e

DEBIAN
SYSTEM

CONCEPTS AND TECHNIQUES

=

NO STARCH
PRESS

Martin F. Krafft

The Debian System

Concepts and Techniques

THE DEBIAN SYSTEM. Copyright (© 2005 Open Source Press GmbH

All rights reserved. No part of this work may be reproduced or transmitted in any form or by any means, electronic or
mechanical, including photocopying, recording, or by any information storage or retrieval system, without the prior
written permission of the copyright owner and the publisher.

Printed on recycled paper in the United States of America.
12345678910—-08070605

No Starch Press and the No Starch Press logo are registered trademarks of No Starch Press, Inc. Other product and
company names mentioned herein may be the trademarks of their respective owners. Rather than use a trademark
symbol with every occurrence of a trademarked name, we are using the names only in an editorial fashion and to the
benefit of the trademark owner, with no intention of infringement of the trademark.

Publisher: William Pollock

Cover Design: Octopod Studios

U.S. edition published by No Starch Press, Inc.

555 De Haro Street, Suite 250, San Francisco, CA 94107

phone: 415.863.9900; fax: 415.863.9950; info@nostarch.com; http://www.nostarch.com

Original edition (©) 2005 Open Source Press GmbH

Published by Open Source Press GmbH, Munich, Germany

Publisher: Dr. Markus Wirtz

Original ISBN 3-937514-07-4

For information on translations, please contact

Open Source Press GmbH, Amalienstr. 45 Rg, 80799 Miinchen, Germany

phone +49.89.28755562; fax +49.89.28755563; info@opensourcepress.de; http://www.opensourcepress.de

The information in this book is distributed on an "As Is" basis, without warranty. While every precaution has been
taken in the preparation of this work, neither the author nor Open Source Press GmbH nor No Starch Press, Inc. shall
have any liability to any person or entity with respect to any loss or damage caused or alleged to be caused directly
or indirectly by the information contained in it.

Library of Congress Cataloging-in-Publication Data

Krafft, Martin F.
The Debian system : concepts and techniques / Martin F. Krafft.-- 1lst ed.
p. cm.
Includes index.
ISBN 1-59327-069-0
1. Linux. 2. Operating systems (Computers) I. Title.
QA76.76.063K68 2005
005.4'32--dc22
2005019963

To Aline.

And Peter Gabriel,
for the tunes
which kept me going.

1

2

Table

Introduction
1.1 About thisbook
1.2 Targetaudience
121 The Linux administrator
122 The Unix administrator
123 The Debianuser
1.2.4 The Linux apprentice
1.3 How touse thisbook
14 Fnalnotes
141 Conventions
1.4.2 Keepinguptodate
1.43 Anurgent plea for feedback . . .
1.5 Abouttheauthor
1.6 Acknowledgements

The Debian project in a nutshell

2.1
2.2

23
2.4

Ahistory lesson L.
The Debian philosophy
2.2.1 Debian anditsusers
2.2.2 Free beer and free speech
2.2.3 Debian and the market
Licencing issues
The Debian community

2.4.1 Organisation of the project . . .

of Contents

Table of Contents

25

2.6

2.4.2
243

Social aspects of the community

Social aspects of the group of developers.

Helping the Debian project

2.5.1
252

Contributing to the

Becoming a Debian

The Debian swirl

Installing Debian the right way

3.1

3.2

33

The Debian installer

3.1
3.1.2

project

developer

Features of the new installer

System requirements

The minimalistic approach to installation

3.2.1
3.2.2

Installing the base system

Configuring the base system

Configuring the X server .

3.3.1
3.3.2
3.33
3.3.4

An overview of X in

Debian

Integrating automatic hardware detection

Dealing with unsupported hardware

Customising the X'session

Debian releases and archives

4.1

4.2
43

44

Structure of the Debian archive.

