idx_fk_film_id index. This is equiv-
alent to a NOT EXISTS() correlated subquery, because it stops processing the cur-
rent row as soon as it finds a match.

So, in theory, MySQL will execute the queries almost identically. In reality, bench-
marking is the only way to tell which approach is really faster. We benchmarked
both queries on our standard setup. The results are shown in Table 4-1.

Table 4-1. NOT EXISTS versus LEFT OUTER JOIN

Query Result in queries per second (QPS)
NOT EXISTS subquery 360 QPS
LEFT OUTER JOIN 425 QPS

Our benchmark found that the subquery is quite a bit slower!

However, this isn’t always the case. Sometimes a subquery can be faster. For exam-
ple, it can work well when you just want to see rows from one table that match rows
in another table. Although that sounds like it describes a join perfectly, it’s not
always the same thing. The following join, which is designed to find every film that
has an actor, will return duplicates because some films have multiple actors:

mysql> SELECT film.film_id FROM sakila.film
-> INNER JOIN sakila.film_actor USING(film_id);

We need to use DISTINCT or GROUP BY to eliminate the duplicates:

mysql> SELECT DISTINCT film.film_id FROM sakila.film
-> INNER JOIN sakila.film_actor USING(film_id);
But what are we really trying to express with this query, and is it obvious from the
SQL? The EXISTS operator expresses the logical concept of “has a match” without
producing duplicated rows and avoids a GROUP BY or DISTINCT operation, which
might require a temporary table. Here’s the query written as a subquery instead of a
join:
mysql> SELECT film_id FROM sakila.film
-> WHERE EXISTS(SELECT * FROM sakila.film_actor

182 | Chapter4: Query Performance Optimization

-> WHERE film.film_id = film_actor.film_id);

Again, we benchmarked to see which strategy was faster. The results are shown in
Table 4-2.

Table 4-2. EXISTS versus INNER JOIN

Query Result in queries per second (QPS)
INNER JOIN 185QPS
EXISTS subquery 325QPS

In this example, the subquery performs much faster than the join.

We showed this lengthy example to illustrate two points: you should not heed cate-
gorical advice about subqueries, and you should use benchmarks to prove your
assumptions about query plans and execution speed.

UNION limitations

MySQL sometimes can’t “push down” conditions from the outside of a UNION to the
inside, where they could be used to limit results or enable additional optimizations.

If you think any of the individual queries inside a UNION would benefit from a LIMIT,
or if you know they’ll be subject to an ORDER BY clause once combined with other
queries, you need to put those clauses inside each part of the UNION. For example, if
you UNION together two huge tables and LIMIT the result to the first 20 rows, MySQL
will store both huge tables into a temporary table and then retrieve just 20 rows from
it. You can avoid this by placing LIMIT 20 on each query inside the UNION.

Index merge optimizations

Index merge algorithms, introduced in MySQL 5.0, let MySQL use more than one
index per table in a query. Earlier versions of MySQL could use only a single index,
so when no single index was good enough to help with all the restrictions in the
WHERE clause, MySQL often chose a table scan. For example, the film actor table has
an index on film id and an index on actor_id, but neither is a good choice for both
WHERE conditions in this query:
mysql> SELECT film_id, actor_id FROM sakila.film_actor
-> WHERE actor_id = 1 OR film_id = 1;
In older MySQL versions, that query would produce a table scan unless you wrote it
as the UNION of two queries:
mysql> SELECT film_id, actor_id FROM sakila.film_actor WHERE actor_id = 1
-> UNION ALL

-> SELECT film_id, actor_id FROM sakila.film_actor WHERE film_id = 1
-> AND actor_id <> 1;

Limitations of the MySQL Query Optimizer | 183

In MySQL 5.0 and newer, however, the query can use both indexes, scanning them
simultaneously and merging the results. There are three variations on the algorithm:
union for OR conditions, intersection for AND conditions, and unions of intersections
for combinations of the two. The following query uses a union of two index scans, as
you can see by examining the Extra column:

mysql> EXPLAIN SELECT film_id, actor_id FROM sakila.film_actor

-> WHERE actor_id = 1 OR film_id = 1\G
Fokkkskokskokokskokdokdokokokokokokokkokokokkk oy RRKKsKsksskoRskokokokokkkokkokkokok kb ok ok

id: 1
select_type: SIMPLE
table: film actor
type: index_merge
possible_keys: PRIMARY,idx_fk_film_id
key: PRIMARY,idx fk film id
key len: 2,2
ref: NULL

rows: 29

Extra: Using union(PRIMARY,idx_fk_film_id); Using where
MySQL can use this technique on complex WHERE clauses, so you may see nested
operations in the Extra column for some queries. This often works very well, but
sometimes the algorithm’s buffering, sorting, and merging operations use lots of
CPU and memory resources. This is especially true if not all of the indexes are very
selective, so the parallel scans return lots of rows to the merge operation. Recall that
the optimizer doesn’t account for this cost—it optimizes just the number of random
page reads. This can make it “underprice” the query, which might in fact run more
slowly than a plain table scan. The intensive memory and CPU usage also tends to
impact concurrent queries, but you won’t see this effect when you run the query in
isolation. This is another reason to design realistic benchmarks.

If your queries run more slowly because of this optimizer limitation, you can work
around it by disabling some indexes with IGNORE INDEX, or just fall back to the old
UNION tactic.

Equality propagation

Equality propagation can have unexpected costs sometimes. For example, consider a
huge IN() list on a column the optimizer knows will be equal to some columns on
other tables, due to a WHERE, ON, or USING clause that sets the columns equal to each
other.

The optimizer will “share” the list by copying it to the corresponding columns in all
related tables. This is normally helpful, because it gives the query optimizer and exe-
cution engine more options for where to actually execute the IN() check. But when
the list is very large, it can result in slower optimization and execution. There’s no
built-in workaround for this problem at the time of this writing—you’ll have to
change the source code if it’s a problem for you. (It’s not a problem for most people.)

184 | (Chapter4: QueryPerformance Optimization

Parallel execution

MySQL can’t execute a single query in parallel on many CPUs. This is a feature
offered by some other database servers, but not MySQL. We mention it so that you
won’t spend a lot of time trying to figure out how to get parallel query execution on
MySQL!

Hash joins

MySQL can’t do true hash joins at the time of this writing—everything is a nested-
loop join. However, you can emulate hash joins using hash indexes. If you aren’t
using the Memory storage engine, you’ll have to emulate the hash indexes, too. We
showed you how to do this in “Building your own hash indexes” on page 103.

Loose index scans

MySQL has historically been unable to do loose index scans, which scan noncontigu-
ous ranges of an index. MySQL’s index scans generally require a defined start point
and a defined end point in the index, even if only a few noncontiguous rows in the
middle are really desired for the query. MySQL will scan the entire range of rows
within these end points.

An example will help clarify this. Suppose we have a table with an index on columns
(a, b), and we want to run the following query:

mysql> SELECT ... FROM tbl WHERE b BETWEEN 2 AND 3;

Because the index begins with column a, but the query’s WHERE clause doesn’t specify
column a, MySQL will do a table scan and eliminate the nonmatching rows with a
WHERE clause, as shown in Figure 4-5.

It’s easy to see that there’s a faster way to execute this query. The index’s structure
(but not MySQL’s storage engine API) lets you seek to the beginning of each range of
values, scan until the end of the range, and then backtrack and jump ahead to the
start of the next range. Figure 4-6 shows what that strategy would look like if
MySQL were able to do it.

Notice the absence of a WHERE clause, which isn’t needed because the index alone lets
us skip over the unwanted rows. (Again, MySQL can’t do this yet.)

This is admittedly a simplistic example, and we could easily optimize the query
we’ve shown by adding a different index. However, there are many cases where add-
ing another index can’t solve the problem. One example is a query that has a range
condition on the index’s first column and an equality condition on the second
column.

Limitations of the MySQL Query Optimizer | 185

o

WHERE
a <other columns> clause

L |, ...data... —»Q/L_l
N,
..data... V=

v
[ary
[y

[y
N

13 ...data...

1(4 ...data...

i}

YYYYVYYYYYY

2(1 ...data...

212 ...data...

203 ...data...

2|4 ...data... —>
3(1 ...data... —>
3|2 ...data... >
303 ...data... >
3 4'| ...data... —>

Figure 4-5. MySQL scans the entire table to find rows

(a | b |<other columns>
»1‘ 1 ...data...
1 ‘ZI ...data... —>
1 _3‘ ...data... —>
<1 4 ...data...
»2‘ 1 ...data...
2 kzl ...data... —>
2 _3‘ ...data... —>
2|4 ...data...
»3‘ 1 ...data...
3‘2| ...data... —>
3 3‘ ...data... —>
3|4 ...data...

Figure 4-6. A loose index scan, which MySQL cannot currently do, would be more efficient

Beginning in MySQL 5.0, loose index scans are possible in certain limited circum-
stances, such as queries that find maximum and minimum values in a grouped
query:

mysql> EXPLAIN SELECT actor_id, MAX(film_id)
-> FROM sakila.film_actor
-> GROUP BY actor_id\G

186 | Chapter4: QueryPerformance Optimization

skokokok ok sk skskoskskok sk sk sk skokok ok sk ok sk sk skok sk k >k 1. TOW kokskokokok sk ok kskkok ok ok ok sk sk skok sk sk kkkkk ok
id: 1
select type: SIMPLE
table: film actor
type: range
possible keys: NULL
key: PRIMARY
key len: 2
ref: NULL
Tows: 396
Extra: Using index for group-by
The “Using index for group-by” information in this EXPLAIN plan indicates a loose
index scan. This is a good optimization for this special purpose, but it is not a

general-purpose loose index scan. It might be better termed a “loose index probe.”

Until MySQL supports general-purpose loose index scans, the workaround is to sup-
ply a constant or list of constants for the leading columns of the index. We showed
several examples of how to get good performance with these types of queries in our
indexing case study in the previous chapter.

MIN() and MAX()

MySQL doesn’t optimize certain MIN() and MAX() queries very well. Here’s an
example:

mysql> SELECT MIN(actor_id) FROM sakila.actor WHERE first_name = 'PENELOPE';

Because there’s no index on first name, this query performs a table scan. If MySQL
scans the primary key, it can theoretically stop after reading the first matching row,
because the primary key is strictly ascending and any subsequent row will have a
greater actor_id. However, in this case, MySQL will scan the whole table, which you
can verify by profiling the query. The workaround is to remove the MIN() and rewrite
the query with a LIMIT, as follows:
mysql> SELECT actor_id FROM sakila.actor USE INDEX(PRIMARY)
-> WHERE first_name = 'PENELOPE' LIMIT 1;

This general strategy often works well when MySQL would otherwise choose to scan
more rows than necessary. If you’re a purist, you might object that this query is miss-
ing the point of SQL. We’re supposed to be able to tell the server what we want and
it’s supposed to figure out how to get that data, whereas, in this case, we’re telling
MySQL how to execute the query and, as a result, it’s not clear from the query that
what we’re looking for is a minimal value. True, but sometimes you have to compro-
mise your principles to get high performance.

SELECT and UPDATE on the same table

MySQL doesn’t let you SELECT from a table while simultaneously running an UPDATE
on it. This isn’t really an optimizer limitation, but knowing how MySQL executes

Limitations of the MySQL Query Optimizer | 187

queries can help you work around it. Here’s an example of a query that’s dis-
allowed, even though it is standard SQL. The query updates each row with the num-
ber of similar rows in the table:

mysql> UPDATE tbl AS outer_tbl
-> SET cnt = (

-> SELECT count(*) FROM tbl AS inner_tbl

-> WHERE inner_tbl.type = outer_tbl.type

>)
ERROR 1093 (HY000): You can't specify target table 'outer tbl' for update in FROM
clause

To work around this limitation, you can use a derived table, because MySQL materi-
alizes it as a temporary table. This effectively executes two queries: one SELECT inside
the subquery, and one multitable UPDATE with the joined results of the table and the
subquery. The subquery opens and closes the table before the outer UPDATE opens the
table, so the query will now succeed:

mysql> UPDATE tbl
-> INNER JOIN(

-> SELECT type, count(*) AS cnt
-> FROM tbl
-> GROUP BY type

->) AS der USING(type)
-> SET tbl.cnt = der.cnt;

Optimizing Specific Types of Queries

In this section, we give advice on how to optimize certain kinds of queries. We've
covered most of these topics in detail elsewhere in the book, but we wanted to make
a list of common optimization problems that you can refer to easily.

Most of the advice in this section is version-dependent, and it may not hold for
future versions of MySQL. There’s no reason why the server won’t be able to do
some or all of these optimizations itself someday.

Optimizing COUNT() Queries

The COUNT() aggregate function and how to optimize queries that use it is probably
one of the top 10 most misunderstood topics in MySQL. You can do a web search
and find more misinformation on this topic than we care to think about.

Before we get into optimization, it’s important that you understand what COUNT()
really does.

What COUNT() does

COUNT() is a special function that works in two very different ways: it counts values
and rows. A value is a non-NULL expression (NULL is the absence of a value). If you

188 | Chapter4: Query Performance Optimization

specify a column name or other expression inside the parentheses, COUNT() counts
how many times that expression has a value. This is confusing for many people, in
part because values and NULL are confusing. If you need to learn how this works in
SQL, we suggest a good book on SQL fundamentals. (The Internet is not necessarily
a good source of accurate information on this topic, either.)

The other form of COUNT(') simply counts the number of rows in the result. This is
what MySQL does when it knows the expression inside the parentheses can never be
NULL. The most obvious example is COUNT(*), which is a special form of COUNT(') that
does not expand the * wildcard into the full list of columns in the table, as you might
expect; instead, it ignores columns altogether and counts rows.

One of the most common mistakes we see is specifying column names inside the
parentheses when you want to count rows. When you want to know the number of
rows in the result, you should always use COUNT(*). This communicates your inten-
tion clearly and avoids poor performance.

Myths about MyISAM

A common misconception is that MyISAM is extremely fast for COUNT() queries. It is
fast, but only for a very special case: COUNT(*) without a WHERE clause, which merely
counts the number of rows in the entire table. MySQL can optimize this away
because the storage engine always knows how many rows are in the table. If MySQL
knows col can never be NULL, it can also optimize a COUNT(col) expression by con-
verting it to COUNT(*) internally.

MyISAM does not have any magical speed optimizations for counting rows when the
query has a WHERE clause, or for the more general case of counting values instead of
rows. It may be faster than other storage engines for a given query, or it may not be.
That depends on a lot of factors.

Simple optimizations

You can sometimes use MyISAM’s COUNT(*) optimization to your advantage when
you want to count all but a very small number of rows that are well indexed. The fol-
lowing example uses the standard World database to show how you can efficiently
find the number of cities whose ID is greater than 5. You might write this query as
follows:

mysql> SELECT COUNT(*) FROM world.City WHERE ID > §5;

If you profile this query with SHOW STATUS, you’ll see that it scans 4,079 rows. If you
negate the conditions and subtract the number of cities whose IDs are less than or
equal to 5 from the total number of cities, you can reduce that to five rows:

Optimizing Specific Types of Queries | 189

mysql> SELECT (SELECT COUNT(*) FROM world.City) - COUNT(*)
-> FROM world.City WHERE ID <= 5;

This version reads fewer rows because the subquery is turned into a constant during
the query optimization phase, as you can see with EXPLAIN:

R ST EEEEEE Hmmmmm Fouetmmmmo- e +
| id | select type | table |...| rows | Extra |
Hmmm o mm e Hmmmmmn- O T +
| 1 | PRIMARY | City |...| 6 | Using where; Using index

| 2 | SUBQUERY | NULL |...| NULL | Select tables optimized away |
Hmmm o mm e Hmmmmmn- O T +

A frequent question on mailing lists and IRC channels is how to retrieve counts for
several different values in the same column with just one query, to reduce the num-
ber of queries required. For example, say you want to create a single query that
counts how many items have each of several colors. You can’t use an OR (e.g., SELECT
COUNT(color = 'blue' OR color = 'red') FROM items;), because that won’t separate the
different counts for the different colors. And you can’t put the colors in the WHERE
clause (e.g., SELECT COUNT(*) FROM items WHERE color = 'blue' AND color = 'red';),
because the colors are mutually exclusive. Here is a query that solves this problem:
mysql> SELECT SUM(IF(color = 'blue', 1, 0)) AS blue,
SUM(IF(color = 'red', 1, 0)) -> AS red FROM items;
And here is another that’s equivalent, but instead of using SUM(') uses COUNT(') and
ensures that the expressions won’t have values when the criteria are false:

mysql> SELECT COUNT(color = 'blue’ OR NULL) AS blue, COUNT(color = 'red' OR NULL)
-> AS red FROM items;

More complex optimizations

In general, COUNT() queries are hard to optimize because they usually need to count a
lot of rows (i.e., access a lot of data). Your only other option for optimizing within
MySQL itself is to use a covering index, which we discussed in Chapter 3. If that
doesn’t help enough, you need to make changes to your application architecture.
Consider summary tables (also covered in Chapter 3), and possibly an external cach-
ing system such as memcached. You’ll probably find yourself faced with the familiar
dilemma, “fast, accurate, and simple: pick any two.”

