
Asterisk: The Future of Telephony

By Leif Madsen, Jared Smith, Jim Van Meggelen

...

Publisher: O'Reilly

Pub Date: September 2005

ISBN: 0-596-00962-3

Pages: 404

Table of Contents | Index

It may be a while before Internet telephony with VoIP (Voice over Internet Protocol) reaches critical mass, but there's already

tremendous movement in that direction. A lot of organizations are not only attracted to VoIP's promise of cost savings, but its ability to

move data, images, and voice traffic over the same connection. Think of it: a single Internet phone call can take information sharing to a

whole new level.

That's why many IT administrators and developers are actively looking to set up VoIP-based private telephone switching systems within

the enterprise. The efficiency that network users can reach with it is almost mind-boggling. And cheap, if the system is built with open

source software like Asterisk. There are commercial VoIP options out there, but many are expensive systems running old, complicated

code on obsolete hardware. Asterisk runs on Linux and can interoperate with almost all standards-based telephony equipment. And you

can program it to your liking.

Asterisk's flexibility comes at a price, however: it's not a simple system to learn, and the documentation is lacking. Asterisk: The Future of

Telephony solves that problem by offering a complete roadmap for installing, configuring, and integrating Asterisk with existing phone

systems. Our guide walks you through a basic dial plan step by step, and gives you enough working knowledge to set up a simple but

complete system.

What you end up with is largely up to you. Asterisk embraces the concept of standards-compliance, but also gives you freedom to

choose how to implement your system. Asterisk: The Future of Telephony outlines all the options, and shows you how to set up

voicemail services, call conferencing, interactive voice response, call waiting, caller ID, and more. You'll also learn how Asterisk merges

voice and data traffic seamlessly across disparate networks. And you won't need additional hardware. For interconnection with digital

and analog telephone equipment, Asterisk supports a number of hardware devices.

Ready for the future of telephony? We'll help you hook it up.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

Asterisk: The Future of Telephony

By Leif Madsen, Jared Smith, Jim Van Meggelen

...

Publisher: O'Reilly

Pub Date: September 2005

ISBN: 0-596-00962-3

Pages: 404

Table of Contents | Index

 Copyright

 Foreword

 Preface

 Audience

 Organization

 Software

 Conventions Used in This Book

 Using Code Examples

 Safari® Enabled

 How to Contact Us

 Acknowledgments

 Chapter 1. A Telephony Revolution

 Section 1.1. VoIP: Bridging the Gap Between Traditional Telephony and Network Telephony

 Section 1.2. Massive Change Requires Flexible Technology

 Section 1.3. Asterisk: The Hacker's PBX

 Section 1.4. Asterisk: The Professional's PBX

 Section 1.5. The Asterisk Community

 Section 1.6. The Business Case

 Section 1.7. This Book

 Chapter 2. Preparing a System for Asterisk

 Section 2.1. Server Hardware Selection

 Section 2.2. Environment

 Section 2.3. Telephony Hardware

 Section 2.4. Types of Phone

 Section 2.5. Linux Considerations

 Section 2.6. Conclusion

 Chapter 3. Installing Asterisk

 Section 3.1. What Packages Do I Need?

 Section 3.2. Obtaining the Source Code

 Section 3.3. Compiling Zaptel

 Section 3.4. Compiling libpri

 Section 3.5. Compiling Asterisk

 Section 3.6. Installing Additional Prompts

 Section 3.7. Updating Your Source Code

 Section 3.8. Common Compiling Issues

 Section 3.9. Loading Zaptel Modules

 Section 3.10. Loading libpri

 Section 3.11. Loading Asterisk

 Section 3.12. Directories Used by Asterisk

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

 Section 3.13. Conclusion

 Chapter 4. Initial Configuration of Asterisk

 Section 4.1. What Do I Really Need?

 Section 4.2. Working with Interface Configuration Files

 Section 4.3. FXO and FXS Channels

 Section 4.4. Configuring an FXO Channel

 Section 4.5. Configuring an FXS Channel

 Section 4.6. Configuring SIP

 Section 4.7. Configuring Inbound IAX Connections

 Section 4.8. Configuring Outbound IAX Connections

 Section 4.9. Debugging

 Section 4.10. Conclusion

 Chapter 5. Dialplan Basics

 Section 5.1. Dialplan Syntax

 Section 5.2. A Simple Dialplan

 Section 5.3. Adding Logic to the Dialplan

 Section 5.4. Conclusion

 Chapter 6. More Dialplan Concepts

 Section 6.1. Expressions and Variable Manipulation

 Section 6.2. Dialplan Functions

 Section 6.3. Conditional Branching

 Section 6.4. Voicemail

 Section 6.5. Macros

 Section 6.6. Using the Asterisk Database (AstDB)

 Section 6.7. Handy Asterisk Features

 Section 6.8. Conclusion

 Chapter 7. Understanding Telephony

 Section 7.1. Analog Telephony

 Section 7.2. Digital Telephony

 Section 7.3. The Digital Circuit-Switched Telephone Network

 Section 7.4. Packet-Switched Networks

 Section 7.5. Conclusion

 Chapter 8. Protocols for VoIP

 Section 8.1. The Need for VoIP Protocols

 Section 8.2. VoIP Protocols

 Section 8.3. Codecs

 Section 8.4. Quality of Service

 Section 8.5. Echo

 Section 8.6. Asterisk and VoIP

 Section 8.7. Conclusion

 Chapter 9. The Asterisk Gateway Interface (AGI)

 Section 9.1. Fundamentals of AGI Communication

 Section 9.2. Writing AGI Scripts in Perl

 Section 9.3. Creating AGI Scripts in PHP

 Section 9.4. Writing AGI Scripts in Python

 Section 9.5. Debugging in AGI

 Section 9.6. Conclusion

 Chapter 10. Asterisk for the Über-Geek

 Section 10.1. Festival

 Section 10.2. Call Detail Recording

 Section 10.3. Customizing System Prompts

 Section 10.4. Manager

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

 Section 10.5. Call Files

 Section 10.6. DUNDi

 Section 10.7. Conclusion

 Chapter 11. Asterisk: The Future of Telephony

 Section 11.1. The Problems with Traditional Telephony

 Section 11.2. Paradigm Shift

 Section 11.3. The Promise of Open Source Telephony

 Section 11.4. The Future of Asterisk

 Appendix A. VoIP Channels

 Section A.1. IAX

 Section A.2. SIP

 Appendix B. Application Reference

 AbsoluteTimeout()

 AddQueueMember()

 ADSIProg()

 AgentCallbackLogin()

 AgentLogin()

 AgentMonitorOutgoing()

 AGI()

 AlarmReceiver()

 Answer()

 AppendCDRUserField()

 Authenticate()

 Background()

 BackgroundDetect()

 Busy()

 CallingPres()

 ChangeMonitor()

 ChanIsAvail()

 CheckGroup()

 Congestion()

 ControlPlayback()

 Curl()

 Cut()

 DateTime()

 DBdel()

 DBdeltree()

 DBget()

 DBput()

 DeadAGI()

 Dial()

 DigitTimeout()

 Directory()

 DISA()

 DumpChan()

 DUNDiLookup()

 EAGI()

 Echo()

 EndWhile()

 ENUMLookup()

 Eval()

 Exec()

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

 ExecIf()

 FastAGI()

 Festival()

 Flash()

 ForkCDR()

 GetCPEID()

 GetGroupCount()

 GetGroupMatchCount()

 Goto()

 GotoIf()

 GotoIfTime()

 Hangup()

 HasNewVoicemail()

 HasVoicemail()

 IAX2Provision()

 ImportVar()

 LookupBlacklist()

 LookupCIDName()

 Macro()

 MailboxExists()

 Math()

 MeetMe()

 MeetMeAdmin()

 MeetMeCount()

 Milliwatt()

 Monitor()

 MP3Player()

 MusicOnHold()

 NBScat()

 NoCDR()

 NoOp()

 Park()

 ParkAndAnnounce()

 ParkedCall()

 PauseQueueMember()

 Playback()

 Playtones()

 Prefix()

 PrivacyManager()

 Progress()

 Queue()

 Random()

 Read()

 RealTime

 RealTimeUpdate()

 Record()

 RemoveQueueMember()

 ResetCDR()

 ResponseTimeout()

 RetryDial()

 Ringing()

 SayAlpha()

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

 SayDigits()

 SayNumber()

 SayPhonetic()

 SayUnixTime()

 SendDTMF()

 SendImage()

 SendText()

 SendURL()

 Set()

 SetAccount()

 SetAMAFlags()

 SetCallerID()

 SetCallerPres()

 SetCDRUserField()

 SetCIDName()

 SetCIDNum()

 SetGlobalVar()

 SetGroup()

 SetLanguage()

 SetMusicOnHold()

 SetRDNIS()

 SetVar()

 SIPAddHeader()

 SIPDtmfMode()

 SIPGetHeader()

 SoftHangup()

 StopMonitor()

 StopPlaytones()

 StripLSD()

 StripMSD()

 SubString()

 Suffix()

 System()

 Transfer()

 TrySystem()

 TXTCIDName()

 UnpauseQueueMember()

 UserEvent()

 Verbose()

 VMAuthenticate()

 VoiceMail()

 VoiceMailMain()

 Wait()

 WaitExten()

 WaitForRing()

 WaitForSilence()

 WaitMusicOnHold()

 While()

 Zapateller()

 ZapBarge()

 ZapRAS()

 ZapScan()

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

 Appendix C. AGI Reference

 ANSWER

 CHANNEL STATUS

 DATABASE DEL

 DATABASE DELTREE

 DATABASE GET

 DATABASE PUT

 EXEC

 GET DATA

 GET FULL VARIABLE

 GET OPTION

 GET VARIABLE

 HANGUP

 NOOP

 RECEIVE CHAR

 RECORD FILE

 SAY ALPHA

 SAY DATE

 SAY DATETIME

 SAY DIGITS

 SAY NUMBER

 SAY PHONETIC

 SAY TIME

 SEND IMAGE

 SEND TEXT

 SET AUTOHANGUP

 SET CALLERID

 SET CONTEXT

 SET EXTENSION

 SET MUSIC ON

 SET PRIORITY

 SET VARIABLE

 STREAM FILE

 TDD MODE

 VERBOSE

 WAIT FOR DIGIT

 Appendix D. Configuration Files

 Section D.1. modules.conf

 Section D.2. adsi.conf

 Section D.3. adtranvofr.conf

 Section D.4. agents.conf

 Section D.5. alarmreceiver.conf

 Section D.6. alsa.conf

 Section D.7. asterisk.conf

 Section D.8. cdr.conf

 Section D.9. cdr_manager.conf

 Section D.10. cdr_odbc.conf

 Section D.11. cdr_pgsql.conf

 Section D.12. cdr_tds.conf

 Section D.13. codecs.conf

 Section D.14. dnsmgr.conf

 Section D.15. dundi.conf

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

 Section D.16. enum.conf

 Section D.17. extconfig.conf

 Section D.18. extensions.conf

 Section D.19. features.conf

 Section D.20. festival.conf

 Section D.21. iax.conf

 Section D.22. iaxprov.conf

 Section D.23. indications.conf

 Section D.24. logger.conf

 Section D.25. manager.conf

 Section D.26. meetme.conf

 Section D.27. mgcp.conf

 Section D.28. modem.conf

 Section D.29. musiconhold.conf

 Section D.30. osp.conf

 Section D.31. oss.conf

 Section D.32. phone.conf

 Section D.33. privacy.conf

 Section D.34. queues.conf

 Section D.35. res_odbc.conf

 Section D.36. rpt.conf

 Section D.37. rtp.conf

 Section D.38. sip.conf

 Section D.39. sip_notify.conf

 Section D.40. skinny.conf

 Section D.41. voicemail.conf

 Section D.42. vpb.conf

 Section D.43. zapata.conf

 Section D.44. zaptel.conf

 Appendix E. Asterisk Command-Line Interface Reference

 !

 abort halt

 Section E.1. add

 Section E.2. agi

 Section E.3. database

 Section E.4. iax2

 Section E.5. indication

 Section E.6. logger

 Section E.7. meetme

 Section E.8. pri

 Section E.9. remove

 Section E.10. restart

 Section E.11. set

 Section E.12. show

 Section E.13. sip

 Section E.14. stop

 Section E.15. zap

 Colophon

 About the Authors

 Colophon

 Index

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

Asterisk™: The Future of Telephony

by Jim Van Meggelen, Jared Smith, and Leif Madsen

Copyright © 2005 O'Reilly Media, Inc. All rights reserved.

Printed in the United States of America.

Published by O'Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O'Reilly books may be purchased for educational, business, or sales promotional use. Online editions are also available for most titles

(safari.oreilly.com). For more information, contact our corporate/institutional sales department: (800) 998-9938 or corporate@oreilly.com.

Editor: Mike Loukides

Production Editor: Colleen Gorman

Cover Designer: Ellie Volckhausen

Interior Designer: David Futato

Printing History:

September 2005: First Edition.

Nutshell Handbook, the Nutshell Handbook logo, and the O'Reilly logo are registered trademarks of O'Reilly Media, Inc. Asterisk™: The

Future of Telephony, the image of starfish, and related trade dress are trademarks of O'Reilly Media, Inc. Asterisk™ is a trademark of

Digium, Inc. Asterisk: The Future of Telephony is published under the Creative Commons "Commons Deed" license

(http://creativecommons.org/licenses/by-nc-nd/2.0/ca/).

Many of the designations used by manufacturers and sellers to distinguish their products are claimed as trademarks. Where those

designations appear in this book, and O'Reilly Media, Inc. was aware of a trademark claim, the designations have been printed in caps or

initial caps.

While every precaution has been taken in the preparation of this book, the publisher and author assume no responsibility for errors or

omissions, or for damages resulting from the use of the information contained herein.

ISBN: 0-596-00962-3

[M]

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

http://safari.oreilly.com
mailto:corporate@oreilly.com
http://creativecommons.org/licenses/by-nc-nd/2.0/ca/

Foreword

Once upon a time, there was a boy.

...with a computer

...and a phone.

This simple beginning begat much trouble!

It wasn't that long ago that telecommunications, both voice and data, as well as software, were all proprietary products and services,

controlled by one select club of companies that created the technologies, and another select club of companies who used the products

to provide services. By the late 1990s, data telecommunications had been opened by the expansion of the Internet. Prices plummeted.

New and innovative technologies, services, and companies emerged. Meanwhile, the work of free software pioneers like Richard

Stallman, Linus Torvalds, and countless others were culminating in the creation of a truly open software platform called Linux (or

GNU/Linux). However, voice communications, ubiquitous as they were, remained proprietary. Why? Perhaps it was because voice on

the old public telephone network lacked the glamor and promise of the shiny new World Wide Web. Or, perhaps it's because a telephone

just isn't as effective at supplying adult entertainment. Whatever the reason, one thing was clear. Open source voice communications

was about as widespread as open source copy protection software.

Necessity (and in some cases simply being cheap) is truly the mother of invention. In 1999, having started Linux Support Services to

offer free and commercial technical support for Linux, I found myself in need (or at least in perceived need) of a phone system to assist

me in providing 24-hour technical support. The idea was that people would be able to call in, enter their customer identity, and leave a

message. The system would in turn page a technician to respond to the customer's request in short order. Since I had started the

company with about $4000 of capital, I was in no position to be able to afford a phone system of the sort that I needed to implement this

scenario. Having already been a Linux user since 1994, and having already gotten my feet wet in Open Source software development by

starting l2tpd, gaim, and cheops, and in the complete absence of anyone having explained the complexity of such a task, I decided that I

would simply make my own phone system using hardware borrowed from Adtran, where I had worked as a co-op student. Once I got a

call into a PC, I fantasized, I could do anything with it. In fact, it is from this conjecture that the official Asterisk motto (which any sizable,

effective project must have) is derived:

It's only software!

For better or worse, I rarely think small. Right from the start, it was my intent that Asterisk would do everything related to telephony. The

name "Asterisk" was chosen because it was both a key on a standard telephone and also the wildcard symbol in Linux (e.g., rm -rf *).

So, in 1999, I have a free telephony platform I've put out on the web and I go about my business trying to eke out a living at providing

Linux technical support. However, by 2001, as the economy was tanking, it became apparent that Linux Support Services might do

better by pursuing Asterisk than general purpose Linux technical support. That year, we would make contact with Jim "Dude" Dixon of

the Zapata Telephony project. Dude's exciting work was a fantastic companion to Asterisk, and provided a business model for us to start

pursuing Asterisk with more focus. After creating our first PCI telephony interface card in conjunction with Dude, it became clear that

"Linux Support Services" was not the best name for a telephony company, and so we changed the name to "Digium," which is a whole

other story that cannot be effectively conveyed in writing. Enter the expansion of Voice over IP ("VoIP") with its disruptive transition of

voice from the old, circuit-switched networks to new IP-based networks and things really started to take hold.

Now, as we've already covered, clearly most people don't get very excited about telephones. Certainly, few people could share my

excitement the moment I heard dialtone coming from a phone connected to my PC. However, those who do get excited about

telephones get really excited about telephones. And facilitated by the Internet, this small group of people were now able to unite and

apply our bizarre passions to a common, practical project for the betterment of many.

To say that telecom was ripe for an open source solution would be an immeasurable understatement. Telecom is an enormous market

due to the ubiquity of telephones in work and personal life. The direct market for telecom products has a highly technical audience that is

willing and able to contribute. People demand their telecom solutions be infinitely customizable. Proprietary telecom is very expensive.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

Creating Asterisk was simply the spark in this fuel rich backdrop.

Asterisk sits at the apex of a variety of transitions (Proprietary Open Source, Circuit Switched VoIP, Voice only

Voice, Video, and Data, Digital Signal Processing Host Media Processing, Centralized Directory Peer to Peer) while

easing those transitions by providing bridges back to the older ways of doing things. Asterisk can talk to anything from a 1960s era pulse

dial phone to the latest wireless VoIP devices, and provide features from simple tandem switching all the way to bluetooth presence and

DUNDi.

Most important of all, though, Asterisk demonstrates how a community of motivated people and companies can work together to create a

project with a scope so significant that no one person or company could have possibly created it on its own. In making Asterisk possible,

I particularly would like to thank Linus Torvalds, Richard Stallman, the entire Asterisk community and whoever invented Red Bull.

So where is Asterisk going from here? Think about the history of the PC. When it was first introduced in 1980, it had fairly limited

capabilities. Maybe you could do a spreadsheet, maybe do some word processing, but in the end, not much. Over time, however, its

open architecture led to price reductions and new products allowing it to slowly expand its applications, eventually displacing the mini

computer, then the mainframe. Now, even Cray supercomputers are built using Linux-based x86 architectures. I anticipate that Asterisk's

future will look very similar. Today, there is a large subset of telephony that is served by Asterisk. Tomorrow, who knows what the limit

might be.

So, what are you waiting for? Read, learn, and participate in the future of open telecommunications by joining the Asterisk revolution!

Mark Spencer

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

Preface

This is a book for anyone who is new to Asterisk™.

Asterisk is an open source, converged telephony platform, which is designed primarily to run on Linux. Asterisk combines over 100 years

of telephony knowledge into a robust suite of tightly integrated telecommunications applications. The power of Asterisk lies in its

customizable nature, complemented by unmatched standards-compliance. No other PBX can be deployed in so many creative ways.

Applications such as voicemail, hosted conferencing, call queuing and agents, music on hold, and call parking are all standard features

built right into the software. Moreover, Asterisk can integrate with other business technologies in ways that closed, proprietary PBXs can

scarcely dream of.

Asterisk can appear quite daunting and complex to a new user, which is why documentation is so important to its growth. Documentation

lowers the barrier to entry and helps people contemplate the possibilities.

Produced with the generous support of O'Reilly Media, Asterisk: The Future of Telephony was inspired by the work started by the

Asterisk Documentation Project. We have come a long way, and this book is the realization of a desire to deliver documentation which

introduces the most fundamental elements of Asterisk-the things someone new to Asterisk needs to know. It is the first volume in what

we are certain will become a huge library of knowledge relating to Asterisk.

This book was written for, and by, the Asterisk community.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

file:///C:/DOCUME~1/stelios/LOCALS~1/Temp/2/O'Reilly,.Asterisk.The.Future.of.Telephony.(2005).BBL.LotB.chm/0596009623/18051535.html

Audience

This book is for those new to Asterisk, but we assume that you're familiar with basic Linux administration, networking, and other IT

disciplines. If not, we encourage you to explore the vast and wonderful library of books O'Reilly publishes on these subjects. We also

assume you're fairly new to telecommunications, both traditional switched telephony and the new world of voice over IP.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

Organization

The book is organized into these chapters:

Chapter 1, A Telephony Revolution

This is where we chop up the kindling, and light the fire. Asterisk is going to change the world of telecom, and this is where we

discuss our reasons for that belief.

Chapter 2, Preparing a System for Asterisk

Covers some of the engineering considerations you should have in mind when designing a telecommunications system.

Much of this material can be skipped if you want to get right to installing, but these are important concepts to understand,

should you ever plan on putting an Asterisk system into production.

Chapter 3, Installing Asterisk

Covers the obtaining, compiling and installation of Asterisk.

Chapter 4, Initial Configuration of Asterisk

Describes the initial configuration of Asterisk. Here we will cover the important configuration files that must exist to define the

channels and features available to your system.

Chapter 5, Dialplan Basics

Introduces the heart of Asterisk, the dialplan.

Chapter 6, More Dialplan Concepts

Goes over some more advanced dialplan concepts.

Chapter 7, Understanding Telephony

Taking a break from Asterisk, this chapter discusses some of the more important technologies in use in the Public Telephone

Network.

Chapter 8, Protocols for VoIP

Following the discussion of legacy telephony, this chapter discusses Voice over IP.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

Chapter 9, The Asterisk Gateway Interface (AGI)

Introduces one of the more amazing components, the Asterisk Gateway Interface. Using Perl, PHP, and Python, we

demonstrate how external programs can be used to add nearly limitless functionality to your PBX.

Chapter 10, Asterisk for the Über-Geek

Briefly covers what is, in fact, a rich and varied cornucopia of incredible features and functions; all part of the Asterisk

phenomenon.

Chapter 11, Asterisk: The Future of Telephony

Predicts a future where open source telephony completely transforms an industry desperately in need of a revolution.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

file:///C:/DOCUME~1/stelios/LOCALS~1/Temp/2/O'Reilly,.Asterisk.The.Future.of.Telephony.(2005).BBL.LotB.chm/0596009623/18051535.html

Software

This book is focused on documenting Asterisk Version 1.2, however many of the conventions and information in this book are

version-agnostic. Linux is the operating system we have run and tested Asterisk on, with a leaning towards Red Hat syntax. We decided

that while Red Hat-based distributions may not be the preferred choice of everyone; its layout and utilities are nevertheless familiar to

many experienced Linux administrators.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

Conventions Used in This Book

The following typographical conventions are used in this book:

Italic

Indicates new terms, URLs, email addresses, filenames, file extensions, pathnames, directories, and Unix utilities.

Constant width

Indicates commands, options, parameters, and arguments that must be substituted into commands.

Constant width bold

Shows commands or other text that should be typed literally by the user. Also used for emphasis in code.

Constant width italic

Shows text that should be replaced with user-supplied values.

[Keywords and other stuff]

Indicates optional keywords and arguments.

{ choice-1 | choice-2 }

Signifies either choice-1 or choice-2.

This icon signifies a tip, suggestion, or general note.

This icon indicates a warning or caution.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

Using Code Examples

This book is here to help you get your job done. In general, you may use the code in this book in your programs and documentation. You

do not need to contact us for permission unless you're reproducing a significant portion of the code. For example, writing a program that

uses several chunks of code from this book does not require permission. Selling or distributing a CD-ROM of examples from O'Reilly

books does require permission. Answering a question by citing this book and quoting example code does not require permission.

Incorporating a significant amount of example code from this book into your product's documentation does require permission.

We appreciate, but do not require, attribution. An attribution usually includes the title, author, publisher, and ISBN. For example:

"Asterisk: The Future of Telephony, by Jim Van Meggelen, Jared Smith, and Leif Madsen. Copyright 2005 O'Reilly Media, Inc.,

0-596-00962-3."

If you feel your use of code examples falls outside fair use or the permission given above, feel free to contact us at

permissions@oreilly.com.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

mailto:permissions@oreilly.com

Safari® Enabled

 When you see a Safari® enabled icon on the cover of your favorite technology book, that means the book is

available online through the O'Reilly Network Safari Bookshelf.

Safari offers a solution that's better than e-books. It's a virtual library that lets you easily search thousands of top tech books, cut and

paste code samples, download chapters, and find quick answers when you need the most accurate, current information. Try it for free at

http://safari.oreilly.com.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

http://safari.oreilly.com

How to Contact Us

Please address comments and questions concerning this book to the publisher:

O'Reilly Media, Inc.

1005 Gravenstein Highway North

Sebastopol, CA 95472

(800) 998-9938 (in the United States or Canada)

(707) 829-0515 (international or local)

(707) 829-0104 (fax)

We have a web page for this book, where we list errata, examples, and any additional information. You can access this page at:

http://www.oreilly.com/catalog/asterisk

To comment or ask technical questions about this book, send email to:

bookquestions@oreilly.com

For more information about our books, conferences, Resource Centers, and the O'Reilly Network, see our web site at:

http://www.oreilly.com

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

http://www.oreilly.com/catalog/asterisk
mailto:bookquestions@oreilly.com
http://www.oreilly.com
file:///C:/DOCUME~1/stelios/LOCALS~1/Temp/2/O'Reilly,.Asterisk.The.Future.of.Telephony.(2005).BBL.LotB.chm/0596009623/18051535.html

Acknowledgments

Firstly, we have to thank our fantastic editor Michael Loukides, who offered invaluable feedback and found incredibly tactful ways to tell

us to re-write a section (or chapter) when it was needed, and have us think it was our idea. Mike built us up when we were down, and

brought us back to earth when we got uppity. You are a master, Mike, and seeing how many books have received your editorial

oversight contributes to an understanding of why O'Reilly Media is the success it is.

Thanks also to Rachel Wheeler, our copy editor, Colleen Gorman, our production editor, and the rest of the unsung heroes in O'Reilly's

production department. These are the folks that take our book and make it an O'Reilly book.

Everyone in the Asterisk community needs to thank Jim Dixon for creating the first open-source telephony hardware interfaces, starting

the revolution, and giving his creations to the community at large.

Thanks to Tim O'Reilly, for giving us a chance to write this book.

To our most generous and merciless review team:

Rich Adamson, President of Network Partners Inc., for your encyclopedic knowledge of the PSTN, and your tireless

willingness to share your experience. Your generosity, even in the face of daunting challenge, is inspiring to us all.

Dr. Edward Guy, Chief Scientist, Pulver Innovations, for your comprehensive and razor-sharp evaluation of each and every

chapter, and for your championing of Asterisk.

Kristian Kielhofner, President, KrisCompanies and creator of AstLinux, for the most excellent AstLinux distribution.

Joel Sisko, Systems Integrator, for braving the fire.

Travis Smith, for your valuable and timely feedback.

Ted Wallingford, for leading the way with O'Reilly's: Switching to VoIP.

Brian K. West, for your commitment to the community, Asterisk, our book, and open-source telephony.

Joshua Colp, for putting up with, and answering, the numerous questions posed by Leif.

Robert M. Zigweid, not only for your thorough evaluation of our book (especially for slogging through the appendices), but

also for having the coolest name in the universe.

Anthony Minessale (a.k.a. anthm) is one of the unsung heroes of Asterisk development. The number of people who have contributed to

Asterisk development are many; the number who can claim to have matched Anthony's efforts are few.

Finally, and most importantly, thanks go to Mark Spencer for GAIM, Asterisk and DUNDi, and for contributing his creations to the open

source community.

Leif Madsen

The road to this book is a long onenearly three years in the making. Back when I started using Asterisk, possibly much like you, I didn't

know anything about Asterisk, very little about traditional telephony and even less about voice over IP. I delved right into this new and

very exciting world and took in all I could. For two months during a co-op term, for which I couldn't immediately find work, I absorbed as

much as I could, asking questions, trying things and seeing what the system could do. Unfortunately very little to no documentation

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

existed for Asterisk aside from some dialplan examples I was able to find by John Todd and having questions answered by Brian K. West

on IRC. Of course, this method wasn't going to scale.

Not being much of a coder, I wanted to contribute something back to the community, and what do coders hate doing more than

anything? Documentation! So I started The Asterisk Documentation Assignment (TADA), a basic outline with some information for the

beginnings of a book.

Shortly after releasing it on my website, an intelligent fellow calling himself Jared Smith introduced himself. He had similar aspirations for

creating a "dead-tree" format book for the community, and we humbly started the Asterisk Documentation Project. Jared setup a simple

web site at http://www.asteriskdocs.org, a CVS server and the very first DocBook formatted version of a book for Asterisk. From there we

started filling in information, and soon had information submitted by a number of members of the community.

In June of 2004, an animated chap by the name of Jim Van Meggelen started showing up on the mailing lists, and contributing lots of

information and documentation - this was definitely a guy we wanted on our team! Jim had the vision and the drive to really get Jared

and my butts in gear and to work on something grander. Jim brought us years of experience and a writing flair which we could hardly

have imagined.

With the core documentation team established, we embarked on a plan for the creation of volumes of Asterisk knowledge, eventually to

lead to a complete library and wealth of information. This book is essentially the beginning of that dream.

Firstly and mostly, I have to thank my parents, Rick and Carol for always supporting my efforts, allowing me to realize my dreams, and

always putting my needs ahead of theirs. Without their vision, understanding and insight into the future, it would have been impossible to

have accomplished what I have. I love you both very much!

I'd like to thank Felix Carapaica and Bill Farkas of the Sheridan Institute of Technology for their dedication to the advancement of

knowledge. Their teaching has complemented my prior learning, and has allowed me to expand my understanding of routing and

telecommunications exponentially.

There are far too many people to thank individually, but of particular importance, the following people were, and are, the most influential

to my understanding of Asterisk:, Olle Johansson, Steven Sokol, Joshua Colp, Brian K. West, John Toddand William Suffill for my very

first VoIP phone. And for those who I said I'd mention in the book, thanks!

And of course, I must thank Jared Smith and Jim Van Meggelen for having the vision and understanding of how important documentation

really isall of this would have been impossible with you.

Jared Smith

I first started working with Asterisk in the spring of 2002. I had recently started a new job with a market research company, and ended up

taking a long road trip to a remote call center with the CIO. On the long drive home we talked about innovation in telephony, and he

mentioned a little open-source telephony project he had heard of called Asterisk. Over the next few months, I was able to talk the

company into buying a developers kit from Digium and start playing with Asterisk on company time.

Over the next few months, I became more and more involved with the Asterisk community. I read the mailing lists. I scoured the

archives. I hung out in the IRC channel, just hoping to find nuggets of Asterisk knowledge. As time went on, I was finally able to figure

out enough to get Asterisk up and running.

That's when the real fun began.

With the help of the CIO and the approval of the CEO, we moved forward with plans to move our entire telecom infrastructure to

Asterisk, including our corporate office and all of our remote call centers. Along the way, we ran into a lot of uncharted territory, and I

began thinking about creating a good repository of Asterisk knowledge. Over the course of the project, we were able to do some really

innovative things, such as invent IAX trunking!

When all was said and done, we ended up with around forty Asterisk servers spread across many different geographical locations, all

communicating with each other to provide a cohesive enterprise-class VoIP phone system. It currently handles approximately one million

minutes of calls per month, serves several hundred employees, connects to 27 voice T1s, and saves the company around $20,000

(USD) per month on their telecom costs. In short, our Asterisk project was a resounding success!

While in the middle of implementing this project, I met Leif in one of the Asterisk IRC channels. We talked about ways we could help out

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

http://www.asteriskdocs.org

new Asterisk users and lower the barrier to entry, and we decided to push ahead with plans to more fully document Asterisk. I really

wanted some good documentation in "dead-tree" format basically a book that a new user could pick up and learn the basics of Asterisk.

About that same time, the number of new users on the Asterisk mailing lists and in the IRC channels grew tremendously, and we felt that

writing an Asterisk book would greatly improve the signal-to-noise ratio. The Asterisk Documentation Project was born! The rest, they

say, is history.

Since then, we've been writing Asterisk documentation. I never thought it would be this arduous, yet rewarding. (I joked with Leif and Jim

that it might be easier and less controversial to write an in-depth tome called "Religion, Gun Control, and Sushi" than cover everything

that Asterisk has to offer in sufficient detail!) What you see here is a direct result of a lot of late nights and long weekends spent helping

the Asterisk communityafter all, it's the least we could do, considering what Asterisk has given to us. We hope it will inspire other

members of the Asterisk community to help document changes and new features, for the benefit of all involved.

Now to thank some people:

First of all, I'd like to thank my beautiful wife. She's put up with a lot of lonely nights while I've been slaving away at the keyboard, and I'd

like her to know how much I appreciate her and her endless support. I'd also like to thank my kids for doing their best to remind me of the

important things in life. I love you!

To my parents: thanks for everything you've done to help me stretch and grow and learn over the years. You're the best parents a

person could ask for.

To Dave Carr and Michael Lundberg: thanks for letting me learn Asterisk on company time. Working with both of you was truly a

pleasure. May God smile upon you and grant you success and joy in all you do.

To Leif and Jim: thanks for putting up with my stupid jokes, my insistence that we do things "the right way," and my crazy schedule.

Thanks for pushing me along, and making me a better writer. I've really enjoyed working with you two, and hope to collaborate with you

on future projects!

To Mark Spencer: thank you for your continued support and dedication and friendship. You've been an invaluable resource to our effort,

and I truly believe that you've started a revolution in the world of telephony. You're always welcome in my home and at my dinner table!

To the other great people at Digium: thank you for your help and support. We're especially thankful for you willingness to give us more

insight into the Asterisk code, and for donating hardware so that we can better document the Asterisk Developer's Kit.

To Steven Sokol, Steven Critchfield, Olle E. Johansson, and all the others who have contributed to the Asterisk Documentation Project

and to this book: thank you! We couldn't have done it without your help and suggestions.

Jim Van Meggelen

For me, it all started in the spring of 2004, sitting at my desk in the technical support department of the telecom company I'd worked at for

nearly fifteen years. With no challenges worthy of my skills, I spent my time trying to figure out what I had achieved in the last fifteen

years. I was stuck in an industry that had squandered far too many opportunities, and had as a result caused itself a spectacular and

embarrassing fall from being the darling of investors to a joke known to even the most uneducated. I was supposed to feel fortunate to be

one of the few who still had work, but what thankless, purposeless work it was. We knew why our industry had collapsed: the products

we sold could not hope to deliver the solutions our customers requiredeven though the industry promised that they could. They lacked

flexibility, and were priced totally out of step with the functionality they were delivering (or, more to the point, were failing to deliver).

Nowhere in the industry were there any signs this was going to change any time soon.

I had been dreaming of an open-source PBX for many long years, but I really didn't know how such a thing could ever come to beI'd

given up on the idea several years before. I knew that to be successful, an open source PBX would need to effectively bridge the worlds

of legacy and network-based telecom. I always failed to find anything that seemed ready.

Then, one fine day in spring, I half-heartedly seeded a Google search with the phrase "open source telephony," and discovered a bright

new future for telecom: Asterisk, the Open Source Linux PBX.

There it was: the very thing I'd been dreaming of for so many years. The clouds parted, the sun shone through; adventure lay ahead. I

had no idea how I was going to contribute, but I knew this: open-source telephony was going to cause a necessary and beneficial

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

revolution in the telecom industry; and one way or another, I was going to be a part of it.

For me, more of a systems integrator than developer, I needed a way to contribute to the community. There didn't seem to be a shortage

of developers, but there sure was a shortage of documentation. This sounded like something I could do. I knew how to write, I knew a

thing or two about PBXs, and I desperately needed to talk about this phenomenon that suddenly made telecom fun again.

If I contribute only one thing to this book, I hope you will catch some of my enthusiasm for the subject of open-source telephony. This is

an incredible gift we have been given, but also an incredible responsibility. What a wonderful challenge. What a cosmic opportunity.

What delicious fun!

First of all, I need to thank Leif and Jared for inviting me to join the Asterisk Documentation Project. I have immensely enjoyed working

with both of you, and I am constantly amazed at how well our personalities and skills complement each other. A truly balanced team, are

we.

To my wife Killi, and my children Kaara, Joonas, and Joosep (who always remember to visit me when I disappear into my underground

lair for too long): you are a source of inspiration to me. Your love is the fuel that feeds my fire, and I thank you.

Obviously, I need to thank my parents Jack and Martiny, for always believing in me, no matter how many rules I broke. In a few years, I'll

have my own teenagers, and it'll be your turn to laugh!

To Mark Spencer: thanks for all the things that everybody else thanks you for, but also, personally, thanks for giving generously of your

time to the Asterisk community. The Toronto Asterisk Users' Group (http://www.taug.ca) made a quantum leap forward as a result of

your taking the time to speak to us, and that event will forever form a part of our history. Oh yeah, and thanks for the beers, too. :-)

Finally, thanks to the Asterisk Community. This book is our gift to you. We hope you enjoy reading it as much as we've enjoyed writing it.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

http://www.taug.ca

Chapter 1. A Telephony Revolution

It does not require a majority to prevail,

but rather an irate, tireless minority

keen to set brush fires in people's minds.

Samuel Adams

An incredible revolution is under way. It has been a long time in coming, but now that it has started, there will be no stopping it. It is

taking place in an area of technology that has lapsed embarrassingly far behind every other industry that calls itself high-tech. The

industry is telecommunications, and the revolution is being fueled by an open source Private Branch eXchange (PBX) called Asterisk
TM

.

Telecommunications is arguably the last major electronics industry that has (until now) remained untouched by the open source

revolution. Major telecommunications manufacturers still build ridiculously expensive, incompatible systems, running complicated,

ancient code on impressively engineered yet obsolete hardware.

As an example, Nortel's Business Communications Manager kludges together a Windows NT 4.0 server, a 15-year-old VXWorks-based

Key Telephone Switch, and a 700-MHz PC. All this can be yours for between 5 and 15 thousand dollars, not including telephones. If you

want it to actually do anything interesting, you'll have to pay extra licensing fees for closed, limited-functionality, shrink-wrapped

applications. Customization? Forget itit's not in the plan. Future technology and standards compliance? Give them a year or twothey're

working on it.

All of the major telecommunications manufacturers offer similar-minded products. They don't want you to have flexibility or choice; they

want you to be locked in to their product cycles.

Asterisk changes all that. With Asterisk, no one is telling you how your phone system works, or what technology you are limited to. If you

want it, you can have it. Asterisk lovingly embraces the concept of standards compliance, while also enjoying the freedom to develop its

own innovations. What you choose to implement is up to you-Asterisk imposes no limits.

Naturally, this incredible flexibility comes with a price: Asterisk is not a simple system to configure. This is not because it's illogical,

confusing, or cryptic; to the contrary, it is very sensible and practical. People's eyes light up when they first see an Asterisk dialplan and

begin to contemplate the possibilities. But when there are literally thousands of ways to achieve a result, the process naturally requires

extra effort. Perhaps it can be compared to building a house: the components are relatively easy to understand, but a person

contemplating such a task must either a) enlist competent help or b) develop the required skills through instruction, practice, and a good

book on the subject.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

1.1. VoIP: Bridging the Gap Between Traditional Telephony and Network

Telephony

While Voice over IP (VoIP) is often thought of as little more than a method of obtaining free long-distance calling, the real value (andlet's

be honestchallenge as well) of VoIP is that it allows voice to become nothing more than another application in the data network.

It sometimes seems that we've forgotten that the purpose of the telephone is to allow people to communicate. It is a simple goal, really,

and it should be possible for us to make it happen in far more flexible and creative ways than are currently available to us. Since the

industry has demonstrated an unwillingness to pursue this goal, a large community of passionate people have taken on the task.

The challenge comes from the fact that an industry that has changed very little in the last century shows little interest in starting now.

1.1.1. The Zapata Telephony Project

The Zapata Telephony Project was conceived of by Jim Dixon, a telecommunications consulting engineer who was inspired by the

incredible advances in CPU speeds that the computer industry has now come to take for granted. Dixon's belief was that far more

economical telephony systems could be created if a card existed that had nothing more on it than the basic electronic components

required to interface with a telephone circuit. Rather than having expensive components on the card, Digital Signal Processing (DSP)
[*]

would be handled in the CPU by software. While this would impose a tremendous load on the CPU, Dixon was certain that the low cost

of CPUs relative to their performance made them far more attractive than expensive DSPs, and, more importantly, that this

price/performance ratio would continue to improve as CPUs continued to increase in power.

[*] The term DSP also means Digital Signal Processor, which is a device (usually a chip) that is capable of

interpreting and modifying signals of various sorts. In a voice network, DSPs are primarily responsible for

encoding, decoding, and transcoding audio information. This can require a lot of computational effort.

Like so many visionaries, Dixon believed that many others would see this opportunity, and that he merely had to wait for someone else

to create what to him was an obvious improvement. After a few years, he noticed that not only had no one created these cards, but it

seemed unlikely that anyone was ever going to. At that point it was clear that if he wanted a revolution, he was going to have to start it

himself. And so the Zapata Telephony Project was born.

Since this concept was so revolutionary, and was certain to make a lot of waves in the industry, I decided on the

Mexican revolutionary motif, and named the technology and organization after the famous Mexican revolutionary

Emiliano Zapata. I decided to call the card the 'tormenta' which, in Spanish, means 'storm,' but contextually is

usually used to imply a big storm, like a hurricane or such.
[*]

[*] Jim Dixon, "The History of Zapata Telephony and How It Relates to the Asterisk PBX"

(http://www.asteriskdocs.org/modules/tinycontent/index.php?id=10).

Perhaps we should be calling ourselves Asteristas. Regardless, we owe Jim Dixon a debt of thanks, partly for thinking this up and partly

for seeing it through, but mostly for giving the results of his efforts to the open source community. As a result of Jim's contribution,

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

http://www.asteriskdocs.org/modules/tinycontent/index.php?id=10

Asterisk's Public Switched Telephone Network (PSTN) engine came to be.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

1.2. Massive Change Requires Flexible Technology

The most successful key telephone system in the world has a design limitation that has survived 15 years of users begging for what

appears to be a simple change: when you determine the number of times your phone will ring before it forwards to voicemail, you can

choose from 2, 3, 4, 6, or 10 ring cycles. Have you any idea how many times people ask for five rings? Yet the manufacturers absolutely

cannot get their heads around the idea that this is a problem. That's the way it works, they say, and users need to get over it.

That's just one examplethe industry is rife with them.

Another example from the same system is that the name you program on your set can only be seven characters in length. Back in the

late 1980s, when this particular system was built, RAM was pretty dear, and storing those seven characters for dozens of sets

represented a huge hardware expense. So what's the excuse today? None. Are there any plans to change it? Hardlythe issue is not

even officially acknowledged as a problem.

Now, it's all very well and good to pick on one system, but the reality is that every PBX in existence suffers shortcomings. No matter how

fully featured it is, something will always be left out, because even the most feature-rich PBX will always fail to anticipate the creativity of

the customer. A small group of users will desire an odd little feature that the design team either did not think of or could not justify the

cost of building, and, since the system is closed, the users will not be able to build it themselves.

If the Internet had been thusly hampered by regulation and commercial interests, it is doubtful that it would have developed the wide

acceptance it currently enjoys. The openness of the Internet meant that anyone could afford to get involved. So, everyone did. The tens

of thousands of minds that collaborated on the creation of the Internet delivered something that no corporation ever could have.

As with many other open source projects, such as Linux and the Internet, the explosion of Asterisk was fueled by the dreams of folks

who knew that there had to be something more than what the industry was producing. The strength of the community is that it is

composed not of employees assigned to specific tasks, but rather of folks from all sorts of industries, with all sorts of experiences, and all

sorts of ideas about what flexibility means, and what openness means. These people knew that if one could take the best parts of

various PBXs and separate them into interconnecting componentsakin to a boxful of LEGO bricksone could begin to conceive of things

that would not survive a traditional corporate risk-analysis process. While no one can seriously claim to have a complete picture of what

this thing should look like, there is no shortage of opinions and ideas.

Many people new to Asterisk see it as unfinished. Perhaps these people can be likened to visitors to an art studio, looking to obtain a

signed, numbered print. They often leave disappointed, because they discover that Asterisk is the blank canvas, the tubes of paint, the

unused brushes waiting.

Even at this early stage in its success, Asterisk is nurtured by a greater number of artists than any other PBX. Most manufacturers

dedicate no more than a few developers to any one product; Asterisk has scores. Most proprietary PBXs have a worldwide support team

comprised of a few dozen real experts; Asterisk has hundreds.

The depth and breadth of expertise that surrounds this product is unmatched in the telecom industry. Asterisk enjoys the loving attention

of old Telco guys who remember when rotary dial mattered, enterprise telecom people who recall when voicemail was the hottest new

technology, and data communications geeks and coders who helped build the Internet. These people all share a common belief: that the

telecommunications industry needs a proper revolution.
[*]

[*] The telecom industry has been predicting a revolution since before the crash; time will tell how well they

respond to the open source revolution.

Asterisk is the catalyst.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

file:///C:/DOCUME~1/stelios/LOCALS~1/Temp/2/O'Reilly,.Asterisk.The.Future.of.Telephony.(2005).BBL.LotB.chm/0596009623/18051535.html

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

1.3. Asterisk: The Hacker's PBX

Telecommunications companies who choose to ignore Asterisk do so at their peril. The flexibility it delivers creates possibilities that the

best proprietary systems can scarcely dream of. This is because Asterisk is the ultimate hacker's PBX .

If someone asks you not to use the term hacker, refuse. That term does not belong to the mass media. They stole it and corrupted it to

mean "malicious cracker." It's time we took it back. Hackers built the networking engine that is the Internet. Hackers built the Apple

Macintosh and the Unix operating system. Hackers are also building your next telecom system. Do not fear; these are the good guys,

and they'll be able to build a system that's far more secure than anything that exists today, because rather than being constricted by the

dubious and easily cracked security of closed systems, they will be able to quickly respond to changing trends in security and fine-tune

the telephone system in response to both corporate policy and industry best practices.

Like other open source systems, Asterisk will be able to evolve into a far more secure platform than any proprietary system, not in spite

of its hacker roots, but rather because of them.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

1.4. Asterisk: The Professional's PBX

Never in the history of telecommunications has a system so suited to the needs of business been available, at any price. Asterisk is an

enabling technology, and, as with Linux, it will become increasingly rare to find an enterprise that is not running some version of Asterisk,

in some capacity, somewhere in the network, solving a problem as only Asterisk can.

This acceptance is likely to happen much faster than it did with Linux, though, for several reasons:

Linux has already blazed the trail that led to open source acceptance, so Asterisk can follow that lead.1.

The telecom industry is crippled, with no leadership being provided by the giant industry players. Asterisk has a compelling,

realistic, and exciting vision.

2.

End users are fed up with incompatible, limited functionality, and horrible support. Asterisk solves the first two problems; the

community has shown a passion for the latter.

3.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

file:///C:/DOCUME~1/stelios/LOCALS~1/Temp/2/O'Reilly,.Asterisk.The.Future.of.Telephony.(2005).BBL.LotB.chm/0596009623/18051535.html

1.5. The Asterisk Community

One of the compelling strengths of Asterisk is the passionate community that developed and supports it. This community, led by Mark

Spencer of Digium, is keenly aware of the cultural significance of Asterisk, and they are giddy about the future.

One of the more powerful side effects caused by the energy of the Asterisk community is the cooperation it has spawned among the

telecommunications professionals, networking professionals, and information technology professionals who share a love for this

phenomenon. While these professions have traditionally been at odds with each other, in the Asterisk community they delight in each

other's skills. The significance of this cooperation cannot be underestimated.

Still, if the dream of Asterisk is to be realized, the community must growyet one of the key challenges the community currently faces is a

rapid influx of new users. The members of the existing community, having birthed this thing called Asterisk, are generally welcoming of

new users, but they've grown impatient with being asked the kinds of questions whose answers can often be obtained independently, if

one is willing to put forth the time needed to research and experiment.

Obviously, new users do not fit any particular kind of mold. While some will happily spend hours experimenting and reading various blogs

describing the trials and tribulations of others, many people who have become enthusiastic about this technology are completely

uninterested in such pursuits. They want a simple, straightforward, step-by-step guide that'll get them up and running, followed by some

sensible examples describing the best methods of implementing common functionality (such as voicemail, auto attendants, and the like).

To the members of the expert community, who (correctly) perceive that Asterisk is like a programming language, this approach doesn't

make any sense. To them, it's clear that you have to immerse yourself in Asterisk to appreciate its subtleties. Would one ask for a

step-by-step guide to programming and expect to learn from it all that a language has to offer?

Clearly, there's no one approach that's right for everyone. Asterisk is a different animal altogether, and it requires a totally different

mindset. As you explore the community, though, be aware that there are people with many different skill sets and attitudes here. Some of

these folks do not display much patience with new users, but that's often due to their passion for the subject, not because they don't

welcome your participation.

1.5.1. The Asterisk Mailing Lists

As with any community, there are places where members of the Asterisk community meet to discuss matters of mutual interest. Of the

mailing lists you will find at http://lists.digium.com, these three are currently the most important:

Asterisk-Biz

Anything commercial with respect to Asterisk belongs in this list. If you're selling something Asterisk-related, sell it here. If you

want to buy an Asterisk service or product, post here.

Asterisk-Dev

The Asterisk developers hang out here. The purpose of this list is the discussion of the development of the software that is

Asterisk, and its participants vigorously defend that purpose. Expect a lot of heat if you post anything to this list not relating to

programming or development.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

http://lists.digium.com

Asterisk-Users

This is where most Asterisk users hang out. This list generates several hundred messages per day and has over ten

thousand subscribers. While you can go here for help, you are expected to have done some reading on your own before you

post a query.

1.5.2. The Asterisk Wiki

The Asterisk Wiki is a source of much enlightenment and confusion. A community-maintained repository of VoIP knowledge,

http://www.voip-info.org contains a truly inspiring mess of fascinating, informative, and frequently contradictory information about many

subjects, just one of which is Asterisk.

Since Asterisk documentation forms by far the bulk of the information on this web site, and it probably contains more Asterisk knowledge

than all other sources put together (with the exception of the mailing-list archives), it is commonly referred to as the place to go for

Asterisk knowledge.

1.5.3. The IRC Channels

The Asterisk community maintains Internet Relay Chat channels on irc.freenode.net. The two most active are #Asterisk and

#Asterisk-Dev. To cut down on spam-bot intrusions, both of these channels now require registration to join.

1.5.4. The Asterisk Documentation Project

The Asterisk Documentation Project was started by Leif Madsen and Jared Smith. Many people in the community have contributed.

The goal of the documentation project is to provide a structured repository of written work on Asterisk. In contrast with the flexible and ad

hoc nature of the Wiki, the Docs project is passionate about building a more focused approach to various Asterisk-related subjects.

As part of the efforts of the Asterisk Docs project to make documentation available online, this book is available at the

http://www.asteriskdocs.org web site, under a Creative Commons license.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

http://www.voip-info.org
http://irc.freenode.net
http://www.asteriskdocs.org

1.6. The Business Case

It is very rare to find businesses these days that do not have to reinvent themselves every few years. It is equally rare to find a business

that can afford to replace its communications infrastructure each time it goes in a new direction. Today's businesses need extreme

flexibility in all of their technology, including telecom.

In his book Crossing the Chasm (HarperBusiness), Geoffrey Moore opines, "The idea that the value of the system will be discovered

rather than known at the time of installation implies, in turn, that product flexibility and adaptability, as well as ongoing account service,

should be critical components of any buyer's evaluation checklist." What this means, in part, is that the true value of a technology is often

not known until it has been deployed.

How compelling, then, to have a system that holds at its very heart the concept of openness and the value of continuous innovation.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

1.7. This Book

So where to begin? Well, when it comes to Asterisk, there is far more to talk about than we can fit into one book. For now, we're not

going to take you down all the roads that the über-geeks followwe're just going to give you the basics.

In Chapter 1, we cover some of the engineering considerations you should have in mind when designing a telecommunications system.

You can skip much of this material if you want to get right to installing, but these are important concepts to understand, should you ever

plan on putting an Asterisk system into production.

Chapter 2 covers obtaining, compiling, and installing Asterisk, and Chapter 3 deals with the initial configuration of Asterisk. Here we cover

the important configuration files that must exist to define the channels and features available to your system. This will prepare you for

Chapter 4, where we introduce the heart of Asterisk, the dialplan. Having covered dialplan basics, Chapter 5 introduces some more

advanced dialplan concepts.

We will take a break from Asterisk in Chapter 6, and discuss some of the more important technologies in use in the PSTN. Naturally,

following the discussion of legacy telephony, Chapter 7 discusses Voice over IP.

Chapter 8 introduces one of the more amazing components, the Asterisk Gateway Interface (AGI). Using Perl, PHP, and Python, we

demonstrate how external programs can be used to add nearly limitless functionality to your PBX. In Chapter 9, we briefly cover what is,

in fact, a rich and varied cornucopia of incredible features and functions, all of which are part of the Asterisk phenomenon. To conclude,

Chapter 10 looks forward, predicting a future where open source telephony completely transforms an industry desperately in need of a

revolution. You'll also find a wealth of reference information in the book's five appendixes.

This book can only lay down the basics, but from this foundation, you will be able to come to an understanding of the concept of

Asteriskand from that, who knows what you will build?

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

file:///C:/DOCUME~1/stelios/LOCALS~1/Temp/2/O'Reilly,.Asterisk.The.Future.of.Telephony.(2005).BBL.LotB.chm/0596009623/18051535.html

Chapter 2. Preparing a System for Asterisk

Very early on, I knew that someday in some "perfect"

future out there over the horizon, it would be

commonplace for computers to handle all of the

necessary processing functionality internally,

making the necessary external hardware to connect up

to telecom interfaces VERY inexpensive

and in some cases trivial.

Jim Dixon, "The History of Zapata Telephony and

How It Relates to the Asterisk PBX"

By this point, you must be anxious to get your Asterisk system up and running. If you are building a hobby system, you can probably

jump right to the next chapter and begin the installation. For a mission-critical deployment, however, some thought must be given to the

environment in which the Asterisk system will run. Make no mistake: Asterisk, being a very flexible piece of software, will happily and

successfully install on nearly any Linux platform you can conceive of, and several non-Linux platforms as well.
[*]

 However, to arm you

with an understanding of the type of operating environment Asterisk will really thrive in, this chapter will discuss issues you need to be

aware of in order to deliver a reliable, well-designed system.

[*] People have successfully compiled and run Asterisk on WRAP boards, Linksys WRT54G routers, Soekris

systems, Pentium 100s, PDAs, Apple Macs, Sun SPARCs, laptops, and more. Of course, whether you would

want to put such a system into production is another matter entirely. (Actually, the AstLinux distribution, by

Kristian Kielhofner, runs very well indeed on the Soekris 4801 board. Once you've grasped the basics of Asterisk,

this is something worth looking into further. Check out http://www.astlinux.org.)

In terms of its resource requirements, Asterisk's needs are similar to those of an embedded, real-time application. This is due in large

part to its need to have priority access to the processor and system buses. It is therefore imperative that any functions on the system not

directly related to the call-processing tasks of Asterisk be run at a low priority, if at all. On smaller systems and hobby systems, this might

not be as much of an issue. However, on high-capacity systems, performance shortcomings will manifest as audio quality problems for

users, often experienced as echo, static, and the like. The symptoms will resemble those experienced on a cell phone when going out of

range, although the underlying causes will be different. As loads increase, the system will have increasing difficulty maintaining

connections. For a PBX, such a situation is nothing short of disastrous, so careful attention to performance requirements is a critical

consideration during the platform selection process.

Table 2-1 lists some very basic guidelines that you'll want to keep in mind when planning your system. The next section takes a close

look at the various design and implementation issues that will affect its performance.

Table 2-1. System requirement guidelines

Purpose Number of channels Minimum recommended

Hobby system No more than 5 400-MHz x86, 256 MB RAM

SOHO
a
 system 5 to 10 1-GHz x86, 512 MB RAM

Small business system Up to 15 3-GHz x86, 1 GB RAM

Medium to large system More than 15 Dual CPUs, possibly also multiple servers in a distributed architecture

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

http://www.astlinux.org

Purpose Number of channels Minimum recommended

a
 Small Office/home Officeless than three lines and five sets.

With large Asterisk installations, it is common to deploy functionality across several servers. One or more central units will be dedicated

to call processing; these will be complemented by one or more ancillary servers handling peripherals (such as a database, voicemail,

conferencing, management, a web interface, a firewall, and so on). As is true in most Linux environments, Asterisk is well suited to

growing with your needs: a small system that used to be able to handle all your call-processing and peripheral tasks can be distributed

between several servers when increased demands exceed its abilities. Flexibility is a key reason why Asterisk is extremely cost-effective

for rapidly growing businessesthere is no effective maximum or minimum size to consider when budgeting the initial purchase. While

some scalability is possible with most telephone systems, we have yet to hear of one that can scale as inexpensively as Asterisk. Having

said that, distributed Asterisk systems are not simple to designthis is not a task for someone new to Asterisk.
[*]

[*] If you are sure that you need to set up a distributed Asterisk system, you will want to study the DUNDi protocol.

You should probably get the interest of the Asterisk-Users mailing list as well, but be sure to wear your

flame-retardant suit; for some reason, this subject can spur a heated (but generally very educational) debate.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

2.1. Server Hardware Selection

The selection of a server is both simple and complicated: simple because, really, any x86-based platform will suffice; but complicated

because the reliable performance of your system will depend on the care that is put into the platform design. When selecting your

hardware, you must carefully consider the overall design of your system and what functionality you need to support. This will help you

determine your requirements for the CPU, motherboard, and power supply. If you are simply setting up your first Asterisk system for the

purpose of learning, you can safely ignore the information in this section. If, however, you are building a mission-critical system suitable

for deployment, these are issues that require some thought.

2.1.1. Performance Issues

Among other considerations, when selecting the hardware for an Asterisk installation you must bear in mind this critical question: how

powerful must the system be? This is not an easy question to answer, because the manner in which the system is to be used will play a

big role in the resources it will consume. There is no such thing as an Asterisk performance-engineering matrix, so you will need to

understand how Asterisk uses the system in order to make intelligent decisions about what kinds of resources will be required. You will

need to consider several factors, including:

The maximum number of concurrent connections the system will be expected to support

Each connection will increase the workload on the system.

The percentage of traffic that will require processor-intensive Digital Signal Processing (DSP) of compressed codecs (such as G.729 and

GSM)
[*]

The DSP work that Asterisk performs in software can have a staggering impact on the number of concurrent calls it will

support. A system that can happily handle 50 concurrent G.711 calls can be brought to its knees by a request to conference

together 10 G.729 compressed channels.

Whether conferencing will be provided, and what level of conferencing activity is expected

Will the system be used heavily? Conferencing requires the system to transcode and mix each individual incoming audio

stream into multiple outgoing streams. Mixing multiple audio streams in near-real-time can place an enormous load on the

CPU.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

Echo cancellation
[]

Echo cancellation may be required on any calls where a Public Switched Telephone Network (PSTN) interface is involved.

Since echo cancellation is a mathematical functionthe more of it the system has to perform, the higher the load on the CPU

will be.

Dialplan scripting logic

Whenever Asterisk has to pass call control to an external program, there is a performance penalty. As much logic as possible

should be built into the dialplan. If external scripts are used, they should be designed with performance and efficiency as

important goals.

As for the exact performance impact of these factors, the jury's still out. The effect of each is known in general terms, but an accurate

performance calculator has not yet been successfully defined. This is partly because the effect of each component of the system is

dependent on numerous variables, such as CPU power, motherboard chipset and overall quality, total traffic load on the system, Linux

kernel optimizations, network traffic, number and type of PSTN interfaces, and PSTN trafficnot to mention any non-Asterisk services the

system is performing concurrently. Let's take a look at the effects of several key factors:

Codecs and transcoding

Simply put, a codec (short for coder/decoder or compression/decompression) is a set of mathematical rules that define how

an analog waveform will be digitized. The differences between the various codecs are due in large part to the levels of

compression and quality that they offer. Generally speaking, the more compression that's required, the more work the DSP

must do to code or decode the signal. Uncompressed codecs, therefore, put far less strain on the CPU (but require more

network bandwidth). Codec selection must strike a balance between bandwidth and processor usage.

Central Processing Unit (and Floating Point Unit)

A CPU is comprised of several components, one of which is the Floating Point Unit (FPU). The speed of the CPU, coupled

with the efficiency of its FPU, will play a significant role in the number of users a system can effectively support. The next

section, "Choosing a Processor," offers guidelines for choosing a CPU that will meet the needs of your system.

Other processes running concurrently on the system

Being Unix-like, Linux is designed to be able to multitask several different processes. A problem arises when one of those

processes (such as Asterisk) demands a very high level of responsiveness from the system. By default, Linux will equally

distribute resources amongst every application that requests them. If you install a system with many different server

applications, those applications will each be allowed their fair use of the CPU. Since Asterisk requires frequent high-priority

access to the CPU, it does not get along well with other applications, and if Asterisk must coexist with other apps, the system

may require special optimizations. This primarily involves the assignment of priorities to various applications in the system,

and, during installation, careful attention to which applications are installed as services.

Kernel optimizations

A kernel optimized for the performance of one specific application is something that very few Linux distributions offer by

default, and thus it requires some thought. At the very minimumwhichever distribution you choosea fresh copy of the Linux

kernel (available from http://www.kernel.org) should be downloaded and compiled on your platform. You may also be able to

acquire patches that will yield performance improvements, but these are considered hacks to the officially supported kernel.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

http://www.kernel.org

IRQ latency

Interrupt request (IRQ) latency is basically the delay between the moment a peripheral card (such as a telephone interface

card) requests that the CPU stop what it's doing and the moment when the CPU actually responds and is ready to handle the

task. Asterisk's peripherals (especially the Zaptel cards) are extremely intolerant of IRQ latency.

Linux has historically had problems with its ability to service IRQs quickly; this problem

has caused enough trouble for audio developers that several patches have been created

to address this shortcoming. So far, there has been some mild controversy over how to

incorporate these patches into the Linux kernel.

Because the Digium cards require so much, it is generally recommended that only one Digium card be run in a system. If you

require more connectivity than a single card can provide, either replace your existing card with one of higher density, or add

another server to your environment.
[*]

[*] Many people report that Sangoma cards are more robust when it comes to dealing with

unpredictable motherboard chipsets, and thus can handle sharing motherboard IRQ resources.

Regardless, it is still worth considering using multiple servers, as the redundancy that can be gained

from this strategy can quickly offset the cost.

Kernel version

Asterisk is officially supported on Linux Version 2.6.

Linux distribution

Linux distributions are many and varied. In the next chapter, we will discuss the challenge of selecting a Linux distribution,

and how to obtain and install both Linux and Asterisk.

2.1.2. Choosing a Processor

Since the performance demands of Asterisk will generally involve a large number of math calculations, it is essential that you select a

processor with a powerful FPU. The signal processing that Asterisk performs can quickly demand a staggering quantity of complex

mathematical computations from the CPU. The efficiency with which these tasks are carried out will be determined by the power of the

FPU within that processor.

To actually name a best processor for Asterisk would fly in the face of the rapid advances in the computer industry. Even in the time

between the authoring and publishing of this book, processor speeds will undergo rapid improvements, as will Asterisk's support for

various architectures. Obviously, this is a good thing, but it also makes the giving of advice on the topic a thankless task. Naturally, the

more powerful the FPU is, the more concurrent DSP tasks Asterisk will be able to handle, so that is the ultimate consideration. When you

are selecting a processor, the raw clock speed is only part of the equation. How well it handles floating-point operations will be a key

differentiator, as DSP operations in Asterisk will place a large demand on it.

Both Intel and AMD CPUs have powerful FPUs . As of this writing, the Intel chips are commonly preferred for 32-bit systems, while AMD

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

gets the nod if you're going to 64-bit. When you read this book, that may no longer be true.
[*]

[*] If you want to be completely up to the minute on which CPUs are leading the performance race, surf on over to

Tom's Hardware (http://www.tomshardware.com) or AnandTech (http://www.anandtech.com), where you will find a

wealth of information about both current and out-of-date CPUs, motherboards, and chipsets.

The obvious conclusion is that you should get the most powerful CPU your budget will allow. However, don't be too quick to buy the most

expensive CPU out there. You'll need to keep the requirements of your system in mindafter all, a Formula 1 Ferrari is ill-suited to the

rigors of rush-hour traffic.

In order to attempt to provide a frame of reference from which we can contemplate our platform decision, we have chosen to define three

sizes of Asterisk systems: small, medium, and large.

2.1.2.1. Small systems

Small systems (up to 10 phones) are not immune to the performance requirements of Asterisk, but the typical load that will be placed on

a smaller system will generally fall within the capabilities of a modern processor.

If you are building a small system from older components you have lying around, be aware that the resulting system cannot be expected

to perform at the same level as a more powerful machine, and will run into performance degradation under a much lighter load. Hobby

systems can be run successfully on very low-powered hardware,
[]

 although this is by no means recommended for anyone who is not a

whiz at Linux performance tuning.

[] A 133-MHz Pentium system is known to be running Asterisk, but performance problems are likely, and

properly configuring such a system requires an expert knowledge of Linux. We do not recommend running

Asterisk on anything less than a 500-MHz system (for a production system, 2 GHz might be a sensible minimum),

but we think the fact that Asterisk is so flexible is remarkable.

If you are setting up an Asterisk system for the purposes of learning, you will be able to build a fully featured platform using a relatively

low-powered CPU. The authors run several Asterisk lab systems with 433-MHz to 700-MHz Celeron processors; the workload of these

systems is typically minimal.

2.1.2.2. Medium systems

Medium-sized systems (from 10 to 50 phones) are where performance considerations will be the most challenging to resolve. Generally,

these systems will be deployed on one or two servers only, and thus each machine will be required to handle more than one specific

task. As loads increase, the limits of the platform will become increasingly stressed. Users may begin to perceive quality problems

without realizing that the system is not faulty in any way, but simply exceeding its capacity. These problems will get progressively worse

as more and more load is placed on the system, with the user experience degrading accordingly. It is critical that performance problems

be identified and addressed before they are noticed by users.

Monitoring performance on these systems and quickly acting on any developing trends is a key to ensuring that a quality telephony

platform is provided.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

http://www.tomshardware.com
http://www.anandtech.com

2.1.2.3. Large systems

Large systems (over 50 users) can be distributed across multiple cores, and thus performance concerns can be managed through the

addition of machines. Very large Asterisk systemsfrom 500 to over 1,000 usershave been created in this way. Building a large system

requires an advanced level of knowledge in many different disciplines. We will not discuss it in detail in this book, other than to say that

the issues you'll encounter will be similar to those encountered during any deployment of multiple servers handling a single, distributed

task.

2.1.3. Choosing a Motherboard

Just to get any anticipation out of the way, we also cannot recommend specific motherboards in this book. With new motherboards

coming out on a weekly basis, any recommendations we made would be rendered moot by obsolescence before the published copy hit

the shelves. Not only that, but motherboards are like automobiles: while they are all very similar in principle, the difference is in the

details. And as Asterisk is a performance application, the details matter.

What we will do, therefore, is give you some idea of the kinds of motherboards that can be expected to work well with Asterisk, and the

features that will make for a good motherboard. The key is to have both stability and high performance. Here are some guidelines to

follow:

The various system buses must provide the minimum possible latency. If you are planning a PSTN connection using analog

or PRI interfaces (discussed later in this chapter), the Digium Zaptel cards will generate 1,000 interrupt requests per second.

Having devices on the bus that interfere with this process will result in degradation of call quality. Chipsets from Intel (for Intel

CPUs) and nVidia nForce (for AMD CPUs) seem to score the best marks in this area. Review the specific chipset of any

motherboard you are evaluating to ensure that it does not have known problems with IRQ latency.

If you are running Zaptel cards in your system, you will want to ensure that your BIOS allows you maximum control over IRQ

assignment . As a rule, high-end motherboards will offer far greater flexibility with respect to BIOS tweaking; value-priced

boards will generally offer very little control. This may be a moot point, however, as APIC-enabled motherboards turn IRQ

control over to the operating system.

Server-class motherboards generally implement a different PCI standard than workstation-class motherboards . While there

are many differences, the most obvious and well known is that the two versions have different voltages. Depending on which

cards you purchase, you will need to know if you require 3.3V or 5V PCI slots. Figure 2-1 shows the difference between 3.3V

and 5V slots. Most server motherboards will have both types, but workstations will typically have only the 5V version.

Figure 2-1. Visual identification of PCI slots

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

Consider using multiple processors. This will provide an improvement in the system's ability to handle multiple tasks. For

Asterisk, this will be of special benefit in the area of floating-point operations.

It should be noted that evidence now suggests that connecting together two completely

separate, single-CPU systems may provide far more benefits than simply using two

processors in the same machine. You not only double your CPU power, but you also

achieve a much better level of redundancy at a similar cost to a single-chassis,

dual-CPU machine. Keep in mind, though, that a dual-server Asterisk solution will be

more complex to design than a single-machine solution.

Avoid motherboards that include built-in audio and video components. If you want a sound card, install one. As for a video

card, you may not need one at allcertainly Asterisk does not require one. It has traditionally been the more value-priced

motherboards that have had these components on-board, and these board designs often make compromises to keep down

the costs.

If possible, install an external modem. If you must have an internal modem, you will need to ensure that it is not a so-called

"Win-modem"it must be a completely self-sufficient unit (note that these are very difficult, if not impossible, to find).

Consider that with built-in networking, if you have a network component failure, the entire motherboard will need to be

replaced. On the other hand, if you install a peripheral Network Interface Card (NIC) , there may be an increased chance of

failure due to the extra mechanical connections involved. Some value can probably be gained from having both primary and

backup cards installed in the system.

The stability and quality of your Asterisk system will be dependent on the components you select for its architecture. Asterisk

is a beast, and it expects to be fed the best. As with just about anything, high cost is not always synonymous with quality, but

you will want to become a connoisseur of computer components.

Having said all that, we need to get back to the original point: Asterisk can and will happily install on pretty nearly any PC platform. The

lab systems used to write this book, for example, included everything from a 433-MHz Pentium III on an Intel chipset to an Athlon XP

2000 on a VIA-based motherboard. We have not experienced any performance or stability problems running less than five concurrent

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

telephone connections. For the purposes of learning, do not be afraid to install Asterisk on whatever system you can scrounge up. When

you are ready to put your system into production, however, you will need to understand the ramifications of the choices you make with

respect to your hardware.

2.1.4. Power Supply Requirements

One often-overlooked component in a PC is the power supply (and the supply of power). For a telecommunications system, these

components can play a significant role in the quality of the user experience.

2.1.4.1. Computer power supplies

The power supply you select for your system will play a vital role in the stability of the entire platform. Asterisk is not a particularly

power-hungry application, but anything relating to multimedia (whether it be telephony, professional audio, video, or the like) is generally

sensitive to power quality.

This oft-neglected component can turn an otherwise top-quality system into a poor performer. By the same token, a top-notch power

supply might enable an otherwise cheap PC to perform like a champ.

The power supplied to a system must provide not only the energy the system needs to perform its tasks, but also stable, clean signal

lines for all of the voltages your system expects from it.

2.1.4.2. Redundant power supplies

In a carrier-grade or high-availability environment, it is common to deploy servers that use a redundant power supply. Essentially, this

involves two completely independent power supplies, either one of which is capable of supplying the power requirements of the system.

If this is important to you, keep in mind that best practices suggest that to be properly redundant, these power supplies should be

connected to completely independent Uninterruptible Power Supplies (UPSs) that are in turn fed by totally isolated electrical circuits.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

2.2. Environment

Your system's environment consists of all those factors that are not actually part of the server itself, but nevertheless play a crucial role in

the reliability and quality that can be expected from the system. Electrical supplies, room temperature and humidity, sources of

interference, and security are all factors that should be contemplated.

2.2.1. Power Conditioning and Uninterruptible Power Supplies

When selecting the power sources for your system, consideration should be given not only to the amount of power the system will use,

but also to the manner in which that power is delivered.

Power is not as simple as voltage coming from the outlet in the wall, and you should never just plug a production system into whatever

electrical source is near at hand.
[*]

 Giving some consideration to the supply of power to your system can provide a far more stable power

environment, leading to a far more stable system.

[*] Okay, look, you can plug it in wherever you'd like, and it'll probably work, but if your system has strange stability

problems, please give this section another read. Deal?

Properly grounded, conditioned power feeding a premium-quality power supply will ensure a clean logic ground (a.k.a. 0-volt) reference
[*]

for the system and keep electrical noise on the motherboard to a minimum. These are industry-standard best practices for this type of

equipment, which should not be neglected. A relatively simple way to achieve this is through the use of a power-conditioned UPS.
[]

[*] In electronic devices, a binary zero (0) is generally related to a 0-volt signal, while a binary one (1) can be

represented by many different voltages (commonly between 2.5 and 5 volts). The grounding reference that the

system will consider 0 volts is often referred to as the "logic ground." A poorly grounded system might have

electrical potential on the logic ground to such a degree that the electronics mistake a binary zero for a binary one.

This can wreak havoc with the system's ability to process instructions.

[] It is a commonly misunderstood belief that all UPSs provide clean power. This is not at all true.

2.2.1.1. Power-conditioned UPSs

The UPS is well known for its role as a battery backup, but the power-conditioning benefits that high-end UPS units also provide are less

well understood.

Power conditioning can provide a valuable level of protection from the electrical environment by regenerating clean power through an

isolation transformer. A quality power conditioner in your UPS will eliminate most electrical noise from the power feed and help to ensure

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

a rock-steady supply of power to your system.

Unfortunately, not all UPS units are created equal; many of the less expensive units do not provide clean power. What's worse,

manufacturers of these devices will often promise all kinds of protection from surges, spikes, overvoltages, and transients. While such

devices may protect your system from getting fried in an electrical storm, they will not clean up the power being fed to your system, and

thus will do nothing to contribute to stability.

Make sure your UPS is power conditioned. If it doesn't say exactly that, it isn't.

2.2.2. Grounding

Voltage is defined as the difference in electrical potential between two points. When considering a ground (which is basically nothing more

than an electrical path to earth), the common assumption is that it represents 0 volts. But if we do not define that 0V in relation to

something, we are in danger of assuming things that may not be so. If you measure the voltage between two grounding references,

you'll often find that there is a voltage potential between them. This voltage potential between grounding points can be significant enough

to cause logic errorsor even damagein a system where more than one path to ground is present.

One of the authors recalls once frying a sound card he was trying to connect to a friend's stereo

systemeven though both the computer and the stereo were in the same room, more than 6 volts of

difference was measured between the ground conductors of the two electrical outlets they were

plugged into! The wire between the stereo and the PC (by way of the sound card) provided a path

that the voltage eagerly followed, thus frying a sound card that was not expecting an electrical

current on its signal leads. Connecting both the PC and the stereo to the same outlet fixed the

problem.

When considering electrical regulations, the purpose of a ground is primarily human safety. In a computer, the ground is used as a 0V

logic reference . An electrical system that provides proper safety will not always provide a proper logic referencein fact, the goals of

safety and power quality are sometimes in disagreement. Naturally, when a choice must be made, safety has to take precedence.

Since the difference between a binary zero and a binary one is represented in computers by

voltage differences of sometimes less than 3V, it is entirely possible for unstable power conditions

caused by poor grounding or electrical noise to cause all manner of intermittent system problems.

Some power and grounding advocates estimate that more than 80% of unexplained computer

glitches can be traced to power quality.

Modern switching power supplies are somewhat isolated from power quality issues, but any high-performance system will always benefit

from a well-designed power environment. In mainframes, proprietary PBXs, and other expensive computing platforms, the grounding of

the system is never left to chance. The electronics and frames of these systems are always provided with a dedicated ground that does

not depend on the safety grounds supplied with the electrical feed.

Regardless of how much you are willing to invest in grounding, when you specify the electrical supply to any PBX, ensure that the

electrical circuit is completely dedicated to your system (as discussed in the next section) and that an insulated, isolated grounding

conductor is provided. This can be expensive to provision, but it will contribute greatly to a quality power environment for your system.
[*]

[*] On a hobby system, this is probably too much to ask, but if you are planning on using Asterisk for anything

important, at least be sure to give it a fighting chancedon't put anything like air conditioners, photocopiers, laser

printers, or motors on the same circuit.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

It is also vital that each and every peripheral you connect to your system be connected to the same electrical receptacle (or, more

specifically, the same ground reference). This will cut down on the occurrence of ground loops, which can cause anything from buzzing

and humming noises to damaged or destroyed equipment.

2.2.3. Electrical Circuits

If you've ever seen the lights dim when an electrical appliance kicks in, you've seen the effect that a high-energy device can have on an

electrical circuit. If you were to look at the effects of a multitude of such devices, each drawing power in its own way, you would see that

the harmonically perfect 50- or 60-Hz sine wave you may think you're getting with your power is anything but. Harmonic noise is

extremely common on electrical circuits , and it can wreak havoc on sensitive electronic equipment. For a PBX, these problems can

manifest as audio problems, logic errors, and system instability.

Never install a server on an electrical circuit that is shared with any other devices. There should be only one outlet on the circuit, and you

should connect only your telephone system (and associated peripherals) to it. The wire (including the ground) should be run unbroken

directly back to the electrical panel. The grounding conductor should be insulated, and isolated. There are far too many stories of

photocopiers, air conditioners, and vacuum cleaners wreaking havoc with sensitive electronics to ignore this rule of thumb.

The electrical regulations in your area must always take precedence over any ideas presented

here. If in doubt, consult a power quality expert in your area on how to ensure that you adhere to

electrical regulations. Remember, electrical regulations take into account the fact that human

safety is far more important than the safety of the equipment.

2.2.4. The Equipment Room

Environmental conditions can wreak havoc on systems, and yet it is quite common to see critical systems deployed with little or no

attention given to these matters. If one looks at the statistics, it becomes obvious that attention to environmental factors can play a

significant role in the stability and reliability of systems.

2.2.4.1. Humidity

Simply put, humidity is water in the air. Water is a disaster for electronics, for two main reasons: 1) water is a catalyst for corrosion, and

2) water is conductive enough that it can cause short circuits. Do not install any electronic equipment in areas of high humidity, without

providing a means to remove the moisture.

2.2.4.2. Temperature

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

Heat is the enemy of electronics. The cooler you keep your system, the more reliably it will perform. If you cannot provide a properly

cooled room for your system, at a minimum ensure that it is placed in a location that ensures a steady supply of clean, cool air. Also,

keep the temperature steady. Changes in temperature can lead to condensation and other damaging changes.

2.2.4.3. Dust

There is an old adage in the computer industry that holds that dust bunnies inside of a computer are lucky. Let's consider some of the

realities of dust bunnies:

Significant buildup of dust can restrict airflow inside the system, leading to increased levels of heat.

Dust can contain metal particles, which, in sufficient quantities, can contribute to signal degradation or shorts on circuit boards.

Put critical servers in a filtered environment, and clean out dust bunnies on a regular schedule.

2.2.4.4. Security

Server security naturally involves protecting against network-originated intrusions, but the environment also plays a part in the security of

a system. Telephone equipment should always be locked away, and only persons who have a need to access the equipment should be

allowed near it.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

file:///C:/DOCUME~1/stelios/LOCALS~1/Temp/2/O'Reilly,.Asterisk.The.Future.of.Telephony.(2005).BBL.LotB.chm/0596009623/18051535.html

2.3. Telephony Hardware

If you are going to connect Asterisk to any legacy telecommunications equipment, you will need the correct hardware . The hardware you

require will be determined by what it is you want to achieve.

2.3.1. Connecting to the PSTN

Asterisk allows you to seamlessly bridge circuit-switched telecommunications networks
[*]

 with packet-switched data networks.
[]

 Because

of Asterisk's open architecture (and open source code), it is ultimately possible to connect any standards-compliant interface hardware.

The selection of open source telephony interface boards is currently limited, but as interest in Asterisk grows, that will rapidly change.
[]

 At

the moment, one of the most popular and cost-effective ways to connect to the PSTN is to use the interface cards that evolved from the

work of the Zapata Telephony Project (http://www.zapatatelephony.org).

[*] Often referred to as TDM networks, due to the Time Division Multiplexing used to carry traffic through the PSTN.

[] Popularly called VoIP networks, although Voice over IP is not the only method of transmitting voice over packet

networks (Voice over Frame Relay was very popular in the late 1990s).

[] The evolution of inexpensive, commodity-based telephony hardware is only slightly behind the telephony

software revolution. New companies spring up on a weekly basis, each one bringing new and inexpensive

standards-based devices into the market.

2.3.1.1. Analog interface cards

Unless you need a lot of channels (or a have lot of money to spend each month on telecommunications facilities), chances are that your

PSTN interface will consist of one or more analog circuits, each of which will require a Foreign eXchange Office (FXO) port.

Digium, the company that sponsors Asterisk development, produces the most popular analog interface card for Asterisk , known as the

TDM400P.
[*]

 The TDM400P is a four-port base card that allows for the insertion of up to four daughter cards, which deliver either FXO or

Foreign eXchange Station (FXS) ports. The TDM400P can be purchased with these cards preinstalled, and Digium has designated part

numbers to describe these configurations. The naming convention is TDM x y B, where x and y are numbers representing the quantity of

FXS and FXO
[*]

 cards on the board, respectively. Check out Digium's web site (http://www.digium.com) for more information about this card.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

http://www.zapatatelephony.org
http://www.digium.com

[*] The TDM400P is not, in fact, a TDM card at all. It is analog.

[*] FXS and FXO refer to the opposing ends of an analog circuit. Which one you need will be determined by what

you want to connect to. Chapter 7 discusses these in more detail.

An older card produced by Digium was known as the X100P. It is no longer available from Digium, but you may be able to find a clone of

this card.

Another company that produces Asterisk-compatible analog cards is Voicetronix. They have three Asterisk cards in their analog lineup:

OpenLine4, OpenSwitch6, and OpenSwitch12.

2.3.1.2. Digital interface cards

If you require more than 10 circuits, or require digital connectivity, chances are you're going to be in the market for a T1 or E1 card.
[]

Bear in mind, though, that the monthly charges for a digital PSTN circuit vary widely. In some places, as few as five circuits can justify a

digital circuit; in others, the technology may never be cost-justifiable. The more competition there is in your area, the better chance you

have of finding a good deal. Be sure to shop around.

[] T1 and E1 are digital telephony circuits. We'll discuss them further in Chapter 7.

The Zapata Telephony Project originally produced a T1 card, the Tormenta, that is the ancestor of most Asterisk-compatible T1 cards. The

original Tormenta cards are now considered obsolete, but they do still work with Asterisk. Currently, the only company known to be

producing these cards is Varion.

Digium makes several different digital circuit interface cards. The features on the cards are the same; the primary differences are whether

they provide T1 or E1 interfaces, and how many interfaces each card provides. Although it's technically possible, the general consensus in

the Asterisk community is that no more than one of these cards should be deployed in a single system.

Sangoma, who have been producing open source WAN cards for many years, have recently added Asterisk support for their T1/E1

cards.
[*]

 Sangoma's cards contain powerful field-programmable gate arrays (FPGAs), which make them extremely flexible. In an Asterisk

environment, for example, they have been programmed to interface with the Zapata channel driver.

[*] It should be noted that a Sangoma Frame Relay card figured prominently in the original development of Asterisk

(see http://linuxdevices.com/articles/AT8678310302.html)Sangoma has a long history of supporting open source

WAN interfaces with Linux.

2.3.1.3. Channel banks

A channel bank is loosely defined as a device that allows a digital circuit to be de-multiplexed into several analog circuits (and vice versa).

More specifically, a channel bank lets you connect analog telephones and lines into a system across a T1 line. Figure 2-2 shows how a

channel bank fits into a typical office phone system.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

http://linuxdevices.com/articles/AT8678310302.html

Figure 2-2. Channel bank

Although they can be expensive to purchase, many people feel very strongly that the only proper way to integrate analog circuits and

devices into Asterisk is through a channel bank.

2.3.1.4. Other types of PSTN interfaces

Many VoIP gateways exist that can be configured to provide access to PSTN circuits. Generally speaking, these will be of most use in a

smaller system (one or two lines). They can also be very complicated to configure, as the interaction between the various networks and

devices requires a solid understanding of both telephony and VoIP fundamentals. For that reason, we will not discuss these devices in

detail in this book. They are worth looking into, howeverpopular units are made by Sipura, Grandstream, Digium, and many other

companies.

Another way to connect to the PSTN is through the use of Basic Rate Interface (BRI) ISDN circuits . BRI is a digital telecom standard that

specifies a two-channel circuit that can carry up to 144 kbps of traffic. It is very rarely used in North America and most of the rest of the

world, but it's quite popular in Europe. Due to the variety of different ways this technology has been implemented, we will not be discussing

BRI in very much detail in this book.

2.3.2. Connecting Exclusively to a Packet-Based Telephone Network

If you do not need to connect to the PSTN, Asterisk requires no hardware other than a server with a Network Interface Card.

However, if you are going to be providing music on hold or conferencing and you have no physical timing source , you will need the

ztdummy Linux kernel module. ztdummy is a clocking mechanism designed to provide a timing source to a system where no hardware

timing source exists. In Version 2.4 of the Linux kernel, to use ztdummy you must have a UHCI-type USB controller on your motherboard.

In Linux 2.6, that requirement is no more.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

file:///C:/DOCUME~1/stelios/LOCALS~1/Temp/2/O'Reilly,.Asterisk.The.Future.of.Telephony.(2005).BBL.LotB.chm/0596009623/18051535.html

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

2.4. Types of Phone

Since the title of this book is Asterisk: The Future of Telephony, we would be remiss if we didn't discuss the devices that all of this

technology ultimately has to interconnect: telephones !

We all know what a telephone isbut will it be the same five years from now? Part of the revolution that Asterisk is contributing to is the

evolution of the telephone, from a simple audio communications device into a multimedia communications terminal providing all kinds of

yet-to-be-imagined functions.

As an introduction to this exciting concept, we will briefly discuss the various kinds of devices we currently call "telephones" (any of which

can easily be integrated with Asterisk). We will also discuss some ideas about what these devices may evolve into in the future (devices

that will also easily integrate with Asterisk).

2.4.1. Physical Telephones

Any physical device whose primary purpose is terminating an on-demand audio communications circuit between two points can be

classified as a physical telephone. At a minimum, such a device has a handset and a dial pad; it may also have feature keys, a display

screen, and various audio interfaces.

This section takes a brief look at the various user (or endpoint) devices you might want to connect to your Asterisk system. We'll delve

more deeply into the mechanics of analog and digital telephony in Chapter 7.

2.4.1.1. Analog telephones

Analog phones have been around since the invention of the telephone. Up until about 20 years ago, all telephones were analog.

Although analog phones have some technical differences in different countries, they all operate on similar principles.

When a human being speaks, the vocal cords, tongue, teeth, and lips create a complex variety of sounds. The purpose of the telephone

is to capture these sounds and convert them into a format suitable for transmission over wires. In an analog telephone, the transmitted

signal is analogous to the sound waves produced by the person speaking. If you could see the sound waves passing from the mouth to

the microphone, they would be proportional to the electrical signal you could measure on the wire.

This contiguous connection is referred to as a circuit, which the telephone network used to use

electromechanical switches to create; hence the term circuit-switched network.

Analog telephones are the only kind of phone that are commonly available in any retail electronics store. In the next few years, that can

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

be expected to change dramatically.

2.4.1.2. Proprietary digital telephones

As digital switching systems developed in the 1980s and 1990s, telecommunications companies developed digital Private Branch

eXchanges (PBXs) and Key Telephone Systems (KTSs) . The proprietary telephones developed for these systems were completely

dependent on the systems to which they were connected and could not be used on any other systems. Even phones produced by the

same manufacturer were not cross-compatible (for example, a Nortel Norstar set will not work on a Nortel Meridian 1 PBX). The

proprietary nature of digital telephones limits their future. In this emerging era of standards-based communications, they will quickly be

relegated to the dustbin of history.

The handset in a digital telephone is generally identical in function to the handset in an analog telephone, and they are often compatible

with each other. Where the digital phone is different is that inside the telephone, the analog signal is sampled and converted into a digital

signalthat is, a numerical representation of the analog waveform. We'll leave a detailed discussion of digital signals until Chapter 7; for

now, suffice it to say that the primary advantage of a digital signal is that it can be transmitted over limitless distances with no loss of

signal quality.

The chances of anyone ever making a proprietary digital phone directly compatible with Asterisk are fairly small, but companies such as

Citel (http://www.citel.com) have created gateways that convert the proprietary signals to SIP.
[*]

[*] The Session Initiation Protocol is currently the most well-known and popular protocol for VoIP. We will discuss it

further in Chapter 8.

2.4.1.3. ISDN telephones

Prior to VoIP, the closest thing to a standards-based digital telephone was an ISDN-BRI terminal. Developed in the early 1980s, ISDN

was expected to revolutionize the telecommunications industry in exactly the same way that VoIP promises to finally achieve today.

There are two types of ISDN: Primary Rate Interface (PRI) and Basic Rate Interface (BRI). PRI is

commonly used to provide trunking facilities between PBXs and the PSTN, and is widely deployed.

BRI is not at all common in North America, but has enjoyed some success in Europe.

While ISDN was widely deployed by the telephone companies, many consider the standard to have been a flop, as it generally failed to

live up to its promises. The high costs of implementation, recurring charges, and lack of cooperation amongst the major players

contributed to an environment that caused more problems than it solved.