The unstablerelease

The experimental archive

4.1.1 The package pool .
412 Package indices . .
413 The Release files .
The package upload
The official releases
4.3.1

4.3.2 The testing release
433 The stable release
Unofficial APT archives . .
441

442 The volatile archive

50
52
57
58
62
65

67
68
69
70
71
72
94
96
97
98
99
100

103
105
106
107
108
108
110
110
111
113
114
114
115

Table of Contents |

5

4.5

443 Theamd64archive
444 The *-proposed-updates archives . .
445 The backports.org archive
446 The apt-get.org directory
447 Christian Marillat's multimedia archive
Architecture support L.
45.1 80386 — the processor
452 The amd64 architecture
453 Multi-archo

The Debian package management system

5.1
5.2

53

5.4

Requirements
Introducing Debian packages
5.2.1 Package categories
5.2.2 Package priorities.
5.2.3 Anatomy of binary packages.
524 Thecontrol files
Dealing with packages: dpkg
5.3.1 Handling binary packages
5.3.2 Installing packages
5.3.3 Configuration file handling
5.3.4 Interacting with the package database
5.3.5 Deinstalling packages

53.6 Overriding dpkg's sanity and policy checks

5.3.7 Dealing with errors in packages
5.3.8 dpkg configuration.
539 dselect
Managing packages: APT
5.4.1 Specifying repositories
542 APTconfiguration
543 Installing packages
5.4.4 Searching the APT database

545 Inquiring about package dependencies

116
116
116
118
118
119
121
122
123

125
125
128
128
130
131
134
135
137
139
141
144
151
153
156
159
159
163
164
168
170
175
177

o

Table of Contents

55
5.6
5.7

5.8

59

5.10

5.11

5.4.6 Deinstalling and purging packages 179
547 Seamlessupgrades 181
54.8 Enacting requestswith APT 184
549 APThousekeeping 186
5.4.10 Resolving problems with APT 186
5411 aptitude 188
5412 synaptic 197
Debiantasks 198
Package managementcompared 199
Power from within: the Debian policy 202
5.7.1 The sacred configuration files 205
5.7.2 Mediating between packages 207
573 Packagerelations 209
5.7.4 The Filesystem Hierarchy Standard 214
575 Versionnumbers 217
5.7.6 Upgrading packages, 219
debconf: configuration of Debian packages 220
58.1 Anoverview ofdebconf 221
5.8.2 Prioritylevels 222
583 debconffront-ends, 223
5.8.4 Reconfiguring packages L. 224
58,5 debconfinaction 225
5.8.6 Using a remote database back-end 227
5.8.7 Problemsand shortcomings 230
Modifying packages 232
59.1 Recompiling packages 232
59.2 Repackingpackages 238
Integrating non-Debian software 239
5.10.1 alien 240
5.10.2 checkinstall 241
5103 @QUIVS 242
Miscellaneous package tools 243
5111 debsums 243

Table of Contents |

512

5112 apt-listchanges
5113 apt-listbugs
5114 cron-apt
5115 deborphan
5.11.6 Keeping a clean system: debfoster
5.11.7 Caching APT archives
5.11.8 Mirroring the Debian archive: debmirror
5.11.9 Enhanced queries of the package database
5.11.10 Package popularity contest
5.11.11 Purposely omitted tools
Debian kernels
5.12.1 Kernelsupport
5.12.2 Anatomy of the kernel packages
5.12.3 Sources, headers, and documentation.

5.12.4 Kernel modulesand patches

Debian system administration

6.1

6.2

6.3

6.4
6.5

Fundamentals
6.1.1 Using directories instead of configuration files
6.1.2 Overriding permissions
6.1.3 Overridingfiles,
6.1.4 Thealternativessystem
6.1.5 The Debian menusystem
Users and authentication
6.2.1 Systemusersand groups.
6.2.2 Userand group management
6.2.3 PAM — Pluggable Authentication Modules
System initialisation and automatic processes
6.3.1 The system initialisation process.
6.3.2 Regular maintenance processes
Backups
Device management

6.5.1 discoverand hotplug

244
246
246
247
248
249
253
254
256
257
257
258
259
266
267

271
272
272
274
275
276
278
281
281
284
290
291
292
305
307
309
309

o

Table of Contents

7

8

6.6
6.7

6.8

6.9
6.10

6.5.2
6.5.3

kmod, the kernel autoloader.

Loading modules during startup

Configuring kernel parameters

Log file management

6.7.1

Monitoring logs with logcheck

Network configuration management.