Optimizing JOIN Queries

This topic is actually spread throughout most of the book, but we mention a few
highlights:

* Make sure there are indexes on the columns in the ON or USING clauses. See
“Indexing Basics” on page 95 for more about indexing. Consider the join order
when adding indexes. If you’re joining tables A and B on column ¢ and the query
optimizer decides to join the tables in the order B, A, you don’t need to index the

190 | Chapter4: QueryPerformance Optimization

column on table B. Unused indexes are extra overhead. In general, you need to
add indexes only on the second table in the join order, unless they’re needed for
some other reason.

* Try to ensure that any GROUP BY or ORDER BY expression refers only to columns
from a single table, so MySQL can try to use an index for that operation.

* Be careful when upgrading MySQL, because the join syntax, operator prece-
dence, and other behaviors have changed at various times. What used to be a
normal join can sometimes become a cross product, a different kind of join that
returns different results, or even invalid syntax.

Optimizing Subqueries

The most important advice we can give on subqueries is that you should usually pre-
fer a join where possible, at least in current versions of MySQL. We covered this
topic extensively earlier in this chapter.

Subqueries are the subject of intense work by the optimizer team, and upcoming ver-
sions of MySQL may have more subquery optimizations. It remains to be seen which
of the optimizations we’ve seen will end up in released code, and how much differ-
ence they’ll make. Our point here is that “prefer a join” is not future-proof advice.
The server is getting smarter all the time, and the cases where you have to tell it how
to do something instead of what results to return are becoming fewer.

Optimizing GROUP BY and DISTINCT

MySQL optimizes these two kinds of queries similarly in many cases, and in fact con-
verts between them as needed internally during the optimization process. Both types
of queries benefit from indexes, as usual, and that’s the single most important way to
optimize them.

MySQL has two kinds of GROUP BY strategies when it can’t use an index: it can use a
temporary table or a filesort to perform the grouping. Either one can be more effi-
cient for any given query. You can force the optimizer to choose one method or the
other with the SQL_BIG RESULT and SQL_SMALL_RESULT optimizer hints.

If you need to group a join by a value that comes from a lookup table, it’s usually
more efficient to group by the lookup table’s identifier than by the value. For exam-
ple, the following query isn’t as efficient as it could be:
mysql> SELECT actor.first_name, actor.last_name, COUNT(*)
-> FROM sakila.film_actor

-> INNER JOIN sakila.actor USING(actor_id)
-> GROUP BY actor.first name, actor.last_name;

The query is more efficiently written as follows:

mysql> SELECT actor.first_name, actor.last_name, COUNT(*)

Optimizing Specific Types of Queries | 191

-> FROM sakila.film_actor

-> INNER JOIN sakila.actor USING(actor_id)

-> GROUP BY film_actor.actor_id;
Grouping by actor.actor_id could be more efficient than grouping by film actor.
actor_id. You should profile and/or benchmark on your specific data to see.

This query takes advantage of the fact that the actor’s first and last name are depen-
dent on the actor_id, so it will return the same results, but it’s not always the case
that you can blithely select nongrouped columns and get the same result. You may
even have the server’s SQL_MODE configured to disallow it. You can use MIN() or MAX()
to work around this when you know the values within the group are distinct because
they depend on the grouped-by column, or if you don’t care which value you get:

mysql> SELECT MIN(actor.first_name), MAX(actor.last_name), ...;

Purists will argue that you’re grouping by the wrong thing, and they’re right. A spuri-

ous MIN() or MAX() is a sign that the query isn’t structured correctly. However, some-

times your only concern will be making MySQL execute the query as quickly as

possible. The purists will be satisfied with the following way of writing the query:
mysql> SELECT actor.first_name, actor.last_name, c.cnt

-> FROM sakila.actor
-> INNER JOIN (

-> SELECT actor_id, COUNT(*) AS cnt
-> FROM sakila.film_actor
-> GROUP BY actor_id

->) AS c USING(actor_id) ;

But sometimes the cost of creating and filling the temporary table required for the
subquery is high compared to the cost of fudging pure relational theory a little bit.
Remember, the temporary table created by the subquery has no indexes.

It’s generally a bad idea to select nongrouped columns in a grouped query, because
the results will be nondeterministic and could easily change if you change an index
or the optimizer decides to use a different strategy. Most such queries we see are
accidents (because the server doesn’t complain), or are the result of laziness rather
than being designed that way for optimization purposes. It’s better to be explicit. In
fact, we suggest that you set the server’s SQL_MODE configuration variable to include
ONLY_FULL_GROUP_BY so it produces an error instead of letting you write a bad query.

MySQL automatically orders grouped queries by the columns in the GROUP BY clause,
unless you specify an ORDER BY clause explicitly. If you don’t care about the order and
you see this causing a filesort, you can use ORDER BY NULL to skip the automatic sort.
You can also add an optional DESC or ASC keyword right after the GROUP BY clause to
order the results in the desired direction by the clause’s columns.

192 | Chapter4: QueryPerformance Optimization

Optimizing GROUP BY WITH ROLLUP

A variation on grouped queries is to ask MySQL to do superaggregation within the
results. You can do this with a WITH ROLLUP clause, but it might not be as well opti-
mized as you need. Check the execution method with EXPLAIN, paying attention to
whether the grouping is done via filesort or temporary table; try removing the WITH
ROLLUP and seeing if you get the same group method. You may be able to force the
grouping method with the hints we mentioned earlier in this section.

Sometimes it’s more efficient to do superaggregation in your application, even if it
means fetching many more rows from the server. You can also nest a subquery in the
FROM clause or use a temporary table to hold intermediate results.

The best approach may be to move the WITH ROLLUP functionality into your applica-
tion code.

Optimizing LIMIT and OFFSET

Queries with LIMITs and OFFSETs are common in systems that do pagination, nearly
always in conjunction with an ORDER BY clause. It’s helpful to have an index that sup-
ports the ordering; otherwise, the server has to do a lot of filesorts.

A frequent problem is having a high value for the offset. If your query looks like
LIMIT 10000, 20, it is generating 10,020 rows and throwing away the first 10,000 of
them, which is very expensive. Assuming all pages are accessed with equal fre-
quency, such queries scan half the table on average. To optimize them, you can
either limit how many pages are permitted in a pagination view, or try to make the
high offsets more efficient.

One simple technique to improve efficiency is to do the offset on a covering index,
rather than the full rows. You can then join the result to the full row and retrieve the
additional columns you need. This can be much more efficient. Consider the follow-
ing query:

mysql> SELECT film id, description FROM sakila.film ORDER BY title LIMIT 50, 5;
If the table is very large, this query is better written as follows:

mysql> SELECT film.film_id, film.description
-> FROM sakila.film
-> INNER JOIN (
-> SELECT film_id FROM sakila.film
-> ORDER BY title LIMIT 50, 5
->) AS lim USING(film_id);

This works because it lets the server examine as little data as possible in an index
without accessing rows, and then, once the desired rows are found, join them against
the full table to retrieve the other columns from the row. A similar technique applies
to joins with LIMIT clauses.

Optimizing Specific Types of Queries | 193

Sometimes you can also convert the limit to a positional query, which the server can
execute as an index range scan. For example, if you precalculate and index a posi-
tion column, you can rewrite the query as follows:
mysql> SELECT film_id, description FROM sakila.film
-> WHERE position BETWEEN 50 AND 54 ORDER BY position;
Ranked data poses a similar problem, but usually mixes GROUP BY into the fray. You’ll
almost certainly need to precompute and store ranks.

If you really need to optimize pagination systems, you should probably use precom-
puted summaries. As an alternative, you can join against redundant tables that con-
tain only the primary key and the columns you need for the ORDER BY. You can also
use Sphinx; see Appendix C for more information.

Optimizing SQL_CALC_FOUND_ROWS

Another common technique for paginated displays is to add the SQL_CALC_FOUND_ROWS
hint to a query with a LIMIT, so you’ll know how many rows would have been
returned without the LIMIT. It may seem that there’s some kind of “magic” happen-
ing here, whereby the server predicts how many rows it would have found. But
unfortunately, the server doesn’t really do that; it can’t count rows it doesn’t actu-
ally find. This option just tells the server to generate and throw away the rest of the
result set, instead of stopping when it reaches the desired number of rows. That’s
very expensive.

A better design is to convert the pager to a “next” link. Assuming there are 20 results
per page, the query should then use a LIMIT of 21 rows and display only 20. If the
21st row exists in the results, there’s a next page, and you can render the “next” link.

Another possibility is to fetch and cache many more rows than you need—say,
1,000—and then retrieve them from the cache for successive pages. This strategy lets
your application know how large the full result set is. If it’s fewer than 1,000 rows,
the application knows how many page links to render; if it’s more, the application
can just display “more than 1,000 results found.” Both strategies are much more effi-
cient than repeatedly generating an entire result and discarding most of it.

Even when you can’t use these tactics, using a separate COUNT(*) query to find the
number of rows can be much faster than SQL_CALC_FOUND_ROWS, if it can use a cover-
ing index.

Optimizing UNION

MySQL always executes UNION queries by creating a temporary table and filling it
with the UNION results. MySQL can’t apply as many optimizations to UNION queries as
you might be used to. You might have to help the optimizer by manually “pushing

194 | Chapter4: QueryPerformance Optimization

down” WHERE, LIMIT, ORDER BY, and other conditions (i.e., copying them, as appropri-
ate, from the outer query into each SELECT in the UNION).

It’s important to always use UNION ALL, unless you need the server to eliminate dupli-
cate rows. If you omit the ALL keyword, MySQL adds the distinct option to the tem-
porary table, which uses the full row to determine uniqueness. This is quite
expensive. Be aware that the ALL keyword doesn’t eliminate the temporary table,
though. MySQL always places results into a temporary table and then reads them
out again, even when it’s not really necessary (for example, when the results could be
returned directly to the client).

Query Optimizer Hints

MySQL has a few optimizer hints you can use to control the query plan if you’re not
happy with the one MySQL’s optimizer chooses. The following list identifies these
hints and indicates when it’s a good idea to use them. You place the appropriate hint
in the query whose plan you want to modify, and it is effective for only that query.
Check the MySQL manual for the exact syntax of each hint. Some of them are
version-dependent. The options are:

HIGH PRIORITY and LOW_PRIORITY
These hints tell MySQL how to prioritize the statement relative to other state-
ments that are trying to access the same tables.

HIGH PRIORITY tells MySQL to schedule a SELECT statement before other state-
ments that may be waiting for locks, so they can modify data. In effect, it makes
the SELECT go to the front of the queue instead of waiting its turn. You can also
apply this modifier to INSERT, where it simply cancels the effect of a global LOW_
PRIORITY server setting.

LOW_PRIORITY is the reverse: it makes the statement wait at the very end of the
queue if there are any other statements that want to access the tables—even if
the other statements are issued after it. It’s rather like an overly polite person
holding the door at a restaurant: as long as there’s anyone else waiting, it will
starve itself! You can apply this hint to SELECT, INSERT, UPDATE, REPLACE, and
DELETE statements.

These hints are effective on storage engines with table-level locking, but you
should never need them on InnoDB or other engines with fine-grained locking
and concurrency control. Be careful when using them on MyISAM, because they
can disable concurrent inserts and greatly reduce performance.

The HIGH PRIORITY and LOW PRIORITY hints are a frequent source of confusion.
They do not allocate more or fewer resources to queries to make them “work
harder” or “not work as hard”; they simply affect how the server queues state-
ments that are waiting for access to a table.

Query Optimizer Hints | 195

DELAYED

This hint is for use with INSERT and REPLACE. It lets the statement to which it is
applied return immediately and places the inserted rows into a buffer, which will
be inserted in bulk when the table is free. This is most useful for logging and
similar applications where you want to insert a lot of rows without making the
client wait, and without causing /O for each statement. There are many limita-
tions; for example, delayed inserts are not implemented in all storage engines,
and LAST_INSERT_ID() doesn’t work with them.

STRAIGHT JOIN

This hint can appear either just after the SELECT keyword in a SELECT statement,
or in any statement between two joined tables. The first usage forces all tables in
the query to be joined in the order in which they’re listed in the statement. The
second usage forces a join order on the two tables between which the hint
appears.

The STRAIGHT _JOIN hint is useful when MySQL doesn’t choose a good join order,
or when the optimizer takes a long time to decide on a join order. In the latter
case, the thread will spend a lot of time in “Statistics” state, and adding this hint
will reduce the search space for the optimizer.

You can use EXPLAIN to see what order the optimizer would choose, then rewrite
the query in that order and add STRAIGHT JOIN. This is a good idea as long as you
don’t think the fixed order will result in bad performance for some WHERE clauses.
You should be careful to revisit such queries after upgrading MySQL, however,
because new optimizations may appear that will be defeated by STRAIGHT JOIN.

SQL_SMALL RESULT and SQL_BIG RESULT

These hints are for SELECT statements. They tell the optimizer how and when to
use temporary tables and sort in GROUP BY or DISTINCT queries. SOL_SMALL RESULT
tells the optimizer that the result set will be small and can be put into indexed
temporary tables to avoid sorting for the grouping, whereas SQL_BIG_RESULT indi-
cates that the result will be large and that it will be better to use temporary tables
on disk with sorting.

SQL_BUFFER_RESULT

This hint tells the optimizer to put the results into a temporary table and release
table locks as soon as possible. This is different from the client-side buffering we
described in “The MySQL Client/Server Protocol” on page 161, earlier in this
chapter. Server-side buffering can be useful when you don’t use buffering on the
client, as it lets you avoid consuming a lot of memory on the client and still
release locks quickly. The tradeoff is that the server’s memory is used instead of
the client’s.

SOL_CACHE and SQL_NO_CACHE

These hints instruct the server that the query either is or is not a candidate for
caching in the query cache. See the next chapter for details on how to use them.

196

| Chapter4: Query Performance Optimization

SQL_CALC_FOUND_ROWS

FOR

USE

This hint tells MySQL to calculate a full result set when there’s a LIMIT clause,
even though it returns only LIMIT rows. You can retrieve the total number of rows
it found via FOUND_ROWS() (but see “Optimizing SQL_CALC_FOUND_ROWS”
on page 194, earlier in this chapter, for reasons why you shouldn’t use this hint).

UPDATE and LOCK IN SHARE MODE

These hints control locking for SELECT statements, but only for storage engines
that have row-level locks. They enable you to place locks on the matched rows,
which can be useful when you want to lock rows you know you are going to
update later, or when you want to avoid lock escalation and just acquire exclu-
sive locks as soon as possible.

These hints are not needed for INSERT ... SELECT queries, which place read locks
on the source rows by default in MySQL 5.0. (You can disable this behavior, but
it’s not a good idea—we explain why in Chapters 8 and 11.) MySQL 5.1 may lift
this restriction under certain conditions.

At the time of this writing, only InnoDB supports these hints, and it’s too early
to say whether other storage engines with row-level locks will support them in
the future. When using these hints with InnoDB, be aware that they may disable
some optimizations, such as covering indexes. InnoDB can’t lock rows exclu-
sively without accessing the primary key, which is where the row versioning
information is stored.