BRI was intended to service terminal devices and smaller sites (a BRI loop provides two digital circuits). While a wealth of BRI devices

have been developed, BRI has largely been deprecated in favor of faster, less expensive technologies such as ADSL, cable modems,

and VoIP.

BRI is still very popular for use in video-conferencing equipment, as it provides a fixed bandwidth link. Also, BRI does not have the type

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

http://www.citel.com

of quality of service issues a VoIP connection might, as it is circuit-switched.

BRI is still sometimes used in place of analog circuits to provide trunking. Whether or not this is a good idea depends mostly on how your

local phone company prices the service, and what features it is willing to provide.

2.4.1.4. IP telephones

IP telephones are heralds of the most exciting change in the telecommunications industry. In the very near future, standards-based IP

telephones will be available in retail stores.
[]

 The wealth of possibilities inherent in these devices will cause an explosion of interesting

applications, from video phones, to high-fidelity broadcasting devices, to wireless mobility solutions, to purpose-built sets for particular

industries, to flexible all-in-one multimedia systems.

[] As of this writing, Wal-Mart was offering a basic IP telephone on its web site (http://www.walmart.com).

The revolution that IP telephones will spawn has nothing to do with a new type of wire to connect your phone to, and everything to do

with giving you the power to communicate the way you want.

The early-model IP phones that have been available for several years now do not represent the future of these exciting appliances. They

are merely a stepping-stone; a familiar package in which to wrap a fantastic new way of thinking.

The future is far more promising.

2.4.2. Soft Phones

A soft phone is a software program that provides telephone functionality on a non-telephone device, such as a PC or PDA. So how do we

recognize such a beast? What might at first glance seem a simple question actually raises many. A soft phone should probably have

some sort of dial pad, and it should provide an interface that reminds users of a telephone. But will this always be the case?

The term "soft phone" can be expected to evolve rapidly, as our concept of what exactly a telephone is undergoes a revolutionary

metamorphosis. As an example of this evolution, consider the following: would we correctly define popular communication programs

such as Instant Messenger as soft phones ? IM provides the ability to initiate and receive standards-based VoIP connections. Does this

not qualify it as a soft phone? Answering that question requires knowledge of the future that we do not yet possess. Suffice it to say that

while at this point in time, soft phones are expected to look and sound like traditional phones, that conception is likely to change in the

very near future.

As standards evolve and we move away from the traditional telephone and toward a multimedia communications culture, the line

between soft phones and physical telephones will become blurred indeed. For example, we might purchase a communications terminal

to serve as a telephone, and install a soft phone program onto it to provide the functions we desire.

Having thus muddied the waters, the best we can do at this point is to define what the term "soft phone" will refer to in relation to this

book, with the understanding that the meaning of the term can be expected to undergo a massive change over the next few years. For

our purposes, we will define a soft phone: any device that runs on a personal computer, presents the look and feel of a telephone, and

provides as its primary function the ability to make and receive full-duplex audio communications (formerly known as "phone calls")
[*]

through E.164 addressing.
[]

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

http://www.walmart.com

[*] OK, so you think you know what a phone call is? So did we. Let's just wait a few years, shall we?

[] E.164 is the ITU standard that defines how phone numbers are assigned. If you've used a telephone, you've

used E.164 addressing.

2.4.3. Telephony Adaptors

A telephony adaptor (usually referred to as an ATA, or Analog Terminal Adaptor) can loosely be described as an end-user device that

converts communications circuits from one protocol to another. Most commonly, these devices are used to convert from some digital (IP

or proprietary) signal to an analog connection that you can plug a standard telephone or fax machine into.

These adaptors could be described as gateways, for that is their function. However, popular usage of the term telephony gateway would

probably best describe a multi-port telephony adaptor, generally with more complicated routing functions.

Telephony adaptors will be with us for as long as there is a need to connect incompatible standards and old devices to new networks.

Eventually, our reliance on these devices will disappear, as did our reliance on the modemobsolescence through irrelevance.

2.4.4. Communications Terminals

Communications terminal is an old term that disappeared for a decade or two and is being reintroduced here, very possibly for no other

reason than that it needs to be discussed so that it can eventually disappear againonce it becomes ubiquitous.

First, a little history. When digital PBX systems were first released, manufacturers of these machines realized that they could not refer to

their endpoints as telephonestheir proprietary nature prevented them from connecting to the PSTN. They were therefore called terminals

 , or stations . Users, of course, weren't having any of it. It looked like a telephone and acted like a telephone, and therefore it was a

telephone. You will still occasionally find PBX sets referred to as terminals, but for the most part they are called telephones.

The renewed relevance of the term "communications terminal" has nothing to do with anything proprietaryrather, it's the opposite. As we

develop more creative ways of communicating with each other, we gain access to many different devices that will allow us to connect.

Consider the following scenarios:

If I use my PDA to connect to my voicemail and retrieve my voice messages (converted to text), does my PDA become a

phone?

If I attach a video camera to my PC, connect to a company's web site, and request a live chat with a customer service rep, is

my PC now a telephone?

If I use the IP phone in my kitchen to surf for recipes, is that a phone call?

The point is simply this: we'll probably always be "phoning" each other, but will we always be using "telephones" to do so?

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

2.5. Linux Considerations

If you ask anyone at the Free Software Foundation, they will tell you that what we know as Linux is in fact GNU/Linux . All etymological

arguments aside, there is some valuable truth to this statement. While the kernel of the operating system is indeed Linux, the vast

majority of the utilities installed on a Linux system and used regularly are in fact GNU utilities. "Linux" is probably only 5% Linux, possibly

75% GNU, and perhaps 20% everything else.

Why does this matter? Well, the flexibility of Linux is both a blessing and a curse. It is a blessing because with Linux you can truly craft

your very own operating system from scratch. Since very few people ever do this, the curse is in large part due to the responsibility you

must bear in determining which of the GNU utilities to install, and how to configure the system.

If this seems overwhelming, do not fear. In the next chapter, we will discuss the selection, installation, and configuration of the software

environment for your Asterisk system.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

file:///C:/DOCUME~1/stelios/LOCALS~1/Temp/2/O'Reilly,.Asterisk.The.Future.of.Telephony.(2005).BBL.LotB.chm/0596009623/18051535.html

2.6. Conclusion

In this chapter, we've discussed all manner of issues that can contribute to the stability and quality of an Asterisk installation. Before we

scare you off, we should tell you that many people have installed Asterisk on top of a graphical Linux workstation, running a web server,

a database, an X-windowing environment, and who knows what else, with no problems whatsoever. How much time and effort you

should devote to following the best practices and engineering tips in this chapter all depends on how much work you expect the Asterisk

server to perform, and how much quality and reliability your system must provide.

What we have attempted to do in this chapter is give you a feel for the kinds of best practices that will help to ensure that your Asterisk

system will be built on a reliable, stable platform. Asterisk is quite willing to operate under far worse conditions, but the amount of effort

and consideration you decide to give these matters will play a part in the stability of your PBX. Your decision should depend on how

critical your Asterisk system will be.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

file:///C:/DOCUME~1/stelios/LOCALS~1/Temp/2/O'Reilly,.Asterisk.The.Future.of.Telephony.(2005).BBL.LotB.chm/0596009623/18051535.html

Chapter 3. Installing Asterisk

I long to accomplish great and noble tasks, but it is my

chief duty to accomplish humble tasks as though they

were great and noble. The world is moved along, not

only by the mighty shoves of its heroes, but also by the

aggregate of the tiny pushes of each honest worker.

Helen Keller

In the previous chapter, we discussed preparing a system to install Asterisk. Now it's time to obtain, extract, compile, and install the

software.

Although a large number of Linux distributions
[*]

 and PC architectures are excellent candidates for Asterisk, we have chosen to focus on

a single distribution in order to maintain brevity and clarity throughout the book. The instructions that follow have been made as generic

as possible, but you may notice a leaning toward Red Hat structures and utilities. We have chosen to focus on Red Hat because its

command set, directory structure, and so forth are likely to be familiar to the majority of users (we have found that most Linux

administrators are familiar with Red Hat, even if they don't prefer it). However, this doesn't mean that Red Hat is the only choice, or even

the best one for you. A question that often appears on the mailing lists is: "Which distribution of Linux is the best to use with Asterisk?"

The multitude of answers generally boils down to "the one you like the best."

[*] And some non-Linux operating systems as well, such as Solaris, *BSD, and OS X. However, while people have

managed to successfully run Asterisk on these alternative systems, Asterisk was, and continues to be, actively

developed for Linux.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

3.1. What Packages Do I Need?

Asterisk uses three main packages : the main Asterisk program (asterisk), the Zapata telephony drivers (zaptel), and the PRI libraries

(libpri). If you plan on a pure VoIP network, the only real requirement is the asterisk package. The zaptel drivers are required if you are

using analog or digital hardware, or if you're using the ztdummy driver (discussed later in this chapter) as a timing interface. The libpri

library is technically optional unless you're using ISDN PRI interfaces, and you may save a small amount of RAM if you don't load it, but

we recommend that it be installed in conjunction with the zaptel package for completeness.

One other package you may want to install is asterisk-sounds. While Asterisk comes with many sound prompts in the main source

distribution, the asterisk-sounds package will give you even more. If you would like to expand the number of professionally recorded

prompts for use with your Asterisk system, this package is essential. Some of our examples in the following chapters will make use of

files included in this package, so we will assume that you have it installed.

3.1.1. Package Requirements

To compile Asterisk, you must install the GCC compiler (Version 3.x or later) and its dependencies. While Version 2.96 of GCC may

work for the time being, future versions will not support it. Asterisk also requires bison, a parser generator program that replaces yacc,

and ncurses for CLI functionality. The cryptographic library in Asterisk requires OpenSSL and its development packages. If you want to

use ztdummy for timing, or any of the hardware drivers provided by Zaptel, you'll need to install the zaptel package as well. If you are

installing libpri, be sure to install it before asterisk (see "Compiling libpri").

Zaptel requires libnewt and its development packages for the zttool program (see "Using ztcfg and zttool," below) and the usb-uhci module

for ztdummy. If you're using PRI interfaces, Zaptel also requires the libpri package (again, even if you aren't using PRI circuits, we

recommend that you install libpri along with zaptel).

The following sections discuss how to obtain, extract, compile, and install the asterisk, zaptel, libpri, and asterisk-sounds packages.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

3.2. Obtaining the Source Code

The Asterisk source code can be obtained either through FTP or CVS. We will show you how to acquire the source with both methods,

although you only need to use one of them to retrieve the packages (FTP is the preferred method).

3.2.1. Obtaining Asterisk Source Code from FTP

The Asterisk source code can be obtained from the Digium FTP server, located at ftp://ftp.digium.com. The easiest way to obtain the

stable release is through the use of the program wget.

Stable and Head

Asterisk comes in two different flavors, generally referred to as stable and head. Stable, as the name implies, is the

established branch of Asterisk for use in production systems. The head branch is what the developers use to test new

features and bug fixes .

Bug fixes (not features) are merged over to the stable branch after a reasonable period of testing. It is entirely possible

that the development branch may be broken at certain points during testing; thus, the stable branch is what you will

want to run your production system on, and it is what we will be using throughout this book.

You can obtain stable releases via FTP. Both the stable and head branches of Asterisk can also be obtained from

CVS, as explained later in this chapter. However, it is important to note the difference between releases and CVS.

Releases are snapshots from the stable CVS tree, tagged with a version number and released via the FTP server

when a new stable release is deemed ready. Note that the stable CVS branch is not a releaseit's a work in a progress,

and it may be buggy (i.e., not so stable after all). The FTP tarballs are the actual releases.

To summarize, use only stable releases obtained via the FTP server for production systems.

Note that we will be making use of the /usr/src/ directory to extract and compile the Asterisk source. Also be aware that you will need root

access to write files to the /usr/src/ directory and to install Asterisk and its associated packages.

To obtain the latest stable source code via wget, enter the following commands on the command line:

 # cd /usr/src/

 # wget --passive-ftp ftp.digium.com/pub/asterisk/asterisk-1.*.tar.gz

 # wget --passive-ftp ftp.digium.com/pub/asterisk/asterisk-sounds-*.tar.gz

 # wget --passive-ftp ftp.digium.com/pub/zaptel/zaptel-*.tar.gz

 # wget --passive-ftp ftp.digium.com/pub/libpri/libpri-*.tar.gz

As long as Digium doesn't change the way they put things on the FTP site, the wget command will

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

ftp://ftp.digium.com

automagically get the latest version. You may also replace the wildcard mask (*) with the currently

available software version.

Now that you've retrieved the files for Asterisk and the Digium hardware, you are ready to extract the code.

3.2.2. Extracting the Source Code

If you use wget to obtain the source code from the FTP server, you will need to extract it before compiling. If you didn't download the

packages to /usr/src/, either move them there now, or specify the full path to their location. We will be using the GNU tar application to

extract the source code from the compressed archive. This is a simple process that can be achieved through the use of the following

commands:

 # cd /usr/src/

 # tar zxvf zaptel-*.tar.gz

 # tar zxvf libpri-*.tar.gz

 # tar zxvf asterisk-*.tar.gz

 # tar zxvf asterisk-sounds*.tar.gz

These commands will extract the packages and source code to their respective directories.

3.2.3. Obtaining Asterisk Source Code from CVS

The Concurrent Versioning System (CVS) is a tool that provides a central repository that large (and diverse) development teams can use

to manage the multitude of files associated with a development project. When a change is made, it is committed to the CVS server,

where it is immediately available for download and compilation. Another added benefit of using CVS is that the version for any particular

file can be rolled back to a certain instance, so that if something was working at one point but a change causes it to break, you can easily

revert to the working version. This is true for the entire tree as well. If you find that installing the latest version of Asterisk causes any part

of the system to break, you can "roll back" to an earlier point in time and investigate the cause of the problem.

If you are a developer looking to obtain the latest updates to the source code, you will need to get them from the CVS servers. You can

also download the stable branch via CVS:

Export the CVSROOT path:

 # cd /usr/src/

 # export CVSROOT=:pserver:anoncvs:anoncvs@cvs.digium.com:/usr/cvsroot

Download HEAD from CVS:

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

 # cvs checkout zaptel libpri asterisk

Download STABLE 1.0 from CVS:

 # cvs checkout -r v1-0 zaptel libpri asterisk

Download STABLE 1.2 from CVS:

 # cvs checkout -r v1-2 zaptel libpri asterisk

Download optional modules from CVS:

 # cvs checkout asterisk-sounds asterisk-addons

Again, note that the stable branch available from CVS is not a release and should not be used for production systems.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

file:///C:/DOCUME~1/stelios/LOCALS~1/Temp/2/O'Reilly,.Asterisk.The.Future.of.Telephony.(2005).BBL.LotB.chm/0596009623/18051535.html

3.3. Compiling Zaptel

Figure 3-1 shows the layers of interaction between Asterisk and the Linux kernel with respect to hardware control. On the Asterisk side is

the Zapata channel module, chan_zap. Asterisk uses this interface to communicate with the Linux kernel, where the drivers for the

hardware are loaded.

Figure 3-1. Layers of device interaction with Asterisk

The Zaptel interface is a kernel loadable module that presents an abstraction layer between the hardware drivers and the Zapata module

in Asterisk. It is this concept that allows the device drivers to be modified without any changes being made to the Asterisk source itself.

The device drivers are used to communicate with the hardware directly and to pass the information between Zaptel and the hardware.

While Asterisk itself compiles on a variety of platforms, the Zaptel drivers are Linux-specificthey

are written to interface directly with the Linux kernel. There are no official Zaptel drivers for other

operating systems, although work has been going on to write drivers for FreeBSD.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

We will discuss the Zaptel compile-time options momentarily, in "The zconfig.h File." First, let's take a look at compiling and installing

the drivers. (The configuration of Zaptel drivers will be discussed in the next chapter.)

Before compiling the Zaptel drivers on a system running a Linux 2.4 kernel , you should verify that

/usr/src/ contains a symbolic link named linux-2.4 pointing to your kernel source. If the symbolic link

doesn't exist, you can create it with the following command (assuming you've installed the source

in /usr/src/):

 # ln -s /usr/src/'uname -r' /usr/src/linux-2.4

Computers running Linux 2.6 kernel-based distributions do not usually require the use of the

symbolic link, as these distributions will search for the kernel build directory automatically.

However, if you've placed the build directory in a nonstandard place (i.e., somewhere other than

/lib/modules/<kernel version>/build/), you will require the use of the symbolic link.

3.3.1. The ztdummy Driver

In Asterisk, certain applications and features require a timing device in order to operate (Asterisk won't even compile them if no timing

device is found). All Digium PCI hardware provides a 1-kHz timing interface. If you lack the PCI hardware required to provide timing, the

ztdummy driver can be used as a timing device. On Linux 2.4 kernel-based distributions, ztdummy must use the clocking provided by the

UHCI USB controller . The driver looks to see that the usb-uhci module is loaded and that the kernel version is at least 2.4.5. Older

kernel versions are incompatible with ztdummy.

On a 2.6 kernel-based distribution, ztdummy does not require the use of the USB controller. (As of v2.6.0, the kernel now provides 1-kHz

timing with which the driver can interface; thus, the USB controller hardware requirement is no longer necessary.)

The default Makefile configuration does not create ztdummy. To compile ztdummy, you must remove a comment marker from the

Makefile. Open it in your favorite text editor and look for the following line:

 MODULES=zaptel tor2 torisa wcusb wcfxo wctdm \

 ztdynamic ztd-eth wct1xxp wct4xxp wcte11xp # ztdummy

Remove the hash
[*]

 (#) symbol from in front of "ztdummy," save the file, and compile Zaptel as usual.

[*] The # symbol is most widely known as "hash," so that is what we have chosen to call it. North Americans tend to

call it a "pound sign," the ITU uses the term "square," and yet others call it a "crosshatch" or "number sign."

Another term, made up by Don Macpherson to describe the # symbol during initial training on an early PBX

system, is "octothorpe." This term eventually found its way into memos and letters at Bell Labs, then into other

official documents, and from there leaked to the Internet.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

3.3.2. The Zapata Telephony Drivers

Compiling the Zapata telephony drivers for use with your Digium hardware is straightforwardsimply run make for either the 2.4 or 2.6

Linux kernels (the Makefile will determine the kernel version for you). Use these commands to compile Zaptel (replace version with your

version of zaptel):

 # cd /usr/src/zaptel-version

 # make clean

 # make

 # make install

While running make clean is not always necessary, it's a good idea to run it before recompiling any

of the modules, as it will remove the compiled binary files from within the source code directory.

You can also use it to clean up after installing, if you don't like to leave the compiled binaries

floating around. Note that this removes the binaries only from the source directory, not from the

system.

In addition to the executables, make clean also removes the intermediary files (i.e., the object files)

after compilation. You don't need them occupying space on your hard drive.

If you're using a system that makes use of the /etc/rc.d/init.d/ or /etc/init.d/ directories, you may wish to run the make config command as

well. This will install the startup scripts and configure the system, using the chkconfig command to load the zaptel module automatically

at startup.

The Debian equivalent of chkconfig is update-rc.d.

3.3.3. Using ztcfg and zttool

Two programs installed along with Zaptel are ztcfg and zttool. The ztcfg program is used to read the configuration in /etc/zaptel.conf to

configure the hardware. The zttool program can be used to check the status of your installed hardware. For instance, if you are using a

T1 card and there is no communication between the endpoints, you will see a red alarm. If everything is configured correctly and

communication is possible, you should see an "OK." The zttool application is also useful for analog cards, because it tells you their

current state (configured, off-hook, etc.). The use of these programs will be explored further in the next chapter.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

The libnewt libraries and its development packages (newt-devel on Red Hat-based distributions)

must be installed for zttool to be compiled.

3.3.4. The zconfig.h File

The zconfig.h file is where many of the Zaptel compile-time options lie. For the most part, you should not need to edit this file, but below

are some of the options that may be of interest. To enable the options, remove the comment tags (/* */). If you decide to enable any of

these options, be sure to do a make clean before recompiling and reinstalling Zaptel.

3.3.4.1. Boost ringer

By enabling the BOOST_RINGER option, you increase the amount of voltage supplied to a telephone during ringing from ~70V to ~89V.

Some devices may not detect ringing below certain voltages, so this setting may be necessary. Note that upping the voltage requires

more power, and that it will probably only be necessary on a telephone connected to a long loop. Basically, you should leave this alone

unless the far end isn't detecting ringing properly. To enable this option, uncomment the following line:

 /* #define BOOST_RINGER */

The BOOST_RINGER option can also be declared when loading the driver via modprobe, so it does not need to be compiled into the

driver (recommended).

3.3.4.2. Disable m-law/A-law precomputation

Defining CONFIG_CALC_XLAW tells Zaptel to not precompute m-law/A-law into tables and to recalculate it for each sample. We haven't

timed it, but the original coder felt that if you have a small number of channels and/or a small level-2 cache, it may be quicker to execute

the calculation code than to actually do a lookup on the table loaded into memory.

To enable this option, uncomment the following line within zconfig.h:

 /* #define CONFIG_CALC_XLAW */

3.3.4.3. Enable MMX optimization

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

You can enable MMX optimization (if your processor supports it) by removing the comment tags around the following line:

 /* #define CONFIG_ZAPTEL_MMX */

Be aware that CONFIG_ZAPTEL_MMX is considered to be incompatible with AMD processors and can cause system instability.

3.3.4.4. Choose echo cancellation method

All the echo cancellers in Asterisk use a Finite Impulse Response (FIR) algorithm. The differences between themmostly in code

implementation and slight algorithm tweaksare minimal. By default, the MARK2 echo canceller is used, and it is generally considered the

most robust. To change the default, add comment tags around the #define ECHO_CAN_MARK2 line and uncomment another line:

 /* #define ECHO_CAN_STEVE */

 /* #define ECHO_CAN_STEVE2 */

 /* #define ECHO_CAN_MARK */

 #define ECHO_CAN_MARK2

 /* #define ECHO_CAN_MARK3 */

3.3.4.5. Enable aggressive suppression

Aggressive residual echo suppression with the MARK2 echo canceller can be enabled by removing the comment tags around the

following line:

 /* #define AGGRESSIVE_SUPPRESSOR */

The aggressive suppressor makes the nonlinear processor (NLP) stronger. What the NLP essentially does is say, "If the sample is that

quiet anyway, make the volume level about 0."

3.3.4.6. Disable echo cancellation

When echo cancellation is enabled in Asterisk, it is possible to disable it by sending a 2100-Hz tone at the beginning of a call. If you do

not want Asterisk to disable echo cancellation even when it detects the echo cancel disable tone, uncomment the following line:

 /* #define NO_ECHOCAN_DISABLE */

Fax machines and modems use the 2100-Hz tone during negotiation , and Asterisk monitors for this tone during call setup.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

3.3.4.7. Enable HDLC

When using the Zaptel driver with T1 or E1 hardware, you can configure Zaptel to use TDM channels for data instead of voice. To enable

HDLC functionality in the drivers, uncomment the following line:

 /* #define CONFIG_ZAPATA_NET */

For this change to be meaningful, you must also use the sethdlc utility and perform some configuration in zapata.conf.

3.3.4.8. Enable ZapRAS

You can also make use of the ZapRAS program to turn Asterisk into a Remote Access Server (RAS) for use with your ISDN

connections. To enable this functionality, you must uncomment the following line from within the zconfig.h file:

 /* #define CONFIG_ZAPATA_PPP */

You must also patch Asterisk and configure a PPP daemon, so be aware that this task is nontrivial.

3.3.4.9. Enable Zaptel's watchdog

You can tell Zaptel to monitor the status of interfaces via its built-in "watchdog." It will check if the interfaces stop taking interrupts or

otherwise misbehave. If this happens, the hardware will automatically be restarted. To enable the watchdog, uncomment this line:

 /* #define CONFIG_ZAPTEL_WATCHDOG */

3.3.4.10. Set default tone zone

The tone zone info option is used to select which set of tones (e.g., dial tone, busy indication, ring tone, stutter, etc.), as defined in the

zonedata.c file, should be used as the default. The zonedata.c file contains the frequencies and patterns that Asterisk uses to

communicate on the PSTN networks in various countries and to signal connected telephones. The default tone zone (0) is used to

indicate North American signaling frequencies. Other tone zones include Australia (1), France (2), Japan (7), Taiwan (14), and many

others. You can change the default on the following line:

 #define DEFAULT_TONE_ZONE 0

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

3.3.4.11. Enable CAC ground start signaling

Some devices, such as the FXO ports on a Carrier Access Corporation (CAC) channel bank, have nonstandard FXS ground start

signaling start states (A=low, B=low). You can configure the drivers to use this state by removing the comment tags around the following

line:

 /* #define CONFIG_CAC_GROUNDSTART */

3.3.4.12. TDM400P Revision H PCI ID workaround

If you happen to be using an older TDM400P Revision H card, you may find that it sometimes forgets its PCI ID. To make the wctdm

driver essentially match all subvendor IDs, uncomment the following line:

 /* #define TDM_REVH_MATCHALL */

This may be required when using older revisions of TDM400P cards with newer versions of Asterisk, due to a change in the subvendor

ID code. This has been known to cause the following type of error when loading the wctdm module:

 # ZT_CHANCONFIG failed on channel 12: No such device or address (6)

Uncommenting the #define line above should resolve this problem.

3.3.5. Passing Module Parameters to Configure Zaptel

Some of the Zaptel options can also be enabled when loading the module, by passing module parameters to the wctdm driver. You can

list these parameters at load time (as opposed to statically changing them in the zconfig.h file) with the modinfo command:

 # modinfo -p wctdm
 debug int

 loopcurrent int

 robust int

 _opermode int

 opermode string

 timingonly int

 lowpower int

 boostringer int

 fxshonormode int

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

You then pass the module parameters to the modprobe command. For example, you can use the following command to activate the

boostringer parameter when the module is loaded, instead of statically defining its use with #define BOOST_RINGER in the zconfig.h file:

 # modprobe wctdm boostringer=1

Another common parameter to pass to a module is opermode. By passing opermode to the wctdm driver, you can configure the

TDM400P to better deal with line impedances for your country. opermode accepts a two-letter country code as its argument.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

file:///C:/DOCUME~1/stelios/LOCALS~1/Temp/2/O'Reilly,.Asterisk.The.Future.of.Telephony.(2005).BBL.LotB.chm/0596009623/18051535.html

3.4. Compiling libpri

Compiling and installing libpri follows the same pattern as described above for zaptel. libpri is used by various makers of Time Division

Multiplexing (TDM) hardware , but even if you don't have the hardware installed it is safe to compile and install this library. You must

compile and install libpri before Asterisk , as it will be detected and used when Asterisk is compiled. Here are the commands (replace

version with your version of libpri):

 # cd /usr/src/libpri-version

 # make clean

 # make

 # make install

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

file:///C:/DOCUME~1/stelios/LOCALS~1/Temp/2/O'Reilly,.Asterisk.The.Future.of.Telephony.(2005).BBL.LotB.chm/0596009623/18051535.html

3.5. Compiling Asterisk

Once you've compiled and installed the zaptel and libpri packages (if you need them), you can move on to Asterisk. This section walks

you through a standard installation and introduces some of the alternative make arguments that you may find useful. We'll also look at

how you can edit the Makefile to optimize the compilation of Asterisk.

3.5.1. Standard Installation

Asterisk is compiled with gcc through the use of the GNU make program. Unlike many other programs, there is no need to run a

configuration script for Asterisk. To get started compiling Asterisk, simply run the following commands (replace version with your version

of Asterisk):

 # cd /usr/src/asterisk-version

 # make clean

 # make

 # make install

 # make samples

Be aware that compile times will vary between systems. On a current-generation processor, you shouldn't need to wait more than five

minutes. At Astricon, someone reported successfully compiling Asterisk on a 133-MHz Pentium, but it took approximately five hours. You

do the math.

Run the make samples command to install the default configuration files. Installing these files (instead of configuring each file manually)

will allow you to get your Asterisk system up and running much faster. Many of the default values are fine for Asterisk. Files that require

editing will be explained in future chapters.

If you already have configuration files installed in /etc/asterisk/ when you run the make samples

command, .old will be appended to the end of each of your current configuration filesfor example,

extensions.conf will be renamed extensions.conf.old. Be careful, though, because if you run make

samples more than once you will overwrite your original configuration files!

The sample configuration files can also be found in the configs/ subdirectory within your Asterisk

sources directory.

If you're using a system that makes use of the /etc/rc.d/init.d/ or /etc/init.d/ directories, you may wish to run the make config command as

well. This will install the startup scripts and configure the system (through the use of the chkconfig command) to execute Asterisk

automatically at startup.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

3.5.2. Alternative make Arguments

There are several other make arguments that you can pass at compile time. While some of these will be discussed here, the remainder

are used internally within the file and really have no bearing or use for the end user. (Of course, new functions may have been added, so

be sure to check the Makefile for other options.)

Let's take a look at some useful make arguments.

3.5.2.1. make clean

The make clean command is used to remove the compiled binaries from within the source directory. This command should be run before

you attempt to recompile or, if space is an issue, if you would like to clean up the files.

3.5.2.2. make update

This command is used to update the existing code from the Digium CVS server. If you downloaded the source code from the FTP server,

you will receive an error stating so.

A common problem that you may find if you update with the cvs update command is that when you

then do a show version at the Asterisk command-line interface (CLI), your version does not appear

to have been updated. This problem can be resolved by removing the hidden .version file within the

Asterisk source code directory before recompiling, or by using the make update command (which

will remove the file for you).

3.5.2.3. make upgrade

If you run the make install command to install Asterisk after using the make update command to update from CVS, the .version file will not

be updated. If you do not want to manually delete the .version file before running make and make install, you can use the make upgrade

command instead.

3.5.2.4. make webvmail

The Asterisk Web Voicemail script is used to give a graphical interface to your voicemail account, allowing you to manage and interact

with your voicemail remotely from a web browser.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

When you run the make webvmail command, the Asterisk Web Voicemail script will be placed into the cgi-bin/ directory of your HTTP

daemon. If you have specific policies with respect to security, be aware that it uses a setuid root Perl script. This command will install

only on a Red Hat or Fedora box, as other distributions may have different paths to their cgi-bin/ directories. (This, of course, can be

changed by editing the Makefile.)

3.5.2.5. make progdocs

This command will create documentation using the doxygen software from comments placed within the source code by the developers.

You must have the appropriate doxygen software installed on your system in order for this to work. Note that doxygen assumes that the

source code is well documented, which, sadly, is not always the case.

3.5.2.6. make mpg123

Asterisk uses the mpg123 program to stream MP3s during the use of Music on Hold (MoH). Because Asterisk only works with mpg123

v0.59r, this shortcut will determine if the correct version of mpg123 is installed on your system and, if not, will attempt to download,

extract, and compile it for you. Be aware that newer versions will not work, and some distributions even symbolically link mpg321 and

mpg123, which are entirely different programs. If you run the make install command after running this command, Asterisk will detect the

directory and install it for you as well.

3.5.2.7. make config

The make config command will install Red Hat-style initialization scripts , if the /etc/rc.d/init.d or /etc/init.d directories are found to exist. If

they do exist, the scripts are installed with file permissions equal to 755. If the script detects that /etc/rc.d/init.d/ exists, the chkconfig add

asterisk command will also be run to cause Asterisk to be started automatically at boot time. This is not the case, however, with

distributions that only use the /etc/init.d/ directory. Running make config will not do anything to an already running Asterisk process, or

start one if it's not running.

This script currently is only really useful on a Red Hat-based system, although initialization scripts are available for other distributions

(such as Gentoo, Mandrake, and Slackware) in the ./contrib./init.d/ directory of your Asterisk source directory.

3.5.3. Editing the Makefile

At the top of the Makefile contained within the Asterisk source directory are several options for optimizing the compilation of Asterisk.

You can enable GSM codec optimizations (with the use of MMX instructions), disable configuration file overwrites, add extra debugging

information, change Asterisk's installation and staging directories, and modify which type of processor you are compiling for. While you

may never edit or require any of these options, they are mentioned here for completeness.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

3.5.3.1. Enabling GSM optimizations

Uncomment the following line in your Asterisk Makefile to enable GSM codec optimizations on x86 CPU architectures that support MMX

instructions:

 #K6OPT = -DK6OPT

This includes newer Pentium processors, Pentium Pros, and the AMD K6 and K7 processors; however, you may not want to enable

MMX support unless you have a true Intel processor, as problems have been reported with the MMX instructions on non-Intel

processors.

3.5.3.2. Disabling configuration file overwrites

By default, Asterisk will overwrite your configuration files if you run make samples more than once. To change this behavior, change the y

in the line below to n:

 OVERWRITE=y

3.5.3.3. Enabling debug profiling information

Debug symbols allow you to do symbolic debugging. The profiling information (-pg) flag will produce a file when you run Asterisk that can

be processed in order to obtain information about how long (relatively) Asterisk spends in each function. Use of the -pg flag is not

recommended for a normal build, but it may be useful during development. To enable profiling information, replace the -g in the following

line with -pg:

 DEBUG=-g

3.5.3.4. Specifying where to install Asterisk after compiling

You can change the directory where Asterisk is installed by specifying a path on the following line:

 INSTALL_PREFIX=

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

3.5.3.5. Changing the staging directory

The staging directory is where Asterisk temporarily copies its files during the install process. You may want the files to be copied to a

directory such as /tmp/asterisk/. If no staging directory is specified (the default), Asterisk will use the source directory. To specify a

staging directory, enter the desired directory on this line:

 DESTDIR=

3.5.3.6. Compiling on VIA motherboards

On VIA-based motherboards, you need to set the processor to i586. If Asterisk detects the processor as i686, you may get random core

dumps. To force Asterisk to compile using i586, remove the comment from the following PROC line in the Makefile (line 81, at the time of

this writing):

 # Pentium & VIA processors optimize

 # PROC=i586

3.5.4. Using Precompiled Binaries

While the documented process of installing Asterisk expects you to compile the source code yourself, there are Linux distributions (such

as Debian) that include precompiled Asterisk binaries . Failing that, you may be able to install Asterisk with the package managers that

those distributions of Linux provide (such as apt-get for Debian and portage for Gentoo). However, you may also find that many of these

prebuilt binaries are quite out of date and do not follow the same furious development cycle as Asterisk.

Finally, there do exist basic, precompiled Asterisk binaries that can be downloaded and installed in whatever Linux distribution you have

chosen. However, the use of precompiled binaries doesn't really save much time, and we have found that compiling Asterisk with each

install is not a very cumbersome task. We believe that the best way to install Asterisk is to compile from the source code, so we won't

discuss prebuilt binaries very much in this book. In the next chapter, we'll look at how to initially configure Asterisk and several kinds of

channels.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

file:///C:/DOCUME~1/stelios/LOCALS~1/Temp/2/O'Reilly,.Asterisk.The.Future.of.Telephony.(2005).BBL.LotB.chm/0596009623/18051535.html

3.6. Installing Additional Prompts

The asterisk-sounds package contains many useful professionally recorded prompts. It is highly recommended that you install it now, as

we will be using some of the prompts from this package in later chapters. To do so, run the following commands:

 # cd /usr/src/asterisk-sounds

 # make install

Other Useful Add-ons

The asterisk-addons package contains code to allow the storage of Call Detail Records (CDRs) to a MySQL database

and to natively play MP3s, as well as an interpreter for loading Perl code into memory for the life of an Asterisk process.

Programs are placed into asterisk-addons when there are licensing issues preventing them from being implemented

directly into the Asterisk source code, or when they are not yet ready for primetime.

The g729/ directory contains the code and registration program for the proprietary G.729 codec . Even if your end

devices have the G.729 codec installed, in order to allow the phones to communicate with Asterisk using G.729 (e.g., in

voicemail or to allow attended transfers), you must purchase a license. Licenses for the codec can be purchased online

from Digium and activated with the registration program contained in the g729/ directory.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

file:///C:/DOCUME~1/stelios/LOCALS~1/Temp/2/O'Reilly,.Asterisk.The.Future.of.Telephony.(2005).BBL.LotB.chm/0596009623/18051535.html

3.7. Updating Your Source Code

Instead of deleting the sources and downloading the entire tree every time you want to update, you can update just the files that have

changed since the last revision. To do this, change into the directory containing the files you want to update and run the make update

command:

 # cd /usr/src/asterisk/

 # make update

 # make clean

 # make upgrade

Note that this will work only with code obtained via the CVS method (see "make update," earlier in this chapter). The make upgrade

command is used only in the Asterisk source directory. In other directories, use make install.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

file:///C:/DOCUME~1/stelios/LOCALS~1/Temp/2/O'Reilly,.Asterisk.The.Future.of.Telephony.(2005).BBL.LotB.chm/0596009623/18051535.html

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

3.8. Common Compiling Issues

There are many common compiling issues that users often run into. Here are some of the more common problems, and how to resolve

them.

3.8.1. Asterisk

First, let's take a look at some of the errors you may encounter when compiling Asterisk.

3.8.1.1. C compiler cannot create executables

If you receive the following error while attempting to compile Asterisk, you must install the gcc compiler and its dependencies:

 checking whether the C compiler (gcc) works... no

 configure: error: installation or configuration problem: C compiler cannot

 create executables.

 make: *** [editline/libedit.a] Error 1

The following packages are required for gcc:

gcc

glibc-kernheaders

cpp

binutils

glibc-headers

glibc-devel

These can be installed manually, by copying the files off of your distribution disks, or through the yum package manager, with the

command yum install gcc.

3.8.1.2. bison: command not found

The following error may be encountered if the bison parser, which is required for parsing expressions in the extensions.conf file, is not

found:

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

 bison ast_expr.y -name-prefix=ast_yy -o ast_expr.c

 make: bison: Command not found

 make: *** [ast_expr.c] Error 127

The following files are required in order to install Asterisk; they can be installed with the yum install bison command:

bison

m4

3.8.1.3. /usr/bin/ld: cannot find -lssl

The OpenSSL development packages are required by Asterisk within the res_crypto.so module for RSA key checks performed by the

IAX2 protocol. If the OpenSSL development packages are not installed, the following error will occur:

 /usr/bin/ld: cannot find -lssl

 collect2: ld returned 1 exit status

 make: *** [asterisk] Error 1

To install the OpenSSL development library, you'll require the following dependencies:

openssl-devel

e2fsprogs-devel

zlib-devel

krb5-devel

krb5-libs

You can use the yum install openssl-devel command to install these files.

3.8.1.4. rpmbuild: command not found

To use the make rpm command, you must have the Red Hat Package Manager (RPM) development package installed. The following

error will be encountered if it is absent:

 make[1]: Leaving directory '/usr/src/asterisk-1.0.3'

 /bin/sh: line 1: rpmbuild: command not found

 make: *** [_ _rpm] Error 127

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

You can install the build environment with yum install rpmbuild.

3.8.2. Zaptel

You may also run into errors when compiling Zaptel. Here are some of the most commonly occurring problems, and what to do about

them.

3.8.2.1. make: cc: Command not found

You will receive the following error if you attempt to build Zaptel without the gcc compiler installed:

 make: cc: Command not found

 make: *** [gendigits.o] Error 127

Be sure to install gcc and its dependencies. For more information, see "C compiler cannot create executables" in the previous section.

3.8.2.2. FATAL: Module wctdm/fxs/fxo not found

The TDM400P cards require the PCI bus to be Version 2.2. If you attempt to load the Zapata telephony drivers with an older version, you

may get the following errors:

When attempting to load the wctdm driver, you may see this error:

 FATAL: Module wctdm not found

When attempting to load the wctdm or wcfxo driver, you may see an error such as this:

 ZT_CHANCONFIG failed on channel 1: No such device or address (6)

 FATAL: Module wctdm not found

The only way to resolve these errors is to use a newer motherboard that supports PCI Version 2.2 .

You may also encounter these errors if the power has not been attached to the Molex connector

found on the TDM400P card.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

3.8.2.3. Unresolved symbol link when loading ztdummy

The ztdummy driver requires that a UHCI USB controller be available on Linux 2.4 kernels (the USB controller is not a requirement on

Linux 2.6 kernels, because they are capable of generating the 1-kHz timing reference). There exists a secondary kind of controller,

known as OHCI, which is not compatible with the ztdummy driver. If the UHCI USB controller is not accessible on Linux 2.4 kernels, the

following error will occur:

 /lib/modules/2.4.22/misc/ztdummy.o: /lib/modules/2.4.22/misc/ztdummy.o: unresolved

 symbol unlink_td

 /lib/modules/2.4.22/misc/ztdummy.o: /lib/modules/2.4.22/misc/ztdummy.o: unresolved

 symbol alloc_td

 /lib/modules/2.4.22/misc/ztdummy.o: /lib/modules/2.4.22/misc/ztdummy.o: unresolved

 symbol delete_desc

 /lib/modules/2.4.22/misc/ztdummy.o: /lib/modules/2.4.22/misc/ztdummy.o: unresolved

 symbol uhci_devices

 /lib/modules/2.4.22/misc/ztdummy.o: /lib/modules/2.4.22/misc/ztdummy.o: unresolved

 symbol uhci_interrupt

 /lib/modules/2.4.22/misc/ztdummy.o: /lib/modules/2.4.22/misc/ztdummy.o: unresolved

 symbol fill_td

 /lib/modules/2.4.22/misc/ztdummy.o: /lib/modules/2.4.22/misc/ztdummy.o: unresolved

 symbol insert_td_horizontal

 /lib/modules/2.4.22/misc/ztdummy.o: insmod /lib/modules/2.4.22/misc/ztdummy.o failed

 /lib/modules/2.4.22/misc/ztdummy.o: insmod ztdummy failed

You can verify that you have the correct style of USB controller and its associated drivers with the lsmod command:

 # lsmod
 Module Size Used by

 usb_uhci 26412 0

 usbcore 79040 1 [hid usb-uhci]

As you can see in the example above, you are looking to make sure that the usbcore and usb_uhci modules are loaded. If these modules

are not loaded, be sure that USB has been activated within your BIOS and that the modules exist and are being loaded.

If the USB drivers are not loaded, you can still check which type of USB controller you have with the dmesg command:

 # dmesg | grep -i usb

To verify that you indeed have a UHCI USB controller, look for the following lines:

 uhci_hcd 0000:00:04.2: new USB bus registered, assigned bus number 1

 hub 1-0:1.0: USB hub found

 uhci_hcd 0000:00:04.3: new USB bus registered, assigned bus number 2

 hub 2-0:1.0: USB hub found

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

3.8.2.4. Depmod errors during compilation

If you experience depmod errors during compilation, you more than likely don't have a symbolic link to your Linux kernel sources. If you

don't have your Linux kernel sources installed, retrieve the sources for your installed kernel, install them, and create a symbolic link

against /usr/src/linux-2.4. The following is an example of a depmod error:

 depmod: *** Unresolved symbols in /lib/modules/2.4.22/kernel/drivers/block/

 loop.o

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

file:///C:/DOCUME~1/stelios/LOCALS~1/Temp/2/O'Reilly,.Asterisk.The.Future.of.Telephony.(2005).BBL.LotB.chm/0596009623/18051535.html

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

3.9. Loading Zaptel Modules

In this section, we'll take a quick look at how to load the zaptel and ztdummy modules. The zaptel module does not require any

configuration if it's being used only for the ztdummy module. If you plan on loading the ztdummy module as your timing source (and thus,

you will not be running any PCI hardware in your system), now is a good time to load both drivers.

3.9.1. Systems Running udevd

In the early days of Linux, the system's /dev/ directory was populated with a list of devices with which the system could potentially

interact. At the time, nearly 18,000 devices were listed. That all changed when devfs was released, allowing dynamic creation of devices

that are active within the system. Some of the recently released distributions have incorporated the udev daemon into their systems to

dynamically populate /dev/ with device nodes.

To allow Zaptel and other device drivers to access the PCI hardware installed in your system, you must add some rules. Using your

favorite text editor, open up your udevd rules file. On Fedora Core 3, for example, this file is located at /etc/udev/rules.d/50-udev.rules.

Add the following lines to the end of your rules file:

 # Section for zaptel

 device

 KERNEL="zapctl", NAME="zap/ctl"

 KERNEL="zaptimer", NAME="zap/timer"

 KERNEL="zapchannel", NAME="zap/channel"

 KERNEL="zappseudo", NAME="zap/pseudo"

 KERNEL="zap[0-9]*", NAME="zap/%n"

Save the file and reboot your system for the settings to take effect.

3.9.2. Loading Zaptel

The zaptel module must be loaded before any of the other modules are loaded and used. Note that if you will be using the zaptel module

with PCI hardware, you must configure /etc/zaptel.conf before you load it. (We will discuss how to configure zaptel.conf for use with

hardware in Chapter 4.) If you are using zaptel only to access ztdummy , you can load it with the modprobe command, as follows:

 # modprobe zaptel

If all goes well, you shouldn't see any output. To verify that the zaptel module loaded successfully, use the lsmod command. You should

be returned a line showing the zaptel module and the amount of memory it is using:

 # lsmod | grep zaptel
 zaptel 201988 0

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

3.9.3. Loading ztdummy

The ztdummy module is an interface to a device that provides timing, which in turn allows Asterisk to provide timing to various

applications and functions that require it. Use the modprobe command to load the ztdummy module after zaptel has been loaded:

 # modprobe ztdummy

If ztdummy loads successfully, no output will be displayed. To verify that ztdummy is loaded and is being used by zaptel, use the lsmod

command. The following output is from a computer running the 2.6 kernel:

 # lsmod | grep ztdummy
 Module Size Used by

 ztdummy 3796 0

 zaptel 201988 1 ztdummy

If you happen to be running a 2.4 kernel-based computer, your output from lsmod will show that ztdummy is using the usb-uhci module:

 # lsmod | grep ztdummy
 Module Size Used by

 ztdummy 3796 0

 zaptel 201988 0 ztdummy

 usb-uhci 24524 0 ztdummy

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

3.10. Loading libpri

The libpri libraries do not need to be loaded like modules. Asterisk looks for libpri at compile time and configures itself to use the libraries

if they are found.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

file:///C:/DOCUME~1/stelios/LOCALS~1/Temp/2/O'Reilly,.Asterisk.The.Future.of.Telephony.(2005).BBL.LotB.chm/0596009623/18051535.html

3.11. Loading Asterisk

Asterisk can be loaded in a variety of ways. The easiest way is to start Asterisk by running the binary file directly from the Linux

command-line interface. If you are running a system that uses the init.d scripts, you can easily start and restart Asterisk that way as well.

However, the preferred way of starting Asterisk is via the safe_asterisk script.

3.11.1. CLI Commands

The Asterisk binary is, by default, located at /usr/sbin/asterisk. If you run /usr/sbin/asterisk, it will be loaded as a daemon. There are also

a few switches you should be aware of that allow you to (re)connect to the Asterisk CLI, set the verbosity of CLI output, and allow core

dumps if Asterisk crashes (for debugging with gdb). To explore the full range of options, run Asterisk with the -h switch:

 # /usr/sbin/asterisk -h

Here is a list of the most commonly used options:

-c

Console. This allows you to connect to the Asterisk CLI.

-v

Verbosity. This is used to set the amount of output for CLI debugging.

-g

Core dump. If Asterisk were to crash unexpectedly, this would cause a core file to be created for later tracing with gdb.

-r

Remote. This is used to reconnect remotely to an already running Asterisk process. (The process is remote from the

standpoint of the console connecting to it but is actually a local process on the machine. This has nothing to do with

connecting to a remote process over a network using a protocol such as IP, as this is not supported.)

-rx "restart now"

Execute. Using this command in combination with -r allows you to execute a CLI command without having to connect to the

CLI and type it manually.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

Let's look at some examples. To start Asterisk and connect to the CLI with a verbosity level of 3, use the following command:

 # /usr/sbin/asterisk -cvvv

If the Asterisk process is already running (for example, if you started Asterisk with /usr/sbin/asterisk), instead use the reconnect switch,

like so:

 # /usr/sbin/asterisk -vvvr

If you want Asterisk to dump a core file after a crash, you can use the -g switch when starting Asterisk:

 # /usr/sbin/asterisk -g

To execute a command without connecting to the CLI and typing it (perhaps for use within a script), you can use the -x switch in

combination with the -r switch:

 # /usr/sbin/asterisk -rx "restart now"

If you are experiencing crashes and would like to output to a debug file, use the following command:

 # /usr/sbin/asterisk -vvvvvvvvvc | tee /tmp/debug.log

3.11.2. Red Hat-Style Initialization Script

If you ran the make config command earlier (or manually copied the initialization scripts), you can start and restart Asterisk with the

following commands:

 # /etc/rc.d/init.d/asterisk start

 # /etc/rc.d/init.d/asterisk stop

3.11.3. The safe_asterisk Script

The main purpose of the safe_asterisk script is to dump a core file if Asterisk fails and to automatically restart it. There is also a notify

option within the script, which, if set, will send an email letting you know that Asterisk died unexpectedly. An added benefit of the script is

that it will load the Asterisk CLI on terminal interface 9 (by default; this is configurable), so you can easily switch to that window to

monitor your Asterisk system.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

The default location of the safe_asterisk script is /usr/sbin/safe_asterisk, and it can be executed as such. Let's review the various options

contained in the safe_asterisk script:

 CLIARGS="$*" # Grab any args passed to safe_asterisk

 TTY=9 # TTY (if you want one) for Asterisk to run on

 CONSOLE=yes # Whether or not you want a console

 #NOTIFY=ben@alkaloid.net # Email address for crash notifications

The first line simply allows you to pass arguments to the safe_asterisk script from the Linux CLI; it should not be edited directly. TTY=9

specifies the Linux console on which to run the Asterisk CLI output. You can disable this feature by specifying CONSOLE=no. If you

would like to be notified if Asterisk dies suddenly and requires a restart, uncomment the NOTIFY line and replace ben@alkaloid.net with

your email address. Note that the crash notifications are sent with the mail command, so your system must be set up to process and

send email.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

mailto:ben@alkaloid.net

3.12. Directories Used by Asterisk

Asterisk uses several directories on a Linux system to manage the various aspects of the system, such as voicemail recordings, voice

prompts, and configuration files. This section discusses the necessary directories, all of which are created during installation and

configured in the asterisk.conf file.

3.12.1. /etc/asterisk/

The /etc/asterisk/ directory contains the Asterisk configuration files. One file, howeverzaptel.confis located in the /etc/ directory. The

Zaptel hardware was originally designed by Jim Dixon of the Zapata Telephony Group as a way of bringing reasonable and affordable

computer telephony equipment to the world. Asterisk makes use of this hardware, but any other software can also make use of the

Zaptel hardware and drivers. Consequently, the zaptel.conf configuration file is not directly located in the /etc/asterisk/ directory.

3.12.2. /usr/lib/asterisk/modules/

The /usr/lib/asterisk/modules/ directory contains all the Asterisk loadable modules. Within this directory are the various applications,

codecs, formats, and channels used by Asterisk . By default, Asterisk loads all of these modules at startup. You can disable any

modules you are not using in the modules.conf file, but be aware that certain modules are required by Asterisk or are dependencies of

other modules. Attempting to load Asterisk without these modules will cause an error at startup.

3.12.3. /var/lib/asterisk

The /var/lib/asterisk/ directory contains the astdb file and a number of subdirectories . The astdb file contains the local Asterisk database

information, which is somewhat like the Microsoft Windows Registry. The Asterisk database is a simple implementation based on v1 of

the Berkeley database. The db.c file in the Asterisk source states that this version was chosen for the following reason: "DB3

implementation is released under an alternative license incompatible with the GPL. Thus in order to keep Asterisk licensing simplistic, it

was decided to use version 1 as it is released under the BSD license."

The subdirectories within /var/lib/asterisk/ include:

agi-bin/

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

The agi-bin/ directory contains your custom scripts, which can interface with Asterisk via the various built-in AGI applications.

For more information about AGI, see Chapter 8.

firmware/

The firmware/ directory contains firmware for various Asterisk-compatible devices. It currently contains only the iax/

subdirectory, which holds the binary firmware image for Digium's IAXy.

images/

Applications that communicate with channels supporting graphical images look in the images/ directory. Most channels do not

support the transmission of images, so this directory is rarely used. However, if more devices that support and make use of

graphical images are released, this directory will become more relevant.

keys/

Asterisk can use a public/private key system to authenticate peers connecting to your box via an RSA digital signature. If you

place a peer's public key in your keys/ directory, that peer can be authenticated by channels supporting this method (such as

the IAX2 channels). The private key is never distributed to the public. The reverse is also true: you can distribute your public

key to your peers, allowing you to be authenticated with the use of your private key. Both the public and private keysending in

the .pub and .key file extensions, respectivelyare stored in the keys/ directory.

mohmp3/

When you configure Asterisk for Music on Hold, applications utilizing this feature look for their MP3 files in the mohmp3/

directory. Asterisk is a bit picky about how the MP3 files are formatted, so you should use constant bitrate (CBR) encoding

and strip the ID3 tags from your files.

sounds/

All of the available voice prompts for Asterisk reside in the sounds/ directory. The contents of the basic prompts included with

Asterisk are in the sounds.txt file located in your Asterisk source code directory. Contents of the additional prompts are

located in the sounds-extra.txt file in the directory to which you extracted the asterisk-sounds package earlier in this chapter.

3.12.4. /var/spool/asterisk/

The Asterisk spool directory contains several subdirectories, including outgoing/, qcall/, tmp/, and voicemail/ (see Figure 3-2). Asterisk

monitors the outgoing and qcall directories for text files containing call request information. These files allow you to generate a call simply

by copying or moving the correctly structured file into the outgoing/ directory.

Figure 3-2. /var/spool/asterisk/ directory structure

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

The old (now deprecated) qcall method of generating calls utilized a single line of text within the call file. Call files for use within the qcall

directory took the form of:

 Dialstring Caller-ID Extension Maxsecs [Identifier] [Required-response]

This rather limited what you could do with the call file, and what kinds of information you could pass to Asterisk. Thus, a new spooling

method was developed in Asterisk, using the outgoing directory. Call files being placed into this directory can contain much more

valuable information, such as the Context, Extension, and Priority where the answered call should start, or simply the application and its

arguments. You can also set variables and specify an account code for Call Detail Records. More information about the use of call files is

presented in Chapter 9.

The tmp/ directory is used, funny enough, to hold temporary information. Certain applications may require a place to write files to before

copying the complete files to their final destinations. This prevents two processes from trying to write to and read from a file at the same

time.

All voicemail and user greetings are contained within the voicemail/ directory. Extensions configured in voicemail.conf that have been

logged into at least once are created as subdirectories of voicemail/.

3.12.5. /var/run/

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

The /var/run/ directory contains the process ID (pid) information for all active processes on the system, including Asterisk (as specified in

the asterisk.conf file). Note that /var/run/ is OS-dependent and may differ.

3.12.6. /var/log/asterisk/

The /var/log/asterisk/ directory is where Asterisk logs information. You can control the type of information being logged to the various files

by editing the logger.conf file located in the /etc/asterisk/ directory. Basic configuration of the logger.conf file is covered in Appendix E.

3.12.7. /var/log/asterisk/cdr-csv

The /var/log/asterisk/cdr-csv directory is used to store the CDRs in comma-separated value (CSV) format. By default information is

stored in the Master.csv file, but individual accounts can store their own CDRs in separate files with the use of the accountcode option

(see Appendix A for more information).

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

3.13. Conclusion

In this chapter, we have reviewed the procedures for obtaining, compiling, and installing Asterisk and the associated packages. In the

following chapter, we will touch on the initial configuration of your system with regard to various communications channels, such as

analog devices attached to FXS and FXO ports, SIP channels, and IAX2 endpoints.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

Chapter 4. Initial Configuration of Asterisk

Perseverance is the hard work you do after you get

tired of doing the hard work you already did.

Newt Gingrich

The purpose of this chapter is to guide the user through the configuration of four channels: a Foreign eXchange Office (FXO) channel, a

Foreign eXchange Station (FXS) channel, a Session Initiation Protocol (SIP) channel, and an Inter-Asterisk eXchange protocol (IAX)
[*]

channel. The purpose is not to give an exhaustive survey of all channel types or topologies, but rather to provide a base platform on

which to build your telecommunications system. Further scenarios and channel configuration details can be found in Appendix D. We

start by exploring the basic configuration of analog interfaces such as FXS and FXO ports with the use of a Digium Dev-Lite kit . We'll

then configure two Voice over Internet Protocol (VoIP) interfaces: a local SIP channel connected to a soft phone, and a connection to

Free World Dialup via IAX.

[*] Officially, the current version is IAX2, but all support for IAX1 has been dropped, so whether you say "IAX" or

"IAX2," it is expected that you are talking about Version 2.

Once you've worked through this chapter, you will have a basic system consisting of many useful interfaces, and you will be ready to

learn more about the extensions.conf file (discussed further in Chapter 5), which contains the instructions Asterisk needs to build the

dialplan.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

4.1. What Do I Really Need?

The asterisk character (*) is used as a wildcard in many different applications. It is the perfect name for this PBX for many reasons, one

of which is the enormous number of interface types to which Asterisk can connect . These include:

Analog interfaces, such as your telephone line and analog telephones

Digital circuits, such as T-1 and E-1 lines

VoIP protocols such as SIP and IAX

Asterisk doesn't need any specialized hardwarenot even a sound card. Channel cards that connect Asterisk to analog phones or phone

lines are available, but not essential. You can connect to Asterisk using the soft phones that are available for Windows, Linux, and other

operating systems without using a special hardware interface. You can also use any IP phone that supports either SIP or IAX2. On the

other side, if you don't connect directly to an analog phone line from your central office, you can route your calls over the Internet to a

telephony service provider.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

4.2. Working with Interface Configuration Files

In this chapter, we're finally going to "get our hands dirty" and start building an Asterisk configuration. For the first few sections on FXO

and FXS channels, we'll assume that you have the Digium Dev-Lite kit with one FXO and one FXS interface, which allows you to

connect to an analog phone line (FXO) and to an analog phone (FXS). Note that this hardware interface isn't necessary; if you want to

build an IP-only configuration, you can skip to the section on configuring SIP.

The configuration we do in this chapter won't be particularly useful on its own, but it will be a kernel to build on. We're going to touch on

the following files:

zaptel.conf

Here, we'll do low-level configuration for the hardware interface. We'll set up one FXO channel and one FXS channel.

zapata.conf

In this file, we'll configure Asterisk's interface to the hardware.

extensions.conf

The dialplans we create will be extremely primitive, but they will prove that the system is working.

sip.conf

This is where we'll configure the SIP protocol.

iax.conf

This is where we'll configure incoming and outgoing IAX channels.

In the following sections, you will be editing several configuration files . You'll have to reload these files for your changes to take effect.

After you edit the zaptel.conf file, you will need to reload the configuration for the hardware with /sbin/ztcfg -vv (you may omit the -vv if you

don't need verbose output). Changes made in zapata.conf will require a reload from the Asterisk console; however, changing signaling

methods requires a restart. You will need to perform a reload chan_iax2.so and a reload chan_sip.so after editing the iax.conf and sip.conf

files, respectively.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

4.3. FXO and FXS Channels

The difference between an FXO channel and an FXS channel is simply which end of the connection provides the dial tone. An FXO port

does not generate a dial tone; it accepts one. A common example is the dial tone provided by your phone company. An FXS port provides

both the dial tone and ringing voltage to alert the station user of an inbound call. Both interfaces provide bidirectional communication (i.e.,

communication that is transmitted and received in both directions simultaneously).

If your Asterisk server has a compatible FXO port, you can plug a telephone line from your telephone company (or "telco") into this port.

Asterisk can then use the telco line to place and receive telephone calls. By that same token, if your Asterisk server has a compatible FXS

port, you may plug an analog telephone into your Asterisk server, so that Asterisk may call the phone and you may place calls.

Ports are defined in the configuration by the signaling they use, as opposed to the physical type of port they are. For instance, a physical

FXO port will be defined in configuration with FXS signaling, and an FXS port will be defined with FXO signaling. This can be confusing

until you understand the reasons for it. FX_ cards are named not according to what they are, but rather according to what is connected to

them. An FXS card, therefore, is a card that connects to a station. Since that is so, you can see that in order to do its job, an FXS card must

behave like a central office and use FXO signaling. Similarly, an FXO card connects to a central office (CO), which means it will need to

behave like a station and use FXS signaling. The modem in your computer is a classic example of an FXO device.

The older X100P card used a Motorola chipset, and the X101P (which Digium sold before completely

switching to the TDM400P) is based on the Ambient/Intel MD3200 chipset. These cards are modems

with drivers adapted to utilize the card as a single FXO device (the telephone interface cannot be

used as an FXS port). Support for the X101P card has been dropped in favor of the TDM series of

cards. Use of these cards (or their clones) is not recommended in production environments.

4.3.1. Determining the FXO and FXS Ports on Your TDM400P

Figure 4-1 contains a picture of a TDM400P with an FXS module and an FXO module. You can't see the colors, but module 1 is a green

FXS module and module 2 is an orange/red FXO module. In the bottom-right corner of the picture is the Molex connector, where power is

supplied from computer's power supply.

Plugging an FXS port (the green module) into the PSTN may destroy the module and the card!

Figure 4-1. A TDM400P with an FXS module (1 across) and an FXO module (2 across)

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

Be sure to connect your computer's power supply to the Molex connector on the TDM400P if you have

FXS modules, as it is used to generate the voltage to produce ringing on the phone. The Molex

connector is not required if you have only FXO modules.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

file:///C:/DOCUME~1/stelios/LOCALS~1/Temp/2/O'Reilly,.Asterisk.The.Future.of.Telephony.(2005).BBL.LotB.chm/0596009623/18051535.html

4.4. Configuring an FXO Channel

We'll start by configuring an FXO channel. First we'll configure the Zaptel hardware , and then the Zapata hardware. We'll set up a very

basic dialplan, and we'll show you how to test the channel.

4.4.1. Zaptel Hardware Configuration

The zaptel.conf file located in /etc/ is used to configure your hardware. The following minimal configuration defines an FXO port with FXS

signaling:

 fxsks=2

 loadzone=us

 defaultzone=us

In the first line, in addition to indicating whether we are using FXO or FXS signaling, we specify one of the following protocols for channel

2:

Loop start (ls)

Ground start (gs)

Kewlstart (ks)

The difference between loop start and ground start has to do with how the equipment requests a dial tone: a ground start circuit signals

the far end that it wants a dial tone by momentarily grounding one of the leads; a loop start circuit uses a short to request a dial tone.

Though not common for new installations, analog ground start lines still exist in many areas of the country.
[*]

 For example, ground start

lines are predominately used to reduce a condition known as "glare "
[]

 that is associated with loop start lines and PBXs with high call

volumes. All home lines (and analog telephones/modems/faxes) in North America use loop start signaling. Kewlstart is in fact the same

as loop start, except that it has greater intelligence and is thus better able to detect far-end disconnects .
[]

 Kewlstart is the preferred

signaling protocol for analog circuits in Asterisk.

[*] Yes, there is such a thing as ground start signaling on channelized T-1s, but that has nothing to do with an

actual ground condition on the circuit (which is entirely digital).

[] When a call is initiated from one end of a circuit at the same approximate time a call is initiated from the

opposite end of the circuit.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

[A far-end disconnect happens when the far end hangs up. In an unsupervised circuit, there is no method of

telling the near end that the call has ended. If you are on the phone this is no problem, since you will know the call

has ended and will manually hang up your end. If, however, your voicemail system is recording a message, it will

have no way of knowing that the far end has terminated and will thus keep recording silence, or even the dial tone

or reorder tone. Kewlstart can detect these conditions and disconnect the circuit.

To configure a signaling method other than kewlstart, replace the ks in fxsks with either ls or gs (for loop start or ground start,

respectively).

loadzone configures the set of indications (as configured in zonedata.c) to use for the channel. The zonedata.c file contains information

about all the various sounds that a phone system makes in a particular country: dial tone, ringing cycles, busy tone, and so on. When

you apply a loaded tone zone to a Zap channel, that channel will mimic the indications for the specified country. Different indication sets

can be configured for different channels. The defaultzone is used if no zone is specified for a channel.

After configuring zaptel.conf, you can load the drivers for the card. modprobe is used to load modules for use by the Linux kernel. For

example, to load the wctdm driver, you would run:

 # modprobe wctdm

If the drivers load without any output, they have loaded successfully.
[*]

 You can verify that the hardware and ports were loaded and

configured correctly with the use of the ztcfg program:

[*] It is generally safe to assume that the modules have loaded successfully, but to view the debugging output

when loading the module, check the console output (by default this is located on TTY terminal 9, but this is

configurable in the safe_asterisk scriptsee the previous chapter for details).

 # /sbin/ztcfg -vv

The channels that are configured and the signaling method being used will be displayed. For example, a TDM400P with one FXO

module has the following output:

 Zaptel Configuration

 ======================

 Channel map:

 Channel 02: FXS Kewlstart (Default) (Slaves: 02)

 1 channels configured.

If you receive the following error, you have configured the channel for the wrong signaling method:

 ZT_CHANCONFIG failed on channel 2: Invalid argument (22)

 Did you forget that FXS interfaces are configured with FXO signalling

 and that FXO interfaces use FXS signalling?

To unload drivers from memory, use the rmmod (remove module) command, like so:

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

 # rmmod wctdm

The zttool program is a diagnostic tool used to determine the state of your hardware. After running it, you will be presented with a menu

of all installed hardware. You can then select the hardware and view the current state. A state of "OK" means the hardware is

successfully loaded:

 Alarms Span

 OK Wildcard TDM400P REV E/F Board 1

4.4.2. Zapata Hardware Configuration

Asterisk uses the zapata.conf file to determine the settings and configuration for telephony hardware installed in the system. The

zapata.conf file also controls the various features and functionality associated with the hardware channels, such as Caller ID, call waiting,

echo cancellation, and a myriad of other options.

When you configure zaptel.conf and load the modules, Asterisk is not aware of anything you've configured. The hardware doesn't have to

be used by Asterisk; it could very well be used by another piece of software that interfaces with the Zaptel modules. You tell Asterisk

about the hardware and control the associated features via zapata.conf:

 [trunkgroups]

 ; define any trunk groups

 [channels]

 ; hardware channels

 ; default

 usecallerid=yes

 hidecallerid=no

 callwaiting=no

 threewaycalling=yes

 transfer=yes

 echocancel=yes

 echotraining=yes

 ; define channels

 context=incoming ; Incoming calls go to [incoming] in extensions.conf

 signalling=fxs_ks ; Use FXS signalling for an FXO channel

 channel => 2 ; PSTN attached to port 2

The [TRunkgroups] section is for NFAS and GR-303 connections, and it won't be discussed in this book. If you require this type of

functionality, see the zapata.conf.sample file for more information.

The [channels] section determines the signaling method for hardware channels and their options. Once an option is defined, it is

inherited down through the rest of the file. A channel is defined using channel =>, and each channel definition inherits all the options

defined above that line. If you wish to configure different options for different channels, remember that the options should be configured

before the channel => definition.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

We've enabled Caller ID with usecallerid=yes and specified that it will not be hidden for outgoing calls with hidecallerid=no. Call waiting is

deactivated on an FXO line with callwaiting=no. Enabling three-way calling with tHReewaycalling=yes allows an active call to be placed

on hold with a hook switch flash (discussed in Chapter 7) to suspend the current call. You may then dial a third party and join them to the

conversation with another hook switch. The default is to not enable three-way calling.

Allowing call transfer with a hook switch is accomplished by configuring TRansfer=yes; it requires that three-way calling be enabled. The

Asterisk echo canceller is used to remove the echo that can be created on analog lines. You can enable the echo canceller with

echocancel=yes. The echo canceller in Asterisk requires some time to learn the echo, but you can speed this up by enabling echo training

(echotraining=yes). This tells Asterisk to send a tone down the line at the start of a call to measure the echo, and therefore learn it more

quickly.

When a call comes in on an FXO interface, you will want to perform some action. The action to be performed is configured inside a block

of instructions called a context. Incoming calls on the FXO interface are directed to the incoming context with context=incoming. The

instructions to perform inside the context are defined within extensions.conf.

Finally, since an FXO channel uses FXS signaling, we define it as such with signalling=fxs_ks.

4.4.3. Dialplan Configuration

The following minimal dialplan makes use of the Echo() application to verify that bidirectional communications for the channel are

working:

 [incoming]

 ; incoming calls from the FXO port are directed to this context

 from zapata.conf

 exten => s,1,Answer()

 exten => s,2,Echo()

Whatever you say, the Echo() application will relay back to you.

4.4.4. Dialing in

Now that the FXO channel is configured, let's test it. Run the zttool application and connect your PSTN line to the FXO port on your

TDM400P. Once you have a phone line connected to your FXO port, you can watch the card come out of a RED alarm.

Now dial the PSTN number from another external phone (such as a cell phone). Asterisk will answer the call and execute the Echo()

application. If you can hear your voice being reflected back, you have successfully installed and configured your FXO channel.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

4.5. Configuring an FXS Channel

The configuration of an FXS channel is similar to that of an FXO channel. Let's take a look.

4.5.1. Zaptel Hardware Configuration

The following is a minimal configuration for an FXS channel on a TDM400P. The configuration is identical to the FXO channel

configuration above, with the addition of fxoks=1.

Recall from our earlier discussion that the opposite type of signaling is used for FXO and FXS channels, so we will be configuring FXO

signaling for our FXS channel. In the example below we are configuring channel 1 to use FXO signaling, with the kewlstart signaling

protocol:

 fxoks=1

 fxsks=2

 loadzone=us

 defaultzone=us

After loading the drivers for your hardware, you can verify their state with the use of /sbin/ztcfg -vv:

 Zaptel Configuration

 ======================

 Channel map:

 Channel 01: FXO Kewlstart (Default) (Slaves: 01)

 Channel 02: FXS Kewlstart (Default) (Slaves: 02)

 2 channels configured.

4.5.2. Zapata Hardware Configuration

The following configuration is identical to that for the FXO channel, with the addition of a section for our FXS port and of the line

immediate=no. The context for our FXS port is internal, the signaling is fxoks (kewlstart), and the channel number is set to 1.

FXS channels can be configured to perform one of two different actions when a phone is taken off the hook. The most common (and

often expected) option is for Asterisk to produce a dial tone and wait for input from the user. This action is configured with immediate=no.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

The alternative action is for Asterisk to automatically perform a set of instructions configured in the dialplan instead of producing a dial

tone, which you indicate by configuring immediate=yes.
[*]

 The instructions to be performed are found in the context configured for the

channel and will match the s extension (both of these topics will be discussed further in the following chapter).

[*] Also referred to as the BatPhone method, and more formally known as an Automatic Ringdown or Private Line

Automatic Ringdown (PLAR) circuit . This method is commonly used at rental car counters and airports.

Here's our new zapata.conf:

 [trunkgroups]

 ; define any trunk groups

 [channels]

 ; hardware channels

 ; default

 usecallerid=yes

 hidecallerid=no

 callwaiting=no

 threewaycalling=yes

 transfer=yes

 echocancel=yes

 echotraining=yes

 immediate=no

 ; define channels

 context=internal ; Uses the [internal] context in extensions.conf

 signalling=fxo_ks ; Use FXO signalling for an FXS channel

 channel => 1 ; Telephone attached to port 1

 context=incoming ; Incoming calls go to [incoming] in extensions.conf

 signalling=fxs_ks ; Use FXS signalling for an FXO channel

 channel => 2 ; PSTN attached to port 2

4.5.3. Dialplan Configuration

To test our newly created Zap extension, we need to create a basic dialplan. The following dialplan contains a context called internal.

This is the same context name that we configured in zapata.conf for channel 1. When we configure context=internal in zapata.conf, we

are telling Asterisk where to look for instructions when a user presses digits on his telephone. In this case, the only extension number

that will work is 611. When you dial 611 on your telephone, Asterisk will execute the Echo() application so that when you talk into the

phone whatever you say will be played back to you, thereby verifying bidirectional voice.

The dialplan looks like this:

 [internal]

 exten => 611,1,Answer()

 exten => 611,2,Echo()

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

4.6. Configuring SIP

The Session Initiation Protocol (SIP), often used in VoIP phones (either hard phones or soft phones), takes care of the setup and

teardown of calls, along with any renegotiations during a call. Basically, it helps two endpoints talk to each other (if possible, directly to

each other). SIP does not carry media; rather, it uses the Real-time Transport Protocol (RTP) to transfer the media
[*]

 directly between

phone A and phone B once the call has been set up.

[*] We use the term media to refer to the data transferred between endpoints and used to reconstruct your voice at

the other end. It may also refer to music or prompts from the PBX.

4.6.1. SIP and RTP

SIP is an application-layer signaling protocol that uses the well-known port 5060 for communications. SIP can be transported with either

the UDP or TCP transport-layer protocols. Asterisk does not currently have a TCP implementation for transporting SIP messages, but it

is possible that future versions may support it (and patches to the code base are gladly accepted). SIP is used to "establish, modify, and

terminate multimedia sessions such as Internet telephony calls."
[*]

 SIP does not transport media between endpoints.

[*] RFC 3261, SIP: Session Initiation Protocol, p. 9, Section 2.

RTP is used to transmit media (i.e., voice) between endpoints. RTP uses high-numbered, unprivileged ports in Asterisk (10,000 through

20,000, by default).

A common topology to illustrate SIP and RTP, commonly referred to as the "SIP trapezoid," is shown in Figure 4-2. When Alice wants to

call Bob, Alice's phone contacts her proxy server, and the proxy tries to find Bob (often connecting through his proxy). Once the phones

have started the call, they communicate directly with each other (if possible), so that the data doesn't have to tie up the resources of the

proxy.

Figure 4-2. The SIP trapezoid

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

SIP was not the first, and is not the only, VoIP protocol in use today (others include H.323, MGCP, IAX, and so on), but currently it seems

to have the most momentum with hardware vendors. The advantages of the SIP protocol lie in its wide acceptance and architectural

flexibility (and, we used to say, simplicity!).

4.6.2. SIP Configuration

Here is a basic sip.conf file:

 [general]

 context=default

 srvlookup=yes

 [john]

 type=friend

 secret=welcome

 qualify=yes ; Qualify peer is no more than 2000 ms away

 nat=no ; This phone is not natted

 host=dynamic ; This device registers with us

 canreinvite=no ; Asterisk by default tries to redirect

 context=internal ; the internal context controls what we can do

The sip.conf file starts with a [general] section, which contains the channel settings and default options for all users and peers defined

within sip.conf. You can override the default settings on a per-user/peer basis by configuring them within the user/peer definition.

Domain Name System Service records (DNS SRV records) are a way of setting up a logical, resolvable address where you can be

reached. This allows calls to be forwarded to different locations without the need to change the logical address. By using SRV records,

you gain many of the advantages of DNS, whereas disabling them breaks the SIP RFC and removes the ability to place SIP calls based

on domain names. (Note that if multiple records are returned, Asterisk will use only the first.) DNS SRV record lookups are disabled by

default in Asterisk, but it's highly recommended that you turn them on. To enable them, set srvlookup=yes in the [general] section of

sip.conf.

Each connection is defined as a user, peer, or friend. A user type is used to authenticate incoming calls, a peer type is used for outgoing

calls, and a friend type is used for both. The extension name is defined within square brackets ([]). In this case, we have defined the

extension john as a friend.

A secret is a password used for authentication. Our secret is defined as welcome. We can monitor the latency between our Asterisk

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

server and the phone with qualify=yes, thereby determining whether the remote device is reachable. qualify=yes can be used to monitor

any end device, including other Asterisk servers. By default, Asterisk will consider an extension reachable if the latency is less than 2,000

ms (2 seconds). You can configure the time Asterisk should use when determining whether or not a peer is reachable by replacing yes

with the number of milliseconds.

If an extension is behind a device performing Network Address Translation (NAT), such as a router or firewall, configure nat=yes to force

Asterisk to ignore the contact information for the extension and use the address from which the packets are being received. Setting

host=dynamic will require the extension to register so that Asterisk knows how to reach the phone. To limit an endpoint to a single IP

address or fully qualified domain name (FQDN) , replace dynamic with the IP address or domain name. Note that this limits only where

you place calls to, as the user is allowed to place calls from anywhere (assuming she has authenticated successfully). If you set

host=static, the end device is not required to register.

We've also set canreinvite=no. In SIP, invites are used to set up calls and to redirect media. Any invite issued after the initial invite in the

same dialog is referred to as a reinvite. For example, suppose two parties are exchanging media traffic. If one client goes on hold and

Asterisk is configured to play Music on Hold (MoH), Asterisk will issue a reinvite to the secondary client, telling it to redirect its media

stream toward the PBX. Asterisk is then able to stream music or an announcement to the on-hold client.

The primary client then issues an off-hold command in a reinvite to the PBX, which in turn issues a reinvite to the secondary party

requesting that it redirect its media stream toward the primary party, thereby ending the on-hold music and reconnecting the clients.

Normally, when two endpoints set up a call they pass their media directly from one to the other. Asterisk generally breaks this rule by

staying within the media path, allowing it to listen for digits dialed on the phone's keypad. This is necessary because if Asterisk cannot

determine the call length, inaccurate billing can occur. Configuring canreinvite=no forces Asterisk to stay in the media path, not allowing

RTP messages to be exchanged directly between the endpoints.

Asterisk will not issue a reinvite in any of the following situations:

If either of the clients is configured with canreinvite=no

If the clients cannot agree on a common set of codecs and Asterisk needs to perform codec conversion

If either of the clients is configured with nat=yes

If Asterisk needs to listen to Dual Tone Multi-Frequency (DTMF) tones during the call (for transfers or any other features)

Lastly, context=internal specifies the location of the instructions used to control what the phone is allowed to do, and what to do with

incoming calls for this extension. The context name configured in sip.conf matches the name of the context in extensions.conf, which

contains the instructions. More information about contexts and dialplans will be presented in the following chapter.

If you are configuring a number of clients with similar configurations, you can place like commands under the [general] heading. Asterisk

will use the defaults specified in the [general] section unless they are explicitly changed within a client's configuration block.

4.6.3. Client Configuration

While it would be impossible to show all the possible configurations for all the end devices that can communicate with Asterisk, we feel it

beneficial to provide the configuration for at least one free soft phone, which you can use in determining if Asterisk is right for your

organization. We've chosen to use X-ten's X-Lite client , which you can download from their web site (http://www.xten.com).

The configuration of the client is generally straightforward. The most important parts are the username and password for registration,

plus the address of the Asterisk server with which you wish to register. Figure 4-3 shows a sample configuration for the X-Lite client. Be

sure to modify the values of the fields to reflect your configuration.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

http://www.xten.com

Figure 4-3. X-Lite soft phone configuration screen

The display name is the string that will be used for Caller ID. The username and authorization user are used for authentication, along

with the password. The domain/realm should be the IP address or FQDN of your Asterisk server. The SIP proxy is the same as the one

entered for the domain/realm, but with :5060 appended (this specifies the port number to use for SIP signalingbe sure it matches the port

you have configured in sip.conf).

After entering all this information, verify that Enabled is set to Yes, and then close the configuration menu. X-Lite will then register to

Asterisk. If X-Lite doesn't appear to register, simply restart the client. Because X-Lite is minimized to the task tray when you close the

application with the X button, you will need to exit the program by right-clicking on the icon in the tray and then clicking "Exit" in the

pop-up menu before restarting.

4.6.4. Dialplan Configuration

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

Many SIP phones, both soft and hard, are multi-line phones. This means they can accept multiple incoming calls at the same time. Thus,

to test your X-Lite soft phone you can simply call yourself, and the call will loop back from the Asterisk server and onto line two of the

client. To call yourself, dial extension 100. If your preferred client doesn't support multi-line functionality, you can use extension 611 to

enter the Echo() test application.

 [internal]

 exten => 100,1,Dial(SIP/john)

 exten => 611,1,Echo()

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

file:///C:/DOCUME~1/stelios/LOCALS~1/Temp/2/O'Reilly,.Asterisk.The.Future.of.Telephony.(2005).BBL.LotB.chm/0596009623/18051535.html

4.7. Configuring Inbound IAX Connections

The Inter-Asterisk eXchange (IAX) protocol is usually used for server-to-server communication; more hard phones are available that talk

SIP. However, there are several soft phones that support the IAX protocol, and work is progressing on several fronts for hard phone

support in firmware. The primary difference between the IAX and SIP protocols is the way media (your voice) is passed between

endpoints.

With SIP, the RTP (media) traffic is passed using different ports than those used by the signaling methods. For example, Asterisk

receives the signaling of SIP on port 5060 and the RTP (media) traffic on ports 10,000 through 20,000, by default. The IAX protocol

differs in that both the signaling and media traffic are passed via a single port: 4569. An advantage to this approach is that the IAX

protocol tends to be better suited to topologies involving NAT.

An IAX user is used to authenticate and handle calls coming into the PBX system. For calls going out from the PBX, Asterisk uses an IAX

peer entry in the iax.conf file to authenticate with the remote end. (IAX peers will be explored in the section "Configuring Outbound IAX

Connections.")

This section explores the configuration of your system for a Free World Dialup (FWD) account via IAX. Free World Dialup is a free VoIP

service provider that allows you to connect to any other member of the network, regardless of physical location, for free. FWD is also

connected to over 100 other networks to which you can connect for free.

Be sure to enable IAX2 support for your FWD account before you get started by visiting

http://www.fwdnet.net/index.php?section_id=112.

This section sets up iax.conf and extensions.conf to allow you to accept calls from another FWD user. The section on outgoing IAX

connections deals with placing calls.

4.7.1. iax.conf Configuration

In iax.conf, sections are defined with a name enclosed in square brackets ([]). Every iax.conf file needs at least one main section: [general].

Within the [general] section, you define the settings related to the use of the IAX protocol, such as default codecs and jitter buffering. You

can override the default codecs you specify in the [general] section by specifying them within the user or peer definitions.

The following [general] section is the default from the iax.conf.sample configuration file (the same file that's installed when you perform a

make samples). For more information about the options, see Appendix A.

 [general]

 bandwidth=low

 disallow=lpc10

 jitterbuffer=no

 forcejitterbuffer=no

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

http://www.fwdnet.net/index.php?section_id=112

 tos=lowdelay

 autokill=yes

 register => fwd_number:password@iax2.fwdnet.net

 [iaxfwd]

 type=user

 context=incoming

 auth=rsa

 inkeys=freeworlddialup

Within the [general] section, you'll need to add a register statement. The purpose of the register statement is to tell the FWD IAX server

where you are on the Internet (your IP address). When a call is placed to your FWD number, the FWD servers do a lookup in their

database and forward the call to the IP address associated with the FWD number.

In the [iaxfwd] section, define the user for incoming calls with type=user. Then define where the incoming call will be handled within the

dialplan , with context=incoming. To specify that the authentication for the incoming call will be done with an RSA public/private key pair,

use auth=rsa. The public key is defined with inkeys=freeworlddialup. The freeworlddialup public key comes standard with Asterisk.

4.7.2. Dialplan Configuration

Handling an incoming call in the extensions.conf file is simple. First, create a context called incoming (the same context name configured

for the iaxfwd user in iax.conf). The context is followed by a Dial() statement that will dial the SIP extension created earlier in this chapter.

Replace the number 10001 with that of your FWD account:

 [incoming]

 exten => 10001,1,Dial(SIP/john)

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

4.8. Configuring Outbound IAX Connections

While an IAX user receives inbound calls; an IAX peer is used to place outbound calls. This section will set up iax.conf and extensions.conf

so that you can place calls.

4.8.1. iax.conf Configuration

The following entry in iax.conf can be used to place a call on the FWD network:

 [iaxfwd]

 type=peer

 host=iax2.fwdnet.net

 username=<fwd-account-number>

 secret=<fwd-account-password>

 qualify=yes

 disallow=all

 allow=ulaw

 allow=gsm

 allow=ilbc

 allow=g726

A peer is defined with type=peer. Use host to configure the server through which you will place calls (iax2.fwdnet.net). Your FWD account

number and password will be used for authentication to the FWD network and are defined respectively with username and secret.

You can use the qualify=yes statement to occasionally check that the remote server is responding. The response time (latency) can be

viewed from the Asterisk console with iax2 show peers. By default, a peer is considered unreachable after 2000 ms (2 seconds). You

can customize the time period by replacing yes with the number of milliseconds.

The available codecs and the order of preference can be defined on a per-peer basis. disallow=all is used to reset any codec settings set

previously. You can then allow the codecs you support and set their preference (from top to bottom), using the syntax allow=codec.

Use the iax2 show registry command from the Asterisk CLI to verify that you've registered successfully.

4.8.2. Dialplan Configuration

Let's define a section in extensions.conf so that we can place a call to the FWD echo test application. As in previous configurations, we

will create a context, followed by the instructions to connect to the FWD echo test. Use either your telephone attached to the FXS port or

your SIP phone to place the call by dialing 613.

 [internal]

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

 exten => 613,1,Dial(IAX2/iaxfwd/613)

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

4.9. Debugging

Several methods of debugging are available in Asterisk. Once you've connected to the console, you can enable different levels of

verbosity and debugging output, as well as protocol packet tracing. We'll take a look at the various options in this section. (The Asterisk

console is discussed in more detail in Appendix E.)

4.9.1. Connecting to the Console

To connect to the Asterisk console, you can either start the server in the console directly (in which case you will not be able to exit out of

the console without killing the Asterisk process), or start Asterisk as a daemon and then connect to a remote console.

To start the Asterisk process directly in the console, use the console flag:

 # /usr/sbin/asterisk -c

To connect to a remote Asterisk console, start the daemon first, then connect with the -r flag:

 # /usr/sbin/asterisk

 # /usr/sbin/asterisk -r

If you are having a problem with a specific module not loading, or a module causing Asterisk to not load, start the Asterisk process with

the -c flag to monitor the status of modules loading. For example, if you attempt to load the OSS channel driver (which allows the use of

the CONSOLE channel), and Asterisk is unable to open /dev/dsp, you will receive the following error on startup:

 WARNING[32174]: chan_oss.c:470 soundcard_init: Unable to open /dev/dsp:

 No such file or directory

 == No sound card detected -- console channel will be unavailable

 == Turn off OSS support by adding 'noload=chan_oss.so' in /etc/

 asterisk/modules.conf

4.9.2. Enabling Verbosity and Debugging

Asterisk can output debugging information in the form of WARNING, NOTICE, and ERROR messages. These messages will give you

information about your system, such as registrations, status and progression of calls, and various other useful bits of information. Note

that WARNING and NOTICE messages are not errors; however, ERROR messages should be investigated. To enable various levels of

verbosity, use set verbose followed by a numerical value. Useful values range from 3 to 10. For example, to set the highest level of

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

verbosity, use:

 # set verbose 10

You can also enable core debugging messages with set debug followed by a numerical value. To enable DEBUG output on the console,

you may need to enable it in the logger.conf file by adding debug to the console => statement, as follows:

 console => warning,notice,error,event,debug

Useful values for set debug range from 3 to 10. For example:

 # set debug 10

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

file:///C:/DOCUME~1/stelios/LOCALS~1/Temp/2/O'Reilly,.Asterisk.The.Future.of.Telephony.(2005).BBL.LotB.chm/0596009623/18051535.html

4.10. Conclusion

If you've worked through all of the sections in this chapter, you will have configured a pair of analog interfaces, a local SIP channel

connected to a soft phone, and a connection to Free World Dialup via IAX2. These configurations are quite basic, but they give us

functional channels to work with. We will make use of them in the following chapters, while we learn to build more useful dialplans.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

Chapter 5. Dialplan Basics

Everything should be made as simple as possible,

but not simpler.

Albert Einstein (1879-1955)

The dialplan is truly the heart of any Asterisk system, as it defines how Asterisk handles inbound and outbound calls. In a nutshell, it

consists of a list of instructions or steps that Asterisk will follow. Unlike traditional phone systems, Asterisk's dialplan is fully customizable.

To successfully set up your own Asterisk system, you will need to understand the dialplan.

If writing a dialplan sounds overwhelming, don't worry. This chapter explains how dialplans work in a step-by-step manner and teaches

the skills necessary to create your own. The examples have been designed to build upon one another, so feel free to go back and

re-read a section if something doesn't quite make sense. Please also note that this chapter is by no means an exhaustive survey of all

the possible things dialplans can do; our aim is to cover just the fundamentals. We'll cover more advanced dialplan topics in later

chapters.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

file:///C:/DOCUME~1/stelios/LOCALS~1/Temp/2/O'Reilly,.Asterisk.The.Future.of.Telephony.(2005).BBL.LotB.chm/0596009623/18051535.html

5.1. Dialplan Syntax

The Asterisk dialplan is specified in the configuration file named extensions.conf.

The extensions.conf file usually resides in the /etc/asterisk/ directory, but its location may vary

depending on how you installed Asterisk. Other common locations for this file include

/usr/local/asterisk/etc/ and /opt/asterisk/etc/.

The dialplan is made up of four main parts: contexts, extensions, priorities, and applications. In the next few sections, we'll cover each of

these parts and explain how they work together to create a dialplan. After explaining the role each of these elements plays in the

dialplan , we will step you though the process of creating a basic, functioning dialplan.

Sample Configuration Files

If you installed the sample configuration files when you installed Asterisk, you will most likely have an existing

extensions.conf file. Instead of starting with the sample file , we suggest that you build your extensions.conf file from

scratch. This will be very beneficial, as it will give you a better understanding of dialplan concepts and fundamentals.

That being said, the sample extensions.conf file remains a fantastic resource, full of examples and ideas that you can

use after you've learned the basic concepts. We suggest you rename the sample file to something like

extensions.conf.sample. That way, you can refer to it in the future. You can also find the sample configuration files in the

/configs/ directory of the Asterisk source.