6.8.1
6.8.2
6.8.3
6.8.4
6.8.5
6.8.6
6.8.7

Network configuration with ifupdown

Using DHCP to obtain a network address

Managing fetc/resolv.conf

ConnectivityviaPPPo o

Integrating PCMCIA network cards

Integrating wireless network interfaces

Miscellaneous network options

Administering inetd, the Internet superserver

Integrated managementtools

6.10.1

wajig . . .
6.10.2 feta

6.11 System administration resources L.

Security of the Debian system

7.1
7.2
7.3
7.4
7.5

Handling security problems

Security updates

Security outofthebox

Package quality

Package integrity

7.5.1
7.5.2
753

Manual verification of package integrity

Secure APT

debsigsand dpkg-sig

Advanced concepts

8.1

Building kernel packages with make-kpkg

8.1.1
8.1.2

Using initial ramdisks

Patching the kernel

315
316
316
317
321
323
323
338
339
342
349
350
351
352
354
354
355
356

357
359
363
366
368
369
371
373
377

381
382
385
386

Table of Contents |

8.2

8.3

8.1.3
8.1.4
8.1.5
8.1.6

Compiling modules . . .

Cross-compiling for other architectures

Symlink farming

Configuring make-kpkg

Mixing releases

8.2.1
8.2.2
8.2.3
8.2.4
8.2.5

Pinning releases with APT

Selecting target releases

Extending APT's internal cache

Mixing releases and security updates

aptitude and multiple releases

Alternative approaches to installing a Debian system

8.3.1
8.3.2
8.3.3
8.3.4
8.3.5

Bootstrapping an installation

Booting the installation from the network (PXE)

Customising the installer

Preseeding the installer

FAl: Fully automatic installations

9 Creating Debian packages

9.1
9.2

Manual packaging

Debianising with the package maintainertools

9.2.1
9.2.2
9.23
9.24
9.25
9.26
9.27
9.28
9.29
9.2.10
9.2.11
9.212
9.213

A closer look at source packages

Investigating the upstream source tree

Building source packages

Jumpstarting with dh_make

Writing debian/rules . .

Modifying the debian/*files

Creating the DEB file . .

Cleaning the source tree

Splitting and updating a package

The debhelper suite . .
The changes file

Verifying new packages

388
391
393
393
394
395
401
403
404
406
406
407
421
423
424
426

431
432
436
437
439
441
444
445
449
451
455
458
460
465
473
475

o

Table of Contents

10

9.2.14 Signing the package files
9.2.15 Checking packages
9.2.16 Automating the package build
9.3 Local APTrepositorieso oo oo
9.3.1 Anatomy of a personal repository
932 Uploadtools
9.3.3 Automated repository management
9.4 Advanced package concepts
9.41 Package hookscripts L.
9.42 Usingdebconf
9.43 Library packages
9.5 Alternativebuildtools oL
951 cdbs. ...
952 yada.

9.6 Automating clean builds with pbuilder.
9.6.1 Settingupabasetarball
9.6.2 Building packages with pbuilder
9.6.3 Using pbuilder to set up testsystems
9.6.4 Mounting host directories inside the chroot
9.6.5 Modifying thetarball

Documentation and resources

10.1 Local documentation

10.2 Online resources oo
10.2.1 Official documentationand manuals
10.2.2 Semi-official resources
10.2.3 Unofficial resources

10.3 Printed resources

10.4 Discussion forums
1041 Mailinglists.
1042 Webforums.
1043 IRC—InternetRelayChat

10.5 Contactingpeople

477
478
479
482
482
484
486
489
489
490
498
501
501
503
504
505
506
508
510
510

513
514
514
515
517
517
520
521
521
527
528
530

Table of Contents |

10.6 The bug trackingsystem
10.6.1 Queryingthe BTS
10.6.2 Querying bugs from the command line
10.6.3 Bugseverities
1064 Bugtags
10.6.5 Reportingbugs
10.6.6 Mail traffic following a bug report
10.6.7 InteractingwiththeBTS
10.6.8 Bugs against pseudo-packages
10.6.9 Subscribing to a package’s bug reports
10.6.10 Fixingbugs

Appendix
A Debian flavours and other Debian-based operating systems
A1 CDDs — Custom Debian Distributions
A2 Debianderivatives
A2.1 Knoppixo
A22 Ubuntu
A23 Gnoppix.
A24 MEPIS
A25 MNIS

A26 Quantian
A27 Skolelinux
A28 Adamantix
A29 SELinux

B When is Debian the right choice?
B.1 YoushouldrunDebianif...