INDEX, IGNORE INDEX, and FORCE INDEX

These hints tell the optimizer which indexes to use or ignore for finding rows in
a table (for example, when deciding on a join order). In MySQL 5.0 and earlier,
they don’t influence which indexes the server uses for sorting and grouping; in
MySQL 5.1 the syntax can take an optional FOR ORDER BY or FOR GROUP BY clause.

FORCE INDEX is the same as USE INDEX, but it tells the optimizer that a table scan is
extremely expensive compared to the index, even if the index is not very useful.
You can use these hints when you don’t think the optimizer is choosing the right
index, or when you want to take advantage of an index for some reason, such as
implicit ordering without an ORDER BY. We gave an example of this in “Optimiz-
ing LIMIT and OFFSET” on page 193, earlier in this chapter, where we showed
how to get a minimum value efficiently with LIMIT.

In MySQL 5.0 and newer, there are also some system variables that influence the
optimizer:

optimizer search depth

This variable tells the optimizer how exhaustively to examine partial plans. If
your queries are taking a very long time in the “Statistics” state, you might try
lowering this value.

Query Optimizer Hints | 197

optimizer prune level
This variable, which is enabled by default, lets the optimizer skip certain plans
based on the number of rows examined.

Both options control optimizer shortcuts. These shortcuts are valuable for good per-
formance on complex queries, but they can cause the server to miss optimal plans for
the sake of efficiency. That’s why it sometimes makes sense to change them.

User-Defined Variables

It’s easy to forget about MySQL’s user-defined variables, but they can be a powerful
technique for writing efficient queries. They work especially well for queries that
benefit from a mixture of procedural and relational logic. Purely relational queries
treat everything as unordered sets that the server somehow manipulates all at once.
MySQL takes a more pragmatic approach. This can be a weakness, but it can be a
strength if you know how to exploit it, and user-defined variables can help.

User-defined variables are temporary containers for values, which persist as long as
your connection to the server lives. You define them by simply assigning to them
with a SET or SELECT statement:”

mysql> SET @one 1= 1;
mysql> SET @min_actor := (SELECT MIN(actor_id) FROM sakila.actor);
mysql> SET @last_week := CURRENT_DATE-INTERVAL 1 WEEK;

You can then use the variables in most places an expression can go:
mysql> SELECT ... WHERE col <= @last_week;
Before we get into the strengths of user-defined variables, let’s take a look at some of
their peculiarities and disadvantages and see what things you can’t use them for:
* They prevent query caching.

* You can’t use them where a literal or identifier is needed, such as for a table or
column name, or in the LIMIT clause.

* They are connection-specific, so you can’t use them for interconnection
communication.

* If you're using connection pooling or persistent connections, they can cause
seemingly isolated parts of your code to interact.

* They are case sensitive in MySQL versions prior to 5.0, so beware of compatibil-
ity issues.

* You can’t explicitly declare these variables’ types, and the point at which types

are decided for undefined variables differs across MySQL versions. The best
thing to do is initially assign a value of 0 for variables you want to use for inte-

*

In some contexts you can assign with a plain = sign, but we think it’s better to avoid ambiguity and always
use :=.

198 | Chapter4: QueryPerformance Optimization

gers, 0.0 for floating-point numbers, or "' (the empty string) for strings. A vari-
able’s type changes when it is assigned to; MySQL’s user-defined variable typing
is dynamic.

* The optimizer might optimize away these variables in some situations, prevent-
ing them from doing what you want.

* Order of assignment, and indeed even the time of assignment, can be nondeter-
ministic and depend on the query plan the optimizer chose. The results can be
very confusing, as you’ll see later.

* The := assignment operator has lower precedence than any other operator, so
you have to be careful to parenthesize explicitly.

* Undefined variables do not generate a syntax error, so it’s easy to make mistakes
without knowing it.

One of the most important features of variables is that you can assign a value to a
variable and use the resulting value at the same time. In other words, an assignment
is an L-value. Here’s an example that simultaneously calculates and outputs a “row
number” for a query:

mysql> SET @rownum := 0;

mysql> SELECT actor_id, @rownum := @rownum + 1 AS rownum
-> FROM sakila.actor LIMIT 3;

Hmmm e Hmmmmm e +
| actor _id | rownum |
e Hmm e +
\ 1| 1|
\ 2 | 2 |
\ 3 | 3 |
Hmmm e Hmmmmm e +

This example isn’t terribly interesting, because it just shows that we can duplicate
the table’s primary key. Still, it has its uses; one of which is ranking. Let’s write a
query that returns the 10 actors who have played in the most movies, with a rank
column that gives actors the same rank if they’re tied. We start with a query that
finds the actors and the number of movies:
mysql> SELECT actor_id, COUNT(*) as cnt
-> FROM sakila.film_actor
-> GROUP BY actor_id

-> ORDER BY cnt DESC
-> LIMIT 10

- - +----- +
\ 107 | 42 |
| 102 | 41 |
| 198 | 40 |
| 181 | 39 |
\ 23 | 37|
\ 81 | 36 |

User-Defined Variables | 199

106 | 35 |

\

\ 60 | 35 |
\ 13 | 35 |
\ 158 | 35 |
Fo-mmmo - +----- +

Now let’s add the rank, which should be the same for all the actors who played in 35
movies. We use three variables to do this: one to keep track of the current rank, one
to keep track of the previous actor’s movie count, and one to keep track of the cur-
rent actor’s movie count. We change the rank when the movie count changes. Here’s
a first try:

mysql> SET @curr_cnt := 0, @prev_cnt := 0, @rank := 0;
mysql> SELECT actor_id,
-> @curr_cnt := COUNT(*) AS cnt,
-> @rank := IF(@prev_cnt <> @curr_cnt, @rank + 1, @rank) AS rank,
-> @prev_cnt := @curr_cnt AS dummy
-> FROM sakila.film_actor
-> GROUP BY actor_id
-> ORDER BY cnt DESC

-> LIMIT 10;
Fommm oo +o---- Fommm - - +
| actor_id | cnt | rank | dummy |
P - - R Fommm - +
| 107 | 42| o] 0 |
\ 102 | 41 | 0| 0|

Oops—the rank and count never got updated from zero. Why did this happen?

It’s impossible to give a one-size-fits-all answer. The problem could be as simple as
a misspelled variable name (in this example it’s not), or something more involved.
In this case, EXPLAIN shows there’s a temporary table and filesort, so the variables
are being evaluated at a different time from when we expected.

This is the type of inscrutable behavior you’ll often experience with MySQL’s user-
defined variables. Debugging such problems can be tough, but it can really pay off.
Ranking in SQL normally requires quadratic algorithms, such as counting the dis-
tinct number of actors who played in a greater number of movies. A user-defined
variable solution can be a linear algorithm—quite an improvement.

An easy solution in this case is to add another level of temporary tables to the query,
using a subquery in the FROM clause:

mysql> SET @curr_cnt := 0, @prev_cnt := 0, @rank := 0;
-> SELECT actor_id,
-> @curr_cnt := cnt AS cnt,

-> @rank := IF(@prev_cnt <> @curr_cnt, @rank + 1, @rank) AS rank,
-> @prev_cnt := @curr_cnt AS dummy
-> FROM (

-> SELECT actor_id, COUNT(*) AS cnt
-> FROM sakila.film_actor

200 | Chapter4: Query Performance Optimization

-> GROUP BY actor_id
-> ORDER BY cnt DESC

-> LIMIT 10

->) as der;
Fommmmmm e LR o EEEE T +
| actor_id | cnt | rank | dummy |
- - - t------ +------- +
\ 107 | 42 | 1] 42 |
| 102 | 41 | 2 | 41 |
\ 198 | 40 | 3| 40 |
\ 181 | 39 | 4 | 39 |
\ 23 | 37| 5 | 37 |
| 81 | 36 | 6 | 36 |
\ 106 | 35 | 7] 35 |
\ 60 | 35| 7| 35]
\ 13 | 35 | 7] 35 |
\ 158 | 35 | 7] 35 |
Fo-mmm - +----- R +------- +

Most problems with user variables come from assigning to them and reading them at
different stages in the query. For example, it doesn’t work predictably to assign them
in the SELECT statement and read from them in the WHERE clause. The following query
might look like it will just return one row, but it doesn’t:

mysql> SET @rownum := 0;

mysql> SELECT actor_id, @rownum := @rownum + 1 AS cnt

-> FROM sakila.actor
-> WHERE @rownum <= 1;

e —— R +
| actor id | cnt |
Hmmmmmmmmee 4mmmmm- +
| O
\ 2| 2
Hmmmmmmmmee 4mmmmm- +

This happens because the WHERE and SELECT are different stages in the query execu-
tion process. This is even more obvious when you add another stage to execution
with an ORDER BY:

mysql> SET @rownum := 0;

mysql> SELECT actor_id, @rownum := @rownum + 1 AS cnt
-> FROM sakila.actor
-> WHERE @rownum <= 1
-> ORDER BY first_name;

This query returns every row in the table, because the ORDER BY added a filesort and
the WHERE is evaluated before the filesort. The solution to this problem is to assign
and read in the same stage of query execution:

mysql> SET @rownum := 0;
mysql> SELECT actor_id, @rownum AS rownum
-> FROM sakila.actor
-> WHERE (@rownum := @rownum + 1) <= 1;
Hommmm o tmmmmm oo +
| actor id | rownum |

User-Defined Variables | 201

Pop quiz: what will happen if you add the ORDER BY back to this query? Try it and
see. If you didn’t get the results you expected, why not? What about the following
query, where the ORDER BY changes the variable’s value and the WHERE clause evaluates
it?
mysql> SET @rownum := 0;
mysql> SELECT actor_id, first_name, @rownum AS rownum
-> FROM sakila.actor
-> WHERE @rownum <= 1
-> ORDER BY first_name, LEAST(0, @rownum := @rownum + 1);
The answer to most unexpected user-defined variable behavior can be found by run-
ning EXPLAIN and looking for “Using where,” “Using temporary,” or “Using filesort”
in the Extra column.

The last example introduced another useful hack: we placed the assignment in the
LEAST() function, so its value is effectively masked and won’t skew the results of the
ORDER BY (as we’ve written it, the LEAST() function will always return 0). This trick is
very helpful when you want to do variable assignments solely for their side effects: it
lets you hide the return value and avoid extra columns, such as the dummy column we
showed in a previous example. The GREATEST(), LENGTH(), ISNULL(), NULLIF(),
COALESCE(), and IF() functions are also useful for this purpose, alone and in combi-
nation, because they have special behaviors. For instance, COALESCE() stops
evaluating its arguments as soon as one has a defined value.

You can put variable assignments in all types of statements, not just SELECT state-
ments. In fact, this is one of the best uses for user-defined variables. For example,
you can rewrite expensive queries, such as rank calculations with subqueries, as
cheap once-through UPDATE statements.

It can be a little tricky to get the desired behavior, though. Sometimes the optimizer
decides to consider the variables compile-time constants and refuses to perform
assignments. Placing the assignments inside a function like LEAST() will usually help.
Another tip is to check whether your variable has a defined value before executing
the containing statement. Sometimes you want it to, but other times you don’t.

With a little experimentation, you can do all sorts of interesting things with user-
defined variables. Here are some ideas:

* Run totals and averages

* Emulate FIRST() and LAST() functions for grouped queries

* Do math on extremely large numbers

* Reduce an entire table to a single MD5 hash value

202 | Chapter4: Query Performance Optimization

* “Unwrap” a sampled value that wraps when it increases beyond a certain
boundary

¢ Emulate read/write cursors

Be Careful with MySQL Upgrades

As we’ve said, trying to outsmart the MySQL optimizer usually is not a good idea. It
generally creates more work and increases maintenance costs for very little benefit.
This is especially relevant when you upgrade MySQL, because optimizer hints used
in your queries might prevent new optimizer strategies from being used.

The MySQL optimizer uses indexes as a moving target. New MySQL versions change
how existing indexes can be used, and you should adjust your indexing practices as
these new versions become available. For example, we’ve mentioned that MySQL 4.0
and older could use only one index per table per query, but MySQL 5.0 and newer
can use index merge strategies.

Besides the big changes MySQL occasionally makes to the query optimizer, each
incremental release typically includes many tiny changes. These changes usually
affect small things, such as the conditions under which an index is excluded from
consideration, and let MySQL optimize more special cases.

Although all this sounds good in theory, in practice some queries perform worse after
an upgrade. If you’ve used a certain version for a long time, you have likely tuned
certain queries just for that version, whether you know it or not. These optimiza-
tions may no longer apply in newer versions, or may degrade performance.

If you care about high performance you should have a benchmark suite that repre-
sents your particular workload, which you can run against the new version on a
development server before you upgrade the production servers. Also, before upgrad-
ing, you should read the release notes and the list of known bugs in the new version.
The MySQL manual includes a user-friendly list of known serious bugs.

Most MySQL upgrades bring better performance overall; we don’t mean to imply
otherwise. However, you should still be careful.

User-Defined Variables | 203

CHAPTER 5
Advanced MySQL Features

MySQL 5.0 and 5.1 introduced many features, such as stored procedures, views, and
triggers, that are familiar to users with a background in other database servers. The
addition of these features attracted many new users to MySQL. However, their per-
formance implications did not really become clear until people began to use them
widely.

This chapter covers these recent additions and other advanced topics, including
some features that were available in MySQL 4.1 and even earlier. We focus on per-
formance, but we also show you how to get the most from these advanced features.

The MySQL Query Cache

Many database products can cache query execution plans, so the server can skip the
SQL parsing and optimization stages for repeated queries. MySQL can do this in
some circumstances, but it also has a different type of cache (known as the query
cache) that stores complete result sets for SELECT statements. This section focuses on
that cache.

The MySQL query cache holds the exact bits that a completed query returned to the
client. When a query cache hit occurs, the server can simply return the stored results
immediately, skipping the parsing, optimization, and execution steps.

The query cache keeps track of which tables a query uses, and if any of those tables
changes, it invalidates the cache entry. This coarse invalidation policy may seem inef-
ficient—Dbecause the changes made to the tables might not affect the results stored in
the cache—but it’s a simple approach with low overhead, which is important on a
busy system.

The query cache is designed to be completely transparent to the application. The
application does not need to know whether MySQL returned data from the cache or
actually executed the query. The result should be the same either way. In other

204

words, the query cache doesn’t change semantics; the server appears to behave the
same way with it enabled or disabled.”

How MySQL Checks for a Cache Hit

The way MySQL checks for a cache hit is simple and quite fast: the cache is a lookup
table. The lookup key is a hash of the query text itself, the current database, the cli-
ent protocol version, and a handful of other things that might affect the actual bytes
in the query’s result.

MySQL does not parse, “normalize,” or parameterize a statement when it checks for
a cache hit; it uses the statement and other bits of data exactly as the client sends
them. Any difference in character case, spacing, or comments—any difference at
all—will prevent a query from matching a previously cached version. This is some-
thing to keep in mind while writing queries. Using consistent formatting and style is
a good habit anyway, but in this case it can even make your system faster.

Another caching consideration is that the query cache will not store a result unless
the query that generated it was deterministic. Thus, any query that contains a nonde-
terministic function, such as NOW() or CURRENT DATE(), will not be cached. Similarly,
functions such as CURRENT USER() or CONNECTION ID() may vary when executed by
different users, thereby preventing a cache hit. In fact, the query cache does not work
for queries that refer to user-defined functions, stored functions, user variables, tem-
porary tables, tables in the mysql database, or any table that has a column-level privi-
lege. (For a list of everything that makes a query uncacheable, see the MySQL
manual.)

We often hear statements such as “MySQL doesn’t check the cache if the query con-
tains a nondeterministic function.” This is incorrect. MySQL cannot know whether a
query contains a nondeterministic function unless it parses the query, and the cache
lookup happens before parsing. The server performs a case insensitive check to ver-
ify that the query begins with the letters SEL, but that’s all.