5.1.1. Contexts

Dialplans are broken into sections called contexts . Contexts are named groups of extensions. Simply put, they keep different parts of

the dialplan from interacting with one another. An extension that is defined in one context is completely isolated from extensions in any

another context, unless interaction is specifically allowed. (We'll cover how to allow interaction between contexts near the end of the

chapter.)

As a simple example, let's imagine we have two companies sharing an Asterisk server. If we place each company's voice menu in its

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

own context, they are effectively separated from each other. This allows us to independently define what happens when, say, extension

0 is dialed: people pressing 0 at Company A's voice menu will get Company A's receptionist, and callers pressing 0 at Company B's

voice menu will get Company B's receptionist. (This example assumes, of course, that we've told Asterisk to transfer the calls to the

receptionists when callers press 0.)

Contexts are denoted by placing the name of the context inside square brackets ([]). The name can be made up of the letters A through

Z (upper- and lowercase), the numbers 0 through 9, and the hyphen and underscore.
[*]

 For example, a context for incoming calls looks

like this:

[*] Please note that the space is conspicuously absent from the list of allowed characters. Don't use spaces in your

context namesyou won't like the result!

 [incoming]

All of the instructions placed after a context definition are part of that context, until the next context is defined. At the beginning of the

dialplan, there are two special contexts named [general] and [globals]. We will discuss the [globals] context later in this chapter; for now

it's just important to know that these two contexts are special.

One of the most important uses of contexts is to enforce security. By using contexts correctly, you can give certain callers access to

features (such as long-distance calling) that aren't made available to others. If you don't design your dialplan carefully, you may

inadvertently allow others to fraudulently use your system. Please keep this in mind as you build your Asterisk system.

The Asterisk source contains a very important file named SECURITY, which outlines several steps

you should take to keep your Asterisk system secure. It is vitally important that you read and

understand this file. If you ignore the security precautions outlined there, you may end up allowing

anyone and everyone to make long-distance or toll calls at your expense!

If you don't take the security of your Asterisk system seriously, you may end up payingliterally!

Please take the time and effort to secure your system from toll fraud.

5.1.2. Extensions

Within each context, we define one or more extensions . An extension is an instruction that Asterisk will follow, triggered by an incoming

call or by digits being dialed on a channel. Extensions specify what happens to calls as they make their way through the dialplan.

Although extensions can be used to specify phone extensions in the traditional sense (i.e., please call John at extension 153), they can

be used for much more in Asterisk.

The syntax for an extension is the word exten, followed by an arrow formed by the equals sign and the greater-than sign, like this:

 exten =>

This is followed by the name of the extension. When dealing with telephone systems, we tend to think of extensions as the numbers you

would dial to make another phone ring. In Asterisk, you get a whole lot morefor example, extension names can be any combination of

numbers and letters. Over the course of this chapter and the next, we'll use both numeric and alphanumeric extensions.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

Assigning names to extensions may seem like a revolutionary concept, but when you realize that

many Voice-over-IP transports support (or even actively encourage) dialing by name or email

address instead of by number, it makes perfect sense. This is one of the features that make

Asterisk so flexible and powerful.

A complete extension is composed of three components:

The name (or number) of the extension

The priority (each extension can include multiple steps; the step number is called the "priority")

The application (or command) that performs some action on the call

These three components are separated by commas, like this:

exten => name,priority,application()

Here's a simple example of what a real extension might look like:

 exten => 123,1,Answer()

In this example, the extension name is 123, the priority is 1, and the application is Answer(). Now, let's move ahead and explain priorities

and applications.

5.1.3. Priorities

Each extension can have multiple steps, called priorities. Each priority is numbered sequentially, starting with 1. (Actually, there is one

exception to this rule, as discussed in the sidebar "Unnumbered Priorities.") Each priority executes one specific application. As an

example, the following extension would answer the phone (in priority number 1), and then hang it up (in priority number 2):

 exten => 123,1,Answer()

 exten => 123,2,Hangup()

You must make sure that your priorities start at 1 and are numbered consecutively. If you skip a

priority, Asterisk will not continue past it. If you find that Asterisk is not following all the priorities in a

given extension, you may want to make sure you haven't skipped or misnumbered a priority.

Don't worry if you don't understand what Answer() and Hangup()arewe'll cover them shortly. The key point to remember here is that for a

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

particular extension, Asterisk follows the priorities in numerical order.

5.1.4. Applications

Applications are the workhorses of the dialplan. Each application performs a specific action on the current channel, such as playing a

sound, accepting touch-tone input, or hanging up the call. In the previous example, you were introduced to two simple applications:

Answer() and Hangup(). You'll learn more about how these work momentarily.

Unnumbered Priorities

There's nothing like telling you that priorities have to be numbered sequentially, and then contradicting ourselves. Oh

well, it needs to be done.

Version 1.2 of Asterisk adds a new twist to priority numbering. It introduces the use of the n priority, which stands for

"next." Each time Asterisk encounters a priority named n, it takes the number of the previous priority and adds 1. This

makes it easier to make changes to your dialplan, as you don't have to keep renumbering all your steps. For example,

your dialplan might look something like this:

 exten => 123,1,Answer()

 exten => 123,n,do something

 exten => 123,n,do something else

 exten => 123,n,do one last thing

 exten => 123,n,Hangup()

Version 1.2 also allows you to assign text labels to priorities. To assign a text label to a priority, simply add the label

inside parentheses after the priority, like this:

 exten => 123,n(label),do something

In the next chapter, we'll cover how to jump between different priorities based on dialplan logic.

Some applications, such as Answer()andHangup(), need no other instructions to do their jobs. Other applications require additional

information. These pieces of information, called arguments, can be passed on to the applications to affect how they perform their actions.

To pass arguments to an application, place them between the parentheses that follow the application name, separated by commas.

Occasionally, you may also see the pipe character (|) being used as a separator between

arguments, instead of a comma. Feel free to use whichever you prefer. For the examples in this

book, however, we'll be using the comma to separate arguments to an application.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

As we build our first dialplan in the next section, you'll learn to use applications (and their associated arguments) to your advantage.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

5.2. A Simple Dialplan

Now we're ready to create our first dialplan. We'll start with a very simple example. We will design this dialplan so that as a call comes in,

Asterisk will answer the call, play a sound file, and then hang up the call. We'll use this simple example to point out the most important

dialplan fundamentals.

For the examples in this chapter to work correctly, we're assuming that at least one Zap channel has been created and configured (as

described in the previous chapter), and that all incoming calls are sent to the [incoming]context. If you're using other types of channels,

you may need to adjust these examples to fit your particular circumstances.

5.2.1. The s Extension

Before we get started with our dialplan, we ought to explain a special extension called s. When calls enter a context without a specific

destination extension (for example, a ringing FXO line), they are handled automatically by the s extension. (The s stands for "start," as

most calls start in the s extension.) Since this is exactly what we need for our dialplan, let's begin to fill in the pieces. We will be

performing three actions on the call (answer it, play a sound file, and hang it up), so we need to create an extension called s with three

priorities. We'll place the three priorities inside [incoming], as all incoming calls should start in this context:

 [incoming]

 exten => s,1,application()

 exten => s,2,application()

 exten => s,3,application()

Now all we need to do is fill in the applications, and we've created our first dialplan.

5.2.2. The Answer(), Playback(), and Hangup() Applications

If we're going to answer the call, play a sound file, and then hang up, we'd better learn how to do just that. The Answer() application is

used to answer a channel that is ringing. This does the initial setup for the channel that receives the incoming call. (A few applications

don't require that you answer the channel first, but properly answering the channel before performing any other actions is a very good

habit.) As we mentioned earlier, Answer() takes no arguments.

The Playback() application is used for playing a previously recorded sound file over a channel. When using the Playback()application,

input from the user is simply ignored.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

Asterisk comes with many professionally recorded sound files, which should be found in the default

sounds directory (usually /var/lib/asterisk/sounds/). They have been recorded in the GSM format,

so they have a .gsm file extension. We'll be using these files in many of our examples. Several of

the files in our examples come from the asterisk-sounds module, so please take the time to install

it (see Chapter 3).

To use Playback(), specify a filename (without a file extension) as the argument. For example, Playback(filename) would play the sound

file called filename.gsm, assuming it was located in the default sounds directory. Note that you can include the full path to the file if you

want, like this:

 Playback(/home/john/sounds/filename)

This example would play filename.gsm from the /home/john/sounds/ directory. You can also use relative paths from the Asterisk sounds

directory:

 Playback(custom/filename)

This example would play filename.gsm from the custom/ subdirectory of the default sounds directory. Note that if the specified directory

contains more than one file with that filename but with different file extensions, Asterisk automatically plays the best file.
[*]

[*] Asterisk selects the best file based on translation cost; that is, it selects the file that is the least CPU-intensive to

convert to its native audio format. When you start Asterisk, it calculates the translation costs between the different

audio formats (they often vary from system to system). You can see these translation costs by typing show

translation at the Asterisk command-line interface. We'll cover more about the different audio formats (known as

codecs) in Chapter 8.

The Hangup() application does exactly as its name implies: it hangs up the active channel. The caller will receive an indication that the

call has been hung up. You will use this application at the end of a context when you want to end the current call, to ensure that callers

don't continue on in the dialplan. This application takes no arguments.

5.2.3. Our First Dialplan

Now that we have created our extension, given it three different priorities, and learned about the applications we are going to use, let's

put together all the pieces to create our first dialplan. As is typical in many technology books (especially computer programming books),

our first example will be called "Hello World!"

In the first priority of our extension, we'll answer the call. In the second, we'll play a sound file named hello-world.gsm, and in the third

we'll hang up the call. Here's what the dialplan looks like:

 [incoming]

 exten => s,1,Answer()

 exten => s,2,Playback(hello-world)

 exten => s,3,Hangup()

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

If you have a channel or two configured, go ahead and try it out! Simply make a new extensions.conf file with this short dialplan. (If it

doesn't work, check the Asterisk console for error messages, and make sure your channels are configured to send inbound calls to the

[incoming] context.)

Even though this example is very short and simple, it emphasizes the core concepts of contexts, extensions, priorities, and applications.

Now that we've covered these basic concepts, let's build upon our example. After all, a phone system that simply plays a sound file and

then hangs up the channel isn't that useful!

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

file:///C:/DOCUME~1/stelios/LOCALS~1/Temp/2/O'Reilly,.Asterisk.The.Future.of.Telephony.(2005).BBL.LotB.chm/0596009623/18051535.html

5.3. Adding Logic to the Dialplan

The dialplan we just built was staticit always performs the same actions on every call. Now we'll start adding some logic to our dialplan so

that it will perform different actions based on input from the user. We'll start by introducing a few more applications.

5.3.1. The Background() and Goto() Applications

One important key to building interactive Asterisk systems is the Background() application. Like Playback(), it plays a recorded sound

file. Unlike Playback(), however, when the caller presses a key (or series of keys) on her telephone keypad, it interrupts the playback

and goes to the extension that corresponds with the pressed digit(s). If a caller presses 5, for example, Asterisk will stop playing the

sound file and send control of the call to the first priority of extension 5.

The most common use of the Background() application is to create voice menus (often called auto-attendants or phone trees). Many

companies use voice menus to direct callers to the proper extensions, thus relieving their receptionists from having to answer every

single call.

Background() has the same syntax as Playback():

 exten => 123,1,Background(hello-world)

Another useful application is Goto(). As its name implies, it is used to send the call to another context, extension, and priority. The Goto()

application makes it easy to programmatically move a call between different parts of the dialplan. The syntax for the Goto() application

calls for us to pass the destination context, extension, and priority as arguments to the application, like this:

 exten => 123,1,Goto(context,extension,priority)

In our next example, we'll use the Background() and Goto()applications to create a slightly more complex dialplan, allowing the caller to

interact with the system by pressing digits on the keypad. Let's begin by using Background() to accept input from the caller:

 [incoming]

 exten => s,1,Answer()

 exten => s,2,Background(enter-ext-of-person)

In this example, we'll play the sample sound file named enter-ext-of-person.gsm. While it's not the perfect fit for an auto-attendant

greeting, it will certainly work for this example. Now let's add two extensions that will be triggered by the caller entering either 1 or 2 at

the prompt:

 [incoming]

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

 exten => s,1,Answer()

 exten => s,2,Background(enter-ext-of-person)

 exten => 1,1,Playback(digits /1)

 exten => 2,1,Playback(digits/2)

Before going on, let's review what we've done so far. When users call into our dialplan, they will hear a greeting saying, "Please enter the

number you wish to call." If they press 1, they will hear the number one, and if they press 2, they will hear the number two. While that's a

good start, let's embellish it a little. We'll use the Goto() application to make the dialplan repeat the greeting after playing back the

number:

 [incoming]

 exten => s,1,Answer()

 exten => s,2,Background(enter-ext-of-person)

 exten => 1,1,Playback(digits/1)

 exten => 1,2,Goto(incoming,s,1)
 exten => 2,1,Playback(digits/2)

 exten => 2,2,Goto(incoming,s,1)

These two new lines (highlighted in bold) will send the call control back to the s extension after playing back the selected number.

If you look up the details of the Goto()application, you'll find that you can actually pass either one,

two, or three arguments to the application. If you pass a single argument, it'll assume it's the

destination priority in the current extension. If you pass two, it'll treat them as the extension and

priority to go to in the current context.

In this example, we've passed all three arguments for the sake of clarity, but passing just the

extension and priority would have had the same effect.

5.3.2. Handling Invalid Entries and Timeouts

Now that our first voice menu is fairly complete, let's add some additional special extensions. First, we need an extension for invalid

entries, so that when a caller presses an invalid entry (e.g., pressing 3 in the above example), the call is sent to the i extension. Second,

we need an extension to handle situations when the caller doesn't give input in time (the default timeout is 10 seconds). Calls will be sent

to the t extension if the caller takes too long to press a digit after Background() has finished playing the sound file. Here is what our

dialplan will look like after we've added these two extensions:

 [incoming]

 exten => s,1,Answer()

 exten => s,2,Background(enter-ext-of-person)

 exten => 1,1,Playback(digits/1)

 exten => 1,2,Goto(incoming,s,1)

 exten => 2,1,Playback(digits/2)

 exten => 2,2,Goto(incoming,s,1)

 exten => i,1,Playback(pbx-invalid)

 exten => i,2,Goto(incoming,s,1)

 exten => t,1,Playback(vm-goodbye)

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

 exten => t,2,Hangup()

Using the i and t extensions makes our dialplan a little more robust and user-friendly. That being said, it is still quite limited, because

outside callers have no way of connecting to a live person. To do that, we'll need to learn about another application, called Dial() .

5.3.3. Using the Dial() Application

One of Asterisk's most valuable features is its ability to connect different callers to each other. This is especially useful when callers are

using different methods of communication. For example, caller A might be communicating over the standard analog telephone network,

while user B might be sitting in a café halfway around the world and speaking on an IP telephone. Luckily, Asterisk takes most of the

hard work out of connecting and translating between disparate networks. All you have to do is learn how to use the Dial() application.

The syntax of the Dial() application is a little more complex than that of the other applications we've used so far, but don't let that scare

you off. Dial() takes up to four arguments. The first is the destination you're attempting to call, which is made up of a technology (or

transport) across which to make the call, a forward slash, and the remote resource (usually a channel name or number). For example,

let's assume that we want to call a Zap channel named Zap/1, which is an FXS channel with an analog phone plugged into it. The

technology is "Zap," and the resource is "1." Similarly, a call to a SIP device might have a destination of SIP/1234, and a call to an IAX

device might have a destination of IAX/fred. If we want Asterisk to ring the Zap/1 channel when extension 123 is reached in the dialplan,

we'd add the following extension:

 exten => 123,1,Dial(Zap/1)

When this extension is executed, Asterisk will ring the phone connected to channel Zap/1. If that phone is answered, Asterisk will bridge

the inbound call with the Zap/1 channel. We can also dial multiple channels at the same time, by concatenating the destinations together

with an ampersand (&), like this:

 exten => 123,1,Dial(Zap/1&Zap/2&Zap/3)

The Dial() application will bridge the inbound call with whichever destination channel is answered first.

The second argument to the Dial() application is a timeout, specified in seconds. If a timeout is given, Dial() will attempt to call the

destination(s) for that number of seconds before giving up and moving on to the next priority in the extension. If no timeout is specified,

Dial() will continue to dial the called channel(s) until someone answers or the caller hangs up. Let's add a timeout of 10 seconds to our

extension:

 exten => 123,1,Dial(Zap/1,10)

If the call is answered before the timeout, the channels are bridged and the dialplan is done. If the destination simply does not answer,

Dial() goes on to the next priority in the extension. If, however, the destination channel is busy, Dial() will go to priority n+101, if it exists

(where n is the priority where the Dial() application was called). This allows us to handle unanswered calls differently from calls whose

destinations were busy.

Let's put what we've learned so far into another example:

 exten => 123,1,Dial(Zap/1,10)

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

 exten => 123,2,Playback(vm-nobodyavail)

 exten => 123,3,Hangup()

 exten => 123,102,Playback(tt-allbusy)

 exten => 123,103,Hangup()

As you can see, this example will play the vm-nobodyavail.gsm sound file if the call goes unanswered, or the tt-allbusy.gsm sound file if

the Zap/1 channel is currently busy.

The third argument to Dial() is an option string. It may contain one or more characters that modify the behavior of the Dial() application.

While the list of possible options is too long to cover here, the most popular option is the letter r. If you place the letter r as the third

argument, the calling party will hear a ringing tone while the destination channel is being notified of an incoming call.

It should be noted that the r option isn't always required to indicate ringing, as Asterisk will automatically generate a ringing tone when it

is attempting to establish a channel. However, you can use the r option to force Asterisk to indicate ringing even when no connection is

being attempted. To add the r option to our last example, we simply change the first line:

 exten => 123,1,Dial(Zap/1,10,r)
 exten => 123,2,Playback(vm-nobodyavail)

 exten => 123,3,Hangup()

 exten => 123,102,Playback(tt-allbusy)

 exten => 123,103,Hangup()

Since the extensions numbered 1 and 2 in our dialplan are somewhat useless now that we know how to use the Dial() application, let's

replace them with extensions 101 and 102, which will allow outside callers to reach John and Jane:

 [incoming]

 exten => s,1,Answer()

 exten => s,2,Background(enter-ext-of-person)

 exten => 101,1,Dial(Zap/1,10)

 exten => 101,2,Playback(vm-nobodyavail)

 exten => 101,3,Hangup()

 exten => 101,102,Playback(tt-allbusy)

 exten => 101,103,Hangup()

 exten => 102,1,Dial(SIP/Jane,10)

 exten => 102,2,Playback(vm-nobodyavail)

 exten => 102,3,Hangup()
 exten => 102,102,Playback(tt-allbusy)

 exten => 102,103,Hangup()

 exten => i,1,Playback(pbx-invalid)

 exten => i,2,Goto(incoming,s,1)

 exten => t,1,Playback(vm-goodbye)

 exten => t,2,Hangup()

The fourth and final argument to the Dial() application is a URL. If the destination channel supports receiving a URL at the time of the

call, the specified URL will be sent (for example, if you have an IP telephone that supports receiving a URL, it will appear on the phone's

display; likewise, if you're using a soft phone, the URL might pop up on your computer screen). This argument is very rarely used.

If you are making outbound calls on an FXO Zap channel, you can use the following syntax to dial a number on that channel:

 exten => 123,1,Dial(Zap/4/5551212)

This example would dial the number 555-1212 on the Zap/4 channel. For other channel types, such as SIP and IAX, simply put the

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

destination as the resource, as shown in these two lines:

 exten => 123,1,Dial(SIP/1234)

 exten => 124,1,Dial(IAX2/john@asteriskdocs.org)

Note that any of these arguments may be left blank. For example, if you want to specify an option but not a timeout, simply leave the

timeout argument blank, like this:

 exten => 123,1,Dial(Zap/1,,r)

5.3.4. Adding a Context for Internal Calls

In our examples thus far we have limited ourselves to a single context, but it is probably fair to assume that almost all Asterisk

installations will have more than one context in their dialplans. As we mentioned at the beginning of this chapter, one important function

of contexts is to separate privileges (such as making long-distance calls or calling certain extensions) for different classes of callers. In

our next example, we'll add to our dialplan by creating two internal phone extensions, and we'll set up the ability for these two extensions

to call each other. To accomplish this, we'll create a new context called [internal].

As in previous examples, we've assumed that an FXS Zap channel (Zap/1, in this case) has

already been configured, and that your zapata.conf file is configured so that any calls originated by

Zap/1 begin in the [internal] context. For a few examples at the end of the chapter, we'll also

assume that an FXO Zap channel has been configured as Zap/4, with calls coming in on this

channel being sent to the [incoming] context. This channel will be used for outbound calling.

We've also assumed you have at least one SIP channel (named SIP/jane) that is configured to

originate in the [internal] context. We've done this to introduce you to using other types of channels.

If you don't have hardware for the channels listed above (such as Zap/4), or if you're using

hardware with different channel names (e.g., not SIP/jane), don't worryyou can change the

examples to match your particular system configuration.

Our dialplan now looks like this:

 [incoming]

 exten => s,1,Answer()

 exten => s,2,Background(enter-ext-of-person)

 exten => 101,1,Dial(Zap/1,10)

 exten => 101,2,Playback(vm-nobodyavail)

 exten => 101,3,Hangup()

 exten => 101,102,Playback(tt-allbusy)

 exten => 101,103,Hangup()

 exten => 102,1,Dial(SIP/Jane,10)

 exten => 102,2,Playback(vm-nobodyavail)

 exten => 102,3,Hangup()

 exten => 102,102,Playback(tt-allbusy)

 exten => 102,103,Hangup()

 exten => i,1,Playback(pbx-invalid)

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

 exten => i,2,Goto(incoming,s,1)

 exten => t,1,Playback(vm-goodbye)

 exten => t,2,Hangup()

 [internal]

 exten => 101,1,Dial(Zap/1,,r)

 exten => 102,1,Dial(SIP/jane,,r)

In this example, we have added two new extensions to the [internal] context. This way, the person using channel Zap/1 can pick up the

phone and dial the person at channel SIP/jane by dialing 102. By that same token, the phone registered as SIP/jane can dial Zap/1 by

dialing 101.

We've arbitrarily decided to use extensions 101 and 102 for our examples, but feel free to use whatever numbering convention you wish

for your extensions. You should also be aware that you're not limited to three-digit extensionsyou can use as few or as many digits as

you like. (Well, almost. Extensions must be shorter than 80 characters long, and you shouldn't use single-character extensions for your

own use, as they're reserved.) Don't forget that you can use names as well, like so:

 [incoming]

 exten => s,1,Answer()

 exten => s,2,Background(enter-ext-of-person)

 exten => 101,1,Dial(Zap/1,10)

 exten => 101,2,Playback(vm-nobodyavail)

 exten => 101,3,Hangup()

 exten => 101,102,Playback(tt-allbusy)

 exten => 101,103,Hangup()

 exten => 102,1,Dial(SIP/Jane,10)

 exten => 102,2,Playback(vm-nobodyavail)

 exten => 102,3,Hangup()

 exten => 102,102,Playback(tt-allbusy)

 exten => 102,103,Hangup()

 exten => t,1,Playback(vm-goodbye)

 exten => t,2,Hangup()

 [internal]

 exten => 101,1,Dial(Zap/1,,r)

 exten => john,1,Dial(Zap/1,,r)
 exten => 102,1,Dial(SIP/jane,,r)

 exten => jane,1,Dial(SIP/jane,,r)

It certainly wouldn't hurt to add named extensions if you think your users might be dialed via a VoIP transport that supports names.

Now that our internal callers can call each other, we're well on our way toward having a complete dialplan. Next, we'll see how we can

make our dialplan more scalable and easier to modify in the future.

5.3.5. Using Variables

Variables can be used in an Asterisk dialplan to help reduce typing, add clarity, or add additional logic to a dialplan. If you have some

computer programming experience, you probably already understand what a variable is. If not, don't worry; we'll explain what variables

are and how they are used.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

You can think of a variable as a container that can hold one value at a time. So, for example, we might create a variable called JOHN

and assign it the value of Zap/1. This way, when we're writing our dialplan, we can refer to John's channel by name, instead of

remembering that John is using Zap/1. To assign a value to a variable, simply type the name of the variable, an equals sign, and the

value, like this:

 JOHN=Zap/1

There are two ways to reference a variable. To reference the variable's name, simply type the name of the variable, such as JOHN. If, on

the other hand, you want to reference its value, you must type a dollar sign, an opening curly brace, the name of the variable, and a

closing curly brace. Here's how we'd reference the variable inside the Dial() application:

 exten => 555,1,Dial(${JOHN},,r)

In our dialplan, whenever we write ${JOHN}, Asterisk will automatically replace it with whatever value has been assigned to the variable

named JOHN.

Note that variable names don't have to be capitalized, but we're doing so in this book for

readability's sake.

There are three types of variables we can use in our dialplan: global variables , channel variables , and environment variables. Let's

take a moment to look at each type.

5.3.5.1. Global variables

As their name implies, global variables apply to all extensions in all contexts. Global variables are useful in that they can be used

anywhere within a dialplan to increase readability and manageability. Suppose for a moment that you had a large dialplan and several

hundred references to the Zap/1 channel. Now imagine you had to go through your dialplan and change all those references to Zap/2. It

would be a long and error-prone process, to say the least.

On the other hand, if you had defined a global variable with the value Zap/1 at the beginning of your dialplan and then referenced that

instead, you would only have to change one line.

Global variables should be declared in the [globals] context at the beginning of the extensions.conf file. They can also be defined

programmatically, using the SetGlobalVar() application. Here is how both methods look inside of a dialplan:

 [globals]

 JOHN=Zap/1

 [internal]

 exten => 123,1,SetGlobalVar(JOHN=Zap/1)

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

5.3.5.2. Channel variables

A channel variable is a variable (such as the Caller*IDnumber) that is associated only with a particular call. Unlike global variables,

channel variables are defined only for the duration of the current call and are available only to the channel participating in that call.

There are many predefined channel variables available for use within the dialplan, which are explained in the README.variables file in

the doc subdirectory of the Asterisk source. Channel variables are set via the Set() application:

 exten => 123,1,Set(MAGICNUMBER=42)

We'll use several of these channel variables in the next chapter.

5.3.5.3. Environment variables

Environment variables are a way of accessing Unix environment variables from within Asterisk. These are referenced in the form of

${ENV(var)}, where var is the Unix environment variable you wish to reference.

5.3.5.4. Adding variables to our dialplan

Now that we've learned about variables, let's put them to work in our dialplan. We'll add variables for two people, John and Jane:

 [globals]

 JOHN=Zap/1

 JANE=SIP/jane

 [incoming]

 exten => s,1,Answer()

 exten => s,2,Background(enter-ext-of-person)

 exten => 101,1,Dial(${JOHN},10)
 exten => 101,2,Playback(vm-nobodyavail)

 exten => 101,3,Hangup()

 exten => 101,102,Playback(tt-allbusy)

 exten => 101,103,Hangup()

 exten => 102,1,Dial(${JANE},10)
 exten => 102,2,Playback(vm-nobodyavail)

 exten => 102,3,Hangup()

 exten => 102,102,Playback(tt-allbusy)

 exten => 102,103,Hangup()

 exten => i,1,Playback(pbx-invalid)

 exten => i,2,Goto(incoming,s,1)

 exten => t,1,Playback(vm-goodbye)

 exten => t,2,Hangup()

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

 [internal]

 exten => 101,1,Dial(${JOHN},,r)

 exten => 102,1,Dial(${JANE},,r)

5.3.6. Pattern Matching

Often, it would be tedious to add every possible extension to a dialplan. This is especially the case for outbound calls. Can you imagine a

dialplan with an extension for every possible number you could dial? Luckily, Asterisk has just the thing for situations like this: pattern

matching to allow you to use one section of code for many different extensions.

5.3.6.1. Pattern-matching syntax

When using pattern matching, we use different letters and symbols to represent the possible digits we want to match. Patterns always

start with an underscore (_). This tells Asterisk that we're matching on a pattern, and not on an extension name. (This means, of course,

that you should never start your extension names with an underscore.)

If you forget the underscore on the front of your pattern, Asterisk will think it's just a named

extension and won't do any pattern matching.

After the underscore, you can use one or more of the following characters:

X

Matches any digit from 0 to 9.

Z

Matches any digit from 1 to 9.

N

Matches any digit from 2 to 9.

[15-7]

Matches any digit or range of digits specified. In this case, matches a 1, 5, 6, or 7.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

. (period)

Wildcard match; matches one or more characters.

If you're not careful, wildcard matches can make your dialplans do things you're not expecting.

You should only use the wildcard match in a pattern after you've matched as many other digits as

possible. For example, the following pattern match should probably never be used:

 _.

In fact, Asterisk will warn you if you try to use it. Instead, use this one, if possible:

 _X.

To use pattern matching in your dialplan, simply put the pattern in the place of the extension name (or number):

 exten => _NXX,1,Playback(auth-thankyou)

In this example, the pattern would match any 3-digit extension from 200 through 999 (the N matches any digit between 2 and 9, and

each X matches a digit between 0 and 9). That is to say, if a caller dialed any 3-digit extension between 200 and 999 in this context, he

would hear the sound file auth-thankyou.gsm.

One other important thing to know about pattern matching is that if Asterisk finds more than one pattern that matches the dialed

extension, it will use the most specific one. Say you had defined the following two patterns, and a caller dialed 888-555-1212:

 exten => _555XXXX,1,Playback(digits/1)

 exten => _55512XX,1,Playback(digits/2)

In this case the second extension would be selected, because it is more specific.

5.3.6.2. Pattern-matching examples

Before we go on, let's look at a few more pattern-matching examples. In each one, see if you can tell what the pattern would match

before reading the explanation. We'll start with an easy one:

 _NXXXXXX

Got it? This pattern would match any seven-digit number, as long as the first digit was two or higher. According to the North American

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

Numbering Plan, this pattern would match any local number.

The NANP and Toll Fraud

The North American Number Plan (NANP) is a shared telephone numbering scheme used by 19 countries in North

America and the Caribbean.

In the United States and Canada, telecom regulations are similar (and sensible) enough that you can place a

long-distance call to most numbers in country code 1 and expect to pay a reasonable toll. What many people don't

realize, however, is that 19 countries, many of which have very different telecom regulations, share the NANP. (More

information can be found at http://www.nanpa.com.)

Many toll-fraud schemes trick naive North Americans into calling shockingly expensive per-minute toll numbers in a

Caribbean countrythe callers believe that since they dialed 1-NPA-NXX-XXXX to reach the number, they'll be paying

their standard national long-distance rate for the call. Since the country in question may have regulations that allow for

this form of extortion, the caller is ultimately held responsible for the call charges.

The only way to prevent this sort of activity is to block calls to certain area codes (809, for example) and remove the

restrictions only on an as-needed basis. Please take extra caution to make sure users can't abuse your phone system!

Let's try another:

 _1NXXNXXXXXX

This one is slightly more difficult. This would match the number 1, followed by an area code between 200 and 999, then any 7-digit

number. In the NANP, you would use this pattern to match any long-distance number.

Now for an even trickier example:

 _011.

If that one left you scratching your head, look at it again. Did you notice the period on the end? This pattern matches any number that

starts with 011 and has at least one more digit. In the NANP, this indicates an international phone number.
[*]

[*] If you find it peculiar that we've chosen patterns that are used to dial outbound numbers in the NANP, you're on

to something! We'll be using these patterns in the next section to add outbound dialing capabilities to our dialplan.

5.3.6.3. Using the ${EXTEN} channel variable

We know what you're thinking... You're sitting there asking yourself, "So what happens if I want to use pattern matching, but I need to

know which digits were actually dialed?" Luckily, Asterisk has just the answer. Whenever you dial an extension, Asterisk sets the

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

http://www.nanpa.com

${EXTEN} channel variable to the digits that were dialed. We can use an application called SayDigits() to test it out:

 exten => _XXX,1,SayDigits(${EXTEN})

In this example, the SayDigits() application will read back to you the three-digit extension you dialed.

Often, it's useful to manipulate the ${EXTEN} by stripping a certain number of digits off the front of the extension. This is accomplished by

using the syntax ${EXTEN:x}, where x is the number of digits you'd like to remove. For example, if the value of EXTEN is 95551212,

${EXTEN:1} equals 5551212. Let's take a look at another example:

 exten => _XXX,1,SayDigits(${EXTEN:1})

In this example, the SayDigits() application would read back only the last two digits of the dialed extension.

If x is negative, SayDigits() gives you the last x digits of the dialed extension. In this next example, SayDigits() will read back only the last

digit of the dialed extension:

 exten => _XXX,1,SayDigits(${EXTEN:-1))

5.3.7. Enabling Outbound Dialing

Now that we've introduced pattern matching, we can go about the process of allowing users to make outbound calls. The first thing we'll

do is add a variable to the [globals] context to define which channel will be used for outbound calls:

 [globals]

 JOHN=Zap/1

 JANE=SIP/jane

 OUTBOUNDTRUNK=Zap/4

Next, we will add contexts to our dialplan for outbound dialing.

You may be asking yourself at this point, "Why do we need separate contexts for outbound calls?" This is so that we can regulate and

control who has permission to make outbound calls, and which types of outbound calls they are allowed to make.

First, let's make a context for local calls. To be consistent with most traditional phone switches, we'll put a 9 on the front of our patterns,

so that users have to dial 9 before calling an outside number:

 [outbound-local]

 exten => _9NXXXXXX,1,Dial(${OUTBOUNDTRUNK}/${EXTEN:1})

 exten => _9NXXXXXX,2,Congestion()

 exten => _9NXXXXXX,102,Congestion()

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

Note that dialing 9 doesn't actually give you an outside line, unlike with many traditional PBX

systems. Once you dial 9 on an FXS line, the dial tone will stop. If you'd like the dial tone to

continue even after dialing 9, add the following line (right after your context definition):

 ignorepat => 9

This directive tells Asterisk to continue to provide a dial tone, even after the caller has dialed the

indicated pattern.

Let's review what we've just done. We've added a global variable called OUTBOUNDTRUNK, which will control which channel to use for

outbound calls. We've also added a context for local outbound calls. In priority 1, we take the dialed extension, strip off the 9 with the

${EXTEN:1} syntax, and then attempt to dial that number on the channel signified by the variable OUTBOUNDTRUNK. If the call is

successful, the caller is bridged with the outbound channel. If the call is unsuccessful (because either the channel is busy or the number

can't be dialed for some reason), the Congestion() application is called, which plays a "fast busy signal " (congestion tone) to let the

caller know that the call was unsuccessful.

Before we go any farther, let's make sure our dialplan allows outbound emergency numbers:

 [outbound-local]

 exten => _9NXXXXXX,1,Dial(${OUTBOUNDTRUNK}/${EXTEN:1})

 exten => _9NXXXXXX,2,Congestion()

 exten => _9NXXXXXX,102,Congestion()

 exten => 911,1,Dial(${OUTBOUNDTRUNK}/911)

 exten => 9911,1,Dial(${OUTBOUNDTRUNK}/911)

Again, we're assuming for the sake of these examples that we're inside the United States or Canada. If you're outside of this area, please

replace 911 with the emergency services number in your particular location. This is something you never want to forget to put in your

dialplan!

Next, let's add a context for long-distance calls:

 [outbound-long-distance]

 exten => _91NXXNXXXXXX,1,Dial(${OUTBOUNDTRUNK}/${EXTEN:1})

 exten => _91NXXNXXXXXX,2,Congestion()

 exten => _91NXXNXXXXXX,102,Congestion()

Now that we have these two new contexts, how do we allow internal users to take advantage of them? We need a way for contexts to be

able to use other contexts.

5.3.8. Includes

Asterisk enables us to use a context within another context via the include directive. This is used to grant access to different sections of

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

the dialplan. We'll use the include functionality to allow users in our [internal] context the ability to make outbound phone calls. But first,

let's cover the syntax.

The include statement takes the following form, where context is the name of the remote context we want to include in the current context:

 include => context

When we include other contexts within our current context, we have to be mindful of the order in which we including them. Asterisk will

first try to match the extension in the current context. If unsuccessful, it will then try the first included context, and then continue to the

other included contexts in the order in which they were included.

As it sits, our current dialplan has two contexts for outbound calls, but there's no way for people in the [internal] context to use them.

Let's remedy that by including the two outbound contexts in the [internal] context, like this:

 [globals]

 JOHN=Zap/1

 JANE=SIP/jane

 OUTBOUNDTRUNK=Zap/4

 [incoming]

 exten => s,1,Answer()

 exten => s,2,Background(enter-ext-of-person)

 exten => 101,1,Dial(${JOHN},10)

 exten => 101,2,Playback(vm-nobodyavail)

 exten => 101,3,Hangup()

 exten => 101,102,Playback(tt-allbusy)

 exten => 101,103,Hangup()

 exten => 102,1,Dial(${JANE},10)

 exten => 102,2,Playback(vm-nobodyavail)

 exten => 102,3,Hangup()

 exten => 102,102,Playback(tt-allbusy)

 exten => 102,103,Hangup()

 exten => i,1,Playback(pbx-invalid)

 exten => i,2,Goto(incoming,s,1)

 exten => t,1,Playback(vm-goodbye)

 exten => t,2,Hangup()

 [internal]

 include => outbound-local

 include => outbound-long-distance

 exten => 101,1,Dial(${JOHN},,r)

 exten => 102,1,Dial(${JANE},,r)

 [outbound-local]

 exten => _9NXXXXXX,1,Dial(${OUTBOUNDTRUNK}/${EXTEN:1})

 exten => _9NXXXXXX,2,Congestion()

 exten => _9NXXXXXX,102,Congestion()

 exten => 911,1,Dial(${OUTBOUNDTRUNK}/911)

 exten => 9911,1,Dial(${OUTBOUNDTRUNK}/911)

 [outbound-long-distance]

 exten => _91NXXNXXXXXX,1,Dial(${OUTBOUNDTRUNK}/${EXTEN:1})

 exten => _91NXXNXXXXXX,2,Congestion()

 exten => _91NXXNXXXXXX,102,Congestion()

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

These two include statements make it possible for callers in the [internal] context to make outbound calls. We should also note that for

security's sake you should always make sure that your [inbound] context never allows outbound dialing. (If by chance it did, people could

dial into your system, and then make outbound toll calls that would be charged to you!)

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

file:///C:/DOCUME~1/stelios/LOCALS~1/Temp/2/O'Reilly,.Asterisk.The.Future.of.Telephony.(2005).BBL.LotB.chm/0596009623/18051535.html

5.4. Conclusion

And there we have ita basic but functional dialplan. It's not exactly fully featured, but we've covered all of the fundamentals. In the

following chapters, we'll continue to add features to this foundation.

If parts of this dialplan don't make sense, you may want to go back and re-read a section or two before continuing on to the next chapter.

It's imperative that you understand these principles and how to apply them, or the following chapters will only confuse you more. And we

don't want you to be confused!

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

file:///C:/DOCUME~1/stelios/LOCALS~1/Temp/2/O'Reilly,.Asterisk.The.Future.of.Telephony.(2005).BBL.LotB.chm/0596009623/18051535.html

Chapter 6. More Dialplan Concepts

For a list of all the ways technology has failed to

improve the quality of life, please press three.

Alice Kahn

Alrighty. You've got the basics of dialplans down, and you're hoping there's more to come. Fear not; there is moremuch more. If you don't

have the last chapter sorted out yet, please go back and give it another read. We're building on what we've covered so far, and we need

you to be comfortable with the material, as we're about to get into more advanced topics.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

file:///C:/DOCUME~1/stelios/LOCALS~1/Temp/2/O'Reilly,.Asterisk.The.Future.of.Telephony.(2005).BBL.LotB.chm/0596009623/18051535.html

6.1. Expressions and Variable Manipulation

Before we dive further into dialplans, we need to introduce you to a few tricks that will greatly add to the power you can exercise with your

dialplan. These constructs add incredible intelligence to your dialplan, by enabling it to make decisions based on all sorts of different

criteria. Put on your thinking cap, and let's get started.

6.1.1. Basic Expressions

Expressions are combinations of variables, operators, and values that you put together to get a result. An expression can test values,

alter strings, or perform mathematical calculations. Let's say we have a variable called COUNT. In plain English, two expressions using

that variable might be "COUNT plus 1" and "COUNT divided by 2." Each of these expressions has a particular result or value, depending

on the value of the given variable.

In Asterisk, expressions always begin with a dollar sign and an opening square bracket and end with a closing square bracket, as shown

below:

 $[expression]

Thus, we would write the above two examples like this:

 $[${COUNT} + 1]

 $[${COUNT} / 2]

When Asterisk encounters an expression in a dialplan, it replaces the entire expression with the resulting value. It is important to note

that this takes place after variable substitution. To demonstrate, let's look at the following code:
[*]

[*] Remember that when you reference a variable, you can call it by its name, but when you refer to a variable's

value, you have to use the dollar sign and brackets around the variable name.

 exten => 321,1,Set(COUNT=3)

 exten => 321,2,Set(NEWCOUNT=$[${COUNT} + 1])

 exten => 321,3,SayNumber(${NEWCOUNT})

In the first priority, we assign the value of 3 to the variable named COUNT.

In the second priority, only one applicationSet()is involved, but three things actually happen:

Asterisk substitutes ${COUNT} with the number 3 in the expression. The expression effectively becomes this:1.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

 exten => 321,2,Set(NEWCOUNT=$[3 + 1])

Next, Asterisk evaluates the expression, adding 1 to 3, and replaces it with its computed value of 4:

 exten => 321,2,Set(NEWCOUNT=4)

2.

Finally, the value 4 is assigned to the NEWCOUNT variable by the Set() application.3.

The third priority simply invokes the SayNumber() application, which speaks the current value of the variable ${NEWCOUNT} (set to the

value 4 in priority two).

Try it out in your own dialplan.

6.1.2. Operators

When you create an Asterisk dialplan, you're really writing code in a specialized scripting language. This means that the Asterisk

dialplanlike any programming languagerecognizes symbols called operators that allow you to manipulate variables. Let's look at the

types of operators that are available in Asterisk:

Boolean operators

These operators evaluate the "truth" of a statement. In computing terms, that essentially refers to whether the statement is

something or nothing (non-zero or zero, true or false, on or off, and so on). The Boolean operators are:

expr1 | expr2

This operator (called the "or" operator, or "pipe") returns the evaluation of expr1 if it is true (neither an empty string

nor zero). Otherwise, it returns the evaluation of expr2.

expr1 & expr2

This operator (called "and") returns the evaluation of expr1 if both expressions are true (i.e., neither expression

evaluates to an empty string or zero). Otherwise, it returns zero.

expr1 {=, >, >=, <, <=, !=} expr2

These operators return the results of an integer comparison if both arguments are integers; otherwise, they return

the results of a string comparison. The result of each comparison is 1 if the specified relation is true, or 0 if the

relation is false. (If you are doing string comparisons, they will be done in a manner that's consistent with the

current locale settings of your operating system.)

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

Mathematical operators

Want to perform a calculation? You'll want one of these:

expr1 {+, -} expr2

These operators return the results of the addition or subtraction of integer-valued arguments.

expr1 {*, /, %} expr2

These return, respectively, the results of the multiplication, integer division, or remainder of integer-valued

arguments.

Regular expression operator

You can also use the regular expression operator in Asterisk:

expr1 : expr2

This operator matches expr1 against expr2, where expr2 must be a regular expression.
[*]

 The regular expression

is anchored to the beginning of the string with an implicit ^.
[]

[*] For more on regular expressions, grab a copy of the ultimate reference, Jeffrey Friedl's

Mastering Regular Expressions (O'Reilly; http://www.oreilly.com/catalog/regex2/) or visit

http://www.regular-expressions.info.

[] If you don't know what a ̂ has to do with regular expressions, you simply must obtain a

copy of Mastering Regular Expressions. It will change your life!

If the match succeeds and the pattern contains at least one regular expression subexpression\(...\)the string

corresponding to \1 is returned; otherwise, the matching operator returns the number of characters matched. If the

match fails and the pattern contains a regular expression subexpression, the null string is returned; otherwise, 0 is

returned.

The Asterisk parser is quite simple, so it requires that you put at least one space between the operator and any other values.

Consequently, the following may not work as expected:

 exten => 123,1,Set(TEST=$[2+1])

This would assign the variable TEST the string "2+1", instead of the value 3. Instead, put spaces around the operator, like this:

 exten => 234,1,Set(TEST=$[2 + 1])

To concatenate text onto the beginning or end of a variable, simply place them together in an expression, like this:

 exten => 234,1,Set(NEWTEST=$[blah${TEST}])

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

http://www.oreilly.com/catalog/regex2/
http://www.regular-expressions.info

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

6.2. Dialplan Functions

Dialplan functions are not a new concept. In Asterisk 1.2, they should be used where possible. Many applications that perform the same

operation as a corresponding function will eventually be removed in favor of the function. Functions allow you to add more power to your

expressionsyou can think of them as being similar to operators, but more advanced. For example, dialplan functions allow you to

calculate string lengths, dates and times, MD5 checksums, and so on, all from within a dialplan expression.

6.2.1. Syntax

Dialplan functions have the following basic syntax:

 FUNCTION_NAME(argument)

Much like with variables, you reference a function's name as above, but you reference a function's value with the addition of a dollar sign,

an opening curly brace, and a closing curly brace:

 ${FUNCTION_NAME(argument)}

Functions can also encapsulate other functions, like so:

 ${FUNCTION_NAME(${FUNCTION_NAME(argument)})}

 ^ ^ ^ ^ ^^^^

 1 2 3 4 4321

As you've probably already figured out, you must be very careful about making sure you have matching parentheses and braces. In the

above example, we have labeled the opening parentheses and curly braces with numbers and their corresponding closing counterparts

with the same numbers.

6.2.2. Examples of Dialplan Functions

Functions are often used in conjunction with the Set() application to either get or set the value of a variable. As a simple example, let's

look at the LEN() function. This function calculates the string length of its argument. Let's calculate the string length of a variable and

read back the length to the caller:

 exten => 123,1,Set(TEST=example)

 exten => 123,2,SayNumber(${LEN(${TEST})})

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

The above example would evaluate the string example as having seven characters, assign the number of characters to the variable

length, and then speak the number to the user with the SayNumber() application.

Let's look at another simple example. If we wanted to set one of the various channel timeouts, we could use the TIMEOUT() function.

The TIMEOUT() function accepts one of three arguments: absolute, digit, and response. Their corresponding applications are

AbsoluteTimeout(), DigitTimeout(), and ResponseTimeout(). To set the digit timeout with the TIMEOUT() function, we could use the Set(

) application, like so:

 exten => s,1,Set(TIMEOUT(digit)=30)

Notice the lack of ${ } surrounding the function. Just as if we were assigning a value to a variable, we assign a value to a function without

the use of the ${ } encapsulation.

A complete list of available functions can be found by typing show functions at the Asterisk command-line interface.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

6.3. Conditional Branching

Now that you've learned a bit about expressions and functions, it's time to put them to use. By using expressions and functions, you can

add even more advanced logic to your dialplan. To allow your dialplan to make decisions, you'll use conditional branching . Let's take a

closer look.

6.3.1. The GotoIf() Application

The key to conditional branching is the GotoIf() application. GotoIf() evaluates an expression and sends the caller to a specific

destination based on whether the expression evaluates to true or false.

GotoIf() uses a special syntax, often called the conditional syntax:

 GotoIf(expression?destination1:destination2)

If the expression evaluates to true, the caller is sent to the first destination. If the expression evaluates to false, the caller is sent to the

second destination. So, what is true and what is false? An empty string and the number 0 evaluate as false. Anything else evaluates as

true.

The destinations can each be one of the following:

A priority within the same extension, such as 10

An extension and a priority within the same context, such as 123,10

A context, extension, and priority, such as incoming,123,10

A named priority within the same extension, such as passed

Either of the destinations may be omitted, but not both. If the omitted destination is to be followed, Asterisk simply goes on to the next

priority in the current extension.

Let's use GotoIf() in an example:

 exten => 345,1,Set(TEST=1)

 exten => 345,2,GotoIf($[{$TEST} = 1]?10:20)

 exten => 345,10,Playback(weasels-eaten-phonesys)

 exten => 345,20,Playback(office-iguanas)

By changing the value assigned to TEST in the first line, you should be able to have your Asterisk server play a different greeting.

Let's look at another example of conditional branching. This time, we'll use both Goto() and GotoIf() to count down from 10 and then

hang up:

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

 exten => 123,1,Set(COUNT=10)

 exten => 123,2,GotoIf($[${COUNT} > 0]?:10)

 exten => 123,3,SayNumber(${COUNT})

 exten => 123,4,Set(COUNT=$[${COUNT} - 1])

 exten => 123,5,Goto(2)

 exten => 123,10,Hangup()

Let's analyze this example. In the first priority, we set the variable COUNT to 10. Next, we check to see if COUNT is greater than 0. If it is,

we move on to the next priority. (Don't forget that if we omit a destination in the GotoIf() application, control goes to the next priority.)

From there we speak the number, subtract 1 from COUNT, and go back to priority two. If COUNT is less than or equal to 0, control goes to

priority 10, and the call is hung up.

The classic example of conditional branching is affectionately known as the anti-girlfriend logic. If the Caller ID number of the incoming

call matches the phone number of the recipient's ex-girlfriend, Asterisk gives a different message than it ordinarily would to any other

caller. While somewhat simple and primitive, it's a good example for learning about conditional branching within the Asterisk dialplan.

This example uses a channel variable called CALLERIDNUM , which is automatically set by Asterisk to the Caller ID number of the

inbound call. Let's assume for the sake of this example that the victim's phone number is 885-555-1212:

 exten => 123,1,GotoIf($[${CALLERIDNUM} = 8885551212]?20:10)

 exten => 123,10,Dial(Zap/4)

 exten => 123,20,Playback(abandon-all-hope)

 exten => 123,21,Hangup()

In priority one, we call the GotoIf() application. It tells Asterisk to go to priority 20 if the Caller ID number matches 8885551212, and

otherwise to go to priority 10. If the Caller ID number matches, control of the call goes to priority 20, which plays back an uninspiring

message to the undesired caller. Otherwise, the call attempts to dial the recipient on channel Zap/4.

6.3.2. Time-Based Conditional Branching with GotoIfTime()

Another way to use conditional branches in your dialplan is with the GotoIfTime() application. Whereas GotoIf() evaluates an expression

to decide what to do, GotoIfTime() looks at the current system time and uses that to decide whether or not to follow a different branch in

the dialplan.

The most obvious use of this application is to give your callers a different greeting before and after normal business hours.

The syntax for the GotoIfTime() application looks like this:

 GotoIfTime(times,days_of_week,days_of_month,months?label)

In short, GotoIfTime() sends the call to the specified label if the current date and time match the criteria specified by times, days_of_week,

days_of_month, and months. Let's look at each argument in more detail:

times

This is a list of one or more time ranges, in 24-hour format. As an example, 9:00 a.m. through 5:00 p.m. would be specified as

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

09:00-17:00. The day starts at 0:00 and ends at 23:59.

days_of_week

This is a list of one or more days of the week. The days should be specified as mon, tue, wed, thu, fri, sat, and/or sun. Monday

through Friday would be expressed as mon-fri. Tuesday and Thursday would be expressed as tue,thu.

days_of_month

This is a list of the numerical days of the month. Days are specified by the numbers 1 tHRough 31. The 7
th

 through the 12
th

would be expressed as 7-12, and the 15
th

 and 30
th

 of the month would be written as 15,30.

months

This is a list of one or more months of the year. The months should be written as jan, feb, mar, apr, and so on.

If you wish to match on all possible values for any of these arguments, simply put an * in for that argument.

The label argument can be any of the following:

A priority within the same extension, such as 10

An extension and a priority within the same context, such as 123,10

A context, extension, and priority, such as incoming,123,10

A named priority within the same extension, such as passed

Now that we've covered the syntax, let's look at a couple of examples. The following example would match from 9:00 a.m. to 5:59 p.m.,

on Monday through Friday, on any day of the month, in any month of the year:

 exten => s,1,GotoIfTime(09:00-17:59,mon-fri,*,*?open,s,1)

If the caller calls during these hours, the call will be sent to the first priority of the s extension in the context named open. If the call is

made outside of the specified times, it will be sent to the next priority of the current extension. This allows you to easily branch on

multiple times, as shown in the next example (note that you should always put your most specific time matches before the least specific

ones):

 ; If it's any hour of the day, on any day of the week,

 ; during the fourth day of the month, in the month of of July,

 ; we're closed

 exten => s,1,GotoIfTime(*,*,4,jul?open,s,1)

 ; During business hours, send calls to the open context

 exten => s,2,GotoIfTime(09:00-17:59|mon-fri|*|*?open,s,1)

 exten => s,3,GotoIfTime(09:00-11:59|sat|*|*?open,s,1)

 ; Otherwise, we're closed

 exten => s,4,Goto(closed,s,1)

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

file:///C:/DOCUME~1/stelios/LOCALS~1/Temp/2/O'Reilly,.Asterisk.The.Future.of.Telephony.(2005).BBL.LotB.chm/0596009623/18051535.html

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

6.4. Voicemail

One of the most popular (or, actually, unpopular) features of any modern telephone system is voicemail . Naturally, Asterisk has a very

flexible voicemail system. Some of the features of Asterisk's voicemail system include:

Unlimited password-protected voicemail boxes, each containing mailbox folders for organizing voicemail

Different greetings for busy and unavailable states

Default and custom greetings

The ability to associate phones with more than one mailbox and mailboxes with more than one phone

Email notification of voicemail, with the voicemail optionally attached as a sound file
[*]

[*] No, you really don't have to pay for this; and yes, it really does work.

Voicemail forwarding and broadcasts

Message-waiting indicator (flashing light or stuttered dial tone) on many types of phones

Company directory of employees, based on voicemail boxes

And that's just the tip of the iceberg! In this section, we'll introduce you to the fundamentals of a typical voicemail setup.

The voicemail configuration is defined in the configuration file called voicemail.conf . This file contains an assortment of settings that you

can use to customize the voicemail system to your needs. Covering all the available options in voicemail.conf would be beyond the

scope of this chapter, but the sample configuration file is well documented and quite easy to follow. For now, look near the bottom of the

file, where voicemail contexts and voicemail boxes are defined.

Just as dialplan contexts keep different parts of your dialplan separate, voicemail contexts allow you to define different sets of mailboxes

that are separate from one another. This allows you to host voicemail for several different companies or offices on the same server.

Voicemail contexts are defined in the same way as dialplan contexts, with square brackets surrounding the name of the context. For our

examples, we'll be using the [default] voicemail context.

6.4.1. Creating Mailboxes

Inside each voicemail context, we define different mailboxes. The syntax for defining a mailbox is:

 mailbox => password,name[,email[,pager_email[,options]]]

Let's explain what each part of the mailbox definition does:

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

mailbox

This is the mailbox number. It usually corresponds with the extension number of the associated set.

password

This is the numeric password the mailbox owner will use to access her voicemail. If the user changes her password, the

system will update this field in the voicemail.conf file.

name

This is the name of the mailbox owner. The company directory uses the text in this field to allow callers to spell usernames.

email

This is the email address of the mailbox owner. Asterisk can send voicemail notifications (including the voicemail message

itself) to the specified email box.

pager_email

This is the email address of the mailbox owner's pager or cell phone. Asterisk can send a short voicemail notification

message to the specified email address.

options

This field is a list of options that sets the mailbox owner's time zone and overrides the global voicemail settings. There are

nine valid options: attach, serveremail, tz, saycid, review, operator, callback, dialout, and exitcontext. These options should be

in option=value pairs, separated by the pipe character (|). The tz option sets the user's time zone to a time zone previously

defined in the [zonemessages] section of voicemail.conf, and the other eight options override the global voicemail settings

with the same names.

A typical mailbox definition might look something like this:

 101 => 1234,Joe Public,jpublic@somedomain.com,jpublic@pagergateway.net,

 tz=central|attach=yes

Continuing with our dialplan from the last chapter, let's set up voicemail boxes for John and Jane. We'll give John a password of 1234

and Jane a password of 4444 (remember, these go in voicemail.conf, not extensions.conf):

 [default]

 101 => 1234,John Doe,john@asteriskdocs.org,jdoe@pagergateway.tld

 102 => 4444,Jane Doe,jane@asteriskdocs.org,jane@pagergateway.tld

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

6.4.2. Adding Voicemail to the Dialplan

Now that we've created mailboxes for Jane and John, let's allow callers to leave messages for them if they don't answer the phone. To

do this, we'll use the VoiceMail() application.

The VoiceMail() application sends the caller to the specified mailbox, so that he can leave a message. The mailbox should be specified as

mailbox@context, where context is the name of the voicemail context. The mailbox number can also be prefixed by the letter b or the

letter u. If the letter b is used, the caller will hear the mailbox owner's busy message. If the letter u is used, the caller will hear the mailbox

owner's unavailable message (if one exists).

Let's use this in our sample dialplan. Previously, we had a line like this in our [internal] context, which allowed us to call John:

 exten => 101,1,Dial(${JOHN},,r)

Now, let's change it so that if John is busy (on another call), it'll send us to his voicemail, where we'll hear his busy message (don't forget

that the Dial() application sends the caller to priority n+101 if the dialed line is busy):

 exten => 101,1,Dial(${JOHN},,r)

 exten => 101,102,VoiceMail(b101@default)

Next, let's add an unavailable message that the caller will be played if John doesn't answer the phone within 10 seconds. Remember, the

second argument to the Dial() application is a timeout. If the call is not answered before the timeout expires, the call is sent to the next

priority. Let's add a 10-second timeout, and a priority to send the caller to voicemail if John doesn't answer in time:

 exten => 101,1,Dial(${JOHN},10,r)

 exten => 101,2,VoiceMail(u101@default)
 exten => 101,102,VoiceMail(b101@default)

If we add these two new priorities and a timeout argument to the Dial() application, callers will get John's voicemail (with the appropriate

greeting) if John is either busy or unavailable. A slight problem remains, however, in that John has no way of retrieving his messages.

Let's remedy that.

6.4.3. Accessing Voicemail

Users can retrieve their voicemail messages, change their voicemail options, and record their voicemail greetings by using the

VoiceMailMain() application. In its typical form, VoiceMailMain() is called without any arguments. Let's add extension 500 to the [internal]

context of our dialplan so that internal users can dial it to access their voicemail messages:

 exten => 500,1,VoiceMailMain()

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

6.4.4. Creating a Dial-by-Name Directory

One last feature of the Asterisk voicemail system we should cover is the dial-by-name directory . This is created with the Directory()

application. This application uses the names defined in the mailboxes in voicemail.conf to present the caller with a dial-by-name

directory of the users.

Directory() takes up to three arguments: the voicemail context from which to read the names, the optional dialplan context in which to

dial the user, and an option string (which is also optional). By default, Directory() searches for the user by last name, but passing the f

option forces it to search by first name instead. Let's add two dial-by-name directories to the [incoming] context of our sample dialplan, so

that callers can search by either first or last name:

 exten => 8,1,Directory(default,incoming,f)

 exten => 9,1,Directory(default,incoming)

If callers press 8, they'll get a directory by first name. If they dial 9, they'll get the directory by last name.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

file:///C:/DOCUME~1/stelios/LOCALS~1/Temp/2/O'Reilly,.Asterisk.The.Future.of.Telephony.(2005).BBL.LotB.chm/0596009623/18051535.html

6.5. Macros

Macros are a very useful construct designed to avoid repetition in the dialplan. They also help in making changes to the dialplan. To

illustrate this point, let's look at our sample dialplan again. If you remember the changes we made for voicemail, we ended up with the

following for John's extension:

 exten => 101,1,Dial(${JOHN},10,r)

 exten => 101,2,VoiceMail(u101@default)

 exten => 101,102,VoiceMail(b101@default)

Now imagine you have a hundred users on your Asterisk systemsetting up the extensions would involve a lot of copying and pasting.

Then imagine that you need to make a change to the way your extensions work. That would involve a lot of editing, and you'd be almost

certain to have errors.

Instead, you can define a macro that contains a list of steps to take, and then have all of the phone extensions refer to that macro. All

you need to change is the macro, and everything in the dialplan that references that macro will change as well.

If you're familiar with computer programming, you'll recognize that macros are similar to

subroutines in many modern programming languages. If you're not familiar with computer

programming, don't worrywe'll walk you through creating a macro.

The best way to appreciate macros is to see one in action, so let's move right along.

6.5.1. Defining Macros

For our first macro, let's take the dialplan logic we used above to set up voicemail for John and turn it into a macro. Then we'll use the

macro to give John and Jane (and the rest of their coworkers) the same functionality.

Macro definitions look a lot like contexts. (In fact, you could argue that they really are small, limited contexts.) You define a macro by

placing macro- and the name of your macro in square brackets, like this:

 [macro-voicemail]

Macro names must start with macro-. This distinguishes them from regular contexts. The commands within the macro are built pretty

nearly identically to anything else in the dialplanthe only limiting factor is that macros use only the s extension. Let's add our voicemail

logic to the macro, changing the extension to s as we go:

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

 [macro-voicemail]

 exten => s,1,Dial(${JOHN},10,r)

 exten => s,2,VoiceMail(u101@default)

 exten => s,102,VoiceMail(b101@default)

That's a start, but it's not perfect, as it's still specific to John and his mailbox number. To make the macro generic so that it will work not

only for John but also for all his coworkers, we'll take advantage of another property of macros: arguments. But first, let's see how we call

macros in our dialplan.

6.5.2. Calling Macros from the Dialplan

To use a macro in our dialplan, we use the Macro() application. This application calls the specified macro and passes it any arguments.

For example, to call our voicemail macro from our dialplan, we can do the following:

 exten => 101,1,Macro(voicemail)

The Macro() application also defines several special variables for our use. They include:

${MACRO_CONTEXT}

The original context in which the macro was called.

${MACRO_EXTEN}

The original extension in which the macro was called.

${MACRO_PRIORITY}

The original priority in which the macro was called.

${ARG n}

The nth argument passed to the macro. For example, the first argument would be ${ARG1}, the second ${ARG2}, and so on.

As we explained earlier, the way we initially defined our macro was hard-coded for John, instead of being generic. Let's change our

macro to use ${MACRO_EXTEN} instead of 101 for the mailbox number. That way, if we call the macro from extension 101 the voicemail

messages will go to mailbox 101, if we call the macro from extension 102 messages will go to mailbox 102, and so on:

 [macro-voicemail]

 exten => s,1,Dial(${JOHN},10,r)

 exten => s,2,VoiceMail(u${MACRO_EXTEN}@default)

 exten => s,102,VoiceMail(b${MACRO_EXTEN}@default)

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

6.5.3. Using Arguments in Macros

Okay, now we're getting closer to having the macro the way we want it, but we still have one thing left to changewe need to pass in the

channel to dial, as it's currently still hard-coded for ${JOHN} (remember that we defined the variable JOHN as the channel to call when we

want to reach John). Let's pass in the channel as an argument, and then our first macro will be complete:

 [macro-voicemail]

 exten => s,1,Dial(${ARG1},10,r)

 exten => s,2,VoiceMail(u${MACRO_EXTEN}@default)

 exten => s,102,VoiceMail(b${MACRO_EXTEN}@default)

Now that our macro is done, we can use it in our dialplan. Here's how we can call our macro to provide voicemail to John, Jane, and Jack:

 exten => 101,1,Macro(voicemail,${JOHN})

 exten => 102,1,Macro(voicemail,${JANE})

 exten => 103,1,Macro(voicemail,${JACK})

With 50 or more users, this dialplan will still look neat and organizedwe'll simply have one line per user, referencing a macro that can be

as complicated as required. We could even have a few different macros for various user types, such as executives, courtesy_phones,

call_center_agents, analog_sets, sales_department, and so on.

A more advanced version of the macro might look something like this:

 [macro-voicemail]

 exten => s,1,Dial(${ARG1},20)

 exten => s,2,Goto(s-${DIALSTATUS},1)

 exten => s-NOANSWER,1,Voicemail(u${MACRO_EXTEN})

 exten => s-NOANSWER,2,Goto(incoming,s,1)

 exten => s-BUSY,1,Voicemail(b${MACRO_EXTEN})

 exten => s-BUSY,2,Goto(incoming,s,1)

 exten => _s-.,1,Goto(s-NOANSWER,1)

This macro depends on a nice side effect of the Dial() application: when you use the Dial() application, it sets the DIALSTATUS variable

to indicate whether the call was successful or not. In this case, we're handling the NOANSWER and BUSY cases, and treating all other

result codes as a NOANSWER.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

6.6. Using the Asterisk Database (AstDB)

Having fun yet? It gets even better!

Asterisk provides a powerful mechanism for storing values, called the Asterisk database (AstDB). The AstDB provides a simple way to

store data for use within your dialplan.

For those of you with experience using relational databases such as PostgreSQL or MySQL, the

Asterisk database is not a traditional relational database. It is a Berkeley DB Version 1 database .

There are several ways to store data from Asterisk in a relational database, but this book will not

delve into them.

The Asterisk database stores its data in groupings called families, with valuesidentified by keys. Within a family, a key may be used only

once. For example, if we had a family called test, we could store only one value with a key called count. Each stored value must be

associated with a family.

6.6.1. Storing Data in the AstDB

To store a new value in the Asterisk database, we use the Set() application,
[*]

 but instead of using it to set a channel variable, we use it

to set an AstDB variable. For example, to assign the count key in the test family the value of 1:

[*] Previous versions of Asterisk had applications called DBput() and DBget() that were used to set values in and

retrieve values from the AstDB. If you're using an old version of Asterisk, you'll want to use them instead.

 exten => 456,1,Set(${DB(test/count)=1})

If a key named count already exists in the test family, its value will be overwritten with the new value. You can also store values from the

Asterisk command line, by running the command database put family key value. For our example, you would type database put test

count 1.

6.6.2. Retrieving Data from the AstDB

To retrieve a value from the Asterisk database and assign it to a variable, we use the Set() application again. Let's retrieve the value of

count (again, from the test family), assign it to a variable called COUNT, and then speak the value to the caller:

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

 exten => 456,1,Set(DB(test/count)=1)

 exten => 456,2,Set(COUNT=${DB(test/count)})
 exten => 456,3,SayNumber(${COUNT})

You may also check the value of a given key from the Asterisk command line by running the command database get family key. To view

the entire contents of the AstDB, use the database show command.

6.6.3. Deleting Data from the AstDB

There are two ways to delete data from the Asterisk database. To delete a key, use the DBdel() application. It takes the family and key

as arguments, like this:

 exten => 457,1,DBdel(test/count)

You can also delete an entire key family by using the DBdeltree() application. The DBdeltree() application takes a single argument: the

name of the key family to delete. To delete the entire test family, do the following:

 exten => 457,1,DBdeltree(test)

To delete keys and key families from the AstDB via the command-line interface, use the database del key and database deltree family

commands, respectively.

6.6.4. Using the AstDB in the Dialplan

There are an infinite number of ways to use the Asterisk database in a dialplan. To introduce the AstDB, we'll show two simple examples.

The first is a simple counting example to show that the Asterisk database is persistent (meaning that it survives system reboots). In the

second example, we'll use the LookupBlacklist() application to evaluate whether or not a number is on the blacklist and should be

blocked.

To begin the counting example, let's first retrieve a number (the value of the count key) from the database and assign it to a variable

named COUNT. If the key doesn't exist, DBget() will send us to priority n+101, where we will set the value to 1. The next priority will send

us back to priority 1. This will happen the very first time we dial this extension:

 exten => 678,1,Set(COUNT=${DB(test/count)})

 exten => 678,102,Set(DB(test/count)=1)

 exten => 678,103,Goto(1)

Next, we'll say the current value of COUNT, and then increment COUNT:

 exten => 678,1,Set(COUNT=${DB(test/count)})

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

 exten => 678,2,SayNumber(${COUNT})

 exten => 678,3,Set(COUNT=$[${COUNT} + 1])
 exten => 678,102,Set(DB(test/count)=1)

 exten => 678,103,Goto(1)

Now that we've incremented COUNT, let's put the new value back into the database. Remember that storing a value for an existing key

overwrites the previous value:

 exten => 678,1,Set(COUNT=${DB(test/count)})

 exten => 678,2,SayNumber(${COUNT})

 exten => 678,3,Set(COUNT=$[${COUNT} + 1])

 exten => 678,4,Set(DB(test/count)=${COUNT})
 exten => 678,102,Set(DB(test/count)=1)

 exten => 678,103,Goto(1)

Finally, we'll loop back to the first priority. This way, the application will continue counting:

 exten => 678,1,Set(COUNT=${DB(test/count)})

 exten => 678,2,SayNumber(${COUNT})

 exten => 678,3,SetVar(COUNT=$[${COUNT} + 1]

 exten => 678,4,Set(DB(test/count)=${COUNT})

 exten => 678,5,Goto(1)

 exten => 678,102,Set(DB(test/count)=1)

 exten => 678,103,Goto(1)

Go ahead and try this example. Listen to it count for a while, and then hang up. When you dial this extension again, it should continue

counting from where it left off. The value stored in the database will be persistent, even across a restart of Asterisk.

In the next example, we'll create dialplan logic around the LookupBlacklist() application, which checks to see if the current Caller ID

number exists in the blacklist. (The blacklist is simply a family called blacklist in the AstDB.) If LookupBlacklist() finds the number in the

blacklist, it sends the call to priority n+101. Otherwise, the call continues on with the next priority:

 exten => 124,1,LookupBlacklist()

 exten => 124,2,Dial(${JOHN})

 exten => 124,102,Playback(privacy-you-are-blacklisted)

 exten => 124,103,Playback(vm-goodbye)

 exten => 124,104,Hangup()

To add a number to the blacklist, run the database put blacklist number 1 command from the Asterisk command-line interface.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

6.7. Handy Asterisk Features

Now that we've gone over some more of the basics, let's look at a few popular functions that have been incorporated into Asterisk.

6.7.1. Zapateller()

Zapateller() is a simple Asterisk application that plays a special information tone at the beginning of a call, which causes auto-dialers

(usually used by telemarketers) to think the line has been disconnected. Not only will they hang up, but their systems will flag your

number as out of service, which could help you avoid all kinds of telemarketing calls. To use this functionality within your dialplan, simply

call the Zapateller() application.

We'll also use the optional nocallerid option so that the tone will be played only when there is no Caller ID information on the incoming

call. For example, you might use Zapateller() in the s extension of your [incoming] context, like this:

 [incomimg]

 exten => s,1,Zapateller(nocallerid)

 exten => s,2,Playback(enter-ext-of-person)

6.7.2. Call Parking

Another handy feature is called "call parking ." Call parking allows you to place a call on hold in a "parking lot," so it can be taken off

hold from another extension. Parameters for call parking (such as the extensions to use, the number of spaces, and so on) are all

controlled within the features.conf configuration file. The [general] section of the features.conf file contains four settings related to call

parking :

parkext

This is the parking lot extension. Transfer a call to this extension, and the system will tell you which parking position the call is

in. By default, the parking extension is 700.

parkpos

This option defines the number of parking slots. For example, setting it to 701-720 creates 20 parking positions, numbered

701 through 720.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

context

This is the name of the parking context. To be able to park calls, you must include this context.

parkingtime

If set, this option controls how long (in seconds) a call can stay in the parking lot. If the call isn't picked up within the specified

time, the extension that parked the call will be called back.

You must restart Asterisk after editing features.conf, as the file is read only on startup. Running the

reload command will not cause the features.conf file to be read.

Also note that because the user needs to be able to transfer the calls to the parking lot extension, you should make sure you're using the

t and/or T options to the Dial() application.

So, let's create a simple dialplan to show off call parking:

 [incoming]

 include => parkedcalls

 exten=103,1,Dial(SIP/Bob,,tT)

 exten=104,1,Dial(SIP/Charlie,,tT)

To illustrate how call parking works, say that Alice calls into the system and dials extension 103, to reach Bob. After a while, Bob

transfers the call to extension 700, which tells him that the call from Alice has been parked in position 701. Bob then dials Charlie at

extension 104, and tells him that Alice is at extension 701. Charlie then dials extension 701, and begins to talk to Alice. This is a simple

and effective way of allowing callers to be transferred between users.

6.7.3. Conferencing with MeetMe()

Last but not least, let's cover setting up an audio conference bridge with the MeetMe() application.
[*]

 This application allows multiple

callers to converse together, as if they were all in the same physical location. Some of the main features include:

[*] In the world of legacy PBXs, this type of functionality is very expensive. Either you have to pay big bucks for a

dial-in service, or you have to add an expensive conferencing bridge to your proprietary PBX.

The ability to create password-protected conferences

Conference administration (mute conference, lock conference, kick participants)

The option of muting all but one participant (useful for company announcements, broadcasts, etc.)

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

Static or dynamic conference creation

Let's walk through setting up a basic conference room. The configuration options for the MeetMe conferencing system are found in

meetme.conf. Inside the configuration file, you define conference rooms and optional numeric passwords. (If a password is defined here,

it will be required to enter all conferences using that room.) For our example, let's set up a conference room at extension 600. First, we'll

set up the conference room in meetme.conf. We'll call it 600, and we won't assign a password at this time:

 [rooms]

 conf => 600

Now that the configuration file is complete, we'll need to restart Asterisk so that it can re-read the meetme.conf file. Next, we'll add

support for the conference room to our dialplan with the MeetMe() application. MeetMe() takes three arguments: the name of the

conference room (as defined in meetme.conf), a set of options, and the password the user must enter to join this conference. Let's set

up a simple conference using room 600, the i option (which announces when people enter and exit the conference), and a password of

54321:

 exten => 600,1,MeetMe(600,i,54321)

That's all there is to it! When callers enter extension 600, they will be prompted for the password. If they correctly enter 54321, they will

be added to the conference. See Appendix B for a list of all the options supported by the MeetMe() application.

Another useful application is MeetMeCount(). As its name suggests, this application counts the number of users in a particular

conference room. It takes up to two arguments: the conference room in which to count the number of participants, and optionally a

variable name to assign the count to. If the variable name is not passed as the second argument, the count is read to the caller:

 exten => 601,1,Playback(conf-thereare)

 exten => 601,2,MeetMeCount(600)

 exten => 601,3,Playback(conf-peopleinconf)

If you pass a variable as the second argument to MeetMeCount(), the count is assigned to the variable and playback of the count is

skipped. You might use this to limit the number of participants, like this:

 ; limit the conference room to 10 participants

 exten => 600,1,MeetMeCount(600,CONFCOUNT)

 exten => 600,2,GotoIf($[${CONFCOUNT} <= 10]?3:100)

 exten => 600,3,MeetMe(600,i,54321)

 exten => 600,100,Playback(conf-full)

Isn't Asterisk fun?

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

6.8. Conclusion

In this chapter, we've covered a few more of the many applications in the Asterisk dialplan, and hopefully we've given you the seeds from

which you can explore the creation of your own dialplans. As with the previous chapter, we invite you to go back and re-read any

sections that require clarification.

The following chapters take us away from Asterisk for a bit, in order to talk about some of the technologies that all telephone systems

use. We'll be referring to Asterisk a lot, but much of what we want to discuss are things that are common to many telecom systems.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

file:///C:/DOCUME~1/stelios/LOCALS~1/Temp/2/O'Reilly,.Asterisk.The.Future.of.Telephony.(2005).BBL.LotB.chm/0596009623/18051535.html

Chapter 7. Understanding Telephony

Utility is when

you have one telephone, luxury is when you have two, opulence is when you have threeand

paradise is when you have none.

Doug Larson

We're now going to take a break from Asterisk for a chapter or two, because we want to spend some time discussing the technologies

with which your Asterisk system will need to interface. In this chapter, we are going to talk about some of the technologies of the

traditional telephone networkespecially those that people most commonly want to connect to Asterisk.
[*]

 While tomes could be written

about the technologies in use in telecom networks, the material in this chapter was chosen based on our experiences in the community,

which helped us define the specific items that might be most useful. Although this knowledge may not be strictly required in order to

configure your Asterisk system, it will be of great benefit when interconnecting to systems (and talking with people) from the world of

traditional telecommunications.

[*] We'll discuss Voice over IP in the next chapter.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

7.1. Analog Telephony

The purpose of the Public Switched Telephone Network (PSTN) is to establish and maintain audio connections between two endpoints.

Although humans can perceive sound vibrations in the range of 20-20,000 Hz,
[]

 most of the sounds we make when speaking tend to

be in the range of 250-3,000 Hz. Since the purpose of the telephone network is to transmit the sounds of people speaking, it was

designed with a bandwidth of somewhere in the range of 300-3,500 Hz. This limited bandwidth means that some sound quality will be

lost (as anyone who's had to listen to music on hold can attest to), especially in the higher frequencies.

[] If you want to play around with what different frequencies look like on an oscilloscope, grab a copy of Sound

Frequency Analyzer, from Reliable Software. It's a really simple and fun way to visualize what sounds "look" like.

The spectrograph gives a good picture of the complex harmonics our voices can generate, as well as an

appreciation for the background sounds that always surround us. You should also try the delightfully annoying

NCH Tone Generator, from NCH Swift Sound.

7.1.1. Parts of an Analog Telephone

An analog phone is composed of five parts: the ringer, the dial pad, the hybrid (or network), and the hook switch and handset (both of

which are considered parts of the hybrid). The ringer, the dial pad, and the hybrid can operate completely independently from one

another.

7.1.1.1. Ringer

When the central office (CO) wants to signal an incoming call, it will connect an alternating current (AC) signal of roughly 90 volts to your

circuit. This will cause the bell in your telephone to produce a ringing sound. (In electronic telephones, this ringer may be a small

electronic warbler rather than a bell. Ultimately, a ringer can be anything that is capable of reacting to the ringing voltagefor example,

strobe lights are often employed in noisy environments such as factories.)

Ringing voltage can be hazardous. Be very careful to take precautions when working with an

in-service telephone line.

Many people confuse the AC voltage that triggers the ringer with the direct current (DC) voltage that powers the phone. Remember that

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

the ringer will not respond to DC voltage, and you've got it.

In North America, the number of ringers you can connect to your line is dependent on the Ringer Equivalence Number (REN) of your

various devices. (The REN must be listed on each device.) The total REN for all devices connected to your line cannot exceed 5.0. An

REN of 1.0 is equivalent to an old-fashioned analog set with an electromechanical ringer. Some electronic phones have an REN of 0.3 or

even less.

7.1.1.2. Dial pad

When you place a telephone call, you need some way of letting the network know the address of the party you wish to reach. The dial

pad is the portion of the phone that provides this functionality. In the early days of the PSTN, dial pads were rotary devices that used

pulses to indicate digits. This was a rather slow process, so the telephone companies eventually introduced touch-tone dialing . With

touch-tonealso known as Dual-Tone Multi Frequency (DTMF)dialing, the dial pad consists of 12 buttons. Each button has two

frequencies assigned to it (see Table 7-1).

Table 7-1. DTMF digits

 1209 Hz 1336 Hz 1477 Hz 1633 Hz
a

697 Hz 1 2 3 A

770 Hz 4 5 6 B

852 Hz 7 8 9 C

941 Hz * 0 # D

a
 Notice that this column contains letters that are not typically present as keys on a telephone dial pad. They are part of the DTMF

standard nonetheless, and any proper telephone contains the electronics required to create them, even if it doesn't contain the buttons

themselves. (These buttons actually do exist on some telephones, which are mostly used in military and government applications.)

When you press a button on your dial pad, the two corresponding frequencies are transmitted down the line.

We assume that you've used a telephone, so we won't spend any more time on DTMF.

7.1.1.3. Hybrid (or network)

The hybrid is a type of transformer that handles the need to combine the signals transmitted and received across a single pair of wires in

the PSTN and two pairs of wires in the handset. One of the functions the hybrid performs is regulating sidetone , which is the amount of

your transmitted signal that is returned to your earpieceits purpose is to provide a more natural-sounding conversation. Too much

sidetone, and your voice will sound too loud; too little, and you'll think the line has gone dead.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

7.1.1.3.1. Hook switch (or switch hook)

This device signals the state of the telephone circuit to the CO. When you pick up your telephone, the hook switch closes the loop

between you and the CO, which is seen as a request for a dial tone. When you hang up, the hook switch opens the circuit, which

indicates that the call has ended.
[*]

[*] When referring to the state of an analog circuit, people often speak in terms of "off-hook" and "on-hook." When

your line is "off-hook," your telephone is "on" a call. If your phone is "on-hook," the telephone is essentially "off."

The hook switch can also be used for signaling purposes. Some electronic analog phones have a button labeled "Link" that causes an

event called a flash. You can perform a flash manually by depressing the hook switch for a duration of between 200 and 1,200

milliseconds. If you leave it down for longer than that, the carrier will assume you've hung up. The purpose of the Link button is to handle

this timing for you. If you've ever used call waiting or three-way calling on an analog line, you have performed a hook switch flash for the

purpose of signaling the network.

7.1.1.3.2. Handset

The handset is composed of the transmitter and receiver. It performs the conversion between the sound energy humans use and the

electrical energy the telephone network uses.

7.1.2. Tip and Ring

In an analog telephone circuit, there are two wires. In North America, these wires are referred to as Tip and Ring.
[*]

 This terminology

comes from the days when telephone calls were connected by live operators sitting at cord boards. The plugs they used had two

contacts, one located at the tip of the plug and the other connected to the ring around the middle (Figure 7-1).

[*] They may have other names elsewhere in the world (such as "A" and "B").

Figure 7-1. Tip and Ring

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

The Tip lead is the positive polarity wire. In North America, this wire is typically green and provides the return path. The Ring wire is the

negative polarity wire. In North America, this wire is normally red. When your telephone is on-hook, this wire will have a potential of -48V

DC with respect to Tip. Off-hook, this voltage drops to roughly -7V DC.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

file:///C:/DOCUME~1/stelios/LOCALS~1/Temp/2/O'Reilly,.Asterisk.The.Future.of.Telephony.(2005).BBL.LotB.chm/0596009623/18051535.html

7.2. Digital Telephony

Analog telephony is almost dead.

In the PSTN, the famous Last Mile is the final remaining piece of the telephone network still using technology pioneered well over a

hundred years ago.[]

[] "The Last Mile" is a term that was originally used to describe the only portion of the PSTN that had not been

converted to fiber optics: the connection between the central office and the customer. The Last Mile is more than that,

however, as it also has significance as a valuable asset of the traditional phone companiesthey own a connection into

your home. The Last Mile is becoming more and more difficult to describe in technical terms, as there are now so

many ways to connect the network to the customer. As a thing of strategic value to telecom, cable, and other utilities,

its importance is obvious.

One of the primary challenges when transmitting analog signals is that all sorts of things can interfere with those signals, causing low

volume, static, and all manner of other undesired effects. Instead of trying to preserve an analog waveform over distances that may span

thousands of miles, why not simply measure the characteristics of the original sound and send that information to the far end? The original

waveform wouldn't get there, but all the information needed to reconstruct it would.

This is the principle of all digital audio (including telephony): sample the characteristics of the source waveform, store the measured

information, and send that data to the far end. Then, at the far end, use the transmitted information to generate a completely new audio

signal that has the same characteristics as the original. The reproduction is so good that the human ear can't tell the difference.

The principle advantage of digital audio is that the sampled data can be mathematically checked for errors all along the route to its

destination, ensuring that a perfect duplicate of the original arrives at the far end. Distance no longer affects quality, and interference can

be detected and eliminated.

7.2.1. Pulse-Code Modulation

There are several ways to digitally encode audio, but the most common method (and the one used in telephony systems) is known as

Pulse-Code Modulation (PCM). To illustrate how this works, let's go through a few examples.

7.2.1.1. Digitally encoding an analog waveform

The principle of PCM is that the amplitude of the analog waveform is sampled at specific intervals so that it can later be recreated. The

amount of detail that is captured is dependent both on the bit-resolution of each sample and on how frequently the samples are taken. A

higher bit-resolution and a higher sampling rate will provide greater accuracy, but more bandwidth will be required to transmit this more

detailed information.

To get a better idea of how PCM works, consider the waveform displayed in Figure 7-2.

To digitally encode the wave, it must be sampled on a regular basis, and the amplitude of the wave at each moment in time must be

measured. The process of slicing up a waveform into moments in time and measuring the energy at each moment is called quantization ,

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

or sampling.

The samples will need to be taken frequently enough and will need to capture enough information to ensure that the far end can recreate a

sufficiently similar waveform. To achieve a more accurate sample, more bits will be required. To explain this concept, we will start with a

very low resolution, using four bits to represent our amplitude. This will make it easier to visualize both the quantization process itself and

the effect that resolution has on quality.

Figure 7-3 shows the information that will be captured when we sample our sine wave at four-bit resolution.

Figure 7-2. A simple sinusoidal (sine) wave

Figure 7-3. Sampling our sine wave using four bits

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

At each time interval, we measure the amplitude of the wave and record the corresponding intensityin other words, we sample it. You will

notice that the four-bit resolution limits our accuracy. The first sample has to be rounded to 0011, and the next quantization yields a sample

of 0101. Then comes 0100, followed by 1001, 1011, and so forth. In total, we have 14 samples (in reality, several thousand samples must be

taken per second). If we string together all the values, we can send them to the other side as:

 0011 0101 0100 1001 1011 1011 1010 0001 0101 0101 0000 1100 1100 1010

On the wire, this code might look something like Figure 7-4.

Figure 7-4. PCM encoded waveform

When the far end's digital-to-analog (D/A) converter receives this signal, it can use the information to plot the samples, as shown in Figure

7-5.

Figure 7-5. Plotted PCM signal

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

From this information, the waveform can be reconstructed (see Figure 7-6).

Figure 7-6. Delineated signal

As you can see if you compare Figure 7-7 with Figure 7-8, this reconstruction of the waveform is not very accurate. This was done

intentionally, to demonstrate an important point: the quality of the digitally encoded waveform is affected by the resolution and rate at which

it is sampled. At too low a sampling rate, and with too low a sample resolution, the audio quality will not be acceptable.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

7.2.1.2. Increasing the sampling resolution and rate

Let's take another look at our original waveform, this time using five bits to define our quantization intervals (Figure 7-7).

Figure 7-7. The same waveform, on a higher-resolution overlay

In reality, there is no such thing as five-bit PCM. In the telephone network, PCM samples are encoded

using eight bits.[*]

[*] Other digital audio methods may employ 16 bits or more.

We'll also double our sampling frequency. The points plotted this time are shown in Figure 7-8.

We now have twice the number of samples, at twice the resolution. Here they are:

 00111 01000 01001 01001 01000 00101 10110 11000 11001 11001 11000 10111

 10100 10001 00010 00111 01001 01010 01001 00111 00000 11000 11010 11010

 11001 11000 10110 10001

When received at the other end, that information can now be plotted as shown in Figure 7-9.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

Figure 7-8. The same waveform at double the resolution

Figure 7-9. Five-bit plotted PCM signal

From this information, the waveform shown in Figure 7-10 can then be generated.

As you can see, the resultant waveform is a far more accurate representation of the original. However, you can also see that there is still

room for improvement.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

Note that 40 bits were required to encode the waveform at 4-bit resolution, while 156 bits were needed

to send the same waveform using 5-bit resolution (and also doubling the sampling rate). The point is,

there is a tradeoff: the higher the quality of audio you wish to encode, the more bits will be required to

do it, and the more bits you wish to send (in real time, naturally), the more bandwidth you will need to

consume.

Figure 7-10. Waveform delineated from five-bit PCM

7.2.1.3. Nyquist's Theorem

So how much sampling is enough? That very same question was considered in the 1920s by an electrical engineer (and AT&T/Bell

employee) named Harry Nyquist. Nyquist's Theorem[*] states: "When sampling a signal, the sampling frequency must be greater than twice

the bandwidth of the input signal in order to be able to reconstruct the original perfectly from the sampled version."

[*] Nyquist published two papers, "Certain Factors Affecting Telegraph Speed" (1924) and "Certain Topics in Telegraph

Transmission Theory" (1928), in which he postulated what became known as Nyquist's Theorem. Proven in 1949 by

Claude Shannon ("Communication in the Presence of Noise"), it is also referred to as the Nyquist-Shannon sampling

theorem.

In essence, what this means is that to accurately encode an analog signal you have to sample it twice as often as the total bandwidth you

wish to reproduce. Since the telephone network will not carry frequencies below 300 Hz and above 4,000 Hz, a sampling frequency of

8,000 samples per second will be sufficient to reproduce any frequency within the bandwidth of an analog telephone. Keep that 8,000

samples per second in mind; we're going to talk about it more later.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

7.2.1.4. Logarithmic companding

So, we've gone over the basics of quantization, and we've discussed the fact that more quantization intervals (i.e., a higher sampling rate)

give better quality but also require more bandwidth. Lastly, we've discussed the minimum sample rate needed to accurately measure the

range of frequencies we wish to be able to transmit (in the case of the telephone, it's 8,000 Hz). This is all starting to add up to a fair bit of

data being sent on the wire, so we're going to want to talk about companding.

Companding is a method of improving the dynamic range of a sampling method without losing important accuracy. It works by quantizing

higher amplitudes in a much coarser fashion than lower amplitudes. In other words, if you yell into your phone, you will not be sampled as

cleanly as you will be when speaking normally. Yelling is also not good for your blood pressure, so it's best to avoid it.

Two companding methods are commonly employed: m-law[*] in North America, and A-law in the rest of the world. They operate on the

same principles but are otherwise not compatible with each other.