B.2 You should probably choose something else, if...

C Miscellaneous

C.1 Important GPG keys related to Debian

532
533
534
536
538
539
544
545
548
552
553

557

559
560
561
562
563
564
564
565
565
565
566
566

569
569
571

573
573

o

Table of Contents

C.1.1 Official Debian archive signing keys
C1.2 Otherrelevantsigning keys
C2 Settingup the filesystems
C2.1 Asensible partitiontable. L.
C2.2 Supported filesystems
C3 Extrapackages
C4 Configuring a local packet filter
C.5 Dual-booting with other operating systems
C5.1 Chain-loading other bootloaders
C5.2 Dealing with Windows peculiarities

The Debian Linux Manifesto

Debian Social Contract
E.1 The current Social Contract
E.2 The future Social Contract

The Debian Free Software Guidelines

574
575
577
577
578
579
580
582
583
583

587

591
592
593

595

Introduction

My first reaction to Linux? This defies all logic.
— lan Murdock

The Debian GNU/Linux operating system is a fully-featured operating system for
servers, workstations, and home desktop machines alike. It can serve up web
pages, relay email, provide a database backend and file-sharing services, authen-
ticate users, firewall and monitor networks, control appliances and power embed-
ded devices. Debian can also act as a workstation or desktop machine, allowing
users to browse the Internet, read and write emails, author documents, calculate
spreadsheets, edit images, view multimedia content, play games, write software,
or manage schedules, contacts and other personal information. When it comes to
Debian (or GNU/Linux in general), the question is usually “how is it done?", rather
than "can it be done?" Thus, the Debian system constitutes an excellent basis for
most tasks.

1 Introduction

The broad range of possible Debian GNU applications is an important part of De-
bian's undamped growth'. Another, perhaps even more important reason for the
success of the Debian system, is the stability of its software packages along with
the robustness of its administrative tools, and invaluable overall reliability. Fur-
thermore, Debian's support for eleven different processor architectures allows for
unified administration across the various platforms that have become popular over
the years.

The Debian system owes much of its power to numerous free software projects
and movements, most notably GNU and Linux. Debian uses the Linux kernel, so
anything that is possible with Linux itself is possible with Debian GNU as well. Over
15000 Debian packages are available for straightforward installation, offering a
great deal of functionality without the burden of manually satisfying dependencies,
compiling source code, setting up initial configurations, and keeping programmes
up to date. And then again, if you do have to compile a tool, library, or application
manually, don't worry; Debian will give you all the tools, and then keep out of your
way. This is perhaps one of the most important points about Debian: it is there to
assist you, and it is quite successful in being quiet unless explicitly called for. In
other words, you control the system, and not the other way around.

Debian package maintainers try to keep the packaged software as identical as pos-
sible to the original, upstream source. Instead of introducing major changes, they
make sure their packaging work adheres to a strict set of rules designed to al-
low thousands of Debian packages to form a truly integrated system, rather than
merely coexisting side by side, hoping they do not get in each other's way. There-
fore, when you install official Debian packages, you install the original software
that neatly slots into the system, rather than just working when used in a certain
way or specific environment.

When modifications done by Debian are not Debian-specific (and this is often the
case), they are usually merged with the original upstream code, improving the
software and successfully keeping Debian-specific differences minimal. Even tools
developed specifically for Debian are available for the public and often find their
way into other distributions. The Debian project has a strong commitment to the
free software community and makes all its work available for the benefit of others,
just as it uses the produce of others for its own good.

The Debian community is a community of volunteers. Debian developers do not
receive direct financial compensation from the project. Nevertheless, the philos-
ophy and technical merits of Debian have always attracted professionals from all
over the world who bring problem-solving proficiency to a variety of areas within
the Debian project. Every Debian developer has to display a common conception
of ethics and an acceptable level of Debian-specific skills before being officially ac-
cepted. As volunteers, these people are then free to approach any challenges of
personal interest, while working on the same integrated system.