However, it is correct to say “The server will find no results in the cache if the query
contains a function such as NOW(),” because even if the server executed the same
query earlier, it will not have cached the results. MySQL marks a query as uncache-
able as soon as it notices a construct that forbids caching, and the results generated
by such a query are not stored.

A useful technique to enable the caching of queries that refer to the current date is to
include the date as a literal value, instead of using a function. For example:

* The query cache actually does change semantics in one subtle way: by default, a query can still be served
from the cache when one of the tables to which it refers is locked with LOCK TABLES. You can disable this with
the query _cache_wlock_invalidate variable.

The MySQL Query Cache | 205

. DATE_SUB(CURRENT DATE, INTERVAL 1 DAY) -- Not cacheable!

. DATE_SUB('2007-07-14"', INTERVAL 1 DAY) -- Cacheable
Because the query cache works at the level of a complete SELECT statement when the
server first receives it from the client connection, identical queries made inside a sub-
query or view cannot use the query cache, and neither can queries in stored proce-

dures. Prepared statements also cannot use the query cache in versions prior to
MySQL 5.1.

MySQL’s query cache can improve performance, but there are a few issues you
should be aware of when using it. First, enabling the query cache adds some over-
head for both reads and writes:

* Read queries must check the cache before beginning.

* If the query is cacheable and isn’t in the cache yet, there’s some overhead due to
storing the result after generating it.

* Finally, there’s overhead for write queries, which must invalidate the cache
entries for queries that use tables they change.

This overhead is relatively minimal, so the query cache can still be a net gain. How-
ever, as we explain later, the extra overhead can add up.

For InnoDB users, another problem is that transactions limit the query cache’s use-
fulness. When a statement inside a transaction modifies a table, the server invali-
dates any cached queries that refer to the table, even though InnoDB’s
multiversioning might hide the transaction’s changes from other statements. The
table is also globally uncacheable until the transaction commits, so no further que-
ries against that table—whether inside or outside the transaction—can be cached
until the transaction commits. Long-running transactions can, therefore, increase the
number of query cache misses.

Invalidation can also become a problem with a large query cache. If there are many
queries in the cache, the invalidation can take a long time and cause the entire system
to stall while it works. This is because there’s a single global lock on the query cache,
which will block all queries that need to access it. Accessing happens both when
checking for a hit and when checking whether there are any queries to invalidate.

How the Cache Uses Memory

MySQL stores the query cache completely in memory, so you need to understand
how it uses memory before you can tune it correctly. The cache stores more than just
query results in its memory. It’s a lot like a filesystem in some ways: it keeps struc-
tures that help it figure out which memory in its pool is free, mappings between
tables and query results, query text, and the query results.

Aside from some basic housekeeping structures, which require about 40 KB, the
query cache’s memory pool is available to be used in variable-sized blocks. Every

206 | Chapter5: Advanced MySQL Features

block knows what type it is, how large it is, and how much data it contains, and it
holds pointers to the next and previous logical and physical blocks. Blocks can be of
several types: they can store cache results, lists of tables used by a query, query text,
and so on. However, the different types of blocks are treated in much the same way,
so there’s no need to distinguish among them for purposes of tuning the query
cache.

When the server starts, it initializes the memory for the query cache. The memory
pool is initially a single free block. This block is as large as the entire amount of
memory the cache is configured to use, minus the housekeeping structures.

When the server caches a query’s results, it allocates a block to store those results.
This block must be a minimum of query_cache_min_res_unit bytes, though it may be
larger if the server knows it is storing a larger result. Unfortunately, the server can-
not allocate a block of precisely the right size, because it makes its initial allocation
before the result set is complete. The server does not build the entire result set in
memory and then send it—it’s much more efficient to send each row as it’s gener-
ated. Consequently, when it begins caching the result set, the server has no way of
knowing how large it will eventually be.

Allocating blocks is a relatively slow process, because it requires the server to look at
its lists of free blocks to find one that’s big enough. Therefore, the server tries to min-
imize the number of allocations it makes. When it needs to cache a result set, it allo-
cates a block of at least the minimum size and begins placing the results in that
block. If the block becomes full while there is still data left to store, the server allo-
cates a new block—again of at least the minimum size—and continues storing the
data in that block. When the result is finished, if there is space left in the last block
the server trims it to size and merges the leftover space into the adjacent free block.
Figure 5-1 illustrates this process.”

When we say the server “allocates a block,” we don’t mean it is asking the operating
system to allocate memory with malloc() or a similar call. It does that only once,
when it creates the query cache. What we mean is that the server is examining its list
of blocks and either choosing the best place to put a new block or, if necessary,
removing the oldest cached query to make room. In other words, the MySQL server
manages its own memory; it does not rely on the operating system to do it.

So far, this is all pretty straightforward. However, the picture can become quite a bit
more complicated than it appeared in Figure 5-1. Let’s suppose the average result is
quite small, and the server is sending results to two client connections simultaneously.
Trimming the results can leave a free block that’s smaller than query cache min res

* We’ve simplified the diagrams in this section for the purposes of illustration. The server really allocates query
cache blocks in a more complicated fashion than we’ve shown here. If you’re interested in how it works, the
comments at the top of sql/sql_cache.cc in the server’s source code explain it very clearly.

The MySQL Query Cache | 207

Housekeeping Housekeeping I Housekeeping Housekeeping

Free

Free

Free

Free

Initial state Storing results Results complete After trimming

[Cache block
[Stored data

Figure 5-1. How the query cache allocates blocks to store a result

unit and cannot be used for storing future cache results. The block allocation might
end up looking something like Figure 5-2.

Housekeeping Housekeeping Housekeeping Housekeeping
Query 2
Free
Free Free i
Initial state Storing two results Results complete After trimming

Figure 5-2. Fragmentation caused by storing results in the query cache

Trimming the first result to size left a gap between the two results—a block too small
to use for storing a different query result. The appearance of such gaps is called frag-

208 | Chapter5: Advanced MySQL Features

mentation, and it’s a classic problem in memory and filesystem allocation. Fragmen-
tation can happen for a number of reasons, including cache invalidations, which can
leave blocks that are too small to reuse later.

When the Query Cache Is Helpful

Caching queries isn’t automatically more efficient than not caching them. Caching
takes work, and the query cache results in a net gain only if the savings are greater
than the overhead. This will depend on your server’s workload.

In theory, you can tell whether the cache is helpful by comparing the amount of
work the server has to do with the cache enabled and disabled. With the cache dis-
abled, each read query has to execute and return its results, and each write query has
to execute. With the cache enabled, each read query has to first check the cache and
then either return the stored result or, if there isn’t one, execute, generate the result,
store it, and return it. Each write query has to execute and then check whether there
are any cached queries that must be invalidated.

Although this may sound straightforward, it’s not—it’s hard to accurately calculate
or predict the query cache’s benefit. External factors must also be taken into
account. For example, the query cache can reduce the amount of time required to
come up with a query’s result, but not the time it takes to send the result to the cli-
ent program, which may be the dominating factor.

The type of query that benefits most from caching is one whose result is expensive to
generate but doesn’t take up much space in the cache, so it’s cheap to store, return to
the client, and invalidate. Aggregate queries, such as small COUNT() results from large
tables, fit into this category. However, many other types of queries might be worth
caching too.

One of the easiest ways to tell if you are benefiting from the query cache is to exam-
ine the query cache hit rate. This is the number of queries that are served from the
cache instead of being executed by the server. When the server receives a SELECT
statement, it increments either the Qcache hits or the Com_select status variable,
depending on whether the query was cached. Thus, the query cache hit rate is given
by the formula Qcache_hits / (Qcache_hits+Com_select).

What’s a good cache hit rate? It depends. Even a 30% hit rate can be very helpful,
because the work saved by not executing queries is typically much more (per query)
than the overhead of invalidating entries and storing results in the cache. It is also
important to know which queries are cached. If the cache hits represent the most
expensive queries, even a low hit rate can save work for the server.

Any SELECT query that MySQL doesn’t serve from the cache is a cache miss. A cache
miss can occur for any of the following reasons:

The MySQL Query Cache | 209

* The query is not cacheable, either because it contains a nondeterministic con-
struct (such as CURRENT DATE) or because its result set is too large to store. Both
types of uncacheable queries increment the Qcache_not_cached status variable.

* The server has never seen the query before, so it never had a chance to cache its
result.

* The query’s result was previously cached, but the server removed it. This can
happen because there wasn’t enough memory to keep it, because someone
instructed the server to remove it, or because it was invalidated (more on invali-
dations in a moment).

If your server has a lot of cache misses but very few uncacheable queries, one of the
following must be true:

* The query cache is not warmed up yet. That is, the server hasn’t had a chance to
fill the cache with result sets.

* The server is seeing queries it hasn’t seen before. If you don’t have a lot of
repeated queries, this can happen even after the cache is warmed up.

e There are a lot of cache invalidations.

Cache invalidations can happen because of fragmentation, insufficient memory, or
data modifications. If you have allocated enough memory to the cache and tuned the
query cache min res unit value properly, most cache invalidations should be due to
data modifications. You can see how many queries have modified data by examining
the Com * status variables (Com_update, Com_delete, and so forth), and you can see
how many queries have been invalidated due to low memory by checking the Qcache
lowmem prunes status variable.

It’s a good idea to consider the overhead of invalidation separately from the hit rate.
As an extreme example, suppose you have one table that gets all the reads and has a
100% query cache hit rate, and another table that gets only updates. If you simply
calculate the hit rate from the status variables, you will see a 100% hit rate. How-
ever, the query cache can still be inefficient, because it will slow down the update
queries. All update queries will have to check whether any of the queries in the query
cache need to be invalidated as a result of their modifications, but since the answer
will always be “no,” this is wasted work. You may not spot a problem such as this
unless you check the number of uncacheable queries as well as the hit rate.

A server that handles a balanced blend of writes and cacheable reads on the same
tables also may not benefit much from the query cache. The writes will constantly
invalidate cached results, while at the same time the cacheable reads will constantly
insert new results into the cache. These will be beneficial only if they are subse-
quently served from the cache.

If a cached result is invalidated before the server receives the same SELECT statement
again, storing it was a waste of time and memory. Examine the relative sizes of Com_
select and Qcache_inserts to see whether this is happening. If nearly every SELECT is

210 | Chapter5: Advanced MySQL Features

a cache miss (thus incrementing Com_select) and subsequently stores its result into
the cache, Qcache_inserts will be nearly as large as Com_select. Thus, you’d like
Qcache_inserts to be much smaller than Com_select, at least when the cache is prop-
erly warmed up.

Every application has a finite potential cache size, even if there are no write queries.
The potential cache size is the amount of memory required to store every possible
cacheable query the application will ever issue. In theory, this is an extremely large
number for most applications. In practice, many applications have a much smaller
usable cache size than you might expect, because of the number of invalidations.
Even if you make the query cache very large, it will never fill up more than the poten-
tial cache size.

You should monitor how much of the query cache your server actually uses. If it
doesn’t use as much memory as you've given it, make it smaller, and if memory
restrictions are causing excessive invalidations, make it bigger. Don’t worry about
the cache size too much, though; giving it a little more or a little less memory than
you think it’ll really use affect impact performance that much. It’s only a problem
when there’s a lot of wasted memory or so many cache invalidations that caching is a
net loss.

You also have to balance the query cache with the other server caches, such as the
InnoDB buffer pool or MyISAM key cache. It’s not possible to just give a ratio or a
simple formula for this, because the right balance depends on the application.

How to Tune and Maintain the Query Cache

Once you understand how the query cache works, it’s easy to tune. It has only a few
“moving parts”:

query cache_type
Whether the query cache is enabled. Possible values are OFF, ON, or DEMAND, where
the latter means that only queries containing the SQL_CACHE modifier are eligible
for caching. This is both a session-level and a global variable. (See Chapter 6 for
details on session and global variables.)

query cache size
The total memory to allocate to the query cache, in bytes. This must be a multi-
ple of 1,024 bytes, so MySQL may use a slightly different value than the one you
specify.

query cache min res unit
The minimum size when allocating a block. We explained this setting earlier in
“How the Cache Uses Memory” on page 206; it’s discussed further in the next
section.

The MySQL Query Cache | 211

query cache limit

The largest result set that MySQL will cache. Queries whose results are larger
than this setting will not be cached. Remember that the server caches results as it
generates them, so it doesn’t know in advance when a result will be too large to
cache. If the result exceeds the specified limit, MySQL will increment the
Qcache_not_cached status variable and discard the results cached so far. If you
know this happens a lot, you can add the SQL_NO_CACHE hint to queries you don’t
want to incur this overhead.

query cache wlock invalidate
Whether to serve cached results that refer to tables other connections have
locked. The default value is OFF, which makes the query cache change the
server’s semantics because it lets you read cached data from a table another con-
nection has locked, which you wouldn’t normally be able to do. Changing it to
ON will keep you from reading this data, but it might increase lock waits. This
really doesn’t matter for most applications, so the default is generally fine.

In principle, tuning the cache is pretty simple, but understanding the effects of your
changes is more complicated. In the following sections, we show you how to reason
about the query cache, so you can make good decisions.

Reducing fragmentation

There’s no way to avoid all fragmentation, but choosing your query cache min res_
unit value carefully can help you avoid wasting a lot of memory in the query cache.
The trick is to balance the size of each new block against the number of allocations
the server has to do while storing results. If you make this value too small, the server
will waste less memory, but it will have to allocate blocks more frequently, which is
more work for the server. If you make it too large, you’ll get too much fragmentation.
The tradeoff is wasting memory versus using more CPU cycles during allocation.

The best setting varies with the size of your typical query result. You can see the
average size of the queries in the cache by dividing the memory used (approximately
query cache_size — Qcache_free memory) by the Qcache queries in cache status vari-
able. If you have a mixture of large and small results, you might not be able to
choose a size that avoids fragmentation while also avoiding too many allocations.
However, you may have reason to believe that it’s not beneficial to cache the larger
results (this is frequently true). You can keep large results from being cached by low-
ering the query cache_limit variable, which can sometimes help achieve a better bal-
ance between fragmentation and the overhead of storing results in the cache.

You can detect query cache fragmentation by examining the Qcache free blocks sta-
tus variable, which shows you how many blocks in the query cache are of type FREE. In
the final configuration shown in Figure 5-2, there are two free blocks. The worst possi-
ble fragmentation is when there’s a slightly-too-small free block between every pair of

212 | Chapter5: Advanced MySQL Features

blocks used to store data, so every other block is a free block. Thus, if Qcache free
blocks approaches Qcache_total_blocks / 2, your query cache is severely fragmented. If
the Qcache_lowmem prunes status variable is increasing and you have a lot of free blocks,
fragmentation is causing queries to be deleted from the cache prematurely.

You can defragment the query cache with FLUSH QUERY CACHE. This command com-
pacts the query cache by moving all blocks “upward” and removing the free space
between them, leaving a single free block at the bottom. It blocks access to the query
cache while it runs, which pretty much locks the whole server, but it’s usually fast
unless your cache is very large. Contrary to its name, it does not remove queries from
the cache. That’s what RESET QUERY CACHE does.

Improving query cache usage

If your query cache isn’t fragmented but you’re still not getting a good hit rate, you
might have given it too little memory. If the server can’t find any free blocks that are
large enough to use for a new block, it must “prune” some queries from the cache.

When the server prunes cache entries, it increments the Qcache_lowmem_prunes status
variable. If this value increases rapidly, there are two possible causes:

* If there are many free blocks, fragmentation is the likely culprit (see the previous
section).

* If there are few free blocks, it might mean that your workload can use a larger
cache size than you’re giving it. You can see the amount of unused memory in
the cache by examining Qcache_free memory.

If there are many free blocks, fragmentation is low, there are few prunes due to low
memory, and the hit rate is still low, your workload probably won’t benefit much from
the query cache. Something is keeping it from being used. If you have a lot of updates,
that’s probably the culprit; it’s also possible that your queries are not cacheable.

If you’ve measured the cache hit ratio and you’re still not sure whether the server is
benefiting from the query cache, you can disable it and monitor performance, then
reenable it and see how performance changes. To disable the query cache, set query
cache_size to 0. (Changing query cache_type globally won’t affect connections that
are already open, and it won’t return the memory to the server.) You can also bench-
mark, but it’s sometimes tricky to get a realistic combination of cached queries,
uncached queries, and updates.