[*] m-law is often referred to as "u-law" because, let's face it, how many of us have m keys on our keyboards? m is in

fact the Greek letter Mu; thus, you will also see m-law written (more correctly) as "Mu-law." When spoken, it is correct

to confidently say "Mew-law," but if folks look at you strange, and you're feeling generous, you can help them out and

tell them it's "u-law." Many people just don't appreciate trivia.

Companding divides the waveform into cords , each of which has several steps . Quantization involves matching the measured amplitude

to an appropriate step within a cord. The value of the band and cord numbers (as well as the signpositive or negative) becomes the signal.

The following diagrams will give you a visual idea of what companding does. They are not based on any standard, but rather were made

up for the purpose of illustration (again, in the telephone network companding will be done at an eight-bit, not five-bit, resolution).

Figure 7-11 illustrates five-bit companding. As you can see, amplitudes near the zero-crossing point will be sampled far more accurately

than higher amplitudes (either positive or negative). However, since the human ear, the transmitter, and the receiver will also tend to distort

loud signals, this isn't really a problem.

A quantized sample might look like Figure 7-12. It yields the following bit stream:

 00000 10011 10100 10101 01101 00001 00011 11010 00010 00001 01000 10011

 10100 10100 00101 00100 00101 10101 10011 10001 00011 00001 00000 10100

 10010 10101 01101 10100 00101 11010 00100 00000 01000

7.2.1.5. Aliasing

If you've ever watched the wheels on a wagon turn backward in an old Western movie, you've seen the effects of aliasing . The frame

rate of the movie cannot keep up with the rotational frequency of the spokes, and a false rotation is perceived.

In a digital audio system (which the modern PSTN arguably is), aliasing always occurs if frequencies that are greater than one-half the

sampling rate are presented to the analog-to-digital (A/D) converter . In PSTN, that is any audio frequencies above 4,000 Hz (half the

sampling rate of 8,000 Hz). This problem is easily corrected by passing the audio through a low-pass filter [] before presenting it to the

A/D converter.

[] A low-pass filter, as its name implies, allows through only frequencies that are lower than its cut-off frequency.

Other types of filters are high-pass filters (which remove low frequencies) and band-pass filters (which filter out both

high and low frequencies).

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

Figure 7-11. Five-bit companding

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

file:///C:/DOCUME~1/stelios/LOCALS~1/Temp/2/O'Reilly,.Asterisk.The.Future.of.Telephony.(2005).BBL.LotB.chm/0596009623/18051535.html

7.3. The Digital Circuit-Switched Telephone Network

For over a hundred years, telephone networks were exclusively circuit-switched. What this meant was that for every telephone call made,

a dedicated connection was established between the two endpoints, with a fixed amount of bandwidth allocated to that circuit. Creating

such a network was costly, and where distance was concerned, using that network was costly as well. Although we are all predicting the

end of the circuit-switched network, many people still use it every day, and it really does work rather well.

Figure 7-12. Quantized and companded at 5-bit resolution

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

7.3.1. Circuit Types

In the PSTN, there are many different sizes of circuits serving the various needs of the network. Between the central office and a

subscriber, one or more analog circuits , or a few dozen channels delivered over a digital circuit, generally suffice. Between PSTN offices

(and with larger customers), fiber-optic circuits are generally used.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

7.3.1.1. The humble DS-0, the foundation of it all

Since the standard method of digitizing a telephone call is to record an 8-bit sample 8,000 times per second, we can see that a

PCM-encoded telephone circuit will need a bandwidth of 64,000 bps. This 64-kbps channel is referred to as a DS-0 (that's Dee-Ess-Zero).

The DS-0 is the fundamental building block of all digital telecommunications circuits.

Even the ubiquitous analog circuit is sampled into a DS-0 as soon as possible. Sometimes this happens where your circuit terminates at

the central office, and sometimes well before.

7.3.1.2. T-carrier circuits

The venerable T-1 is one of the more recognized digital telephony terms. A T-1 is a digital circuit consisting of 24 DS-0s multiplexed

together into a 1.544-Mbps bit stream.[*] This bit stream is properly defined as a DS-1. Voice is encoded on a T-1 using the m-law

companding algorithm.

[*] The 24 DS-0s use 1.536 Mbps, and the remaining .008 Mbps is used by framing bits.

The European version of the T-1 was developed by the European Conference of Postal and

Telecommunications Administrations[] (CEPT), and was first referred to as a CEPT-1. It is now called

an E-1.

[] Conférence Européenne des Administrations des Postes et des

Télécommunications.

The E-1 is comprised of 32 DS-0s, but the method of PCM encoding is differentE-1s use A-law

companding. This means that connecting between an E-1-based network and a T-1-based network will

always require a transcoding step. Note that an E-1, although it has 32 channels, is also considered a

DS-1.

The various other T-carriers (T-2, T-3, and T-4) are multiples of the T-1, each based on the humble DS-0. Table 7-2 illustrates the

relationships between the different T-carrier circuits .

Table 7-2. T-carrier circuits

Carrier Equivalent data bitrate Number of DS-0s Data bitrate

T-1 24 DS-0s 24 1.544 Mbps

T-2 4 T-1s 96 6.312 Mbps

T-3 7 T-2s 672 44.736 Mbps

T-4 6 T-3s 4032 274.176 Mbps

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

At densities above T-3, it is very uncommon to see a T-carrier circuit. For these speeds, optical carrier (OC) circuits may be used.

7.3.1.3. SONET and OC circuits

The Synchronous Optical Network (SONET) was developed out of a desire to take the T-carrier system to the next technological level:

fiber optics. SONET is based on the bandwidth of a T-3 (44.736Mbps), with a slight overhead making it 51.84 Mbps. This is referred to as

an OC-1 or STS-1. As Table 7-3 shows, all higher-speed OC circuits are multiples of this base rate.

Table 7-3. OC circuits

Carrier Equivalent data bitrate Number of DS-0s Data bitrate

OC-1 1 DS-3 (plus overhead) 672 51.840 Mbps

OC-3 3 DS-3s 2016 155.520 Mbps

OC-12 12 DS-3s 8064 622.080 Mbps

OC-48 48 DS-3s 32256 2488.320 Mbps

OC-192 192 DS-3s 129024 9953.280 Mbps

SONET was created in an effort to standardize optical circuits, but due to its high cost, coupled with the value offered by many newer

schemes, such as Dense Wave Division Multiplexing (DWDM), there is some controversy surrounding its future.

7.3.2. Digital Signaling Protocols

As with any circuit, it is not enough for the circuits used in the PSTN to just carry (voice) data between endpoints. Mechanisms must also

be provided to pass information about the state of the channel between each endpoint. (Disconnect and answer supervision are two

examples of basic signaling that might need to take place; Caller ID is an example of a more complex form of signaling.)

7.3.2.1. Channel Associated Signaling (CAS)

Also known as robbed-bit signaling, CAS is what you will use to transmit voice on a T-1 when ISDN is not available. Rather than taking

advantage of the power of the digital circuit, CAS simulates analog channels. CAS signaling works by stealing bits from the audio stream

for signaling purposes. Although the effect on audio quality is not really noticeable, the lack of a powerful signaling channel limits your

flexibility.

When configuring a CAS T-1, the signaling options at each end must match. E&M (Ear & Mouth or recEive & transMit) signaling is

generally preferred, as it offers the best supervision.

CAS is very rarely used on PSTN circuits anymore, due to the superiority of ISDN-PRI. One of the limitations of CAS is that it does not

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

allow the dynamic assignment of channels to different functions. Also, Caller ID information (which may not even be supported) has to be

sent as part of the audio stream. CAS is commonly used on the T-1 link in channel banks, although PRI is sometimes available (and

preferable).

7.3.2.2. ISDN

The Integrated Services Digital Network (ISDN) has been around for over 20 years. Because it separates the channels that carry the

traffic (the bearer channels, or B-channels) from the channel that carries the signaling information (the D-channel), ISDN allows for the

delivery of a much richer set of features than CAS. In the beginning, ISDN promised to deliver much the same sort of functionality that the

Internet has given us, including advanced capabilities for voice, video, and data transfer.

Unfortunately, rather than ratifying a standard and sticking to it, the respective telecommunications manufacturers all decided to add their

own tweaks to the protocol, in the belief that their versions were superior and would eventually dominate the market. As a result, getting

two ISDN-compliant systems to connect to each other was often a painful and expensive task. The carriers who had to implement and

support this expensive technology in turn priced it so that it was not rapidly adopted. Currently, ISDN is rarely used for much more than

basic trunkingin fact, the acronym ISDN has become a joke in the industry: "It Still Does Nothing."

Having said that, ISDN has become quite popular for trunking, and it is now (mostly) standards-compliant. If you have a PBX with more

than a dozen lines connected to the PSTN, there's a very good chance that you'll be running an ISDN-PRI circuit. Also, in places where

DSL and cable access to the Internet are not available (or too expensive), an ISDN-BRI circuit might provide you with an affordable

128-kbps connection. In much of North America, the use of ISDN -BRI for Internet connectivity has been deprecated in favor of DSL and

cable modems, but it's still very popular in other parts of the world.

7.3.2.2.1. ISDN-BRI/BRA

Basic Rate Interface (or Basic Rate Access) is the flavor of ISDN designed to service small endpoints such as workstations.

The BRI flavor of the ISDN specification is often referred to simply as "ISDN," but this can be a source of confusion, as ISDN is a protocol,

not a type of circuit (not to mention that PRI circuits are also correctly referred to as ISDN!).

A Basic Rate ISDN circuit consists of two 64-kbps B-channels controlled by a 16-kbps D-channel, for a total of 144 kbps.

Basic Rate ISDN has been a source of much confusion during its life, due to problems with standards compliance, technical complexity,

and poor documentation. Still, in European countries ISDN-BRI circuits remain quite a popular way of connecting to the PSTN.

7.3.2.2.2. ISDN-PRI/PRA

The Primary Rate Interface (or Primary Rate Access) flavor of ISDN is used to provide ISDN service over larger network connections. A

Primary Rate ISDN circuit uses a single DS-0 channel as a signaling link (the D-channel); the remaining channels serve as B-channels.

In North America, Primary Rate ISDN is commonly carried on one or more T-1 circuits. Since a T-1 has 24 channels, a North American

PRI circuit typically consists of 23 B-channels and 1 D-channel. For this reason, PRI is often referred to as 23B+D.[*]

[*] PRI is actually quite a bit more flexible than that, as it is possible to span a single PRI circuit across multiple T-1

spans. This can give rise, for example, to a 47B+D circuit (where a single D-channel serves two T-1s) or a 46B+2D

circuit (where primary and backup D-channels serve a pair of T-1s). You will sometimes see PRI described as nB+nD,

because the number of B- and D-channels is, in fact, quite variable.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

In Europe, a 32-channel E-1 circuit is used, so a Primary Rate ISDN circuit is referred to as 30B+D (the

final channel is used for synchronization).

Primary Rate ISDN is very popular, due to its technical benefits and generally competitive pricing. If you believe you will require more than

a dozen or so PSTN lines, you should look into Primary Rate ISDN pricing.

From a technical perspective, ISDN-PRI is always preferable to CAS.

7.3.2.3. Signaling System 7

SS7 is the signaling system used by carriers. It is conceptually similar to ISDN, and it is instrumental in providing a mechanism for the

carriers to transmit the additional information ISDN endpoints typically need to pass. However, the technology of SS7 is different from that

of ISDNone big difference is that SS7 runs on a completely separate network from the actual trunks that carry the calls.

SS7 support in Asterisk is on the horizon, as there is much interest in making Asterisk compatible with the carrier networks. An open

source version of SS7 (http://www.openss7.org) exists, but work is still needed for full SS7 compliance, and as of this writing it is not

known whether this will be integrated with Asterisk. Another promising source of SS7 support comes from Sangoma Technologies, who

offer SS7 functionality in many of their products.

It should be noted that adding support for SS7 in Asterisk is not going to be as simple as writing a proper driver. Connecting equipment to

an SS7 network will not be possible without that equipment having passed an extremely rigorous certification processes. Even then, it

seems doubtful that any traditional carrier is going to be in a hurry to allow such a thing to happen.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

http://www.openss7.org
file:///C:/DOCUME~1/stelios/LOCALS~1/Temp/2/O'Reilly,.Asterisk.The.Future.of.Telephony.(2005).BBL.LotB.chm/0596009623/18051535.html

7.4. Packet-Switched Networks

In the mid-1990s, network performance improved to the point where it became possible to send a stream of media information in real

time across a network connection. Because the media stream is chopped up into segments, which are then wrapped in an addressing

envelope, such connections are referred to as packet-based. The challenge, of course, is to send thousands of these packets between

two endpoints, ensuring that the packets arrive in the same order in which they were sent, in less than 300 milliseconds, with none lost.

This is the essence of Voice over IP.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

7.5. Conclusion

This chapter has explored the technologies currently in use in the PSTN. In the next chapter, we will discuss protocols for VoIP: the

carrying of telephone connections across IP-based networks. These protocols define different mechanisms for carrying telephone

conversations, but their significance is far greater than just that. Bringing the telephone network into the data network will finally erase

the line between telephones and computers, which holds the promise of a revolutionary evolution in the way we communicate.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

file:///C:/DOCUME~1/stelios/LOCALS~1/Temp/2/O'Reilly,.Asterisk.The.Future.of.Telephony.(2005).BBL.LotB.chm/0596009623/18051535.html

Chapter 8. Protocols for VoIP

The Internet is a telephone system that's gotten uppity.

Clifford Stoll

The telecommunications industry spans over 100 years, and Asterisk integrates mostif not allof the major technologies that it has made

use of over the last century. To make the most out of Asterisk, you need not be a professional in all areas, but understanding the

differences between the various codecs and protocols will give you a greater appreciation and understanding of the system as a whole.

This chapter explains Voice over IP and what makes VoIP networks different from the traditional circuit-switched voice networks that

were the topic of the last chapter. We will explore the need for VoIP protocols, outlining the history and potential future of each. We'll also

look at security considerations and these protocols' abilities to work within topologies such as Network Address Translation (NAT). The

following VoIP protocols will be discussed:

IAX

SIP

H.323

MGCP

Skinny/SCCP

UNISTIM

Codecs are the means by which analog voice can be converted to a digital signal and carried across the Internet. Bandwidth at any

location is finite, and the number of simultaneous conversations any particular connection can carry is directly related to the type of

codec implemented. In this chapter, we'll also explore the differences between the following codecs in regards to bandwidth

requirements (compression level) and quality:

G.711

G.726

G.723.1

G.729A

GSM

iLBC

Speex

MP3

We will then conclude the chapter with a discussion of how voice traffic can be routed reliably, what causes echo and how to minimize it,

and how Asterisk controls the authentication of inbound and outbound calls.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

file:///C:/DOCUME~1/stelios/LOCALS~1/Temp/2/O'Reilly,.Asterisk.The.Future.of.Telephony.(2005).BBL.LotB.chm/0596009623/18051535.html

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

8.1. The Need for VoIP Protocols

The basic premise of VoIP is the packetization
[*]

 of audio streams for transport over Internet Protocol-based networks. The challenges to

accomplishing this relate to the manner in which humans communicate. Not only must the signal arrive in essentially the same form that

it was transmitted in, but it needs to do so in less than 300 milliseconds. If packets are lost or delayed, there will be degradation in the

quality of the communications experience.

[*] This word hasn't quite made it into the dictionary, but it is a term that is becoming more and more common. It

refers to the process of chopping a steady stream of information into discreet chunks (or packets), suitable for

delivery independently of one another.

The transport protocols that collectively are called "the Internet" were not originally designed with real-time streaming of media in mind.

Endpoints were expected to resolve missing packets by waiting longer for them to arrive, requesting retransmission, or, in some cases,

considering the information to be gone for good and simply carrying on without it. In a typical voice conversation, these mechanisms will

not serve. Our conversations do not adapt well to the loss of letters or words, nor to any appreciable delay between transmittal and

receipt.

The traditional PSTN was designed specifically for the purpose of voice transmission, and it is perfectly suited to the task from a

technical standpoint. From a flexibility standpoint, however, its flaws are obvious to even people with a very limited understanding of the

technology. VoIP holds the promise of incorporating voice communications into all the other protocols we carry on our networks, but due

to the special demands of a voice conversation, special skills are needed to design, build, and maintain these networks.

The problem with packet-based voice transmission stems from the fact that the way in which we speak is totally incompatible with the

way in which IP transports data. Speaking and listening consist of the relaying of a stream of audio, whereas the Internet protocols are

designed to chop everything up, encapsulate the bits of information into thousands of packages, and then deliver each package in

whatever way possible to the far end. Clearly, some sort of bridge was required.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

8.2. VoIP Protocols

The mechanism for carrying a VoIP connection generally involves a series of signaling transactions between the endpoints (and

gateways in between), culminating in two persistent media streams (one for each direction) that carry the actual conversation. There are

several protocols in existence to handle this. In this section, we will discuss some of those that are important to VoIP in general and to

Asterisk specifically.

8.2.1. IAX (The "Inter-Asterisk eXchange" Protocol)

The test of your Asterisk-ness comes when you have to pronounce the name of this protocol. Newbies say "eye-ay-ex"; those in the

know say "eeks." IAX
[*]

 is an open protocol, meaning that anyone can download and develop for it, but it is not yet a standard of any kind.

[*] Officially, the current version is IAX2, but all support for IAX1 has been dropped, so whether you say "IAX" or

"IAX2," it is expected that you are talking about the Version 2.

In Asterisk, IAX is supported by the chan_iax2.so module.

8.2.1.1. History

The IAX protocol was developed by Digium for the purpose of communicating with other Asterisk servers (hence "the Inter-Asterisk

eXchange protocol"). IAX is a transport protocol (much like SIP) that uses a single UDP port (4569) for both the channel signaling and

Realtime Transport Protocol (RTP) streams. As discussed below, this makes it easier to firewall and more likely to work behind NAT.

IAX also has the unique ability to trunk multiple sessions into one dataflow, which can be a tremendous bandwidth advantage when

sending a lot of simultaneous channels to a remote box. Trunking allows multiple data streams to be represented with a single datagram

header, to lower the overhead associated with individual channels. This helps to lower latency and reduce the processing power and

bandwidth required, allowing the protocol to scale much more easily with a large number of active channels between endpoints.

8.2.1.2. Future

Since IAX was optimized for voice, it has received some criticism for not better supporting videobut in fact, IAX holds the potential to

carry pretty much any media stream desired. Because it is an open protocol, future media types are certain to be incorporated as the

community desires them.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

8.2.1.3. Security considerations

IAX includes the ability to authenticate in three ways: plain text, MD5 hashing, and RSA key exchange. This, of course, does nothing to

encrypt the media path or headers between endpoints. Many solutions include using a Virtual Private Network (VPN) appliance or

software to encrypt the stream in another layer of technology, which requires the endpoints to pre-establish a method of having these

tunnels configured and operational. In the future, IAX may be able to encrypt the streams between endpoints with the use of an

exchanged RSA key, or dynamic key exchange at call setup, allowing the use of automatic key rollover. This would be very attractive for

creating a secure link with an institution such as your bank. The various law enforcement agencies, however, are going to want some

level of access to such connections.

8.2.1.4. IAX and NAT

The IAX2 protocol was deliberately designed to work from behind devices performing NAT. The use of a single UDP port for both

signaling and transmission of media also keeps the number of holes required in your firewall to a minimum. These considerations have

helped make IAX one of the easiest protocols (if not the easiest) to implement in secure networks.

8.2.2. SIP

The Session Initiation Protocol (SIP) has taken the world of VoIP by storm. Originally considered little more than an interesting idea, SIP

now seems poised to dethrone the mighty H.323 as the VoIP protocol of choicecertainly at the endpoints of the network. The premise of

SIP is that each end of a connection is a peer, and the protocol negotiates capabilities between them. What makes SIP compelling is that

it is a relatively simple protocol, with a syntax similar to that of other familiar protocols such as HTTP and SMTP.

SIP is supported in Asterisk with the chan_sip.so module.

8.2.2.1. History

SIP was originally submitted to the Internet Engineering Task Force (IETF) in February of 1996 as "draft-ietf-mmusic-sip-00." The initial

draft looked nothing like the SIP we know today and contained only a single request type: a call setup request. In March of 1999, after 11

revisions, SIP RFC 2543 was born.

At first, SIP was all but ignored, as H.323 was considered the protocol of choice for VoIP transport negotiation. However, as the buzz

grew, SIP began to gain popularity, and while there may be a lot of different factors that accelerated its growth, we'd like to think that a

large part of its success is due to its freely available specification.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

8.2.2.2. Future

SIP has earned its place as the protocol that justified VoIP. All new user and enterprise products are expected to support SIP, and any

existing products will now be a tough sell unless a migration path to SIP is offered. SIP is widely expected to deliver far more than VoIP

capabilities, including the ability to transmit video, music, and any type of real-time multimedia. SIP is poised to deliver the majority of

new applications over the next few years.

8.2.2.3. Security considerations

SIP uses a challenge/response system to authenticate users. An initial INVITE is sent to the proxy with which the end device wishes to

communicate. The proxy then sends back a 407 Proxy Authorization Request message, which contains a random set of characters

referred to as a "nonce ." This nonce is used along with the password to generate an MD5 hash, which is then sent back in the

subsequent INVITE. Assuming the MD5 hash matches the one that the proxy generated, the client is then authenticated.

Denial of Service (DoS) attacks are probably the most common type of attack on VoIP communications. A DoS attack can occur when a

large number of invalid INVITE requests are sent to a proxy server in an attempt to overwhelm the system. These attacks are relatively

simple to implement, and their effects on the users of the system are immediate. SIP has several methods of minimizing the effects of

DoS attacks, but ultimately they are impossible to prevent.

SIP implements a scheme to guarantee that a secure, encrypted transport mechanism (namely Transport Layer Security, or TLS) is used

to establish communication between the caller and the domain of the callee. Beyond that, the request is sent securely to the end device,

based upon the local security policies of the network. Note that the encryption of the media (that is, the RTP stream) is beyond the

scope of SIP itself and must be dealt with separately.

More information regarding SIP security considerations, including registration hijacking, server impersonation, and session teardown,

can be found in Section 26 of SIP RFC 3261.

8.2.2.4. SIP and NAT

Probably the biggest technical hurdle SIP has to conquer is the challenge of carrying out transactions across a NAT layer. Because SIP

encapsulates addressing information in its data frames, and NAT happens at a lower network layer, the addressing information is not

modified, and thus the media streams will not have the correct addressing information needed to complete the connection when NAT is

in place. In addition to this, the firewalls normally integrated with NAT will not consider the incoming media stream to be part of the SIP

transaction, and will block the connection.

8.2.3. H.323

This International Telecommunication Union (ITU) protocol was originally designed to provide an IP transport mechanism for

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

video-conferencing. It has become the standard in IP-based video-conferencing equipment, and it briefly enjoyed fame as a VoIP

protocol as well. While there is much heated debate over whether SIP or H.323 (or IAX) will dominate the VoIP protocol world, in

Asterisk, H.323 has largely been deprecated in favour of IAX and SIP. H.323 has not enjoyed much success among users and

enterprises, although it is still the most widely used VoIP protocol among carriers.

The two versions of H.323 supported in Asterisk are handled by the modules chan_h323.so (supplied with Asterisk) and chan_oh323.so

(available as a free add-on).

You have probably used H.323 without even knowing itMicrosoft's NetMeeting client is arguably

the most widely deployed H.323 client.

8.2.3.1. History

H.323 was developed by the ITU in May of 1996 as a means to transmit voice, video, data, and fax communications across an IP-based

network while maintaining connectivity with the PSTN. Since that time, H.323 has gone through several versions and annexes (which

add functionality to the protocol), allowing it to operate in pure VoIP networks and more widely distributed networks.

8.2.3.2. Future

The future of H.323 is a subject of hot debate. If the media is any measure, it doesn't look good for H.323; it hardly ever gets mentioned

(certainly not with the regularity of SIP). H.323 is commonly regarded as technically superior to SIP, but, as with so many other

technologies, that ultimately might not matter. One of the factors that makes H.323 unpopular is its complexityalthough many argue that

the once-simple SIP is starting to suffer from the same problem.

H.323 still carries by far the majority of worldwide carrier VoIP traffic, but as people become less and less dependent on traditional

carriers for their telecom needs, the future of H.323 becomes more difficult to predict with any certainty. While H.323 may not be the

protocol of choice for new implementations, we can certainly expect to have to deal with H.323 interoperability issues for some time to

come.

8.2.3.3. Security considerations

H.323 is a relatively secure protocol and does not require many security considerations beyond those that are common to any network

communicating with the Internet. Since H.323 uses the RTP protocol for media communications, it does not natively support encrypted

media paths. The use of a VPN or other encrypted tunnel between endpoints is the most common way of securely encapsulating

communications. Of course, this has the disadvantage of requiring the establishment of these secure tunnels between endpoints, which

may not always be convenient (or even possible). As VoIP becomes used more often to communicate with financial institutions such as

banks, we're likely to require extensions to the most commonly used VoIP protocols to natively support strong encryption methods.

8.2.3.4. H.323 and NAT

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

The H.323 standard uses the Internet Engineering Task Force (IETF) RTP protocol to transport media between endpoints. Because of

this, H.323 has the same issues as SIP when dealing with network topologies involving NAT. The easiest method is to simply forward

the appropriate ports through your NAT device to the internal client.

To receive calls, you will always need to forward TCP port 1720 to the client. In addition, you will need to forward the UDP ports for the

RTP media and RTCP control streams (see the manual for your device for the port range it requires). Older clients, such as MS

Netmeeting, will also require TCP ports forwarded for H.245 tunneling (again, see your client's manual for the port number range).

If you have a number of clients behind the NAT device, you will need to use a gatekeeper running in proxy mode. The gatekeeper will

require an interface attached to the private IP subnet and the public Internet. Your H.323 client on the private IP subnet will then register

to the gatekeeper, which will proxy calls on the clients' behalf. Note that any external clients that wish to call you will also be required to

register with the proxy server.

At this time, Asterisk can't act as an H.323 gatekeeper. You'll have to use a separate application, such as the open source OpenH323

Gatekeeper (http://www.gnugk.org).

8.2.4. MGCP

The Media Gateway Control Protocol (MGCP) also comes to us from the IETF. While MGCP deployment is more widespread than one

might think, it is quickly losing ground to protocols such as SIP and IAX. Still, Asterisk loves protocols, so naturally it has rudimentary

support for it.

MGCP is defined in RFC 3435.
[*]

 It was designed to make the end devices (such as phones) as simple as possible, and have all the call

logic and processing handled by media gateways and call agents. Unlike SIP, MGCP uses a centralized model. MGCP phones cannot

directly call other MGCP phones; they must always go through some type of controller.

[*] RFC 3435 obsoletes RFC 2705.

Asterisk supports MGCP through the chan_mgcp.so module, and the endpoints are defined in the configuration file mgcp.conf. Since

Asterisk provides only basic call agent services, it cannot emulate an MGCP phone (to register to another MGCP controller as a user

agent, for example).

If you have some MGCP phones lying around, you will be able to use them with Asterisk. If you are planning to put MGCP phones into

production on an Asterisk system, keep in mind that the community has moved on to more popular protocols, and you will therefore need

to budget your software support needs accordingly. If possible (for example, with Cisco phones), you should upgrade MGCP phones to

SIP.

8.2.5. Proprietary Protocols

Finally, let's take a look at two proprietary protocols that are supported in Asterisk.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

http://www.gnugk.org

8.2.5.1. Skinny/SCCP

The Skinny Client Control Protocol (SCCP) is proprietary to Cisco VoIP equipment. It is the default protocol for endpoints on a Cisco

Call Manager PBX. Skinny is supported in Asterisk, but if you are connecting Cisco phones to Asterisk, it is generally recommended that

you obtain SIP images for any phones that support it and connect via SIP instead.

8.2.5.2. UNISTIM

Support for Nortel's proprietary VoIP protocol, UNISTIM , has recently been added to Asterisk. This remarkable milestone means that

Asterisk is the first PBX in history to natively support proprietary IP terminals from the two biggest players in VoIP, Nortel and Cisco.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

8.3. Codecs

Codecs are generally understood to be various mathematical models used to digitally encode (and compress) analog audio information.

Many of these models take into account the human brain's ability to form an impression from incomplete information. We've all seen

optical illusions; likewise, voice-compression algorithms take advantage of our tendency to interpret what we believe we should hear,

rather than what we actually hear.
[*]

 The purpose of the various encoding algorithms is to strike a balance between efficiency and quality.
[

]

[*] "Aoccdrnig to rsereach at an Elingsh uinervtisy, it deosn't mttaer in waht oredr the ltteers in a wrod are, the olny

iprmoetnt tihng is taht frist and lsat ltteres are in the rghit pclae. The rset can be a toatl mses and you can sitll raed

it wouthit a porbelm. Tihs is bcuseae we do not raed ervey lteter by istlef, but the wrod as a wlohe." (The source

of this quote is unknownsee http://www.bisso.com/ujg_archives/000228.html.) Tihs is ture with snoud, too.

[] On an audio CD, quality is far more important than bandwidth, so the audio is quantized at 16 bits (times 2, as

it's stereo), with a sampling rate of 44,100 Hz. Considering that the CD was invented in the late 1970s, this was

quite impressive stuff. The telephone network does not require this level of quality (and needs to optimize

bandwidth), so telephone signals are encoded using 8 bits, at a sampling frequency of 8,000 Hz.

Originally, the term CODEC referred to a COder/DECoder: a device that converts between analog and digital. Now, the term seems to

relate more to COmpression/DECompression.

Before we dig into the individual codecs, take a look at Table 8-1it's a quick reference that you may want to refer back to.

Table 8-1. Codec quick reference

Codec Data bitrate (kbps) Licence required?

G.711 64 kbps No

G.726 16, 24, or 32 kbps No

G.723.1 5.3 or 6.3 kbps Yes (no for passthrough)

G.729A 8 kbps Yes (no for passthrough)

GSM 13 kbps No

iLBC 13.3 kbps (30-ms frames) or 15.2 kbps (20-ms frames) No

Speex Variable (between 2.15 and 22.4 kbps) No

8.3.1.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

http://www.bisso.com/ujg_archives/000228.html

8.3.1.1. G.711

G.711 is the fundamental codec of the PSTN. In fact, if someone refers to PCM (discussed in the previous chapter) with respect to a

telephone network, you are allowed to think of G.711. Two companding methods are used: m-law in North America and A-law in the rest

of the world. Either one delivers an 8-bit word transmitted 8,000 times per second. If you do the math, you will see that this requires

64,000 bits to be transmitted per second.

Many people will tell you that G.711 is an uncompressed codec. This is not exactly true, as companding is considered a form of

compression. What is true is that G.711 is the base codec from which all of the others are derived.

8.3.1.2. G.726

This codec has been around for some time (it used to be G.721, which is now obsolete), and it is one of the original compressed codecs.

It is also known as Adaptive Differential Pulse-Code Modulation (ADPCM) , and it can run at several bitrates. The most common rates

are 16 kbps, 24 kbps, and 32 kbps. As of this writing, Asterisk currently supports only the ADPCM-32 rate, which is far and away the

most popular rate for this codec.

G.726 offers quality nearly identical to G.711, but it uses only half the bandwidth. This is possible because rather than sending the result

of the quantization measurement, it sends only enough information to describe the difference between the current sample and the

previous one. G.726 fell from favor in the 1990s due to its inability to carry modem and fax signals, but because of its bandwidth/CPU

performance ratio it is now making a comeback. G.726 is especially attractive because it does not require a lot of computational work

from the system.

8.3.1.3. G.723.1

Not to be confused with G.723 (which is another obsolete version of ADPCM), this codec is designed for low-bitrate speech. It has two

data bitrate settings: 5.3 kbps and 6.3 kbps. G.723.1 is one of the codecs required for compliance with the H.323 protocol (although other

codecs may be employed by H.323). It is currently encumbered by patents and thus requires licensing if used in commercial applications.

What this means is that while you can switch two G.723.1 calls through your Asterisk system, you are not allowed to decode them

without a license.

8.3.1.4. G.729A

Considering how little bandwidth it uses, G.729A delivers impressive sound quality. It does this through the use of Conjugate-Structure

Algebraic-Code-Excited Linear Prediction (CS-ACELP) .
[*]

 Because of patents, you can't use G729A without paying a licensing fee;

however, it is extremely popular and is thus well supported on many different phones and systems.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

[*] CELP is a popular method of compressing speech. By mathematically modeling the various ways humans

make sounds, a codebook of sounds can be built. Rather than sending an actual sampled sound, a code

corresponding to the sound is then sent. (Of course, there is much more to it than that.) Jason Woodward's

Speech Coding page (http://www-mobile.ecs.soton.ac.uk/speech_codecs/) is a source of helpful information for

the non-mathematically inclined. This is fairly heavy stuff, though, so wear your thinking cap.

To achieve its impressive compression ratio, this codec requires an equally impressive amount of effort from the CPU. In an Asterisk

system, the use of heavily compressed codecs will quickly bog down the CPU.

G.729A uses 8 kbps of bandwidth.

8.3.1.5. GSM

GSM is the darling codec of Asterisk. This codec does not come encumbered with a licensing requirement the way that G.723.1 and

G.729A do, and it offers outstanding performance with respect to the demand it places on the CPU. The sound quality is generally

considered to be of a lesser grade than that produced by G.729A, but as much of this comes down to personal opinion, be sure to try it

out.

GSM operates at 13 kbps.

8.3.1.6. iLBC

The Internet Low Bitrate Codec (iLBC) provides an attractive mix of low bandwidth usage and quality, and it is especially well suited to

sustaining reasonable quality on lossy network links.

Naturally, Asterisk supports it (and support elsewhere is growing), but it is not as popular as the ITU codecs and thus may not be

compatible with common IP telephones and commercial VoIP systems. IETF RFCs 3951 and 3952 have been published in support of

iLBC, and iLBC is on the IETF standards track.

Because iLBC uses complex algorithms to achieve its high levels of compression, it has a fairly high CPU cost in Asterisk.

While you are allowed to use iLBC without paying royalty fees, the holder of the iLBC patent, Global IP Sound (GIPS), wants to know

whenever you use it in a commercial application. The way you do that is by downloading and printing a copy of the iLBC license, signing

it, and returning it to them. If you want to read about iLBC and its license, you can do so at http://www.ilbcfreeware.org.

iLBC operates at 13.3 kbps (30-ms frames) and 15.2 kbps (20-ms frames).

8.3.1.7. Speex

Speex is a Variable Bitrate (VBR) codec, which means that it is able to dynamically modify its bitrate to respond to changing network

conditions. It is offered in both narrowband and wideband versions, depending on whether you want telephone quality or better.

Speex is a totally free codec, licensed under the Xiph.org variant of the BSD license.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

http://www-mobile.ecs.soton.ac.uk/speech_codecs/
http://www.ilbcfreeware.org
http://Xiph.org

An Internet draft for Speex is available, and more information about Speex can be found at its home page (http://www.speex.org).

Speex can operate at anywhere from 2.15 to 22.4 kbps, due to its variable bitrate

8.3.1.8. MP3

Sure thing, MP3 is a codec. Specifically, it's the Moving Picture Experts Group Audio Layer 3 Encoding Standard.
[*]

 With a name like that,

it's no wonder we call it MP3! In Asterisk, the MP3 codec is typically used for Music on Hold (MoH). MP3 is not a telephony codec, as it is

optimized for music, not voice; nevertheless, it's very popular with VoIP telephony systems as a method of delivering Music on Hold.

[*] If you want to learn all about MPEG audio, do a web search for Davis Pan's paper entitled "A Tutorial on

MPEG/Audio Compression."

Be aware that music cannot usually be broadcast without a license. Many people assume that

there is no legal problem with connecting a radio station or CD as a Music on Hold source, but this

is very rarely true.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

http://www.speex.org
file:///C:/DOCUME~1/stelios/LOCALS~1/Temp/2/O'Reilly,.Asterisk.The.Future.of.Telephony.(2005).BBL.LotB.chm/0596009623/18051535.html

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

8.4. Quality of Service

Quality of Service, or QoS as it's more popularly termed, refers to the challenge of delivering a time-sensitive stream of data across a

network that was designed to deliver data in an ad hoc, best-effort sort of way. Although there is no hard rule, it is generally accepted

that if you can deliver the sound produced by the speaker to the listener's ear within 300 milliseconds, a normal flow of conversation is

possible. When delay exceeds 500 milliseconds, it becomes difficult to avoid interrupting each other. Beyond one second, normal

conversation becomes extremely awkward.

In addition to getting it there on time, it is also essential to ensure that the transmitted information arrives intact. Too many lost packets

will prevent the far end from completely reproducing the sampled audio, and gaps in the data will be heard as static or, in severe cases,

entire missed words or sentences.

8.4.1. TCP, UDP, and SCTP

If you're going to send data on an IP-based network, it will be transported using one of the three transport protocols discussed here.

8.4.1.1. Transmission Control Protocol

The Transmission Control Protocol (TCP) is almost never used for VoIP, for while it does have mechanisms in place to ensure delivery, it

is not inherently in any hurry to do so. Unless you have an extremely low-latency interconnection between the two endpoints, TCP is

going to tend to cause more problems than it solves.

The purpose of TCP is to guarantee the delivery of packets. In order to do this, several mechanisms are implemented, such as packet

numbering (for reconstructing blocks of data), delivery acknowledgment, and re-requesting lost packets. In the world of VoIP, getting the

packets to the endpoint quickly is paramountbut 20 years of cellular telephony has trained us to tolerate a few lost packets.
[*]

[*] The order of arrival is important in voice communication, because the audio will be processed and sent to the

caller ASAP. However, with a jitter buffer the order of arrival isn't as important, as it provides a small window of

time in which the packets can be reordered before being passed on to the caller.

TCP's high processing overhead, state management, and acknowledgment of arrival work well for transmitting large amounts of data,

but it simply isn't efficient enough for real-time media communications.

8.4.1.2. User Datagram Protocol

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

Unlike TCP, the User Datagram Protocol (UDP) does not offer any sort of delivery guarantee. Packets are placed on the wire as quickly

as possible and released into the world to find their way to their final destinations, with no word back as to whether they get there or not.

Since UDP itself does not offer any kind of guarantee that the data will arrive,
[]

 it achieves its efficiency by spending very little effort on

what it is transporting.

[] Keep in mind that the upper-layer protocols or applications can implement their own packet acknowledgment

systems.

TCP is a more "socially responsible" protocol, because the bandwidth is more evenly distributed to

clients connecting to a server. As the percentage of UDP traffic increases, it is possible that a

network could become overwhelmed.

8.4.1.3. Stream Control Transmission Protocol

Approved by the IETF as a proposed standard in RFC 2960, SCTP is a relatively new transport protocol. From the ground up, it was

designed to address the shortcomings of both TCP and UDP, especially as related to the types of services that used to be delivered over

circuit-switched telephony networks.

Some of the goals of SCTP were:

Better congestion-avoidance techniques (specifically, avoiding Denial of Service attacks)

Strict sequencing of data delivery

Lower latency for improved real-time transmissions

By overcoming the major shortcomings of TCP and UDP, the SCTP developers hoped to create a robust protocol for the transmission of

SS7 and other types of PSTN signaling over an IP-based network.

8.4.2. Differentiated Service

Differentiated service, or DiffServ , is not so much a QoS mechanism as a method by which traffic can be flagged and given specific

treatment. Obviously, DiffServ can help to provide QoS by allowing certain types of packets to take precedence over others. While this

will certainly increase the chance of a VoIP packet passing quickly through each link, it does not guarantee anything.

8.4.3. Guaranteed Service

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

The ultimate guarantee of QoS is provided by the PSTN. For each conversation, a 64-kbps channel is completely dedicated to the callthe

bandwidth is guaranteed. Similarly, protocols that offer guaranteed service can ensure that a required amount of bandwidth is

dedicated to the connection being served. As with any packetized networking technology, these mechanisms generally operate best

when traffic is below maximum levels. When a connection approaches its limits, it is next to impossible to eliminate degradation.

8.4.3.1. MPLS

Multiprotocol Label Switching (MPLS) is a method for engineering network traffic patterns independent of layer-3 routing tables. The

protocol works by assigning short labels (MPLS frames) to network packets, which routers then use to forward the packets to the MPLS

egress router, and ultimately to their final destinations. Traditionally, routers make an independent forwarding decision based on an IP

table lookup at each hop in the network. In an MPLS network, this lookup is performed only once, when the packet enters the MPLS

cloud at the ingress router. The packet is then assigned to a stream, referred to as a Label Switched Path (LSP) , and identified by a

label. The label is used as a lookup index in the MPLS forwarding table, and the packet traverses the LSP independent of layer-3 routing

decisions. This allows the administrators of large networks to fine-tune routing decisions and to make the best use of network resources.

Additionally, information can be associated with a label to prioritize packet forwarding.

8.4.3.2. RSVP

MPLS contains no method to dynamically establish LSPs, but you can use the Reservation protocol (RSVP) with MPLS. RSVP is a

signaling protocol used to simplify the establishment of LSPs and to report problems to the MPLS ingress router. The advantage of using

RSVP in conjunction with MPLS is the reduction in administrative overhead. If you don't use RSVP with MPLS, you'll have to go to every

single router and configure the labels and each path manually. Using RSVP makes the network more dynamic by distributing control of

labels to the routers. This enables the network to become more responsive to changing conditions, because it can be set up to change

the paths based on certain conditions, such as a certain path going down (perhaps due to a faulty router). The configuration within the

router will then be able to use RSVP to distribute new labels to the routers in the MPLS network, with no (or minimal) human intervention.

8.4.4. Best Effort

The simplest, least expensive approach to QoS is not to provide it at allthe "best effort" method. While this might sound like a bad idea, it

can in fact work very well. Any VoIP call that traverses the public Internet is almost certain to be best effort, as QoS mechanisms are not

yet common in this environment.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

file:///C:/DOCUME~1/stelios/LOCALS~1/Temp/2/O'Reilly,.Asterisk.The.Future.of.Telephony.(2005).BBL.LotB.chm/0596009623/18051535.html

8.5. Echo

You may not realize it, but echo has been a problem in the PSTN for as long as there have been telephones. You probably haven't

often experienced it, because the telecom industry has spent large sums of money designing expensive echo cancellation devices. Also,

when the endpoints are physically closee.g., when you phone your neighbor down the streetthe delay is so minimal that anything you

transmit will be returned back so quickly that it will be indistinguishable from the sidetone
[*]

 normally occurring in your telephone.

[*] As discussed in Chapter 7, sidetone is a function in your telephone that returns part of what you say back to

your own ear, to provide a more natural-sounding conversation.

8.5.1. Why Echo Occurs

Before we discuss measures to deal with echo, let's first take a look at why echo occurs in the analog world.

If you hear echo, it's not your phone that's causing the problem; it's the far end of the circuit. Conversely, echo heard on the far end is

being generated at your end. Echo is caused by the fact that an analog local loop circuit has to transmit and receive on the same pair of

wires. If this circuit is not electrically balanced, or if a low-quality telephone is connected to the end of the circuit, signals it receives can

be reflected back, becoming part of the return transmission. When this reflected circuit gets back to you, you will hear the words you

spoke just moments before. The human ear will perceive an echo after a delay of roughly 40 milliseconds.

In a cheap telephone, it is possible for echo to be generated in the body of the handset. This is why some cheap IP phones can cause

echo even when the entire end-to-end connection does not contain an analog circuit.
[]

 In the VoIP world, echo is usually introduced

either by an analog circuit somewhere in the connection, or by a cheap endpoint reflecting back some of the signal (e.g., feedback

through a hands-free or poorly designed handset). A good rule of thumb is to keep latency to less than 250 milliseconds.

[] Actually, the handset in any phone, be it traditional or VoIP, is an analog connection.

8.5.2. Managing Echo

In the zconfig.h configuration file, you can choose from one of several echo canceller algorithms , with the default being MARK2.

Experiment with the various echo cancellers on your network to determine the best one for your environment. Asterisk also has an

option in the zconfig.h file to make the echo cancellation more aggressive. You can enable it by uncommenting the following line:

 #define AGGRESSIVE_SUPPRESSOR

Note that aggressive echo cancellation can create a walkie-talkie, half-duplex effect. This should be enabled only if all other methods of

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

reducing echo have failed.

Enable echo cancellation for Zaptel interfaces in the zapata.conf file. The default configuration enables echo cancellation with

echocancel=yes. echocancelwhenbridged=yes will enable echo cancellation for TDM bridged calls. While bridged calls should not require

echo cancellation, this may improve call quality.

When echo cancellation is enabled, the echo canceller learns of echo on the line by listening for it for the duration of the call.

Consequently, echo may be heard at the beginning of a call and eventually lessen after period of time. To avoid this situation, you can

employ a method called "echo training ," which will mute the line briefly at the beginning of a call, and then send a tone from which the

amount of echo on the line can be determined. This allows Asterisk to deal with the echo more quickly. Echo training can be enabled

with echotraining=yes.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

8.6. Asterisk and VoIP

It should come as no surprise that Asterisk loves to talk VoIP. But in order to do so, Asterisk needs to know which function it is to

perform: that of client, server, or both. One of the most complex and often confusing concepts in Asterisk is the naming scheme of

inbound and outbound authentication.

8.6.1. Users and Peers and FriendsOh My!

Connections that authenticate to us, or that we authenticate, are defined in the iax.conf and sip.conf files as users and peers .

Connections that do both may be defined as friends . When determining which way the authentication is occurring, it is always important

to view the direction of the channels from Asterisk's viewpoint, as connections are being accepted and created by the Asterisk server.

8.6.1.1. Users

A connection defined as a user is any system/user/endpoint that we allow to connect to us. Keep in mind that a user definition does not

provide a method with which to call that userthe user type is used simply to create a channel for incoming calls.
[*]

 A user definition will

require a context name to be defined to indicate where the incoming authenticated call will be placed in the dialplan (in extensions.conf).

[*] In SIP, this is not always the case. If the endpoint is a SIP proxy service (as opposed to a user agent), Asterisk

will authenticate based on the peer definition, matching the IP address and port in the Contact field of the SIP header

against the hostname (and port, if specified) defined for the peer (if the port is not specified, the one defined in the

[general] section will be used). See the discussion of the SIP insecure option in Appendix A for more on this subject.

8.6.1.2. Peers

A connection defined as a peer type is an outgoing connection. Think of it this way: users place calls to us, while we place calls to our

peers. Since peers do not place calls to us, a peer definition does not typically require the configuration of a context name. However,

there is one exception: if calls that originate from your system are returned to your system in a loopback, the incoming calls (which

originate from a SIP proxy, not a user agent) will be matched on the peer definition. The default context should handle these incoming

calls appropriately, although it's preferable for contexts to be defined for them on a per-peer basis.
[]

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

[] For more information on this topic, see the discussion of the SIP context option in Appendix A.

In order to know where to send a call to a host, we must know its location in relation to the Internet (that is, its IP address). The location

of a peer may be defined either statically or dynamically. A dynamic peer is configured with host=dynamic under the peer definition

heading. Because the IP address of a dynamic peer may change constantly, it must register with the Asterisk box to let it know what its

IP address is, so calls can successfully be routed to it. If the remote end is another Asterisk box, the use of a register statement is

required, as discussed below.

8.6.1.3. Friends

Defining a type as a friend is a shortcut for defining it as both a user and a peer. However, connections that are both a user and a peer

aren't always defined this way, because defining each direction of call creation individually (using both a user and a peer definition) allows

more granularity and control over the individual connections.

Figure 8-1 shows the flow of authentication control in relation to Asterisk.

Figure 8-1. Call origination relationships of users, peers, and friends to Asterisk

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

8.6.2. register Statements

A register statement is a way of telling a remote peer where your Asterisk box is in relation to the Internet. Asterisk uses register

statements to authenticate to remote providers when you are employing a dynamic IP address, or when the provider does not have your

IP address on record. There are situations when a register statement is not required, but to demonstrate when a register statement is

required, let's look at an example.

Say you have a remote peer that is providing DID services to you. When someone calls the number +1-800-555-1212, the call goes over

the physical PSTN network to your service provider and into their Asterisk server, possibly over their T-1 connection. This call is then

routed to your Asterisk server via the Internet.

Your service provider will have a definition in either their sip.conf or iax.conf configuration file (depending on whether you are connecting

with the SIP or IAX protocol, respectively) for your Asterisk server. If you receive calls only from this provider, you would define them as a

user (if they were another Asterisk system, you might be defined in their system as a peer).

Now let's say that your box is on your home Internet connection, with a dynamic IP address. Your service provider has a static IP

address (or perhaps a fully qualified domain name), which you place in your configuration file. Since you have a dynamic address, your

service provider specifies host=dynamic in its configuration file. In order to know where to route your +1-800-555-1212 call, your service

provider needs to know where you are located in relation to the Internet. This is where the register statement comes into use.

The register statement is a way of authenticating and telling your peer where you are. In the [general] section of your configuration file,

you would place a statement similar to this:

 register => username:secret@my_remote_peer

You can verify a successful register with the use of the iax2 show registry and sip show registry commands at the Asterisk console.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

file:///C:/DOCUME~1/stelios/LOCALS~1/Temp/2/O'Reilly,.Asterisk.The.Future.of.Telephony.(2005).BBL.LotB.chm/0596009623/18051535.html

8.7. Conclusion

If you listen to the buzz in the telecom industry, you might think that VoIP is the future of telephony. But to Asterisk, VoIP is more a case

of "been there, done that." For Asterisk, the future of telephony is much more exciting. We'll take a look at that vision a bit later, in

Chapter 11. In the next chapter, we are going to delve into one of the more revolutionary and powerful concepts of Asterisk: AGI, the

Asterisk Gateway Interface.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

Chapter 9. The Asterisk Gateway Interface (AGI)

Even he, to whom most things that most people

would think were pretty smart were pretty dumb,

thought it was pretty smart.

Douglas Adams, The Salmon of Doubt

The Asterisk Gateway Interface, or AGI, provides a standard interface by which external programs may control the Asterisk dialplan.

Usually, AGI scripts are used to do advanced logic, communicate with relational databases (such as PostgreSQL or MySQL), and

access other external resources. Turning over control of the dialplan to an external AGI script enables Asterisk to easily perform tasks

that would otherwise be difficult or impossible.

This chapter covers the fundamentals of AGI communication. It will not teach you how to be a programmerrather, we'll assume that

you're already a competent programmer, so that we can show you how to write AGI programs. If you don't know how to do computer

programming, this chapter probably isn't for you, and you should skip ahead to the next chapter.

Over the course of this chapter, we'll write a sample AGI program in each of the Perl, PHP, and Python programming languages. Note,

however, that because Asterisk provides a standard interface for AGI scripts, these scripts can be written in almost any modern

programming language. We've chosen to highlight Perl, PHP, and Python because they're the languages most commonly used for AGI

programming.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

file:///C:/DOCUME~1/stelios/LOCALS~1/Temp/2/O'Reilly,.Asterisk.The.Future.of.Telephony.(2005).BBL.LotB.chm/0596009623/18051535.html

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

9.1. Fundamentals of AGI Communication

Instead of releasing an API for programming, AGI scripts communicate with Asterisk over communications channels (file pointers , in

programming parlance) known as STDIN, STDOUT, and STDERR. Most computer programmers will recognize these channels, but just

in case you're not familiar with them we'll cover them here.

9.1.1. What Are STDIN, STDOUT, and STDERR?

STDIN , STDOUT , and STDERR are channels by which programs in Unix-like environments receive information from and send

information to external programs. STDIN, or "standard input," is the information that is sent to the program, either from the keyboard or

from another program. In our case, information coming from Asterisk itself comes in on the program's STDIN file handle. STDOUT, or

"standard output," is the file handle that the AGI script uses to pass information back to Asterisk. Finally, the AGI script can use the

STDERR ("standard error") file handle to write error messages to the Asterisk console.

Let's sum up these three communications concepts:

An AGI script reads from STDIN to get information from Asterisk.

An AGI script writes data to STDOUT to send information to Asterisk.

An AGI script may write data to STDERR to send debug information to the Asterisk console.

At this time, writing to STDERR from within your AGI script writes the information only to the first

Asterisk consolethat is, the first Asterisk console started with the -c or -r parameters.

This is rather unfortunate, and will hopefully be remedied soon by the Asterisk developers.

If you're using the safe_asterisk program to start Asterisk (which you probably are), it starts a

remote console on TTY9 . (Try pressing Ctrl-Alt-F9, and see if you get an Asterisk command-line

interface.) This means that all the AGI debug information will print on only that remote console.

You may want to disable this console in safe_asterisk to allow you to see the debug information in

another console. (You may also want to disable that console for security reasons, as you might not

want just anyone to be able to walk up to your Asterisk server and have access to a console

without any kind of authentication.)

9.1.2. The Standard Pattern of AGI Communication

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

The communication between Asterisk and an AGI script follows a predefined pattern. Let's enumerate the steps, and then we'll walk

through one of the sample AGI scripts that come with Asterisk.

When an AGI script starts, Asterisk sends a list of variables and their values to the AGI script. The variables might look something like

this:

 agi_request: test.py

 agi_channel: Zap/1-1

 agi_language: en

 agi_callerid:

 agi_context: default

 agi_extension: 123

 agi_priority: 2

After sending these variables, Asterisk sends a blank line. This is the signal that Asterisk is done sending the variables and it is time for

the AGI script to control the dialplan.

At this point, the AGI script sends commands to Asterisk by writing to STDOUT. After the script sends each command, Asterisk sends a

response that the AGI script should read. This action (sending commands to Asterisk and reading the responses) can continue for the

duration of the AGI script.

You may be asking yourself what commands you can use from within your AGI script. Good questionwe'll cover the basic commands

shortly.
[*]

[*] To get a list of available AGI commands, type show agi at the Asterisk command-line interface. You can also

refer to Appendix C for an AGI command reference.

9.1.3. Calling an AGI Script from the Dialplan

In order to work properly, your AGI script must be executable. To use an AGI script inside your dialplan, simply call the AGI() application,

with the name of the AGI script as the argument, like this:

 exten => 123,1,Answer()

 exten => 123,2,AGI(agi-test.agi)

AGI scripts often reside in the AGI directory (usually located in /var/lib/asterisk/agi-bin), but you can specify the complete path to the AGI

script.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

AGI(), EAGI(), DeadAGI(), and FastAGI()

In addition to the AGI() application, there are several other AGI applications suited to different circumstances. While

they won't be covered in this chapter, they should be quite simple to figure out once you understand the basics of AGI

scripting.

The EAGI() (enhanced AGI) application acts just like AGI(), but allows your AGI script to read the inbound audio

stream on file descriptor number three.

The DeadAGI() application is also just like AGI(), but it works correctly on a channel that is dead (i.e., a channel that

has been hung up). As this implies, the regular AGI() application doesn't work on dead channels.

The FastAGI() application allows the AGI script to be called across the network, so that multiple Asterisk servers can

call AGI scripts from a central location.

In this chapter, we'll first cover the sample agi-test.agi script that comes with Asterisk (which was written in Perl), then write a weather

report AGI program in PHP, and then finish up by writing an AGI program in Python to play a math game.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

file:///C:/DOCUME~1/stelios/LOCALS~1/Temp/2/O'Reilly,.Asterisk.The.Future.of.Telephony.(2005).BBL.LotB.chm/0596009623/18051535.html

9.2. Writing AGI Scripts in Perl

Asterisk comes with a sample AGI script called agi-test.agi. Let's step through the file while we cover the core concepts of AGI

programming. While this particular script is written in Perl, please remember that your own AGI programs may be written in almost any

programming language. Just to prove it, we're going to cover AGI programming in a couple of other languages later in the chapter.

Let's get started! We'll look at each section of the code in turn, and describe what it does.

 #!/usr/bin/perl

This line tells the system that this particular script is written in Perl, so it should use the Perl interpreter to execute the script. If you've

done much Linux or Unix scripting, this line should be familiar to you. This line assumes, of course, that your Perl binary is located in the

/usr/bin/ directory. Change this to match the location of your Perl interpreter.

 use strict;

use strict tells Perl to act, well, strict about possible programming errors, such as undeclared variables. While not absolutely necessary,

enabling this will help you avoid common programming pitfalls.

 $|=1;

This line tells Perl not to buffer its outputin other words, that it should write any data immediately, instead of waiting for a block of data

before outputting it. You'll see this as a recurrent theme throughout the chapter.

You should always use unbuffered output when writing AGI scripts. Otherwise, your AGI may not

work as expected, because Asterisk may be waiting for the output of your program, while your

program thinks it has sent the output to Asterisk and is waiting for a response.

 # Set up some variables

 my %AGI; my $tests = 0; my $fail = 0; my $pass = 0;

Here, we set up four variables. The first is a hash called AGI, which is used to store the variables that Asterisk passes to our script at the

beginning of the AGI session. The next three are scalar values, used to count the total number of tests, the number of failed tests, and

the number of passed tests, respectively.

 while(<STDIN>) {

 chomp;

 last unless length($_);

 if (/^agi_(\w+)\:\s+(.*)$/) {

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

 $AGI{$1} = $2;

 }

 }

As we explained earlier, Asterisk sends a group of variables to the AGI program at startup. This loop simply takes all of these variables

and stores them in the hash named AGI. They can be used later in the program or simply ignored, but they should always be read from

STDIN before continuing on with the logic of the program.

 print STDERR "AGI Environment Dump:\n";

 foreach my $i (sort keys %AGI) {

 print STDERR " -- $i = $AGI{$i}\n";

 }

This loop simply writes each of the values that we stored in the AGI hash to STDERR. This is useful for debugging the AGI script, as

STDERR is printed to the Asterisk console.
[*]

[*] Actually, to the first spawned Asterisk console (i.e., the first instance of Asterisk called with the -c or -r option). If

safe_asterisk was used to start Asterisk, the first Asterisk console will be on TTY9, which means that you will not

be able to view AGI errors remotely.

 sub checkresult {

 my ($res) = @_;

 my $retval;

 $tests++;

 chomp $res;

 if ($res =~ /^200/) {

 $res =~ /result=(-?\d+)/;

 if (!length($1)) {

 print STDERR "FAIL ($res)\n";

 $fail++;

 } else {

 print STDERR "PASS ($1)\n";

 $pass++;

 }

 } else {

 print STDERR "FAIL (unexpected result '$res')\n";

 $fail++;

 }

This subroutine reads in the result of an AGI command from Asterisk and decodes the result to determine whether the command passes

or fails.

Now that the preliminaries are out of the way, we can get to the core logic of the AGI script.

 print STDERR "1. Testing 'sendfile'...";

 print "STREAM FILE beep \"\"\n";

 my $result = <STDIN>;

 &checkresult($result);

This first test shows how to use the STREAM FILE command. The STREAM FILE command tells Asterisk to play a sound file to the

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

caller, just as the Background() application does. In this case, we're telling Asterisk to play a file called beep.gsm.
[]

[] Asterisk automatically selects the best format, based on translation cost and availability, so the file extension

is never used in the function.

You will notice that the second argument is passed by putting in a set of double quotes, escaped by backslashes. Without the double

quotes to indicate the second argument, this command does not work correctly.

You must pass all required arguments to the AGI commands. If you want to skip a required

argument, you must send empty quotes (properly escaped in your particular programming

language), as shown above. If you don't pass the required number of arguments, your AGI script

will not work.

You should also make sure you pass a line feed (the \n on the end of the print statement) at the

end of the command.

After sending the STREAM FILE command, this test reads the result from STDIN and calls the checkresult subroutine to determine if

Asterisk was able to play the file. The STREAM FILE command takes three arguments, two of which are required:

The name of the sound file to play back

The digits that may interrupt the playback

The position at which to start playing the sound, specified in number of samples (optional)

In short, this test told Asterisk to play back the file named beep.gsm, and then checked the result to make sure the command was

successfully executed by Asterisk.

 print STDERR "2. Testing 'sendtext'...";

 print "SEND TEXT \"hello world\"\n";

 my $result = <STDIN>;

 &checkresult($result);

This test shows us how to call the SEND TEXT command, which is similar to the SendText() application. This command will send the

specified text to the caller, if the caller's channel type supports the sending of text.

The SEND TEXT command takes one argument: the text to send to the channel. If the text contains spaces (as in the example above),

the argument should be encapsulated with quotes, so that Asterisk will know that the entire text string is a single argument to the

command. Again, notice that the quotation marks are escaped, as they must be sent to Asterisk, not used to terminate the string in Perl.

 print STDERR "3. Testing 'sendimage'...";

 print "SEND IMAGE asterisk-image\n";

 my $result = <STDIN>;

 &checkresult($result);

This test calls the SEND IMAGE command, which is similar to the SendImage() application. Its single argument is the name of an image

file to send to the caller. As with the SEND TEXT command, this command works only if the calling channel supports the reception of

images.

 print STDERR "4. Testing 'saynumber'...";

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

 print "SAY NUMBER 192837465 \"\"\n";

 my $result = <STDIN>;

 &checkresult($result);

This test sends Asterisk the SAY NUMBER command. This command behaves identically to the SayNumber() dialplan application. It

takes two arguments:

The number to say

The digits that may interrupt the command

Again, since we're not passing in any digits as the second argument, we need to pass in an empty set of quotes.

 print STDERR "5. Testing 'waitdtmf'...";

 print "WAIT FOR DIGIT 1000\n";

 my $result = <STDIN>;

 &checkresult($result);

This test shows the WAIT FOR DIGIT command. This command waits the specified number of milliseconds for the caller to enter a

DTMF digit. If you want the command to wait indefinitely for a digit, use -1 as the timeout. This application returns the decimal ASCII

value of the digit that was pressed.

 print STDERR "6. Testing 'record'...";

 print "RECORD FILE testagi gsm 1234 3000\n";

 my $result = <STDIN>;

 &checkresult($result);

This section of code shows us the RECORD FILE command. This command is used to record the call audio, similar to the Record()

dialplan application. RECORD FILE takes seven arguments, the last three of which are optional:

The filename of the recorded file.

The format in which to record the audio.

The digits that may interrupt the recording.

The timeout (maximum recording time) in milliseconds, or -1 for no timeout.

The number of samples to skip before starting the recording (optional).

The word BEEP, if you'd like Asterisk to beep before the recording starts (optional).

The number of seconds before Asterisk decides that the user is done with the recording and returns, even though the timeout

hasn't been reached and no DTMF digits have been entered (optional). This argument must be preceded by s=.

In this particular case, we're recording a file called testagi (in the GSM format), with any of the DTMF digits 1 through 4 terminating the

recording, and a maximum recording time of 3,000 milliseconds.

 print STDERR "6a. Testing 'record' playback...";

 print "STREAM FILE testagi \"\"\n";

 my $result = <STDIN>;

 &checkresult($result);

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

The second part of this test plays back the audio that was recorded earlier, using the STREAM FILE command. We've already covered

STREAM FILE, so this section of code needs no further explanation.

 print STDERR "================== Complete ======================\n";

 print STDERR "$tests tests completed, $pass passed, $fail failed\n";

 print STDERR "==\n";

At the end of the AGI script, a summary of the tests is printed to STDERR, which should end up on the Asterisk console.

In summary, you should remember the following when writing AGI programs in Perl:

Turn on strict language checking with the use strict command.
[*]

[*] This advice probably applies to any Perl program you might write, especially if you're new to Perl.

Turn off output buffering by setting $|=1.

Data from Asterisk is received using a while(<STDIN>) loop.

Write values with the print command.

Use the print STDERR command to write debug information to the Asterisk console.

9.2.1. The Perl AGI Library

If you are interesting in building your own AGI scripts in Perl, you may want to check out the Asterisk::AGI Perl module written by James

Golovich, which is located at http://asterisk.gnuinter.net. The Asterisk::AGI module makes it even easier to write AGI scripts in Perl.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

http://asterisk.gnuinter.net

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

9.3. Creating AGI Scripts in PHP

We promised we'd cover several languages, so let's go ahead and see what an AGI script in PHP looks like. The fundamentals of AGI

programming still apply; only the programming language has changed. In this example, we'll write an AGI script to download a weather

report from the Internet and deliver the temperature, wind direction, and wind speed back to the caller.

 #!/usr/bin/php -q

 <?php

The first line tells the system to use the PHP interpreter to run this script. The -q option turns off HTML error messages. You should

ensure that there aren't any extra lines between the first line and the opening PHP tag, as they'll confuse Asterisk.

 # change this to match the code of your particular city

 # for a complete list of US cities, go to

 # http://www.nws.noaa.gov/data/current_obs/

 $weatherURL="http://www.nws.noaa.gov/data/current_obs/KMDQ.xml";

This tells our AGI script where to go to get the current weather conditions. In this example, we're getting the weather for Huntsville,

Alabama. Feel free to visit the web site listed above for a complete list of stations throughout the United States of America.
[*]

[*] We apologize to our readers outside of the United States for using a weather service that only works for U.S.

cities. If you can find a good international weather service that provides its data in XML, it shouldn't be too hard to

change this AGI script to work with that particular service. Once we find one, we'll update this script for future

editions.

 # don't let this script run for more than 60 seconds

 set_time_limit(60);

Here, we tell PHP not to let this program run for more than 60 seconds. This is a safety net, which will end the script if for some reason it

takes more than 60 seconds to run.

 # turn off output buffering

 ob_implicit_flush(false);

This command turns off output buffering, meaning that all data will be sent immediately to the AGI interface and will not be buffered.

 # turn off error reporting, as it will most likely interfere with

 # the AGI interface

 error_reporting(0);

This command turns off all error reporting, as it can interfere with the AGI interface. (You might find it helpful to comment out this line

during testing.)

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

 # create file handles if needed

 if (!defined('STDIN'))

 {

 define('STDIN', fopen('php://stdin', 'r'));

 }

 if (!defined('STDOUT'))

 {

 define('STDOUT', fopen('php://stdout', 'w'));

 }

 if (!defined('STDERR'))

 {

 define('STDERR', fopen('php://stderr', 'w'));

 }

This section of code ensures that we have open file handles for STDIN, STDOUT, and STDERR, which will handle all communication

between Asterisk and our script.

 # retrieve all AGI variables from Asterisk

 while (!feof(STDIN))

 {

 $temp = trim(fgets(STDIN,4096));

 if (($temp == "") || ($temp == "\n"))

 {

 break;

 }

 $s = split(":",$temp);

 $name = str_replace("agi_","",$s[0]);

 $agi[$name] = trim($s[1]);

 }

Next, we'll read in all of the AGI variables passed to us by Asterisk. Using the fgets command in PHP to read the data from STDIN, we'll

save each variable in the hash called $agi. Remember that we could use these variables in the logic of our AGI script, although we won't

in this example.

 # print all AGI variables for debugging purposes

 foreach($agi as $key=>$value)

 {

 fwrite(STDERR,"-- $key = $value\n");

 fflush(STDERR);

 }

Here, we print the variables back out to STDERR for debugging purposes.

 #retrieve this web page

 $weatherPage=file_get_contents($weatherURL);

This line of code retrieves the XML file from the National Weather Service and puts the contents into the variable called $weatherPage.

This variable will be used later on to extract out the pieces of the weather report that we want.

 #grab temperature in Fahrenheit

 if (preg_match("/<temp_f>([0-9]+)<\/temp_f>/i",$weatherPage,$matches))

 {

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

 $currentTemp=$matches[1];

 }

This section of code extracts the temperature (in Fahrenheit) from the weather report, using the preg_match command. This command

uses Perl-compatible regular expressions
[*]

 to extract out the needed data.

[*] The ultimate guide to regular expressions is O'Reilly's Mastering Regular Expressions, by Jeffrey Friedl.

 #grab wind direction

 if (preg_match("/<wind_dir>North<\/wind_dir>/i",$weatherPage))

 {

 $currentWindDirection='northerly';

 }

 elseif (preg_match("/<wind_dir>South<\/wind_dir>/i",$weatherPage))

 {

 $currentWindDirection='southerly';

 }

 elseif (preg_match("/<wind_dir>East<\/wind_dir>/i",$weatherPage))

 {

 $currentWindDirection='easterly';

 }

 elseif (preg_match("/<wind_dir>West<\/wind_dir>/i",$weatherPage))

 {

 $currentWindDirection='westerly';

 }

 elseif (preg_match("/<wind_dir>Northwest<\/wind_dir>/i",$weatherPage))

 {

 $currentWindDirection='northwesterly';

 }

 elseif (preg_match("/<wind_dir>Northeast<\/wind_dir>/i",$weatherPage))

 {

 $currentWindDirection='northeasterly';

 }

 elseif (preg_match("/<wind_dir>Southwest<\/wind_dir>/i",$weatherPage))

 {

 $currentWindDirection='southwesterly';

 }

 elseif (preg_match("/<wind_dir>Southeast<\/wind_dir>/i",$weatherPage))

 {

 $currentWindDirection='southeasterly';

 }

The wind direction is found through the use of preg_match (located in the wind_dir tags) and is assigned to the variable

$currentWindDirection.

 #grab wind speed

 if (preg_match("/<wind_mph>([0-9.]+)<\/wind_mph>/i",$weatherPage,$matches))

 {

 $currentWindSpeed = $matches[1];

 }

Finally, we'll grab the current wind speed and assign it to the $currentWindSpeed variable.

 # tell the caller the current conditions

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

 if ($currentTemp)

 {

 fwrite(STDOUT,"STREAM FILE temperature \"\"\n");

 fflush(STDOUT);

 $result = trim(fgets(STDIN,4096));

 checkresult($result);

 fwrite(STDOUT,"STREAM FILE is \"\"\n");

 fflush(STDOUT);

 $result = trim(fgets(STDIN,4096));

 checkresult($result);

 fwrite(STDOUT,"SAY NUMBER $currentTemp \"\"\n");

 fflush(STDOUT);

 $result = trim(fgets(STDIN,4096));

 checkresult($result);

 fwrite(STDOUT,"STREAM FILE degrees \"\"\n");

 fflush(STDOUT);

 $result = trim(fgets(STDIN,4096));

 checkresult($result);

 fwrite(STDOUT,"STREAM FILE fahrenheit \"\"\n");

 fflush(STDOUT);

 $result = trim(fgets(STDIN,4096));

 checkresult($result);

 }

 if ($currentWindDirection && $currentWindSpeed)

 {

 fwrite(STDOUT,"STREAM FILE with \"\"\n");

 fflush(STDOUT);

 $result = trim(fgets(STDIN,4096));

 checkresult($result);

 fwrite(STDOUT,"STREAM FILE $currentWindDirection \"\"\n");

 fflush(STDOUT);

 $result = trim(fgets(STDIN,4096));

 checkresult($result);

 fwrite(STDOUT,"STREAM FILE wx/winds \"\"\n");

 fflush(STDOUT);

 $result = trim(fgets(STDIN,4096));

 checkresult($result);

 fwrite(STDOUT,"STREAM FILE at \"\"\n";)

 fflush(STDOUT);

 $result = trim(fgets(STDIN,4096));

 checkresult($result);

 fwrite(STDOUT,"SAY NUMBER $currentWindSpeed \"\"\n");

 fflush(STDOUT);

 $result = trim(fgets(STDIN,4096));

 checkresult($result);

 fwrite($STDOUT,"STREAM FILE miles-per-hour \"\"\n");

 fflush(STDOUT);

 $result = trim(fgets(STDIN,4096));

 checkresult($result);

 }

Now that we've collected our data, we can send AGI commands to Asterisk (checking the results as we go) that will deliver the current

weather conditions to the caller. This will be achieved through the use of the STREAM FILE and SAY NUMBER AGI commands.

We've said it before, and we'll say it again: when calling AGI commands, you must pass in all of the required arguments. In this case,

both STREAM FILE and SAY NUMBER commands require a second argument; we'll pass empty quotes escaped by the backslash

character.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

You should also notice that we call the fflush command each time we write to STDOUT. While this is arguably redundant, there's no harm

in ensuring that the AGI command is not buffered and is sent immediately to Asterisk.

 function checkresult($res)

 {

 trim($res);

 if (preg_match('/^200/',$res))

 {

 if (! preg_match('/result=(-?\d+)/',$res,$matches))

 {

 fwrite(STDERR,"FAIL ($res)\n");

 fflush(STDERR);

 return 0;

 }

 else

 {

 fwrite(STDERR,"PASS (".$matches[1].")\n");

 fflush(STDERR);

 return $matches[1];

 }

 }

 else

 {

 fwrite(STDERR,"FAIL (unexpected result '$res')\n");

 fflush(STDERR);

 return -1;

 }

 }

The checkresult function is identical in purpose to the checkresult subroutine we saw in our Perl example. As its name suggests, it checks

the result that Asterisk returns whenever we call an AGI command.

 ?>

At the end of the file, we have our closing PHP tag. Don't place any whitespace after the closing PHP tag, as it can confuse the AGI

interface.

We've now covered two different languages, in order to demonstrate the similarities and differences of programming an AGI script in PHP

as opposed to Perl. The following things should be remembered when writing an AGI script in PHP:

Invoke PHP with the -q switch; it turns off HTML in error messages.

Turn off the time limit, or set it to a reasonable value (newer versions of PHP automatically disable the time limit when PHP is

invoked from the command line).

Turn off output buffering with the ob_implicit_flush(false) command.

Open file handles to STDIN, STDOUT, and STDERR (newer versions of PHP may have one or more of these file handles

already openedsee the code above for a slick way of making this work across most versions of PHP).

Read variables from STDIN using the fgets function.

Use the fwrite function to write to STDOUT and STDERR.

Always call the fflush function after writing to either STDOUT or STDERR.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

9.3.1. The PHP AGI Library

For advanced AGI programming in PHP, you may want to check out the PHPAGI project at http://phpagi.sourceforge.net. It was

originally written by Matthew Asham and is being developed by several other members of the Asterisk community.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

http://phpagi.sourceforge.net
file:///C:/DOCUME~1/stelios/LOCALS~1/Temp/2/O'Reilly,.Asterisk.The.Future.of.Telephony.(2005).BBL.LotB.chm/0596009623/18051535.html

9.4. Writing AGI Scripts in Python

The AGI script we'll be writing in Python , called "The Subtraction Game," was inspired by a Perl program written by Ed Guy and

discussed by him at the 2004 AstriCon conference. Ed described his enthusiasm for the power and simplicity of Asterisk when he found

he could write a quick Perl script to help his young daughter improve her math skills.

Since we've already written a Perl program using AGI, and Ed has already written the math program in Perl, we figured we'd take a stab

at it in Python!

Let's go through our Python script.

 #!/usr/bin/python

This line tells the system to run this script in the Python interpreter. For small scripts, you may consider adding the -u option to this line,

which will run Python in unbuffered mode. This is not recommended, however, for larger or frequently used AGI scripts, as it can affect

system performance.

 import sys

 import re

 import time

 import random

Here, we import several libraries that we'll be using in our AGI script.

 # Read and ignore AGI environment (read until blank line)

 env = {}

 tests = 0;

 while 1:

 line = sys.stdin.readline().strip()

 if line == '':

 break

 key,data = line.split(':')

 if key[:4] <> 'agi_':

 #skip input that doesn't begin with agi_

 sys.stderr.write("Did not work!\n");

 sys.stderr.flush()

 continue

 key = key.strip()

 data = data.strip()

 if key <> '':

 env[key] = data

 sys.stderr.write("AGI Environment Dump:\n");

 sys.stderr.flush()

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

 for key in env.keys():

 sys.stderr.write(" -- %s = %s\n" % (key, env[key]))

 sys.stderr.flush()

This section of code reads in the variables that are passed to our script from Asterisk, and saves them into a dictionary named env.

These values are then written to STDERR for debugging purposes.

 def checkresult (params):

 params = params.rstrip()

 if re.search('^200',params):

 result = re.search('result=(\d+)',params)

 if (not result):

 sys.stderr.write("FAIL ('%s')\n" % params)

 sys.stderr.flush()

 return -1

 else:

 result = result.group(1)

 #debug("Result:%s Params:%s" % (result, params))

 sys.stderr.write("PASS (%s)\n" % result)

 sys.stderr.flush()

 return result

 else:

 sys.stderr.write("FAIL (unexpected result '%s')\n" % params)

 sys.stderr.flush()

 return -2

The checkresult function is almost identical in purpose to the checkresult subroutine in the sample Perl AGI script we covered earlier in

the chapter. It reads in the result of an Asterisk command, parses the answer, and reports whether or not the command was successful.

 def sayit (params):

 sys.stderr.write("STREAM FILE %s \"\"\n" % str(params))

 sys.stderr.flush()

 sys.stdout.write("STREAM FILE %s \"\"\n" % str(params))

 sys.stdout.flush()

 result = sys.stdin.readline().strip()

 checkresult(result)

The sayit function is a simple wrapper around the STREAM FILE command.

 def saynumber (params):

 sys.stderr.write("SAY NUMBER %s \"\"\n" % params)

 sys.stderr.flush()

 sys.stdout.write("SAY NUMBER %s \"\"\n" % params)

 sys.stdout.flush()

 result = sys.stdin.readline().strip()

 checkresult(result)

The saynumber function is a simple wrapper around the SAY NUMBER command.

 def getnumber (prompt, timelimit, digcount):

 sys.stderr.write("GET DATA %s %d %d\n" % (prompt, timelimit, digcount))

 sys.stderr.flush()

 sys.stdout.write("GET DATA %s %d %d\n" % (prompt, timelimit, digcount))

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

 sys.stdout.flush()

 result = sys.stdin.readline().strip()

 result = checkresult(result)

 sys.stderr.write("digits are %s\n" % result)

 sys.stderr.flush()

 if result:

 return result

 else:

 result = -1

The getnumber function calls the GET DATA command to get DTMF input from the caller. It is used in our program to get the caller's

answers to the subtraction problems.

 limit=20

 digitcount=2

 score=0

 count=0

 ttanswer=5000

Here, we initialize a few variables that we'll be using in our program.

 starttime = time.time()

 t = time.time() - starttime

In these lines we set the starttime variable to the current time and initialize t to zero. We'll use the t variable to keep track of the number of

seconds that have elapsed since the AGI script was started.

 sayit("subtraction-game-welcome")

Next, we welcome the caller to the subtraction game.

 while (t < 180):

 big = random.randint(0,limit+1)

 big += 10

 subt= random.randint(0,big)

 ans = big - subt

 count += 1

 #give problem:

 sayit("subtraction-game-next");

 saynumber(big);

 sayit("minus");

 saynumber(subt);

 res = getnumber("equals",ttanswer,digitcount);

 if (int(res) == ans) :

 score+=1

 sayit("subtraction-game-good");

 else :

 sayit("subtraction-game-wrong");

 saynumber(ans);

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

 t = time.time() - starttime

This is the heart of the AGI script. We loop through this section of code and give subtraction problems to the caller until 180 seconds

have elapsed. Near the top of the loop, we calculate two random numbers and their difference. We then present the problem to the

caller, and read in the caller's response. If the caller answers incorrectly, we give the correct answer.

 pct = float(score)/float(count)*100;

 sys.stderr.write("Percentage correct is %d\n" % pct)

 sys.stderr.flush()

 sayit("subtraction-game-timesup")

 saynumber(score)

 sayit("subtraction-game-right")

 saynumber(count)

 sayit("subtraction-game-pct")

 saynumber(pct)

After the users are done answering the subtraction problems, they are given their scores.

As you have seen, the basics you should remember when writing AGI scripts in Python are:

Flush the output buffer after every write. This will ensure that your AGI program won't hang while Asterisk is waiting for the

buffer to fill and Python is waiting for the response from Asterisk.

Read data from Asterisk with the sys.stdin.readline command.

Write commands to Asterisk with the sys.stdout.write command. Don't forget to call sys.stdout.flush after writing.

9.4.1. The Python AGI Library

If you are planning on writing lot of Python AGI code, you may want to check out Karl Putland's Python module, Pyst. You can find it at

http://www.sourceforge.net/projects/pyst/.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

http://www.sourceforge.net/projects/pyst/

9.5. Debugging in AGI

Debugging AGI programs , as with any other type of program, can be frustrating. Luckily, there are two advantages to debugging AGI

scripts. First, since all the communications between Asterisk and the AGI program happen over STDIN and STDOUT (and, of course,

STDERR), you should be able to run your AGI script directly from the operating system. Second, Asterisk has a handy command for

showing all the communications between itself and the AGI script: agi debug.

9.5.1. Debugging from the Operating System

As mentioned above, you should be able to run your program directly from the operating system to see how it behaves. The secret here

is to act just like Asterisk does, providing your script with the following:

A list of variables and their values, such as agi_test:1.

A blank line feed (/n) to indicate that you're done passing variables.

Responses to each of the AGI commands from your AGI script. Usually, typing 200 response=1 is sufficient.

Trying your program directly from the operating system may help you to more easily spot bugs in your program.

9.5.2. Using Asterisk's agi debug Command

The Asterisk command-line interface has a very useful command for debugging AGI scripts, which is called (appropriately enough) agi

debug. If you type agi debug at an Asterisk console and then run an AGI, you'll see something like the following:

 -- Executing AGI("Zap/1-1", "temperature.php") in new stack

 -- Launched AGI Script /var/lib/asterisk/agi-bin/temperature.php

 AGI Tx >> agi_request: temperature.php

 AGI Tx >> agi_channel: Zap/1-1

 AGI Tx >> agi_language: en

 AGI Tx >> agi_type: Zap

 AGI Tx >> agi_uniqueid: 1116732890.8

 AGI Tx >> agi_callerid: 101

 AGI Tx >> agi_calleridname: Tom Jones

 AGI Tx >> agi_callingpres: 0

 AGI Tx >> agi_callingani2: 0

 AGI Tx >> agi_callington: 0

 AGI Tx >> agi_callingtns: 0

 AGI Tx >> agi_dnid: unknown

 AGI Tx >> agi_rdnis: unknown

 AGI Tx >> agi_context: incoming

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

 AGI Tx >> agi_extension: 141

 AGI Tx >> agi_priority: 2

 AGI Tx >> agi_enhanced: 0.0

 AGI Tx >> agi_accountcode:

 AGI Tx >>

 AGI Rx << STREAM FILE temperature ""

 AGI Tx >> 200 result=0 endpos=6400

 AGI Rx << STREAM FILE is ""

 AGI Tx >> 200 result=0 endpos=5440

 AGI Rx << SAY NUMBER 67 ""

 -- Playing 'digits/60' (language 'en')

 -- Playing 'digits/7' (language 'en')

 AGI Tx >> 200 result=0

 AGI Rx << STREAM FILE degrees ""

 AGI Tx >> 200 result=0 endpos=6720

 AGI Rx << STREAM FILE fahrenheit ""

 AGI Tx >> 200 result=0 endpos=8000

 -- AGI Script temperature.php completed, returning 0

You'll see three types of lines while your AGI script is running. The first type, prefaced with AGI TX >>, are the lines that Asterisk

transmits to your program's STDIN. The second type, prefaced with AGI RX <<, are the commands your AGI program writes back to

Asterisk over STDOUT. The third type, prefaced by , are the standard Asterisk messages presented as it executes certain commands.

To disable AGI debugging after it has been started, simply type agi no debug at an Asterisk console.

Using the agi debug command will enable you to see the communication between Asterisk and your program, which can be very useful

when debugging. Hopefully, these two tips will greatly improve your ability to write and debug powerful AGI programs.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

9.6. Conclusion

For a developer, AGI is one of the more revolutionary and compelling reasons to choose Asterisk over a closed, proprietary PBX. Still,

AGI is only part of the picture. For those of us who are less developers and more systems integrators or power users, Chapter 10 will

explore the wealth of accoutrements that make Asterisk compelling to so many people.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

Chapter 10. Asterisk for the Über-Geek

The first ninety percent of the task takes ninety percent of the time, and the last ten percent takes the other ninety

percent.

The Ninety:Ten Rule

The toughest part of writing this book was not finding things to write about, but rather deciding what we would not be able to write about.

Now that we've covered the basics, you are ready to be told the truth: we have not taught you anywhere near all that there is to know

about Asterisk. Well, okay, perhaps five percent, but likely less.

Now please understand, this is not because we didn't want to give you our very best; it's merely because Asterisk is, well, limitless (or so

we believe).

In this chapter, we want to give you a taste of some of the wonders Asterisk holds in store for you. Pretty nearly every section in this

chapter could become a book in itself (and they will become books, if Asterisk succeeds in the way we think it is going to).

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

10.1. Festival

Festival is a popular open source text-to-speech engine. The basic premise of using Festival with Asterisk is that your dialplan can pass

a body of text to Festival, which will then "speak" the text to the caller. Probably the most obvious use for Festival would be to have it

read your email to you when you are on the road.

10.1.1. Getting Festival Set Up and Ready for Asterisk

There are currently two ways to use Festival with Asterisk. The first (and easiest) methodwithout having to patch and recompile

Festivalis to add the following text to Festival's configuration file (festival.scm, usually located in /etc/ or /usr/share/festival/):

 (define (tts_textasterisk string mode)

 "(tts_textasterisk STRING MODE)

 Apply tts to STRING. This function is specifically designed for use in

 server mode so a single function call may synthesize the string. This

 function name may be added to the server safe functions."

 (let ((wholeutt (utt.synth (eval (list 'Utterance 'Text string)))))

 (utt.wave.resample wholeutt 8000)

 (utt.wave.rescale wholeutt 5)

 (utt.send.wave.client wholeutt)))

You may place this text anywhere in the file, as long as it is not between any other parentheses.

The second (and more traditional) way is to compile Festival with an Asterisk-specific patch (located in the contrib/ directory of the

Asterisk source).

Information on both of these methods is contained in the README.festival file, located in the contrib/ directory of the Asterisk source.

For either method, you'll need to modify the Festival access list in the festival.scm file. Simply search for the word "localhost," and replace

it with the fully qualified domain name of your server.

Both of these methods set up Festival to be able to correctly communicate with Asterisk. After setting up Festival, you should start the

Festival server. You can then call the Festival() application from within your dialplan.

10.1.2. Configuring Asterisk for Festival

The Asterisk configuration file that deals with Festival is aptly called festival.conf. Inside this file, you specify the hostname and port of

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

your Festival server, as well some settings for the caching of Festival speech. For most installations (if you're going to run Festival on

your Asterisk server), the defaults will work just fine.

10.1.3. Starting the Festival Server

To start the Festival server for debugging purposes, simply run festival with the server argument, like this:

 [root@asterisk ~]# festival --server

Once you're sure that the Festival server is running and not rejecting your connections, you can start Festival by typing:

 [root@asterisk ~]# festival_server 2>&1 >/dev/null &

10.1.4. Calling Festival from the Dialplan

Now that Festival is configured and the Festival server is started, let's call it from within a simple dialplan:

 exten => 123,1,Answer()

 exten => 123,2,Festival(Asterisk and Festival are working together)

You should always call the Answer() application before calling Festival(), to ensure that a channel

is established.

As Asterisk connects to Festival, you should see output like this in the terminal where you started the Festival server:

 [root@asterisk ~]# festival --server
 server Sun May 1 18:38:51 2005 : Festival server started on port 1314

 client(1) Sun May 1 18:39:20 2005 : accepted from asterisk.localdomain

 client(1) Sun May 1 18:39:21 2005 : disconnected

If you see output like the following, it means you didn't add the host to the access list in festival.scm:

 [root@asterisk ~]# festival --server
 server Sun May 1 18:30:52 2005 : Festival server started on port 1314

 client(1) Sun May 1 18:32:32 2005 : rejected from asterisk.localdomain not

 in access list

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

Yet Another Way to Use Festival with Asterisk

Some people in the Asterisk community have reported good success by passing text to Festival's text2wave utility and

then having Asterisk play back the resulting .wav file. For example, you might do something like this:

 exten => 124,1,Answer()

 exten => 124,2,System(echo "This is a test of Festival" | /usr/bin/text2wave

 -scale 1.5 -F 8000 -o /tmp/festival.wav)

 exten => 124,3,Playback(/tmp/festival)

 exten => 124,4,System(rm /tmp/festival.wav)

 exten => 124,5,Hangup()

This method also allows you to call other text-to-speech engines, such as the popular speech engine from Cepstral.
[a]

For this example, we'll assume that Cepstral is installed in /usr/local/cepstral/:

 exten => 125,1,Answer()

 exten => 125,2,System(/usr/local/cepstral/bin/swift -o /tmp/swift.wav

 "This is a test of Cepstral")

 exten => 125,3,Playback(/tmp/swift)

 exten => 125,4,System(rm /tmp/swift.wav)

 exten => 125,5,Hangup()

[a] Cepstral can be evaluated at http://www.cepstral.com. Cepstral is an inexpensive commercial derivative of

Festival with very good-sounding voices.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

http://www.cepstral.com

10.2. Call Detail Recording

Without even being told, Asterisk assumes that you want to store CDR information. Quite a smart machine, yes?

By default, Asterisk will create a CSV
[*]

 file and place it in the folder /var/log/asterisk/cdr-csv/. To the naked eye, this file looks like a bit of

a mess. If, however, you separate each line according to the commas, you will find that each line contains information about a particular

call, and that the commas separate the following values:

[*] A Comma Separated Values (CSV) file is a common method of formatting database-type information in a text

file. You can open CSV files with a text editor, but most spreadsheet and database programs will also read them

and properly parse them into rows and columns.

accountcode

Assigned if the application SetAccount() is used, or if configured for the channel in the channel configuration file (i.e., sip.conf).