"Netcraft determined Debian to be the fastest growing Linux distribution in 2003 and 2004:
http://news.netcraft.com/archives/2004/01/28/debian_fastest_growing_linux_distribution.html

1.1 About this book |

Computer users have needs today and Debian fulfills these needs successfully
while encouraging their implementation in a formal and sustainable manner. De-
bian may not be universally applicable, but stability and maturity are its keywords.
Assuming that these reflect a user's primary needs, the rest is negotiable.

1.1 About this book

Packages in the Debian archive contain a variety of free software, ranging from
standard tools to amazing utilities. The Debian-specific tools, which will be our
primary focus, form a major subset. This book uncovers those tools, explains the
underlying concepts, and highlights potential pitfalls or shortcomings. It explains
how the tools should be used, and how they interoperate to offer a robust and
consistent means of administering and maintaining Debian installations. | will be
focusing on the popular x86 architecture. However, since the functionality and feel
of the Debian system is mostly equivalent across all supported architectures (with
the notable exception of installation and boot processes), the x86-specific parts of
this book are minimal.

This book does not cover Linux in general, nor does it cover specific system admin-
istration aspects?. It was written to be the source of knowledge about the Debian
system and its specifics.

This book is intended to be objective. Debian may be the perfect operating system
for some, but that does not make it ideal for everyone. Advocating the use of De-
bian is a good thing, and every additional user is a significant gain to the project.
But nothing is gained if newcomers give up after painfully discovering that Debian
does not meet their needs or expectations. Polemic praise of the "universal oper-
ating system" is not what prospective users need or want; information should be
based on facts, not on advertisements.

The goal of this book is not to be a pamphlet about Debian. Instead, it presents the
Debian approach to various system administration tasks and points out common
myths and factoids. It highlights those points that make a Debian administrator's
life easy and enjoyable, as well as those that cause headaches and the occasional
fit of raving madness. All in all, however, the book primarily serves as a platform
for the Debian system to speak for itself. It gives you the plain facts, allowing you
to compare them with your expectations and either embrace Debian GNU, or move
on. In appendix B, you will find a summary and more help in making this important
decision with its many practical implications.

2|f you are looking for references on these topics, | can recommend O'Reilly's Running Linux,
4th edition, written by Matt Welsh et al. Machtelt Garrels also provides a good online hands-on
guide at http://www.tldp.org/LDP/intro-linux/html. Finally, the documentation compiled by The Linux
Documentation Project (http://www.tldp.org) is a helpful and indispensable reference. Finally, Evi
Nemeth et al. have written the excellent Linux Administration Handbook and the fantastic Unix
System Administration Handbook, targeted specifically at system administrators providing services to
users (http://www.admin.com).

o

1 Introduction

Writing a book about Debian is not easy when you are involved with the project.
Whenever | found a problem, | tended to fix (or at least report) it instead of doc-
umenting workarounds. Since the inception of this book, | have filed 354 bugs
against Debian packages, fixed 68, exchanged about 5500 emails on topics related
to the book and spent countless hours on IRC. Undoubtedly, the book would have
been completed much faster if | had simply accepted the problems. As it stands,
however, | feel that both the book and the project, have benefited from the proce-
dure | followed, which can not be said for my peace of mind.

1.2 Target audience

This book is targeted at people familiar with Unix who are looking to understand
what makes Debian different, and how to best put Debian's paradigms and tools
to use. Itis intended to be a reference for the Debian system, as well as a guide
for those that want to go further with the system. Its target audience is broad and
can be roughly classified into four groups, which are discussed in the following
sections.

1.2.1 The Linux administrator

As the ideal reader of this book, you possess know-how in two main areas. First, you
will have profound knowledge of the Linux kernel, the GNU userland utilities, and a
general understanding of the Unix operating system as well as the Portable Operat-
ing System for Unix (POSIX) standards. Second, you will have practical experience
of multiuser system administration. You will have developed an understanding of
the scope of daily administration tasks and ideally written many scripts to facil-
itate the numerous aspects of your job. While it does not hurt to know the do's
and dont's of system administration, the book concentrates more on the effective
management of stable and secure production systems over long periods of time.