Figure 5-3 shows a flowchart with a basic example of the process you can use to ana-
lyze and tune your server’s query cache.

The MySQL Query Cache | 213

—> Start

Is hit rate
acceptable?

Are most
queries
uncacheable?

Is query_
cache_limit large

enough?

Done. Queries
cannot be cached.

Increase
query_cache_limit

—I-—b/

Are there Decrease
many fls the catch(; query_cache_min_res_unit
validations? RN or defragment with
FLUSH QUERY CACHE

Are there
many low-memory
prunes?

Is the cache
warmed up?

Increase
query_cache_size

Done. Queries
have never been seen.

Let the cache
warm up

Are there

Done. Workload is
many updates? not good for cache.

Something else
is misconfigured

Figure 5-3. How to analyze and tune the query cache

214

Chapter 5: Advanced MySQL Features

InnoDB and the Query Cache

InnoDB interacts with the query cache in a more complex way than other storage
engines, because of its implementation of MVCC. In MySQL 4.0, the query cache is
disabled entirely within transactions, but in MySQL 4.1 and newer, InnoDB indi-
cates to the server, on a per-table basis, whether a transaction can access the query
cache. It controls access to the query cache for both reads (retrieving results from the
cache) and writes (saving results to the cache).

The factors that determine access are the transaction ID and whether there are any
locks on the table. Each table in InnoDB’s in-memory data dictionary has an associ-
ated transaction ID counter. Transactions whose IDs are less than the counter value
are forbidden to read from or write to the query cache for queries that involve that
table. Any locks on a table also make queries that access it uncacheable. For exam-
ple, if a transaction performs a SELECT FOR UPDATE query on a table, no other transac-
tions will be able to read from or write to the query cache for queries involving that
table until the locks are released

When a transaction commits, InnoDB updates the counters for the tables upon
which the transaction has locks. A lock is a rough heuristic for determining whether
the transaction has modified a table; it is possible for a transaction to lock rows in a
table and not update them, but it is not possible for it to modify the table’s contents
without acquiring any locks. InnoDB sets each table’s counter to the system’s trans-
action ID, which is the maximum transaction ID in existence.

This has the following consequences:

* The table’s counter is an absolute lower bound on which transactions can use
the query cache. If the system’s transaction ID is 5 and a transaction acquires
locks on rows in a table and then commits, transactions 1 through 4 can never
read from or write to the query cache for queries involving that table again.

* The table’s counter is updated not to the transaction ID of the transaction that
locked rows in it, but to the system’s transaction ID. As a result, transactions
that lock rows in tables may find themselves blocked from reading from or writ-
ing to the query cache for queries involving that table in the future.

Query cache storage, retrieval, and invalidation are handled at the server level, and
InnoDB cannot bypass or delay this. However, InnoDB can tell the server explicitly
to invalidate queries that involve specific tables. This is necessary when a foreign key
constraint, such as ON DELETE CASCADE, alters the contents of a table that isn’t men-
tioned in a query.

In principle, InnoDB’s MVCC architecture could let queries be served from the cache
when modifications to a table don’t affect the consistent read view other transac-
tions see. However, implementing this would be complex. InnoDB’s algorithm takes
some shortcuts for simplicity, at the cost of locking transactions out of the query
cache when this might not really be necessary.

The MySQL Query Cache | 215

General Query Cache Optimizations

Many schema, query, and application design decisions affect the query cache. In
addition to what we discussed in the previous sections, here are some points to keep
in mind:

* Having multiple smaller tables instead of one huge one can help the query cache.
This design effectively makes the invalidation strategy work at a finer level of
granularity. Don’t let this unduly influence your schema design, though, as other
factors can easily outweigh the benefit.

* It’s more efficient to batch writes than to do them singly, because this method
invalidates cached cache entries only once.

* We've noticed that the server can stall for a long time while invalidating entries
in or pruning a very large query cache. This is the case at least up to MySQL 5.1.
The easy solution is to not make query cache size too big; about 256 MB
should be more than enough.

* You cannot control the query cache on a per-database or per-table basis, but you
can include or exclude individual queries with the SQL_CACHE and SQL _NO_CACHE
modifiers in the SELECT statement. You can also enable or disable the query
cache on a per-connection basis by setting the session-level query cache type
server variable to the appropriate value.

* For a write-heavy application, disabling the query cache completely may
improve performance. Doing so eliminates the overhead of caching queries that
would be invalidated soon anyway. Remember to set query cache size to 0
when you disable it, so it doesn’t consume any memory.

If you want to avoid the query cache for most queries, but you know that some will
benefit significantly from caching, you can set the global query cache type to DEMAND
and then add the SQL_CACHE hint to those queries you want to cache. Although this
requires you to do more work, it gives you very fine-grained control over the cache.
Conversely, if you want to cache most queries and exclude just a few, you can add
SOL_NO_CACHE to them.

Alternatives to the Query Cache

The MySQL query cache works on the principle that the fastest query is the one you
don’t have to execute, but you still have to issue the query, and the server still needs
to do a little bit of work. What if you really didn’t have to talk to the database server
at all for particular queries? Client-side caching can help ease the workload on your
MySQL server even more. We explain caching more in Chapter 10.

216 | Chapter5: Advanced MySQL Features

Storing Code Inside MySQL

MySQL lets you store code inside the server in the form of triggers, stored proce-
dures, and stored functions. In MySQL 5.1, you can also store code in periodic jobs
called events. Stored procedures and stored functions are collectively known as
“stored routines.”

All four types of stored code use a special extended SQL language that contains pro-
cedural structures such as loops and conditionals.” The biggest difference between
the types of stored code is the context in which they operate—that is, their inputs
and outputs. Stored procedures and stored functions can accept parameters and
return results, but triggers and events do not.

In principle, stored code is a good way to share and reuse code. Giuseppe Maxia and
others have created a library of useful general-purpose stored routines at hitp:/
mysql-sr-lib.sourceforge.net. However, it’s hard to reuse stored routines from other
database systems, because most have their own language (the exception is DB2,
which has a fairly similar language based on the same standard).t

We focus more on the performance implications of stored code than on how to write
it. O’Reilly’s MySQL Stored Procedure Programming (by Guy Harrison and Steven
Feuerstein) may be useful if you plan to write stored procedures in MySQL.

It’s easy to find both advocates and opponents of stored code. Without taking sides,
we list some of the pros and cons of using it in MySQL. First, the advantages:

* It runs where the data is, so you can save bandwidth and reduce latency by run-
ning tasks on the database server.

* It’s a form of code reuse. It can help centralize business rules, which can enforce
consistent behavior and provide more safety and peace of mind.

* It can ease release policies and maintenance.

* It can provide some security advantages and a way to control privileges more
finely. A common example is a stored procedure for funds transfer at a bank: the
procedure transfers the money within a transaction and logs the entire operation
for auditing. You can let applications call the stored procedure without granting
access to the underlying tables.

* The server caches stored procedure execution plans, which lowers the overhead
of repeated calls.

*

The language is a subset of SQL/PSM, the Persistent Stored Modules part of the SQL standard. It is defined
in ISO/IEC 9075-4:2003 (E).

T There are also some porting utilities, such as the tsql2mysql project (http://sourceforge.net/projects/
tsql2mysql) for porting from Microsoft SQL Server.

Storing Code Inside MySQL | 217

http://sourceforge.net/projects/tsql2mysql
http://sourceforge.net/projects/tsql2mysql
http://mysql-sr-lib.sourceforge.net
http://mysql-sr-lib.sourceforge.net

Because it’s stored in the server and can be deployed, backed up, and main-
tained with the server, stored code is well suited for maintenance jobs. It doesn’t
have any external dependencies, such as Perl libraries or other software that you
might not want to place on the server.

It enables division of labor between application programmers and database pro-
grammers. It can be preferable for a database expert to write the stored proce-
dures, as not every application programmer is good at writing efficient SQL
queries.

Disadvantages include the following:

MySQL doesn’t provide good developing and debugging tools, so it’s harder to
write stored code in MySQL than it is in some other database servers.

The language is slow and primitive compared to application languages. The
number of functions you can use is limited, and it’s hard to do complex string
manipulations and write intricate logic.

Stored code can actually add complexity to deploying your application. Instead
of just application code and database schema changes, you’ll need to deploy
code that’s stored inside the server, too.

Because stored routines are stored with the database, they can create a security
vulnerability. Having nonstandard cryptographic functions inside a stored rou-
tine, for example, will not protect your data if the database is compromised. If
the cryptographic function were in the code, the attacker would have to compro-
mise both the code and the database.

Storing routines moves the load to the database server, which is typically harder
to scale and more expensive than application or web servers.

MySQL doesn’t give you much control over the resources stored code can allo-
cate, so a mistake can bring down the server.

MySQL’s implementation of stored code is pretty limited—execution plan
caches are per-connection, cursors are materialized as temporary tables, and so
on. (We mention the limitations of various features as we describe them.)

It’s hard to profile code with stored procedures in MySQL. It’s difficult to ana-
lyze the slow query log when it just shows CALL XYZ('A"), because you have to go
and find that procedure and look at the statements inside it.

Stored code is a way to hide complexity, which simplifies development but is
often very bad for performance.

When you’re thinking about using stored code, you should ask yourself where you
want your business logic to live: in application code, or in the database? Both
approaches are popular. You just need to be aware that you’re placing logic into the
database when you use stored code.

218

| Chapter5: Advanced MySQL Features

Stored Procedures and Functions

MySQL’s architecture and query optimizer place some limits on how you can use
stored routines and how efficient they can be. The following restrictions apply at the
time of this writing:

* The optimizer doesn’t use the DETERMINISTIC modifier in stored functions to
optimize away multiple calls within a single query.

* The optimizer cannot currently estimate how much it will cost to execute a
stored function.

* Each connection has its own stored procedure execution plan cache. If many
connections call the same procedure, they’ll waste resources caching the same
execution plan over and over. (If you use connection pooling or persistent con-
nections, the execution plan cache can have a longer useful life.)

* Stored routines and replication are a tricky combination. You may not want to
replicate the call to the routine. Instead, you may want to replicate the exact
changes made to your dataset. Row-based replication, introduced in MySQL 5.1,
helps alleviate this problem. If binary logging is enabled in MySQL 5.0, the
server will insist that you either define all stored procedures as DETERMINISTIC or
enable the elaborately named server option log_bin_trust function creators.

We usually prefer to keep stored routines small and simple. We like to perform com-
plex logic outside the database in a procedural language, which is more expressive
and versatile. It can also give you access to more computational resources and poten-
tially to different forms of caching.

However, stored procedures can be much faster for certain types of operations—
especially small queries. If a query is small enough, the overhead of parsing and net-
work communication becomes a significant fraction of the overall work required to
execute it. To illustrate this, we created a simple stored procedure that inserts a spec-
ified number of rows into a table. Here’s the procedure’s code:

DROP PROCEDURE IF EXISTS insert many rows;

delimiter //

BEGIN
DECLARE v1 INT;
SET vi=loops;

1
2
3
4
5 CREATE PROCEDURE insert_many_rows (IN loops INT)
6
7
8
9 WHILE vi > 0 DO

10 INSERT INTO test table values(NULL,o0,

11 '9999999999 eeeeeeeeerrrrrrrrrrtttttttttt’,
12 9999999999 eeeeeeeeerrrrrrrrrrtttttttttt’);
13 SET v1 = v1 - 1;

14 END WHILE;

Storing Code Inside MySQL | 219

15 END;

16 //

17

18 delimiter ;
We then benchmarked how quickly this stored procedure could insert a million rows
into a table, as compared to inserting one row at a time via a client application. The
table structure and hardware we used doesn’t really matter—what is important is the
relative speed of the different approaches. Just for fun, we also measured how long
the same queries took to execute when we connected through a MySQL Proxy. To
keep things simple, we ran the entire benchmark on a single server, including the cli-
ent application and the MySQL Proxy instance. Table 5-1 shows the results.

Table 5-1. Total time to insert one million rows one at a time

Method Total time
Stored procedure 101 sec
Client application 279 sec
Client application with MySQL Proxy 307 sec

The stored procedure is much faster, mostly because it avoids the overhead of net-
work communication, parsing, optimizing, and so on.

We show a typical stored procedure for maintenance jobs in the “The SQL Interface
to Prepared Statements” on page 227, later in this chapter.

Triggers

Triggers let you execute code when there’s an INSERT, UPDATE, or DELETE statement.
You can direct MySQL to execute them before and/or after the triggering statement
executes. They cannot return values, but they can read and/or change the data that
the triggering statement changes. Thus, you can use triggers to enforce constraints or
business logic that you’d otherwise need to write in client code. A good example is
emulating foreign keys on a storage engine that doesn’t support them, such as
MyISAM.

Triggers can simplify application logic and improve performance, because they save
round-trips between the client and the server. They can also be helpful for automati-
cally updating denormalized and summary tables. For example, the Sakila sample
database uses them to maintain the film_text table.

MySQL’s trigger implementation is not very complete at the time of this writing. If
you're used to relying on triggers extensively in another database product, you
shouldn’t assume they will work the same way in MySQL. In particular:

220 | Chapter5: Advanced MySQL Features

* You can have only one trigger per table for each event (in other words, you can’t
have two triggers that fire AFTER INSERT).

* MySQL supports only row-level triggers—that is, triggers always operate FOR
EACH ROW rather than for the statement as a whole. This is a much less efficient
way to process large datasets.

The following universal cautions about triggers apply in MySQL, too:

* They can obscure what your server is really doing, because a simple statement
can make the server perform a lot of “invisible” work. For example, if a trigger
updates a related table, it can double the number of rows a statement affects.

* Triggers can be hard to debug, and it’s often difficult to analyze performance
bottlenecks when triggers are involved.

* Triggers can cause nonobvious deadlocks and lock waits. If a trigger fails the
original query will fail, and if you’re not aware the trigger exists, it can be hard to
decipher the error code.

In terms of performance, the most severe limitation in MySQL’s trigger implementa-
tion is the FOR EACH ROW design. This sometimes makes it impractical to use triggers
for maintaining summary and cache tables, because they might be too slow. The
main reason to use triggers instead of a periodic bulk update is that they keep your
data consistent at all times.

Triggers also may not guarantee atomicity. For example, a trigger that updates a
MyISAM table cannot be rolled back if there’s an error in the statement that fires it.
It is possible for a trigger to cause an error, too. Suppose you attach an AFTER UPDATE
trigger to a MyISAM table and use it to update another MyISAM table. If the trigger
has an error that causes the second table’s update to fail, the first table’s update will
not be rolled back.

Triggers on InnoDB tables all operate within the same transaction, so the actions
they take will be atomic, together with the statement that fired them. However, if
you’re using a trigger with InnoDB to check another table’s data when validating a
constraint, be careful about MVCC, as you can get incorrect results if you’re not
careful. For example, suppose you want to emulate foreign keys, but you don’t want
to use InnoDB’s foreign keys. You can write a BEFORE INSERT trigger that verifies the
existence of a matching record in another table, but if you don’t use SELECT FOR
UPDATE in the trigger when reading from the other table, concurrent updates to that
table can cause incorrect results.

We don’t mean to scare you away from triggers. On the contrary, they can be very
useful, particularly for constraints, system maintenance tasks, and keeping denor-
malized data in sync.

You can also use triggers to log changes to rows. This can be handy for custom-built
replication setups where you want to disconnect systems, make data changes, and

Storing Code Inside MySQL | 221

then merge the changes back together. A simple example is a group of users who
take laptops onto a job site. Their changes need to be synchronized to a master data-
base, and then the master data needs to be copied back to the individual laptops.
Accomplishing this requires two-way synchronization. Triggers are a good way to
build such systems. Each laptop can use triggers to log every data modification to
tables that indicate which rows have been changed. The custom synchronization tool
can then apply these changes to the master database. Finally, ordinary MySQL repli-
cation can sync the laptops with the master, which will have the changes from all the
laptops.