The account code is assigned on a per-channel basis.

src

Received Caller*ID (string, 80 characters).

dst

Destination extension.

dcontext

Destination context.

clid

Caller*ID with text (80 characters).

channel

Channel used (80 characters).

dstchannel

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

Destination channel, if appropriate (80 characters).

lastapp

Last application, if appropriate (80 characters).

lastdata

Last application data (arguments, 80 characters).

start

Start of call (date/time).

answer

Answer of call (date/time).

end

End of call (date/time).

duration

Total time in system, in seconds (integer), from dial to hangup.

billsec

Total time call is up, in seconds (integer), from answer to hangup.

disposition

What happened to the call (ANSWERED, NO ANSWER, BUSY).

amaflags

What flags to use (DOCUMENTATION, BILL, IGNORE, etc.), specified on a per-channel basis, like accountcode. AMA flags

stand for Automated Message Accounting flags, which are somewhat standard (supposedly) in the industry.

userfield

A user-defined field, maximum 255 characters.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

Storing CDRs in a Database

CDRs can also be stored in a database. Asterisk currently supports SQLite, PostGreSQL, MySQL, and unixODBC.

The configuration details for these databases will not be covered in this book, but they are outlined in the Asterisk

source code, under the doc/ subdirectory. (For licensing reasons, cdr_mysql is in asterisk-addons.) Many people prefer

to store their CDRs in a database because this makes it easier to query them for specific information, such as billing or

toll fraud. We can use the CDR applications to manipulate the current CDR from the dialplan (adding information to the

custom field, for example).

10.2.1. CDR Challenges

While Asterisk will happily store information about any calls that pass through it, it cannot store information it is not given. For example, if

you have SIP devices that are allowed to reinvite, once Asterisk has finished setting up the calls, the devices will no longer need its

assistance. Whether or not those devices subsequently report call detail information back to it is something Asterisk is unable to control.

If CDRs are important, make sure your IP devices are not allowed to reinvite.
[*]

[*] Reinvites can be turned off in sip.conf with canreinvite=no. Similar functionality is controlled in iax.conf with notransfer=yes.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

file:///C:/DOCUME~1/stelios/LOCALS~1/Temp/2/O'Reilly,.Asterisk.The.Future.of.Telephony.(2005).BBL.LotB.chm/0596009623/18051535.html

10.3. Customizing System Prompts

In keeping with the seemingly limitless flexibility of Asterisk, you can also modify the system prompts. This is very simple to explain, but

generally difficult to do well.

With over three hundred system prompts in the main distribution, and over six hundred more in the asterisk-sounds add on, if you're

contemplating customizing all of them you'd better have either a lot of money or a lot of time on your hands.

An audio engineer is also recommended, to ensure that the recordings are normalized to -3 dB and that all prompts start and end at a

zero-crossing point (with just the right amount of silence prepended and appended).

The Voice

If you are interested in The Voice of Asterisk , she is Allison Smith, and she can deliver customized recordings for you

to use on your own system.

This is an extremely cool concept, as very few PBXs allow you to use the same voice in your custom recordings as is

used by the system prompts.

To make use of Allison's talents, sign up at http://thevoice.digium.com.

Once you have the recordings, the actual implementation is easysimply replace the files in /var/lib/asterisk/sounds/ with the ones you

have created.

Alternatively, you can opt to record your own prompts and place them in a folder of your choosing. When you refer to sound files with the

Playback() or Background() applications, you can refer to the full pathname of the sound file, or to any subdirectory of

/var/lib/asterisk/sounds/.

A useful way to convert your WAV files to GSM format is with the use of the sox application. To convert your files with sox, use:

 # sox foo.wav -r 8000 foo.gsm resample -ql

If your WAV files are recorded in stereo, be sure to add the -c1 flag to write the files in mono. These recordings are often made through a

PC, but check out the following sidebarsome people have had better luck recording from the dialplan.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

http://thevoice.digium.com

10.4. Manager

Asterisk Manager provides an API that allows external programs the ability to create, monitor and manage Asterisk.
[*]

 The Manager

interface is a powerful mechanism for integrating external programs of all kinds into Asterisk.

[*] An Application Program Interface (API) is a mechanism by which a program allows other programs to take

control of it. Contrast this with AGI, which allows external programs to be called from the dialplan.

To use the Manager, you must define an account in the file /etc/asterisk/manager.conf. This file will look something like this:

 [general]

 enabled = yes

Sound Recording from the Dialplan

Surprisingly, one of the easiest ways to get respectable-quality recordings is not through a PC with fancy editing

software, but rather through a telephone set. There are many reasons for this, but the most important is that the

telephone will tend to filter out background noise (such as white noise caused by HVAC equipment) and will record at a

consistent audio level.

This little addition to your dialplan will allow you to easily create recordings, which will be placed in your system's /tmp/

folder (from there, you can rename them and move them wherever you'd like):

 exten => _66XX,1,Wait(2)

 exten => _66XX,2,Record(/tmp/prompt${EXTEN:2}:wav)

 exten => _66XX,3,Wait(1)

 exten => _66XX,4,Playback(/tmp/prompt${EXTEN:2})

 exten => _66XX,5,Wait(2)

 exten => _66XX,6,Hangup()

This little snippet will allow you to dial from 6600 to 6699, and it will record prompts in the /tmp/ folder using the names

prompt00.wav to prompt99.wav. After you complete recording (by pressing the # key), it will play your prompt back to

you and hang up.

Be sure to move your prompts out of the /tmp/ dir to the Asterisk sounds directory. To keep the dialplan readable,

rename your promptXX files to a meaningful namese.g., mv /tmp/prompt00.wav

/var/lib/asterisk/sounds/custom/welcome-message.wav.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

 port = 5038

 bindaddr = 0.0.0.0

 [oreilly]

 secret = notvery

 ;deny=0.0.0.0/0.0.0.0

 ;permit=209.16.236.73/255.255.255.0

 read = system,call,log,verbose,command,agent,user

 write = system,call,log,verbose,command,agent,user

In the [general] section, you have to enable the service by setting the parameter enabled = yes. The TCP port to use will default to 5038.

For each user, you will specify the username in square brackets ([]), followed by the password for that user (secret), any IP addresses

you wish to deny access to, any IP addresses you wish to permit access to, and the read and write permissions for that user.

10.4.1. Manager Commands

It is important to keep in mind that the Manager interface is designed to be used by programs, not fingers. That's not to say that you can't

issue commands to it directlyjust don't expect a typical console interface, because that's not what Manager is for.

Commands to Manager are delivered in packages with the following syntax (lines are terminated with CRLF):

 Action: <action type>

 <Key 1>: <Value 1>

 <Key 2>: <Value 2>

 etc ...

 <Variable>: <Value>

 <Variable>: <Value>

 etc...

For example, to authenticate with Manager (which is required if you expect to have any interaction whatsoever), you would send the

following:

 Action: login

 Username: oreilly

 Secret: notvery

 <CRLF>

An extra CRLF on a blank line will send the entire package to Manager.

Once authenticated, you will be able to initiate actions, as well as see events generated by Asterisk. On a busy system, this can get quite

complicated and become totally impossible to keep track of with the unaided eye.

10.4.2. The Flash Operator Panel

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

The Flash Operator Panel (FOP) is far and away the most popular example of the power of the Manager interface. FOP creates a

web-based visual view of your system and allows you control of calls.

FOP is most commonly used to enable a live attendant to view the users in the system and connect calls between them. It can also be

used in a call-center environment to provide CRM-triggered screen pops.
[*]

[*] Customer Relationship Management (CRM) is an interface companies use to help manage customer

information and interaction.

The FOP management interface is shown in Figure 10-1. To grab a copy of FOP, head to http://www.asternic.org.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

http://www.asternic.org

10.5. Call Files

Call files allow you to create calls through the Linux shell. These powerful events are triggered by depositing a .call file in the directory

/var/spool/asterisk/outgoing/. The actual name of the file does not matter, but it's good form to give the file a meaningful name and to end

the filename with .call.

Figure 10-1. The Flash Operator Panel management interface

When a call file appears in the outgoing folder, Asterisk will almost immediately
[*]

 act on the instructions contained therein.

[*] We're talking seconds or less.

Call files are formatted in the following manner. First, we define where we want to call:

 Channel: <channel>

We can control how long to wait for a call to be answered (the default is 45 seconds), how long to wait between call retries, and the

maximum number of retries. If MaxRetries is omitted, the call will be attempted only once:

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

 WaitTime: <number>

 RetryTime: <number>

 MaxRetries: <number>

If the call is answered, we specify where to connect it here:

 Context: <context-name>

 Extension: <ext>

 Priority: <priority>

Alternatively, we can specify a single application and pass arguments to it:

 Application: Playback()

 Data: hello-world

Next, we set the Caller*ID of the outgoing call:

 CallerID: Asterisk <800-555-1212>

Then we set channel variables, as follows:

 SetVar: john=Zap/1/5551212

 SetVar: sally=SIP/1000

and add a CDR account code:

 Account: documentation

When you create a call file, do not do so from the spool directory. Asterisk monitors the spool

aggressively and will try to grab your file before you've even finished writing it. Create call files in some

other folder, and then mv them into the spool directory.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

10.6. DUNDi

If there were any concerns that Mark Spencer was in danger of running out of good ideas, Distributed Universal Number Discovery

(DUNDi) ought to lay such thoughts to rest. DUNDi is poised to be as revolutionary as Asterisk. The DUNDi web site

(http://www.dundi.com) says it best: "DUNDi
TM

 is a peer to peer system for locating Internet gateways to telephony services. Unlike

traditional centralized services (such as the remarkably simple and concise ENUM
[*]

 standard), DUNDi is fully distributed with no

centralized authority whatsoever."

[*] http://www.faqs.org/rfc/rfc2916.txt.

10.6.1. How Does DUNDi Work?

Think of DUNDi as a large phone book that allows you to ask peers if they know of an alternative VoIP route to an extension number or

PSTN telephone number.

For example, assume you are connected to the DUNDi-test network (a free and open network that terminates calls to traditional PSTN

numbers). You ask your friend Bob if he knows how to reach 1-800-555-1212, a number for which you have no direct access. Bob

replies, "I don't know how to reach that number, but let me ask my peer Sally."

Bob asks Sally if she knows how to reach the requested number, and she responds with, "You can reach that number at

IAX2/dundi:very_long_password@hostname/extension." Bob then stores the address in his database and passes on to you the

information about how to reach 1-800-555-1212 via VoIP, allowing you an alternative method of reaching the same destination through a

different network.

Because Bob has stored the information he found, he'll be able to provide it to any peers who later request the same number from him,

so the lookup won't have to go any further. This helps reduce the load on the network and increases response times for numbers that are

looked up often. (However, it should be noted that DUNDi creates a rotating key, and thus stored information is valid for a limited period

of time.)

DUNDi performs lookups dynamically, either with a switch => statement in your extensions.conf file or with the use of the DUNDiLookup()

application. DUNDi is available only in Asterisk Version 1.2 or higher.

You can use the DUNDi protocol in a private network as well. Say you're the Asterisk administrator of a very large enterprise installation

and you wish to simplify the administration of extension numbers. You could use DUNDi in this situation, allowing multiple Asterisk boxes

(presumably located at each of the company's locations and peered with one another) to perform dynamic lookups for the VoIP

addresses of extensions on the network.

10.6.2. Configuring Asterisk for Use with DUNDi

There are three files that need to be configured for DUNDi: dundi.conf, extensions.conf, and iax.conf.
[*]

 The dundi.conf file controls the

authentication of peers who we allow to perform lookups through our system. This file also manages the list of peers to whom we might

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

http://www.dundi.com
http://www.faqs.org/rfc/rfc2916.txt

submit our own lookup requests. Since it is possible to run several different networks on the same box, it is necessary to define a

different section for each peer, and then configure the networks in which that peer is allowed to perform lookups. Additionally, we need to

define which peers we wish to use to perform lookups.

[*] The dundi.conf and extensions.conf files must be configured. We have chosen to configure iax.conf for our

address advertisement on the network, but DUNDi is protocol-agnosticthus sip.conf, h323.conf, or mgcp.conf

could be used instead.

10.6.2.1. The General Peering Agreement

The General Peering Agreement (GPA) is a legally binding license agreement that is designed to prevent abuse of the DUNDi protocol.

Before connecting to the DUNDi-test group, you are required to sign a GPA. The GPA is used to protect the members of the group and

to create a "trust" between the members. It is a requirement of the DUNDi-test group that your complete and accurate contact information

be configured in dundi.conf, so that members of your peer group can contact you. The GPA can be found in the doc/ subdirectory of the

Asterisk source.

10.6.2.2. General configuration

The [general] section of dundi.conf contains parameters relating to the overall operation of the DUNDi client and server:

 ; DUNDi configuration file

 ;

 [general]

 ;

 department=IT

 organization= toronto.example.com

 locality=Toronto

 stateprov=ON

 country=CA

 email=support@toronto.example.com

 phone=+19055551212

 ;

 ; Specify bind address and port number. Default is 4520

 ;bindaddr=0.0.0.0

 port=4520

 entityid=FF:FF:FF:FF:FF:FF

 ttl=32

 autokill=yes

 ;secretpath=dundi

The entity identifier defined by entityid should generally be the Media Access Control (MAC) address of an interface in the machine. The

entity ID defaults to the first Ethernet address of the server, but you can override this with entityid, as long as it is set to the MAC address

of something you own. The MAC address of the primary external interface is recommended. This is the address that other peers will use

to identify you.

The Time To Live (ttl) field defines how many peers away we wish to receive replies from and is used to break loops. Each time a

request is passed on down the line because the requested number is not known, the value in the TTL field is decreased by one, much

like the TTL field of an ICMP packet. The TTL field also defines the maximum number of seconds we are willing to wait for a reply.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

When you request a number lookup, an initial query (called a DPDISCOVER) is sent to your peers requesting that number. If you do not

receive an acknowledgment (ACK) of your query (DPDISCOVER) within 2,000 ms (enough time for a single transmission only), and

autokill is equal to yes, Asterisk will send a CANCEL to the peers. (Note that an acknowledgment is not necessarily a reply to the query; it

is just an acknowledgment that the peer has received the request.) The purpose of autokill is to keep the lookup from stalling due to

hosts with high latency. In addition to the yes and no options, you may also specify the number of milliseconds to wait.

The pbx_dundi module creates a rotating key and stores it in the local Asterisk database (AstDB). The key name secret is stored in the

dundi family. The value of the key can be viewed with the database show command at the Asterisk console. The database family can be

overridden with the secretpath option.

10.6.2.3. Creating mapping contexts

The dundi.conf file defines DUNDi contexts that are mapped to dialplan contexts in your extensions.conf file. DUNDi contexts are a way of

defining distinct and separate directory service groups. The contexts in the mapping section point to contexts in the extensions.conf file,

which control the numbers that you advertise. When you create a peer, you need to define which mapping contexts you will allow this

peer to search. You do this with the permit statement (each peer may contain multiple permit statements). Mapping contexts are related

to dialplan contexts in the sense that they are a security boundary for your peers.

Phone numbers must be advertised in the following format:

 <country_code><area_code><prefix><number>

For example, a complete North American number could be advertised as 14165551212.

All DUNDi mapping contexts take the form of:

 dundi_context => local_context,weight,technology,destination[,options]]

The following configuration creates a DUNDi mapping context that we will use to advertise our local phone numbers to the DUNDi-test

group. Note that this should all appear on one line:

 dundi-test => dundi-local,0,IAX2,dundi:${SECRET}@toronto.example.com/

 ${NUMBER}, nounsolicited,nocomunsolicit,nopartial

In this example, the mapping context is dundi-test, which points to the dundi-local context within extensions.conf (providing a listing of

phone numbers to reply to). Numbers that resolve to the PBX should be advertised with a weight of zero (directly connected). Numbers

higher than 0 indicate an increased number of hops or paths to reach the final destination. This is useful when multiple replies for the

same lookup are received at the end that initially requested the numbera weight with a lower number will be the preferred path.

If we can reply to a lookup, our response will contain the method by which the other end can connect to the system. This includes the

technology to use (such as IAX2, SIP, H323, and so on), the username and password with which to authenticate, which host to send the

authentication to, and finally the extension number.

Asterisk provides some shortcuts to allow us to create a "template" with which we can build our responses. The following channel

variables can be used to construct the template:

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

${SECRET}

Replaced with the password stored in the local AstDB

${NUMBER}

The number being requested

${IPADDR}

The IP address to connect to

It is generally safest to statically configure the hostname, rather than making use of the ${IPADDR}

variable. The ${IPADDR} variable will sometimes reply with an address in the private IP space,

which is unreachable from the Internet.

10.6.2.4. Defining DUNDi peers

DUNDi peers are defined in the dundi.conf file. Peers are identified by the unique layer-two MAC address of an interface on the remote

system. The dundi.conf file is where we define what context to search for peers requesting a lookup and which peers we want to use

when doing a lookup for a particular network.

 [00:00:00:00:00:00] ; Remote Office

 model = symmetric

 host = montreal.example.com

 inkey = montreal

 outkey = toronto

 include = dundi-test

 permit = dundi-test

 qualify = yes

 dynamic=yes

The remote peer's identifier (MAC address) is enclosed in square brackets ([]). The inkey and outkey are the public/private key pairs that

we use for authentication. Key pairs are generated with the astgenkey script, located in the ./asterisk/contrib/scripts/ source directory. Be

sure to use the -n flag so that you don't have to initialize passwords every time you start Asterisk:

 # cd /var/lib/asterisk/keys

 # /usr/src/asterisk/contrib/scripts/astgenkey -n toronto

The resulting keys, toronto.pub and toronto.key, will be placed in your /var/lib/asterisk/keys/ directory. The toronto.pub file is the public

key, which you should post to a web server so that it is easily accessible for anyone with whom you wish to peer. When you peer, you

can give your peers the HTTP-accessible public key, which they can then place in their /var/lib/asterisk/keys/ directories.

After you have downloaded the keys, you must reload the res_crypto.so and pbx_dundi.so modules in Asterisk:

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

 *CLI> reload res_crypto.so
 -- Reloading module 'res_crypto.so' (Cryptographic Digital Signatures)

 -- Loaded PRIVATE key 'toronto'

 -- Loaded PUBLIC key 'toronto'

 *CLI> reload pbx_dundi.so
 -- Reloading module 'pbx_dundi.so' (Distributed Universal Number

 Discovery

 (DUNDi))

 == Parsing '/etc/asterisk/dundi.conf': Found

Then, create the dundi user in the iax.conf file to allow connections into your Asterisk system. When a call is authenticated, the extension

number being requested is passed to the dundi-local context in the extensions.conf file, where the call is then handled by Asterisk.

10.6.2.5. Allowing remote connections

Here is the user definition for the dundi user:

 [dundi]

 type=user

 dbsecret=dundi/secret

 context=dundi-local

 disallow=all

 allow=ulaw

 allow=g726

Instead of using a static password, Asterisk regenerates passwords every 3,600 seconds (1 hour). The value is stored in /dundi/secret of

the Asterisk database and advertised using the ${SECRET} variable defined within the mapping context lines in dundi.conf. You can see

the current keys for all peers, including your local public and private keys, by performing a show keys at the Asterisk CLI.

The context entry dundi-local is where authorized callers are sent in extensions.conf. From there, we can manipulate the call just as we

would in the dialplan of any other incoming connection.

10.6.2.6. Configuring the dialplan

The extensions.conf file handles what numbers you advertise and what you do with the calls that connect to them. The dundi-local context

performs double duty:

It controls the numbers we advertise, referenced by the dundi mapping context in dundi.conf.

It controls what to do with the call, referenced by the dundi user in iax.conf.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

You have the power of dialplan pattern matching to advertise ranges of numbers and to control the incoming calls. In the following

dialplan, we are only advertising the number +1-416-555-1212, but pattern matching could just as easily have been employed to

advertise a range of numbers or extensions:

 [dundi-local]

 exten => 14165551212,1,NoOp(dundi-local: Number advertisement and incoming)

 exten => 14165551212,n,Answer()

 exten => 14165551212,n(call),Dial(SIP/1000)

 exten => 14165551212,n,Voicemail(u1000)

 exten => 14165551212,n,Hangup()

 exten => 14165551212,n(call)+101,Voicemail(b1000)

 exten => 14165551212,n,Hangup()

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

file:///C:/DOCUME~1/stelios/LOCALS~1/Temp/2/O'Reilly,.Asterisk.The.Future.of.Telephony.(2005).BBL.LotB.chm/0596009623/18051535.html

10.7. Conclusion

That's pretty much all this chapter is going to teach you, but it's nowhere near all there is to learn. Hopefully, you are starting to get an

idea of how big this Asterisk thing really is.

In the next chapter, we're going to try and predict the future of telecom, and we'll discuss how (and why) we believe that Asterisk is well

positioned to play a starring role.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

Chapter 11. Asterisk: The Future of Telephony

First they ignore you, then they laugh at you,

then they fight you, then you win.

Mahatma Gandhi

We have arrived at the final chapter of this book. We've covered a lot, but we hope that you now realize that we have barely begun to

scratch the surface of this phenomenon called Asterisk. To wrap things up, we want to spend some time exploring what we might see

from Asterisk and open source telephony in the near future.

While prognostication is always a thankless task, we are confident in asserting that open source communications engines such as

Asterisk herald a shift in thinking that will transform the telecommunications industry. In this chapter, we will discuss some of our reasons

for this belief.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

11.1. The Problems with Traditional Telephony

Although Alexander Graham Bell is most famously remembered as the father of the telephone, the reality is that during the latter half of

the 1800s, dozens of minds were at work on the project of carrying voice over telegraph lines. These people were mostly

business-minded folks, looking to create a product through which they might make their fortunes.

We have come to think of traditional telephone companies as monopolies, but this was not true in their early days. The early history of

telephone service took place in a very competitive environment, with new companies springing up all over the world, often with little or no

respect for the patents they might be violating. Some of the monopolies got their start through the waging (and winning) of patent wars.

It's interesting to contrast the history of the telephone with the history of Linux and the Internet. While the telephone was created as a

commercial exercise, and the telecom industry was forged through lawsuits and corporate takeovers, Linux and the Internet arose out of

the academic community, which has always valued the sharing of knowledge over profit.

The cultural differences are obvious. Telecommunications technologies tend to be closed, confusing, and expensive, while networking

technologies are generally open, well documented, and competitive.

11.1.1. Closed Thinking

If one compares the culture of the telecommunications industry to that of the Internet, it is sometimes difficult to believe the two are

related. The Internet was designed by enthusiasts, whereas contributing to the development of the PSTN is impossible for any individual

to contemplate. This is an exclusive club; membership is not open to just anyone.
[*]

[*] Contrast this with the IETF's membership page, which states: "The IETF is not a membership organization (no

cards, no dues, no secret handshakes :-)... It is open to any interested individual... Welcome to the IETF." Talk

about community!

The International Telecommunication Union (ITU) clearly exhibits this type of closed thinking . If you want access to their knowledge,

you have to be prepared to pay for it. Membership requires proof of your qualifications, and you will be expected to pay tens of

thousands of dollars in annual dues.

Although the ITU is the United Nations's sanctioned body responsible for international telecommunications, many of the VoIP protocols

(SIP, MGCP, RTP, STUN) come not from the hallowed halls of the ITU, but rather from the IETF (which publishes all of its standards free

to all, and allows anyone to submit an Internet Draft for consideration).

Open protocols such as SIP may have a tactical advantage over ITU protocols such as H.323 due to the ease with which one can obtain

them. Although H.323 is widely deployed by carriers as a VoIP protocol in the backbone, it is much more difficult to find H.323-based

endpoints; newer products are far more likely to support SIP.

The success of the IETF's open approach has not gone unnoticed by the mighty ITU. It has recently become possible to download up to

three documents free of charge from the ITU web site.
[]

 Openness is clearly on their minds. Recent statements by the ITU suggest

that there is a desire to achieve "Greater participation in ITU by civil society and the academic world." Mr. Houlin Zhao, the ITU's Director

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

of the Telecommunication Standardization Bureau (TSB), believes that "ITU should take some steps to encourage this."
[]

[] Considering the thousands of documents available, and the fact that each document generally contains

references to dozens more, the value of this free information is difficult to judge.

[] http://www.itu.int/ITU-T/tsb-director/itut-wsis/files/wg-wsis-Zhao-rev1.pdf.

The roadmap to achieving this openness is unclear, but they are beginning to realize the inevitable.

As for Asterisk, it embraces both the past and the futureH.323 support is available, although the community has for the most part

shunned H.323 in favor of the IETF protocol SIP and the darling of the Asterisk community, IAX.

11.1.2. Limited Standards Compliancy

One of the oddest things about all the standards that exist in the world of legacy telecommunications is the various manufacturers'

seeming inability to implement them consistently. Each manufacturer desires a total monopoly, so the concept of interoperability tends to

take a back seat to being first to market with a creative new idea.

The ISDN protocols are a classic example of this. Deployment of ISDN was (and in many ways still is) a painful and expensive

proposition, as each manufacturer decided to implement it in a slightly different way. ISDN could very well have helped to usher in a

massive public data network, 10 years before the Internet. Unfortunately, due to its cost, complexity, and compatibility issues, ISDN

never delivered much more than voice, with the occasional video or data connection for those willing to pay. ISDN is quite common

(especially in Europe, and in North America in larger PBX implementations), but it is not delivering anywhere near the capabilities that

were envisioned for it.

As VoIP becomes more and more ubiquitous, the need for ISDN will disappear.

11.1.3. Slow Release Cycles

It can take months, or sometimes years, for the big guys to admit to a trend, let alone release a product that is compatible with it. It

seems that before a new technology can be embraced, it must be analyzed to death, and then it must pass successfully through various

layers of bureaucracy before it is even scheduled into the development cycle. Months or even years must pass before any useful product

can be expected. When those products are finally released, they are often based on hardware that is obsolete; they also tend to be

expensive and to offer no more than a minimal feature set.

These slow release cycles simply don't work in today's world of business communications. On the Internet, new ideas can take root in a

matter of weeks and become viable in extremely short periods of time. Since every other technology must adapt to these changes, so

too must telecommunications.

Open source development is inherently better able to adapt to rapid technological change, which gives it an enormous competitive

advantage.

The spectacular crash of the telecom industry may have been caused in large part by an inability to change. Perhaps that continued

inability is why recovery has been so slow. Now, there is no choice: change, or cease to be. Community-driven technologies such as

Asterisk will see to that.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

http://www.itu.int/ITU-T/tsb-director/itut-wsis/files/wg-wsis-Zhao-rev1.pdf

11.1.4. Refusing to Let Go of the Past and Embrace the Future

Traditional telecommunications companies have lost touch with their customers. While the concept of adding functionality beyond the

basic telephone is well understood, the idea that the user should be the one defining this functionality is not.

Nowadays, people have nearly limitless flexibility in every other form of communication. They simply cannot understand why

telecommunications cannot be delivered as flexibly as the industry has been promising for so many years. The concept of flexibility is not

familiar to the telecom industry, and very well might not be until open source products such as Asterisk begin to transform the

fundamental nature of the industry. This is a revolution similar to the one Linux and the Internet willingly started over 10 years ago (and

IBM unwittingly started with the PC, 15 years before that). What is this revolution? The commoditization of telephony hardware and

software , enabling a proliferation of tailor-made telecommunications systems.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

11.2. Paradigm Shift

In his article "Paradigm Shift" (http://tim.oreilly.com/articles/paradigmshift_0504.html), Tim O'Reilly talks about a paradigm shift that is

occurring in the way technology (both hardware and software) is delivered.
[*]

 O'Reilly identifies three trends: the commoditization of

software, network-enabled collaboration, and software customizability (software as a service). These three concepts provide evidence to

suggest that open source telephony is an idea whose time has come.

[*] Much of the following section is merely our interpretation of O'Reilly's article. To get the full gist of these ideas,

the full read is highly recommended.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

http://tim.oreilly.com/articles/paradigmshift_0504.html
file:///C:/DOCUME~1/stelios/LOCALS~1/Temp/2/O'Reilly,.Asterisk.The.Future.of.Telephony.(2005).BBL.LotB.chm/0596009623/18051535.html

11.3. The Promise of Open Source Telephony

Every good work of software starts by scratching a developer's personal itch.

Eric S. Raymond, The Cathedral and the Bazaar

In his book The Cathedral and the Bazaar (O'Reilly), Eric S. Raymond explains that "Given enough eyeballs, all bugs are shallow." The

reason open source software development produces such consistent quality is simple: crap can't hide.

11.3.1. The Itch That Asterisk Scratches

In this era of custom database and web site development, people are not only tired of hearing that their telephone system "can't do that,"

they quite frankly just don't believe it. The creative needs of the customers, coupled with the limitations of the technology, have spawned a

type of creativity born of necessity: telecom engineers are like contestants in an episode of "Junkyard Wars," trying to create functional

devices out of a pile of mismatched components.

The development methodology of a proprietary telephone system dictates that it will have a huge number of features, and that the number

of features will in large part determine the price. Manufacturers will tell you that their products give you hundreds of features, but if you only

need five of them, who cares? Worse, if there's one missing feature you really can't do without, the value of that system will be diluted by

the fact that it can't completely address your needs.

The fact that a customer might only need five out of five hundred features is ignored, and that customer's desire to have five unavailable

features that address the needs of his business is dismissed as unreasonable.[*] Until flexibility becomes standard, telecom will remain

stuck in the last centuryall the VoIP in the world notwithstanding.

[*] From the perspective of the closed-source industry, their attitude is understandable. In his book The Mythical

Man-Month: Essays on Software Engineering (Addison-Wesley), Fred Brooks opined that "the complexity and

communication costs of a project rise with the square of the number of developers, while work done only rises linearly."

Without a community-based development methodology, it is very difficult to deliver products that at best are little more

than incremental improvements over their predecessors, and at worst are merely collections of patches.

Asterisk addresses that problem directly, and solves it in a way that few other telecom systems can. This is extremely disruptive

technology, in large part because it is based on concepts that have been proven time and time again: "the closed-source world cannot win

an evolutionary arms race with open-source communities that can put orders of magnitude more skilled time into a problem."[]

[] Eric S. Raymond, The Cathedral and the Bazaar.

11.3.2. Open Architecture

One of the stumbling blocks of the traditional telecommunications industry has been its apparent refusal to cooperate with itself. The big

telecommunications giants have all been around for over a hundred years. The concept of closed, proprietary systems is so ingrained in

their culture that even their attempts at standards compliancy are tainted by their desire to get the jump on the competition, by adding that

one feature that no one else supports. For an example of this thinking, one simply has to look at the VoIP products being offered by the

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

telecom industry today. While they claim standards compliance, the thought that you would actually expect to be able to connect a Cisco

phone to a Nortel switch, or that an Avaya voicemail system could be integrated via IP to a Siemens PBX, is not one that bears discussing.

In the computer industry, things are different. Twenty years ago, if you bought an IBM server, you needed an IBM network and IBM

terminals to talk to it. Now, that IBM server is likely to interconnect to Dell terminals though a Cisco network (and run Linux, of all things).

Anyone can easily think of thousands of variations on this theme. If any one of these companies were to suggest that we could only use

their products with whatever they told us, they would be laughed out of business.

The telecommunications industry is facing the same changes, but it's in no hurry to accept them. Asterisk, on the other hand, is in a big

hurry to not only accept change, but embrace it.

Cisco, Nortel, Avaya, and Polycom IP phones (to name just a few) have all been successfully connected to Asterisk systems. There is no

other PBX in the world today that can make this claim. None.

Openness is the power of Asterisk.

11.3.3. Standards Compliance

In the past few years, it has become clear that standards evolve at such a rapid pace that to keep up with them requires an ability to

quickly respond to emerging technology trends. Asterisk, by virtue of being an open source, community-driven development effort, is

uniquely suited to the kind of rapid development that standards compliance demands.

Asterisk does not focus on cost-benefit analysis or market research. It evolves in response to whatever the community finds excitingor

necessary.

11.3.4. Lightning-Fast Response to New Technologies

After Mark Spencer attended his first SIP Interoperability Test (SIPIT) event, he had a rudimentary but working SIP stack for Asterisk

coded within a few days. This was before SIP had emerged as the protocol of choice in the VoIP world, but he saw its value and

momentum and ensured that Asterisk would be ready.

This kind of foresight and flexibility is typical in an open-source development community (and very unusual in a large corporation).

11.3.5. Passionate Community

The Asterisk-users list receives over three hundred email messages per day. Over ten thousand people are subscribed to it. This kind of

community support is unheard of in the world of proprietary telecommunications, while in the open source world it is commonplace.

The very first AstriCon event was expected to attract one hundred participants. Nearly five hundred showed up (far more wanted to but

couldn't attend). This kind of community support virtually guarantees the success of an open source effort.

11.3.6. Some Things That Are Now Possible

So what sorts of things can be built using Asterisk? Let's look at some of the things we've come up with.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

11.3.6.1. Legacy PBX migration gateway

Asterisk can be used as a fantastic bridge between an old PBX and the future. You can place it in front of the PBX as a gateway (and

migrate users off the PBX as needs dictate), or you can put it behind the PBX as a peripheral application server. You can even do both at

the same time, as shown in Figure 11-1.

Figure 11-1. Asterisk as a PBX gateway

Here are some of the options you can implement:

Keep your old PBX, but evolve to IP

Companies that have spent vast sums of money in the past few years buying proprietary PBX equipment want a way out of

proprietary jail, but they can't stomach the thought of throwing away all of their otherwise functioning equipment. No

problemAsterisk can solve all kinds of problems, from replacing a voicemail system to providing a way to add IP-based users

beyond the nominal capacity of the system.

Find-me-follow-me

Provide the PBX a list of numbers where you can be reached, and it will ring them all whenever a call to your DID (Direct Inward

Dialing, a.k.a. phone number) arrives. Figure 11-2 illustrates this technology.

Figure 11-2. Find-me-follow-me

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

VoIP calling

If a legacy telephony connection from an Asterisk PBX to an old PBX can be established, Asterisk can provide access to VoIP

services, while the old PBX continues to connect to the outside world as it always has. As a gateway, Asterisk simply needs to

emulate the functions of the PSTN, and the old PBX won't know that anything has changed. Figure 11-3 shows how you can use

Asterisk to VoIP-enable a legacy PBX.

Figure 11-3. VoIP-enabling a legacy PBX

11.3.6.2. Low-barrier IVR

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

Many people confuse the term "Interactive Voice Response," or IVR, with the Automated Attendant (AA). Since the Automated Attendant

was the very first thing IVR was used for, this is understandable. Nevertheless, to the telecom industry, the term IVR represents far more

than an AA. An AA generally does little more than present a way for callers to be transferred to extensions, and it is built into most

proprietary voicemail systemsbut IVR can be so much more.

IVR systems are generally very expensive, not only to purchase, but also to configure. A custom IVR system will usually require

connectivity to an external database or application. Asterisk is arguably the perfect IVR, as it embraces the concepts of connectivity to

databases and applications at its deepest level.

Here are a few examples of relatively simple IVRs an Asterisk system could be used to create:

Weather reporting

Using the Internet, you can obtain text-based weather reports from around the world in a myriad of ways. Capturing these reports

and running them through a purpose-built parser (Perl would probably eat this up) would allow the information to be available to

the dialplan. Asterisk's sound library already contains all the required prompts, so it would not be an onerous task to produce an

interactive menu to play current forecasts for anywhere in the world.

Math programs

Ed Guy of Pulver.com did a presentation at Astricon 2004 in which he talked about a little math program he'd cooked up for his

daughter to use. The program took him no more than an hour to write. What it did was present her with a number of math

questions, the answers to which she keyed into the telephone. When all the questions were tabulated, the system presented her

with her score. This extremely simple Asterisk application would cost tens of thousands of dollars to implement on any closed

PBX platform, assuming it could be done at all.[*] As is so often the case, things that are simple for Asterisk would be either

impossible or massively expensive with any other IVR system.

[*] See Chapter 9 for further details.

Distributed IVR

The cost of a proprietary IVR system is such that when a company with many small retail locations wants to provide IVR, it is

forced to transfer callers to a central server to process the transactions. With Asterisk, it becomes possible to distribute the

application to each node, and thus handle the requests locally. Literally thousands of little Asterisk systems deployed at retail

locations across the world could serve up IVR functionality in a way that would be impossible to achieve with any other system.

No more long-distance transfers to a central IVR server, no more huge trunking facility dedicated to the taskmore power with less

expense.

These are three rather simple examples of the potential of Asterisk.

11.3.6.3. Conference rooms

This little gem is going to end up being one of the killer functions of Asterisk. In the Asterisk community, everyone finds themselves using

conference rooms more and more, for purposes such as these:

Small companies need an easy way for business partners to get together for a chat

Sales teams have a meeting once per week where everyone can dial in from wherever they are

Development teams designate a common place and time to update each other on progress

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

http://Pulver.com

11.3.6.4. Home automation

Asterisk is still too much of an über-geek's tool to be able to serve in the average home, but with no more than average Linux and Asterisk

skills, the following things become plausible:

Monitoring the kids

Parents who want to check up on the babysitter (or the kids home alone) could dial an extension context protected by a

password. Once authenticated, a two-way audio connection would be created to all the IP phones in the house, allowing mom

and dad to listen for trouble. Creepy? Yes. But an interesting concept nonetheless.

Locking down your phones

Going out for the night? Don't want the babysitter tying up the phone? No problem! A simple tweak to the dialplan, and the only

calls that can be made are to 911, your cell phone, and the pizza parlor. Any other call attempt will get the recording "We are

paying you to babysit our kids, not make personal calls."

Pretty evil, huh?

Controlling the alarm system

You get a call while on vacation that your mom wants to borrow some cooking utensils. She forgot her key, and is standing in

front of the house shivering. Piece of cake; a call to your Asterisk system, a quick digit string into the context you created for the

purpose, and your alarm system is instructed to disable the alarm for 15 minutes. Mom better get her stuff and get out quick,

though, or the cops'll be showing up!

Managing teenagers' calls

How about allocating a specific phone-time limit to your teenagers? To use the phone, they have to enter their access codes.

They can earn extra minutes by doing chores, scoring all As, dumping that annoying bum with the bad haircutyou get the idea.

Once they've used up their minutes... click... you get your phone back.

Incoming calls can be managed as well, via Caller ID. "Donny, this is Suzy's father. She is no longer interested in seeing you, as

she has decided to raise her standards a bit. Also, you should consider getting a haircut."

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

file:///C:/DOCUME~1/stelios/LOCALS~1/Temp/2/O'Reilly,.Asterisk.The.Future.of.Telephony.(2005).BBL.LotB.chm/0596009623/18051535.html

11.4. The Future of Asterisk

We've come to love the Internet, both because it is so rich in content and inexpensive and, perhaps more importantly, because it allows

us to define how we communicate. As its ability to carry richer forms of media advances, we'll find ourselves using it more and more.

Once Internet voice delivers quality that rivals (or betters) the capabilities of the PSTN, the phone company had better look for another

line of business. The PSTN will cease to exist and become little more than one more communications protocol the Internet happily

carries for us. As with most of the rest of the Internet, open source technologies will lead this transformation.

11.4.1. Speech Processing

The dream of having our technical inventions talk to us is older than the telephone itself. Each new advance in technology spurs a new

wave of eager experimentation. Generally, results never quite meet expectations, possibly because as soon as a machine says

something that sounds intelligent, most people assume that it is intelligent.

People who program and maintain computers realize their limitations, and thus tend to allow for their weaknesses. Everybody else just

expects their computers and software to work. The amount of thinking a user must do to interact with a computer is often inversely

proportional to the amount of thinking the design team did. Simple interfaces belie complex design decisions.

The challenge, therefore, is to design a system that has anticipated the most common desires of its users, and can also adroitly handle

unexpected challenges.

11.4.1.1. Festival

The Festival text-to-speech server can transform text into spoken words. While this is a whole lot of fun to play with, there are many

challenges to overcome.

For Asterisk, an obvious value of text to speech might be the ability to have your telephone system read your emails back to you. Of

course, if you've noticed the somewhat poor grammar, punctuation, and spelling typically found in email messages these days, you can

perhaps appreciate the challenges this poses.

One cannot help but wonder if the emergence of text to speech will inspire a new generation of people dedicated to proper writing.

Seeing spelling and punctuation errors on the screen is frustrating enoughhaving to hear a computer speak such things will require a

level of Zazen that few possess.

11.4.1.2. Sphinx

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

If text to speech is rocket science, speech recognition is science fiction.

Speech recognition can actually work very well, but unfortunately this is generally true only if you provide it with the right conditionsand

the right conditions are not those found on a telephone network. Even a perfect PSTN connection is considered to be at the lowest

acceptable limit for accurate speech recognition. Add in compressed and lossy VoIP connections, or a cell phone, and you will discover

far more limitations than uses.

Asterisk has the potential to be a fantastic system for speech recognition, due to its flexibility. Unfortunately, speech recognition itself is

not yet mature enough to be put to the kinds of uses we want of it. As this technology ripens, the open source community is the most

likely to embrace it and provide flexible, powerful platforms on which to run it.

11.4.2. High-Fidelity Voice

As we gain access to more and more bandwidth, it becomes less and less easy to understand why we still use low-fidelity codecs. Many

people do not realize that Skype uses a higher fidelity than a telephone; it's a large part of the reason why Skype has a reputation for

sounding so good.

If you were ever to phone CNN, wouldn't you love to hear James Earl Jones's mellifluous voice saying "This is CNN," instead of some

tinny electronic recording? And if you think Allison Smith
[*]

 sounds good through the phone, you should hear her in person!

[*] Allison Smith is The Voice of Asteriskit is her voice in all of the system prompts. To have Allison produce your

own prompt, simply visit http://thevoice.digium.com.

In the future, we will expect, and get, high-fidelity voice though our communications equipment.

11.4.3. Video

Video is in some ways already compatible with Asterisk. The problem is not so much one of functionality as one of bandwidth and

processing power. More significantly, it is not yet important enough to the community to merit the attention it needs.

11.4.3.1. The challenge of video-conferencing

The concept of video-conferencing has been around since the invention of the cathode ray tube. The telecom industry has been

promising a video-conferencing device in every home for decades.

As with so many other communications technologies, if you have video-conferencing in your house, you are probably running it over the

Internet, with a simple, inexpensive webcam. Still, it seems that people see video-conferencing as a bit gimmicky. Yes, you can see the

person you're talking to, but there's something missing.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

http://thevoice.digium.com

11.4.3.2. Why we love video-conferencing

Video-conferencing promises a richer communications experience than the telephone. Rather than hearing a disembodied voice, the

nuances of speech that come from eye-to-eye communication are possible.

11.4.3.3. Why video-conferencing may never totally replace voice

There are some challenges to overcome, though, and not all of them are technical.

Consider this: using a plain telephone, people working from their home offices can have business conversations, un-showered, in their

underwear, feet on the desk, coffee in handif they use a telephone. A similar video conversation would require half an hour of grooming

to prepare for, and couldn't happen in the kitchen, on the patio, or... well, you get the idea.

Also, the promise of eye-to-eye communication over video will never happen as long as the focal points of the participants are not in line

with the cameras. If you look at the camera, your audience will see you looking at them, but you won't see them. If you look at your

screen to see whom you are talking to, the camera will show you looking down at somethingnot at your audience. That looks impersonal.

Perhaps if a videophone could be designed like a Tele-Prompt-R, where the camera was behind the screen, it wouldn't feel so unnatural.

As it stands, there's something psychological that's missing. Video ends up being a gimmick.

11.4.4. Wireless

Since Asterisk is fully VoIP-enabled, wireless is all part of the package.

11.4.4.1. Wi-Fi

Wi-Fi is going to be the office mobility solution for VoIP phones. This technology is already quite mature. The biggest hurdle is the cost

of handsets, which can be expected to improve as competitive pressure from around the world drives down prices.

11.4.4.2. Wi-MAX

Since we are so bravely predicting so many things, it's not hard to predict that Wi-MAX spells the beginning of the end for traditional

cellular telephone networks.

With wireless Internet access within the reach of most communities, what value will there be in expensive cellular service?

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

11.4.5. Unified Messaging

This is a term that has been hyped by the telecom industry for years, but adoption has been far slower than predicted.

Unified Messaging is the concept of tying voice and text-messaging systems into one. With Asterisk, the two don't need to be artificially

combined, as Asterisk already treats them the same way.

Just by examining the terms, unified and messaging, we can see that the integration of email and voicemail must be merely the

beginningUnified Messaging needs to do a lot more than just that if it is to deserve its name.

Perhaps we need to define "messaging" as communication that does not occur in real time. In other words, when you send a message,

you expect that the reply may take moments, minutes, hours, or even days to arrive. You compose what you wish to say, and your

audience is expected to compose a reply.

Contrast this with conversing, which happens in real time. When you talk to someone on a telephone connection, you expect no more

than a few seconds' delay before the response arrives.

Tim O'Reilly delivered a speech entitled "Watching the Alpha Geeks: OS X and the Next Big Thing"

(http://www.macdevcenter.com/pub/a/mac/2002/05/14/oreilly_wwdc_keynote.html), in which he talked about someone piping IRC

through a text-to-speech engine. One could imagine doing the reverse as well, allowing us to join an IRC or Instant Messaging chat over

our Wi-Fi phone, our Asterisk PBX providing the speech-to-text-to-speech translations.

11.4.6. Peering

As monopoly networks such as the PSTN give way to community-based networks like the Internet, there will be a period of time where it

is necessary to interconnect the two. While the traditional providers would prefer that the existing model be carried into the new

paradigm, it is increasingly likely that telephone calls will become little more than another application the Internet happily carries.

But a challenge remains: how to manage the telephone numbering plan with which we are all familiar and comfortable?

11.4.6.1. E.164

The ITU defined a numbering plan in their E.164 specification. If you've used a telephone to make a call across the PSTN, you can

confidently state that you are familiar with the concept of E.164 numbering. Prior to the advent of publicly available VoIP, nobody cared

about E.164 except the telephone companiesnobody needed to.

Now that calls are hopping from PSTN to Internet to who-knows-what, some consideration must be given to E.164.

11.4.6.2. ENUM

In response to this challenge, the IETF has sponsored the Telephone Number Mapping (ENUM) working group, the purpose of which is

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

http://www.macdevcenter.com/pub/a/mac/2002/05/14/oreilly_wwdc_keynote.html

to map E.164 numbers into the Domain Name System (DNS).

While the concept of ENUM is sound, it requires cooperation from the telecom industry to achieve success. However, cooperation is not

what the telecom industry is famous for, and thus far ENUM has foundered.

11.4.6.3. e164.org

The folks at e164.org are trying to contribute to the success of ENUM. You can log on to this site, register your phone number, and

inform the system of alternative methods of communicating with you. This means that someone who knows your phone number can

connect a VoIP call to you, as the e164.org DNS zone will provide the IP addressing and protocol information needed to connect to your

location.

As more and more people publish VoIP connectivity information, fewer and fewer calls will be connected through the PSTN.

11.4.6.4. DUNDi

Distributed Universal Number Discovery (DUNDi) is an open routing protocol designed to maintain dynamic telecom routing tables

between compatible systems.
[*]

 While Asterisk is currently the only PBX to support DUNDi, the openness of the standard ensures that

anyone can implement it.

[*] See the previous chapter for more information.

DUNDi has huge potential, but it is very much in its infancy. This is the one to watch.

11.4.7. Challenges

As is true with any worthwhile thing, Asterisk will face challenges. Let's take a glance at what some of them may be.

11.4.7.1. Too much change, too few standards

These days, the Internet is changing so fast, and offers so much diverse content, that it is impossible for even the most attentive geek to

keep on top of it all. While this is as it should be, it also means that an enormous amount of technology churn is an inevitable part of

keeping any communications system current.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

http://e164.org
http://e164.org

11.4.7.2. VoIP spam

Yes, it's coming. There will always be people who believe they have the right to inconvenience and harass others in their pursuit of

money. Efforts are underway to try and address this, but only time will tell how efficacious they will be.

11.4.7.3. Fear, uncertainty, and doubt

The industry is making the transition from ignorance to laughter. If Gandhi is correct, we can expect the fight to begin soon.

As their revenue streams become increasingly threatened by open source telephony, the traditional industry players are certain to mount

a fear campaign, in hopes of undermining the revolution.

11.4.7.4. Bottleneck engineering

There is a rumor making the rounds that the major network providers will begin to artificially cripple VoIP traffic by tagging and prioritizing

the traffic of their premium VoIP services and, worse, detecting and bumping any VoIP traffic generated by services not approved by

them.

Some of this is already taking place, with service providers blocking traffic of certain types through their networks, ostensibly due to some

public service being rendered (such as blocking popular file-sharing services to protect us from piracy). In the United States, the FCC

has taken a clear stand on the matter and fined companies that engage in such practices. In the rest of the world, regulatory bodies are

not always as accepting of VoIP.

What seems clear is that the community and the network will find ways around blockages, just as they always have.

11.4.7.5. Regulatory wars

The recently departed Chairman of the United States Federal Communications Commission, Michael Powell, delivered a gift that may

well have altered the path of the VoIP revolution. Rather than attempting to regulate VoIP as a telecom service, he has championed the

concept that VoIP represents an entirely new way of communicating and requires its own regulatory space in which to evolve.

VoIP will become regulated, but not everywhere as a telephony service. Some of the regulations that may be created include:

Presence information for emergency services

One of the characteristics of a traditional PSTN circuit is that it is always in the same location. This is very helpful to

emergency services, as they can pinpoint the location of a caller by identifying the address of the circuit from which the call

was placed. The proliferation of cell phones has made this much more difficult to achieve, since a cell phone does not have a

known address. A cell phone can be plugged into any network and can register to any server. If the phone does not identify

its physical location, an emergency call from it will provide no clue as to the where the caller is. VoIP creates similar

challenges.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

Call monitoring for law enforcement agencies

Law enforcement agencies have always been able to obtain wiretaps on traditional circuit-switched telephone lines. While

regulations are being enacted that are designed to achieve the same end on the network, the technical challenge of

delivering this functionality will probably never be completely solved. People value their privacy, and the more governments

want to stifle it, the more effort will be put toward maintaining it.

Anti-monopolistic practices

These practices are already being seen in the U.S., with fines being levied against network providers who attempt to filter

traffic based on content.

When it comes to regulation, Asterisk is both a saint and a devil: a saint because it feeds the poor, and a devil because it empowers the

phrackers and spammers like nothing ever has. The regulation of open source telephony may in part be determined by how well the

community regulates itself. Concepts such as DUNDi, which incorporate anti-spam processes, are an excellent start. On the other hand,

concepts such as Caller ID-spoofing are ripe with opportunities for abuse.

11.4.7.6. Quality of Service

Due to the best-effort reality of the TCP/IP-based Internet, it is not yet known how well increasing real-time VoIP traffic will affect overall

network performance. Currently, there is so much excess bandwidth in the backbone that best-effort delivery is generally quite good

indeed. Still, it has been proven time and time again that whenever we are provided with more bandwidth, we figure out a way to use it

up. The 1-MB DSL connection undreamt of 5 years ago is now barely adequate.

Perhaps a corollary of Moore's Law
[*]

 will apply to network bandwidth . QoS may become moot, due to the network's ability to deliver

adequate performance without any special processing. Organizations that require higher levels of reliability may elect to pay a premium

for a higher grade of service. Perhaps the era of paying by the minute for long-distance connections will give way to paying by the

millisecond for guaranteed low latency, or by the percentage point for reduced packet loss. Premium services will offer the five-nines
[*]

reliability the traditional telecom companies have always touted as their advantage over VoIP.

[*] Gordon Moore wrote a paper in 1965 that predicted the doubling of transistors on a processor every few years.

[*] This term refers to 99.999%, which is touted as the reliability of traditional telecom networks. Achieving five

nines requires that service interruptions for an entire year total no more than 5 minutes and 15 seconds. Many

people believe that VoIP will need to achieve this level of reliability before it can be expected to fully replace the

PSTN. Many other people believe that the PSTN doesn't even come close to five-nines reliability. We believe that

this could have been an excellent term to describe high reliability, but marketing departments abuse it far too

frequently.

11.4.7.7. Complexity

Open systems require new approaches toward solution design. Just because the hardware and software are cheap doesn't mean the

solution will be. Asterisk does not come out of the box ready to run; it has to be designed and built, and then maintained. While the base

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

software is free, and the hardware costs will be based on commodity pricing, it is fair to say that the configuration costs for a highly

customized system will be a sizeable part of the solution costsin many cases, because of its high degree of complexity and

configurability, more than would be expected with a traditional PBX.

The rule of thumb is generally considered to be something like this: if it can be done in the dialplan, the system design will be roughly the

same as for any similarly featured traditional PBX. Beyond that, only experience will allow one to accurately estimate the time required to

build a system.

There is much to learn.

11.4.8. Opportunities

Open source telephony creates limitless opportunities . Here are some of the more compelling ones.

11.4.8.1. Tailor-made private telecommunications networks

Some people would tell you that price is the key, but we believe that the real reason Asterisk will succeed is because it is now possible to

build a telephone system as one would a web site: with complete, total customization of each and every facet of the system. Customers

have wanted this for years. Only Asterisk can deliver.

11.4.8.2. Low barrier to entry

Anyone can contribute to the future of communicating. It is now possible for someone with an old $200 PC to develop a communications

system that has intelligence to rival the most expensive proprietary systems. Granted, the hardware would not be production-ready, but

there is no reason the software couldn't be. This is one of the reasons why closed systems will have a hard time competing. The sheer

number of people who have access to the required equipment is impossible to equal in a closed shop.

11.4.8.3. Hosted solutions of similar complexity to corporate web sites

The design of a PBX was always a kind of art form, but before Asterisk, the art lay in finding creative ways to overcome the limitations of

the technology. With limitless technology, those same creative skills can now be properly applied to the task of completely answering the

needs of the customer. Open source telephony engines such as Asterisk will enable this. Telecom designers will dance for joy, as their

considerable creative skills will now actually serve the needs of their customers, rather than be focused on managing kludge.

11.4.8.4. Proper integration of communications technologies

Ultimately, the promise of open source comes to nothing if it cannot fulfill the need people have to solve problems. The closed industries

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

lost sight of the customer, and tried to fit the customer to the product.

Open source telephony brings voice communications in line with other information technologies. It is finally possible to properly begin the

task of integrating email, voice, video, and anything else we might conceive of over flexible transport networks (whether wired or

wireless), in response to the needs of the user, not the whims of monopolies.

Welcome to the future of telecom!

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

Appendix A. VoIP Channels

VoIP channels in Asterisk represent connections to the protocols they support. Each protocol you wish to use requires a configuration

file, containing general parameters defining how your system handles the protocol as well as specific parameters for each channel (or

device) you will want to reference in your dialplan. In this appendix, we'll take an in-depth look at the IAX and SIP configuration files.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

A.1. IAX

The IAX configuration file (iax.conf) contains all of the configuration information Asterisk needs to create and manage IAX protocol

channels. The sections in the file are separated by headings, which are formed by a word framed in square brackets ([]). The name in the

brackets will be the name of the channel, with one notable exception: the [general] section, which is not a channel, is the area where

global protocol parameters are defined.

This section examines the various general and channel-specific settings for iax.conf. We will define each parameter, and then give an

example of its use. Certain options may have several valid arguments. These arguments are listed beside the option, separated with the

pipe symbol (|). For example, bandwidth=low|medium|high means that the bandwidth option accepts one of the values low, medium, or high

as its argument.

You can insert comments anywhere in the iax.conf file, by preceding the comment text with the semicolon character (;). Everything to the

right of the semicolon will be ignored. Feel free to use comments liberally.

A.1.1. General IAX Settings

The first non-comment line in your iax.conf file must be the heading [general]. The parameters in this section will apply to all connections

using this protocol, unless defined differently in a specific channel's definition. Since some of these settings can be defined on a

per-channel basis, we have identified settings that are always global with the tag "(global)" and those that can optionally be configured for

individual channels with the tag "(channel)." If you define a channel parameter under the [general] section, you do not need to define it in

each channel; its value becomes the default. Keep in mind that setting a parameter in the [general] section does not prevent you from

setting it differently for specific channels; it merely makes this setting the default. Also keep in mind that not defining these parameters

may, in some cases, cause a system default to be used instead.

Here are the parameters that you can configure:

accountcode (channel)

The account code can be defined on a per-user basis. If defined, this account code will be assigned to a call record whenever

no specific user account code is set. The accountcode name configured will be used as the filename.csv in the

/var/log/asterisk/cdr-csv/ directory to store Call Detail Records (CDRs) for the user/peer/friend.

 accountcode=iax-username

allow and disallow (channel)

Specific codecs can be allowed or disallowed, limiting codec use to those preferred by the system designer. allow and disallow

can also be defined on a per-channel basis. Keep in mind that allow statements in the [general] section will carry over to each of

the channels, unless you reset with a disallow=all. Codec negotiation is attempted in the order in which the codecs are defined.

Best practice suggests that you define disallow=all, followed by explicit allow statements for each codec you wish to use. If

nothing is defined, allow=all is assumed.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

 disallow=all

 allow=ulaw

 allow=gsm

 allow=ilbc

amaflags (channel)

Automatic Message Accounting (AMA) is defined in the Telcordia Family of Documents listed under FR-AMA-1. These

documents specify standard mechanisms for generation and transmission of CDRs. You can specify one of four AMA flags to

apply to all IAX connections.

 amaflags=default|omit|billing|documentation

authdebug (global)

You can minimize the amount of authorization debugging by disabling it with authdebug=no. Authorization debugging is

enabled by default if not explicitly disabled.

 authdebug=no

autokill (global)

To minimize the danger of stalling when a host is unreachable, you can set autokill to yes to specify that any new connection

should be torn down if an ACK is not received within 2,000 ms. (This is obviously not advised for hosts with high latency.)

Alternatively, you can replace yes with the number of milliseconds to wait before considering a peer unreachable. autokill

configures the wait for all IAX2 peers, but you can configure it differently for individual peers with the use of the qualify

command.

 autokill=1500

bandwidth (channel)

bandwidth is a shortcut that may help you get around using disallow=all and multiple allow statements to specify which codecs to

use. The valid options are:

high

Allows all codecs (G.723.1, GSM, ulaw, alaw, G.726, ADPCM, slinear, LPC10, G.729, Speex, iLBC).

medium

Allows all codecs except slinear, ulaw, and alaw.

low

Allows all medium codecs except G.726 and ADPCM.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

 bandwidth=low|medium|high

bindport and bindaddr (global)

These optional parameters allow you to control the IP interface and port on which you wish to accept IAX connections. If

omitted, the port will be set to 4569, and all IP addresses in your Asterisk system will accept incoming IAX connections. If

multiple bind addresses are configured, only the defined interfaces will accept IAX connections. The address 0.0.0.0 tells

Asterisk to listen on all interfaces.

 bindport=4569

 bindaddr=192.168.0.1

codecpriority (channel)

The codecpriority option controls which end of an inbound call leg will have priority over the negotiation of codecs. If set in the

[general] section, the selected options will be inherited by all user entries in the channel configuration file; however, they can be

defined in the individual user entries for more granular control. If set in both the [general] and user sections, the user entry will

override that which is configured in the [general] section. If this parameter is not configured, the value defaults to host.

Valid options include:

caller

The inbound caller has priority over the host.

host

The host has priority over the inbound caller.

disabled

Codec preferences are not consideredthis is the default behavior before the implementation of codec preferences.

reqonly

Codec preferences are ignored, and the call is accepted only if the requested codec is available.

 codecpriority=caller|host|disabled|reqonly

delayreject (global)

If an incorrect password is received on an IAX channel, this will delay the sending of the REGREQ or AUTHREP reject

messages, which will help to secure against brute-force password attacks. The delay time is 1,000 ms.

 delayreject=yes|no

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

forcejitterbuffer (channel)

Since Asterisk attempts to bridge channels (endpoints) directly together, the endpoints are normally allowed to perform jitter

buffering themselves. However, if the endpoints have a poor jitter buffer implementation, you may wish to force Asterisk to

perform jitter buffering no matter what. You can force jitter buffering to be performed with forcejitterbuffer=yes.

 forcejitterbuffer=yes

jitterbuffer (channel)

Jitter refers to the varying latency between packets. When packets are sent from an end device, they are sent at a constant

rate with very little latency variation. However, as the packets traverse the Internet, the latency between the packets may

become varied; thus, they may arrive at the destination at different times, and possibly even out of order.

The jitter buffer is, in a sense, a staging area where the packets can be reordered and delivered in a regulated stream. Without

a jitter buffer, the user may perceive anomalies in the stream, experienced as static, strange sound effects, garbled words, or,

in severe cases, missed words or syllables.

The jitter buffer affects only data received from the far end. Any data you transmit will not be affected by your jitter buffer, as the

far end will be responsible for the de-jittering of its incoming connections.

The jitter buffer is enabled with the use of jitterbuffer=yes.

 jitterbuffer=yes|no

language (channel)

This sets the language flag to whatever you define. The global default language is English. The language that is set is sent by

the channel as an information element. It is also used by applications such as SayNumber() that have different files for different

languages. Keep in mind that languages other than English are not explicitly installed on the system, and it is up to you to

configure the system to ensure that the language you specify is handled properly.

 language=en

mailboxdetail (global)

If mailboxdetail is set to yes, the new/old message count is sent to the user, instead of a simple statement of whether new and

old messages exist. mailboxdetail can also be set on a per-peer basis.

 mailboxdetail=yes

maxjitterbuffer (channel)

This parameter is used to set the maximum size of the jitter buffer, in milliseconds. Be sure not to set maxjitterbuffer too high, or

you will needlessly increase your latency.

 maxjitterbuffer=500

regcontext (channel)

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

By specifying the context that contains the actions to perform, you can configure Asterisk to perform a number of actions when

a peer registers to your server. This option works in conjunction with regexten, by specifying the extension to execute. If no

regexten is configured, the peer name is used as the extension. Asterisk will dynamically create and destroy a NoOp at priority 1

for the extension. All actions to be performed upon registration should start at priority 2. More than one regexten may be

supplied, if separated by an &. regcontext can be set on a per-peer basis or globally.

 regcontext=registered-phones

regexten (channel)

The regexten option is used in conjunction with regcontext to specify the extension to be executed within the configured context.

If regexten is not explicitly configured, the peer name is used as the extension to match.

 regexten=myphone

resyncthreshold (channel)

The resynchronize threshold is used to resynchronize the jitter buffer if a significant change is detected over a few frames,

assuming that the change was caused by a timestamp mixup. The resynchronization threshold is defined as the measured jitter

plus the resyncthreshold value, defined in milliseconds.

 resyncthreshold=1000

tos (global)

Asterisk can set the Type of Service (TOS) bits in the IP header to help improve performance on routers that respect TOS bits

in their routing calculations. The following values are valid:

lowdelay

Minimize delay.

throughput

Maximize throughput.

reliability

Maximize reliability.

mincost

Minimize cost.

none

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

No bits set.

tos=lowdelay|throughput|reliability|mincost|none

trunk (channel)

IAX2 trunking enables Asterisk to send media (as mini-frames) from multiple channels using a single header. The reduction in

overhead makes the IAX2 protocol more efficient when sending multiple streams to the same endpoint (usually another

Asterisk server).

trunk=yes|no

trunkfreq (channel)

trunkfreq is used to control how frequently you send trunk messages, in milliseconds. Trunk messages are sent in conjunction

with the trunk=yes command.

trunkfreq=20

Retrieving Dialplan Information from a Remote Asterisk Box

Asterisk can retrieve dialplan information from another Asterisk box with the use of a switch => statement. When this

occurs, the Asterisk IAX channel driver must wait for a reply from the remote box before it can continue with other

IAX-related processes. This is especially troubling when you have multiple switch statements nested throughout multiple

boxesif a switch statement has to traverse several boxes, there could be an appreciable delay before a result is returned.

When the global iaxcompat option is set to yes, Asterisk will spawn a separate thread when the switch lookup is being

performed. The use of this thread allows the main IAX channel driver to continue on with other processes while the

thread waits for the reply. A small performance hit is incurred with this option.

iaxcompat=yes|no

A.1.2. register Statements

The register switch (register =>) is used to register your Asterisk box to a remote serverthis lets the remote end know where you are, in

case you are configured with a dynamic IP address. Note that register statements are used only when the remote end has you configured

as a peer, and when host=dynamic.

The basic format for a register statement is:

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

register => username:password@remote-host

The password is optional (if not configured on the remote system).

Alternatively, you can specify an RSA key by framing the appropriate RSA key name
[*]

 in square brackets ([]):

[*] Asterisk RSA keys are typically located in /var/lib/asterisk/keys/. You can generate your own keys using the

astkeygen script.

register => username:[rsa-key-name]@remote-host

By default, register requests will be sent via port 4569. You can direct them to a different port by explicitly specifying it, as follows:

register => username:password@remote-host:1234

A.1.3. IAX Channel Definitions

With the general settings defined, we can now define our channels. Defining a guest channel is recommended whenever you want to

accept anonymous IAX calls. This is a very common way for folks in the Asterisk community to contact one another. Before you decide that

this is not for you, keep in mind that anyone whom you want to be able to connect to you via IAX (without you specifically configuring an

account for them) will need to connect as a guest. This account, in effect, becomes your "IAX phone number." Your guest channel

definition should look something like this:

[guest]

type=user

context=incoming

callerid="Incoming IAX Guest"

No doubt the spammers will find a way to harass these addresses, but in the short term this has not

proven to be a problem. In the long term, we'll probably use DUNDi.
[dagger;]

[dagger;] See Chapter 9 for more information regarding DUNDi.

If you wish to accept calls from the Free World Dialup network, Asterisk comes with a predefined security key that ensures that anonymous

connections cannot spoof an incoming Free World Dialup call. You'll want to set up an iaxfwd channel:

[iaxfwd]

type=user

context=incoming

auth=rsa

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

inkeys=freeworlddialup

If you have resources advertised on a DUNDi network, the associated user must be defined in iax.conf:

[dundi]

type=user

dbsecret=dundi/secret

context=dundi-incoming

IAX Authentication

IAX provides authentication mechanisms to allow for a reasonable level of security between endpoints. This does not

mean that the audio information cannot be captured and decoded, but it does mean that you can more carefully control

who is allowed to make connections to your system. Three levels of security are supported on IAX channels. The auth

option defines which authentication method to use on the channel: plaintext, md5, or rsa.

plaintext, in IAX, offers very little security. While it will prevent connection to the channel unless a valid password is

supplied, the fact that the password is stored in iax.conf in plain text and is transmitted and received as plain text makes

this a very insecure authentication method.

md5 improves the security on the network connection; however, both ends still require a plain-text secret in the iax.conf file.

Here's how it works: Box A requests a connection with Box B, which in turn replies with an authorization request

including a randomly generated number. Box A then generates an MD5 hash using the value supplied in the secret field

of iax.conf and the random number from Box B. The hash is returned in the authorization reply, and Box B compares it to

the hash it generated locally. If the hashes match, authorization is granted.

rsa provides the most security. Before using RSA, each end must create a public and private key pair through the

astgenkey script, typically located in /usr/src/asterisk/contrib/scripts/. The public key must then be given to the far end.

Each end of the circuit must include the public key of the far end in its channel definition, using the inkeys and outkey

parameters.

RSA keys are stored in /var/lib/asterisk/keys/. Public keys are named name.pub; private keys are named name.key.

Private keys must be encrypted with 3DES.

If you have IAX-based devices (such as an IAXy), or IAX-based users at a remote node, you may want to provide them with their own

channels with which to connect to the system.

Let's say you have a user on a remote node for whom you want to define an IAX channel. We'll call this hypothetical channel sushi. The

channel definition might look something like this:

[sushi]

type=user

context=local_users

auth=md5,plaintext,rsa

secret=wasabi

notransfer=yes

jitterbuffer=yes

callerid="Happy Tempura" <(800) 555-1234>

accountcode=seaweed

deny=0.0.0.0/0.0.0.0

permit=192.168.1.100/255.255.255.0

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

language=en

Incoming calls for this channel will arrive in the context local_users and will ask the system to accept the Caller ID Happy Tempura <(800)

555-1234>. The system will be willing to accept MD5, plain-text, or RSA authentication from this user, so long as the password wasabi is

provided and the call comes from the IP address 192.168.1.100. All calls related to this channel will be assigned the account code

seaweed. Because we've defined notransfer, the media path for this channel will always pass through Asterisk; it cannot be redirected to

another IAX node.

If you yourself are a remote node, and you need to connect into a remote node as a user, you would define that main node as your peer:

[sashimi_platter]

type=peer

username=sushi

secret=wasabi

host=192.168.1.101

qualify=yes

trunk=yes

A peer can be referenced from the dialplan with the name contained in square brackets but authenticate with a different username. The host

is specified using either IP dotted notation or a fully qualified domain name (FQDN). You can determine the latency between you and the

remote host, and whether the peer is alive, with qualify=yes. To minimize the amount of overhead for multiple calls going to the same

peer, you can trunk them.

Trunking is unique to IAX and is designed to take advantage of the fact that two large sites may have multiple simultaneous VoIP

connections between them. IAX trunking reduces overhead by loading several channels into each signaling packet. You can enable

trunking for a channel with trunk=yes in iax.conf.

Figure A-1 shows a channel with trunking disabled, and Figure A-2 shows a channel with trunking enabled.

Figure A-1. Trunking disabled

Figure A-2. Trunking enabled

A.1.3.1. Channel-specific parameters

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

Now, let's take a look at the channel-specific parameters:

callerid

You can set a suggested Caller ID string for a user or peer with callerid. If you define a Caller ID field for a user, any calls that

come in on that channel will have that Caller ID assigned to them, regardless of what the far end sends to you. If you define

Caller ID for a peer, you are requesting that the far end use that to identify you (although you have no way of ensuring it will do

so). If you want incoming users to be able to define their own Caller IDs (i.e., for guests), make sure you do not set the callerid

field.

callerid=John Smith <(800) 555-1234>

defaultip

The defaultip setting complements host=dynamic. If a host has not yet registered with your server, you'll attempt to send

messages to the default IP address configured here.

defaultip=192.168.1.101

inkeys

You can use the inkeys option to authenticate a user with the use of an RSA key. To associate more than one RSA key with a

user channel definition, separate the key names with a colon (:). Any one of those keys will be sufficient to validate a

connection. The "inkey" is the public key you distribute to your users.

inkeys=server_one:server_two

mailbox

If you associate a mailbox with a peer within the channel definition, voicemail will send a message waiting indication (MWI) to

the nodes on the end of that channel. If the mailbox number is in a voicemail context other than default, you can specify it as

mailbox@context. To associate multiple mailboxes with a single peer, use multiple mailbox statements.

mailbox=1000@internal

outkey

You can use the outkey option to authenticate a peer with the use of an RSA key. Only one RSA key may be used for outgoing

authentication. The "outkey" is not distributed; it is your private key.

outkey=private_key

qualify

You can set qualify to yes, no, or a time in milliseconds. If you set qualify=yes, PING messages will be sent periodically to the

remote peers to determine whether they are available and what the latency between replies is. The peers will respond with

PONG messages. A peer will be determined unreachable if no reply is received within 2,000 ms (to change this default, instead

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

set qualify to the number of milliseconds to wait for the reply).

sendani

The SS7 PSTN network uses Automatic Number Identification (ANI) to identify a caller, and Caller ID is what is delivered to the

user. The Caller ID is generated from the ANI, so it's easy to confuse the two. Blocking Caller ID sets a privacy flag on the ANI,

but the backbone network still knows where the call is coming from.

sendani=yes

ANI has been around for a while. Its original purpose was to deliver the billing number of the

originating party on a long-distance call to the terminating office. Unlike Caller ID, ANI does not

require SS7, as it can be transmitted using DTMF. Also, ANI cannot be blocked.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

file:///C:/DOCUME~1/stelios/LOCALS~1/Temp/2/O'Reilly,.Asterisk.The.Future.of.Telephony.(2005).BBL.LotB.chm/0596009623/18051535.html

A.2. SIP

Just as with IAX, the SIP configuration file (sip.conf) contains configuration information for SIP channels. The headings for the channel

definitions are formed by a word framed in square brackets ([])again, with the exception of the [general] section, where we define global

SIP parameters. Don't forget to use comments generously in your sip.conf file. Precede the comment text with a semicolon; everything to

the right will be ignored.

A.2.1. General SIP Parameters

The following options are to be used within the [general] section of sip.conf:

allowguest

If set to no, this disallows guest SIP connections. The default is to allow guest connections. SIP normally requires

authentication, but you can accept calls from users who do not support authentication (i.e., do not have a secret field

defined). Certain SIP appliances (such as the Cisco Call Manager v4.1) do not support authentication, so they will not be able

to connect if you set allowguest=no.

allowguest=no

bindaddr and bindport

These optional parameters allow you to control the IP interface and port on which you wish to accept SIP connections. If

omitted, the port will be set to 5060, and all IP addresses in your Asterisk system will accept incoming SIP connections. If

multiple bind addresses are configured, only those interfaces will listen for connections. The address 0.0.0.0 tells Asterisk to

listen on all interfaces.

bindaddr=0.0.0.0

bindport=5060

callevents

Set this to yes when you want SIP to generate Manager events. This will be important if you have external programs that use

the Asterisk Manager interface, such as the Flash Operator Panel.

callevents=yes

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

checkmwi

This option specifies the default amount of time, in seconds, between mailbox checks for peers.

checkmwi=30

compactheaders

You can set compactheaders to yes or no. If it's set to yes, the SIP headers will use a compact format, which may be required

if the size of the SIP header is larger than the maximum transmission unit (MTU) of your IP headers, causing the IP packet to

be fragmented. Do not use this option unless you know what you are doing.

compactheaders=no

defaultexpirey

This sets the default SIP registration expiration time, in seconds, for incoming and outgoing registrations. A client will normally

define this value when it initially registers, so the default value you set here will be used only if the client does not specify a

timeout when it registers. If you are registering to another user agent server (UAS), this is the registration timeout that it will

send to the far end.

defaultexpirey=300

externhost

externhost takes a fully qualified domain name as its argument. If Asterisk is behind NAT, the SIP header will normally use the

private IP address assigned to the server. If you set this option, Asterisk will perform periodic DNS lookups on the hostname

and replace the private IP address with the IP address returned from the DNS lookup.

externhost=my.hostname.tld

The use of externhost is not recommended in production systems, because if the IP

address of the server changes, the wrong IP address will be set in the SIP headers until

the next lookup is performed. The use of externip is recommended instead.

externip

externip takes an IP address as its argument. If Asterisk is behind NAT, the SIP header will normally use the private IP

address assigned to the server. The remote server will not know how to route back to this address; thus, it must be replaced

with a valid, routable address.

externip=216.239.39.104

externrefresh

If externhost is used, externrefresh configures how long, in seconds, should pass between DNS lookups.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

externrefresh=30

localnet

localnet is used to tell Asterisk which IP addresses are considered local, so that the address in the SIP header can be

translated to that specified by externip or the IP address can be looked up with externhost.

localnet=192.168.1.0/24

localnet=172.16.0.0/16

maxexpirey

This sets the maximum amount of time, in seconds, until a peer's registration expires.

maxexpirey=3600

notifymimetype

This takes as its argument a string specifying the MIME type used for the message waiting notification (MWI) in the SIP

NOTIFY message. The most common setting for this field is text/plain, although it can be customized if need be.

notifymimetype=text/plain

pedantic

You can set pedantic to yes or no. Setting it to yes enables slow pedantic checking for phones that require it, such as the

Pingtel, and enables more strict SIP RFC compliancy. In an effort to improve performance, SIP RFC compliance is not

normally strictly adhered to.

pedantic=yes

realm

This option sets the realm for digest authentication. Set realm to your fully qualified domain name, which must be globally

unique.

realm=my.hostname.tld

recordhistory

You can set recordhistory to yes or no to enable or disable SIP history recording for all channels. (See sip history and sip no

history in Appendix E.)

recordhistory=yes

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

relaxdtmf

You can set relaxdtmf to yes or no. Setting it to yes will relax the DTMF detection handling. Use this if Asterisk is having a

difficult time determining the DTMF on the SIP channel. Note that this may cause "talkoff," where Asterisk incorrectly detects

DTMF when it should not.

relaxdtmf=yes

srvlookup

DNS SRV records are a way of setting up a logical, resolvable address where you can be reached. This allows calls to be

forwarded to different locations without the need to change the logical address. By using SRV records, you gain many of the

advantages of DNS, whereas disabling them removes the ability to place SIP calls based on domain names. (Note that if

multiple records are returned, Asterisk will use only the first.) DNS SRV record lookups are recommended. To enable them,

set srvlookup=yes in the [general] section of sip.conf.

srvlookup=yes

tos

Asterisk can set the Type of Service (TOS) bits in the IP header to help improve performance on routers that respect TOS

bits in their routing calculations. The following values are valid:

lowdelay

Minimize delay.

throughput

Maximize throughput.

reliability

Maximize reliability.

mincost

Minimize cost.

none

No bits set.

tos=lowdelay|throughput|reliability|mincost|none

useragent

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

useragent takes as its argument a string specifying the value for the useragent field in the SIP header. The default value is

asterisk.

useragent=asterisk

videosupport

You can set videosupport to yes or no. Setting it to yes will enable SIP video support. Video support works only between two

endpointsAsterisk does not support video conferencing at this time.

videosupport=yes

A.2.2. SIP Channel Definitions

Now that we've covered the global SIP parameters, we will discuss the channel-specific parameters. These parameters can be defined

for a user, a peer, or both (as noted in parentheses):

accountcode (both)

The account code can be defined on a per-user basis. If defined, this account code will be assigned to a call record

whenever no specific user account code is set. The accountcode name configured will be used as the filename.csv in the

/var/log/asterisk/cdr-csv/ directory to store CDRs for the user/peer/friend.

accountcode=iax-username

allow and disallow (both)

Specific codecs can be allowed or disallowed, limiting codec use to those preferred by the system designer. allow and

disallow can also be defined on a per-channel basis. Keep in mind that allow statements in the [general] section will carry over

to each of the channels, unless you reset with a disallow=all. Codec negotiation is attempted in the order in which the codecs

are defined. Best practice suggests that you define disallow=all, followed by explicit allow statements for each codec you wish

to use. If nothing is defined, allow=all is assumed.

disallow=all

allow=ulaw

allow=gsm

allow=ilbc

amaflags (both)

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

Automatic Message Accounting (AMA) is defined in the Telcordia Family of Documents listed under FR-AMA-1. These

documents specify standard mechanisms for generation and transmission of CDRs. You can specify one of four AMA flags

(default, omit, billing, or documentation) to apply to all SIP connections.

amaflags=documentation

callerid (both)

You can set a suggested Caller ID string for a user or peer with callerid. If you define a Caller ID field for a user, any calls that

come in on that channel will have that Caller ID assigned to them, regardless of what the far end sends to you. If Caller ID is

defined for a peer, you are requesting that the far end use that to identify you (keep in mind, however, that you have no way

to ensure that it will do so). If you want incoming callers to be able to define their own Caller IDs (i.e., for guests), make sure

you do not set the callerid field.

callerid=John Smith <(800) 555-1234>

callgroup and pickupgroup (both)

You can use the callgroup parameter to assign a channel definition to one or more groups, and you can use the pickupgroup

option in conjunction with this parameter to allow a ringing phone to be answered from another extension. The pickupgroup

option is used to control which callgroups a channel may pick upa channel is given authority to answer another ringing

channel if it is assigned to the same pickupgroup as the ringing channel's callgroup. By default, remote ringing extensions can

be answered with *8 (this is configurable in the features.conf file).

callgroup=1,3-5

pickupgroup=1,3-5

canreinvite (both)

The SIP protocol tries to connect endpoints directly. However, Asterisk must remain in the transmission path between the

endpoints if it is required to detect DTMF. (For more information, see Chapter 4.)

canreinvite=no

context (both)
[*]

A context is assigned to a channel definition to direct incoming calls into the matching context in extensions.conf, where call

handling is performed (see Chapters 4 and 5). Any channel connecting to an Asterisk machine has to have a context defined

into which it will arrive. The context is essential for any user channel definitionif you do not define a context, incoming calls will

be directed to the default context.

context=incoming

defaultip (peer)

The defaultip setting complements host=dynamic. If a host has not yet registered with your server, you'll attempt to send

messages to the default IP address configured here.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

defaultip=192.168.1.101

deny (both)

Specific IP addresses and ranges can be controlled with the deny option. To restrict access from a range of IP addresses,

use a subnet maskfor example, deny=192.168.1.0/255.255.255.0. You can also deny all addresses with deny=0.0.0.0/0.0.0.0

and then allow only certain addresses with the permit command. Be aware of the security implications of this setting. (See

also permit.)

deny=0.0.0.0/0.0.0.0

disallow (both)

See allow.

dtmfmode (both)

You can set dtmfmode to inband, rfc2833, or info. DTMF digits can be sent either in band (as part of the audio stream), or out

of band (as signaling information), using the RFC 2833 or INFO methods. The inband method only works reliably when using

an uncompressed codec such as G.711, ulaw, or alaw. The recommended method is to use rfc2833; however, some

devicessuch as those by Grandstreamsupport the info method.

dtmfmode=rfc2833

fromdomain (peer)

This allows you to set the domain in the From: field of the SIP header. It may be required by some providers for authentication.

fromdomain=my.hostname.tld

fromuser (peer)

This allows you to set the username with which to authenticate. The name contained within the square brackets of the

channel definition is usually used, but this can be overridden with the fromuser option. This allows a channel definition to be

referenced with a name other than that used to authenticate.

fromuser=john_smith

host (peer)

This configures the host to which this peer is to connect. Use a fully qualified domain name.

host=remote.hostname.tld

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

incominglimit (both)

This option limits the total number of simultaneous calls for a peer or user. It sets the max number of simultaneous outgoing

calls for a peer, or the max number of incoming calls for a user.

incominglimit=3

insecure (both)

When an INVITE is received from a remote location, Asterisk attempts to authenticate the string of characters before the @

sign on the INVITE line received in the SIP header with the name of a channel definition in sip.conf. If the remote end is a user

agent, it will authenticate based on a user definition. However, if the remote end is a SIP proxy service, it will authenticate on

the peer entry. When calls come from a provider such as Free World Dialup, which acts as a proxy for the true remote end

who is calling you, that provider cannot authenticate the call on behalf of the endpoint. Since it would be impractical to have

an authentication configured for every FWD user, and since FWD cannot respond to a 407 Proxy Authentication Required

response, there must be an alternate way to allow calls from these callers.

If you set insecure=invite, you'll determine which peer to match on by comparing the IP address or hostname and port number

to those provided in the Contact field of the SIP header with the host and port options in sip.conf. If a match is found,

authentication will not be required on the initial INVITE, and the call will be allowed.

If you have multiple endpoints behind a NAT device, you need to enable insecure=port to match only against the IP address.

To not require authentication on the incoming INVITE for the peer, set insecure=invite,port.

insecure=invite

language (both)

This sets the language flag to whatever you define. The global default language is English. The language that is set is sent by

the channel as an information element. It is also used by applications such as SayNumber() that have different files for

different languages. Keep in mind that languages other than English are not explicitly installed on the system, and it is up to

you to configure the system to ensure that the language you specify is handled properly.

language=en

mailbox (peer)

If you associate a mailbox with a peer within the channel definition, voicemail will send a message waiting indication to the

nodes on the end of that channel. If the mailbox number is in a voicemail context other than default, you can specify it as

mailbox@context. To associate multiple mailboxes with a single peer, use multiple mailbox statements.

mailbox=1000@internal

md5secret (both)

If you do not wish to have plain-text secrets in your sip.conf files, you can use md5secret to configure the MD5 hash that can

be used for authentication. To generate the MD5 hash from the Linux console, use the following command:

echo -n " username : realm : secret " | md5sum

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

Be sure to use the -n flag, or echo will add a \n to the end of the string; the line feed will then be calculated into the MD5 hash,

creating the incorrect hash. The realm, if not specified with the realm option (discussed in the list of general SIP parameters),

defaults to asterisk. If both an md5secret and a secret are specified in the same channel definition, the secret will be ignored.

md5secret=0bcbe762982374c276fb01af6d272dca

musicclass (both)

This option sets the default Music on Hold class.

musicclass=classical

nat (both)

You can set nat to yes, no, or never. If you set it to yes, Asterisk ignores the IP address in the SIP and SDP headers and

responds to the address and port in the IP header. The never option is for devices that cannot handle rport in the SIP header,

such as the Uniden UIP200.

nat=yes

permit (both)

See deny.

pickupgroup (both)

See callgroup.

port (peer)

You can use this to define the port on which to listen for SIP signaling, if you want to listen on a nonstandard port. (The

default port for SIP signaling is 5060.)

port=5060

progressinband (both)

You can set progressinband to yes, no, or never, to configure whether or not to generate in-band ringing. Normally, Asterisk

will send the progress of a call via a few methods, such as 183 Session Progress, 180 Ringing, 486 Busy, and so on. If you

set progressinband=yes, Asterisk will indicate the call progress in band by generating tones.

progressinband=yes

promiscredir (both)

You can set promiscredir to yes or no. Normally, when you perform call forwarding on a phone, Asterisk will use the Local

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

channel (for example, ocal/18005551212@peer). If you set promiscredir=yes, Asterisk will use the SIP channel instead,

which enables you to forward the calls to remote boxes.

promiscredir=yes

Note that if Asterisk performs a redirect to itself when promiscredir=yes, the system will

receive an INVITE with the same Caller ID and detect a loop to itself. SIP does not have

the ability to perform a hairpin call, so the channel will then be destroyed.

qualify (peer)

You can set qualify to yes, no, or a time in milliseconds. If you set qualify=yes, NOTIFY messages will be sent periodically to

the remote peers to determine whether they are available and what the latency between replies is. A peer is determined

unreachable if no reply is received within 2,000 ms (to change this default, instead set qualify to the number of milliseconds to

wait for the reply). Use this option in conjunction with nat=yes to keep the path through the NAT device alive.

qualify=yes

regcontext (peer)

By specifying the context that contains the actions to perform, you can configure Asterisk to perform a number of actions

when a peer registers to your server. This option works in conjunction with regexten, by specifying the extension to execute. If

no regexten is configured, the peer name is used as the extension. Asterisk will dynamically create and destroy a NoOp at

priority 1 for the extension. All actions to be performed upon registration should start at priority 2. More than one regexten

may be supplied, if separated by an &. regcontext can be set on a per-peer basis or globally.

regcontext=peer_registrations

regexten (peer)

The regexten option is used in conjunction with regcontext to specify the extension that is executed within the configured

context. If regexten is not explicitly configured, the peer name is used as the extension to match.

regexten=1000

rtpholdtimeout (peer)

This takes as its argument an integer, specified in seconds. It terminates a call if no RTP data is received while on hold. The

value of rtpholdtimeout must be greater than that of rtptimeout. (See also rtptimeout.)

rtpholdtimeout=120

rtptimeout (peer)

This takes as its argument an integer, specified in seconds. It terminates a call if no RTP data is received within the time

specified.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

rtptimeout=60

secret (both)

This sets the password to use for authentication.

secret=welcome

setvar (both)

This sets a channel variable, which will be available when a channel to the peer or user is created and will be destroyed when

the call is hung up. For example, to set the channel variable foo with a value of bar, use setvar=foo=bar.

setvar=foo=bar

username (peer)

The username field allows you to attempt contact with a peer before it has registered with you. At registration, a SIP device

tells Asterisk which SIP URI to use to contact it. The username is used in conjunction with defaultip to create the SIP URI in

the SIP INVITE header. This might be useful following a reboot, in order to place a call. The endpoints will not attempt to

register with the server until their registration timeouts expire, so you will not know their locations. For non-dynamic hosts, you

will require the username to be specified, as it is used to construct the authorization username.

username=john_smith

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

file:///C:/DOCUME~1/stelios/LOCALS~1/Temp/2/O'Reilly,.Asterisk.The.Future.of.Telephony.(2005).BBL.LotB.chm/0596009623/18051535.html

Appendix B. Application Reference

AbsoluteTimeout()

AddQueueMember()

ADSIProg()

AgentCallbackLogin()

AgentLogin()

AgentMonitorOutgoing()

AGI()

AlarmReceiver()

Answer()

AppendCDRUserField()

Authenticate()

Background()

BackgroundDetect()

Busy()

CallingPres()

ChangeMonitor()

ChanIsAvail()

CheckGroup()

Congestion()

ControlPlayback()

Curl()

Cut()

DateTime()

DBdel()

DBdeltree()

DBget()

DBput()

DeadAGI()

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

Dial()

DigitTimeout()

Directory()

DISA()

DumpChan()

DUNDiLookup()

EAGI()

Echo()

EndWhile()

ENUMLookup()

Eval()

Exec()

ExecIf()

FastAGI()

Festival()

Flash()

ForkCDR()

GetCPEID()

GetGroupCount()

GetGroupMatchCount()

Goto()

GotoIf()

GotoIfTime()

Hangup()

HasNewVoicemail()

HasVoicemail()

IAX2Provision()

ImportVar()

LookupBlacklist()

LookupCIDName()

Macro()

MailboxExists()

Math()

MeetMe()

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

MeetMeAdmin()

MeetMeCount()

Milliwatt()

Monitor()

MP3Player()

MusicOnHold()

NBScat()

NoCDR()

NoOp()

Park()

ParkAndAnnounce()

ParkedCall()

PauseQueueMember()

Playback()

Playtones()

Prefix()

PrivacyManager()

Progress()

Queue()

Random()

Read()

RealTime

RealTimeUpdate()

Record()

RemoveQueueMember()

ResetCDR()

ResponseTimeout()

RetryDial()

Ringing()

SayAlpha()

SayDigits()

SayNumber()

SayPhonetic()

SayUnixTime()

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

SendDTMF()

SendImage()

SendText()

SendURL()

Set()

SetAccount()

SetAMAFlags()

SetCallerID()

SetCallerPres()

SetCDRUserField()

SetCIDName()

SetCIDNum()

SetGlobalVar()

SetGroup()

SetLanguage()

SetMusicOnHold()

SetRDNIS()

SetVar()

SIPAddHeader()

SIPDtmfMode()

SIPGetHeader()

SoftHangup()

StopMonitor()

StopPlaytones()

StripLSD()

StripMSD()

SubString()

Suffix()

System()

Transfer()

TrySystem()

TXTCIDName()

UnpauseQueueMember()

UserEvent()

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

Verbose()

VMAuthenticate()

VoiceMail()

VoiceMailMain()

Wait()

WaitExten()

WaitForRing()

WaitForSilence()

WaitMusicOnHold()

While()

Zapateller()

ZapBarge()

ZapRAS()

ZapScan()

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

AbsoluteTimeout() Sets the maximum number of seconds a call may last

 AbsoluteTimeout(length)

Sets the absolute time limit of a call to length seconds. Calls lasting longer than length seconds will be sent to the T (absolute timeout)

extension, if it exists. Otherwise, the channel will be hung up.