Sometimes you can even work around the FOR EACH ROW limitation. Roland Bouman
found that ROW_COUNT(') always reports 1 inside a trigger, except for the first row of a
BEFORE trigger. You can use this to prevent a trigger’s code from executing for every
row affected and run it only once per statement. It’s not the same as a per-statement
trigger, but it is a useful technique for emulating a per-statement BEFORE trigger in
some cases. This behavior may actually be a bug that will get fixed at some point, so
you should use it with care and verify that it still works when you upgrade your
server. Here’s a sample of how to use this hack:
CREATE TRIGGER fake_statement trigger
BEFORE INSERT ON sometable
FOR EACH ROW
BEGIN
DECLARE v_row_count INT DEFAULT ROW_COUNT();
IF v_row count <> 1 THEN
-- Your code here

END IF;
END;

Events

Events are a new form of stored code in MySQL 5.1. They are akin to cron jobs but
are completely internal to the MySQL server. You can create events that execute SQL
code once at a specific time, or frequently at a specified interval. The usual practice is
to wrap the complex SQL in a stored procedure, so the event merely needs to per-
form a CALL.

Events run in a separate event scheduler thread, because they have nothing to do
with connections. They accept no inputs and return no values—there’s no connec-
tion for them to get inputs from or return values to. You can see the commands they
execute in the server log, if it’s enabled, but it can be hard to tell that those com-
mands were executed from an event. You can also look in the INFORMATION SCHEMA.
EVENTS table to see an event’s status, such as the last time it was executed.

Similar considerations to those that apply to stored procedures apply to events: you
are giving the server additional work to do. The event overhead itself is minimal, but
the SQL it calls can have a potentially serious impact on performance. Good uses for

222 | Chapter5: Advanced MySQL Features

events include periodic maintenance tasks, rebuilding cache and summary tables to
emulate materialized views, or saving status values for monitoring and diagnostics.

The following example creates an event that will run a stored procedure for a spe-
cific database, once a week:"
CREATE EVENT optimize_somedb ON SCHEDULE EVERY 1 WEEK

DO
CALL optimize tables('somedb');

You can specify whether events should be replicated to slave servers. In some cases
this is appropriate, whereas in others it’s not. Take the previous example, for
instance: you probably want to run the OPTIMIZE TABLE operation on all slaves, but
keep in mind that it could impact overall server performance (with table locks, for
instance) if all slaves were to execute this operation at the same time.

Finally, if a periodic event can take a long time to complete, it might be possible for
the event to fire again while its earlier execution is still running. MySQL doesn’t pro-
tect against this, so you’ll have to write your own mutual exclusivity code. You can
use GET_LOCK() to make sure that only one event runs at a time:
CREATE EVENT optimize somedb ON SCHEDULE EVERY 1 WEEK
DO
BEGIN
DECLARE CONTINUE HANLDER FOR SQLEXCEPTION
BEGIN END;
IF GET_LOCK('somedb', 0) THEN
DO CALL optimize tables('somedb');
END IF;
DO RELEASE LOCK('somedb');
END

The “dummy” continue handler ensures that the event will release the lock, even if
the stored procedure throws an exception.

Although events are dissociated from connections, they are still associated with
threads. There’s a main event scheduler thread, which you must enable in your
server’s configuration file or with a SET command:

mysql> SET GLOBAL event_scheduler := 1;

When enabled, this thread creates a new thread to execute each event. Within the
event’s code, a call to CONNECTION _ID() will return a unique value, as usual—even
though there is no “connection” per se. (The return value of CONNECTION ID() is
really just the thread ID.) You can watch the server’s error log for information about
event execution.

* We'll show you how to create this stored procedure later.

Storing Code Inside MySQL | 223

Preserving Comments in Stored Code

Stored procedures, stored functions, triggers, and events can all have significant
amounts of code, and it’s useful to add comments. But the comments may not be
stored inside the server, because the command-line client can strip them out. (This
“feature” of the command-line client can be a nuisance, but c’est la vie.)

A useful trick for preserving comments in your stored code is to use version-specific
comments, which the server sees as potentially executable code (i.e., code to be exe-
cuted only if the server’s version number is that high or higher). The server and cli-
ent programs know these aren’t ordinary comments, so they won’t discard them. To
prevent the “code” from being executed, you can just use a very high version num-
ber, such as 99999. For example, let’s add some documentation to our trigger exam-
ple to demystify what it does:
CREATE TRIGGER fake_statement trigger
BEFORE INSERT ON sometable
FOR EACH ROW
BEGIN
DECLARE v_row_count INT DEFAULT ROW_COUNT();
/*199999
ROW_COUNT() is 1 except for the first row, so this executes
only once per statement.
*/
IF v_row count <> 1 THEN
-- Your code here
END IF;
END;

Cursors

MySQL currently provides read-only, forward-only server-side cursors that you can
use only from within a MySQL stored procedure. They let you iterate over query
results row by row and fetch each row into variables for further processing. A stored
procedure can have multiple cursors open at once, and you can “nest” cursors in
loops.

MySQL may provide updatable cursors in the future, but they’re not in any current
release. Cursors are read-only because they iterate over temporary tables rather than
the tables where the data originated.

MySQL’s cursor design holds some snares for the unwary. Because they’re imple-
mented with temporary tables, they can give developers a false sense of efficiency.
The most important thing to know is that a cursor executes the entire query when you
open it. Consider the following procedure:

1 CREATE PROCEDURE bad_cursor()

2 BEGIN
3 DECLARE film id INT;

224 | Chapter5: Advanced MySQL Features

4 DECLARE f CURSOR FOR SELECT film id FROM sakila.film;

5 OPEN f;

6 FETCH f INTO film id;

7 CLOSE f;

8 END
This example shows that you can close a cursor before iterating through all of its
results. A developer used to Oracle or Microsoft SQL Server might see nothing
wrong with this procedure, but in MySQL it causes a lot of unnecessary work. Profil-
ing this procedure with SHOW STATUS shows that it does 1,000 index reads and 1,000
inserts. That’s because there are 1,000 rows in sakila.film. All 1,000 reads and
writes occur when line 5 executes, before line 6 executes.

The moral of the story is that if you close a cursor that fetches data from a large
result set early, you won’t actually save work. If you need only a few rows, use LIMIT.

Cursors can cause MySQL to perform extra I/O operations too, and they can be very
slow. Because in-memory temporary tables do not support the BLOB and TEXT types,
MySQL has to create an on-disk temporary table for cursors over results that include
these types. Even when that’s not the case, if the temporary table is larger than tmp_
table size, MySQL will create it on disk.

MySQL doesn’t support client-side cursors, but the client API has functions that
emulate client-side cursors by fetching the entire result into memory. This is really
no different from putting the result in an array in your application and manipulating
it there. See “The MySQL Client/Server Protocol” on page 161 for more on the per-
formance implications of fetching the entire result into client-side memory.

Prepared Statements

MySQL 4.1 and newer support server-side prepared statements that use an enhanced
binary client/server protocol to send data efficiently between the client and server.
You can access the prepared statement functionality through a programming library
that supports the new protocol, such as the MySQL C API. The MySQL Connector/]
and MySQL Connector/NET libraries provide the same capability to Java and .NET,
respectively. There’s also a SQL interface to prepared statements, which we discuss
later.

When you create a prepared statement, the client library sends the server a proto-
type of the actual query you want to use. The server parses and processes this “skele-
ton” query, stores a structure representing the partially optimized query, and returns
a statement handle to the client. The client library can execute the query repeatedly
by specifying the statement handle.

Prepared statements can have parameters, which are question-mark placeholders for
values that you can specify when you execute them. For example, you might prepare
the following query:

Prepared Statements | 225

mysql> INSERT INTO tbl(coli, col2, col3) VALUES (?, ?, ?) ;

You could then execute this query by sending the statement handle to the server,
with values for each of the question-mark placeholders. You can repeat this as many
times as desired. Exactly how you send the statement handle to the server will
depend on your programming language. One way is to use the MySQL connectors
for Java and .NET. Many client libraries that link to the MySQL C libraries also pro-
vide some interface to the binary protocol; you should read the documentation for
your chosen MySQL API.

Using prepared statements can be more efficient than executing a query repeatedly,
for several reasons:

* The server has to parse the query only once, which saves some parsing and other
work.

* The server has to perform some query optimization steps only once, as it caches
a partial query execution plan.

* Sending parameters via the binary protocol is more efficient than sending them
as ASCII text. For example, a DATE value can be sent in just 3 bytes, instead of
the 10 bytes required in ASCII. The biggest savings are for BLOB and TEXT values,
which can be sent to the server in chunks rather than as a single huge piece of
data. The binary protocol therefore helps save memory on the client, as well as
reducing network traffic and the overhead of converting between the data’s
native storage format and the non-binary protocol’s format.

* Only the parameters—not the entire query text—need to be sent for each execu-
tion, which reduces network traffic.

* MySQL stores the parameters directly into buffers on the server, which elimi-
nates the need for the server to copy values around in memory.

Prepared statements can also help with security. There is no need to escape or quote
values in the application, which is more convenient and reduces vulnerability to SQL
injection or other attacks. (You should never trust user input, even when you’re
using prepared statements.)

You can use the binary protocol only with prepared statements. Issuing queries
through the normal mysql query() API function will not use the binary protocol.
Many client libraries let you “prepare” statements with question-mark placeholders
and then specify the values for each execution, but these libraries are often only emu-
lating the prepare-execute cycle in client-side code and are actually sending each
query to the server with mysql_query().

226 | Chapter5: Advanced MySQL Features

Prepared Statement Optimization

MySQL caches partial query execution plans for prepared statements, but some opti-
mizations depend on the actual values that are bound to each parameter and there-
fore can’t be precomputed and cached. The optimizations can be separated into
three types, based on when they must be performed. The following list applies at the
time of this writing, but it may change in the future:

At preparation time
The server parses the query text, eliminates negations, and rewrites subqueries.

At first execution
The server simplifies nested joins and converts OUTER JOIN to INNER JOIN where

possible.

At every execution
The server does the following:

* Prunes partitions

* Eliminates COUNT(), MIN(), and MAX() where possible

* Removes constant subexpressions

* Detects constant tables

* Propagates equalities

* Analyzes and optimizes ref, range, and index_merge access methods

* Optimizes the join order

See Chapter 4 for more information on these optimizations.

The SQL Interface to Prepared Statements

A SQL interface to prepared statements is available in MySQL 4.1 and newer. Here’s
an example of how to use a prepared statement through SQL:
mysql> SET @sql := 'SELECT actor_id, first name, last_name

-> FROM sakila.actor WHERE first_name = ?';
mysql> PREPARE stmt_fetch_actor FROM @sql;

mysql> SET @actor_name := 'Penelope’;
mysql> EXECUTE stmt_fetch_actor USING @actor_name;
o R EEREEEEEEE Hmmmmm e +
| actor_id | first name | last name |
Hommmmme Hmmmmmmmo - Hommmmmmmo +
\ 1 | PENELOPE | GUINESS |
\ 54 | PENELOPE | PINKETT |
\ 104 | PENELOPE | CRONYN |
\ 120 | PENELOPE | MONROE |
SRR EEEEEEEEE Hommmmmmmm +

mysql> DEALLOCATE PREPARE stmt_fetch_actor;

Prepared Statements | 227

When the server receives these statements, it translates them into the same opera-
tions that would have been invoked by the client library. This means that you don’t
have to use the special binary protocol to create and execute prepared statements.

As you can see, the syntax is a little awkward compared to just typing the SELECT
statement directly. So what’s the advantage of using a prepared statement this way?

The main use case is for stored procedures. In MySQL 5.0, you can use prepared
statements in stored procedures, and the syntax is similar to the SQL interface. This
means you can build and execute “dynamic SQL” in stored procedures by concate-
nating strings, which makes stored procedures much more flexible. For example,
here’s a sample stored procedure that can call OPTIMIZE TABLE on each table in a spec-
ified database:

DROP PROCEDURE IF EXISTS optimize tables;
DELIMITER //
CREATE PROCEDURE optimize tables(db name VARCHAR(64))
BEGIN
DECLARE t VARCHAR(64);
DECLARE done INT DEFAULT 0;
DECLARE c CURSOR FOR
SELECT table_name FROM INFORMATION_ SCHEMA.TABLES
WHERE TABLE_SCHEMA = db_name AND TABLE TYPE = 'BASE TABLE';
DECLARE CONTINUE HANDLER FOR SQLSTATE '02000' SET done = 1;
OPEN c;
tables loop: LOOP
FETCH c INTO t;
IF done THEN
CLOSE c;
LEAVE tables loop;
END IF;
SET @stmt_text := CONCAT("OPTIMIZE TABLE ", db name, ".", t);
PREPARE stmt FROM @stmt_text;
EXECUTE stmt;
DEALLOCATE PREPARE stmt;
END LOOP;
CLOSE c;
END//
DELIMITER ;

You can use this stored procedure as follows:
mysql> CALL optimize_tables('sakila');
Another way to write the loop in the procedure is as follows:

REPEAT
FETCH c INTO t;
IF NOT done THEN
SET @stmt text := CONCAT("OPTIMIZE TABLE ", db name, ".", t);
PREPARE stmt FROM @stmt_text;
EXECUTE stmt;
DEALLOCATE PREPARE stmt;
END IF;
UNTIL done END REPEAT;

228 | Chapter5: Advanced MySQL Features

There is an important difference between the two loop constructs: REPEAT checks the
loop condition twice for each loop. This probably won’t cause a big performance
problem in this example because we’re merely checking an integer’s value, but with
more complex checks it could be costly.

Concatenating strings to refer to tables and databases is a good use for the SQL inter-
face to prepared statements, because it lets you write statements that won’t work
with parameters. You can’t parameterize database and table names because they are
identifiers. Another scenario is dynamically setting a LIMIT clause, which you can’t
specify with a parameter either.

The SQL interface is useful for testing a prepared statement by hand, but it’s other-
wise not all that useful outside of stored procedures. Because the interface is through
SQL, it doesn’t use the binary protocol, and it doesn’t really reduce network traffic
because you have to issue extra queries to set the variables when there are parame-
ters. You can benefit from using this interface in special cases, such as when prepar-
ing an enormous string of SQL that you’ll execute many times without parameters.
However, you should benchmark if you think using the SQL interface for prepared
statements will save work.

Limitations of Prepared Statements

Prepared statements have a few limitations and caveats:

* Prepared statements are local to a connection, so another connection cannot use
the same handle. For the same reason, a client that disconnects and reconnects
loses the statements. (Connection pooling or persistent connections can allevi-
ate this problem.)

* Prepared statements cannot use the MySQL query cache in MySQL versions
prior to 5.1.

* It’s not always more efficient to use prepared statements. If you use a prepared
statement only once, you may spend more time preparing it than you would just
executing it as normal SQL. Preparing a statement also requires an extra round-
trip to the server.

* You cannot currently use a prepared statement inside a stored function (but you
can use prepared statements inside stored procedures).

* You can accidentally “leak” a prepared statement by forgetting to deallocate it.
This can consume a lot of resources on the server. Also, because there is a single
global limit on the number of prepared statements, a mistake such as this can
interfere with other connections’ use of prepared statements.

Prepared Statements | 229

User-Defined Functions

MySQL has supported user-defined functions (UDFs) for a long time. Unlike stored
functions, which are written in SQL, you can write UDFs in any programming lan-
guage that supports C calling conventions.

UDFs must be compiled and then dynamically linked with the server, making them
platform-specific and giving you a lot of power. UDFs can be very fast and can access
a large range of functionality in the operating system and available libraries. SQL
stored functions are good for simple operations, such as calculating the great-circle
distance between two points on the globe, but if you want to send network packets,
you need a UDF. Also, while you can’t currently build aggregate functions in SQL,
you can do this easily with a UDF.

With great power comes great responsibility. A mistake in your UDF can crash your
whole server, corrupt the server’s memory and/or your data, and generally wreak all
the havoc that any misbehaving C code can potentially cause.