If length is set to zero (0), the timeout is disabled.

Each time AbsoluteTimeout() runs, it overrides the previous timeout setting. Asterisk starts the timeout countdown at the time the

application is called, not at the time the call starts.

 ; limit calls to ex-girlfriend to 300 seconds

 exten => 123,1,AbsoluteTimeout(300)
 exten => 123,2,Dial(${EX-GIRLFRIEND})

 exten => T,1,Playback(im-sorry)

 exten => T,2,Playback(vm-goodbye)

 exten => T,3,Hangup()

See Also

DigitTimeout(), ResponseTimeout(), the T extension

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

AddQueueMember() Dynamically adds queue members to the specified call queue

 AddQueueMember(queuename[,interface[,penalty]])

Dynamically adds the specified interface to an existing queue named queuename, as specified in queues.conf. If specified, penalty sets the

penalty for queues to use this member. Members with a lower penalty are called before members with a higher penalty.

If interface is already a member of the queue and there exists an n+101 priority (where n is the number of the current priority), the call will

continue at that priority. Otherwise, it will return an error.

Calling AddQueueMember() without an interface argument will use the interface that the caller is currently using.

 ; add SIP/3000 to the techsupport queue, with a penalty of 1

 exten => 123,1,AddQueueMember(techsupport,SIP/3000,1)

See Also

RemoveQueueMember(), queues.conf

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

ADSIProg() Loads an ADSI script into an ADSI-capable phone

 ADSIProg(script)

Programs an Analog Display Services Interface (ADSI) phone with the given script. If none is specified, the default script, asterisk.adsi, is

used. The path for the script is relative to the Asterisk configuration directory (usually /etc/asterisk/). You may also provide the full path to

the script.

To get the CPE ID and other information from your ADSI-capable phone, use the GetCPEID() application.

 ; program the ADSI phone with the telcordia-1.adsi script

 exten => 123,1,ADSIProg(telcordia-1.adsi)

See Also

GetCPEID(), adsi.conf

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

AgentCallbackLogin() Enables agent login with callback

 AgentCallbackLogin([AgentNo][,[options][exten]@context])

Allows a call agent identified by AgentNo to log into the call queue system, to be called back when a call comes in for that agent.

When a call comes in for the agent, Asterisk calls the specified exten (with an optional context).

The options argument may contain the letter s, which causes the login to be silent.

 ; silently log in as agent number 42, and have Asterisk

 ; call SIP/400 when a call comes in for this agent

 exten => 123,1,AgentCallbackLogin(42,s,SIP/400)

See Also

AgentLogin()

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

AgentLogin() Allows a call agent to log into the system

 AgentLogin([AgentNo][,options])

Logs the current caller into the call queue system as a call agent (optionally identified by AgentNo). While logged in, the agent can receive

calls and will hear a beep on the line when a new call comes in. The agent can hang up the call by pressing the asterisk (*) key.

The options argument may contain the letter s, which causes the login to be silent.

 ; silently log in as agent number 42, as defined in agents.conf

 exten => 123,1,AgentLogin(42,s)

See Also

AgentCallbackLogin()

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

AgentMonitorOutgoing() Records an agent's outgoing calls

 AgentMonitorOutgoing([options])

Records all outbound calls made by a call agent.

This application tries to figure out the ID of the agent who is placing outgoing call based on a comparison of the Caller ID of the current

interface and the global variable set by the AgentCallbackLogin() application. As such, it should be used only in conjunction with (and

after!) the AgentCallbackLogin() application. It uses the monitoring functions in the chan_agent module instead of the Monitor() application

to record the calls. This means that call recording must be configured correctly in the agents.conf file.

By default, recorded calls are saved to the /var/spool/asterisk/monitor/ directory. This may be overridden by changing the savecallsin

parameter in agents.conf.

If the Caller ID and/or agent ID are not found, this application will go to priority n+1, if it exists (where n is the current priority).

Returns 0 unless overridden by one of the options.

The options argument may include one or more of the following:

d

Make this application return -1 if there is an error condition and there is no extension n+101.

c

Change the Call Detail Record so that the source of the call is recorded as Agent/agent_id.

n

Don't generate warnings when there is no Caller ID or if the agent ID is not known. This option is useful if you want to have a

shared context for agent and non-agent calls.

 ; record outbound calls for this agent, and change the CDR to reflect

 ; that the call is being made by an agent

 exten => 123,1,AgentMonitorOutgoing(c)

See Also

AgentCallbackLogin(), agents.conf

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

AGI() Executes an AGI-compliant application

 [E]AGI(program[,arguments])

Executes an Asterisk Gateway Interface-compliant program on the current channel. AGI programs allow external programs (written in

almost any language) to control the telephony channel by playing audio, reading DTMF digits, and so on. Asterisk communicates with the

AGI program on STDIN and STDOUT. The specified arguments are passed to the AGI program.

The program must be set as executable in the underlying filesystem. The program path is relative to the Asterisk AGI directory, which by

default is /var/lib/asterisk/agi-bin/.

If you want to run an AGI when no channel exists (such as in an h extension), use the DeadAGI() application instead. You may want to

use the FastAGI() application if you want to do AGI processing across the network.

If you want access to the inbound audio stream from within your AGI program, use EAGI() instead of AGI(). Inbound audio can then be

read in on file descriptor number three.

Returns -1 on hangup or if the program requested a hangup, or 0 on non-hangup exit.

 ; call the demo AGI program

 exten => 123,1,AGI(agi-test)
 exten => 123,2,EAGI(eagi-test)

See Also

DeadAGI(), FastAGI(), Chapter 9

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

file:///C:/DOCUME~1/stelios/LOCALS~1/Temp/2/O'Reilly,.Asterisk.The.Future.of.Telephony.(2005).BBL.LotB.chm/0596009623/18051535.html

AlarmReceiver()
Provides support for receiving alarm reports from a burglar or fire alarm

panel

 AlarmReceiver()

Emulates an alarm receiver, and allows Asterisk to receive and decode special data from fire and/or burglar alarm panels. At this time,

only the Ademco Contact ID format is supported.

When called, AlarmReceiver() will handshake with the alarm panel, receive events, validate them, handshake them, and store them until

the panel hangs up. Once the panel hangs up, the application will run the command line specified by the eventcmd setting in

alarmreceiver.conf and pipe the events to the standard input of the application. alarmreceiver.conf also contains settings for DTMF timing

and for the loudness of the acknowledgment tones.

This application is not guaranteed to be reliable, so don't depend on it unless you have extensively

tested it. If you use this application without extensive testing, you may be putting your life and property

at great risk.

This application always returns 0.

 ; set up Asterisk to answer a call from a supported fire alarm panel

 exten => s,1,AlarmReceiver()

See Also

alarmreceiver.conf

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

Answer() Answers a channel, if it is ringing

 Answer()

Causes Asterisk to answer the channel if it is currently ringing. If the current channel is not ringing, this application does nothing.

It is usually a good idea to use Answer() on the channel before calling any other applications, unless you have a very good reason not to.

Most applications require that the channel be answered before they are called, and may not work correctly otherwise.

Returns 0 unless it tries to answer the channel and fails.

 exten => 123,1,Answer()
 exten => 123,2,Wait(1)

 exten => 123,3,Playback(tt-weasels)

See Also

Hangup()

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

file:///C:/DOCUME~1/stelios/LOCALS~1/Temp/2/O'Reilly,.Asterisk.The.Future.of.Telephony.(2005).BBL.LotB.chm/0596009623/18051535.html

AppendCDRUserField() Appends a value to the user field of the Call Detail Record

 AppendCDRUserField(value)

Appends value to the user field of the Call Detail Record (CDR). The user field is often used to store arbitrary data about the call, which

may not be appropriate for any of the other fields.

Always returns 0.

 ; set the user field to 'abcde'

 exten => 123,1,SetCDRUserField(abcde)

 ; now append 'xyz'

 exten => 123,1,AppendCDRUserField(xyz)

See Also

SetCDRUserField(), ForkCDR(), NoCDR(), ResetCDR()

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

Authenticate() Requires that the caller enter a correct password before continuing

 Authenticate(password[,options])

Requires a caller to enter a given password in order to continue execution of the next priority in the dialplan. Authenticate() gives the caller

three chances to enter the password correctly. If the password is not correctly entered after three tries, the channel is hung up.

If password begins with the / character, it is interpreted as a file that contains a list of valid passwords (one per line). Passwords may also

be stored in the Asterisk database (AstDB); see the d option below.

A set of options may be provided, consisting of one or more of the letters in the following list.

a

Sets the CDR field named accountcode and the channel variable ACCOUNTCODE to the password that is entered

d

Interprets the path as the database key from the Asterisk database in which to find the password, not a literal file. When using a

database key, the value associated with the key can be anything.

r

Removes the database key upon successful entry (valid with d only).

Returns 0 if the user enters a valid password within three tries, or -1 otherwise (or on hangup).

 ; force the caller to enter the password before continuing,

 and set the CDR field

 ; named 'accountcode' to the entered password

 exten => 123,1,Answer

 exten => 123,2,Authenticate(1234,a)
 exten => 123,3,Playback(pin-number-accepted)

 exten => 123,4,SayDigits(${ACCOUNTCODE})

See Also

VMAuthenticate(), Chapter 6

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

Background() Plays a file while accepting touch-tone (DTMF) digits

 Background(filename1[&filename2...][,options[,language]])

Plays the specified audio file(s) while waiting for the user to begin entering an extension. Once the user begins to enter an extension, the

playback is terminated. The filename should be specified without a file extension, as Asterisk will automatically find the file format with the

lowest translation cost.

Valid options include one of the following:

skip

Causes the playback of the message to be skipped if the channel is not in the "up" state (i.e., hasn't yet been answered). If skip

is specified, the application will return immediately should the channel not be off-hook.

noanswer

Does not answer the channel before playing the specified file. Without this option, the channel will automatically be answered

before the sound is played. Not all channels support playing messages before being answered.

The language argument may be used to specify a language to use for playing the prompt, if it differs from the current language of the

channel.

Returns -1 if the channel was hung up, or if the given filename does not exist; otherwise, returns 0.

 exten => 123,1,Answer()

 exten => 123,2,Background('exter-ext-of-person');

See Also

Playback(), BackgroundDetect(), the show translation command

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

BackgroundDetect() Plays a file in the background and detects talking

 BackgroundDetect(filename[,sil[,min[,max]]])

Similar to Background(), but attempts to detect talking.

During the playback of the file, audio is monitored in the receive direction. If a period of non-silence that is greater than min milliseconds

yet less than max milliseconds and is followed by silence for at least sil milliseconds occurs, the audio playback is aborted and processing

jumps to the talk extension, if available.

If unspecified, sil, min, and max default to 1,000 ms, 100 ms, and infinity, respectively.

Returns -1 on hangup, and 0 on successful playback completion with no exit conditions.

 exten => 123,1,BackgroundDetect(tt-monkeys)
 exten => 123,2,Playback(im-sorry)

 exten => talk,1,Playback(yes-dear)

See Also

Playback(), Background()

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

Busy() Indicates a busy condition to the channel

 Busy([timeout])

Requests that the channel indicate the busy condition and then waits for the user to hang up or for the optional timeout (in seconds) to

expire.

This application only signals a busy condition to the bridged channel. Each particular channel type has its own way of communicating the

busy condition to the caller. You can use Playtones(busy) to play a busy tone to the caller.

Always returns -1.

 exten => 123,1,Playback(im-sorry)

 exten => 123,2,Playtones(busy)

 exten => 123,3,Busy()

See Also

Congestion(), Progress(), Playtones()

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

CallingPres() Changes the presentation for the Caller ID

 CallingPres(presentation)

Changes the presentation parameters for the Caller ID on a Q931 PRI connection. These parameters should be set before placing an

outgoing call. The argument presentation controls two things: whether or not the person being called can view the Caller ID information

(known as presentation), and whether or not the Caller ID information has been verified by an authoritative source (known as screening).

This application has been replaced by the SetCallerPres() application, which is easier to use and less

dependent on the internal Zaptel structures.

This application takes the call presentation setting and the screening setting and combines them into one number. The values themselves

are defined in the ITU Q931 standard, as shown in Tables B-1 and B-2.

Table B-1. Screening is controlled by bits 2 and 1

Bit 2 Bit 1 Explanation

0 0 Caller ID information was provided by the user, and not screened.

0 1 Caller ID information was provided by the user, and successfully verified.

1 0 Caller ID information was provided by the user, and verification failed.

1 1 Caller ID information was provided by the network.

Table B-2. Presentation is controlled by bits 7 and 6

Bit 7 Bit 6 Explanation

0 0 Presentation of the Caller ID information is allowed.

0 1 Presentation of the Caller ID information is restricted.

1 0 The number is not available due to interworking.

1 1 Reserved.

Bits 3, 4, 5, and 8 should all be set to zero (0). Please note that the bits are numbered from most significant to least significant, like this:

87654321.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

 ; set presentation to:

 ; Presentation Allowed (00000000)

 ; Network Provided (00000011)

 ; ------------------ ----------

 ; Result = 3 (bitwise AND) (00000011)

 exten => 123,1,CallingPres(3)

 exten => 123,2,Dial(Zap/g1/8885551212)

 ; set presentation to:

 ; Presentation Restricted (00100000)

 ; User-provided, verified, and passed (00000001)

 ; ------------------ ----------

 ; Result = 33 (bitwise AND) (00100001)

 exten => 124,1,CallingPres(33)
 exten => 124,2,Dial(Zap/g1/8885551213)

See Also

SetCallerPres(), SetCallerID()

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

file:///C:/DOCUME~1/stelios/LOCALS~1/Temp/2/O'Reilly,.Asterisk.The.Future.of.Telephony.(2005).BBL.LotB.chm/0596009623/18051535.html

ChangeMonitor() Changes the monitoring filename of a channel

 ChangeMonitor(filename_base)

Changes the name of the recorded file created by monitoring a channel with the Monitor() application. This application has no effect if the

channel is not monitored. The argument filename_base is the new filename base to use for monitoring the channel.

 ; start recording this channel with a basename of 'sample'

 exten => 123,1,Monitor(sample)

 ; change the filename base to 'example'

 exten => 123,2,ChangeMonitor(example)

See Also

Monitor(), StopMonitor()

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

file:///C:/DOCUME~1/stelios/LOCALS~1/Temp/2/O'Reilly,.Asterisk.The.Future.of.Telephony.(2005).BBL.LotB.chm/0596009623/18051535.html

ChanIsAvail() Finds out if a specified channel is currently available

 ChanIsAvail(technology1/resource1[&technology2/resource2...][,option])

Checks to see if any of the requested channels are available. If none of the requested channels are available, the new priority will be

n+101 (where n is the current priority), unless that priority does not exist or an error occurs, in which case ChanIsAvail() will exit and return

-1.

If any of the requested channels are available, the next priority will be n+1 and ChanIsAvail() will return 0.

ChanIsAvail() sets the following channel variables:

${AVAILCHAN}

The name of the available channel, including the call session number used to perform the test.

${AVAILORIGCHAN}

The canonical channel name that was used to create the channelthat is, the channel name without any session number.

${AVAILSTATUS}

The status code for the channel.

If the option s (which stands for "state") is specified, Asterisk will consider the channel unavailable whenever it is in use, even if it can take

another call.

This application does not work correctly on MGCP channels.

 ; check both Zap/1 and Zap/2 to see if they're available

 exten => 123,1,ChanIsAvail(Zap/1&Zap/2)
 ; if we go to priority 2, then one of the channels is available

 ; in priority 2, we'll dial our number on the available channel

 exten => 123,2,NoOp(${AVAILORIGCHAN})

 exten => 123,3,Dial(${AVAILORIGCHAN}/5551212)

 ; if we go to priority 101, then neither Zap/1 nor Zap/2 is available

 exten => 123,3,Playback(all-circuits-busy-now)

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

CheckGroup() Checks the number of channels in a particular group

 CheckGroup(max[@category])

Checks to see if the total number of channels in the current channel's group exceeds the max argument. If the number does not exceed

max, the application continues to the next priority. If the number of channels in the group is higher than max, and priority n+101 exists (where

n is the current priority), execution continues at that priority. Otherwise, the application terminates and -1 is returned.

When the optional category argument is passed, this application checks the total number of channels in the group category. See SetGroup(

) for more information about categories.

 exten => 123,1,SetGroup(support)

 exten => 123,2,CheckGroup(5)
 ; if there are less than five calls in the support group

 exten => 123,3,Dial(${SUPPORT})

 ; if there are more than five calls in the support group

 exten => 123,103,Playback(im-sorry)

See Also

SetGroup(), GetGroupCount(), GetGroupMatchCount()

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

Congestion() Indicates congestion on the channel

 Congestion([timeout])

Requests that the channel indicate congestion and then waits for the user to hang up or for the optional timeout (in seconds) to expire.

This application only signals congestion; it doesn't actually play a congestion tone to the user. You can use Playtones(congestion) to play

a congestion tone to the caller.

Always returns -1.

 ; if the Caller ID is 555-1234, always play congestion

 exten => 123,1,GotoIf($[${CALLERIDNUM} = 5551234]?5:2)

 exten => 123,2,Playtones(congestion)

 exten => 123,3,Congestion()
 exten => 123,4,Hangup()

 exten => 123,5,Dial(Zap/1)

See Also

Busy(), Progress(), Playtones()

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

ControlPlayback() Plays a file, with the ability to fast forward and rewind the file

 ControlPlayback(filename[,skipms[,ffchar[,rewchar[,stopchar[,pausechr]]]]])

Plays back a given filename (without the file extension), while allowing the caller to move forward and backward through the file by

pressing ffchar and rewchar. By default, you can use * and # to rewind and fast-forward the playback of the file. If stopchar is specified, the

application will stop playback when stopchar is pressed. If the file does not exist, the application jumps to priority n+101, if present (where n

is the current priority number).

The skipms option specifies how far forward or backward to jump in the file with each press of ffchar or rewchar.

A pausechr option may also be specified, which will pause playback of the file. Pressing pausechr again will continue the playback of the file.

Returns -1 if the channel was hung up during playback.

 ; allow the caller to control the playback of this file

 exten => 123,1,ControlPlayback(tt-monkeys|3000|#|*|5|0)

See Also

Playback(), Background()

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

file:///C:/DOCUME~1/stelios/LOCALS~1/Temp/2/O'Reilly,.Asterisk.The.Future.of.Telephony.(2005).BBL.LotB.chm/0596009623/18051535.html

Curl() Loads an external URL and assigns the result to a variable

 Curl(URL[,postdata])

Downloads the given URL and assigns it to the channel variable named CURL. If specified, the postdata argument is passed to the URL as

an HTTP POST. Curl() is often used to signal external applications of dialplan events.

Returns 0, or -1 on fatal errors.

 ; post the Caller ID number and unique call ID to a URL

 exten => 123,1,Curl(http://localhost/test.

 php,CallerID=${CALLERID}&UniqueCallID={$UNIQUEID})
 ; now use the NoOp() application to print the result to

 the Asterisk console

 exten => 123,2,NoOp(${CURL})

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

file:///C:/DOCUME~1/stelios/LOCALS~1/Temp/2/O'Reilly,.Asterisk.The.Future.of.Telephony.(2005).BBL.LotB.chm/0596009623/18051535.html

Cut() Assigns part of one variable to another variable

 Cut(newvar=varname,delimiter,fieldspec)

Cuts an existing variable named varname into several pieces, and assigns one or more of the pieces to a new variable named newvar.

The delimiter argument is the character on which to cut varname. It defaults to -.

fieldspec is the number of the field you want to assign to newvar. Fields are counted starting with 1. The fieldspec may be specified as a

range (with -) or a group of ranges and fields (with &). If more than one field is selected, Cut() leaves the delimiter between the fields.

Returns 0, or -1 on hangup or error.

 exten => 123,1,Set(TEST=123-456-7890)

 exten => 123,2,Cut(FIRST=TEST,-,2) ; gives us 456

 exten => 123,3,Cut(SECOND=TEST,,1-2) ; gives us 123-456

 exten => 123,4,Cut(THIRD=TEST,-,1&3) ; gives us 123-7890

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

file:///C:/DOCUME~1/stelios/LOCALS~1/Temp/2/O'Reilly,.Asterisk.The.Future.of.Telephony.(2005).BBL.LotB.chm/0596009623/18051535.html

DateTime() Says the specified time in a custom format

 DateTime([unixtime][,timezone[,format]])

Says the time unixtime, in the time zone specified by timezone, according to the format specified in format.

The unixtime argument is the time, in seconds, since January 1, 1970. It may be negative for dates before 1970. unixtime defaults to the

current time.

The timezone argument specifies the time zone of the specified time. See /usr/share/zoneinfo/ for a list of valid time zones. timezone

defaults to the current time zone of the Asterisk server.

The format argument specifies which parts of the date and time should be read. See voicemail.conf for formatting options. format defaults to

"ABdY 'digits/at' IMp".

Returns 0, or -1 on hangup.

 ; today's date and time

 exten => 123,1,DateTime()
 ; today's date

 exten => 124,1,DateTime(,,BdY)
 ; A specified date

 exten => 125,1,DateTime(871624800,,BdY)

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

file:///C:/DOCUME~1/stelios/LOCALS~1/Temp/2/O'Reilly,.Asterisk.The.Future.of.Telephony.(2005).BBL.LotB.chm/0596009623/18051535.html

DBdel() Deletes a key from the AstDB

 DBdel(family/key)

Deletes the key specified by key from the key family named family in the AstDB.

Always returns 0.

 exten => 123,1,DBput(test/name=John) ; add name to AstDB

 exten => 123,2,DBget(NAME=test/name) ; retrieve name from AstDB

 exten => 123,3,DBdel(test/name) ; delete from AstDB

See Also

DBdeltree(), DBput(), DBget()

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

DBdeltree() Deletes a family or key tree from the Asterisk database

 DBdeltree(family[/keytree])

Deletes the specified family or keytree from the AstDB.

Always returns 0.

 ; create a couple of entries in the AstDB

 exten => 123,1,DBput(test/blue)

 exten => 123,2,DBput(test/green)

 ; now delete the key family named test

 exten => 123,3,DBdeltree(test)

See Also

DBdel(), DBput(), DBget()

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

file:///C:/DOCUME~1/stelios/LOCALS~1/Temp/2/O'Reilly,.Asterisk.The.Future.of.Telephony.(2005).BBL.LotB.chm/0596009623/18051535.html

DBget() Retrieves a key from the AstDB

 DBget(varname=family/key)

Retrieves a key value from the Asterisk database and stores it in the variable specified by varname. If the requested key is not found,

control jumps to priority n+101 (where n is the current priority), if it exists.

Always returns 0.

 ; put an entry in the AstDB

 exten => 123,1,DBput(test/color=blue)

 ; now retrieve it and assign it to a variable

 exten => 123,2,DBget(COLOR=test/color)

See Also

DBdel(), DBdeltree(), DBput()

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

file:///C:/DOCUME~1/stelios/LOCALS~1/Temp/2/O'Reilly,.Asterisk.The.Future.of.Telephony.(2005).BBL.LotB.chm/0596009623/18051535.html

DBput() Stores a value in the AstDB

 DBput(family/key=value)

Stores the given value in the corresponding family and key in the AstDB.

Always returns 0.

 ; put an entry in the AstDB

 exten => 123,1,DBput(test/color=blue)

See Also

DBdel(), DBdeltree(), DBget()

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

file:///C:/DOCUME~1/stelios/LOCALS~1/Temp/2/O'Reilly,.Asterisk.The.Future.of.Telephony.(2005).BBL.LotB.chm/0596009623/18051535.html

DeadAGI() Executes an AGI-compliant script on a dead (hung-up) channel

 DeadAGI(program,args)

Executes an AGI-compliant program on a dead (hung-up) channel. AGI allows Asterisk to launch external programs written in almost any

language to control a telephony channel, play audio, read DTMF digits, and so on by communicating with the AGI protocol on STDIN and

STDOUT. The arguments specified by args will be passed to the program.

This application has been written specifically for dead channels, as the normal AGI interface doesn't work correctly if the channel has been

hung up.

Use the show agi command on the command-line interface to list all of the available AGI commands.

Returns -1 if the application requested a hangup, or 0 on a non-hangup exit.

 exten => h,1,DeadAGI(agi-test)

See Also

AGI(), FastAGI()

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

Dial() Attempts to connect channels

 Dial(tech/username:password@hostname/extension,ring-timeout,flags)

Allows you to connect together all of the various channel types.
[*]

 Dial() is the most important application in Asteriskyou'll want to read

through this section a few times.

[*] The fact that Asterisk will happily connect IAX, SIP, H.323, Skinny, PRI, FX(O/S), and anything else is amazing,

but possibly the most amazing of all is the Local channel. By allowing a single Dial() command to connect to multiple

Local channels, one Dial() event can trigger a multitude of completely independent and unique actions in other parts of

the dialplan. The power of this concept is truly revolutionary and has to be experienced to be believed.

Any valid channel type (such as SIP, IAX2, H.323, MGCP, Local, or Zap) is acceptable to Dial(), but the parameters that need to be

passed to each channel will depend on the information the channel type needs to do its job. For example, a SIP channel will need a

network address and user to connect to, whereas a Zap channel is going to want some sort of phone number.

When you specify a channel type that is network-based, you can pass the destination host (name or IP address), username, password,

and remote extension as part of the options to Dial(), or you can refer to the name of a channel entry in the appropriate .conf file; all the

required information will then need to be obtained from that file. The username and password can be replaced with the name contained

within square brackets ([]) of the channel configuration file. The hostname is optional.

This is a valid Dial statement:

 exten => s,1,Dial(SIP/sake:arigato@thathostoverthere.tld)

This is effectively identical:

 exten => s,1,Dial(SIP/some_SIP_friend)

but will work only if there is a channel defined in sip.conf as [some_SIP_friend], whose channel definition contains fromuser=sake,

password=arigato, and host=thathostoverthere.tld.

An extension number is often attached after the address information, like this:

 exten => s,1,Dial(IAX2/user:pass@otherend.com/500)

This asks the far end to connect the call to extension 500 in the context in which the channel arrived. The extension is not required by

Dial(), as the information in the remote end's channel configuration file may be used, or the remote server will pass the call to the s

extension in the context in which the call came in. Ultimately, the far end controls what happens to the callyou can only request a specific

treatment.

If no ring-timeout is specified, the channel will ring indefinitely. This is not always a bad thing, so don't feel you need to set itjust be aware

that "indefinitely" could mean a very long time. ring-timeout is specified in seconds. The ring timeout always follows the addressing

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

information, like this:

 exten => s,1,Dial(IAX2/user:pass@otherend.com/500,ring-timeout)

Much of the power of the Dial() application is in the flags. These are assigned following the addressing and timeout information, like this:

 exten => s,1,Dial(IAX2/user:pass@otherend.com/500,60,flags)

Here's something important to note: if you don't have a timeout specified, and you want to assign

flags, you must still assign a spot for the timeout. You do this by adding an extra comma in the spot

where the timeout would normally go, like this:

 exten => s,1,Dial(IAX2/user:pass@otherend.com/500,,flags)

The valid flags that may be used with the Dial() application are:

d

Allows the user to dial a one-digit extension while waiting for a call to be answered. The call will then exit to that extension

(either in the current context, if it exists, or in the context specified by ${EXITCONTEXT}).

t

Permits the called party to transfer a call by pressing the # key. Please note that if this option is used, reinvites are disabled, as

Asterisk needs to monitor the call to detect when the called party presses the # key.

T

Permits the caller to transfer a connected call by pressing the # key. Again, note that if this option is used, reinvites are

disabled, as Asterisk needs to monitor the call to detect when the caller presses the # key.

w

Permits the called user to start and stop recording the call audio to disk by pressing the automon sequence (as configured in

features.conf). If the variable TOUCH_MONITOR is set, its value will be passed as the arguments to the Monitor() application

when recording is started. If it is not set, the default values of WAV||m are passed to Monitor().

W

Permits the calling user to record the call audio to disk by pressing the automon sequence (as configured in features.conf).

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

f

Forces the Caller ID to be set as the extension of the line making or redirecting the outgoing call. This is done because some

PSTN providers will not allow the Caller ID to be set to anything other than that which is assigned to you. For example, if you

had a PRI, you would use the f flag to override any Caller ID set locally on a SIP phone.

o

Uses the Caller ID received on the inbound leg of the call for the Caller ID on the outbound leg of the call. This is useful if you

are accepting a call and then forwarding it to another destination, but you wish to pass the Caller ID from the inbound leg of the

call instead of overwriting it with the local Caller ID settings. This is the default behavior on Asterisk versions prior to 1.2.

r

Indicates ringing to the calling party, without passing any audio until the call is answered. This flag is not normally required to

indicate ringing, as Asterisk will signal ringing if a channel is actually being called.

m[class]

Provides music to the calling party until the call is answered. You may also optionally indicate the Music on Hold class.

M(x[^arg])

Executes the macro x upon the connection of a call, optionally passing arguments delimited by ̂ . The macro can also set the

MACRO_RESULT channel variable to one of the following:

ABORT

Hangs up both legs of the call

CONGESTION

Acts as if the line encountered congestion

BUSY

Acts as if the line was busy (goes to n+101, where n is the current priority)

CONTINUE

Hangs up the called party and continues on in the dialplan

GOTO:<context>^<extension>^<priority>

Transfers the call to the specified destination

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

h

Allows the called user to hang up the channel by pressing *.

H

Allows the calling user to hang up the channel by pressing *.

C

Resets the Call Detail Record for the call. Since the CDR time is set to when you Answer() the call, you may wish to reset the

CDR so the end user is not billed for the time prior to the Dial() application being invoked.

P[(x)]

Sets the privacy mode, optionally specifying x as the family/key value in the local AstDB. Useful for accepting calls based on a

blacklist (explicitly denying calls from listed numbers) or whitelist (explicitly accepting calls from listed numbers). See also

LookupBlacklist().

g

Goes on in the context if the destination channel hangs up.

G(context^ extension^ priority)

Transfers both parties to the specified destination, if the call is answered.

A(x)

Plays an announcement to the called party; x is the filename of the sound file to play as the announcement.

D([called][: calling])

Sends DTMF digits after the call has been answered, but before the call is bridged. The called parameter is passed to the called

party, and the calling parameter is passed to the calling party. Either parameter may be used individually.

L(x[: y][: z])

Limits the call to x milliseconds, warning when y milliseconds are left and repeating every z milliseconds until the limit is reached.

The x parameter is required; the y and z parameters are optional. The following special variables may also be set to provide

additional control:

LIMIT_PLAYAUDIO_CALLER=yes|no

Specifies whether to play sounds to the caller

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

LIMIT_PLAYAUDIO_CALLEE=yes|no

Specifies whether to play sounds to the callee

LIMIT_TIMEOUT_FILE= filename

Specifies which file to play when time is up

LIMIT_CONNECT_FILE= filename

Specifies which file to play when call begins

LIMIT_WARNING_FILE= filename

Specifies the file to play if the argument y is defined

n

Prevents jumping to priority n+101 (where n is the number of the current priority) if all channels are deemed busy.

A call may also be parked instead of being transferred (which is done with the t or T flags). Calls are normally parked by transferring them

to extension 700, but that's configurable in the features.conf file.

The Dial() application sets the following variables upon exiting:

DIALEDTIME

The total time elapsed from execution of Dial() until completion.

ANSWEREDTIME

The total time elapsed during the call.

DIALSTATUS

The status of the call, set as one of the following values:

CHANUNAVAIL

The channel is unavailable.

CONGESTION

The channel returned a congestion signal, usually indicating that it was unable to complete the connection.

NOANSWER

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

The channel did not answer in the time indicated by the ring-timeout option.

BUSY

The dialed channel is currently busy.

ANSWER

The channel answered the call.

CANCEL

The call was cancelled.

 ; dial a seven-digit number on Zap channel 4

 exten => 123,1,Dial(Zap/4/2317154)

 ; dial the same number, but this time only have it ring for

 10 seconds

 ; before continuing on with the dialplan

 exten => 124,1,Dial(Zap/4/2317154,10)
 exten => 124,2,Playback(im-sorry)

 exten => 124,3,Hangup()

 ; dial the same number, but this time with no timeout, and using the

 ; t, T, and m flags

 exten => 125,1,Dial(Zap/4/2317154,,tTm)

 ; dial extension 500 at a remote host (over the IAX protocol), using

 ; the specified username and password

 exten => 126,1,Dial(IAX/username:password@remotehost/500)

 ; dial a number, but limit the call to 5 minutes (300,000

 milliseconds)

 ; start warning the caller 4 minutes (240,000 milliseconds) into

 the call,

 ; and repeat the warning every 30 seconds (30,000 milliseconds)

 exten => 127,1,Dial(Zap/4/2317154,,L[300000:240000:30000])

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

file:///C:/DOCUME~1/stelios/LOCALS~1/Temp/2/O'Reilly,.Asterisk.The.Future.of.Telephony.(2005).BBL.LotB.chm/0596009623/18051535.html

DigitTimeout() Sets the maximum timeout between digits

 DigitTimeout(seconds)

Sets the maximum amount of time permitted between digit presses when the caller is entering an extension. If the time period specified by

seconds elapses after the caller enters a digit, the extension will be considered complete and will be interpreted.

Note that if a valid extension is typed in it will not have to time out to be tested, so typically at the expiration of this timeout, the extension

will be considered invalid (and thus control will be passed to the i extension, or, if it doesn't exist, the call will be terminated).

Always returns 0.

 exten => 123,1,DigitTimeout(3)
 exten => 123,2,Background(enter-ext-of-person)

 exten => i,1,Playaback(im-sorry)

 exten => i,2,Goto(123,1)

See Also

AbsoluteTimeout()

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

Directory() Provides a dialable directory of extensions

 Directory(vm-context[,dial-context[,options]])

Presents users with a directory of extensions from which they may select by name. The list of names and extensions is discovered from

voicemail.conf. The vm-context argument is required; it specifies the context of voicemail.conf to use.

The dial-context argument is the context to use for dialing the users, and it defaults to vm-context if unspecified. Currently, the only option

that can be specified in the options argument is f, which causes the directory to match based on the first name in voicemail.conf instead of

the last name.

If the user enters 0 (zero) and there exists an extension o (the lowercase letter o) in the current context, the call control will go to that

extension. Entering * will exit similarly, but to the a extension, much like Voicemail()'s behavior.

Returns 0 unless the user hangs up.

 exten => *,1,Directory(default,incoming)

 exten => #,1,Directory(default,incoming,f)

See Also

voicemail.conf

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

file:///C:/DOCUME~1/stelios/LOCALS~1/Temp/2/O'Reilly,.Asterisk.The.Future.of.Telephony.(2005).BBL.LotB.chm/0596009623/18051535.html

DISA() Direct Inward System Access: allows inbound callers to make outbound calls

 DISA(password[,context[,callerid[,mailbox[@vmcontext]]]])

 DISA(password-file[,callerid[,mailbox[@vmcontext]]])

Allows outside callers to obtain an "internal" system dial tone and to place calls from it as if they were placing calls from within the switch.

The user is given a dial tone, after which she should enter her passcode, followed by the pound sign (#). If the passcode is correct, the

user is then given a system dial tone on which a call may be placed.

Obviously, this type of access has serious security implications, and extreme care must be taken not

to compromise the security of your phone system.

The password argument is a numeric passcode that the user must enter to be able to make outbound calls. Using this syntax, all callers to

this extension will use the same password. To allow users to use DISA() without a password, put the string "no-password" instead of the

password.

The context argument specifies the context in which the user will be dialing. If no context is specified, the DISA() application defaults the

context to disa.

The callerid argument specifies a new Caller ID string that will be used on the outbound call.

The mailbox argument is the mailbox number (and optional voicemail context, vmcontext) of a voicemail box. The caller will hear a stuttered

dial tone if there are any new messages in the specified voicemail box.

Additionally, you may use an alternate syntax and pass the name of a global password file instead of the password and context

arguments. On each line, the file may contain either a passcode, or a passcode and context, separated by a pipe character (|). If a context

is not specified, the application defaults to the context named disa.

If the user login is successful, the application parses the dialed number in the specified context.

 ; allow outside callers to call 1-800 numbers, as long

 ; as they know the passcode. Set their Caller IDs to make

 ; it appear that they are dialing from within the company

 [incoming]

 exten => 123,1,DISA(4569,disa,"Company ABC" <(234) 123-4567>)

 [disa]

 exten => _1800NXXXXXX,1,Dial(Zap/4/${EXTEN})

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

file:///C:/DOCUME~1/stelios/LOCALS~1/Temp/2/O'Reilly,.Asterisk.The.Future.of.Telephony.(2005).BBL.LotB.chm/0596009623/18051535.html

DumpChan() Dumps information about the calling channel to the console

 DumpChan([min_verbose_level])

Displays information about the calling channel, as well as a listing of all channel variables. If min_verbose_level is specified, output is

displayed only when the verbosity level is currently set to that number or greater.

Always returns 0.

 exten => s,1,Answer()

 exten => s,2,DumpChan()
 exten => s,3,Background(enter-ext-of-person)

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

DUNDiLookup() Looks up a phone number using DUNDi

 DUNDiLookup(number[,context[,options]])

Looks up the given phone number in the context specified, or in the reserved e164 context if not specified. On completion, the variables

${DUNDTECH} and ${DUNDDEST} will contain the appropriate technology and destination to access the number. If no answer was found,

and the priority n+101 (where n is the current priority) exists, execution will continue at that priority.

The options argument is currently ignored.

Returns -1 if the channel is hung up during the lookup, or 0 otherwise.

 ; look up a number via DUNDi, and dial it

 exten => 123,1,DUNDiLookup(8885551212)
 exten => 123,2,Dial(${DUNDITECH}/${DUNDDEST})

 ; if DUNDi lookup fails, dial it on a Zap channel instead

 exten => 123,102,Dial(Zap/4/1888551212)

See Also

ENUMLookup()

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

file:///C:/DOCUME~1/stelios/LOCALS~1/Temp/2/O'Reilly,.Asterisk.The.Future.of.Telephony.(2005).BBL.LotB.chm/0596009623/18051535.html

EAGI()

See AGI().

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

file:///C:/DOCUME~1/stelios/LOCALS~1/Temp/2/O'Reilly,.Asterisk.The.Future.of.Telephony.(2005).BBL.LotB.chm/0596009623/18051535.html

Echo() Echoes inbound audio back to the caller

 Echo()

Echoes audio read from the channel back to the channel. This application is often used to test the latency and voice quality of a VoIP link.

The caller may press the # key to exit.

Returns 0 if the user exits with the # key, or -1 if the user hangs up.

 exten => 123,1,Echo()
 exten => 123,2,Playback(vm-goodbye)

See Also

Milliwatt()

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

EndWhile() Ends a while loop

 EndWhile()

Returns to the previously called While() application. See While() for a complete description of how to use a while loop.

 exten => 123,1,Set(COUNT=1)

 exten => 123,2,While($[${COUNT} < 5])
 exten => 123,3,SayNumber(${COUNT})

 exten => 123,4,EndWhile()

See Also

While(), GotoIf()

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

ENUMLookup() Looks up a phone number in ENUM

 ENUMLookup(number)

Looks up the telephone number specified by number via ENUM, and sets the variable ENUM with the result. For VoIP URIs, this variable

will look like TECHNOLOGY/URI.

A good SIP, H.323, IAX, or IAX2 entry will result in normal-priority handling, whereas a good TEL entry will increase the priority by 51 (if

the priority exists). If the lookup was not successful and there exists a priority n+101 (where n is the current priority), that priority will be

taken next.

Currently, the only recognized ENUM services are SIP, H.323, IAX, IAX2, and TEL.

Returns -1 on hangup or 0 on completion, regardless of whether the lookup was successful.

 ; look up the phone number

 exten => 123,1,ENUMLookup(8885551212)
 ; go to priority 2 on VoIP record

 exten => 123,2,Dial(${ENUM})

 ; otherwise, go to priority 52 on TEL record

 exten => 123,52,Dial(Zap4/${ENUM})

 ; otherwise, go to priority 102 because the lookup failed

 exten => 123,102,Playback(im-sorry)

See Also

DUNDiLookup()

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

Eval() Evaluates any Asterisk variables located within a string

 Eval(newvar=string)

Processes the given string and evaluates any variables contained in the string. The resulting value is assigned to the variable newvar.

This application is used in situations where a string is used in the dialplan, but any variables contained within it need to be evaluated first.

This is often the case when the string is retrieved from a database or other external source.

 ; go through some convoluted steps to create a string that contains

 ; the unparsed variable ${UNIQUEID}

 exten => 123,1,Set(ONE=\$)

 exten => 123,2,Set(TWO=$[{UNIQUEID}])

 ; print the values to the console, to make sure it hasn't been parsed

 exten => 123,3,NoOp(${ONE}${TWO})

 ; now evaluate the variables in the string

 exten => 123,4,Eval(TEST=${ONE}${TWO})
 ; print the result to the console

 exten => 123,5,NoOp(${TEST})

See Also

Exec(), ExecIf()

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

file:///C:/DOCUME~1/stelios/LOCALS~1/Temp/2/O'Reilly,.Asterisk.The.Future.of.Telephony.(2005).BBL.LotB.chm/0596009623/18051535.html

Exec() Executes an Asterisk application dynamically

 Exec(appname(arguments))

Allows an arbitrary application to be invoked even when not hard-coded into the dialplan. Returns whatever value the Asterisk application

returns, or -2 when the called application cannot be found. The arguments are passed to the called application.

This application allows you to dynamically call applications by pulling them from a database or other external source.

 exten => 123,1,Set(MYAPP=SayDigits(12345))

 exten => 123,2,Exec(${MYAPP})

See Also

Eval(), ExecIf()

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

ExecIf() Conditionally executes an Asterisk application

 ExecIf(expression,application,arguments)

If expression is true, executes the given application with arguments as its arguments, and returns the result. For more information on

standard Asterisk expressions, see Chapter 6 or the README.variables file in the doc/ subdirectory of the Asterisk source.

If expression is false, execution continues at the next priority.

 exten => 123,1,ExecIf($[${CALLERIDNUM} = 101],SayDigits,12345)
 exten => 123,2,SayDigits(6789)

See Also

Exec(), Eval()

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

FastAGI() Executes an AGI-compliant script across a network connection

 FastAGI(agi://hostname[:port][/script],args)

Executes an AGI-compliant program across the network. This application is very similar to AGI(), except that it calls a specially written

FastAGI script across a network connection. The main purposes for using FastAGI are to offload CPU-intensive AGI scripts to remote

servers and to help reduce AGI script startup times (the FastAGI program is already running before Asterisk connects to it).

FastAGI() tries to connect directly to the running FastAGI program, which must already be listening for connections on the specified port on

the server specified by hostname. If port is not specified, it defaults to port 4573. If script is specified, it is passed to the FastAGI program as

the agi_network_script variable. The arguments specified by args will be passed to the program.

See agi/fastagi-test in the Asterisk source directory for a sample FastAGI script. This should serve as a

good roadmap for writing your own FastAGI programs.

Returns -1 if the application requested a hangup, or 0 on a non-hangup exit.

 ; connect to the sample fastagi-test program, which must already be running

 ; on the local machine

 exten => 123,1,Answer()

 exten => 123,2,FastAGI(agi://localhost)

 ; connect to a FastAGI script on a host named "calvin" on port 8000, and

 pass along

 ; a script name of "testing", with the argument "12345"

 exten => 124,1,Answer()

 exten => 124,2,FastAGI(agi://calvin:8000/testing,12345)

See Also

AGI(), DeadAGI()

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

Festival() Uses the Festival text-to-speech engine to read text to the caller

 Festival(text[,intkeys])

Connects to the locally running Festival server, sends it the text specified by text, and plays the resulting sound file back to the user. This

application allows the caller to press a key (specified by intkeys) to immediately stop the playback and return the value of intkeys. If intkeys

is set to any, Festival() will send control of the channel to the extension entered by the user.

See Chapter 10 for more in-depth information on using Festival with Asterisk.

You must start the Festival server before starting Asterisk, and you must use the Answer() application to answer the channel before

calling Festival().

For more information on using Festival from within Asterisk, see the README.festival file located in

the contrib/ subdirectory of the Asterisk source.

 exten => 123,1,Answer()

 exten => 123,2,Festival('This is sample speech from Festival',#)

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

file:///C:/DOCUME~1/stelios/LOCALS~1/Temp/2/O'Reilly,.Asterisk.The.Future.of.Telephony.(2005).BBL.LotB.chm/0596009623/18051535.html

Flash() Flashes a Zap trunk

 Flash()

Sends a flash on a Zap channel. This is only a hack for people who want to perform transfers and other actions that require a flash via an

AGI script. It is generally quite useless otherwise.

Returns 0 on success or -1 if this is not a Zap trunk.

 exten => 123,1,Flash()

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

file:///C:/DOCUME~1/stelios/LOCALS~1/Temp/2/O'Reilly,.Asterisk.The.Future.of.Telephony.(2005).BBL.LotB.chm/0596009623/18051535.html

ForkCDR() Creates an additional CDR from the current call

 ForkCDR()

Creates an additional Call Detail Record for the remainder of the current call.

This application is often used in calling-card applications to distinguish the inbound call (the original CDR) from the billable call time (the

second CDR).

 exten => 123,1,Answer()

 exten => 123,2,ForkCDR()
 exten => 123,3,Playback(tt-monkeys)

 exten => 123,4,Hangup()

See Also

AppendCDRUserField(), NoCDR(), ResetCDR(), SetCDRUserField()

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

GetCPEID() Gets the CPE ID from an ADSI-capable telephone

 GetCPEID()

Obtains the CPE ID and other information and displays it on the Asterisk console. This information is often needed in order to properly set

up zapata.conf for on-hook operations with ADSI-capable telephones.

Returns -1 on hangup only.

 ; use this extension to get the necessary information to set up ADSI

 ; telephones

 exten => 123,1,GetCPEID()

See Also

ADSIProg(), adsi.conf, zapata.conf

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

file:///C:/DOCUME~1/stelios/LOCALS~1/Temp/2/O'Reilly,.Asterisk.The.Future.of.Telephony.(2005).BBL.LotB.chm/0596009623/18051535.html

GetGroupCount() Counts the number of members in a particular group

 GetGroupCount([group][@category])

Counts the members in the given group (and optional category) and sets the ${GROUPCOUNT} variable to the corresponding value. If no

group is specified, the current channel's group is used.

Use SetGroup() to assign a call as a member of a particular group.

Always returns 0.

 ; say the number of callers in the tech-support group

 exten => 123,1,GetGroupCount(tech-support)
 exten => 123,2,SayNumber(${GROUPCOUNT})

See Also

CheckGroup(), GetGroupMatchCount(), SetGroup()

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

GetGroupMatchCount(

)

Counts the number of members in all groups matching the

specified pattern

 GetGroupMatchCount(groupmatch[@category])

Counts the number of members in all groups matching the regular expression specified by groupmatch. The result is stored in the

${GROUPCOUNT} variable.

Note that standard regular expressions are used in the groupmatch argument.

Always returns 0.

 ; get the count of members in any group that starts with tech

 exten => 123,1,GetGroupMatchCount(tech.*)
 exten => 123,2,SayNumber($GROUPMATCH)

See Also

CheckGroup(), GetGroupCount(), SetGroup()

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

file:///C:/DOCUME~1/stelios/LOCALS~1/Temp/2/O'Reilly,.Asterisk.The.Future.of.Telephony.(2005).BBL.LotB.chm/0596009623/18051535.html

Goto() Sends the call to the specified priority, extension, and context

 Goto([[context,]extension,]priority)

 Goto(named_priority)

Sends control of the current channel to the specified priority, optionally setting the destination extension and context.

Optionally, you can use the application to go to the named priority specified by the named_priority argument. Named priorities only work

within the current extension.

Always returns 0, even if the given context, extension, or priority is invalid.

 exten => 123,1,Answer()

 exten => 123,2,Set(COUNT=1)

 exten => 123,3,SayNumber(${COUNT})

 exten => 123,4,Set(COUNT=$[${COUNT} + 1])

 exten => 123,5,Goto(3)

 ; same as above, but using a named priority

 exten => 124,1,Answer()

 exten => 124,2,Set(COUNT=1)

 exten => 124,3(repeat),SayNumber(${COUNT})

 exten => 124,4,Set(COUNT=$[${COUNT} + 1])

 exten => 124,5,Goto(repeat)

See Also

GotoIf(), GotoIfTime()

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

file:///C:/DOCUME~1/stelios/LOCALS~1/Temp/2/O'Reilly,.Asterisk.The.Future.of.Telephony.(2005).BBL.LotB.chm/0596009623/18051535.html

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

GotoIf() Conditionally goes to the specified priority

 GotoIf(condition?label1:label2)

Sends the call to label1 if condition is true or to label2 if condition is false. Either label1 or label2 may be omitted (in that case, we just don't

take the particular branch), but not both.

A label can be any one of the following:

A priority, such as 10

An extension and a priority, such as 123,10

A context, extension, and priority, such as incoming,123,10

A named priority within the same extension, such as passed

Each type of label is explained in the example below.

 [globals]

 ; set TEST to something else besides 101 to see what GotoIf()

 ; does when the condition is false

 TEST=101

 ;

 [incoming]

 ; set a variable

 ; go to priority 10 if ${TEST} is 101, otherwise go to priority 20

 exten => 123,1,GotoIf($[${TEST} = 101]?10:20)
 exten => 123,10,Playback(the-monkeys-twice)

 exten => 123,20,Playback(tt-somethingwrong)

 ;

 ; same thing as above, but this time we'll specify an extension

 ; and a priority for each label

 exten => 124,1,GotoIf($[${TEST} = 101]?123,10:123,20)
 ;

 ; same thing as above, but these labels have a context, extension, and

 ; priority

 exten => 125,1,GotoIf($[${TEST} = 101]?incoming,123,10:incoming,123,20)
 ;

 ; same thing as above, but this time we'll go to named priorities

 exten => 126,1,GotoIf($[${TEST} = 101]?passed:failed)
 exten => 126,15(passed),Playback(the-monkeys-twice)

 exten => 126,25(failed),Playback(the-monkeys-twice)

See Also

Goto(), GotoIfTime()

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

GotoIfTime() Conditionally branches, depending on the time and day

 GotoIfTime(times,days_of_week,days_of_month,months?label)

Branches to the specified extension, if the current time matches the specified time. Each of the elements may be specified either as * (for

always) or as a range.

The arguments to this application are:

times

Time ranges, in 24-hour format

days_of_week

Days of the week (mon, tue, wed, thu, fri, sat, sun)

days_of_month

Days of the month (1-31)

months

Months (jan, feb, mar, apr, etc.)

 ; If we're open, then go to the open context

 ; We're open from 9am to 6pm Monday through Friday

 exten => s,1,GotoIfTime(09:00-17:59,mon-fri,*,*?open,s,1)

 ; We're also open from 9am to noon on Saturday

 exten => s,2,GotoIfTime(09:00-11:59,sat,*,*?open,s,1)

 ; Otherwise, we're closed

 exten => s,3,Goto(closed,s,1)

See Also

GotoIf()

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

Hangup() Unconditionally hangs up the current channel

 Hangup()

Unconditionally hangs up the current channel.

Always returns -1.

 exten => 123,1,Answer()

 exten => 123,2,Playback(im-sorry)

 exten => 123,3,Hangup()

See Also

Answer()

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

HasNewVoicemail()
Conditionally branches if there is new voicemail in the indicated

voicemail box

 HasNewVoicemail(vmbox[@context][:folder][,varname])

Similar to HasVoicemail(). This application branches to priority n+101 (where n is the current priority) if there is new (unheard) voicemail in

the voicemail box indicated by vmbox. The context argument corresponds to the voicemail context, and folder corresponds to a voicemail

folder. If the voicemail folder is not specified, it defaults to the INBOX folder. If the varname argument is present, HasNewVoicemail()

assigns the number of messages in the specified folder to that variable.

 ; check to see if there's unheard voicemail in INBOX of mailbox 123

 ; in the default voicemail context

 exten => 123,1,Answer()

 exten => 123,2,HasNewVoicemail(123@default,COUNT)
 exten => 123,3,Playback(vm-youhave)

 exten => 123,4,Playback(vm-no)

 exten => 123,5,Playback(vm-messages)

 exten => 123,103,Playback(vm-youhave)

 exten => 123,104,SayNumber($COUNT)

 exten => 123,105,Playback(vm-messages)

See Also

HasVoicemail(), MailboxExists()

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

file:///C:/DOCUME~1/stelios/LOCALS~1/Temp/2/O'Reilly,.Asterisk.The.Future.of.Telephony.(2005).BBL.LotB.chm/0596009623/18051535.html

HasVoicemail() Conditionally branches if there is voicemail in the indicated voicemail box

 HasVoicemail(vmbox[@context][:folder][|varname])

Branches to priority n+101 (where n is the current priority) if there is voicemail in the voicemail box indicated by vmbox. The context

argument corresponds to the voicemail context, and folder corresponds to a voicemail folder. If the folder is not specified, it defaults to the

INBOX folder. If the varname argument is passed, this application assigns the number of messages in the specified folder to that variable.

 ; check to see if there's any voicemail at all in INBOX of mailbox 123

 ; in the default voicemail context

 exten => 123,1,Answer()

 exten => 123,2,HasVoicemail(123@default,COUNT)
 exten => 123,3,Playback(vm-youhave)

 exten => 123,4,Playback(vm-no)

 exten => 123,5,Playback(vm-messages)

 exten => 123,103,Playback(vm-youhave)

 exten => 123,104,SayNumber($COUNT)

 exten => 123,105,Playback(vm-messages)

See Also

HasNewVoicemail(), MailboxExists()

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

IAX2Provision() Provisions a calling IAXy device

 IAX2Provision([template])

Provisions a calling IAXy device (assuming that the calling entity is an IAXy) with the given template. If no template is specified, the default

template is used. IAXy provisioning templates are defined in the iaxprov.conf configuration file.

Returns -1 on error or 0 on success.

 ; provision IAXy devices with the default template when they dial this

 extension

 exten => 123,1,IAX2Provision(default)

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

ImportVar() Sets a variable based on a channel variable from a different channel

 ImportVar(newvar=channel,variable)

Sets variable newvar to variable as evaluated on the specified channel (instead of the current channel). If newvar is prefixed with _, single

inheritance is assumed. If prefixed with _ _, infinite inheritance is assumed.

 ; read the Caller ID information from channel Zap/1

 exten => 123,1,Answer()

 exten => 123,1,ImportVar(cidinfo=Zap/1,CALLERID)

See Also

Set()

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

LookupBlacklist()
Performs a lookup of a Caller ID name/number from the blacklist

database

 LookupBlacklist()

Looks up the Caller ID number on the active channel in the Asterisk database (family blacklist). If the number is found, and if there exists a

priority n+101 (where n is the priority of the current instance), the channel will be set up to continue at that priority level. Otherwise, the

application returns 0. If no Caller ID was received on the channel, it does nothing.

To add to the blacklist from the Asterisk CLI, type database put blacklist name/number.

 ; send blacklisted numbers to an endless loop

 ; otherwise, dial the number defined by the variable ${JOHN}

 exten => s,1,Answer()

 exten => s,2,LookupBlacklist()
 exten => s,3,Dial(${JOHN})

 exten => s,103,Playback(tt-allbusy)

 exten => s,104,Wait(10)

 exten => s,105,Goto(103)

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

file:///C:/DOCUME~1/stelios/LOCALS~1/Temp/2/O'Reilly,.Asterisk.The.Future.of.Telephony.(2005).BBL.LotB.chm/0596009623/18051535.html

LookupCIDName() Performs a lookup of a Caller ID name from the AstDB

 LookupCIDName()

Uses the Caller ID number on the active channel to retrieve the Caller ID name from the AstDB (family cidname). This application does

nothing if no Caller"*ID was received on the channel. This is useful if you do not subscribe to Caller ID name delivery, or if you want to

change the Caller ID names on some incoming calls.

Always returns 0.

 ; look up the Caller ID information from the AstDB, and pass it along

 ; to Jane's phone

 exten => 123,1,Answer()

 exten => 123,2,LookupCIDName()
 exten => 123,3,Dial(SIP/Jane)

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

Macro() Calls a previously defined macro

 Macro(macroname,arg1,arg2...)

Executes a macro defined in the context named macro-macroname, jumping to the s extension of that context and executing each step,

then returning when the steps end.

The calling extension, context, and priority are stored in ${MACRO_EXTEN}, ${MACRO_CONTEXT}, and ${MACRO_PRIORITY},

respectively. Arguments arg1, arg2, etc. become ${ARG1}, ${ARG2}, etc. in the macro context.

Macro() returns -1 if any step in the macro returns -1, and 0 otherwise. If ${MACRO_OFFSET} is set at termination, this application will

attempt to continue at priority MACRO_OFFSET+n+1 if such a step exists, and at n+1 otherwise. (In both cases, n stands for the current

priority.)

If you call the Goto() application inside of the macro, the macro will terminate and control will go to the destination of the Goto().

 ; define a macro to count down from the specified value

 [macro-countdown]

 exten => s,1,Set(COUNT=${ARG1})

 exten => s,2,While($[${COUNT} > 0])

 exten => s,3,SayNumber(${COUNT})

 exten => s,4,Set(COUNT=$[${COUNT} - 1])

 exten => s,5,EndWhile()

 ; call our macro with two different values

 [example]

 exten => 123,1,Macro(countdown,10)

 exten => 124,1,Macro(countdown,5)

See Also

Goto(), Chapter 6

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

file:///C:/DOCUME~1/stelios/LOCALS~1/Temp/2/O'Reilly,.Asterisk.The.Future.of.Telephony.(2005).BBL.LotB.chm/0596009623/18051535.html

MailboxExists() Conditionally branches if the specified voicemail box exists

 MailboxExists(mailbox[@context])

Conditionally branches to priority n+101 (where n is the current priority) if the voicemail box specified by the mailbox argument exists. You

may pass a voicemail context if the mailbox is not in the default voicemail context.

 exten => 123,1,Answer()

 exten => 123,2,MailboxExists(123@default)
 exten => 123,3,Playback(im-sorry)

 exten => 123,103,Voicemail(u123)

See Also

HasVoicemail(), HasNewVoicemail()

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

Math() Performs mathematical operations and returns the result

 Math(returnvar,number1 operator number2)

Performs a floating-point calculation on number1 to number2, and assigns the result to the variable named returnvar. Valid operators are +,

-, /, *, %, <, >, >=, <=, and ==, and they behave as their C equivalents.

Always returns 0.

 ; add two numbers, and say the result

 exten => 123,1,Math(SUM,2+2)
 exten => 123,2,SayNumber(${SUM})

 ; subtract two numbers, and say the difference

 exten => 124,1,Math(DIFFERENCE,5-3)
 exten => 124,2,SayNumber(${DIFFERENCE})

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

file:///C:/DOCUME~1/stelios/LOCALS~1/Temp/2/O'Reilly,.Asterisk.The.Future.of.Telephony.(2005).BBL.LotB.chm/0596009623/18051535.html

MeetMe() Puts the caller into a MeetMe conference bridge

 MeetMe([confno][,[options][,pin])

Joins the caller on the current channel into the MeetMe conference specified by the confno argument. If the conference number is omitted,

the user will be prompted to enter one.

The options string may contain zero or more of the characters in the following list.

m

Sets monitor-only mode (listen only, no talking).

t

Sets talk-only mode (talk only, no listening).

T

Sets talker detection (sent to Manager interface and MeetMe list).

i

Announces user join/leave.

p

Allows user to exit the conference by pressing #.

X

Allows user to exit the conference by entering a valid single-digit extension (set via the variable ${MEETME_EXIT_CONTEXT}),

or the number of an extension in the current context if that variable is not defined.

d

Dynamically adds conference.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

D

Dynamically adds conference, prompting for a PIN.

e

Selects an empty conference.

E

Selects an empty pinless conference.

v

Sets video mode.

r

Records conference (as ${MEETME_RECORDINGFILE} using format ${MEETME_RECORDINGFORMAT}). The default

filename is meetme-conf-rec-${CONFNO}-${UNIQUEID} and the default format is .wav.

q

Sets quiet mode (don't play enter/leave sounds).

M

Enables Music on Hold when the conference has a single caller.

x

Closes the conference when the last marked user exits.

w

Waits until the marked user enters the conference.

b

Runs the AGI script specified in ${MEETME_AGI_BACKGROUND}. Default: conf-background.agi. (Note: this does not work

with non-Zap channels in the same conference.)

s

Presents the menu (user or admin) when * is received ("send" to menu).

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

a

Sets admin mode.

A

Sets marked mode.

If the pin argument is passed, the caller must enter that pin number to successfully enter the conference.

MeetMe() returns 0 if the caller presses # to exit (see option p); otherwise, it returns -1.

A suitable Zaptel timing interface must be installed for MeetMe conferencing to work.

 exten => 123,1,Answer()

 ; add the caller to conference number 501 with pin 1234

 exten => 123,2,MeetMe(501,DpM,1234)

See Also

MeetMeAdmin(), MeetMeCount()

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

file:///C:/DOCUME~1/stelios/LOCALS~1/Temp/2/O'Reilly,.Asterisk.The.Future.of.Telephony.(2005).BBL.LotB.chm/0596009623/18051535.html

MeetMeAdmin() Performs MeetMe conference administration

 MeetMeAdmin(confno,command[,pin])

Runs the specified MeetMe administration command on the specified conference. The command may be one of the following (note that the

pin argument is used only for the k option):

K

Kicks all users out of the conference

k

Kicks one user (with the specified PIN as the third argument) out of the conference

e

Ejects the last user that joined

L

Locks the conference

l

Unlocks the conference

M

Mutes the conference

m

Unmutes the conference

N

Mutes the entire conference (except admin)

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

n

Unmutes the entire conference (except admin)

 ; mute conference 501

 exten => 123,1,MeetMeAdmin(501,M)

 ; kick user with PIN number 1234 from conference 501

 exten => 124,1,MeetMeAdmin(501,k,1234)

See Also

MeetMe(), MeetMeCount()

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

MeetMeCount() Counts the number of participants in a MeetMe conference

 MeetMeCount(confno[,variable])

Plays back the number of users in the MeetMe conference identified by confno. If a variable is specified by the variable argument, playback

will be skipped and the count will be assigned to variable.

Returns 0 on success or -1 on a hangup.

 ; count the number of users in conference 501, and assign that number

 to ${COUNT}

 exten => 123,1,MeetMeCount(501,COUNT)

See Also

MeetMe(), MeetMeAdmin()

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

file:///C:/DOCUME~1/stelios/LOCALS~1/Temp/2/O'Reilly,.Asterisk.The.Future.of.Telephony.(2005).BBL.LotB.chm/0596009623/18051535.html

Milliwatt() Generates a 1,000-Hz tone

 Milliwatt()

Generates a constant 1,000-Hz tone at 0 dbm (mu-law). This application is often used for testing the audio properties of a particular channel.

 ; generate a milliwatt tone for testing

 exten => 123,1,Milliwatt()

See Also

Echo()

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

Monitor() Monitors (records) the audio on the current channel

 Monitor([file_format[:urlbase][,fname_base][,options]])

Starts monitoring a channel. The channel's input and output voice packets are logged to files until the channel hangs up or monitoring is

stopped by the StopMonitor() application.

Monitor() takes the following arguments:

file_format

Specifies the file format. If not set, defaults to wav.

fname_base

If set, changes the filename used to the one specified.

options

One of two options can be specified:

m

When the recording ends, mix the two leg files into one and delete the original leg files. If the variable ${MONITOR_EXEC} is

set, the application referenced in it will be executed instead of soxmix, and the raw leg files will not be deleted automatically.

soxmix (or ${MONITOR_EXEC}) is handed three arguments: the two leg files and the filename for the target mixed file, which is

the same as the leg filenames but without the in/out designator. If ${MONITOR_EXEC_ARGS} is set, the contents will be

passed on as additional arguments to ${MONITOR_EXEC}. Both ${MONITOR_EXEC} and the m flag can be set from the

administrator interface

b

Don't begin recording unless a call is bridged to another channel.

Returns -1 if monitor files can't be opened or if the channel is already monitored; otherwise, returns 0.

 exten => 123,1,Answer()

 ; record the current channel, and mix the audio channels at the end of

 ; recording

 exten => 123,2,Monitor(wav,monitor_test,mb)
 exten => 123,3,SayDigits(12345678901234567890)

 exten => 123,4,StopMonitor()

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

See Also

ChangeMonitor(), StopMonitor()

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

file:///C:/DOCUME~1/stelios/LOCALS~1/Temp/2/O'Reilly,.Asterisk.The.Future.of.Telephony.(2005).BBL.LotB.chm/0596009623/18051535.html

MP3Player() Plays an MP3 file or stream

 MP3Player(location)

Uses the mpg123 program to play the given location to the caller. The specified location can be either a filename or a valid URL. The caller

can exit by pressing any key.

The correct version of mpg123 must be installed for this application to work properly. Asterisk

currently works best with mpg123-0.59r.

Returns -1 on hangup; otherwise, returns 0.

 exten => 123,1,Answer()

 exten => 123,2,MP3Player(test.mp3)

 exten => 123,1,Answer()

 exten => 123,2,MP3Player(http://server.tld/test.mp3)

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

MusicOnHold() Plays Music on Hold indefinitely

 MusicOnHold(class)

Plays hold music specified by class, as configured in musiconhold.conf. If omitted, the default music class for the channel will be used. You

can use the SetMusicOnHold() application to set the default music class for the channel.

Returns -1 on hangup; otherwise, does not return.

 ; transfer telemarketers to this extension to keep them busy

 exten => 123,1,Answer()

 exten => 123,2,Playback(tt-allbusy)

 exten => 123,3,MusicOnHold(default)

See Also

SetMusicOnHold(), WaitMusicOnHold()

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

file:///C:/DOCUME~1/stelios/LOCALS~1/Temp/2/O'Reilly,.Asterisk.The.Future.of.Telephony.(2005).BBL.LotB.chm/0596009623/18051535.html

NBScat() Plays an NBS local stream

 NBScat()

Uses the nbscat8k program to listen to the local Network Broadcast Sound (NBS) stream. (For more information, see the nbs module in

Digium's CVS server.) The caller can exit by pressing any key.

Returns -1 on hangup; otherwise, does not return.

 exten => 123,1,Answer()

 exten => 123,2,NBScat()

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

file:///C:/DOCUME~1/stelios/LOCALS~1/Temp/2/O'Reilly,.Asterisk.The.Future.of.Telephony.(2005).BBL.LotB.chm/0596009623/18051535.html

NoCDR() Disables Call Detail Records for the current call

 NoCDR()

Disables CDRs for the current call.

 ; don't log calls to 555-1212

 exten => 5551212,1,Answer()

 exten => 5551212,2,NoCDR()
 exten => 5551212,3,Dial(Zap/4/5551212)

See Also

AppendCDRUserField(), ForkCDR(), SetCDRUserField

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

NoOp() Does nothing

 NoOp(text)

Does nothingthis application is simply a placeholder. As a side effect, the application evaluates text and prints the result to the Asterisk

command-line interface, which can be useful for debugging.

You don't have to place quotes around the text. If quotes are placed within the brackets, they will

show up on the console.

 exten => 123,1,NoOp(CallerID is ${CALLERID})

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

Park() Parks the current call

 Park(exten)

Parks the current call (typically in combination with a supervised transfer to determine the parking space number). This application is

always registered internally and does not need to be explicitly added into the dialplan, although you should include the parkedcalls context.

Parking configuration is set in features.conf.

 ; park the caller in parking space 701

 include => parkedcalls

 exten => 123,1,Answer()

 exten => 123,2,Park(701)

See Also

ParkAndAnnounce, ParkedCall()

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

file:///C:/DOCUME~1/stelios/LOCALS~1/Temp/2/O'Reilly,.Asterisk.The.Future.of.Telephony.(2005).BBL.LotB.chm/0596009623/18051535.html

ParkAndAnnounce()
Parks the current call and announces the call over the specified

channel

 ParkAndAnnounce(template,timeout,channel[,return_context])

Parks the current call in the parking lot and announces the call over the specified channel. The template is a colon-separated list of files to

announce; the word PARKED is replaced with the parking space number of the call. The timeout argument is the time in seconds before

the call returns to the return_context. The channel argument is the channel to call to make the announcement. Console/dsp calls the

console. The return_context argument is a GoTo()-style label to jump the call back into after timeout, which defaults to n+1 (where n is the

current priority) in the return_context context.

 include => parkedcalls

 exten => 123,1,Answer()

 exten => 123,2,ParkAndAnnounce(vm-youhave:a:pbx-transfer:at:

 vm-extension:PARKED,120,

 Console/dsp)
 exten => 123,3,Playback(vm-nobodyavail)

 exten => 123,4,Playback(vm-goodbye)

 exten => 123,5,Hangup()

See Also

Park(), ParkedCall()

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

file:///C:/DOCUME~1/stelios/LOCALS~1/Temp/2/O'Reilly,.Asterisk.The.Future.of.Telephony.(2005).BBL.LotB.chm/0596009623/18051535.html

ParkedCall() Answers a parked call

 ParkedCall(exten)

Connects the caller to the parked call in the parking space identified by exten. This application is always registered internally and does not

need to be explicitly added into the dialplan, although you should include the parkedcalls context.

 ; pick up the call parked in parking space 701

 exten => 123,1,Answer()

 exten => 123,2,ParkedCall(701)

See Also

Park(), ParkAndAnnounce()

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

PauseQueueMember() Temporarily blocks a queue member from receiving calls

 PauseQueueMember([queuename],interface)

Pauses (blocks calls for) a queue member. The specified interface will be paused in the given queue. This prevents any calls from being

sent from the queue to the interface until it is unpaused by the UnpauseQueueMember() application or the Manager interface. If no

queuename is given, the interface is paused in every queue it is a member of. If the interface is not in the named queue, or if no queue is

given and the interface is not in any queue, it will jump to priority n+101 (where n is the current priority), if it exists.

Returns -1 if the interface is not found and no extension to jump to exists; otherwise, returns 0.

 exten => 123,1,PauseQueueMember(,SIP/300)
 exten => 124,1,UnpauseQueueMember(,SIP/300)

See Also

UnpauseQueueMember()

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

Playback() Plays the specified audio file to the caller

 Playback(filename[,options])

Plays back a given filename to the caller. The filename should not contain the file extension, as Asterisk will automatically choose the

audio file with the lowest conversion cost. Zero or more options may also be included. The skip option causes the playback of the message

to be skipped if the channel is not in the "up" state (i.e., it hasn't yet been answered). If skip is specified, the application will return

immediately should the channel not be off-hook. Otherwise, unless noanswer is specified, the channel will be answered before the sound

file is played. (Not all channels support playing messages while still on-hook.) Returns -1 if the channel was hung up. If the file does not

exist, jumps to priority n+101 (where n is the current priority), if it exists.

 exten => 123,1,Answer()

 exten => 123,2,Playback(tt-weasels)

See Also

Background()

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

file:///C:/DOCUME~1/stelios/LOCALS~1/Temp/2/O'Reilly,.Asterisk.The.Future.of.Telephony.(2005).BBL.LotB.chm/0596009623/18051535.html

Playtones() Plays a tone list

 Playtones(tonelist)

Plays a tone list. Execution immediately continues with the next step, while the tones continue to play. The tonelist is either the tone name

defined in the indications.conf configuration file, or a specified list of frequencies and durations. See indications.conf for a description of the

specification of a tone list.

Use the StopPlaytones() application to stop the tones playing.

 ; play a busy signal for two seconds, and then a congestion tone

 for two seconds

 exten => 123,1,Playtones(busy)
 exten => 123,2,Wait(2)

 exten => 123,3,StopPlaytones()

 exten => 123,4,Playtones(congestion)
 exten => 123,5,Wait(2)

 exten => 123,6,StopPlaytones()

 exten => 123,7,Goto(1)

See Also

StopPlaytones(), indications.conf, Busy(), Congestion(), Progress(), Ringing()

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

Prefix()
Prepends the specified digits to the current extension and goes to the resulting

extension

 Prefix(digits)

Prefixes the current extension with the digit string specified by digits and continues processing at the next priority for the new extension.

So, for example, if priority 1 of extension 1212 is Prefix(555), 555 will be prepended to 1212 and the next step executed will be priority 2 of

extension 5551212. If you switch into an extension that has no priority n+1 (where n is the current priority), Asterisk will treat it as though

the user dialed an invalid extension.

Always returns 0.

 exten => 1212,1,Prefix(555)
 exten => 5551212,2,SayDigits(${EXTEN})

See Also

Suffix()

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

PrivacyManager(

)

Requires a caller to enter his or her phone number, if no Caller ID

information is received

 PrivacyManager()

If no Caller ID is received, answers the channel and asks the caller to enter his or her phone number. By default, the caller is given three

attempts. If after three attempts the caller has not entered at least a 10-digit phone number, and if there exists a priority n+101 (where n is

the current priority), the channel will be set up to continue at that priority level. Otherwise, it returns 0. If Caller ID was received on the

channel, PrivacyManager() does nothing..

The privacy.conf configuration file changes the functionality of the PrivacyManger() application. It contains the following two lines:

maxretries

Specifies the maximum number of attempts the caller is allowed to input a Caller ID number (default: 3)

minlength

Specifies the minimum allowable digits in the input Caller ID number (default: 10)

 exten => 123,1,Answer()

 exten => 123,2,PrivacyManager()

 exten => 123,3,Dial(Zap/1)

 exten => 123,103,Playback(im-sorry)

 exten => 123,104,Playback(vm-goodbye)

See Also

Zapateller()

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

Progress() Indicates progress

 Progress()

Requests that the channel indicate that in-band progress is available to the user.

Always returns 0.

 ; indicate progress to the calling channel

 exten => 123,1,Progress()

See Also

Busy(), Congestion(), Ringing(), Playtones()

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

file:///C:/DOCUME~1/stelios/LOCALS~1/Temp/2/O'Reilly,.Asterisk.The.Future.of.Telephony.(2005).BBL.LotB.chm/0596009623/18051535.html

Queue() Places the current call into the specified call queue

 Queue(queuename[,options[,URL[,announceoverride[,timeout]]]])

Places an incoming call into the call queue specified by queuename, as defined in queues.conf.

The options argument may contain zero or more of the following characters:

t

Allows the called user to transfer the call

T

Allows the calling user to transfer the call

d

Specifies a data-quality (modem) call (minimum delay)

h

Allows callee to hang up by hitting *

H

Allows caller to hang up by hitting *

n

Disallows retries on the timeout; exits this application and goes to the next step

r

Rings instead of playing MoH

In addition to being transferred, a call may be parked and then picked up by another user.

The announceoverride argument overrides the standard announcement played to queue agents before they answer the specified call.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

The optional URL will be sent to the called party if the channel supports it.

The timeout will cause the queue to fail out after a specified number of seconds, checked between each queues.conf timeout and retry cycle.

Returns -1 if the originating channel hangs up, or if the call is bridged and either of the parties in the bridge terminates the call. If the queue

is full, does not exist, or has no members, returns 0.

 ; place the caller in the techsupport queue

 exten => 123,1,Answer()

 exten => 123,2,Queue(techsupport,t)

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

file:///C:/DOCUME~1/stelios/LOCALS~1/Temp/2/O'Reilly,.Asterisk.The.Future.of.Telephony.(2005).BBL.LotB.chm/0596009623/18051535.html

Random() Conditionally branches, based upon a probability

 Random([probability]:[[context,]extension,]priority)

Conditionally jumps to the specified priority (and optional extension and context), based on the specified probability. probability should be

an integer between 1 and 100. The application will jump to the specified destination priority percent of the time.

 ; test your luck over and over again

 exten => 123,1,Random(20:lucky,1)
 exten => 123,2,Goto(unlucky,1)

 exten => lucky,1,Playback(good)

 exten => lucky,2,Goto(123,1)

 exten => unlucky,1,Playback(bad)

 exten => unlucky,2,Goto(123,1)

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

Read() Reads DTMF digits from the caller and assign the result to a variable

 Read(variable[,filename][,maxdigits][,option][,attempts][,timeout])

Reads a #-terminated string of digits a certain number of times from the user into the given variable.

Other arguments include:

filename

Specifies the file to play before reading digits.

maxdigits

Sets the maximum acceptable number of digits. If this argument is specified, the application stops reading after maxdigits have

been entered (without requiring the user to press the # key). Defaults to 0- (no limit, wait for the user to press the # key). Any

value below 0 means the same. The maximum accepted value is 255.

option

Specify skip to return immediately if the line is not answered, or noanswer to read digits even if the line is not answered.

attempts

If greater than 1, that many attempts will be made in the event that no data is entered.

timeout

If greater than 0, that value will override the default timeout.

Returns -1 on hangup or error and 0 otherwise.

 ; read a two-digit number and repeat it back to the caller

 exten => 123,1,Read(NUMBER,,2)
 exten => 123,2,SayNumber(${NUMBER})

 exten => 123,3,Goto(1)

See Also

SendDTMF()

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

RealTime Looks up information from the RealTime configuration handler

 RealTime(family,colmatch,value[,prefix])

Uses the RealTime configuration handler system to read data into channel variables. All unique column names (from the specified family)

will be set as channel variables, with an optional prefix to the name (e.g., a prefix of var_ would make the column name become the variable

${var_name}).

 ; retrieve all columns from the sipfriends table where the name column

 ; matches "John", and prefix all the variables with "John_"

 exten => 123,1,RealTime(sipfriends,name,John,John_)
 ; now, let's read the value of the column named "port"

 exten => 123,2,SayNumber(${John_port})

See Also

RealTimeUpdate()

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

RealTimeUpdate() Updates a value via the RealTime configuration handler

 RealTimeUpdate(family,colmatch,value,newcol,newval)

Uses the RealTime configuration handler system to update a value. The column newcol in family matching column colmatch=value will be

updated to newval.

 ; this will update the port column in the sipfriends table to a new

 ; value of 5061, where the name column matches "John"

 exten => 123,1,RealTimeUpdate(sipfriends,name,John,port,5061)

See Also

RealTime()

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

Record() Records channel audio to a file

 Record(filename:format,silence[,maxduration][,options]) (in Asterisk 1.0.x)

 Record(filename.format,silence[,maxduration][,options]) (in Asterisk 1.2.x)

Records audio from the channel into the given filename. If the file already exists, it will be overwritten.

Optional arguments include:

format

Specifies the format of the file type to be recorded. Valid formats include: g723, g729, gsm, h263, ulaw, alaw, vox, wav, and

WAV.

silence

Specifies the number of seconds of silence to allow before returning.

maxduration

Specifies the maximum recording duration, in seconds. If missing or 0, there is no maximum.

options

May contain any of the following letters:

s

Skip recording if the line is not yet answered.

n

Do not answer, but record anyway if the line is not yet answered.

a

Append the recording to the existing recording rather than replacing it.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

t

Use the alternate * terminator key instead of the default #.

If the filename contains %d, these characters will be replaced with a number incremented by one each time the file is recorded.

The user can press # to terminate the recording and continue to the next priority.

Returns -1 when the user hangs up.

 ; record the caller's name

 exten => 123,1,Playback(pls-rcrd-name-at-tone)

 exten => 123,2,Record(/tmp/name:gsm,3,30)
 exten => 123,3,Playback(/tmp/name)

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

file:///C:/DOCUME~1/stelios/LOCALS~1/Temp/2/O'Reilly,.Asterisk.The.Future.of.Telephony.(2005).BBL.LotB.chm/0596009623/18051535.html

RemoveQueueMember() Dynamically removes queue members

 RemoveQueueMember(queuename[,interface])

Dynamically removes the specified interface from the queuename call queue. If interface is not specified, this application removes the

current interface from the queue.

If the interface is not in the queue and there exists a priority n+101 (where n is the current priority), the application will jump to that priority.

Otherwise, it will return an error.

Returns -1 if there is an error.

 ; remove SIP/3000 from the techsupport queue

 exten => 123,1,RemoveQueueMember(techsupport,SIP/3000)

See Also

AddQueueMember()

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

ResetCDR() Resets the Call Detail Record

 ResetCDR([options])

Causes the Call Detail Record to be reset. If the w option is specified, a copy of the current CDR will be stored before the current CDR is

zeroed out.

Always returns 0.

 ; write a copy of the current CDR record, and then reset the CDR

 exten => 123,1,Answer()

 exten => 123,2,Playback(tt-monkeys)

 exten => 123,3,ResetCDR(w)
 exten => 123,4,Playback(tt-monkeys)

See Also

ForkCDR(), NoCDR()

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

ResponseTimeout() Sets maximum timeout for awaiting response from caller

 ResponseTimeout(seconds)

Sets the maximum amount of time permitted after falling through a series of priorities for a channel in which the caller may begin typing an

extension. If the caller does not type an extension in this amount of time, control will pass to the t extension, if it exists; if not, the call will be

terminated.

Always returns 0.

 ; allow callers three seconds to make a choice, before sending them

 ; to the 't' extension

 exten => s,1,Answer()

 exten => s,2,ResponseTimeout(3)
 exten => s,3,Background(enter-ext-of-person)

 exten => t,1,Playback(im-sorry)

 exten => t,1,Playback(goodbye)

See Also

AbsoluteTimeout(), DigitTimeout()

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

RetryDial() Attempts to place a call, and retries on failure

 RetryDial(announce,sleep,loops,technology/resource[&Technology2/resource2...]

 [,timeout][,options][,URL])

Attempts to place a call. If no channel can be reached, plays the file defined by announce, waiting sleep seconds to retry the call. If the

specified number of attempts matches loops, the call will continue with the next priority in the dialplan. If loops is set to 0, the call will retry

endlessly.

While waiting, a one-digit extension may be dialed. If that extension exists in either the context defined in ${EXITCONTEXT} (if defined) or

the current one, the call will transfer to that extension immediately.

All arguments after loops are passed directly to the Dial() application.

 ; attempt to dial the number three times via IAX, retrying every five

 seconds

 exten => 123,1,RetryDial(priv-trying,5,3,IAX2/VOIP/8885551212,30)
 ; if the caller presses 9 while waiting, dial the number on the Zap/4

 channel

 exten => 9,1,RetryDial(priv-trying,5,3,Zap/4/8885551212,30)

SeeAlso

Dial()

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

Ringing() Indicates ringing tone

 Ringing()

Requests that the channel indicate ringing tone to the user. It is up to the channel driver to specify exactly how ringing is indicated.

Note that this application does not actually provide audio ringing to the caller. Use the Playtones() application to do this.

Always returns 0.

 ; indicate that the phone is ringing, even though it isn't

 exten => 123,1,Ringing()
 exten => 123,2,Wait(5)

 exten => 123,3,Playback(tt-somethingwrong)

See Also

Busy(), Congestion(), Progress(), Ringing(), Playtones()

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

SayAlpha() Spells a string

 SayAlpha(string)

Spells out the passed string, using the current language setting for the channel. See the SetLanguage() application to change the current

language.

 exten => 123,1,SayAlpha(ABC123XYZ)

See Also

SayDigits(), SayNumber(), SayPhonetic(), SetLanguage()

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

file:///C:/DOCUME~1/stelios/LOCALS~1/Temp/2/O'Reilly,.Asterisk.The.Future.of.Telephony.(2005).BBL.LotB.chm/0596009623/18051535.html

SayDigits() Says the passed digits

 SayDigits(digits)

Says the passed digits, using the current language setting for the channel. See the SetLanguage() application to change the current

language.

 exten => 123,1,SayDigits(1234)

See Also

SayAlpha(), SayNumber(), SayPhonetic(), SetLanguage()

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

SayNumber() Says the specified number

 SayNumber(digits[,gender])

Says the specified number, using the current language setting for the channel. See the SetLanguage() application to change the current

language.

Currently, syntax for the following languages is supported:

da

Danish

de

German

en

English

es

Spanish

fr

French

it

Italian

nl

Dutch

no

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

Norwegian

pl

Polish

pt

Portuguese

se

Swedish

tw

Taiwanese

If the current language supports different genders, you can pass the gender argument to change the gender of the spoken number. You

can use the following gender arguments:

Use the gender arguments f for female, m for male, and n for neuter in European languages such as Portuguese, French,

Spanish, and German.

Use the gender argument c for commune and n for neuter in Nordic languages such as Danish, Swedish, and Norwegian.

Use the gender argument p for plural enumerations in German.

For this application to work in languages other than English, you must have the appropriate sounds for

the language you wish to use.

 ; say the number in English

 exten => 123,1,SetLanguage(en)

 exten => 123,2,SayNumber(1234)

See Also

SayAlpha(), SayDigits(), SayPhonetic(), SetLanguage()

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

SayPhonetic() Spells the specified string phonetically

 SayPhonetic(string)

Spells the specified string using the NATO phonetic alphabet.

 exten => 123,1,SayPhonetic(asterisk)

See Also

SayAlpha(), SayDigits(), SayNumber()

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

file:///C:/DOCUME~1/stelios/LOCALS~1/Temp/2/O'Reilly,.Asterisk.The.Future.of.Telephony.(2005).BBL.LotB.chm/0596009623/18051535.html

SayUnixTime() Says the specified time in a custom format

 SayUnixTime([unixtime][,[timezone][,format]])

Speaks the specified time according to the specified time zone and format. The arguments are:

unixtime

The time, in seconds, since January 1, 1970. May be negative. Defaults to now.

timezone

The time zone. See /usr/share/zoneinfo/ for a list. Defaults to the machine default.

format

The format in which the time is to be spoken. See voicemail.conf for a list of formats. Defaults to "ABdY 'digits/at' IMp".

Returns 0, or -1 on hangup.

 exten => 123,1,SayUnixTime(,,IMp)

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

SendDTMF() Sends arbitrary DTMF digits to the channel

 SendDTMF(digits[,timeout_ms])

Sends the specified DTMF digits on a channel. Valid DTMF digits include 0-9, *, #, and A-D. You may also use the letter w as a digit, which

indicates a 500-millisecond wait. The timeout_ms argument is the amount of time between digits, in milliseconds. If not specified,

timeout_ms defaults to 250 milliseconds.

Returns 0 on success or -1 on a hangup.

 exten => 123,1,SendDTMF(3212333w222w366w3212333322321,250)

See Also

Read()

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

SendImage() Sends an image file

 SendImage(filename)

Sends an image on a channel, if image transport is supported. If the channel does not support image transport, and there exists a priority

n+101 (where n is the current priority), execution will continue at that step. Otherwise, execution will continue at the next priority level.

Returns 0 if the image was sent correctly or if the channel does not support image transport; otherwise, returns -1.

 exten => 123,1,SendImage(logo.jpg)

See Also

SendText(), SendURL()

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

file:///C:/DOCUME~1/stelios/LOCALS~1/Temp/2/O'Reilly,.Asterisk.The.Future.of.Telephony.(2005).BBL.LotB.chm/0596009623/18051535.html

SendText() Sends text to the channel

 SendText(text)

Sends text on a channel, if text transport is supported. If the channel does not support text transport, and there exists a priority n+101 (where

n is the current priority), execution will continue at that step. Otherwise, execution will continue at the next priority level.

Returns 0 if the text was sent correctly or if the channel does not support text transport; otherwise, returns -1.

 exten => 123,1,SendText(Welcome to Asterisk)

See Also

SendImage(), SendURL()

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

SendURL() Sets a variable to the specified value

 SendURL(URL[,option])

Requests that the client go to the specified URL. If the client does not support HTML transport, and there exists a priority n+101 (where n is

the number of the current priority), execution will continue at that step. Otherwise, execution will continue at the next priority level.

Returns 0 if the URL was sent correctly or if the channel does not support HTML transport; otherwise, returns -1.

If the option wait is specified, execution will wait for an acknowledgment that the URL has been loaded before continuing and will return -1 if

the peer is unable to load the URL.

 exten => 123,1,SendURL(www.asterisk.org,wait)

See Also

SendImage(), SendText()

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

Set() Sends

 Set(n=value)

Sets the variable n to the specified value. If the variable name is prefixed with _, single inheritance is assumed. If the variable name is

prefixed with _ _, infinite inheritance is assumed. Inheritance is used when you want the outgoing channel to inherit the variable from the

dialplan.

Variables set with this application are valid only in the current channel. Use the SetGlobalVar() application to set global variables.

 ; set a variable called DIALTIME, then use it

 exten => 123,1,SetVar(DIALTIME=20)
 exten => 123,1,Dial(Zap/4/5551212,,${DIALTIME})

See Also

SetGlobalVar(), README.variables

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

SetAccount() Sets the account code in the Call Detail Record

 SetAccount(account)

Sets the account code in the Call Detail Record, for billing purposes.

Always returns 0.

 ; set the account code to 4321 before dialing the boss

 exten => 123,1,SetAccount(4321)
 exten => 123,2,Dial(${BOSS})

See Also

SetAMAFlags(), SetCDRUserField(), AppendCDRUserField()

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

SetAMAFlags() Sets AMA flags in the Call Detail Record

 SetAMAFlags(flag)

Sets the AMA flags in the Call Detail Record for billing purposes, overriding any AMA settings in the channel configuration files. Valid

choices are default, omit, billing, and documentation.

Always returns 0.

 exten => 123,1,SetAMAFlags(billing)

See Also

SetAccount(), SetCDRUserField(), AppendCDRUserField()

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

file:///C:/DOCUME~1/stelios/LOCALS~1/Temp/2/O'Reilly,.Asterisk.The.Future.of.Telephony.(2005).BBL.LotB.chm/0596009623/18051535.html

SetCallerID() Sets the Caller ID for the channel

 SetCallerID(clid[,a])

Sets the Caller ID on the channel to a specified value. If the a argument is passed, ANI is also set to the specified value.

Always returns 0.

 ; set both the Caller ID and ANI

 exten => 123,1,SetCallerID("John Q. Public <8885551212>",a)

See Also

SetCIDName(), SetCIDNum()

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

file:///C:/DOCUME~1/stelios/LOCALS~1/Temp/2/O'Reilly,.Asterisk.The.Future.of.Telephony.(2005).BBL.LotB.chm/0596009623/18051535.html

SetCallerPres() Sets Caller ID presentation flags

 SetCallerPres(presentation)

Sets the Caller ID presentation flags on a Q931 PRI connection.

Valid presentations are:

allowed_not_screened

Presentation Allowed, Not Screened

allowed_passed_screen

Presentation Allowed, Passed Screen

allowed_failed_screen

Presentation Allowed, Failed Screen

allowed

Presentation Allowed, Network Number

prohib_not_screened

Presentation Prohibited, Not Screened

prohib_passed_screen

Presentation Prohibited, Passed Screen

prohib_failed_screen

Presentation Prohibited, Failed Screen

prohib

Presentation Prohibited, Network Number

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

unavailable

Number Unavailable

Always returns 0.

 exten => 123,1,SetCallerPres(allowed_not_screened)
 exten => 123,2,Dial(Zap/g1/8885551212)

SeeAlso

SetCallerID()

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

file:///C:/DOCUME~1/stelios/LOCALS~1/Temp/2/O'Reilly,.Asterisk.The.Future.of.Telephony.(2005).BBL.LotB.chm/0596009623/18051535.html

SetCDRUserField() Sets the Call Detail Record user field

 SetCDRUserField(value)

Sets the CDR user field to the specified value. The CDR user field is an extra field that you can use for data not stored anywhere else in

the record. CDR records can be used for billing purposes or for storing other arbitrary data about a particular call.

 exten => 123,1,SetCDRUserField(testing)
 exten => 123,2,Playback(tt-monkeys)

See Also

AppendCDRUserField(), SetAccount(), SetAMAFlags()

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

file:///C:/DOCUME~1/stelios/LOCALS~1/Temp/2/O'Reilly,.Asterisk.The.Future.of.Telephony.(2005).BBL.LotB.chm/0596009623/18051535.html

SetCIDName() Sets the Caller ID name on the channel

 SetCIDName(cname[,a])

Sets the Caller ID name on the current channel to cname, while preserving the original Caller ID number. This is useful for providing

additional information to the called party. If the a option is used, ANI is also set.

Always returns 0.

 exten => 123,1,SetCIDName("John Q. Public")

See Also

SetCallerID(), SetCIDNum()

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

SetCIDNum() Sets the Caller ID number for a channel

 SetCIDNum(cnum[,a])

Sets the Caller ID number on the current channel to the number specified by cnum, while preserving the original Caller ID name. This is

useful for providing additional information to the called party. The application sets ANI as well if the a flag is used.

Always returns 0.

 exten => 123,1,SetCIDNum(8885551212)

See Also

SetCIDName(), SetCallerID()

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

SetGlobalVar() Sets a global variable to the specified value

 SetGlobalVar(n=value)

Sets a global variable called n to the specified value. Global variables are available across channels.

 ; set the NUMRINGS global variable to 3

 exten => 123,1,SetGlobalVar(NUMRINGS=3)

See Also

SetVar()

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

SetGroup() Sets the channel group to the specified value

 SetGroup(groupname[@category])

Sets the channel group to the specified groupname value. Equivalent to Set(GROUP=group). Used in conjunction with CheckGroup() to

limit the number of calls accessing a particular resource. A group category may also be set.

Always returns 0.

 ; limit the number of concurrent receptionist calls to three

 exten => s,1,SetGroup(receptionist)
 exten => s,2,2,CheckGroup(3)

 exten => s,3,Dial(${RECEPTIONIST})

 exten => s,103,VoiceMail(u${RECEPTION_VM})

See Also

CheckGroup(), GetGroupCount(), GetGroupMatchCount()

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

SetLanguage() Sets the channel's language

 SetLanguage(language)

Sets the channel language to language. This information is used for the syntax in generation of numbers, and to choose a natural

language file when available. For example, if language is set to fr and the file demo-congrats is requested to be played, the file

fr/demo-congrats will be played if it exists; if not, the normal demo-congrats file will be played.

Always returns 0.

 exten => s,1,SetLanguage(fr)
 exten => s,2,SayNumber(1234)

 exten => s,3,Playback(enter-ext-of-person)

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

SetMusicOnHold() Sets the default Music on Hold class for the current channel

 SetMusicOnHold(class)

Sets the default class for Music on Hold for the current channel. When Music on Hold is activated, this class will be used to select which

music is played. Classes are defined in the configuration file musiconhold.conf.

 exten=s,1,Answer()

 exten=s,2,SetMusicOnHold(default)
 exten=s,3,WaitMusicOnHold()

See Also

WaitMusicOnHold(), musiconhold.conf, MusicOnHold()

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

file:///C:/DOCUME~1/stelios/LOCALS~1/Temp/2/O'Reilly,.Asterisk.The.Future.of.Telephony.(2005).BBL.LotB.chm/0596009623/18051535.html

SetRDNIS() Sets the RDNIS number on the current channel

 SetRDNIS(cnum)

Sets the Redirected Dial Number ID Service (RDNIS) number on a call to the value specified by cnum. RDNIS is supported only on certain

PRI lines.

Always returns 0.

 exten => 123,1,SetRDNIS(8885551212)
 exten => 123,2,Dial(Zap/4/5551234)

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

file:///C:/DOCUME~1/stelios/LOCALS~1/Temp/2/O'Reilly,.Asterisk.The.Future.of.Telephony.(2005).BBL.LotB.chm/0596009623/18051535.html

SetVar() Sets a variable to the specified value

 SetVar(n=value)

Sets the variable n to the specified value. If the variable name is prefixed with _, single inheritance is assumed. If the variable name is

prefixed with _ _, infinite inheritance is assumed. Inheritance is used when you want the outgoing channel to inherit the variable from the

dialplan. Reprecated in favor of Set(), which has the same syntax.

Variables set with this application are valid only in the current channel. Use the SetGlobalVar() application to set global variables.

 ; set a variable called DIALTIME, then use it

 exten => 123,1,SetVar(DIALTIME=20)
 exten => 123,1,Dial(Zap/4/5551212,,${DIALTIME})

See Also

SetGlobalVar(), README.variables

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

file:///C:/DOCUME~1/stelios/LOCALS~1/Temp/2/O'Reilly,.Asterisk.The.Future.of.Telephony.(2005).BBL.LotB.chm/0596009623/18051535.html

SIPAddHeader() Adds a SIP header to the outbound call

 SIPAddHeader(Header: Content)

Adds a header to a SIP call placed with the Dial() application. A nonstandard SIP header should begin with X-, such as

X-Asterisk-Accountcode:. Use this application with careadding the wrong headers may cause any number of problems.

Always returns 0.

 exten => 123,1,SIPAddHeader(X-Asterisk-Testing: Just testing!)
 exten => 123,2,Dial(SIP/123)

See Also

SIPGetHeader()

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

SIPDtmfMode() Changes the DTMF method for a SIP call

 SIPDtmfMode(method)

Changes the DTMF method for a SIP call. The method can be either inband, info, or rfc2833.

 exten => 123,1,SIPDtmfMode(rfc2833)
 exten => 123,2,Dial(SIP/123)

See Also

Appendix A

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

SIPGetHeader() Gets a SIP header from an incoming SIP call

 SIPGetHeader(var=headername)

Sets a channel variable named var to the content of the headername SIP header. Skips to priority n+101 (where n is the current priority) if

the specified header does not exist.

 ; get the "To" header and assign it to the variable called TESTING

 exten => 123,1,SIPGetHeader(TESTING=To)

See Also

SIPAddHeader()

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

file:///C:/DOCUME~1/stelios/LOCALS~1/Temp/2/O'Reilly,.Asterisk.The.Future.of.Telephony.(2005).BBL.LotB.chm/0596009623/18051535.html

SoftHangup() Performs a soft hangup of the requested channel

 SoftHangup(technology/resource,options)

Hangs up the requested channel. Always returns 0. The options argument may contain the letter a, which causes all channels on the

specified device to be hung up. Currently, the options argument may contain only one letter: a. Supplying the a argument causes all

channels on the specified device to be hung up.

 ; hang up all calls using Zap/4 so we can use it

 exten => 123,1,SoftHangup(Zap/4,a)
 exten => 123,2,Wait(2)

 exten => 123,3,Dial(Zap/4/5551212)

See Also

Hangup()

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

file:///C:/DOCUME~1/stelios/LOCALS~1/Temp/2/O'Reilly,.Asterisk.The.Future.of.Telephony.(2005).BBL.LotB.chm/0596009623/18051535.html

StopMonitor() Stops monitoring a channel

 StopMonitor()

Stops monitoring (recording) a channel. This application has no effect if the channel is not currently being monitored.

 exten => 123,1,Answer()

 exten => 123,2,Monitor(wav,monitor_test,mb)

 exten => 123,3,SayDigits(12345678901234567890)

 exten => 123,4,StopMonitor()

See Also

Monitor()

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

StopPlaytones() Stops playing a tone list

 StopPlaytones()

Stops playing the currently playing tone list.

 exten => 123,1,Playtones(busy)

 exten => 123,2,Wait(2)

 exten => 123,3,StopPlaytones()
 exten => 123,4,Playtones(congestion)

 exten => 123,5,Wait(2)

 exten => 123,6,StopPlaytones()
 exten => 123,7,Goto(1)

See Also

Playtones(), indications.conf

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

file:///C:/DOCUME~1/stelios/LOCALS~1/Temp/2/O'Reilly,.Asterisk.The.Future.of.Telephony.(2005).BBL.LotB.chm/0596009623/18051535.html

StripLSD()
Strips the specified number of trailing (least significant) digits from the current

extension

 StripLSD(count)

Strips the trailing count digits from the channel's associated extension and continues processing at the next priority for the resulting

extension. So, for example, if priority 1 of extension 5551212 is StripLSD(4), the last 4 digits will be stripped from 5551212 and the next

step executed will be priority 2 of extension 555. If you switch into an extension that has no priority n+1 (where n is the current priority), the

PBX will treat it as though the user dialed an invalid extension.

Always returns 0.

This application is deprecated and has been replaced with the substring expression ${EXTEN:X:Y}.

 exten => 5551212,1,StripLSD(4)
 exten => 555,2,SayDigits(${EXTEN})

 ; a better way of doing the same thing

 exten => 5551234,1,SayDigits(${EXTEN::3})

See Also

StripMSD(), README.variables, variable substring syntax

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

file:///C:/DOCUME~1/stelios/LOCALS~1/Temp/2/O'Reilly,.Asterisk.The.Future.of.Telephony.(2005).BBL.LotB.chm/0596009623/18051535.html

StripMSD()
Strips the specified number of leading (most significant) digits from the current

extension

 StripMSD(count)

Strips the leading count digits from the channel's associated extension and continues processing at the next priority for the resulting

extension. So, for example, if priority 1 of extension 5551212 is StripMSD(3), the first 3 digits will be stripped from 5551212 and the next

step executed will be priority 2 of extension 1212. If you switch into an extension that has no priority n+1 (where n is the current priority),

the PBX will treat it as though the user dialed an invalid extension.

Always returns 0.

This application is deprecated and has been replaced with the substring expression ${EXTEN:X:Y}.

 exten => 5551212,1,StripMSD(3)
 exten => 1212,2,SayDigits(${EXTEN})

 ; a better way of doing the same thing

 exten => 5551234,1,SayDigits(${EXTEN:3})

See Also

StripLSD(), README.variables, variable substring syntax

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

file:///C:/DOCUME~1/stelios/LOCALS~1/Temp/2/O'Reilly,.Asterisk.The.Future.of.Telephony.(2005).BBL.LotB.chm/0596009623/18051535.html

SubString() Saves substring digits in a given variable

 SubString(variable=string_of_digits,count1,count2)

Assigns the substring of string_of_digits to a given variable. The parameter count1 may be positive or negative. If it's positive, we skip the

first count1 digits from the left. If it's negative, we move count1 digits from the end of the string to the left. The parameter count2 indicates

how many digits to take from the point that count1 placed us. If count2 is negative, that many digits are omitted from the end.

This application is deprecated. Instead, use ${EXTEN:X:Y}.

 ; here are some examples using SubString():

 ;assign the area code (3 first digits) to variable TEST

 exten => 8885551212,1,SubString(TEST=8885551212,0,3)
 ; assign the last 7 digits to variable TEST

 exten => 8885551212,1,SubString(TEST=8885551212,-7,7)
 ; assign all but the last 4 digits to variable TEST

 exten => 8885551212,1,SubString(TEST=8885551212,0,-4)
 ;

 ; and here are the preferred alternatives:

 ;assign the area code (3 first digits) to variable TEST

 exten => 8885551212,1,Set(TEST=${EXTEN::3})

 ; assign the last 7 digits to variable TEST

 exten => 8885551212,1,Set(TEST=${EXTEN:-7:7})

 ; assign all but the last 4 digits to variable TEST

 exten => 8885551212,1,Set(TEST=${EXTEN:6}

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

Suffix() Appends trailing digits to the current extension

 Suffix(digits)

Appends the digit string specified by digits to the channel's associated extension and continues processing at the next priority for the new

extension. So, for example, if priority 1 of extension 555 is Suffix(1212), 1212 will be appended to 555 and the next step executed will be

priority 2 of extension 5551212. If you switch into an extension that has no priority n+1 (where n is the current priority), the PBX will treat it

as though the user dialed an invalid extension.

Always returns 0.

 exten => 555,1,Suffix(1212)
 exten => 5551212,2,SayDigits(${EXTEN})

See Also

Prefix()

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

file:///C:/DOCUME~1/stelios/LOCALS~1/Temp/2/O'Reilly,.Asterisk.The.Future.of.Telephony.(2005).BBL.LotB.chm/0596009623/18051535.html

System() Executes an operating system command

 System(command)

Executes a command in the underlying operating system. If the command itself executes but is in error, and if there exists a priority n+101

(where n is the current priority), the execution of the dialplan will continue at that priority level.

This application is very similar to the trySystem() application, except that it will return -1 if it is unable to execute the system command,

whereas the trySystem() application will always return 0.

 exten => 123,1,System(echo hello > /tmp/hello.txt)

See Also

TrySystem()

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

Transfer() Transfers the caller to a remote extension

 Transfer(exten)

Requests that the remote caller be transferred to the given extension. If the transfer is not supported or successful and there exists a

priority n+101 (where n is the current priority), that priority will be taken next.

 ; transfer calls from extension 123 to extension 130

 exten => 123,1,Transfer(130)

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

TrySystem() Tries to execute an operating system command

 TrySystem(command)

Attempts to execute a command in the underlying operating system. If the command itself executes but is in error, and if there exists a

priority n+101 (where n is the current priority), the execution of the dialplan will continue at that priority level.

This application is very similar to the System() application, except that it always returns 0, whereas the System() application will return -1 if

it is unable to execute the system command.

 exten => 123,1,TrySystem(echo hello > /tmp/hello.txt)

See Also

System()

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

file:///C:/DOCUME~1/stelios/LOCALS~1/Temp/2/O'Reilly,.Asterisk.The.Future.of.Telephony.(2005).BBL.LotB.chm/0596009623/18051535.html

TXTCIDName() Looks up a caller's name from a DNS TXT record

 TXTCIDName(CallerID)

Looks up a caller's name via DNS and sets the variable ${TXTCIDNAME}. TXTCIDNAME will either be blank or return the value found in

the TXT record in DNS. This application looks up the number via the ENUM sources listed in enum.conf.

 exten => 123,1,TXTCIDName(8662331454)
 exten => 123,2,SayAlpha(${TXTCIDNAME})

 exten => 123,3,Playback(vm-goodbye)

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

file:///C:/DOCUME~1/stelios/LOCALS~1/Temp/2/O'Reilly,.Asterisk.The.Future.of.Telephony.(2005).BBL.LotB.chm/0596009623/18051535.html

UnpauseQueueMember() Unpauses a queue member

 UnpauseQueueMember([queuename],interface)

Unpauses (resumes calls to) a queue member. This is the counterpart to PauseQueueMember(), and it operates exactly the same way,

except it unpauses instead of pausing the given interface.

 exten => 123,1,PauseQueueMember(,SIP/300)

 exten => 124,1,UnpauseQueueMember(,SIP/300)

See Also

PauseQueueMember()

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

file:///C:/DOCUME~1/stelios/LOCALS~1/Temp/2/O'Reilly,.Asterisk.The.Future.of.Telephony.(2005).BBL.LotB.chm/0596009623/18051535.html

UserEvent() Sends an arbitrary event to the Manager interface

 UserEvent(eventname[,body])

Sends an arbitrary event to the Manager interface, with an optional body representing additional arguments. The format of the event is:

 Event: UserEvent<specified event name>

 Channel: <channel name>

 Uniqueid: <call uniqueid>

 [body]

If the body is not specified, only the Event, Channel, and Uniqueid fields will be present.

Always returns 0.

 exten => 123,1,UserEvent(BossCalled,${CALLERIDNAME} has called the boss!)
 exten => 123,2,Dial(${BOSS})

See Also

manager.conf, Asterisk Manager interface

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

Verbose() Sends arbitrary text to verbose output

 Verbose([level,]message)

Sends the specified message to verbose output. The level must be an integer value. If not specified, level defaults to 0.

Always returns 0.

 exten => 123,1,Verbose(Somebody called extension 123)
 exten => 123,2,Playback(extension)

 exten => 123,3,SayDigits(${EXTEN})

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

VMAuthenticate() Authenticates the caller from voicemail passwords

 VMAuthenticate([mailbox][@context])

Behaves identically to the Authenticate() application, with the exception that the passwords are taken from voicemail.conf.

If mailbox is specified, only that mailbox's password will be considered valid. If mailbox is not specified, the channel variable

${AUTH_MAILBOX} will be set with the authenticated mailbox.

 ; authenticate off of any mailbox password, and tell us the matching

 ; mailbox number

 exten => 123,1,VMAuthenticate()
 exten => 123,2,SayDigits(${AUTH_MAILBOX})

See Also

Authenticate(), voicemail.conf

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

file:///C:/DOCUME~1/stelios/LOCALS~1/Temp/2/O'Reilly,.Asterisk.The.Future.of.Telephony.(2005).BBL.LotB.chm/0596009623/18051535.html

VoiceMail() Leaves a voicemail message in the specified mailbox

 VoiceMail([s|u|b]mailbox[@context][&mailbox[@context]][...])

Leaves voicemail for a given mailbox (must be configured in voicemail.conf).

If the mailbox is preceded by s, instructions for leaving the message will be skipped. If it is preceded by u, the "unavailable" message

(/var/lib/asterisk/sounds/vm/exten/unavail) will be played, if it exists. If the mailbox is preceded by b, the busy message will be played (that

is, busy instead of unavail).

If the caller presses 0 (zero) during the prompt, the call jumps to the o (lower-case letter o) extension in the current context.

If the caller presses * during the prompt, the call jumps to extension a in the current context. This is often used to send the caller to a

personal assistant.

If the requested mailbox does not exist, and there exists a priority n+101 (where n is the current priority), that priority will be taken next.

When multiple mailboxes are specified, the unavailable or busy message will be taken from the first mailbox specified.

Returns -1 on error or mailbox not found, or if the user hangs up; otherwise, returns 0.

 ; send caller to unavailable voicemail for mailbox 123

 exten => 123,1,VoiceMail(u123)

See Also

VoiceMailMain(), voicemail.conf

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

VoiceMailMain() Enters the voicemail system

 VoiceMailMain([[s|p]mailbox][@context])

Enters the main voicemail system for the checking of voicemail. Passing the mailbox argument will stop the voicemail system from

prompting the user for the mailbox number.

If the mailbox is preceded by the letter s, the password check will be skipped. If the mailbox is preceded by the letter p, the supplied mailbox

will be prepended to the user's entry and the resulting string will be used as the mailbox number. This is useful for virtual hosting of

voicemail boxes. If a context is specified, logins are considered in that voicemail context only.

Returns -1 if the user hangs up; otherwise, returns 0.

 ; go to voicemail menu for mailbox 123 in the default voicemail context

 exten => 123,1,VoiceMailMain(123@default)

See Also

VoiceMail(), voicemail.conf

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

file:///C:/DOCUME~1/stelios/LOCALS~1/Temp/2/O'Reilly,.Asterisk.The.Future.of.Telephony.(2005).BBL.LotB.chm/0596009623/18051535.html

Wait() Waits for a specified number of seconds

 Wait(seconds)

Waits for the specified number of seconds, then returns 0. You can pass fractions of a second (e.g., 1.5 = 1.5 seconds).

 ; wait 1.5 seconds before playing the prompt

 exten => s,1,Answer()

 exten => s,2,Wait(1.5)
 exten => s,3,Background(enter-ext-of-person)

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

WaitExten() Waits for an extension to be entered

 WaitExten([seconds])

Waits for the user to enter a new extension for the specified number of seconds, then returns 0. You can pass fractions of a second (e.g.,

1.5 = 1.5 seconds). If unspecified, the default extension timeout will be used.

 ; wait 15 seconds for the user to dial an extension

 exten => s,1,Answer()

 exten => s,2,Playback(enter-ext-of-person)

 exten => s,3,WaitExten(15)

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

WaitForRing() Waits the specified number of seconds for a ring

 WaitForRing(timeout)

Waits at least timeout seconds after the next ring has completed.

Returns 0 on success or -1 on hangup.

 ; wait five seconds for a ring, and then send some DTMF digits

 exten => 123,1,Answer()

 exten => 123,2,WaitForRing(5)
 exten => 123,3,SendDTMF(1234)

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

file:///C:/DOCUME~1/stelios/LOCALS~1/Temp/2/O'Reilly,.Asterisk.The.Future.of.Telephony.(2005).BBL.LotB.chm/0596009623/18051535.html

WaitForSilence() Waits for a specified amount of silence

 WaitForSilence(wait[,repeat])

Waits for repeat instances of wait milliseconds of silence. If repeat is omitted, the application waits for a single instance of wait milliseconds

of silence.

 ; wait for three instances of 300 ms of silence

 exten => 123,WaitForSilence(300,3)

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

WaitMusicOnHold() Waits the specified number of seconds, playing Music on Hold

 WaitMusicOnHold(delay)

Plays hold music for the specified number of seconds. If no hold music is available the delay will still occur, but with no sound.

Returns 0 when done, or -1 on hangup.

 ; allow caller to hear Music on Hold for five minutes

 exten => 123,1,Answer()

 exten => 123,2,WaitMusicOnHold(300)
 exten => 123,3,Hangup()

See Also

SetMusicOnHold(), musiconhold.conf

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

While() Starts a while loop

 While(expr)

Starts a while loop. Execution will return to this point when EndWhile() is called, until expr is no longer true. If a condition is met causing the

loop to exit, it continues on past the EndWhile().

 exten => 123,1,Set(COUNT=1)

 exten => 123,2,While($[${COUNT} < 5])
 exten => 123,3,SayNumber(${COUNT})

 exten => 123,4,EndWhile()

See Also

EndWhile(), GotoIf()

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

file:///C:/DOCUME~1/stelios/LOCALS~1/Temp/2/O'Reilly,.Asterisk.The.Future.of.Telephony.(2005).BBL.LotB.chm/0596009623/18051535.html

Zapateller() Uses a special information tone to block telemarketers

 Zapateller(options)

Generates a special information tone to block telemarketers and other computer-dialed calls from bothering you.

The options argument is a pipe-delimited list of options. The following options are available:

answer

Causes the line to be answered before playing the tone

nocallerid

Causes Zapateller to play the tone only if no Caller ID information is available

 ; answer the line, and play the SIT tone if there is no Caller

 ID information

 exten => 123,1,Zapateller(answer|nocallerid)

See Also

PrivacyManager()

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

file:///C:/DOCUME~1/stelios/LOCALS~1/Temp/2/O'Reilly,.Asterisk.The.Future.of.Telephony.(2005).BBL.LotB.chm/0596009623/18051535.html

ZapBarge() Barges in on (monitors) a Zap channel

 ZapBarge([channel])

Barges in on a specified Zap channel, or prompts if one is not specified. The people on the channel won't be able to hear you and will

have no indication that their call is being monitored.

If channel is not specified, you will be prompted for the channel number. Enter 4# for Zap/4, for example.

Returns -1 when the caller hangs up and is independent of the state of the channel being monitored.

 exten => 123,1,ZapBarge(Zap/2)
 exten => 123,2,Hangup()

See Also

ZapScan()

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

ZapRAS() Executes the Zaptel ISDN Remote Access Server

 ZapRAS(args)

Executes an ISDN RAS server using pppd on the current channel. The channel must be a clear channel (i.e., PRI source) and a Zaptel

channel to be able to use this function. (No modem emulation is included.)

Your pppd must be patched to be Zaptel-aware. args is a pipe-delimited list of arguments.

Always returns -1.

This application is only for use on ISDN lines, and your kernel must be patched to support ZapRAS(). You must also have ppp support in

your kernel.

 exten => 123,1,Answer()

 exten => 123,1,ZapRas(debug|64000|noauth|netmask|255.255.255.0|

 10.0.0.1:10.0.0.2)

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

ZapScan() Scans Zap channels to monitor calls

 ZapScan([group])

Allows a call center manager to monitor Zap channels in a convenient way. Use # to select the next channel, and use * to exit. You may

limit scanning to a particular channel group by setting the group argument.

 exten => 123,1,ZapScan()

See Also

ZapBarge()

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

file:///C:/DOCUME~1/stelios/LOCALS~1/Temp/2/O'Reilly,.Asterisk.The.Future.of.Telephony.(2005).BBL.LotB.chm/0596009623/18051535.html

Appendix C. AGI Reference

ANSWER

CHANNEL STATUS

DATABASE DEL

DATABASE DELTREE

DATABASE GET

DATABASE PUT

EXEC

GET DATA

GET FULL VARIABLE

GET OPTION

GET VARIABLE

HANGUP

NOOP

RECEIVE CHAR

RECORD FILE

SAY ALPHA

SAY DATE

SAY DATETIME

SAY DIGITS

SAY NUMBER

SAY PHONETIC

SAY TIME

SEND IMAGE

SEND TEXT

SET AUTOHANGUP

SET CALLERID

SET CONTEXT

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

file:///C:/DOCUME~1/stelios/LOCALS~1/Temp/2/O'Reilly,.Asterisk.The.Future.of.Telephony.(2005).BBL.LotB.chm/0596009623/18051535.html

SET EXTENSION

SET MUSIC ON

SET PRIORITY

SET VARIABLE

STREAM FILE

TDD MODE

VERBOSE

WAIT FOR DIGIT

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

ANSWER

Answers the channel (if it is not already in an answered state).

Return values:

-1

Failure

0

Success

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

CHANNEL STATUS

CHANNEL STATUS [channelname]

Queries the status of the channel indicated by channelname or, if no channel is specified, the current channel.

Return values:

0

Channel is down and available

1

Channel is down, but reserved

2

Channel is off-hook

3

Digits have been dialed

4

Line is ringing

5

Line is up

6

Line is busy

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

DATABASE DEL

DATABASE DEL family key

Deletes an entry from the Asterisk database for the specified family and key.

Return values:

0

Failure

1

Success

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

file:///C:/DOCUME~1/stelios/LOCALS~1/Temp/2/O'Reilly,.Asterisk.The.Future.of.Telephony.(2005).BBL.LotB.chm/0596009623/18051535.html

DATABASE DELTREE

DATABASE DELTREE family [keytree]

Deletes a family and/or keytree from the Asterisk database.

Return values:

0

Failure

1

Success

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

file:///C:/DOCUME~1/stelios/LOCALS~1/Temp/2/O'Reilly,.Asterisk.The.Future.of.Telephony.(2005).BBL.LotB.chm/0596009623/18051535.html

DATABASE GET

DATABASE GET family key

Retrieves a value from the Asterisk database for the specified family and key.

Return values:

0

Not set

1 (value)

Value is set (and is included in parentheses)

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

file:///C:/DOCUME~1/stelios/LOCALS~1/Temp/2/O'Reilly,.Asterisk.The.Future.of.Telephony.(2005).BBL.LotB.chm/0596009623/18051535.html

DATABASE PUT

DATABASE PUT family key value

Adds or updates an entry in the Asterisk database for the specified family and key, with the specified value.

Return values:

0

Failure

1

Success

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

EXEC

EXEC application options

Executes the specified dialplan application, including options.

Return values:

-2

Failure to find the application

value

Return value of the application

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

file:///C:/DOCUME~1/stelios/LOCALS~1/Temp/2/O'Reilly,.Asterisk.The.Future.of.Telephony.(2005).BBL.LotB.chm/0596009623/18051535.html

GET DATA

GET DATA filename [timeout] [max_digits]

Plays the audio file specified by filename and accepts DTMF digits, up to the limit set by max_digits. Similar to the Background() dialplan

application.

Return value:

value

Digits received from the caller

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

GET FULL VARIABLE

GET FULL VARIABLE variablename [channelname]

If the variable indicated by variablename is set, returns its value in parentheses. This command understands complex variable names and

built-in variable names, unlike GET VARIABLE.

Return values:

0

No channel, or variable not set

1 (value)

Value is retrieved (and is included in parentheses)

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

file:///C:/DOCUME~1/stelios/LOCALS~1/Temp/2/O'Reilly,.Asterisk.The.Future.of.Telephony.(2005).BBL.LotB.chm/0596009623/18051535.html

GET OPTION

GET OPTION filename escape_digits [timeout]

Behaves the same as STREAM FILE, but has a timeout option (in seconds).

Return value:

value

ASCII value of digits received, in decimal

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

file:///C:/DOCUME~1/stelios/LOCALS~1/Temp/2/O'Reilly,.Asterisk.The.Future.of.Telephony.(2005).BBL.LotB.chm/0596009623/18051535.html

GET VARIABLE

GET VARIABLE variablename

If the variable is set, returns its value in parentheses. This command does not understand complex variables or built-in variables; use the

GET FULL VARIABLE command if your application requires these types of variables.

Return values:

0

No channel, or variable not set

1 (value)

Value is retrieved (and is included in parentheses)

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

HANGUP

HANGUP [channelname]

Hangs up the specified channel or, if no channel is given, the current channel.

Return values:

-1

Specified channel does not exist

1

Hangup was successful

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

NOOP

NoOp [text]

Performs no operation. As a side effect, this command prints text to the Asterisk console. Usually used for debugging purposes.

Return value:

0

No channel, or variable not set

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

RECEIVE CHAR

RECEIVE CHAR timeout

Receives a character of text on a channel. Specify a timeout in milliseconds as the maximum amount of time to wait for input, or set to 0 to

wait infinitely. Note that most channels do not support the reception of text.

Return values:

-1 (hangup)

Failure or hangup

char (timeout)

Timeout

value

ASCII value of character, in decimal

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

RECORD FILE

RECORD FILE filename format escape_digits timeout [offset_samples] [BEEP] [s=silence]

Records the channel audio to the specified file until the reception of a defined escape (DTMF) digit. The format argument defines the type

of file to be recorded (wav, gsm, etc.). The timeout argument is the maximum number of milliseconds the recording can last, and can be

set to -1 for no timeout. The offset_samples argument is optional; if provided, it will seek to the offset without exceeding the end of the file.

The silence argument is the number of seconds of silence allowed before the function returns despite the lack of DTMF digits or reaching

the timeout. The silence value must be preceded by s= and is also optional.

Return values:

-1

Failure

0

Successful recording

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

SAY ALPHA

SAY ALPHA number escape_digits

Says a given character string, returning early if any of the given DTMF digits are received on the channel.

Return values:

-1

Error or hangup

0

Playback completed without being interrupted by an escape digit

value

ASCII value of digit (if pressed), in decimal

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

file:///C:/DOCUME~1/stelios/LOCALS~1/Temp/2/O'Reilly,.Asterisk.The.Future.of.Telephony.(2005).BBL.LotB.chm/0596009623/18051535.html

SAY DATE

SAY DATE date escape_digits

Says a given date, returning early if any of the given DTMF digits are received on the channel. The date is the number of seconds elapsed

since 00:00:00 on January 1, 1970, Coordinated Universal Time (UTC).

Return values:

-1

Error or hangup

0

Playback completed without being interrupted by an escape digit

value

ASCII value of digit (if pressed), in decimal

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

SAY DATETIME

SAY DATETIME datetime escape_digits [format] [timezone]

Says the given datetime, returning early if any of the given DTMF digits are received on the channel. The datetime is the number of

seconds elapsed since 00:00:00 on January 1, 1970, Coordinated Universal Time (UTC). The optional format argument is the format in

which the time should be spoken. (See voicemail.conf for a complete description of the format options.) format defaults to "ABdY 'digits/at'

IMp". Acceptable values for timezone can be found in /usr/share/zoneinfo/. timezone defaults to the default time zone of the Asterisk server.

Return values:

-1

Error or hangup

0

Playback completed without being interrupted by an escape digit

value

ASCII value of digit (if pressed), in decimal

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

SAY DIGITS

SAY DIGITS number escape_digits

Says a given digit string, returning early if any of the given DTMF digits are received on the channel.

Return values:

-1

Error or hangup

0

Playback completed without being interrupted by an escape digit

value

ASCII value of digit (if pressed), in decimal

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

SAY NUMBER

SAY NUMBER number escape_digits

Says a given number, returning early if any of the given DTMF digits are received on the channel.

Return values:

-1

Error or hangup

0

Playback completed without being interrupted by an escape digit

value

ASCII value of digit (if pressed), in decimal

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

file:///C:/DOCUME~1/stelios/LOCALS~1/Temp/2/O'Reilly,.Asterisk.The.Future.of.Telephony.(2005).BBL.LotB.chm/0596009623/18051535.html

SAY PHONETIC

SAY PHONETIC string escape_digits

Says a given character string with phonetics, returning early if any of the given DTMF digits are received on the channel.

Return values:

-1

Error or hangup

0

Playback completed without being interrupted by an escape digit

value

ASCII value of digit (if pressed), in decimal

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

SAY TIME

SAY TIME time escape_digits

Says the indicated time, returning early if any of the given DTMF digits are received on the channel. The time is the number of seconds

elapsed since 00:00:00 on January 1, 1970, Coordinated Universal Time (UTC).

Return values:

-1

Error or hangup

0

Playback completed without being interrupted by an escape digit

value

ASCII value of digit (if pressed), in decimal

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

file:///C:/DOCUME~1/stelios/LOCALS~1/Temp/2/O'Reilly,.Asterisk.The.Future.of.Telephony.(2005).BBL.LotB.chm/0596009623/18051535.html

SEND IMAGE

SEND IMAGE image

Sends the given image on the current channel. Most channels do not support the transmission of images. Image names should not include

extensions.

Return values:

-1

Error or hangup

0I

Image sent, or channel does not support sending an image

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

file:///C:/DOCUME~1/stelios/LOCALS~1/Temp/2/O'Reilly,.Asterisk.The.Future.of.Telephony.(2005).BBL.LotB.chm/0596009623/18051535.html

SEND TEXT

SEND TEXT "text_to_send"

Sends the specified text on the current channel. Most channels do not support the transmission of text. Text consisting of more than one

word should be placed in quotes, since the command accepts only a single argument.

Return values:

-1

Error or hangup

0I

Text sent, or channel does not support sending text

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

file:///C:/DOCUME~1/stelios/LOCALS~1/Temp/2/O'Reilly,.Asterisk.The.Future.of.Telephony.(2005).BBL.LotB.chm/0596009623/18051535.html

SET AUTOHANGUP

SET AUTOHANGUP time

Causes the channel to automatically be hung up once time seconds have elapsed. Of course, it can be hung up before then as well.

Setting time to 0 will cause the autohangup feature to be disabled on this channel.

Return value:

0

Autohangup has been set

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

file:///C:/DOCUME~1/stelios/LOCALS~1/Temp/2/O'Reilly,.Asterisk.The.Future.of.Telephony.(2005).BBL.LotB.chm/0596009623/18051535.html

SET CALLERID

SET CALLERID number

Changes the Caller ID of the current channel.

Return value:

1

Caller ID has been set

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

file:///C:/DOCUME~1/stelios/LOCALS~1/Temp/2/O'Reilly,.Asterisk.The.Future.of.Telephony.(2005).BBL.LotB.chm/0596009623/18051535.html

SET CONTEXT

SET CONTEXT context

Sets the context for continuation upon exiting the AGI application.

Return value:

0

Context has been set

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

SET EXTENSION

SET EXTENSION extension

Changes the extension for continuation upon exiting the AGI application.

Return value:

0

Extension has been set

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

SET MUSIC ON

SET MUSIC ON [on|off] [class]

Enables/disables the Music on Hold generator. If class is not specified, the default Music on Hold class will be used.

Return value:

0

Always returns 0

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

SET PRIORITY

SET PRIORITY priority

Changes the priority for continuation upon exiting the AGI application. priority must be a valid priority or label.

Return value:

0

Extension has been set

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

SET VARIABLE

SET VARIABLE variablename value

Sets or updates the value for the variable name specified by variablename. If the variable does not exist, it is created.

Return value:

1

Variable has been set

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

STREAM FILE

STREAM FILE filename escape_digits [sample_offset]

Play the audio file indicated by filename, allowing playback to be interrupted by the digits specified by escape_digits, if any. Use double

quotes for the digits if you wish none to be permitted. If sample_offset is provided, the audio will seek to sample_offset before playback

starts.

Remember, the file extension must not be included in the filename.

Return values:

0

Playback completed with no digit pressed

-1

Error or hangup

value

ASCII value of digit (if pressed), in decimal

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

TDD MODE

Enable/disable Telecommunications Devices for the Deaf (TDD) transmission/reception on this channel.

Return values:

0

Channel not TDD-capable

1

Success

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

VERBOSE

VERBOSE message level

Sends message to the console via the verbose message system. The level argument is the minimum verbosity level at which the message

will appear on the Asterisk command-line interface.

Return value:

0

Always returns 0

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

file:///C:/DOCUME~1/stelios/LOCALS~1/Temp/2/O'Reilly,.Asterisk.The.Future.of.Telephony.(2005).BBL.LotB.chm/0596009623/18051535.html

WAIT FOR DIGIT

WAIT FOR DIGIT timeout

Waits up to timeout milliseconds for the channel to receive a DTMF digit. Use -1 for the timeout value if you want the call to block

indefinitely.

Return values:

-1

Error or channel failure

0

Timeout

value

ASCII value of digit (if pressed), in decimal

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

Appendix D. Configuration Files

This appendix contains a reference to the configuration files not covered in the previous

appendixes. If you are looking for VoIP channel configurations, refer to Appendix A. For a dialplan

reference, you'll want to use Appendix B.

A configuration file is required for each Asterisk module you wish to use. These .conf files contain channel definitions, describe internal

services, define the locations of other modules, or relate to the dialplan. You do not need to configure all of them to have a functioning

system, only the ones required for your configuration. Although Asterisk ships with samples of all of the configuration files, it is possible

to start Asterisk without any of them. This will not provide you with a working system, but it clearly demonstrates the modularity of the

platform.

If no .conf files are found, Asterisk will make some decisions with respect to modules. For example, the following steps are always taken:

The Asterisk Event Logger is loaded, and events are logged to /var/log/asterisk/event_log.

Manager actions are registered.

The PBX core is initialized.

The RTP port range is allocated from 5,000 through 31,000.

Several built-in applications are loaded, such as Answer(), Background(), GotoIf(), NoOp(), and Set().

The dynamic loader is startedthis is the engine responsible for loading modules defined in modules.conf.

This appendix starts with an in-depth look at the modules.conf configuration file. We'll then briefly examine all the other files that you may

need to configure for your Asterisk system.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

D.1. modules.conf

The modules.conf file controls which modules are loaded or not loaded at Asterisk startup. This is done through the use of the load => or

noload => constructs.

This file is a key component to building a secure Asterisk installation: best practice suggests that

only required modules be loaded.

The modules.conf file always starts with the [modules] header. The autoload statement tells Asterisk whether to automatically load all

modules contained within the modules directory or to load only those modules specifically defined by load => statements. We

recommend you manually load only those modules you need, but many people find it easier to let Asterisk attempt to autoload whatever

it finds in /usr/lib/asterisk/modules. You can then exclude certain modules with noload => statements.

Here's a sample modules.conf file:

 [modules]

 autoload=no ; set this to yes and Asterisk will load any

 ; modules it finds in /usr/lib/asterisk/modules

 load => res_adsi.so

 load => pbx_config.so ; Requires: N/A

 load => chan_iax2.so ; Requires: res_crypto.so, res_features.so

 load => chan_sip.so ; Requires: res_features.so

 load => codec_alaw.so ; Requires: N/A

 load => codec_gsm.so ; Requires: N/A

 load => codec_ulaw.so ; Requires: N/A

 load => format_gsm.so ; Requires: N/A

 load => app_dial.so ; Requires: res_features.so, res_musiconhold.so

Since we assume Asterisk is built on Linux, all the module names we use end in a .so extension. However, this may not be the case if

you have built Asterisk on a different operating system.

As of this writing, there are eight module types: resources , applications, Call Detail Record database connectors, channels, codecs,

formats, pbx modules, and standalone functions. Let's take a look at each of them.

D.1.1. Resources

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

A resource provides a connection to a static repository of a particular type of information, such as a unique regional requirement or a

library of constant elements. This information must be configurable for each system, but once loaded it doesn't need to change in the

course of normal operations.

For each resource below, we have outlined the applications and features it provides to other Asterisk modules We've indicated the .conf

file used to define the resource, where needed; if no file is listed, then a configuration file isn't required. The resource modules are:

res_adsi.so

Configuration file: adsi.conf

Provides: ADSI functions to ADSIProg() and Voicemail()

res_agi.so

Provides: DeadAGI(), EAGI(), AGI()

res_crypto.so

Provides: Loads public and private keys located in /var/lib/asterisk/keys/

res_features.so

Configuration file: features.conf

Provides: ParkedCall(), Park()

res_indications.so

Configuration file: indications.conf

Provides: Playtones(), StopPlaytones()

res_monitor.so

Provides: Monitor(), StopMonitor(), ChangeMonitor(), action Monitor, action StopMonitor, action ChangeMonitor

res_musiconhold.so

Configuration file: musiconhold.conf

Provides: MusicOnHold(), WaitMusicOnHold(), SetMusicOnHold(), StartMusicOnHold(), StopMusicOnHold()

res_odbc.so

Configuration file: res_odbc.conf

Provides: Connectivity information to the ODBC
[*]

 driverthe purpose is to store configuration file information in a database and

retrieve that information from the database; however, a reload is required to make changes take effect

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

[*] Open DataBase Connectivity (ODBC) is a standard by which access to a database can be provided.

D.1.2. Applications

If you build an Asterisk dialplan of any size, you are going to use at least oneand more likely dozensof applications.
[]

 If an application

is never going to be used, it is not strictly required that it be loaded. For performance-challenged systems (or if you just like to keep it

lean), you may elect to load only those applications that are referenced in your dialplan.

[] To be of any use, a self-contained dialplan will always require several applications. Some folks, however, use

the dialplan for no other purpose than to pass control to an external application. In this case, it would be possible

to have the dialplan use no application other than AGI(). We're not recommending that you do this, but again, it

demonstrates Asterisk's enormous flexibility.

For each application module, we will define any resource requirements and name the applications that the module provides. Unless we

have stated otherwise, the application does not require a configuration file or any other modules. The available application modules are:

app_adsiprog.so

Requires: res_adsi.so

Provides: ADSIProg()

app_alarmreceiver.so

Provides: AlarmReceiver()

app_authenticate.so

Provides: Authenticate()

app_cdr.so

Provides: NoCDR()

app_chanisavail.so

Provides: ChanIsAvail()

app_chanspy.so

Provides: ChanSpy()

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

app_controlplayback.so

Provides: ControlPlayback()

app_curl.so

Provides: Curl()

app_cut.so

Provides: Cut()

app_db.so

Provides: DBget(), DBput(), DBdel(), DBdeltree()

app_dial.so

Requires: res_features.so, res_musiconhold.so

Provides: Dial(), RetryDial()

app_dictate.so

Provides: Dictate()

app_directory.so

Provides: Directory()

app_disa.so

Provides: DISA()

app_dumpchan.so

Provides: DumpChan()

app_echo.so

Provides: Echo()

app_enumlookup.so

Configuration file: enum.conf

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

Provides: EnumLookup()

app_eval.so

Provides: Eval()

app_exec.so

Provides: Exec()

app_festival.so

Provides: Festival()

app_forkcdr.so

Provides: ForkCDR()

app_getcpeid.so

Requires: res_adsi.so

Provides: GetCPEID()

app_groupcount.so

Provides: GetGroupCount(), SetGroup(), CheckGroup(), GetGroupMatchCount()

app_hasnewvoicemail.so

Provides: HasVoicemail(), HasNewVoicemail()

app_ices.so

Provides: ICES()

app_image.so

Provides: SendImage()

app_lookupblacklist.so

Provides: LookupBlacklist()

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

app_lookupcidname.so

Provides: LookupCIDName()

app_macro.so

Provides: Macro(), MacroExit(), MacroIf()

app_math.so

Provides: Math()

app_md5.so

Provides: MD5(), MD5Check()

app_milliwatt.so

Provides: Milliwatt()

app_mp3.so

Provides: MP3Player()

app_nbscat.so

Provides: NBScat()

app_parkandannounce.so

Requires: res_features.so

Provides: ParkAndAnnounce()

app_playback.so

Provides: Playback()

app_privacy.so

Provides: PrivacyManager()

app_queue.so

Requires: res_features.so, res_monitor.so, res_musiconhold.so

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

Provides: Queue(), AddQueueMember(), RemoveQueueMember(), PauseQueueMember(), UnpauseQueueMember(),

action Queues, action QueueStatus, action QueueAdd, action QueueRemove, action QueuePause

app_random.so

Provides: Random()

app_read.so

Provides: Read()

app_readfile.so

Provides: ReadFile()

app_realtime.so

Provides: RealTime(), RealTimeUpdate()

app_record.so

Provides: Record()

app_sayunixtime.so

Provides: SayUnixTime(), DateTime()

app_senddtmf.so

Provides: SendDTMF()

app_sendtext.so

Provides: SendText()

app_setcallerid.so

Provides: SetCallerPres(), SetCallerID()

app_setcdruserfield.so

Provides: SetCDRUserField(), AppendCDRUserField(), action SetCDRUserField

app_setcidname.so

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

Provides: SetCIDName()

app_setcidnum.so

Provides: SetCIDNum()

app_setrdnis.so

Provides: SetRDNIS()

app_settransfercapability.so

Provides: SetTransferCapability()

app_sms.so

Provides: SMS()

app_softhangup.so

Provides: SoftHangup()

app_striplsd.so

Provides: StripLSD()

app_substring.so (deprecated)

Provides: SubString()

app_system.so

Provides: System(), TRySystem()

app_talkdetect.so

Provides: BackgroundDetect()

app_test.so

Provides: TestClient(), TestServer()

app_transfer.so

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

Provides: transfer()

app_txtcidname.so

Configuration file: enum.conf

Provides: TXTCIDName()

app_url.so

Provides: SendURL()

app_userevent.so

Provides: UserEvent()

app_verbose.so

Provides: Verbose()

app_voicemail.so

Configuration file: voicemail.conf

Requires: res_adsi.so

Provides: VoiceMail(), VoiceMailMain(), MailboxExists(), VMAuthenticate()

app_waitforring.so

Provides: WaitForRing()

app_waitforsilence.so

Provides: WaitForSilence()

app_while.so

Provides: While(), ExecIf(), EndWhile()

app_zapateller.so

Provides: Zapateller()

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

D.1.3. Database-Stored Call Detail Records

Asterisk normally stores Call Detail Records (CDRs) in a Comma-Separated Values (CSV) file.
[*]

 If you want CDRs to be stored in a

database, you'll need to load the appropriate module and define the relevant .conf file.

[*] Information stored in a text file as Comma-Separated Values can be imported into pretty much any spreadsheet

or database (yes, even stuff from Microsoft). This makes the CSV format extremely portable.

For each module below, we state the database type it supports, and specify the configuration file, if required. The CDR database

connector modules are:

cdr_csv.so

Provides: CSV CDR backend

cdr_custom.so

Configuration file: cdr_custom.conf

Provides: Customizable CSV CDR backend

cdr_manager.so

Configuration file: cdr_manager.conf

Provides: Asterisk Call Manager CDR backend

cdr_odbc.so
[]

Configuration file: cdr_odbc.conf

Provides: ODBC CDR backend

cdr_pgsql.so

Configuration file: cdr_pgsql.conf

Provides: PostgreSQL CDR backend

D.1.4. Channels

Next, let's take a look at the channel modules. For each channel module, we identify dependencies and list the capabilities the module

provides. We show the configuratin file, if one is required. The available modules are:

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

chan_agent.so

Configuration file: agents.conf

Requires: res_features.so, res_monitor.so, res_musiconhold.so

Provides: channel Agent, AgentLogin(), AgentCallbackLogin(), AgentMonitorOutgoing(), action Agents

chan_features.so

Provides: channel Feature

chan_iax2.so

Configuration file: iax.conf, iaxprov.conf

Requires: res_crypto.so, res_features.so, res_musiconhold.so

Provides: channel IAX2, IAX2Provision(), function IAXPEER, action IAXPEERS, action IAXnetstats

chan_local.so

Provides: channel Local

chan_mgcp.so

Configuration file: mgcp.conf

Requires: res_features.so

Provides: channel MGCP

chan_modem.so

Configuration file: modem.conf

Provides: channel Modem

chan_modem_aopen.so

Requires: chan_modem.so

Provides: A/Open (Rockwell Chipset) ITU-2 VoiceModem Driver

chan_modem_bestdata.so

Requires: chan_modem.so

Provides: BestData (Conexant V.90 Chipset) VoiceModem Driver

chan_modem_i4l.so

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

Requires: chan_modem.so

Provides: ISDN4Linux Emulated Modem Driver

chan_oss.so

Provides: channel Console (soundcard required)

chan_phone.so

Configuration file: phone.conf

Provides: channel Phone

chan_sip.so

Configuration file: sip.conf, sip_notify.conf

Requires: res_features.so

Provides: channel SIP, SIPDtmfMode(), SIPAddHeader(), SIPGetHeader(), action SIPpeers, action SIPshowpeer, function

SIP_HEADER

chan_skinny.so

Configuration file: skinny.conf

Requires: res_features.so

Provides: channel Skinny

D.1.5. Codecs

There are several acceptable ways to pass audio information in digital form. The formulas used to encode and decode (or compress and

decompress) this information are collectively referred to as codecs. Most of Asterisk's codecs are provided free of license requirements;

however, some (such as G.729) are encumbered by patents and thus must be licensed before they can be used.

Asterisk will load these codecs without complaint, but if you attempt to transcode a channel using an unlicensed codec, your calls will be

dropped as soon as they connect.

Here, then, are the codec modulesif there are parameters that can be defined, they will be configurable in the codecs.conf file:

codec_a_mu.so

Provides: translator alawtoulaw, translator ulawtoalaw

codec_adpcm.so

Configuration file: codecs.conf

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

Provides: translator adpcmtolin, TRanslator lintoadpcm

codec_alaw.so

Configuration file: codecs.conf

Provides: translator alawtolin, translator lintoalaw

codec_g726.so

Configuration file: codecs.conf

Provides: translator g726tolin, TRanslator lintog726

codec_gsm.so

Configuration file: codecs.conf

Provides: translator gsmtolin, translator lintogsm

codec_ilbc.so

Configuration file: not required

Provides: translator ilbctolin, translator lintoilbc

codec_lpc10.so

Configuration file: codecs.conf

Provides: translator lpc10tolin, translator lintolpc10

codec_ulaw.so

Configuration file: codecs.conf

Provides: translator ulawtolin, translator lintoulaw

D.1.6. Formats

Formats are essentially the same as codecs, except that they relate to handling files instead of live media streams. If you are talking to

someone, a codec (or two) will be employed. If you are leaving a voicemail or listening to Music on Hold, a format will be involved.

Here are the current Asterisk formats. Formats do not have associated configuration files:

format_g723.so

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

Provides: format g723sf

format_g726.so

Provides: format g726-40, format g726-32, format g726-24, format g726-16

format_g729.so

Provides: format g729

format_gsm.so

Provides: format gsm

format_h263.so

Provides: format H263

format_ilbc.so

Provides: format ilbc

format_jpeg.so

Provides: format jpg

format_pcm.so

Provides: format pcm

format_pcm_alaw.so

Provides: format alaw

format_sln.so

Provides: format sln

format_vox.so

Provides: format vox

format_wav.so

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

Provides: format wav

format_wav_gsm.so

Provides: format wav49

D.1.7. PBX Core Modules

The PBX modules deliver the core functionality of the system. For each module, we show the services it provides, and list the

configuration file, if one is required. At minimum, config, functions, and spool are required. dundi, loopback, and realtime are needed only

if you are going to make use of their capabilities. The PBX core modules are:

pbx_config.so

Configuration file: extensions.conf

Provides: Loads dialplan into memory

pbx_dundi.so

Configuration file: dundi.conf

Requires: res_crypto.so

Provides: DUNDiLookup()

pbx_functions.so

Configuration file: not required

Provides: function CDR, function CHECK_MD5, function DB, function DB_EXISTS, function ENV, function EVAL, function

EXISTS, function FIELDQTY, function GROUP_COUNT, function GROUP_MATCH_COUNT, function GROUP, function

GROUP_LIST, function IF, function ISNULL, function LANGUAGE, function LEN, function MD5, function REGEX, function

STRFTIME, function SET, function TIMEOUT

pbx_loopback.so

Provides: Loopback switch

pbx_realtime.so

Provides: Realtime switch

pbx_spool.so

Provides: Outgoing spool support

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

D.1.8. Standalone Functions

There is currently only one standalone function available. This function operates identically to those in pbx_functions.so, but because it is

standalone, it can be loaded (or not) completely independently of the pbx functions. The function is:

func_callerid.so

Configuration file: not required

Provides: function CALLERID

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

D.2. adsi.conf

The Analog Display Services Interface (ADSI) was designed to allow telephone companies to deliver enhanced services across analog

telephone circuits. In Asterisk, you can use this file to send ADSI commands to compatible telephones. Please note that the phone must

be directly connected to a Zapata channel. ADSI messages cannot be sent across a VoIP connection to a remote analog phone.

The res_adsi.so module is required for the Voicemail() application; however, the adsi.conf file is not necessarily used. Detailed

information about ADSI is not publicly available, and documentation needs to be purchased from Telcordia.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

D.3. adtranvofr.conf

Prior to Voice over IP, Voice over Frame Relay (VoFR) enjoyed brief fame as a means of carrying packetized voice. Supporting VoFR

through Adtran equipment is part of the history of Asterisk.

This feature is no longer popular in the community, though, so it may be difficult to find support for it.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

D.4. agents.conf

This file allows you to create and manage agents for your call center. If you are using the Queue() application, you may want to

configure agents for the queue. The agents.conf file is used to configure the AGENT channel driver.

The [general] section in agents.conf currently contains only one parameter. The persistentagents=yes parameter tells Asterisk to save the

status of agents who use the callback feature of queues in the local Asterisk database. A logged-in remote agent will then remain logged

in across a reboot (unless removed from the database through some other means).

The following parameters, which are specified in the [agents] section, are used to define agents and the way the system interacts with

them. The settings apply to all agents, unless otherwise specified in the individual agent definitions:

ackcall

Accepts the arguments yes and no. If set to yes, requires a callback agent to acknowledge login by pressing the # key after

logging in. This works in conjunction with the AgentCallbackLogin() application.

autologoff

Accepts an argument (in seconds) defining how long an agent channel should ring for before the agent is deemed

unavailable and logged off.

group

Defines the groups to which an agent belongs, specified with integers. Specify that an agent belongs to multiple groups by

separating the integers with commas.

musiconhold => class

Accepts a Music on Hold class as its argument. This setting applies to all agents.

updatecdr

Accepts the arguments yes and no. Used to define whether the source channel in the CDRs should be set to agent/agent_id

to determine which agent generated the calls.

wrapuptime

Accepts an argument (in milliseconds) specifying the amount of time to wait after an agent has finished a call before that

agent can be considered available to answer another call.

The remaining parameters are also specified in the [agents] section, but they are global to the chan_agent channel driver and thus cannot

be defined on a per-agent basis:

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

createlink

Accepts the arguments yes and no. Inserts the name of the created recording in the CDR user field.

custom_beep

Accepts a filename as its argument. Can be used to define a custom notification tone to signal to an always-connected agent

that there is an incoming call.

recordagentcalls

Accepts the arguments yes and no. Defines whether or not agent calls should be recorded.

recordformat

Defines the format to record files in. The argument specified should be wav, gsm, or wav49. The default recording format is

wav.

savecallsin

Accepts a filesystem path as its argument. Allows you to override the default path of /var/spool/asterisk/monitor/ with one of

your choosing.

Since the storage of calls will require a large amount of hard drive space, you will want to

define a strategy to handle storing and managing these recordings.

This location should probably reside on a separate volume; one with very high

performance characteristics.

urlprefix

Accepts a string as its argument. The string can be formed as a URL and is appended to the start of the text to be added to

the name of the recording.

The final parameter is used to define agents. As in the zapata.conf file, configuration parameters are inherited from above the agent =>

definition. Agents are defined with the following format:

 agent => agent_id,agent_password,name

For example, we can define agent Happy Tempura with the agent ID 1000 and password 1234, as follows.

 agent => 1000,1234,Happy Tempura

Be aware that an agents.conf file is a complement to the queue configuration process. The most critical configuration file for your queues

is queues.conf. You can configure a very basic queue without agents.conf.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

file:///C:/DOCUME~1/stelios/LOCALS~1/Temp/2/O'Reilly,.Asterisk.The.Future.of.Telephony.(2005).BBL.LotB.chm/0596009623/18051535.html

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

D.5. alarmreceiver.conf

The AlarmReceiver() application is not approved by Underwriter's Laboratory (UL) and should not

be used as the primary or sole means of receiving alarm messages or events. This application is

not guaranteed to be reliable, so don't depend on it unless you have extensively tested it. Use of

this application without extensive testing may place your life and/or property at risk.

The alarmreceiver.conf file is used by the AlarmReceiver() application, which allows Asterisk to accept alarms using the SIA (Ademco)

Contact ID protocol. When a call is received from an alarm panel, it should be directed to a context that calls the AlarmReceiver()

application. In turn, AlarmReceiver() will read the alarmreceiver.conf configuration file and perform the configured actions as required. All

parameters are specified under the [general] heading.

The sample configuration file will contain the current settings for this application and is very well documented.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

file:///C:/DOCUME~1/stelios/LOCALS~1/Temp/2/O'Reilly,.Asterisk.The.Future.of.Telephony.(2005).BBL.LotB.chm/0596009623/18051535.html

D.6. alsa.conf

The alsa.conf file is used to configure Asterisk to use the Advanced Linux Sound Architecture (ALSA) to provide access to a sound card,

if desired. You can use this file to configure the CONSOLE channel, which is most commonly used to create an overhead paging system

(although, as with any other channel, there are all kinds of creative ways this can be used). Keep in mind that the usefulness of the ALSA

channel by itself is limited due to its lack of a user interface.
[*]

[*] Yes, we are aware that the user interface to the channel interface is the Asterisk CLI; however, this is not usable

as a telephone and therefore does not meet the criteria of an interface from the perspective of a telephone user.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

file:///C:/DOCUME~1/stelios/LOCALS~1/Temp/2/O'Reilly,.Asterisk.The.Future.of.Telephony.(2005).BBL.LotB.chm/0596009623/18051535.html

D.7. asterisk.conf

The asterisk.conf file defines the locations for the configuration files, the spool directory, and the modules, as well as a location to write

log files to. The default settings are recommended unless you understand the implications of changing them. The asterisk.conf file is

generated automatically when you run the make samples command, based on information it collects about your system. It will contain a

[directories] section such as the following:

 [directories]

 astetcdir => /etc/asterisk

 astmoddir => /usr/lib/asterisk/modules

 astvarlibdir => /var/lib/asterisk

 astagidir => /var/lib/asterisk/agi-bin

 astspooldir => /var/spool/asterisk

 astrundir => /var/run

 astlogdir => /var/log/asterisk

Additionally, you can specify an [options] section, which will allow you to define startup options (command-line switches) in the

configuration file. The following example shows the available options and the command-line switches that they effectively enforce:

 [options]

 verbose=<value> ; starting verbosity level (-v)

 debug=yes|no|<val> ; turn debugging on or off (or value in 1.2) (-d)

 nofork=yes|no ; don't fork a background process (-f)

 console=yes|no ; load the Asterisk console (-c)

 highpriority=yes|no ; run with high priority (-p)

 initcrypto=yes|no ; initialize crypto at start (-i)

 nocolor=yes|no ; disable ANSI colors on the console (-n)

 dumpcore=yes|no ; dump a core file on failure (-g)

 quiet=yes|no ; run quietly (-q)

 cache_record_files=yes|no ; cache files recorded with Record() in an alternative

 ; directory in conjunction with record_cache_dir

 record_cache_dir=<dir> ; directory in which to cache files recorded with

 ; Record () until completion

 execincludes=yes|no ; enable support of #exec includes in configuration

 ; files (off by default)

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

file:///C:/DOCUME~1/stelios/LOCALS~1/Temp/2/O'Reilly,.Asterisk.The.Future.of.Telephony.(2005).BBL.LotB.chm/0596009623/18051535.html

D.8. cdr.conf

The cdr.conf file is used to enable call detail record logging to a database. Storing call records is useful for all sorts of purposes, including

billing, fraud prevention, QoS evaluations, and more. cdr.conf contains some general parameters that are not specific to any particular

database, but rather indicate how Asterisk should handle the passing of information to the database. All options are under the [general]

heading of the cdr.conf file:

batch

Accepts the arguments yes and no. Allows Asterisk to write data to a buffer instead of writing to the database at the end of

every call, to reduce load on the system.

Note that if the system dies unexpectedly when this option is set to yes, data loss may

occur.

enable

Accepts the arguments yes and no. Specifies whether or not to use CDR logging. If set to no, this will override any CDR

module explicitly loaded. The default is yes.

safeshutdown

Accepts the arguments yes and no. Setting safeshutdown to yes will prevent Asterisk from shutting down completely until the

buffer is flushed and all information is written to the database. If this parameter is set to no and you shut down Asterisk with

information still residing in the buffers, that information will likely be lost.

scheduleronly

Accepts the arguments yes and no. If you are generating a massive volume of CDRs on a system that is pushing them to a

remote database, setting scheduleronly to yes may be of benefit. Since the scheduler cannot start a new task until the current

one is finished, slow CDR writes may adversely affect other processes needing the scheduler. This setting will instruct

Asterisk to handle CDR writes in a new thread, essentially assigning a dedicated scheduler to this function. In normal

operation, this would yield very little benefit.

size

Accepts an integer as its argument. Defines the number of CDRs to accumulate in the buffer before writing to the database.

The default is 100.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

time

Accepts an integer (in seconds) as its argument. Sets the number of seconds before Asterisk flushes the buffer and writes the

CDRs to the database, regardless of the number of records in the buffer (as defined by size). The default is 300 seconds (5

minutes).

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

file:///C:/DOCUME~1/stelios/LOCALS~1/Temp/2/O'Reilly,.Asterisk.The.Future.of.Telephony.(2005).BBL.LotB.chm/0596009623/18051535.html

D.9. cdr_manager.conf

The cdr_manager.conf file simply contains a [general] heading and a single option, enabled, which you can use to specify whether or not

the Asterisk Manager API generates CDR events. If you want CDR events to be generated, you will need the following lines in your

cdr_manager.conf file:

 [general]

 enabled=yes

The Manager API will then output CDR events containing the following fields:

 Event: Cdr

 AccountCode:

 Source:

 Destination:

 DestinationContext:

 CallerID:

 Channel:

 DestinationChannel:

 LastApplication:

 LastData:

 StartTime:

 AnswerTime:

 EndTime:

 Duration:

 BillableSeconds:

 Disposition:

 AMAFlags:

 UniqueID:

 UserField:

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

file:///C:/DOCUME~1/stelios/LOCALS~1/Temp/2/O'Reilly,.Asterisk.The.Future.of.Telephony.(2005).BBL.LotB.chm/0596009623/18051535.html

D.10. cdr_odbc.conf

Asterisk can store CDR data in a local or remote database via the ODBC interface. The cdr_odbc.conf file contains the information

Asterisk needs to connect to the database. The cdr_odbc.so module will attempt to load the cdr_odbc.conf file, and if information is found

for connecting to a database, the CDR data will be recorded there.

If you are going to use a database for storing CDR data, you will have to select one of the many

that are available. Asterisk does not like having multiple CDR databases to connect to, so do not

have extra cdr_.conf files hanging about your Asterisk configuration directory.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

D.11. cdr_pgsql.conf

Asterisk can store CDR data in a PostgreSQL database via the cdr_pgsql.so module. When the module is loaded the necessary

information will be read from the cdr_pgsql.conf file, and Asterisk will connect to the PostgreSQL database to write and store CDR data.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

file:///C:/DOCUME~1/stelios/LOCALS~1/Temp/2/O'Reilly,.Asterisk.The.Future.of.Telephony.(2005).BBL.LotB.chm/0596009623/18051535.html

D.12. cdr_tds.conf

Asterisk can also store CDR data to a FreeTDS database (including MS SQL) with the use of the cdr_tds.so module. The configuration

file cdr_tds.conf is read once the module is loaded. Upon a successful connection, CDR data will be written to the database.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

file:///C:/DOCUME~1/stelios/LOCALS~1/Temp/2/O'Reilly,.Asterisk.The.Future.of.Telephony.(2005).BBL.LotB.chm/0596009623/18051535.html

D.13. codecs.conf

Most codecs do not have any configurable parametersthey are what they are, and that's all they are.

Some codecs, however, are capable of behaving in different ways. This primarily means that they can be optimized for a particular goal,

such as cutting down on latency, making best use of a network, or perhaps delivering high quality.

The codecs.conf file is fairly new in Asterisk, and as of this writing it allows configuration of Speex parameters only. The settings are

self-explanatory, as long as you are familiar with the Speex protocol (see http://www.speex.org).

codecs.conf also allows you to configure Packet Loss Concealment (PLC). You need to define a [plc] section and indicate genericplc =>

true. This will cause Asterisk to attempt to interpolate any packets that are missed. (Enabling this functionality will incur a small

performance penalty.)

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

http://www.speex.org
file:///C:/DOCUME~1/stelios/LOCALS~1/Temp/2/O'Reilly,.Asterisk.The.Future.of.Telephony.(2005).BBL.LotB.chm/0596009623/18051535.html

D.14. dnsmgr.conf

This file is used to configure whether Asterisk should perform DNS lookups on a regular basis, and how often those lookups should be

performed.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

file:///C:/DOCUME~1/stelios/LOCALS~1/Temp/2/O'Reilly,.Asterisk.The.Future.of.Telephony.(2005).BBL.LotB.chm/0596009623/18051535.html

D.15. dundi.conf

The DUNDi protocol is used to dynamically look up the VoIP address of a phone number on a network, and to connect to that number.

Unlike the ENUM standard, DUNDi has no central authority. The dundi.conf file contains DUNDi extensions used to control what is

advertised; it also contains the peers to whom you will submit lookup requests and from whom you will accept lookup requests. The

DUNDi protocol was explored in Chapter 10.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

D.16. enum.conf

The Electronic Numbering (ENUM) system is used in conjunction with the Internet's DNS system to map E.164 ITU standard (ordinary

telephone) numbers to email addresses, web sites, VoIP addresses, and the like. An ENUM number is created in DNS by reversing the

phone number, separating each digit with a period, and appending e164.arpa (the primary DNS zone). If you want Asterisk to perform

ENUM lookups, configure the domain(s) in which to perform the lookups within the enum.conf file. In addition to the official e164.arpa

domain, you can have Asterisk perform lookups in the publicly accessible e164.org domain.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

D.17. extconfig.conf

Asterisk can write configuration data to and load configuration data from a database using the external configuration engine (also known

as realtime). This enables you to map external configuration files (static mappings) to a database, allowing the information to be retrieved

from the database. It also allows you to map special runtime entries that permit the dynamic creation and loading of objects, entities,

peers, and so on without a reload. These mappings are assigned and configured in the extconfig.conf file, which is used by both res_odbc

and realtime.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

D.18. extensions.conf

At the center of every good universe is a dialplan. The extensions.conf file is the means by which you tell Asterisk how you want calls to

be handled. The dialplan contains a list of instructions that, unlike traditional telephony systems, is entirely customizable. The dialplan is

so important that rather than defining it in this appendix, we have dedicated all of Chapters 5 and 6, as well as Appendix B, to this topic.

Go forth, read, and enjoy!

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

D.19. features.conf

features.conf, the file formally known as parking.conf, contains configuration information related to call parking and call transfers. Call

parking configuration options include:

The extension to dial to park calls (parkext =>)

The extension range to park calls in (parkpos =>)

Which context to park calls in (context =>)

How long a call can remain parked for before ringing the extension that parked it (parkingtime =>)

The sound file played to the parked caller when the call is removed from parking (courtesytone =>)

ADSI parking announcements (asdipark=yes|no)

In addition to the call parking options, in this file you can configure the button mappings for blind transfers, attended transfers, one-touch

recording, disconnections, and the pickup extension (which allows you to answer a remotely ringing extension).

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

file:///C:/DOCUME~1/stelios/LOCALS~1/Temp/2/O'Reilly,.Asterisk.The.Future.of.Telephony.(2005).BBL.LotB.chm/0596009623/18051535.html

D.20. festival.conf

The Festival text-to-speech engine allows Asterisk to read text files to the end user with a computer-generated voice. Festival is covered

in Chapter 10.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

D.21. iax.conf

Similar to sip.conf, the iax.conf file is where you configure options related to the IAX protocol. Your end devices and service providers are

also configured here. iax.conf is covered in detail in Appendix A.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

file:///C:/DOCUME~1/stelios/LOCALS~1/Temp/2/O'Reilly,.Asterisk.The.Future.of.Telephony.(2005).BBL.LotB.chm/0596009623/18051535.html

D.22. iaxprov.conf

This file is used by Asterisk to allow the system to upgrade the firmware on an IAXy device.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

D.23. indications.conf

The indications.conf file is used to tell Asterisk how to generate the various telephone sounds common in different parts of the worlda dial

tone in England sounds very different from a dial tone in Canada, but your Asterisk system will be pleased to make the sounds you want

to hear. This file consists of a list of sounds a telephone system might need to produce (dial tone, busy signals, and so forth), followed by

the frequencies used to generate those sounds.

By default (and without an indications.conf file), Asterisk will use the tones common in North America. You can change the default

country for your system by specifying the two-letter country code in the [general] section. Supported country codes are listed in the

indications.conf.sample file located in /usr/src/asterisk/configs. If you have the required information, your country can easily be added.

Here's what the configuration for North America looks like:

 [general]

 country=us

 ;

 [us]

 description = United States / North America

 ringcadance = 2000,4000

 dial = 350+440

 busy = 480+620/500,0/500

 ring = 440+480/2000,0/4000

 congestion = 480+620/250,0/250

 callwaiting = 440/300,0/10000

 dialrecall = !350+440/100,!0/100,!350+440/100,!0/100,!350+440/100,!0/100,350+440

 record = 1400/500,0/15000

 info = !950/330,!1400/330,!1800/330,0

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

file:///C:/DOCUME~1/stelios/LOCALS~1/Temp/2/O'Reilly,.Asterisk.The.Future.of.Telephony.(2005).BBL.LotB.chm/0596009623/18051535.html

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

D.24. logger.conf

The logger.conf file specifies the type and verbosity of messages logged to the various log files in the /var/log/asterisk/ directory. It has two

sections, [general] and [logfile].

D.24.1.

D.24.1.1. [general]

Settings under the [general] section are used to customize the output of the logs (and can safely be left blank, as the defaults serve most

people very well). However, if you love to customize such things, read on.

You can define exactly how you want your timestamps to look through the use of the dateformat parameter:

 dateformat=%F %T

The Linux man page for strftime(3) lists all of the ways you can do this.

If you want to append your system's hostname to the names of the log files, set appendhostname=yes. This can be useful if you have a

lot of systems delivering log files to you.

If for some reason you do not want to log events from your queues, you can set queue_log=no.

If generic events do not interest you, instruct Asterisk to omit them from the by setting event_log=no.

D.24.1.2. [logfiles]

The [logfiles] section defines the types of information you wish to log. There are multiple ranks for the various bits of information that will

be logged, and it can be desirable to separate log entries into different files. The general format for lines in the [logfiles] section is

filename => levels, where filename is the name of the file to save the logged information to and levels are the types of information you wish

to save.

Using console for the filename is a special exception that allows you to control the type of

information sent to the Asterisk console.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

A sample [logfiles] section might look like this:

 [logfiles]

 console => notice,warning,error

 messages => notice,warning,error

You can specify logging of the following types of information:

debug

Enabling debugging gives far more detailed output about what is happening in the system. For example, with debugging

enabled, you can see what DTMF tones the users entered while accessing their voicemail boxes. Debugging information

should be logged only when you are actually debugging something, as it will create massive log files very rapidly.

verbose

When you connect to the Asterisk console and set a verbosity of 3 or higher, you'll see output on the console showing what

Asterisk is doing. You can save this output to a log file by adding a line such as verbose_log => verbose to your logger.conf

file. Note that a high amount of verbosity can quickly eat up hard drive space.

notice

A notice is used to inform you of minor changes to the system, such as when a peer changes state. It is normal to see these

types of messages, and the events they indicate generally have no adverse effects on the server.

warning

A warning happens when Asterisk attempts to do something and is unsuccessful. These types of errors are usually not fatal,

but they should be investigated, especially if a lot of them are seen.

error

Errors are often related to Out of Memory errors. They generally indicate serious problems that may lead to Asterisk to

crashing or freezing.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

D.25. manager.conf

The Asterisk Manager interface is an API that external programs can use to communicate with and control Asterisk, much as you would

do from the Asterisk console.

The Manager gives programs the ability to run commands and request information from the

Asterisk server. However, it is not very secureits authentication mechanism uses plain-text

passwords, and all connected terminals receive all events. The Asterisk Manager should be used

only on a trusted local area network, or locally on the box. The permit and deny constructs allow

you to restrict access to certain extensions or subnets.

Many of the available graphical interfaces to Asterisksuch as the Flash Operator Paneluse the Manager to pull data and determine the

status of applications. The manager.conf file defines the way programs authenticate with the Manager.

The Manager commands (which you can list by typing show manager commands at the Asterisk console) have varying degrees of

privilege. You can control the read and write permissions for these commands with the use of the read and write options in the

manager.conf file.

Here's a sample manager.conf file:

 [general]

 enabled = no

 port = 5038

 bindaddr = 0.0.0.0

 [magma]

 secret = welcome

 deny=0.0.0.0/0.0.0.0

 permit= 192.168.1.0/255.255.255.0

 read = system,call,log,verbose,command,agent,user

 write = system,call,log,verbose,command,agent,user

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

file:///C:/DOCUME~1/stelios/LOCALS~1/Temp/2/O'Reilly,.Asterisk.The.Future.of.Telephony.(2005).BBL.LotB.chm/0596009623/18051535.html

D.26. meetme.conf

MeetMe is one of the more remarkable applications in Asterisk. This rather simple concept has proven to be extremely expensive to

implement in every other PBX, but what seems like a big deal to them is simple to Asterisk. Whether by using a dedicated server, or

through the use of a service, Asterisk now delivers this functionality as a standard application.

MeetMe conferences can be created either dynamically, with the d flag in the Dial() application, or statically in the meetme.conf file. The

format for creating conference rooms is as follows:

 conf => conference_number[,pin][,administrator_pin]

All conferences must be defined under the [rooms] section header.

 [rooms]

 conf => 4569

 conf => 5060,54377017

 conf => 3389,4242,1337

 conf => 333,,2424

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

D.27. mgcp.conf

The Media Gateway Control Protocol (MGCP) has only primitive support in Asterisk. This is likely due to the fact that SIP has stolen the

limelight from every other VoIP protocol (except IAX, of course). Because of this, you should attempt to use Asterisk's MCGP channel in

a production environment only if you are prepared to perform extensive testing, are willing to pay to have features and patches

implemented within your time frames, and have in-house expertise with the protocol.

Having said that, we are not prepared to pronounce MGCP dead. SIP is not yet the panacea it has been touted as, and MGCP has

proven itself to be very useful in carrier backbone environments. Many believe MGCP will fill a niche or void that has not yet been

discovered, and we remain interested in it.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

D.28. modem.conf

The modem.conf file is used by Asterisk to communicate with ISDN-BRI interfaces through the ISDN4Linux driver. Since ISDN4Linux

lacks many core ISDN features, it is not generally used. For BRI, the most popular add-on seems to be chan_capi, available from

http://www.junghanns.net.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

http://www.junghanns.net
file:///C:/DOCUME~1/stelios/LOCALS~1/Temp/2/O'Reilly,.Asterisk.The.Future.of.Telephony.(2005).BBL.LotB.chm/0596009623/18051535.html

D.29. musiconhold.conf

The musiconhold.conf file is used to configure different classes of music and their locations for use in Music on Hold applications.

Asterisk makes use of the mpg123 application to play music to channels. You can specify arguments for a class, allowing you to use an

external application to stream music either locally or over a network. Recently, native Music on Hold has been implemented, allowing

Asterisk to play music without any external processes. If the file is available in the same format as the codec of the active channel, no

transcoding will occur.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

D.30. osp.conf

The Open Settlement Protocol (OSP) is officially documented in ETSI TS 101 321, a European Telecommunication Standards Institute

(ETSI) document that came out of the work of the TIPHON working group. As far as we can tell, OSP is another attempt to apply

old-style telecom thinking to disruptive technologies.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

D.31. oss.conf

The oss.conf file is used to configure Asterisk to use the Open Sound System (OSS) driver to allow communications with the sound card

via the CONSOLE channel. Note that ALSA is now the preferred interface for the CONSOLE channel.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

file:///C:/DOCUME~1/stelios/LOCALS~1/Temp/2/O'Reilly,.Asterisk.The.Future.of.Telephony.(2005).BBL.LotB.chm/0596009623/18051535.html

D.32. phone.conf

The phone.conf file is used to configure a Quicknet PhoneJACK card. The PhoneJACK card seems to provide something like an FXS

interface, in that you can plug an analog telephone into it and pass calls through Asterisk.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

D.33. privacy.conf

The privacy.conf file is used to control the maximum number of tries a user has to enter his 10-digit telephone number in the

PrivacyManager() application. The PrivacyManager() application determines if a Caller ID is set for the incoming call. If the user fails to

enter his 10-digit number within the number of tries configured in privacy.conf, the call is sent to priority n + 101 (if it exists). If the Caller

ID is set, the application does nothing.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

file:///C:/DOCUME~1/stelios/LOCALS~1/Temp/2/O'Reilly,.Asterisk.The.Future.of.Telephony.(2005).BBL.LotB.chm/0596009623/18051535.html

D.34. queues.conf

Asterisk provides basic call center functionality via its queueing system, but those who are using it in more mission-critical environments

often report that their solutions required customization. You can do this customization in the queues.conf file.

The [general] section of queues.conf contains settings that will apply to all queues. Currently, the only parameter that is supported is

persistentmembers. If this parameter is set to yes, a member that is added to the system via the AddQueueMember() application will be

stored in the AstDB, and therefore retained across a restart.

You can define a queue by placing its name inside of square brackets ([]). Within each queue, the following parameters are available:

musiconhold

This parameter allows you to configure which Music on Hold class (configured in musiconhold.conf) to use for the queue.

announce

When a call is presented to a member of the queue, the prompt specified by announce will be played to that agent before the

caller is connected. This can be useful for agents who are logged into more than one queue. You can specify either the full

path to the file, or a path relative to /var/lib/asterisk/sounds/.

strategy

Asterisk can use six strategies to distribute calls to agents:

ringall

The queue rings every available agent and connects the call to whichever agent answers first (this is the default).

roundrobin

The queue cycles through the agents until it finds one who is available to take the call. roundrobin does not take

into account the workload of the agents. Also, because roundrobin always starts with the first agent in the queue,

this strategy is suitable only in an environment where you want your higher-ranked agents to handle all calls

unless they are busy, in which case the lower-ranked agents may get a call.

leastrecent

The call is presented to the agent who has not been presented a call for the longest period of time.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

fewestcalls

The call is presented to the agent who has received the least amount of calls. This strategy does not take into

account the actual agent workloads; it only considers the number of calls they have taken (for example, an agent

who has had 3 calls that each lasted for 10 minutes will be preferred over an agent who has had 5 calls each

lasting 2 minutes).

random

As its name suggests, the random strategy chooses an agent at random. In a small call center, this strategy may

prove to be the most fair.

rrmemory

The queue cycles through each agent, keeping track of which agent last received a call (this strategy is known as

round-robin memory). This ensures that call presentation cycles through the agents as fairly as possible.

servicelevel

In a call center, the service level represents the maximum amount of time a caller should ideally have to wait before being

presented to an agent. For example, if servicelevel is set to 60 and the service level percentage is 80%, that means 80% of

the calls that came into the queue were presented to an agent in less than 60 seconds.

context

If a context is assigned to a queue, the caller will be able to press a single digit to exit to the corresponding extension within

the configured context, if it exists. This action takes the caller out of the queue, which means that she will lose her place in the

queuebe aware of this when you use this feature.

timeout

The timeout value defines the maximum amount of time (in seconds) to let an agent's phone ring before deeming the agent

unavailable and placing the call back into the queue.

retry

When a timeout occurs, the retry value specifies how many seconds to wait before presenting the call again to an available

agent.

weight

The weight parameter assigns a rank to the queue. If calls are waiting in multiple queues, those queues with the highest weight

values will be presented to agents first. When you are designing your queues, be aware that this strategy can prevent a call in

a lower-weighted queue from ever being answered. Always ensure that calls in lower-weighted queues eventually get

promoted to higher-weighted queues to ensure that they don't have to hold forever.

wrapuptime

You can configure this parameter to allow agents a few seconds of downtime after completing a call before the queue

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

presents them with another call.

maxlen

maxlen is the maximum number of calls that can be added to the queue before the call goes to the next priority of the current

extension.

announce-frequency

The announce-frequency value (defined in seconds) determines how often to announce to the caller his place in the queue

and estimated hold time.

announce-holdtime

There are three possible values for this parameter: yes, no, and once. The announce-holdtime parameter determines whether

or not to include the estimated hold time within the position announcement. If set to once, it will be played to the caller only

once.

monitor-format

This parameter accepts three possible values: wav, gsm, and wav49. By enabling this option, you are telling Asterisk that you

wish to record all completed calls in the queue in the format specified. If this option is not specified, no calls will be recorded.

monitor-join

The Monitor() application in Asterisk normally records either end of the conversation in a separate file. Setting monitor-join to

yes instructs Asterisk to merge the files at the end of the call.

joinempty

This parameter accepts three values: yes, no, and strict. It allows you to determine whether callers can be added to a queue

based on the status of the members of the queue. The strict option will not allow callers to join the queue if all members are

unavailable.

leavewhenempty

This parameter determines whether you want your holding callers to be removed from the queue when the conditions

preventing a caller from joining exist (i.e., when all of your agents log out and go home).

eventwhencalled

Set eventwhencalled to yes if you wish to have queue events presented on the Manager interface.

eventmemberstatusoff

Setting this parameter to no will generate extra information pertaining to each queue member.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

reportholdtime

If you set this parameter to yes, the amount of time the caller held before being connected will be announced to the

answering agent.

memberdelay

This parameter defines whether a delay will be inserted between the time when the queue identifies a free agent and the time

when the call is connected to that agent.

member => member_name

Members of a queue can be either channel types or agents. Any agents you list here must be defined in the agents.conf file.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

file:///C:/DOCUME~1/stelios/LOCALS~1/Temp/2/O'Reilly,.Asterisk.The.Future.of.Telephony.(2005).BBL.LotB.chm/0596009623/18051535.html

D.35. res_odbc.conf

The purpose of the res_odbc.so module is to store configuration file information in a database and retrieve that information from the

database; however a reload is required to make changes take effect. The res_odbc.conf file specifies how to access the table within the

database. The extconfig.conf file is used to determine how to connect to the database.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

D.36. rpt.conf

The rpt.conf file is used to configure Jim Dixon's newest science project. Jim's Radio Repeater Application (app_rpt) allows Asterisk to

communicate using VoIP via radio repeater technology. This allows people to efficiently provide large-area coverage of wireless

networking and routing information to the Amateur Radio public through their local high-speed Internet connections.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

D.37. rtp.conf

The rtp.conf file controls the Real-time Transport Protocol (RTP) ports that Asterisk uses to generate and receive RTP traffic. The RTP

protocol is used by SIP, H.323, MGCP, and possibly other protocols to carry media between endpoints.

The default rtp.conf file uses the RTP port range of 10,000 through 20,000. However, this is far more ports than you're likely to need, and

many network administrators may not be comfortable opening up such a large range in their firewalls. You can limit the RTP port range

by changing the upper and lower bound limits within the rtp.conf file.

For every bidirectional SIP call between two endpoints, five ports are generally used: port 5060 for SIP signaling, one port for the data

stream and one port for the Real-Time Control Protocol (RTCP) in one direction, and an additional two ports for the data stream and

RTCP in the opposite direction.

UDP datagrams contain a 16-bit field for a Cyclic Redundancy Check (CRC), which is used to verify the integrity of the datagram header

and its data. It uses polynomial division to create the 16-bit checksum from the 64-bit header. This value is then placed into the 16-bit

CRC field of the datagram, which the remote end can then use to verify the integrity of the received datagram.

Setting rtpchecksums=no requests that the OS not do UDP checksum creating/checking for the sockets used by RTP. If you add this

option to the sample rtp.conf file, it will look like this:

 [general]

 rtpstart=10000

 rtpend=20000

 rtpchecksums=no

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

D.38. sip.conf

The sip.conf file defines all the SIP protocol options for Asterisk. The authentication for endpoints, such as SIP phones and service

providers, is also configured in this file. Asterisk uses the sip.conf file to determine which calls you are willing to accept and where those

calls should go in relation to your dialplan. Many SIP-related options are configured in sip.conf, which was covered in depth in Appendix A.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

D.39. sip_notify.conf

Asterisk has the ability to reboot a SIP phone remotely by sending it a specially formatted, manufacturer-specific NOTIFY message

(defined in sip_notify.conf) consisting of an event. The phone receives this event, which it interprets as a reboot request. Other phones

are supported, but as of this writing only phones by Polycom have been verified to work with this method.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

D.40. skinny.conf

If you wish to connect to phones using Cisco's proprietary Skinny Client Control Protocol (SCCP), you can use the skinny.conf file to

define the parameters and channels that will use it. However, since the Asterisk community uses the SIP image on their Cisco phones,

you may find it difficult to find community support for this channel type.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

file:///C:/DOCUME~1/stelios/LOCALS~1/Temp/2/O'Reilly,.Asterisk.The.Future.of.Telephony.(2005).BBL.LotB.chm/0596009623/18051535.html

D.41. voicemail.conf

The voicemail.conf file controls the Asterisk voicemail system (called Comedian Mail). It consists of three main sections. The first, called

[general], sets the general system-wide settings for the voicemail system. The second, called [zonemessages], allows you to configure

different voicemail zones, which are a collection of time and time zone settings. The third and final section is where you create one or

more groups of voicemail boxes, each containing the mailbox definitions.

(For more information on adding voicemail capabilities to your dialplan, see Chapter 6.)

D.41.1. General Voicemail Settings

The [general] section of voicemail.conf contains a plethora of options that affect the entire voicemail system:

format

Lists the codecs that should be used to save voicemail messages. Codecs should be separated with the pipe character (|).