A

g Unlike stored functions written in SQL, UDFs cannot currently read
and write tables—at least, not in the same transactional context as the
4+ statement that calls them. This means they’re more helpful for pure
computation, or interaction with the outside world. MySQL is gaining
more and more possibilities for interaction with resources outside of
the server. The functions Brian Aker and Patrick Galbraith have cre-
ated to communicate with memcached (http://tangent.org/586/
Memcached_Functions_for_MySQL.html) are a good example of how
this can be done with UDFs.

L&)

If you use UDFs, check carefully for changes between MySQL versions when you
upgrade, because they may need to be recompiled or even changed to work correctly
with the new MySQL server. Also make sure your UDFs are absolutely thread-safe,
because they execute within the MySQL server process, which is a pure multi-
threaded environment.

There are good libraries of prebuilt UDFs for MySQL, and many good examples of
how to implement your own. The biggest repository of UDFs is at http://www.
mysqludf.org.

The following is the code for the NOW_USEC() UDF we’ll use to measure replication
speed (see “How Fast Is Replication?” on page 405):

#include <my global.h>
#include <my sys.h>
#include <mysql.h>

230 | Chapter5: Advanced MySQL Features

http://tangent.org/586/Memcached_Functions_for_MySQL.html
http://tangent.org/586/Memcached_Functions_for_MySQL.html
http://www.mysqludf.org
http://www.mysqludf.org

#include <stdio.h>
#include <sys/time.h>
#include <time.h>
#include <unistd.h>

extern "C" {
my_bool now_usec_init(UDF_INIT *initid, UDF_ARGS *args, char *message);
char *now_usec(
UDF_INIT *initid,
UDF_ARGS *args,
char *result,
unsigned long *length,
char *is_null,
char *error);

}

my_bool now_usec_init(UDF_INIT *initid, UDF_ARGS *args, char *message) {
return 0;

}

char *now_usec(UDF_INIT *initid, UDF_ARGS *args, char *result,
| _ ! g
unsigned long *length, char *is null, char *error) {

struct timeval tv;

struct tm* ptm;

char time_string[20]; /* e.g. "2006-04-27 17:10:52" */
char *usec_time string = result;

time t t;

/* Obtain the time of day, and convert it to a tm struct. */
gettimeofday (&tv, NULL);

t = (time_t)tv.tv_sec;

ptm = localtime (&t);

/* Format the date and time, down to a single second. */
strftime (time_string, sizeof (time_string), "%Y-%m-%d %H:%M:%S", ptm);

/* Print the formatted time, in seconds, followed by a decimal point
* and the microseconds. */
sprintf(usec_time_string, "%s.%061ld\n", time_string, tv.tv_usec);

*length = 26;

return(usec_time_string);

Views

Views are a popular database feature that were added in MySQL 5.0. A view in
MySQL is a table that doesn’t store any data itself. Instead, the data “in” the table is
derived from a SQL query.

Views | 231

This book does not explain how to create or use views; you can read the appropriate
section of the MySQL manual for that and find descriptions of uses for views in other
documentation. MySQL treats a view exactly like a table for many purposes, and
views and tables share the same namespace in MySQL; however, MySQL doesn’t
treat them identically. For example, you can’t have triggers on views, and you can’t
drop a view with the DROP TABLE command.

It’s important to understand the internal implementation of views and how they
interact with the query optimizer, or you may not get good performance from them.
We use the world sample database to demonstrate how views work:
mysql> CREATE VIEW Oceania AS

-> SELECT * FROM Country WHERE Continent = 'Oceania’

-> WITH CHECK OPTION;
The easiest way for the server to implement a view is to execute its SELECT statement
and place the result into a temporary table. It can then refer to the temporary table
where the view’s name appears in the query. To see how this would work, consider
the following query:

mysql> SELECT Code, Name FROM Oceania WHERE Name = 'Australia’;

Here’s how the server might execute it. The temporary table’s name is for demon-
stration purposes only:
mysql> CREATE TEMPORARY TABLE TMP_Oceania_123 AS
-> SELECT * FROM Country WHERE Continent = 'Oceania';
mysql> SELECT Code, Name FROM TMP_Oceania_123 WHERE Name = 'Australia’;
There are obvious performance and query optimization problems with this
approach. A better way to implement views is to rewrite a query that refers to the
view, merging the view’s SQL with the query’s SQL. The following example shows
how the query might look after MySQL has merged it into the view definition:
mysql> SELECT Code, Name FROM Country
-> WHERE Continent = 'Oceania' AND Name = 'Australia’;
MySQL can use both methods. It calls the two algorithms MERGE and TEMPTABLE,” and
it tries to use the MERGE algorithm when possible. MySQL can even merge nested view
definitions when a view is based upon another view. You can see the results of the
query rewrite with EXPLAIN EXTENDED, followed by SHOW WARNINGS.

If a view uses the TEMPTABLE algorithm, EXPLAIN will usually show it as a DERIVED table.
Figure 5-4 illustrates the two implementations.

MySQL uses TEMPTABLE when the view definition contains GROUP BY, DISTINCT, aggre-
gate functions, UNION, subqueries, or any other construct that doesn’t preserve a one-
to-one relationship between the rows in the underlying base tables and the rows

* That’s “temp table,” not “can be tempted.”

232 | Chapter5: Advanced MySQL Features

returned from the view. This is not a complete list, and it might change in the future.
If you want to know whether a view will use MERGE or TEMPTABLE, you should EXPLAIN
a trivial SELECT query against the view:

mysql> EXPLAIN SELECT * FROM <view_name;

i ST E T +
| id | select type |
s ST EEEEEEE +
| 1| PRIMARY |
| 2 | DERIVED |
s ST EEEEEEE +

The presence of a DERIVED select type indicates that the view will use the TEMPTABLE

algorithm.
Merge algorithm Temp table algorithm
e E,_J
Client M= Client
| T
g , +
Userissues saL User issues
query to view query to view
Server 4 Server
intercepts ———— intercepts ——
uer ' uer :
query v query v
| |
) I i T
View SQL View sqL
L | |
l Server Server executes l
Server merges retums view SQL ”
viewSQLand | sqQL b sqL reslylt u:(?:rllr;?;g i---- ' | Q i
to client
Auery QL I table(s) e & o
Server executes - .
SQL against Server stores —
underlying m"" m resultsinatemp : Data
table(s) table with the same *,]
structure as view .
Server Server

Figure 5-4. Two implementations of views

Updatable Views

An updatable view lets you update the underlying base tables via the view. As long as
certain conditions hold, you can UPDATE, DELETE, and even INSERT into a view as you
would with a normal table. For example, the following is a valid operation:

mysql> UPDATE Oceania SET Population = Population * 1.1 WHERE Name = 'Australia’;

Views | 233

A view is not updatable if it contains GROUP BY, UNION, an aggregate function, or any of
a few other exceptions. A query that changes data may contain a join, but the col-
umns to be changed must all be in a single table. Any view that uses the TEMPTABLE
algorithm is not updatable.

The CHECK OPTION clause, which we included when we created the view in the previ-
ous section, ensures that any rows changed through the view continue to match the
view’s WHERE clause after the change. So, we can’t change the Continent column, nor
can we insert a row that has a different Continent. Either would cause the server to
report an error:

mysql> UPDATE Oceania SET Continent = 'Atlantis’;

ERROR 1369 (HY000): CHECK OPTION failed 'world.Oceania’
Some database products allow INSTEAD OF triggers on views so you can define exactly
what happens when a statement tries to modify a view’s data, but MySQL does not
support triggers on views. Some of MySQL’s limitations on updatable views may be
lifted in the future, enabling some interesting and useful applications. One possibil-
ity would be to build merge tables over tables with different storage engines. This
could be a very useful and high-performance way to use views.

Performance Implications of Views

Most people don’t think of using views to improve performance, but they can actu-
ally enhance performance in MySQL. You can also use them to aid other perfor-
mance improvements. For example, refactoring a schema in stages with views can let
some code continue working while you change the tables it accesses.

Some applications use one table per user, generally to implement a form of row-level
security. A view similar to the one we showed earlier could offer similar security
within a single table, and having fewer open tables would boost performance. Many
open source projects that are used in mass hosting environments accumulate mil-
lions of tables and can benefit from this approach. Here’s an example for a hypothet-
ical blog-hosting database server:

CREATE VIEW blog posts for user 1234 AS

SELECT * FROM blog posts WHERE user id = 1234
WITH CHECK OPTION;

You can also use views to implement column privileges without the overhead of
actually creating those privileges, which can be significant. Column privileges pre-
vent queries against the table from being cached in the query cache, too. A view can
restrict access to the desired columns without causing these problems:
CREATE VIEW public.employeeinfo AS
SELECT firstname, lastname -- but not socialsecuritynumber

FROM private.employeeinfo;
GRANT SELECT ON public.* TO public_user;

234 | Chapter5: Advanced MySQL Features

You can also sometimes use pseudotemporary views to good effect. You can’t actu-
ally create a truly temporary view that persists only for your current connection, but
you can create a view under a special name, perhaps in a database reserved for it,
that you know you can drop later. You can then use the view in the FROM clause,
much the same way you’d use a subquery in the FROM clause. The two approaches are
theoretically the same, but MySQL has a different codebase for views, so you may get
better performance from the temporary view. Here’s an example:

-- Assuming 1234 is the result of CONNECTION ID()

CREATE VIEW temp.cost_per day 1234 AS

SELECT DATE(ts) AS day, sum(cost) AS cost

FROM logs.cost
GROUP BY day;

SELECT c.day, c.cost, s.sales
FROM temp.cost_per day 1234 AS c
INNER JOIN sales.sales per day AS s USING(day);

DROP VIEW temp.cost_per_day_1234;

Note that we’ve used the connection ID as a unique suffix to avoid name clashes.
This approach can make it easier to clean up in case the application crashes and
doesn’t drop the temporary view. See “Missing Temporary Tables” on page 394 for
more about this technique.

Views that use the TEMPTABLE algorithm can perform very badly (although they may
still perform better than an equivalent query that doesn’t use a view). MySQL exe-
cutes them as a recursive step in optimizing the outer query, before the outer query is
even fully optimized, so they don’t get a lot of the optimizations you might be used
to from other database products. The query that builds the temporary table doesn’t
get WHERE conditions pushed down from the outer query, and the temporary table
does not have any indexes. Here’s an example, again using the temp.cost per day
1234 view:
mysql> SELECT c.day, c.cost, s.sales

-> FROM temp.cost_per day 1234 AS c

-> INNER JOIN sales.sales_per day AS s USING(day)

-> WHERE day BETWEEN '2007-01-01' AND '2007-01-31';
What really happens in this query is that the server executes the view and places the
result into a temporary table, then joins the sales per day table against this tempo-
rary table. The BETWEEN restriction in the WHERE clause is not “pushed into” the view,
so the view will create a result set for all dates in the table, not just the one month
desired. The temporary table also lacks any indexes. In this example, this isn’t a
problem: the server will place the temporary table first in the join order, so the join
can use the index on the sales per day table. However, if we were joining two such
views against each other, the join would not be optimized with any indexes.

Views | 235

You should always benchmark, or at least profile in detail, if you’re trying to use
views to improve performance. Even MERGE views add overhead, and it’s hard to pre-
dict how a view will impact performance. If performance matters, never guess—
always measure.

Views introduce some issues that aren’t MySQL-specific. Views may trick develop-
ers into thinking they’re simple, when in fact they’re very complicated under the
hood. A developer who doesn’t understand the underlying complexity might think
nothing of repeatedly querying what looks like a table but is in fact an expensive
view. We’ve seen cases where an apparently simple query produced hundreds of
lines of EXPLAIN output because one or more of the “tables” it referenced was actu-
ally a view that referred to many other tables and views.

Limitations of Views

MySQL does not support the materialized views that you may be used to if you’ve
worked with other database servers. (A materialized view generally stores its results
in an invisible table behind the scenes, with periodic updates to refresh the invisible
table from the source data.) MySQL also doesn’t support indexed views. You can
simulate materialized and/or indexed views by building cache and summary tables,
however, and in MySQL 5.1, you can use events to schedule these tasks.

MySQL’s implementation of views also has a few annoyances. The biggest is that
MySQL doesn’t preserve your original view SQL, so if you ever try to edit a view by
executing SHOW CREATE VIEW and changing the resulting SQL, you’re in for a nasty sur-
prise. The query will be expanded to the fully canonicalized and quoted internal for-
mat, without the benefit of formatting, comments, and indenting.

If you need to edit a view and you’ve lost the pretty-printed query you originally used
to create it, you can find it in the last line of the view’s .frm file. If you have the FILE
privilege and the .frm file is readable by all users, you can even load the file’s con-
tents through SQL with the LOAD_FILE() function. A little string manipulation can
retrieve your original code intact, thanks again to Roland Bouman’s creativity:

mysql> SELECT
-> REPLACE (REPLACE (REPLACE (REPLACE (REPLACE (REPLACE(
-> REPLACE (REPLACE (REPLACE (REPLACE (REPLACE (
-> SUBSTRING_INDEX(LOAD_FILE('/var/lib/mysql/world/Oceania.frm'),
-> "\nsource=", -1),
SN, NSNS, WAL W), TNZT, N2, W, T\,
-> "\rt,Ar'), "\n','A\nt), \ADY,TADT), TNV, TATT), NN TN,
> '\Wo',"\o")
-> AS source;

236 | Chapter5: Advanced MySQL Features

| SELECT * FROM Country WHERE continent = 'Oceania’
WITH CHECK OPTION

Character Sets and Collations

A character set is a mapping from binary encodings to a defined set of symbols; you
can think of it as how to represent a particular alphabet in bits. A collation is a set of
sorting rules for a character set. In MySQL 4.1 and later, every character-based value
can have a character set and a collation.” MySQL’s support for character sets and
collations is world-class, but it can add complexity, and in some cases it has a perfor-
mance cost.

This section explains the settings and functionality you’ll need for most situations. If
you need to know the more esoteric details, you should consult the MySQL manual.

How MySQL Uses Character Sets

Character sets can have several collations, and each character set has a default colla-
tion. Collations belong to a particular character set and cannot be used with any
other. You use a character set and a collation together, so we’ll refer to them collec-
tively as a character set from now on.

MySQL has a variety of options that control character sets. The options and the
character sets are easy to confuse, so keep this distinction in mind: only character-
based values can truly “have” a character set. Everything else is just a setting that
specifies which character set to use for comparisons and other operations. A
character-based value can be the value stored in a column, a literal in a query, the
result of an expression, a user variable, and so on.

MySQL’s settings can be divided into two classes: defaults for creating objects, and
settings that control how the server and the client communicate.

Defaults for creating objects

MySQL has a default character set and collation for the server, for each database,
and for each table. These form a hierarchy of defaults that influences the character
set that’s used when you create a column. That, in turn, tells the server what charac-
ter set to use for values you store in the column.

* MySQL 4.0 and earlier used a global setting for the entire server, and you could choose from among several
8-bit character sets.

Character Sets and Collations | 237

At each level in the hierarchy, you can either specify a character set explicitly or let
the server use the applicable default:

* When you create a database, it inherits from the server-wide character set_
server setting.
* When you create a table, it inherits from the database.
* When you create a column, it inherits from the table.
Remember, columns are the only place MySQL stores values, so the higher levels in
the hierarchy are only defaults. A table’s default character set doesn’t affect values

stored in the tables; it just tells MySQL which character set to use when you create a
column without specifying a character set explicitly.

Settings for client/server communication
When the server and the client communicate with each other, they may send data
back and forth in different character sets. The server will translate as needed:
* The server assumes the client is sending statements in the character set specified
by character_set client.

e After the server receives a statement from the client, it translates it into the char-
acter set specified by character set connection. It also uses this setting to deter-
mine how to convert numbers into strings.

* When the server returns results or error messages back to the client, it translates
them into character set result.

Figure 5-5 illustrates this process.

Server

Convert character_set_client
to character_set_connection

O
—~ Statement / 0
| outemelt

-

St 0 Process query
(. g |
Nimp Result

(lient T Q

o

Convert character_set_connection
to character_set_result

Figure 5-5. Client and server character sets

You can use the SET NAMES statement and/or the SET CHARACTER SET statement to
change these three settings as needed. However, note that this command affects only

238 | Chapter5: Advanced MySQL Features

the server’s settings. The client program and the client API also need to be set cor-
rectly to avoid communication problems with the server.