The first format specified is the format used when attaching a voicemail message to an email. Defaults to wav49|gsm|wav.

serveremail

Provides the email address from which voicemail notifications should be sent.

attach

Specifies whether or not Asterisk should attach the voicemail sound file to the voicemail notification email.

maxmessage

Sets the maximum length of a voicemail message, in seconds.

minmessage

Sets the minimum length of a voicemail message, in seconds.

maxgreet

Sets the maximum length of voicemail greetings, in seconds.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

skipms

Specifies how many milliseconds to skip forward/back when the user skips forward or backward during message playback.

maxsilence

Indicates how many seconds of silence to allow before ending the recording.

silencethreshold

Sets the silence threshold (what we consider "silence"the lower the threshold is, the more sensitive it is).

maxlogins

Sets the maximum allowed number of failed login attempts.

externnotify

Supplies the full path and filename of an external program to be executed when a voicemail is left or delivered, or when a

mailbox is checked.

externpass

Supplies the full path and filename of an external program to be executed whenever a voicemail password is changed.

directoryintro

If set, overrides the default introduction to the dial-by-name directory.

charset

Defines the character set for voicemail messages.

adsifdn

Specifies the ADSI feature descriptor number to download to.

adsisec

Sets the ADSI security lock code.

adsiver

Indicates the ADSI voicemail application version number.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

pbxskip

Causes Asterisk not to add the string [PBX]: to the beginning of the subject line of a voicemail notification email.

fromstring:

Changes the From: string of voicemail notification email messages.

usedirectory

Permits a mailbox owner to select entries from the dial-by-name directory for forwarding and/or composing new voicemail

messages.

pagerfromstring

Changes the From: string of voicemail notification pager messages.

emailsubject

Specifies the email subject of voicemail notification email messages.

emailbody

Supplies the email body of voicemail notification email messages.

Please note that both the emailsubject and emailbody settings can use the following

variables to provide more in-depth information about the voicemail:

VM_NAME

VM_DUR

VM_MSGNUM

VM_MAILBOX

VM_CALLERID

VM_CIDNUM

VM_CIDNAME

VM_DATE

mailcmd

Supplies the full path and filename of the program Asterisk should use to send notification emails. This option is useful if you

want to override the default email program.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

D.41.2. Voicemail Zones

As voicemail users may be located in different geographical locations, Asterisk provides a way to configure the time zone and the way

the time is announced for different callers. Each unique combination is known as a voicemail zone. You configure your voicemail zones

in the [zonemessages] section of voicemail.conf. Later, you can assign your voicemail boxes to use the settings for one of these zones.

Each voicemail zone definition consists of a line with the following syntax:

 zonename=timezone | time_format

The zonename is an arbitrary name used to identify the zone. The timezone argument is the name of a system time zone, as found in

/usr/share/zoneinfo. The time_format argument specifies how times should be announced by the voicemail system. The time_format

argument is made up of the following elements:

' filename'

The filename of a sound file to play (single quotes around the filename are required)

${ VAR}

Variable substitution

A or a

The day of the week (Saturday, Sunday, etc.)

B or b or h

The name of the month (January, February, etc.)

d or e

The numeric day of the month (first, second... thirty-first)

Y

The year

I or l

The hour, in 12-hour format

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

H

The hour, in 24-hour formatsingle-digit hours are preceded by "oh"

k

The hour, in 24-hour formatsingle-digit hours are not preceded by "oh"

M

The minute

P or p

A.M. or .P.M.

Q

"today", "yesterday," or ABdY (note: not standard strftime value)

q

"" (for today), "yesterday", weekday, or ABdY (note: not standard strftime value)

R

24-hour time, including minutes

For example, the following example sets up two different voicemail zones, one for the Central time zone in 12-hour format, and a second

in the Mountain time zone, in 24-hour format:

 [zonemessages]

 central=America/Chicago|'vm-received' Q 'digits/at' IMp

 mountain24=America/Denver|'vm-received' q 'digits/at' H 'digits/hundred' M 'hours'

D.41.3. Defining Voicemail Contexts and Mailboxes

Now that the system-wide settings and voicemail zones have been set, you can define your voicemail contexts and individual mailboxes.

Voicemail contexts are used to separate out different groups of voicemail users. For example, if you are using Asterisk to host voicemail

for more than one company, you should place each company's mailboxes in different voicemail contexts, to keep them separate. You

might also use voicemail contexts to create per-department dial-by-name directories.

To define a new voicemail context, simply put the context name inside of square brackets, like this:

 [default]

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

Inside a voicemail context, each mailbox definition takes the following syntax:

 mailbox=password,name[,email[,pager_email[,options]]]

The mailbox argument is the mailbox number.

The password argument is the code the mailbox owner must enter to access his voicemail. If the password is preceded by a minus sign (-),

the password may not be changed by the mailbox owner.

The email and pager_email arguments are email addresses where voicemail notifications will be sent. These may be left blank if you

don't want to send voicemail notifications via email.

The options argument is a pipe-separated list of voicemail options that may be specified for the mailbox. (These options may also be set

globally by placing them in the [general] section.) Valid voicemail options include:

tz

Sets the voicemail zone from the [zonemessages] section above. This option is irrelevant if envelope is set to no.

attach

Attaches the voicemail to the notification email (but not to the pager email). May be set to either yes or no.

saycid

Says the Caller ID information before the message.

cidinternalcontexts

Sets the internal context for name playback instead of extension digits when saying the Caller ID information.

sayduration

Turns on/off the duration information before the message. Defaults to on.

saydurationm

Specifies the minimum duration to say when sayduration is on. Default is 2 minutes.

dialout

Specifies the context to dial out from (by choosing option 4 from the advanced menu). If not specified, dialing out from the

voicemail system will not be permitted.

sendvoicemail

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

Specifies the context to send voicemail from (by choosing option 5 from the advanced menu). If not specified, sending

messages from within the voicemail system will not be permitted.

callback

Specifies the context to call back from. If not specified, calling the sender back from within the voicemail system will not be

permitted.

review

Allows senders to review/rerecord their messages before saving them. Defaults to off.

operator

Allows senders to hit 0 before, after, or while leaving a voicemail message to reach an operator. Defaults to off.

envelope

Turns on/off envelope playback before message playback. Defaults to on. This does not affect option 3,3 from the advanced

options menu.

delete

Deletes voicemails from the server after notification is sent. This option may be set only on a per-mailbox basis; it is intended

for use with users who wish to receive their voicemail messages only by email.

nextaftercmd

Skips to the next message after the user hits 7 or 9 to delete or save the current message. This can be set only globally at

this time, not on a per-mailbox basis.

forcename

Forces new users to record their names. A new user is determined by the password being the same as the mailbox number.

Defaults to no.

forcegreetings

Forces new users to record greetings. A new user is determined by the password being the same as the mailbox number.

Defaults to no.

hidefromdir

Hides the mailbox from the dial-by-name directory. Defaults to no.

You can specify multiple options by separating them with the pipe character, as shown in the definitions for mailboxes 9855 and 6522

below.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

Here are some sample mailbox definitions:

 [default]

 ; regular mailbox with email notification

 101 => 4242,Example Mailbox,somebody@asteriskdocs.org

 ; more advanced mailbox with email and pager notification and a couple of

 ; special options

 102 => 9855,Another User,another@asteriskdocs.org,pager@asteriskdocs.org,

 attach=no|tz=central

 ; a mailbox with no email notification and lots of extra options

 103 => 6522,John Q. Public,,,tz=central|attach=yes|saycid=yes|

 dialout=fromvm|callback=fromvm|review=yes

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

D.42. vpb.conf

This file is used to configure Voicetronix cards with Asterisk.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

file:///C:/DOCUME~1/stelios/LOCALS~1/Temp/2/O'Reilly,.Asterisk.The.Future.of.Telephony.(2005).BBL.LotB.chm/0596009623/18051535.html

D.43. zapata.conf

The zapata.conf file is used to define the relationship between Asterisk and the Zaptel driver. Because zapata.conf is specific to Asterisk,

it is located with the other Asterisk configuration files in /etc/asterisk/. As with zaptel.conf, the zapata.conf file contains a multitude of

choices reflecting the multitude of hardware it supports, and we won't try to list all of the options here. In this book we've covered only the

analog interfaces to the Zaptel driver, as described in Chapter 3.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

file:///C:/DOCUME~1/stelios/LOCALS~1/Temp/2/O'Reilly,.Asterisk.The.Future.of.Telephony.(2005).BBL.LotB.chm/0596009623/18051535.html

D.44. zaptel.conf

The zaptel.conf file is not located with the other Asterisk .conf filesthe Zaptel driver is available to any application that can make use of it,

so it makes more sense to store it in a non-Asterisk-specific directory (/etc/). zaptel.conf is parsed by the ztcfg program to configure the

TDM hardware elements in your system. You configure three main elements in the zaptel.conf file:

A way of identifying the interfaces on the card within the dialplan

The type of signaling the interface requires

The tone language associated with a particular interface, as found in zonedata.c

Be very careful not to plug your FXS module into a telephone line. The voltage associated with the

phone line, especially during an incoming call, will be much too high for the module to handle and

may permanently damage it, rendering it useless!

Within the zaptel.conf file, we define the type of signaling that the channel is going to use. We also define which channels to load. The

options in the configuration file are the information that will be used to configure the channels with the ztcfg command.

The actual parameters available in the zaptel.conf file are quite extensive, as a wide variety of PSTN interfaces make use of the Zaptel

telephony engine. Also, as this technology is rapidly evolving, anything we write now may not be accurate by the time you read it.

Consequently, we won't try to list all of the options here.

In this book, we have focused on the Zaptel analog interfaces as provided by the Digium TDM400P card (see Chapter 3).

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

Appendix E. Asterisk Command-Line Interface

Reference

To access the Asterisk command-line interface (CLI), pass the -c or -r argument to the Asterisk executable. In other words, type this from

your shell prompt:

 # asterisk -r

If you want the system to provide you with more information about what it is doing (an excellent idea, especially when you're new to

Asterisk), you can add the argument -v, as many times as you'd like:

 # asterisk -vvvvvvvvr

The more vs you include, the more vvvvvvvvvverbose the output will be.

The CLI allows you to interact with a running Asterisk server, and it will be very useful to you for troubleshooting and monitoring.

Since the CLI employs tabbed name completion, you can press the Tab key to see a list of possible commands. This makes the CLI very

easy to use. Let's take a look at the commands.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

!

 !command

Executes a given shell command. If followed immediately by a carriage return, Asterisk starts an interactive shell. You can return to the

Asterisk CLI by executing an exit command.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

file:///C:/DOCUME~1/stelios/LOCALS~1/Temp/2/O'Reilly,.Asterisk.The.Future.of.Telephony.(2005).BBL.LotB.chm/0596009623/18051535.html

abort halt

Cancels a requested Asterisk shutdown (betcha never get the chance, though!). This command is only for the very fast-fingered.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

E.1. add

The add command contains many subcommands that allow you to add functionality to your Asterisk PBX without directly editing the

configuration files.

When you add a new line to the dialplan your changes immediately become active, but changes made to the dialplan from the command

line are not permanent until you save them (see save dialplan). All comments are stripped from the extensions.conf file upon a save

dialplan. The add commands are useful for making temporary changes and for ad hoc testing, but we recommend that permanent changes

to the dialplan be made directly to extensions.conf in /etc/asterisk/.

add extension

 add extension exten,priority,app,app_data into context [replace]

Adds a new extension into the specified context. If an extension with the same priority exists, and the optional replace argument is given,

replaces the existing extension.

 add extension 500,1,Dial,IAX2/guest@misery.digium.com/s@default into local

add ignorepat

 add ignorepat pattern into context

Adds a new ignore pattern into the specified context.

 add ignorepat 9 into local

add queue member

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

 add queue member channel to queue [penalty penalty]

Allows you to add a channel to a specified queue, optionally specifying a penalty with the penalty option.

 add queue member SIP/1000-d448 to customer_service penalty 10

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

file:///C:/DOCUME~1/stelios/LOCALS~1/Temp/2/O'Reilly,.Asterisk.The.Future.of.Telephony.(2005).BBL.LotB.chm/0596009623/18051535.html

E.2. agi

When you're running an AGI program, you can turn debugging on and off with the use of agi debug and agi no debug, respectively.

agi debug

Turns on AGI debugging.

agi no debug

Turns off AGI debugging.

answer

Answers an incoming call on the CONSOLE (OSS) channel. The OSS channel must be configured in oss.conf before the answer

command is available.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

file:///C:/DOCUME~1/stelios/LOCALS~1/Temp/2/O'Reilly,.Asterisk.The.Future.of.Telephony.(2005).BBL.LotB.chm/0596009623/18051535.html

E.3. database

The Asterisk database is a simple implementation based on Version 1 of the Berkeley database. You can add entries to the database,

remove entries from the database, and view entries in the database with the following commands.
[*]

[*] For more about the Asterisk database, see Chapter 6.

database del

 database del family key

Deletes an entry in the Asterisk database for a given family and key.

 database del phones 1000/username

database deltree

 database deltree family [keytree]

Deletes a family or a specific keytree within a family in the Asterisk database.

 database deltree phones

database get

 database get family key

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

Retrieves an entry in the Asterisk database for a given family and key.

 database get phones 1000/username

database put

 database put family key value

Adds or updates an entry in the Asterisk database for a given family, key, and value.

 database put phones 1000/username bob

database show

 database show [family [key]]

Shows contents of database, or specific families, keys, and values.

 database show phones

debug channel

 debug channel channel_name

Allows a debug of a specific active channel. See also show channels.

 debug channel SIP/1000-e54f

dial

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

 dial [extension[@context]]

Dials a given extension (optionally, in the context specified) through the CONSOLE channel. This command is available only if

chan_oss.so or chan_alsa.so is loaded in the modules.conf file.

 dial 1000@phones

dont include

 dont include context_to_be_removed in context

Removes a specified include from a context.

 dont include local-extensions in incoming

dump agihtml

 dump agihtml filename

Dumps a list of AGI commands in HTML format to the given filename. The file will be saved to the /tmp/ directory by default, but a full path

may be specified.

exit

Closes the command-line interface, if you connected to the Asterisk console via the -r flag. You cannot use the quit and exit commands to

shut down the PBX (as would be the case if the Asterisk were running in the foreground). To shut down the PBX rather than exiting the

console, see the stop and restart commands.

extensions reload

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

Reloads the dialplan configuration from the extensions.conf file. In other words, it reloads only your dialplan; nothing else. This command is

safe to run even when calls are active. Any new channels being created will be based on the newly reloaded dialplan.

hangup

Hangs up any currently active calls placed using the CONSOLE channel. This command is only available if chan_oss.so or chan_alsa.so

is loaded in the modules.conf file.

help

 help [command [subcommand]...]

Displays help for commands and command-line usage. A single question mark or tab will do the same.

 help show applications

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

E.4. iax2

Subsets of this command allow you to manage your IAX connections.

iax2 debug

Enables IAX debugging.

iax2 no debug

Disables IAX debugging.

iax2 provision

 iax2 provision host template [forced]

Used to configure an IAX device, such as Digium's IAXy. Provisions the given peer or IP address using a template matching either

template or *' (if the template is not found). Templates are configured in the iaxprov.conf file, usually located in /etc/asterisk/. If forced is

specified, empty provisioning fields will be provisioned as empty fields.

 iax2 provision 192.168.1.100 default

iax2 show cache

Displays currently cached IAX dialplan results. Related to the switch => statement for remote dialplans. Remote dialplans are cached for a

period of time (600 seconds); they then expire and must be requeried if used again.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

iax2 show channels

Displays detailed information about active IAX channels.

iax2 show firmware

Shows available IAX firmware.

iax2 show peer

 iax2 show peer peer_name

Shows details on a specific IAX peer.

 iax2 show peer iaxfwd

iax2 show peers

 iax2 show peers [registered] [like pattern]

Lists all known IAX2 peers. The optional registered argument causes only peers with known addresses to be listed. The optional regular

expression pattern is used to filter the peer list.

 iax2 show peers registered like iax*

iax2 show provisioning

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

 iax2 show provisioning [template]

Lists all known IAX provisioning templates, or the details of a specific template.

iax2 show registry

Lists details and status of all registration requests.

iax2 show stats

Displays statistics for the IAX channel driver.

iax2 show users

 iax2 show users [like pattern]

Lists all known IAX2 users. The optional regular expression pattern is used to filter the user list.

 iax2 show users like iax*

iax2 trunk debug

Requests the current status of IAX trunking. Trunking is enabled for a peer with trunk=yes in iax.conf.

include context

 include context in context

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

Includes the specified context in another context.

 include local-users in incoming

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

file:///C:/DOCUME~1/stelios/LOCALS~1/Temp/2/O'Reilly,.Asterisk.The.Future.of.Telephony.(2005).BBL.LotB.chm/0596009623/18051535.html

E.5. indication

The loadzone option in a channel configuration file configures the tone zone to use for a channel. A tone zone is a set of indications, as

configured in indications.conf , that contains information about all the various sounds that are common to telephones in a particular

countrydial tone, ringing cycles, busy tones, and so on. A loaded tone zone is applied to a Zaptel channel, which will behave according to

the definition for its tone zone. The idea is to deliver familiar telephone sounds, wherever in the world the users might be. Individual

channels can have different indication sets configured, which means that a single Asterisk system can provide familiar telephony behavior

to people from different countries. The defaultzone is used if nothing is specified for the channel.

indication add

 indication add country indication "tonelist"

Adds the given indication to the country. See also show indications.

 indication add us dial "350+440"

indication remove

 indication remove country indication

Removes the given indication from the country. See also show indications.

 indication remove us dial

init keys

Initializes private RSA keys using the passcode specified by the user. Keys are generated with the use of the astgenkey script. Keys

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

generated with the use of a passcode must be initialized with the -i flag when starting Asterisk, or with the init keys command from the CLI.

load

 load module_name

Loads the specified module into Asterisk.

 load chan_oss.so

local show channels

Shows the status of Local channels.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

E.6. logger

In the logger.conf file, you can specify the various levels of detail the system will record in its logs. The following commands allow you to

reload and rotate those files. Logs are typically stored in the /var/log/asterisk/ directory.

logger reload

Reloads the log files. Required after making a change to the logger.conf configuration file.

logger rotate

Rotates and reopens the log files. When rotating, the old file is renamed to include a .n, where n is the highest numbered logfile.n + 1. If

logfile.n does not exist, the file is renamed to logfile.0.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

E.7. meetme

The meetme command can be used for a variety of purposes, including listing all active conferences, the number of parties in a

conference, the number of marked users, the active length of a conference, and whether a conference was created dynamically or

statically.

A timing interface must be loaded in order for this command to be available.

The following meetme subcommands can be used from the console to control active conferences.

meetme kick

 meetme kick confno [user_number | all]

Kicks (i.e., removes) one or all participants from an active conference.

 meetme kick 100 all

meetme list

 meetme list confno

Lists the associated channel names of conference participants and monitors status.

 meetme list 100

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

meetme lock

 meetme lock confno

Locks a conference from allowing any joins.

 meetme lock 100

As the number of users in a conference grows, so does the load on the CPU, as it has to mix all of the

incoming streams into one, and then transmit the result back out to all the participants. If you have

advertised a public conference and it suddenly becomes too popular, you may want to lock out any

further participants in order to preserve sound quality.

meetme mute

 meetme mute confno user_number

Mutes a user in the conference.

 meetme mute 100 1

meetme unlock

 meetme unlock confno

Unlocks a conference, allowing channels to join the active conference.

 meetme unlock 100

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

meetme unmute

 meetme unmute confno user_number

Unmutes a user in the conference who is muted.

 meetme unmute 100 1

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

file:///C:/DOCUME~1/stelios/LOCALS~1/Temp/2/O'Reilly,.Asterisk.The.Future.of.Telephony.(2005).BBL.LotB.chm/0596009623/18051535.html

E.8. pri

If you are running the ISDN-PRI protocol on any of your T1 spans, the following commands will help you with troubleshooting.

pri debug

Turns on PRI debugging.

pri intense debug span

 pri intense debug span span

Enables very verbose debugging information for the D-channel of your PRI. This information is invaluable when troubleshooting PRI

connections to non-Asterisk systems (such as the PSTN).

 pri intense debug span 1

pri no debug

Turns off PRI debugging.

pri show debug

 pri show debug [span]

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

Displays the status of PRI debugging and intense debugging for all spans or, optionally, a single defined span.

pri show span

 pri show span span

Displays extended information about a PRI span.

 pri show span 1

quit

See exit.

reload

 reload [module ...]

Reloads configuration files for all listed modules that support reloading (or for all supported modules, if none are specified).

 reload res_crypto.so

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

file:///C:/DOCUME~1/stelios/LOCALS~1/Temp/2/O'Reilly,.Asterisk.The.Future.of.Telephony.(2005).BBL.LotB.chm/0596009623/18051535.html

E.9. remove

The remove command contains many subcommands that allow you to remove functionality from your Asterisk PBX without directly editing

the configuration files.

This function can be used for ad hoc testing, but if you want to make the changes permanent, it is recommended that you edit the various

configuration files directly, from /etc/asterisk/.

remove extension

 remove extension exten@context [priority]

Removes a whole extension from a context. If the priority is specified, removes that priority only within the given extension. Subsequent

priorities within the extension will be renumbered if you use the n priority-naming scheme.
[*]

[*] If you have explicitly numbered your priorities, you will create a gap in your extension. This can easily be corrected

by adding a NoOp() command in the removed priority (e.g., add extension 500,3,Noop into default).

 remove extension 500@default 3

remove ignorepat

 remove ignorepat pattern from context

Removes the ignore pattern from the given context.

 remove ignorepat 9 from local

remove queue member

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

 remove queue member channel from queue

Drops the active channel from the given queue. Queue members are the active channels within a queue.

 remove queue member SIP/1000-d448 from customer_service

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

file:///C:/DOCUME~1/stelios/LOCALS~1/Temp/2/O'Reilly,.Asterisk.The.Future.of.Telephony.(2005).BBL.LotB.chm/0596009623/18051535.html

E.10. restart

When a restart is performed, all channels are cleared (i.e., hung up) and all modules are reloaded. You can also instruct Asterisk to restart

only when there no longer any active channels, thus preventing calls from being dropped.

restart gracefully

Causes Asterisk to stop accepting new calls and perform a cold restart when all active calls have ended.

restart now

Causes Asterisk to immediately hang up all calls and perform a cold restart.

restart when convenient

Causes Asterisk to perform a cold restart when all active calls have ended. New calls are accepted, and only when all calls have

completed is the restart performed. Use this command very carefully, as you have no way of knowing when the conditions for the restart

will be met. On a busy system, the restart might not occur until well after you've forgotten you requested it. The best practice on a busy

system is to execute restarts manually.

save dialplan

Saves the current dialplan from the command line to the extensions.conf file. It is important to remember that all comments are stripped

from the dialplan upon saving. It is recommended that permanent changes to the dialplan be made directly in the extensions.conf file and

then reloaded (see extensions reload) to preserve comments.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

file:///C:/DOCUME~1/stelios/LOCALS~1/Temp/2/O'Reilly,.Asterisk.The.Future.of.Telephony.(2005).BBL.LotB.chm/0596009623/18051535.html

E.11. set

The set command is used to control the amount of debugging information on the console. If connecting to a remote Asterisk console, be

aware that changes made to the level of debugging have global scopethat is, they affect all consoles. Also be sure to lower the debugging

level before exiting if you are logging to a text file (see logger).

set debug

 set debug level

Sets the level of core debug messages to be displayed. 0 means no messages are displayed. Equivalent to -d[d[d...]] on startup.

 set debug 10

set verbose

 set verbose level

Sets the verbosity level on the console. A setting of 0 means that no information on calling activity will be displayed. If you request 10, you'll

be seeing a lot of activity indeed (especially on a busy system). This command has the exact same effect as the -v[v[v...]] flags you provide

on startup.

 set verbose 10

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

file:///C:/DOCUME~1/stelios/LOCALS~1/Temp/2/O'Reilly,.Asterisk.The.Future.of.Telephony.(2005).BBL.LotB.chm/0596009623/18051535.html

E.12. show

The show subcommands are used to display all kinds of information about your system.

show agents

Provides summary information about agents configured in agents.conf.

show agi

 show agi [topic]

Displays usage information on the given command, when called with a topic as an argument. If called without a topic, provides a list of AGI

commands.

 show agi channel status

show application

 show application application [application [application [...]]]

Displays extended information about one (or, optionally, more than one) given application.

 show application dial

show applications

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

Lists brief explanations of all currently available applications.

show channel

 show channel channel

Displays extended information about the given channel.

 show channel SIP/1000-3d43

show channels

Lists the currently defined channels and some information about them. If concise is specified, the format is abridged and presented in a

more easily machine-parsable format.

show dialplan

 show dialplan [context]

Shows the current state of the dialplan as loaded into memory. If a context name is appended to the end of the command, only that

context will be shown. The show dialplan command is useful for verifying the order of pattern matching as well.

 show dialplan incoming

If you type show dialplan and then press the Tab key a few times, you'll be presented with a list of all

the contexts in your dialplan. On the Asterisk CLI, the Tab key can yield all kinds of neat information. If

in doubt, press Tab.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

show indications

 show indications [country [...]]

Displays a condensed list of countries, or optionally a detailed list of indications for one or more countries. See also indications add and

indications remove.

 show indications us

show keys

Lists the encryption keys on your system. Keys are stored in /var/lib/asterisk/keys/ and are loaded with the res_crypto.so module.

show manager command

 show manager command command

Shows extended information about a Manager command. See also show manager commands.

 show manager command setvar

show manager commands

Lists all available Manager commands and their privilege levels, and gives a brief synopsis of each.

show manager connected

Lists all currently connected Manager agents. Manager agents are configured in manager.conf.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

show modules

Lists currently loaded modules, gives a brief description of each, and shows the module use count.

show parkedcalls

Lists currently parked calls.

show queue

 show queue queue

Provides extended information about a particular queue.

 show queue customer_service

show queues

Provides extended information about all queues.

show translation

Displays a table of all codecs and their relative translation times between formats (provided in milliseconds). The higher the number, the

more work is required to transcode between those formats. If the formats are native (i.e., the same), no transcoding is requiredAsterisk

simply routes the packets, which requires very little processing time.

show uptime

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

Displays Asterisk's total uptime and the time since the last reload.

show version

Displays the currently installed version of Asterisk. The version is controlled through the .version file in the Asterisk sources. When

updating the Asterisk source code, be sure to perform a make update to update this value. The correct version is required when submitting

a bug report to the bug tracker (located at http://bugs.digium.combe sure to read the bug submission guidelines before submitting bugs!).

show voicemail users

 show voicemail users [for vm_context]

Displays the voicemail context, mailbox number, voicemail zone, and number of new messages for all voicemail users configured in

voicemail.conf. Optionally, displays information for a specific voicemail context.

 show voicemail users for default

show voicemail zones

Displays the currently configured voicemail zones and their associated time zones and message formats.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

http://bugs.digium.com

E.13. sip

The subsets of the sip command allow you to manage your SIP connections.

sip debug

Turns on SIP debugging. This will be very verbose.

sip debug ip

 sip [no] debug ip dotted_ip_notation

Debugs (or disables debugging of) SIP messages from a specific IP address. This is useful when trying to debug messages coming from a

peer who is not yet registered with you or is not configured in sip.conf.

 sip debug ip 192.168.1.100

sip debug peer

 sip [no] debug peer peer_name

Debugs (or disables debugging of) SIP messages from an individual peer, referenced by the peer name configured in sip.conf. Debugging

information can be displayed for a dynamic host only if that host is registered with you. If you are trying to debug a registration issue, see

sip debug ip.

 sip debug peer john

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

sip history

Enables or disables SIP history recording. See also sip show history.

sip no debug

Turns off SIP debugging.

sip reload

Reloads the SIP channel module. This is the equivalent of performing a reload chan_sip.so. Reloading the SIP channel is required to load

changes to sip.conf and sip_notify.conf into memory. Active SIP channels are not dropped during a sip reload.

sip show channel

 sip show channel channel

Displays extended information about an active SIP channel. See also sip show channels.

 sip show channel 00036bdd-39

sip show channels

Displays a list of all active SIP channels. The value in the Call ID column is used by the sip show channel command to display extended

information about an individual channel. See also sip show channel.

sip show history

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

 sip show history channel

Provides a detailed log history for a given SIP channel.

 sip show history 00036bdd-39

sip show peer

 sip show peer peer_name

Displays detailed information about a peer configured in sip.conf.

 sip show peer john

sip show peers

Lists and displays the status of all SIP peers.

sip show registry

Lists and displays the status of all peers with whom you are registered.

sip show user

 sip show user user_name

Displays detailed information about a user in sip.conf.

 sip show user 1000

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

sip show users

Displays a listing of all users configured in sip.conf.

soft hangup

 soft hangup channel

Requests a hangup on a given channel.

 soft hangup SIP/1000-4248

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

file:///C:/DOCUME~1/stelios/LOCALS~1/Temp/2/O'Reilly,.Asterisk.The.Future.of.Telephony.(2005).BBL.LotB.chm/0596009623/18051535.html

E.14. stop

Asterisk has various ways of controlling how and when it stops the system. The options are similar to the restart commands. You can

instruct Asterisk to stop only when there no longer any active channels, thus preventing calls from being dropped.

stop gracefully

Stops the system when all currently active calls have completed, and does not accept new calls.

stop now

Stops immediately, terminating all active calls.

stop when convenient

Stops the system when all currently active calls have completed. New calls are accepted, and the system will stop only when there are no

longer any active calls. Using this command is not a good idea, since you have no real way of knowing when the necessary condition for

stopping the system will occur.

unload

 unload [-f | -h] module_name

Unloads the specified module from Asterisk. The -f option causes the module to be unloaded even if it is in use (which may cause a crash),

and the -h option causes the module to be unloaded even if the module says it cannot be, which will almost always cause a crash.

 unload app_math.so

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

E.15. zap

The Zaptel interfaces allow Asterisk to interact via a physical medium, either analog or digital. This may include telephones, analog PSTN

connections, or digital circuits such as T-1/E-1 circuits.

zap destroy channel

 zap destroy channel channel_number

Immediately removes a channel, whether or not it is in use.

 zap destroy channel 1

zap show cadences

Displays the configuration of the various ring cadences (ring tones) Asterisk has configured for an analog circuit (FXS).

zap show channel

 zap show channel channel_number

Displays extended information about a particular Zaptel channel.

 zap show channel 1

zap show channels

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

Lists all Zaptel channels and their associated extensions, languages, and default Music on Hold classes.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

Colophon

About the Authors

Colophon

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

About the Authors

Jim Van Meggelen is President and CTO of Core Telecom Innovations, a Canadianbased provider of open source telephony solutions.

He has over 15 years of enterprise telecom experience, for such companies as Nortel, Williams, and Telus, and has extensive

knowledge of both legacy and VoIP equipment from manufacturers such as Nortel, Cisco, and Avaya.

Jim was the architect of two of the world's largest managed enterprise voice networks, each solution serving roughly 20,000 users in

more than 1,000 communities across Canada and providing telecommunications in 5 different languages through 6 time zones,

administered completely from a central location. These networks pioneered the use of extensive automation and database control in a

branch voice networkfunctionalities not generally available in proprietary telecommunications systems. Jim has now moved on from the

world of proprietary telecom, and is commited to open source telephony.

Jim is one of the principal contributors to the Asterisk Documentation Project. He enjoys teaching, public speaking, improvisational acting,

and writing.

Jared Smith is one of those rare individuals whose beloved hobby is the same as his profession. The son of a computer store owner,

Jared wrote his first computer program at the age of 7 on his Commodore 64. The obvious choice of major for this geek-in-embryo was

Computer Engineering, and Jared received his Bachelor of Science degree with a minor in Computer Science from Utah State

University. He now has over a decade of professional systems administration and programming experience in the simulation, market

research, and web analytics industries. As a key architect of one of the world's largest Asterisk installations, Jared has a wealth of

hands-on telephony and VoIP knowledge, which he shares through users groups and various public speaking engagements. He is an

active member of the Asterisk community and a co-founder of the Asterisk Documentation Project.

Jared is active in his community, donating Asterisk services to local schools and serving in his church. The greatest joy in Jared's life

comes from spending time with his children, Caleb and Sydney Jo, and his wife, Jenny.

Leif Madsen is a graduate of the Telecommuncations Technology program from the Sheridan Institute of Technology and CEO of

LeifMadsen Enterprise, Incorporated, a documentation and consulting firm specializing in Asterisk. He was one of the first Digium

Certified Asterisk Professionals (dCAP), and assists with the Astricon conferences and trainings organized by IPsando, LLC.

Leif first took an interest in Asterisk while attempting to find a voice conferencing solution for himself and his friends. After someone

suggested trying Asterisk, the obsession began. Wanting to contribute and be involved with the community, and noticing the lack of

Asterisk documentation, he co-founded the Asterisk Documentation Project.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

file:///C:/DOCUME~1/stelios/LOCALS~1/Temp/2/O'Reilly,.Asterisk.The.Future.of.Telephony.(2005).BBL.LotB.chm/0596009623/18051535.html

Colophon

Our look is the result of reader comments, our own experimentation, and feedback from distribution channels. Distinctive covers

complement our distinctive approach to technical topics, breathing personality and life into potentially dry subjects.

The animals on the cover of Asterisk: The Future of Telephony are starfish. Starfish are classified as Asteroidea. They are a group of

echinoderms, spiny-skinned invertebrates found only in the sea. Most starfish have five-fold symmetry (arms or rays in multiples of five),

though some species can have four or nine arms. But all starfish are radially symmetrical: they have arms or rays branching out from a

central body disc. There are over 1,500 species of starfish.

Starfish live on the floor of the sea and in tidal pools, clinging to rocks and moving (slowly) using a water-based vascular system to

manipulate their hundreds of tiny, tube-like legs, called podia. A small bulb or ampulla at the top of the tube contracts, expelling water and

expanding the starfish's leg. The ampulla relaxes, and the leg retracts. Starfish use muscles to bend their legs, but it is the flow of water

pressure that keeps the feet moving. At the tip of each leg, starfish have suction cups that allow them to pry open clam, oyster, or mussel

shells. Many starfish can push their stomachs out through their mouths in order to digest their prey in its shell. Starfish are carnivores;

they eat coral, fish, and snails, as well as bivalves.

Starfish can flex and rearrange their arms to fit into small places as they move over the ocean floor. At the end of each arm, they have

eyespots, primitive sensors that detect light and help the starfish determine direction. Starfish also have the ability to regenerate a

missing limb. Some species can even regrow a complete, new starfish from a severed arm.

Colleen Gorman was the production editor, and RachelWheeler was the copyeditor for Asterisk: The Future of Telephony. Ann Schirmer

proofread the book. Colleen Gorman and Marlowe Shaeffer provided quality control. Ellen Troutman wrote the index.

Ellie Volckhausen designed the cover of this book, based on a series design by Edie Freedman. The cover image is a 19th-century

engraving from the Dover Pictorial Archive. Karen Montgomery produced the cover layout with Adobe InDesign CS using Adobe's ITC

Garamond font.

David Futato designed the interior layout. This book was converted by Keith Fahlgren to FrameMaker 5.5.6 with a format conversion tool

created by Erik Ray, Jason McIntosh, Neil Walls, and Mike Sierra that uses Perl and XML technologies. The text font is Linotype Birka;

the heading font is Adobe Myriad Condensed; and the code font is LucasFont's TheSans Mono Condensed. The illustrations that appear

in the book were produced by Robert Romano, Jessamyn Read, and Lesley Borash using Macromedia FreeHand MX and Adobe

Photoshop CS. The tip and warning icons were drawn by Christopher Bing. This colophon was written by Colleen Gorman.

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

file:///C:/DOCUME~1/stelios/LOCALS~1/Temp/2/O'Reilly,.Asterisk.The.Future.of.Telephony.(2005).BBL.LotB.chm/0596009623/18051535.html

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

!command

(hash), comment marker

$ (dollar sign)

 $[], enclosing expressions

 ${ }

 referencing function values

 referencing variable value

${EXTEN} channel variable

& (ampersand), concatenating destinations for Dial()

* (asterisk), wildcard character

, (comma), separator for application arguments

. (period), wildcard matches

/* */ comment tags in zconfig.h

/dev/ directory, dynamic population with udevd

/etc/asterisk/ directory

/etc/asterisk/manager.conf file

/etc/rc.d/init.d/ or /etc/init.d/ directories

 automatically executing Asterisk at startup

 Red Hat-style initialization scripts

/tmp/ directory

/tmp/ directory, prompt recordings in

/usr/lib/asterisk/modules/ directory

/usr/src/ directory

 extraction and compilation of Asterisk source

 symbolic link to kernel source

/var/lib/asterisk/ directory

 subdirectories

/var/lib/asterisk/sounds/ directory

 custom system prompts

/var/log/asterisk/ directory

/var/log/asterisk/cdr-csv directory

/var/run/ directory

/var/spool/asterisk/ directory

0V logic reference

1.544-Mbps bit stream (DS-1)

23B+D (ISDN-PRI)

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

30B+D (ISDN-PRI)

64-kbps channel (DS-0)

[] (square brackets)

 context names in

 enclosing macro definitions

[general] context

^ (caret), beginning of line matching in regular expressions

_ (underscore), beginning patterns

| (pipe character)

 separating mailbox option/value pairs

 separator between application arguments

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

A-law companding algorithm

 use with G.711 codec

A/D (analog-to-digital) converter

abort halt command

AbsoluteTimeout()

AbsoluteTimeout() application

adapters, telephony

Adaptive Differential Pulse-Code Modulation (ADPCM)

add command

add extension command

add ignorepat command

add queue member command

add-ons

AddQueueMember() application

adsi.conf file

ADSIProg() application

adtranvofr.conf file

AgentCallbackLogin() application

AgentLogin() application

AgentMonitorOutgoing() application

agents.conf file

aggressive residual echo suppression

AGI (Asterisk Gateway Interface)

 debugging

 fundamentals of communication

 calling AGI script from dialplan

 standard pattern of communication

 STDIN, STDOUT, and STDERR

 Perl AGI library

 PHP AGI library

 Python AGI library

 reference

 writing scripts in Perl

 writing scripts in PHP

 important steps to remember

 writing scripts in Python

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

 important steps to remember

agi debug command 2nd

agi no debug command

AGI() application 2nd

agi-bin/ directory

agi-test.agi script

alarm system for your home, controlling

AlarmReceiver() application

alarmreceiver.conf file

aliasing

alsa.conf file

alternating current (AC) voltage, analog phone ringer

AMD CPUs

 IRQ latency and

 power FPUs

analog circuits

Analog Display Services Interface (ADSI)

analog ground start lines

analog interface cards

analog interfaces

analog telephones

analog telephony

 echo, why it occurs

 parts of analog telephone

 Tip and Ring wires

Analog Terminal Adaptor (ATA)

analog waveform, digitally encoding

analog waveform, digitization of

analog-to-digital (A/D) converter

answer command 2nd

Answer() application 2nd 3rd

 Festival() application and

APIC-enabled motherboards, IRQ control

AppendCDRUserField() application

applications

 AGI

 Background()

 Congestion()

 Dial()

 extensions

 s (start) extension

 Goto()

 modules.conf file

 reference

 SayDigits()

 Zapateller()

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

arguments (application)

 Dial()

 Goto()

arguments, using in macros

AstDB (Asterisk database)

 deleting data

 retrieving data from

 rotating key for DUNDI information

 storing data

 using in the dialplan

astdb file

Asterisk

 acceptance of

 challenges to

 community for development and support

 compiling

 configuring for Festival

 directories used by

 Documentation Project

 future of

 Internet Relay Chat (IRC) channels

 loading

 CLI commands

 mailing lists

 Manager

 passing call control to an external program

 sizes of systems

 source code, obtaining

 things now possible

 VoIP

 Wiki

asterisk package

asterisk program

 -c (console) flag

 -r (remote) flag

 running with -h switch

asterisk-addons package

asterisk-sounds package 2nd

 installing

Asterisk-users list

asterisk.conf file

Asterisk::AGI Perl module

ATA (Analog Terminal Adaptor)

audio

 built-in components on motherboards

 digital

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

 quality problems on inadequate systems

audio formats, translation costs

audio streams, packetization for transport over IP networks

Authenticate() application

authentication

 IAS FWD incoming calls

 IAX connections

 IAX protocol

 inbound and outbound, Asterisk scheme

 secret (password) in SIP

 SIP

 SIP client

 with Manager

auto-attendants

Automated Attendant (AA), IVR vs.

Automatic Ringdown circuit

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

B- and D-channels, PRI circuits

B-channels (bearer channels)

Background() application 2nd

 sound files, specifying

BackgroundDetect() application

bandwidth

 analog telephony

 network, future of

 PCM-encoded telephone circuit

Basic Rate Interface (BRI) ISDN circuits 2nd

Berkeley DB Version 1 database

best effort method, QoS and

binary one (1), voltage and

binary zero (0), relation to 0-volt signal

BIOS

 control over IRQ assignment

 USB activation

bison parser

 not found, error caused by

bit resolution, analog wave samples

 increasing resolution

bit-resolution, analog wave samples

 effects on quality of digitally encoded waveform

bitrates

 ADPCM (Adaptive Differential PCM)

 Variable Bitrate (VBR) codecs

blacklist, looking up numbers on

Boolean operators

BOOST_RINGER option (zconfig.h file)

boostringer parameter, activating for Zaptel

BRA (Basic Rate Access) ISDN circuits

BRI (Basic Rate Interface) ISDN circuits 2nd

bridged calls, echo cancellation

buffering output

 flushing after every write in Python AGI script

 turning off in AGI Perl scripts 2nd

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

 turning off in AGI PHP script 2nd

bug fixes

built-in audio and video components on motherboards

business case for Asterisk

 flexibility for growth

busy destination

 Dial() application handling of

busy message, voicemail

busy signal, fast

Busy() application

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

CAC (Carrier Access Corporation) ground start signaling

call files

call parking

call transfer, configuring on FXO channel

call waiting

 configuring for FXO channel

 on analog line

Caller ID

 configuring for FXO channel

 LookupCIDName()

 SetCallerID() application

CALLERIDNUM channel variable

CallingPres() application

Carrier Access Corporation (CAC) ground start signaling

CAS (Channel Associated Signaling)

CBR (constant bitrate) encoding (MP3 files)

cdr.conf file

cdr_manager.conf file

cdr_odbc.conf file

cdr_pgsql.conf file

cdr_tds.conf file

CDRs (Call Detail Records)

 challenges to obtaining

 recording

 storage directory

 storing in a database

Celeron processors, Asterisk lab systems on

cellular telephone networks, end of

central office (CO), signaling incoming call on analog phone

Cepstral text-to-speech engine

chan_h323.so module

chan_iax2.so module

chan_mgcp.so module

chan_oh323.so module

chan_sip.so module

chan_zap (channel module)

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

ChangeMonitor() application

ChanIsAvail() application

Channel Associated Signaling (CAS)

channel banks

 CAC, FXS ground start signaling

CHANNEL STATUS command

channel variables

 ${EXTEN}

 CALLERIDNUM

channels

 configuration

 FXO and FXS

 configuring FXS

 FXO configuration

 hardware, signaling methods and options

 separation of B- and D- channels in ISDN

 SIP, configuring

 STDIN, STDOUT, and STDERR

 timeouts, setting

 VoIP (Voice over IP) channels

CheckGroup() application

checkresult function 2nd

checkresult subroutine

chkconfig --add asterisk command

chkconfig command

circuit-switched telephone networks 2nd

 BRI ISDN

circuits

 OC (optical carrier)

 types in PSTN

 DS-0

 T-carrier

Cisco VoIP proprietary protocol (SCCP)

CLI (command-line interface)

 reference

client, configuration in SIP

clocking mechanism (ztdummy)

closed thinking in telecommunications industry

codecs 2nd

 compressed, DSP load on system

 configuring for IAX

 G.711

 G.723.1

 G.726

 G.729 codec

 G.729A

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

 GSM

 IAX outbound connections

 iLBC (Internet Low Bitrate Codec)

 MP3

 quick reference

 Speex

 VoIP

codecs.conf file

command line, storing values from in AstDB

comment tags (/* */) in zconfig.h file

commoditization of telephony hardware and software

communications terminals

companding

 A-law, in E-1 circuits

 G.711 codec

 m-law algorithm, on T-1 circuits

compiler, GCC

compiling

 Asterisk

 alternative make arguments

 common issues

 Makefile options

 precompiled binaries, using

 libpri

 Zapata drivers, telephony

 Zaptel drivers

 zconfig.h file

 ztdummy

 Zaptel, common problems

complexity of open systems

computer power supplies

concatenating destinations for Dial()

conditional branching

 GotoIf() application

 time-based, with GotoIfTime()

conference rooms

conferencing

 MeetMe() application

 MeetMeCount() application

 system requirements and

 timing source

 video-conferencing

CONFIG_CALC_XLAW

configuration

 initial, of Asterisk

 debugging

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

 FXO and FXS channels

 IAX connections, inbound

 IAX connections, outbound

 interface configuration files

 SIP channel

configuration files

 /etc/asterisk/ directory

 Asterisk, disabling overwrites

 default, installing for Asterisk

 voicemail.conf

Congestion() application 2nd

Conjugate-Structure Algebraic-Code-Excited Linear Prediction (CS-ACELP)

connections, maximum number to be supported by the system

console

 connecting to Asterisk console

 Linux, specifying for Asterisk CLI output

 remote console on TTY9

constant bitrate (CBR) encoding (MP3 files)

contexts

 [globals]

 adding to dialplan for internal calls

 adding to dialplan for long-distance calls

 calls entering without specific destination extension

 dialplan

 [general]

 defining extensions

 DUNDi, creating and mapping to dialplan contexts

 FXS channel

 IAX FWD incoming calls

 incoming calls on FXO interface

 internal, FXS channel

 outbound dialing, adding to dialplan

 peer connections and

 SIP channel

 using within another context, via includes

 voicemail 2nd

ControlPlayback() application

cords

core file, dumping after Asterisk crash

 safe_asterisk script

countries, phone system sounds for

CPUs

 choosing for Asterisk system

 performance effects on Asterisk system

 performance information, web sites

crash notifications

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

CRLF, terminating lines in commands to Manager

cryptographic library, Asterisk, requirement of OpenSSL

CSV (Comma Separated Values) file, CDR details

CSV format (CDRs)

Curl() application

Cut() application

CVS

 obtaining Asterisk source code from

 stable CVS branch vs. releases

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

D-channels

 PRI circuits

D/A (digital-to-analog) converter

data groupings in AstDB (families)

database del command 2nd

database deltree command 2nd

database get command 2nd

database put command 2nd

database show command

database, Asterisk (AstDB)

 deleting data

 retrieving data from

 storing data

 using in the dialplan

DateTime() application

DBdel() application 2nd

DBdeltree() application 2nd

DBget() application 2nd

DBput() application

DeadAGI() application 2nd

debug channel command

debug file, output to

DEBUG output on the console

debug profiling information

debugging

 AGI Perl script output, writing to Asterisk console

 AGI programs

 connecting to Asterisk console

 enabling, with verbosity

 Festival server, starting

depmod errors during compilation

destination argument, Dial() application

device drivers

dial tone

 configuring on FXS channel

 FXO and FXS channels

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

Dial() application 2nd

 DIALSTATUS variable, indicating success of call

 t and/or T options, call parking and

 voicemail with busy or unavailable message

Dial() statement

dial-by-name directory

dialing 9 before calling an outside number

dialpad (analog phones)

dialplan

 adding logic

 Background() and Goto() applications

 context for internal calls

 Dial() application

 enabling outbound dialing

 handling invalid entries and timeouts

 includes

 pattern matching

 variables

 AstDB, using

 call parking

 calling AGI script from

 calling Festival from

 conditional branching

 conferencing with MeetMe()

 configuration for IAX incoming calls

 configuration on FXO channel

 configuring for dundi local context

 configuring for FXS channel

 configuring for IAX FWD outgoing connection

 configuring for SIP channel

 creating simple

 "Hello World!" example

 s (start) extension

 expressions and variable manipulation

 functions

 macros

 calling from dialplan

 scripting logic

 sound recordings, creating

 syntax

 contexts

 extensions

 voicemail

 adding to dialplan

 Zapateller() Application

DIALSTATUS variable

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

DID (Direct Inward Dialing)

DiffServ (differentiated service)

digital circuit-switched telephone network

 circuit types

 digital signaling protocols

digital circuits 2nd

digital interface cards

Digital Signal Processing (DSP)

digital signaling protocols

 Channel Associated Signaling (CAS)

 ISDN (Integrated Services Digital Network)

 SS7 (Signaling System 7)

digital signals

 advantages of

 conversion to analog with telephony adaptors

digital telephones

digital telephony

 Pulse-Code Modulation (PCM)

digital-to-analog (D/A) converter

DigitTimeout() application 2nd

Digium cards

 analog interface card for Asterisk

 IRQ latency and

Digium Dev-Lite kit

 with FXO and FXS interface

direct current (DC) voltage, powering analog phones

directories

 sounds directory

 specifying where to install Asterisk

 staging directory, changing

 used by Asterisk

Directory() application 2nd

DISA() application

disconnects, far-end

distributed IVR

Dixon, Jim

dmesg command, checking USB controller type

dnsmgr.conf file

Documentation Project, Asterisk

Domain Name System (DNS), mapping E.163 numbers into

Domain Name System Service records (DNS SRV records)

domain/realm (SIP X-Lite client)

dont include command

DoS (Denial of Service) attacks on VoIP communications

DPDISCOVER query

drivers, unloading from memory with rmmod

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

DS-0 (64-kbps channel)

DS-1 (1.544-Mbps bit stream)

DSP (Digital Signal Processing)

 system requirements for

DTMF (Dual-Tone Multi Frequency)

 WAIT FOR DIGIT command

dump agihtml command

DumpChan() application

DUNDi (Distributed Universal Number Discovery) 2nd

 configuring Asterisk for use with

dundi.conf file

 contexts, mapping to dialplan contexts

 defining DUNDi peers

 general configuration

DUNDiLookup() application 2nd

dust in equipment rooms

dynamic IP addresses

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

E&M (Ear & Mouth or recEive & transMit) signaling

E-1 lines 2nd

E.164 ITU standard for phone number assignment

E.164 numbering specification

e164.org

EAGI() (enhanced AGI) application

EAGI() application

echo

 managing

 why it occurs

echo cancellation

 choosing method

 disabling

 removing echo on analog lines

echo suppression, aggressive

echo training 2nd

Echo() application

 testing X-Lite soft phone

 verifying bidirectional communication on FXS channel

 verifying bidirectional communications for FXO channel

electrical circuits

electrical regulations

 power quality and

 safety of users

electrical signals, translation of sound waves to

Electronic Numbering (ENUM) system

emergency calls, outbound

enabling on FXO line

encoding audio digitally

EndWhile() application

entity ID (dundi.conf)

ENUM (Telephone Number Mapping) group

enum.conf file

ENUMLookup() application

environment variables

environment, system

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

 electrical circuits

 equipment room

 grounding

 power conditioning and UPSs

equipment room for systems

ERROR messages

error reporting, turning off HTML messages in PHP 2nd

Eval() application

EXEC command

Exec() application

ExecIf() application

exit command

expressions

 basic

 operators

extconfig.conf file

extensions

 added to [internal] context

 defining in dialplan contexts

 dialplan contexts

 invalid entries and timeouts

 priorities

 unnumbered

 s (start) extension

 timeout argument for Dial()

extensions reload command

extensions.conf file 2nd

 context name for SIP channel

 dialplan specification

 dundi local context 2nd

 global variables

 IAX call to FWD echo test application

 IAX FWD incoming calls

 instructions to perform inside context on FXO line

 parsing of expressions with bison

 sample file

external program, passing call control to

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

families (data groupings in AstDB)

far-end disconnects

fast busy signal

FastAGI() application 2nd

fax machines

fear campaign to undermine telephony revolution

features.conf file

 call parking

Festival 2nd

 calling from dialplan

 configuring Asterisk for

 setting up to use with Asterisk

 starting the Festival server

 using with Asterisk, text2wave utility

Festival() application 2nd

festival.conf file

festival.scm file, altering for use with Asterisk

fflush command (PHP)

fflush function (PHP)

fgets command

fgets function

fiber optic circuits

 SONET and OC

file pointers

filename, specifying for Playback()

find-me-follow-me

firmware/ directory

flash (electronic analog phones)

Flash Operator Panel (FOP)

Flash() application

ForkCDR() application

FPU (Floating Point Unit)

 processor selection and

friend connections (SIP)

friends 2nd

full-duplex audio communications

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

fully qualified domain name (FQDN)

 SIP X-Lite client configuration

functions, dialplan

FWD (Free World Dialup) account via IAX

 configuring outbound connections

 dialplan configuration for incoming calls

 iax.conf file

fwrite function

FXO (Foreign eXchange Office)

 channel configuration 2nd

 dialplan

 testing by dialing in

 Zapata hardware

 Zaptel hardware

 channels

 connection to analog phone line

 determining port on TDM400P card

FXS (Foreign eXchange Service)

 channel configuration

 Zapata hardware

 Zaptel hardware

 channels

 connection to analog phone

 determining port on TDM400P card

 dialplan configuration

FXS (Foreign eXchange Station)

 channel configuration

 ports provided by TDM400P cards

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

G.711 codec

G.723.1 codec

G.726 codec

G.729 codec

G.729A codec

gatekeeper (H.323)

gateways, telephony

GCC compiler

gcc compiler

 Asterisk compilation using make program

 attempting to build Zaptel without

 installing, with dependencies

General Peering Agreement (GPA)

GET DATA command 2nd

GET FULL VARIABLE command

GET OPTION command

GET VARIABLE command

GetCPEID() application

GetGroupCount() application

GetGroupMatchCount() application

getnumber function

glare

global variables

 channel for outbound calls

GNU make program

GNU tar application, extracting compressed source code

GNU/Linux

Golovich, James

Goto() application 2nd

 repeating greeting after playing back number dialed

GotoIf() application 2nd

GotoIfTime() application 2nd

GPA (General Peering Agreement)

ground start (gs)

ground start signaling (CAC)

ground, defined

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

grounding

 0V logic reference

 power supplies

GSM codec

 converting WAV files to

GSM codec optimizations

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

H.323 protocol

 NAT and

 security

hacker's PBX

handset (analog phone)

HANGUP command

Hangup() application 2nd 3rd

hardware

 Zapata

 configuring for FXO channel

 configuring for FXS channel

 Zaptel

 configuring for FXO channel

 configuring for FXS channel

hardware drivers, Zaptel

 compiling

hardware selection

 choosing a motherboard

 choosing a processor

 performance issues

 power supply requirements

hardware, telephony

harmonic noise on electrical circuits

HasNewVoicemail() application

HasVoicemail() application

HDLC functionality in Zaptel drivers

head Asterisk

help command

high-fidelity voice

hobby systems

 hardware selection

 system requirement guidelines

home automation

hook switch

HTML error messages, turning off in AGI PHP script

HTML error messages, turning off in PHP

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

humidity (equipment rooms)

hybrid transformer

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

IAX (Inter-Asterisk eXchange protocol) 2nd

 channel configuration

 channel definitions

 configuring inbound connections

 dialplan

 iax.conf file

 configuring outbound connections

 future of

 general settings

 NAT (Network Address Translation) and

 register statements

 retrieving dialplan information from remote Asterisk box

 security

iax.conf file 2nd

 configuration to accept calls from FWD users

 configuring to place call on FWD network

iax.conf.sample configuration file

iax2 debug command

iax2 no debug command

IAX2 protocol, RSA key checks

iax2 provision command

iax2 show cache command

iax2 show channels command

iax2 show firmware command

iax2 show peer command

iax2 show peers command

iax2 show provisioning command

iax2 show registry command 2nd 3rd

iax2 show stats command

iax2 show users command

iax2 trunk debug command

IAX2Provision() application

images/ directory

ImportVar() application

inbound IAX connections, configuring

include context command

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

includes

incoming calls

 context for

 users

incoming context (FXO interface)

indication add command

indication remove command

indications.conf

indications.conf file

init keys command

initialization scripts, installing with make config

initialization scripts, Red Hat-style

installing Asterisk, specifying directory

integration of communications technologies

Intel CPUs

 IRQ latency and

 powerful FPUs

Interactive Voice Response (IVR)

interfaces

 configuration files

 PSTN

 types to which Asterisk can connect

interference

 with analog signals

internal calls, context for

internal context

 FXS channel

 FXS port

 SIP channel

International Telecommunication Union (ITU)

 closed thinking

 H.323 protocol

Internet connectivity with ISDN-BRI circuit

Internet gateways to telephony services, locating

Internet Low Bitrate Codec (iLBC)

Internet Relay Chat (IRC) channels

Internet transport protocols, real-time media streaming and

invalid entries, handling

INVITE requests in DoS attacks

invites (in SIP)

IP (Internet Protocol)

 evolving your old PBX to

 transport mechanism for video-conferencing (H.323)

IP addresses

 domain/realm, SIP X-Lite client

 register statement for FWD IAX server

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

 SIP endpoints

IP telephones

 connecting to Asterisk

 definition of a phone call

 echo in

IRQs (Interrupt Requests)

 latency

 motherboard selection, latency and

ISD, BRI

ISDN

 BRA

 BRI

 limited standards compliance

 PRI

 commands

 libpri library

 PRI/PRA

ISDN telephones

"It Still Does Nothing" (ISDN)

IVR (Interactive Voice Response)

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

jitter buffering (IAX)

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

kernel modules, ztdummy

kernels

 layers of interaction with Asterisk

 optimizations for Asterisk

 Version 2.6, support for Asterisk

 ztdummy driver and

kewlstart (ks)

 on FXS channel

Key Telephone Systems (KTSs)

keys and key families, deleting from AstDB

keys/ directory

KTSs (Key Telephone Systems)

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

label argument, GotoIfTime()

Label Switched Path (LSP)

large Asterisk installations, requirements

large systems

 processor selection

 system requirement guidelines

Last Mile (PSTN)

latency

 IAX outbound calls

 monitoring between Asterisk server and SIP phone

laxprov.conf file

legacy telecommunications equipment

 hardware for Asterisk connections

LEN() function

libnewt libraries

 zttool program and

libpri library, loading

libpri package

 compiling

 installing before asterisk

Link button, analog phones

Linux

 directories used by Asterisk

 GNU utilities, selecting and configuring

 kernel Version 2.6, support for Asterisk

 layers of interaction between Asterisk and kernel

 precompiled Asterisk binaries

 problems with IRQs

 systems running udevd, allowing Zaptel access to

 Zaptel drivers

 ztdummy kernel module

load command

loadzone

local show channels command

locking down your phones

logarithmic companding

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

logger reload command

logger rotate command

logger.conf file 2nd 3rd

 enabling DEBUG output to console

logic ground 2nd

long-distance calls, context for

LookupBlacklist() application 2nd

LookupCIDName() application

loop start (ls)

low-pass filter

lsmod command

 verifying loading of zaptel module

 verifying loading of ztdummy and its use by zaptel

LSP (Label Switched Path)

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

m-law companding

m-law companding algorithm

 use with G.711 codec

 voice encoding on T-1 circuit

m-law/A-law precompilation

Macro() application 2nd

macros

 calling from the dialplan

 defining

 using arguments

mail command, crash notifications

mailboxes, creating

MailboxExists() application

mailing list, Asterisk users

mailing lists

make clean command

make config command

 installing Red Hat-style initialization scripts

make install command

make mpg123 command

make program

 alternative compile-time arguments

 Asterisk compilation with gcc

 compiling Zapata telephony drivers

make rpm command

make samples command

 disabling configuration file overwrites

make update command

make upgrade command

Makefile

 optimizing Asterisk compilation

 ztdummy, creating

Manager interface

 commands

 Flash Operator Panel (FOP)

manager.conf file 2nd

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

MARK2 echo canceller 2nd

 aggressive suppression

math program IVR

Math() application

mathematical operators

MD5 hash, use in SIP authentication

media

 redirection in SIP

 transmission on SIP channel

Media Access Control (MAC) address

 identifying DUNDi peers by

medium systems

 processor selection

 system requirement guidelines

meetme command

meetme kick command

meetme list command

meetme lock command

meetme mute command

meetme unlock command

meetme unmute command

MeetMe() application 2nd

meetme.conf file 2nd

MeetMeAdmin() application

MeetMeCount() application 2nd

messaging, uniting text with voice

MGCP (Media Gateway Control Protocol)

mgcp.conf file 2nd

Milliwatt() application

MMX instructions

MMX optimization

modem.conf file

modems

 2100-Hz tone during negotiation

 external vs. internal, for Asterisk

modinfo command

modprobe command

 loading zaptel with

 loading ztdummy

modules

 Asterisk, directory for loadable modules

 monitoring loading by starting Asterisk with -c flag

 Zaptel, loading

modules.conf file 2nd

mohmp3/ directory

Molex connector on the TDM400P for FXS modules

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

Monitor() application

monitoring children

motherboards

 choosing for Asterisk system

 PCI Version 2.2 support

 USB controller for ztdummy

 VIA-based, compiling Asterisk

MP3

 as codec

 files in mohmp3/ directory

 playing natively with Asterisk add-on

MP3Player() application

mpg123 program

MPLS (Multiprotocol Label Switching)

multi-line phones, SIP

multiple procesors, use of

multitasking processes, Asterisk and

music on hold

 licensing and

 mohmp3/ directory

 MP3, use with VoIP systems

 SIP channel

 streaming MP3s

 timing source

MusicOnHold() application

musiconhold.conf file

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

named extensions

naming

 contexts

 extensions

NANP (North American Number Plan), toll fraud and

NAT (Network Address Translation)

 H.323 protocol and

 IAX and

 SIP and

 SIP extensons and

NBScat() application

network bandwidth

Network Interface Card (NIC)

networking, built-in on motherboards

NIC (Network Interface Card)

NoCDR() application

noise on electrical circuits

nonce

nonlinear processor (NLP), making stronger with aggressive echo suppressor

NOOP command

NoOp() application

Nortel

 Nortel Business Communications Manager

 proprietary VoIP protocol, UNISTIM

North American Number Plan (NANP), tool fraud and

NOTICE messsages

numbering extensions

Nyquist's Theorem

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

ob_implicit_flush function

ob_implicit_flush(false) command

OC (optical character) circuits

OC-1 circuit

off-hook (analog circuit)

on-hook (analog circuit)

Open Settlement Protocol (OSP)

open source telephony

 fear campaign against

 open architecture

 opportunities

 passionate community

 rapid response to new technologies

 responding to customer needs

 standards compliance

 things now possible

 conference rooms

 home automation

 legacy PBX migration gateway

 low-barrier IVR

OpenH323 Gatekeeper

OpenSSL

 development library, installing

operating system, debugging AGI scripts from

operators

opermode parameter

optical carrier (OC) circuits

option string argument, Dial() application

osp.conf file

oss.conf file

outbound calls

 enabling in dialplan

 making from internal context

outbound IAX connections, configuring

outgoing connections, peers

outgoing/ directory

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

output buffering

 flushing after every write in Python AGI script

 turning off in AGI Perl scripts 2nd

 turning off in AGI PHP script 2nd

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

package managers

 RPM

packages

 requirements

packet-based

 connections

 telephone network, exclusive Asterisk connection to

packet-switched networks

packetization of audio streams for transport over IP networks

Park() application

ParkAndAnnounce() application

ParkedCall() application

parking calls

parser generator program (bison)

passwords

 DUNDi user

 secret (SIP)

 voicemail mailbox

pattern matching

 DUNDi dialplan

 examples

 syntax

PauseQueueMember() application

pbx_dundi module

pbx_dundi.so module

PBXs (Private Branch eXchanges)

 dedicated electrical circuit for

 digital

 terminals

 electrical circuits

PBXs (Public Branch eXchanges), legacy, Asterisk as migration gateway

PC platforms, Asterisk on

PCI hardware

 access by Zaptel and other device drivers

 zaptel module, using with

PCI hardware for timing

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

PCI ID (TDM400P Revision H card)

PCI slots, server vs. workstation motherboards

PCI Version 2.2

PCM (Pulse-Code Modulation)

 Adaptive Differential PCM (ADPCM)

 aliasing

 bandwidth of PCM-encoded telephone circuit

 digitally encoding analog waveform

 encoded analog waveform

 encoding method in E-1 circuits

 G.711 codec

 increasing sampling resolution and rate

 Nyquist's Theorem

PDAs, connecting to voicemail to retrieve messages

peering

peers

 connections defined as

 DUNDi, defining

 IAX outbound calls, authentication

 IAX, placing outbound calls

 SIP connections

performance

 issues for hardware selection

 shortcomings on inadequate systems

peripherals

 connection to electrical receptacle

 IRQ latency and

Perl

 AGI library

 writing AGI scripts in

 summary of important steps

phone trees

phone.conf file

PHP

 AGI library

 writing AGI scripts in

 important steps to remember

 invoking PHP with -q switch 2nd

physical telephones

pid (process id) information

PLAR (Private Line Automatic Ringdown) circuit

platform selection process

Playback() application 2nd

 sound files, specifying

Playtones() application

ports

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

 RTP (Real-time Transport Protocol)

 SIP

power supplies

 computer

 power quality issues and

 redundant

power-conditioning, UPSs

PRA (Primary Rate Access) ISDN circuits

precompiled Asterisk binaries

Prefix() application

PRI (Primary Rate Interface) ISDN circuits

pri debug command

pri intense debug span command

pri no debug command

pri show debug command

pri show span command

Primary Rate Interface (PRI) ISDN

print command

print STDERR command

priorities (extension)

 Dial() application and

 s extension

 unnumbered

privacy.conf file

PrivacyManager() application

Private Line Automatic Ringdown (PLAR) circuit

process ID (pid) information

processes, running concurrently on the system, Asterisk and

processors

 choosing for Asterisk system

 multiple, use of

professional's PBX

profiling information (debug)

Progress() application

prompts

 asterisk-sounds package

 customizing system prompts

 recording from the dialplan

proprietary digital telephones

proxy servers, SIP

PSTN (Public Switched Telephone Network)

 circuit types

 connecting Asterisk to

 echo cancellation

 G.711 codec

 Last Mile

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

Public Switched Telephone Network (see PSTN)

public/private key system

Putland, Karl

Pyst module

Python

 AGI library

 writing AGI scripts in

 important steps to remember

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

qcall/ directory

QoS (Quality of Service)

 best effort method and

 challenges to

 differentiated service (DiffServ)

 guaranteed service

 TCP, UDP, and SCTP

quantization

 companding and

Queue() application

queues.conf file

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

Random() application

RAS (Remote Access Server), turning Asterisk into

Read() application

RealTime application

RealTimeUpdate() application

RECEIVE CHAR command

RECORD FILE command 2nd

Record() application

recordings, creating from the dialplan

Red Hat Linux

 initialization scripts

 initialization scripts, installing with make config

Red Hat Package Manager (RPM)

redundant power supplies

referencing variables

 Unix environment variables

register statement (iax.conf.sample)

register statements

 IAX channels

regular expressions

 operator

 Perl-compatible, in AGI PHP script

regulatory wars

reinvite (in SIP)

 situations where it won't be issued

releases, stable CVS branch vs.

reload command

reloading/restarting after editing configuration files

Remote Access Server (RAS), turning Asterisk into

remote Asterisk console, connecting to

remove command

RemoveQueueMember() application

REN (Ringer Equivalence Number)

res_crypto.so module

 for RSA key checks

Reservation protocol (RSVP)

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

ResetCDR() application

resource requirements for Asterisk

resources

ResponseTimeout() application 2nd

restart command

RetryDial() application

Ring wire (analog phones)

ringer (analog phone)

ringing (telephone), boosting voltage for

ringing tone, generating with Dial(), r option

Ringing() application

rmmod (remove module) command

root access for writing to /usr/src/ directory

RPM (Red Hat Package Manager)

rpt.conf file

RSA key checks, module for

RSA public/private key pair, authentication for IAS FWD incoming calls

RSVP (Reservation protocol)

RTP (Realtime Transport Protocol)

 IAX and

 use with H.323

rtp.conf file

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

s (start) extension

safe_asterisk script 2nd

 remote console on TTY9

sampling analog waveform for digital encoding

 increasing resolution and rate

 quality effects of sampling rate

sampling frequency for digitally encoding analog signal

Sangoma cards

Sangoma Technologies, SS7 support

save dialplan command

SAY ALPHA command

SAY DATE command

SAY DATETIME command

SAY DIGITS command

SAY NUMBER command 2nd 3rd

SAY PHONETIC command

SAY TIME command

SayAlpha() application

SayDigits() application 2nd

sayit function

saynumber function

SayNumber() application

SayPhonetic() application

SayUnixTime() application

scalability of Asterisk

SCCP (Skinny Client Control Protocol)

scripts, AGI

 writing in Perl

 writing in PHP

 writing in Python

SCTP (Stream Control Transmission Protocol)

secret (SIP authentication password)

security

 enforcement with dialplan contexts

 H.323 protocol

 IAX protocol

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

 remote console on TTY9, disabling

 SIP

 system environment

SECURITY file

SEND IMAGE command 2nd

SEND TEXT command 2nd

SendDTMF() application

SendImage() application

SendText() application

SendURL() application

server-class motherboards, PCI slots

servers

 electrical circuits

 hardware selection

 choosing a motherboard

 choosing a processor

 performance issues

 power supply requirements

 large Asterisk systems

SET AUTOHANGUP command

SET CALLERID command

set command

SET CONTEXT command

SET EXTENSION command

SET MUSIC ON command

SET PRIORITY command

SET VARIABLE command

Set() application 2nd

 retrieving data from AstDB

 storing data in AstDB

SetAccount() application

SetAMAFlags() application

SetCallerID() application

SetCallerPres() application

SetCDRUserField() application

SetCIDName() application

SetCIDNum() application

SetGlobalVar() application 2nd

SetGroup() application

sethdlc utility

SetLanguage() application

SetMusicOnHold() application

SetRDNIS() application

SetVar() application

shortcomings of traditional telephone systems

show functions command

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

show subcommands

sidetone 2nd

signaling information (D-channels)

signaling methods

 for analog circuits

 hardware channels

 kewlstart, on FXS channel

signaling protocols

 digital

 Channel Associated Signaling (CAS)

 ISDN

 SS7

Signaling System 7 (SS7)

sinusoidal (sine) wave

SIP (Session Initiation Protocol) 2nd

 channel configuration

 channel definitions

 configuring

 client

 dialplan

 sip.conf file (example)

 conversion of proprietary digital signals to

 future of

 general parameters

 NAT and

 security

sip commands

SIP Interoperability Test (SIPIT)

sip show registry command

sip.conf file 2nd

 context name

 enabling DNS SRV record lookups

 example

sip_notify.conf file

SIPAddHeader() application

SIPDtmfMode() application

SIPGetHeader() application

Skinny Client Control Protocol (SCCP)

skinny.conf file

small systems

 choosing CPU

 system requirement guidelines

Smith, Allison

soft hangup command

soft phones

 connecting to Asterisk

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

 X-Lite SIP client

SoftHangup() application

SOHO systems, system requirement guidelines

SONET (Synchronous Optical Network)

sound files (pre-recorded)

 playing for unanswered or busy destinations

 playing over a channel

 playing with Background()

sound prompts (asterisk-sounds package)

sound recordings, creating from the dialplan

sound waves, translation to electrical signals

sounds (phone system), for particular countries

sounds directory

sounds-extra.txt file

sounds.txt file

sounds/ directory

source code (Asterisk)

 obtaining

 extracting source code

 from CVS

 updating

sox application

spam

speech processing

speech recognition

Speex codec

Spencer, Mark, ix

spool directory

SRV records, DNS

SS7 (Signaling System 7)

stable Asterisk releases

staging directory

start (s) extension

stations

STDERR

 ensuring open file handles in AGI PHP script

 summary of AGI script tests

 using fflush function after writing to

 writing to with fwrite function

STDIN

 ensuring open file handles in AGI PHP script

 reading variables from using the fgets function

STDOUT

 AGI script sending commands to Asterisk

 ensuring open file handles in AGI PHP script

 using fflush command after writing to

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

 using fflush function after writing to

 writing to with fwrite function

steps

stop commands

StopMonitor() application

StopPlaytones() application

STREAM FILE command 2nd 3rd 4th

strict language checking, AGI scripts in Perl 2nd

string length of a variable, calculating

StripLSD() application

StripMSD() application

STS-1 circuit

SubString() application

Suffix() application

switch hook

symbolic link to Linux kernel sources

 depmod errors during compilation

 Linux 2.4 kernel

sys.stdin.readline command

sys.stdout.flush command

sys.stdout.write command

system prompts, customizing

system requirement guidelines

System() application

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

T-1 lines 2nd

 CAS (Channel Associated Signaling)

T-carrier circuits

tailor-made private telecommunications networks

tar application, extracting compressed source code

TCP transport-layer protocol

 SIP and

 VoIP Quality of Service and

TDD MODE command

TDM (Time Division Multiplexing) hardware

TDM bridged calls, echo cancellation

TDM400P card

 determining FXO and FXS ports

 requirement for PCI Version 2.2

 with one FXO module, verifying hardware and ports

TDM400P Revision H card, PCI ID

technology (or transport), Dial() application

teenagers' calls, managing

telecommunications networks (private), tailor-made

telecommunications systems

 hardware

 power supply requirements

telephone extensions

Telephone Number Mapping (ENUM) group

telephone numbering plan, maintaining

telephones

 analog interfaces

 analog, parts of

 boosting ringing voltage

 echo generated by low-quality phones

 multiline, SIP

 physical

 analog phones

 digital telephones

 IP telephones

 ISDN telephones

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

 soft phones

telephony

 analog

 digital

 Pulse-Code Modulation (PCM)

 digital circuit-switched network

 fear campaign by traditional industry players

 open source, promise of

 open architecture

 passionate community

 rapid response to new technologies

 responding to customer needs

 standards compliance

 things now possible

 opportunities for open source

 packet-switched networks

 paradigm shift

 traditional, problems with

 clinging to the past

 closed thinking

 limited standard compliance

 slow release cycles

telephony adaptors

telephony drivers, Zapata, compiling

temperature (equipment rooms)

terminals

text-messaging systems, uniting with voice-messaging

text-to-speech engines, Cepstral

text2wave utility (Festival)

three-way calling

 on analog line

 on FXO channel

Time Division Multiplexing (TDM) hardware

time limit, turning off for PHP invocations from command line

Time To Live (ttl) field (dundi.conf)

time zone (tx) option, mailboxes

time-based conditional branching

TIMEOUT() function

timeouts

 Dial() application argument

 handling for user input

timing device (ztdummy)

timing source, systems without hardware mechanism

Tip and Ring wires (analog phones)

TLS (Transport Layer Security)

toll fraud

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks .

 NANP (North American Number Plan) and

 securing your system from

tone zone

 setting in zconfig.h

touch-tone dialing

Transfer() application

translation costs between audio formats

Transport Layer Security (TLS)

transport protocols, Internet, real-time media streaming and

transport-layer protocols for SIP

trunking

 IAX protocol

 iax2 trunk debug command

 use of ISDN

trunking provided by BRI ISDN

TrySystem() application

TXTCIDName() application

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

udev daemon

UDP transport-layer protocol

 use with SIP

 VoIP Quality of Service and

UHCI USB controller

 not accessible on Linux 2.4 kernels, error caused by

 verifying

UHCI-type USB controller

unanswered calls, Dial() application handling of

unavailable message for voicemail

Unified Messaging

UNISTIM (Nortel VoIP protocol)

Unix environment variables, accessing from Asterisk

unload command

UnpauseQueueMember() application

UPSs (Uninterruptible Power Supplies)

 power conditioning and

 redundant power supplies and

URL argument, Dial() application

USB controllers, for ztdummy

usb-uhci module

 use by ztdummy, shown in lsmod output

 verifying loading of

usbcore module, verifying loading of

use strict command 2nd

UserEvent() application

users

 connections defined as

 DUNDi

 IAX

 IAX FWD incoming calls

 SIP connections

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

Variable Bitrate (VBR) codecs

variable manipulation

variables

 AstDB, setting

 ImportVar() application

 Macro() application

 reading from STDIN with fgets function

 sent by Asterisk to AGI script at startup 2nd

 sent by Asterisk to AGI script on startup

variables, using in dialplan

 adding variables to dialplan

 channel variables

 environment variables

 global variables

VERBOSE command

Verbose() application

verbosity, setting level for debugging messages

VIA-based motherboards, compiling Asterisk on

video

video camera connected to PC, live chats through

video components (built-in) on motherboards

video-conferencing

 IP transport mechanism (H.323)

Virtual Private Network (VPN), use with IAX

VMAuthenticate() application

voice menus, creation with Background()

Voice of Asterisk

voice prompts for Asterisk, sounds/ directory

voice, high-fidelity

voice-compression algorithms

voice-messaging, uniting with text messaging

voicemail

 accessing

 adding to dialplan

 applications

 creating mailboxes

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

 dial-by-name directory

VoiceMail() application 2nd

voicemail.conf file 2nd

voicemail/ directory

VoiceMailMain() application 2nd

Voicetronix, analog cards

VoIP (Voice over IP) 2nd

 access to, for legacy PBX

 alternative route to an extension number or PSTN telephone number

 Asterisk and

 register statements

 users, peers, and friends

 bottleneck engineering

 codecs

 echo

 Free World Dialup (FWD) service provider

 gateways providing access to PSTN circuits

 mobility with Wi-Fi

 need for protocols

 packet-switched networks

 proprietary protocols

 protocols

 H.323

 IAX

 MGCP

 protocols in use today

 Quality of Service (QoS)

 best effort method and

 DiffServ

 guaranteed service

 TCP, UDP, and SCTP

 Quality of Service, challenges to

 Session Initiation Protocol (SIP)

 SIP and IAX protocols

 spam

 Zapata Telephony Project

voltage

 AC and DC, in analog phones

 boosting for telephone during ringing

VPN (Virtual Private Network), use with H.323 protocol

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

WAIT FOR DIGIT command 2nd

Wait() application

WaitExten() application

WaitForRing() application

WaitForSilence() application

WaitMusicOnHold() application

WARNING messages

watchdog (Zaptel)

WAV files, converting to GSM format

wcfxo driver, error encountered in loading

wctdm driver

 errors encountered in loading

 loading with modprobe

 passing module parameters to configure Zaptel

weather reporting IVR

wget command, obtaining latest stable source code via

while (<STDIN>) loop

While() application

Wi-Fi

Wi-MAX

Wiki (Asterisk)

wildcard matches

Win-modems, avoiding

wireless

workstation-class motherboards

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

X-Lite client

 testing

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

yum install bison command

yum install gcc command

yum install rpmbuild command

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

zap commands

Zapata

 channel module (chan_zap)

 compiling, telephony drivers

 hardware configuration for FXO channel

 hardware configuration for FXS channel

Zapata Telephony Project

zapata.conf file 2nd

 configuration for FXS channel

 echo cancellation, enabling

 hardware configuration for FXO channel

Zapateller() application 2nd

ZapBarge() application

ZapRAS program

ZapRAS() application

ZapScan() application

Zaptel

 compiling

 common problems

 passing module parameters to configure

 zconfig.h file

 ztcfg and zttool programs

 hardware configuration for FXO channel

 hardware configuration for FXS channel

 loading modules

 zaptel

 ztdummy

Zaptel cards, motherboard selection and

zaptel module, loading

zaptel package

zaptel.conf file 2nd 3rd

 configuring FXO channel with FXS signaling

 storage in /etc/ directory

zconfig.h file

 BOOST_RINGER option

 disabling echo cancellation

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

 disabling m-law/A-law precompilation

 echo cancellation method, choosing

 echo canceller algorithms

 enabling aggressive echo suppression

 enabling CAC ground start signaling

 enabling MMX optimization

 enabling ZapRAS

 enabling Zaptel watchdog

 setting default tone zone

 TDM400P Revision H card PCI ID

zonedata.c file

 phone system sounds for particular countries

 tones (dial, busy, ring, stutter)

ztcfg program

 verifying loading and configuration of Zaptel hardware and ports

ztdummy driver

 compiling

 unresolved symbol link when loading

ztdummy module

 loading

zttool program 2nd

 determining state of your hardware

This document was created by an unregistered ChmMagic, please go to http://www.bisenter.com to register it. Thanks.

	Asterisk: The Future of Telephony
	Table of Contents
	Copyright
	Foreword
	Preface
	Audience
	Organization
	Software
	Conventions Used in This Book
	Using Code Examples
	Safari® Enabled
	How to Contact Us
	Acknowledgments

	Chapter 1. A Telephony Revolution
	Section 1.1. VoIP: Bridging the Gap Between Traditional Telephony and Network Telephony
	Section 1.2. Massive Change Requires Flexible Technology
	Section 1.3. Asterisk: The Hacker's PBX
	Section 1.4. Asterisk: The Professional's PBX
	Section 1.5. The Asterisk Community
	Section 1.6. The Business Case
	Section 1.7. This Book

	Chapter 2. Preparing a System for Asterisk
	Section 2.1. Server Hardware Selection
	Section 2.2. Environment
	Section 2.3. Telephony Hardware
	Section 2.4. Types of Phone
	Section 2.5. Linux Considerations
	Section 2.6. Conclusion

	Chapter 3. Installing Asterisk
	Section 3.1. What Packages Do I Need?
	Section 3.2. Obtaining the Source Code
	Section 3.3. Compiling Zaptel
	Section 3.4. Compiling libpri
	Section 3.5. Compiling Asterisk
	Section 3.6. Installing Additional Prompts
	Section 3.7. Updating Your Source Code
	Section 3.8. Common Compiling Issues
	Section 3.9. Loading Zaptel Modules
	Section 3.10. Loading libpri
	Section 3.11. Loading Asterisk
	Section 3.12. Directories Used by Asterisk
	Section 3.13. Conclusion

	Chapter 4. Initial Configuration of Asterisk
	Section 4.1. What Do I Really Need?
	Section 4.2. Working with Interface Configuration Files
	Section 4.3. FXO and FXS Channels
	Section 4.4. Configuring an FXO Channel
	Section 4.5. Configuring an FXS Channel
	Section 4.6. Configuring SIP
	Section 4.7. Configuring Inbound IAX Connections
	Section 4.8. Configuring Outbound IAX Connections
	Section 4.9. Debugging
	Section 4.10. Conclusion

	Chapter 5. Dialplan Basics
	Section 5.1. Dialplan Syntax
	Section 5.2. A Simple Dialplan
	Section 5.3. Adding Logic to the Dialplan
	Section 5.4. Conclusion

	Chapter 6. More Dialplan Concepts
	Section 6.1. Expressions and Variable Manipulation
	Section 6.2. Dialplan Functions
	Section 6.3. Conditional Branching
	Section 6.4. Voicemail
	Section 6.5. Macros
	Section 6.6. Using the Asterisk Database (AstDB)
	Section 6.7. Handy Asterisk Features
	Section 6.8. Conclusion

	Chapter 7. Understanding Telephony
	Section 7.1. Analog Telephony
	Section 7.2. Digital Telephony
	Section 7.3. The Digital Circuit-Switched Telephone Network
	Section 7.4. Packet-Switched Networks
	Section 7.5. Conclusion

	Chapter 8. Protocols for VoIP
	Section 8.1. The Need for VoIP Protocols
	Section 8.2. VoIP Protocols
	Section 8.3. Codecs
	Section 8.4. Quality of Service
	Section 8.5. Echo
	Section 8.6. Asterisk and VoIP
	Section 8.7. Conclusion

	Chapter 9. The Asterisk Gateway Interface (AGI)
	Section 9.1. Fundamentals of AGI Communication
	Section 9.2. Writing AGI Scripts in Perl
	Section 9.3. Creating AGI Scripts in PHP
	Section 9.4. Writing AGI Scripts in Python
	Section 9.5. Debugging in AGI
	Section 9.6. Conclusion

	Chapter 10. Asterisk for the Über-Geek
	Section 10.1. Festival
	Section 10.2. Call Detail Recording
	Section 10.3. Customizing System Prompts
	Section 10.4. Manager
	Section 10.5. Call Files
	Section 10.6. DUNDi
	Section 10.7. Conclusion

	Chapter 11. Asterisk: The Future of Telephony
	Section 11.1. The Problems with Traditional Telephony
	Section 11.2. Paradigm Shift
	Section 11.3. The Promise of Open Source Telephony
	Section 11.4. The Future of Asterisk

	Appendix A. VoIP Channels
	Section A.1. IAX
	Section A.2. SIP

	Appendix B. Application Reference
	AbsoluteTimeout()
	AddQueueMember()
	ADSIProg()
	AgentCallbackLogin()
	AgentLogin()
	AgentMonitorOutgoing()
	AGI()
	AlarmReceiver()
	Answer()
	AppendCDRUserField()
	Authenticate()
	Background()
	BackgroundDetect()
	Busy()
	CallingPres()
	ChangeMonitor()
	ChanIsAvail()
	CheckGroup()
	Congestion()
	ControlPlayback()
	Curl()
	Cut()
	DateTime()
	DBdel()
	DBdeltree()
	DBget()
	DBput()
	DeadAGI()
	Dial()
	DigitTimeout()
	Directory()
	DISA()
	DumpChan()
	DUNDiLookup()
	EAGI()
	Echo()
	EndWhile()
	ENUMLookup()
	Eval()
	Exec()
	ExecIf()
	FastAGI()
	Festival()
	Flash()
	ForkCDR()
	GetCPEID()
	GetGroupCount()
	GetGroupMatchCount()
	Goto()
	GotoIf()
	GotoIfTime()
	Hangup()
	HasNewVoicemail()
	HasVoicemail()
	IAX2Provision()
	ImportVar()
	LookupBlacklist()
	LookupCIDName()
	Macro()
	MailboxExists()
	Math()
	MeetMe()
	MeetMeAdmin()
	MeetMeCount()
	Milliwatt()
	Monitor()
	MP3Player()
	MusicOnHold()
	NBScat()
	NoCDR()
	NoOp()
	Park()
	ParkAndAnnounce()
	ParkedCall()
	PauseQueueMember()
	Playback()
	Playtones()
	Prefix()
	PrivacyManager()
	Progress()
	Queue()
	Random()
	Read()
	RealTime
	RealTimeUpdate()
	Record()
	RemoveQueueMember()
	ResetCDR()
	ResponseTimeout()
	RetryDial()
	Ringing()
	SayAlpha()
	SayDigits()
	SayNumber()
	SayPhonetic()
	SayUnixTime()
	SendDTMF()
	SendImage()
	SendText()
	SendURL()
	Set()
	SetAccount()
	SetAMAFlags()
	SetCallerID()
	SetCallerPres()
	SetCDRUserField()
	SetCIDName()
	SetCIDNum()
	SetGlobalVar()
	SetGroup()
	SetLanguage()
	SetMusicOnHold()
	SetRDNIS()
	SetVar()
	SIPAddHeader()
	SIPDtmfMode()
	SIPGetHeader()
	SoftHangup()
	StopMonitor()
	StopPlaytones()
	StripLSD()
	StripMSD()
	SubString()
	Suffix()
	System()
	Transfer()
	TrySystem()
	TXTCIDName()
	UnpauseQueueMember()
	UserEvent()
	Verbose()
	VMAuthenticate()
	VoiceMail()
	VoiceMailMain()
	Wait()
	WaitExten()
	WaitForRing()
	WaitForSilence()
	WaitMusicOnHold()
	While()
	Zapateller()
	ZapBarge()
	ZapRAS()
	ZapScan()

	Appendix C. AGI Reference
	ANSWER
	CHANNEL STATUS
	DATABASE DEL
	DATABASE DELTREE
	DATABASE GET
	DATABASE PUT
	EXEC
	GET DATA
	GET FULL VARIABLE
	GET OPTION
	GET VARIABLE
	HANGUP
	NOOP
	RECEIVE CHAR
	RECORD FILE
	SAY ALPHA
	SAY DATE
	SAY DATETIME
	SAY DIGITS
	SAY NUMBER
	SAY PHONETIC
	SAY TIME
	SEND IMAGE
	SEND TEXT
	SET AUTOHANGUP
	SET CALLERID
	SET CONTEXT
	SET EXTENSION
	SET MUSIC ON
	SET PRIORITY
	SET VARIABLE
	STREAM FILE
	TDD MODE
	VERBOSE
	WAIT FOR DIGIT

	Appendix D. Configuration Files
	Section D.1. modules.conf
	Section D.2. adsi.conf
	Section D.3. adtranvofr.conf
	Section D.4. agents.conf
	Section D.5. alarmreceiver.conf
	Section D.6. alsa.conf
	Section D.7. asterisk.conf
	Section D.8. cdr.conf
	Section D.9. cdr_manager.conf
	Section D.10. cdr_odbc.conf
	Section D.11. cdr_pgsql.conf
	Section D.12. cdr_tds.conf
	Section D.13. codecs.conf
	Section D.14. dnsmgr.conf
	Section D.15. dundi.conf
	Section D.16. enum.conf
	Section D.17. extconfig.conf
	Section D.18. extensions.conf
	Section D.19. features.conf
	Section D.20. festival.conf
	Section D.21. iax.conf
	Section D.22. iaxprov.conf
	Section D.23. indications.conf
	Section D.24. logger.conf
	Section D.25. manager.conf
	Section D.26. meetme.conf
	Section D.27. mgcp.conf
	Section D.28. modem.conf
	Section D.29. musiconhold.conf
	Section D.30. osp.conf
	Section D.31. oss.conf
	Section D.32. phone.conf
	Section D.33. privacy.conf
	Section D.34. queues.conf
	Section D.35. res_odbc.conf
	Section D.36. rpt.conf
	Section D.37. rtp.conf
	Section D.38. sip.conf
	Section D.39. sip_notify.conf
	Section D.40. skinny.conf
	Section D.41. voicemail.conf
	Section D.42. vpb.conf
	Section D.43. zapata.conf
	Section D.44. zaptel.conf

	Appendix E. Asterisk Command-Line Interface Reference
	!
	abort halt
	Section E.1. add
	Section E.2. agi
	Section E.3. database
	Section E.4. iax2
	Section E.5. indication
	Section E.6. logger
	Section E.7. meetme
	Section E.8. pri
	Section E.9. remove
	Section E.10. restart
	Section E.11. set
	Section E.12. show
	Section E.13. sip
	Section E.14. stop
	Section E.15. zap

	Colophon
	About the Authors
	Colophon

	Index
	SYMBOL
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