Suppose you open a client connection with latinl (the default character set, unless
you’ve used mysql options() to change it) and then use SET NAMES utf8 to tell the
server to assume the client is sending data in UTF-8. You’ve created a character set
mismatch, which can cause errors and even security problems. You should set the
client’s character set and use mysql real escape string() when escaping values. In
PHP, you can change the client’s character set with mysql_set_charset().

How MySQL compares values

When MySQL compares two values with different character sets, it must convert
them to the same character set for the comparison. If the character sets aren’t com-
patible, this can cause an error, such as “ERROR 1267 (HY000): Illegal mix of colla-
tions.” In this case, you’ll generally need to use the CONVERT(') function explicitly to
force one of the values into a character set that’s compatible with the other. MySQL
5.0 and newer often do this conversion implicitly, so this error is more common in
MySQL 4.1.

MySQL also assigns a coercibility to values. This determines the priority of a value’s
character set and influences which value MySQL will convert implicitly. You can use
the CHARSET(), COLLATION(), and COERCIBILITY() functions to help debug errors
related to character sets and collations.

You can use introducers and collate clauses to specify the character set and/or colla-
tion for literal values in your SQL statements. For example:

mysql> SELECT _utf8 'hello world' COLLATE utf8_bin;

e e +
| _utf8 'hello world' COLLATE utf8 bin

T R T R +
| hello world |
B ELEEEEE TR +

Special-case behaviors

MySQL’s character set behavior holds a few surprises. Here are some things you
should watch out for:

The magical character set database setting
The character set_database setting defaults to the default database’s setting. As
you change your default database, it will change too. If you connect to the server
without a default database, it defaults to character set server.

LOAD DATA INFILE
LOAD DATA INFILE interprets incoming data according to the current setting of
character_set database. Some versions of MySQL accept an optional CHARACTER
SET clause in the LOAD DATA INFILE statement, but you shouldn’t rely on this.

Character Sets and Collations | 239

We've found that the best way to get reliable results is to USE the desired data-
base, execute SET NAMES to select a character set, and only then load the data.
MySQL interprets all the loaded data as having the same character set, regard-
less of the character sets specified for the destination columns.

SELECT INTO OUTFILE
MySQL writes all data from SELECT INTO OUTFILE without converting it. There is
currently no way to specify a character set for the data without wrapping each
column in a CONVERT() function.

Embedded escape sequences
MySQL interprets escape sequences in statements according to character set
client, even when there’s an introducer or collate clause. This is because the
parser interprets the escape sequences in literal values. The parser is not
collation-aware—as far as it is concerned, an introducer isn’t an instruction, it’s
just a token.

Choosing a Character Set and Collation

MySQL 4.1 and later support a large range of character sets and collations, includ-
ing support for multibyte characters with the UTF-8 encoding of the Unicode charac-
ter set (MySQL supports a three-byte subset of full UTF-8 that can store most
characters in most languages). You can see the supported character sets with the SHOW
CHARACTER SET and SHOW COLLATION commands.

The most common choices for collations are whether letters should sort in a case
sensitive or case insensitive manner, or according to the encoding’s binary value. The
collation names generally end with _cs, ci, or _bin, so you can tell which is which
easily.

When you specify a character set explicitly, you don’t have to name both a character
set and a collation. If you omit one or both, MySQL fills in the missing pieces from
the applicable default. Table 5-2 shows how MySQL decides which character set and
collation to use.

Table 5-2. How MySQL determines character set and collation defaults

If you specify Resulting character set Resulting collation
Both character set and collation As specified As specified
Character set only As specified Character set’s default collation
Collation only Character set to which collation As specified
belongs
Neither Applicable default Applicable default

The following commands show how to create a database, table, and column with
explicitly specified character sets and collations:

240 | Chapter5: Advanced MySQL Features

CREATE DATABASE d CHARSET latini;
CREATE TABLE d.t(

col1l CHAR(1),

col2 CHAR(1) CHARSET utf8,

col3 CHAR(1) COLLATE latini bin
) DEFAULT CHARSET=cp1251;

The resulting table’s columns have the following collations:

mysql> SHOW FULL COLUMNS FROM d.t;

Fommmmo- Hommmmmmm- Bt +
| Field | Type | Collation |
e ommmmm e O LT +
| coll | char(1) | cp1251 general ci |
| col2 | char(1) | utf8 general ci |
| col3 | char(1) | latini bin |
Fommmmo- Hommmmmmm- Bt +

Keep It Simple

A mixture of character sets in your database can be a real mess. Incompatible character
sets tend to be terribly confusing. They may even work fine until certain characters
appear in your data, at which point, you’ll start getting problems in all sorts of opera-
tions (such as joins between tables). You can solve the errors only by using ALTER TABLE
to convert columns to compatible character sets, or casting values to the desired char-
acter set with introducers and collate clauses in your SQL statements.

For sanity’s sake, it’s best to choose sensible defaults on the server level, and perhaps
on the database level. Then you can deal with special exceptions on a case-by-case
basis, probably at the column level.

How Character Sets and Collations Affect Queries

Some character sets may require more CPU operations, consume more memory and
storage space, or even defeat indexing. Therefore, you should choose character sets
and collations carefully.

Converting between character sets or collations can add overhead for some opera-
tions. For example, the sakila.film table has an index on the title column, which
can speed up ORDER BY queries:

mysql> EXPLAIN SELECT title, release_year FROM sakila.film ORDER BY title\G
tcolokstoolokskofolokstofolokstofokokskokokokskok gy RRsSRoRekstokokokskoskokokstofokokskokokoskskokokoksk
id: 1
select type: SIMPLE
table: film
type: index
possible keys: NULL
key: idx_title

Character Sets and Collations | 241

key len: 767
ref: NULL

Trows: 953

Extra:
However, the server can use the index for sorting only if it’s sorted by the same colla-
tion as the one the query specifies. The index is sorted by the column’s collation,
which in this case is utf8 _general ci. If you want the results ordered by another col-
lation, the server will have to do a filesort:

mysql> EXPLAIN SELECT title, release_year

-> FROM sakila.film ORDER BY title COLLATE utf8_bin\G
sk ok] g Rkl ok sk ok ok

id: 1
select type: SIMPLE
table: film
type: ALL
possible keys: NULL
key: NULL
key len: NULL
ref: NULL
rows: 953
Extra: Using filesort
In addition to accommodating your connection’s default character set and any pref-
erences you specify explicitly in queries, MySQL has to convert character sets so that
it can compare them when they’re not the same. For example, if you join two tables
on character columns that don’t have the same character set, MySQL has to convert
one of them. This conversion can make it impossible to use an index, because it is
just like a function enclosing the column.

The UTF-8 multibyte character set stores each character in a varying number of bytes
(between one and three). MySQL uses fixed-size buffers internally for many string
operations, so it must allocate enough space to accommodate the maximum possi-
ble length. For example, a CHAR(10) encoded with UTF-8 requires 30 bytes to store,
even if the actual string contains no so-called wide characters. Variable-length fields
(VARCHAR, TEXT) do not suffer from this on disk, but in-memory temporary tables used
for processing and sorting queries will always allocate the maximum length needed.

In multibyte character sets a character is no longer the same as a byte. Conse-
quently, MySQL has separate LENGTH() and CHAR_LENGTH() functions, which don’t
return the same results on multibyte characters. When you’re working with multi-
byte character sets, be sure to use the CHAR_LENGTH() function when you want to
count characters (e.g., when you’re doing SUBSTRING() operations). The same cau-
tion holds for multibyte characters in application languages.

Another possible surprise is index limitations. If you index a UTF-8 column, MySQL
has to assume each character can take up to three bytes, so the usual length restric-
tions are suddenly shortened by a factor of three:

242 | Chapter5: Advanced MySQL Features

mysql> CREATE TABLE big_string(str VARCHAR(500), KEY(str)) DEFAULT CHARSET=utf8;
Query OK, 0 rows affected, 1 warning (0.06 sec)
mysql> SHOW WARNINGS;

Fommmmmme Fom--o- e et R e T +
| Level | Code | Message |
Fommmm oo $o-m-- e et e +
| Warning | 1071 | Specified key was too long; max key length is 999 bytes |
B EEEEEEEE e R et +

Notice that MySQL shortened the index to a 333-character prefix automatically:

mysql> SHOW CREATE TABLE big_string\G
FhkRkkRkk kR okR kR | poy Rk Rk Rk kR kR ok ok

Table: big string
Create Table: CREATE TABLE "big string™ (
“str® varchar(500) default NULL,
KEY “str> (“str’(333))
) ENGINE=MyISAM DEFAULT CHARSET=utf8
If you didn’t notice the warning and check the table definition, you might not have
spotted that the index was created on only a prefix of the column. This will have side
effects such as disabling covering indexes.

Some people recommend that you just use UTF-8 globally to “make your life sim-
pler.” However, this is not necessarily a good idea if you care about performance.
Many applications don’t need to use UTF-8 at all, and depending on your data,
UTF-8 can use much more storage space on disk.

When deciding on a character set, it’s important to consider the kind of data you will
store. For example, if you store mostly English text UTF-8 will add practically no
storage penalty, because most characters in the English language fit in one byte in
UTF-8. On the other hand, you may see a big difference if you store non-Latin lan-
guages such as Russian or Arabic. An application that needs to store only Arabic
could use the cp1256 character set, which can represent all Arabic characters in one
byte. But if the application needs to store many different languages and you choose
UTF-8 instead, the very same Arabic characters will use more space. Likewise, if you
convert a column from a national character set to UTF-8, you can increase the
required storage space dramatically. If you’re using InnoDB, you might increase the
data size to the point that the values don’t fit on the page and require external stor-
age, which can cause a lot of wasted storage space and fragmentation. See “Optimiz-
ing for BLOB and TEXT Workloads” on page 298 for more on this topic.

Sometimes you don’t need to use a character set at all. Character sets are mostly use-
ful for case insensitive comparison, sorting, and string operations that need to be
character-aware, such as SUBSTRING(). If you don’t need the database server to be
aware of characters, you can store anything you want in BINARY columns, including
UTF-8 data. If you do this, you can also add a column that tells you what character
set you used to encode the data. Although this is an approach some people have used
for a long time, it does require you to be more careful. It can cause hard-to-catch

Character Sets and Collations | 243

mistakes, such as errors with SUBSTRING() and LENGTH(), if you forget that a byte is
not necessarily a character. We recommend you avoid this practice if possible.

Full-Text Searching

Most of the queries you’ll write will probably have WHERE clauses that compare val-
ues for equality, filter out ranges of rows, and so on. However, you may also need to
perform keyword searches, which are based on relevance instead of comparing val-
ues to each other. Full-text search systems are designed for this purpose.

Full-text searches require a special query syntax. They can work with or without
indexes, but indexes can speed up the matching. The indexes used for full-text
searches have a special structure to help find documents that contain the desired
keywords.

You may not know it, but you’re already familiar with at least one type of full-text
search system: Internet search engines. Although they operate at a massive scale and
don’t usually have a relational database for a backend, the principles are similar.

In MySQL, only the MyISAM storage engine supports full-text indexing. It lets you
search character-based content (CHAR, VARCHAR, and TEXT columns), and it supports
both natural-language and Boolean searching. The full-text search implementation
has a number of restrictions and limitations” and is quite complicated, but it’s still
widely used because it’s included with the server and is adequate for many applica-
tions. In this section, we take a general look at how to use it and how to design for
performance with full-text searching.

A MyISAM full-text index operates on a full-text collection, which is made up of one
or more character columns from a single table. In effect, MySQL builds the index by
concatenating the columns in the collection and indexing them as one long string of
text.

A MyISAM full-text index is a special type of B-Tree index with two levels. The first
level holds keywords. Then, for each keyword, the second level holds a list of associ-
ated document pointers that point to full-text collections that contain that keyword.
The index doesn’t contain every word in the collection. It prunes it as follows:

* A list of stopwords weeds out “noise” words by preventing them from being
indexed. The stopword list is based on common English usage by default, but
you can use the ft_stopword file option to replace it with a list from an exter-
nal file.

* The index ignores words unless they’re longer than ft_min_word_len characters
and shorter than ft_max_word len characters.

* You may find that MySQL’s full-text limitations make it impractical or impossible to use for your applica-
tion. We discuss using Sphinx as an external full-text search engine in Appendix C.

244 | Chapter5: Advanced MySQL Features

Full-text indexes don’t store information about which column in the collection a
keyword occurs in, so if you need to search on different combinations of columns,
you will need to create several indexes.

This also means you can’t instruct a MATCH AGAINST clause to regard words from a par-
ticular column as more important than words from other columns. This is a common
requirement when building search engines for web sites. For example, you might want
search results to appear first when the keywords appear in an item’s title. If you need
this, you’ll have to write more complicated queries. (We show an example later.)

Natural-Language Full-Text Searches

A natural-language search query determines each document’s relevance to the query.
Relevance is based on the number of matched words and the frequency with which
they occur in the document. Words that are less common in the entire index make a
match more relevant. In contrast, extremely common words aren’t worth searching
for at all. A natural-language full-text search excludes words that exist in more than
50% of the rows in the table, even if they’re not in the stopword list.”

The syntax of a full-text search is a little different from other types of queries. You
tell MySQL to do full-text matching with MATCH AGAINST in the WHERE clause. Let’s
look at an example. In the standard Sakila sample database, the film_text table has a
full-text index on the title and description columns:

mysql> SHOW INDEX FROM sakila.film text;

Hmmmmmmmmme Hmmm e Hmmmmmmmmmee fmmmmm e +
| Table | Key name | Column_name | Index type |
Hmmmmmmmmme e Hmmm e tommmm oo +
| ...

| film text | idx_title description | title | FULLTEXT |
| film_text | idx_title description | description | FULLTEXT |
Hmmmmmmmmme Hmmm e Hmmmmmmmmmee fmmmmm e +

Here’s an example natural-language full-text search query:

mysql> SELECT film_id, title, RIGHT(description, 25),

-> MATCH(title, description) AGAINST('factory casualties') AS relevance

-> FROM sakila.film_text

-> WHERE MATCH(title, description) AGAINST('factory casualties');
Hmmm e i m e LT TR fmmmmmmm e +
| film id | title RIGHT(description, 25) | relevance |

\ |
\ 126 | CASUALTIES ENCINO Face a Boy in A Monastery | 5.2615661621094 |
| 193 | CROSSROADS CASUALTIES | a Composer in The Outback | 5.2072987556458 |
\ 369 | GOODFELLAS SALUTE d Cow in A Baloon Factory | 3.1522686481476 |
\ |

|
+
831 | SPIRITED CASUALTIES | a Car in A Baloon Factory | 8.4692449569702
|
|
|
| a Dog in A Baloon Factory | 3.1522686481476

451 | IGBY MAKER

* A common mistake during testing is to put a few rows of sample data into a full-text search index, only to
find that no queries match. The problem is that every word appears in more than half the rows.

Full-Text Searching | 245

MySQL performed the full-text search by breaking the search string into words and
matching each of them against the title and description fields, which are com-
bined in the full-text collection upon which the index is built. Notice that only one of
the results contains both words, and that the three results that contain “casualties”
(there are only three in the entire table) are listed first. That’s because the index sorts
the results by decreasing relevance.
N
Unlike normal queries, the full-text search results are automatically
as ordered by relevance. MySQL cannot use an index for sorting when

[.
9k you perform a full-text search. Therefore, you shouldn’t specify an
ORDER BY clause if you want to avoid a filesort.

The MATCH() function actually returns the relevance as a floating-point number, as
you can see from our example. You can use this to filter by relevance or to present
the relevance in a user interface. There is no extra overhead from specifying the
MATCH() function twice; MySQL recognizes they are the same and does the operation
only once. However, if you put the MATCH() function in an ORDER BY clause, MySQL
will use a filesort to order the results.

You have to specify the columns in the MATCH() clause exactly as they’re specified in
a full-text index, or M