You will find in this book an enticing introduction to the Debian Way of system
administration and management. It offers a comprehensive and objective overview
of the strengths and weaknesses of Debian and serves as a basis for migrating from
another Linux distribution to Debian GNU.

1.2.2 The Unix administrator

If you are an administrator of another Unix operating system, such as BSD or So-
laris, you will want to read this book along with a GNU/Linux® reference manual.
The book is based on Debian using Linux as the kernel. Debian has been ported to

3See footnote on p. 19.

1.2 Target audience |

other kernels, but these ports are not yet as mature as the Linux-based distribu-
tion. Nevertheless, a great number of skilled and ambitious developers are working
hard to bring these ports up to par, and every additional user ready to help out can
speed up the process.

If you are ready to move to the Linux kernel, or would like to continue profiting
from your experience of the BSD kernels while entering the world of Debian, you
may consider yourself an ideal reader. Debian acts and feels pretty much the same,
no matter what the kernel or architecture may be (see chapter 4.5).

1.2.3 The Debian user

If you are already running Debian GNU/Linux, you can still profit from this book.
The sophistication of the Debian system keeps a system running with minimal ef-
fort, and the maintenance of a single-user workstation does not require in-depth
knowledge of the advanced concepts and intricacies of Debian GNU/Linux. Never-
theless, sooner or later new requirements are likely to surface, and this means the
Debian user learning more about the system and enhancing it to handle new tasks,
or improve the handling of old tasks. The need may arise to give out accounts to
family and friends to let them experience the freedom of a Linux system. Or you
may at one point consider turning your knowledge and enthusiasm for the system
into money by entering the commercial world, assisted by the operating system.
Lastly, you may discover that you simply like playing around with Debian and get a
kick from its elegant methods, whether you need them or not*.

If this sounds like you, this book will mainly give you the motivations of the various
Debian approaches, as well as showing you some utilities and paradigms that you
may not yet have encountered. Unless you are confident of, or not fully dependent
on, your production machine, | would recommend testing most of the stuff you
read on the following pages on a fresh installation, or within a chroot install (see
chapter 8.3.1). When you have understood and mastered each method, you can
port it to your main system, if you so desire.

Shameless plug: while thinking about the target audience of this book, it occurred
to me that | would not have bought it if | had seen it on the shelf. When | started
writing, | considered myself an advanced Debian user and well-versed developer,
who would not learn much from a printed Debian reference. | was wrong. As |
put together the information that now fills these pages, | learnt about ideas and
techniques that | had not previously not dreamt of; researching the depths of the
Debian system opened up whole new perspectives to me, some of which have since
revolutionised the way | work with the Debian system. If your involvement with
Debian is anything more than chance, this book is for you.

4| have always been like that.

o

1 Introduction

1.2.4 The Linux apprentice

This book assumes a good knowledge of the Linux operating system. Consequently,
users new to Linux should probably look elsewhere for the basics. Nevertheless,
along with a good introductory Linux reference?, some enthusiasm, and quite a bit
of free time, this book can facilitate a clean, bottom-up start into Linux system
administration.

This said, Debian may not be the best choice for your first steps in the Linux world.
If you are choosing Linux because you have had enough and want to author your
documents, compose messages, and browse the Web on a stable, secure, and free
operating system from now on, then you may want to consider one of the De-
bian derivatives (see appendix A.2) or a different distribution at first. These are
frequently optimised for specific applications or target a specific user base, which
makes them be simpler to learn. For instance, several Debian-based distributions
provide simplified installers (or need not be installed at all), or provide a standard
selection of common desktop programmes, allowing you to get to work immedi-
ately without having to find out how to get there first. These distributions do not
need to handle the broad set of applications that Debian supports and can thus
do with less flexibility (and complexity). Once you have learnt to walk with one
of these, you can always come back to Debian for its maintainability (or any other
reason).

If you really want to jump in at the deep end and hop right on the Debian band-
wagon, then, by all means, go right ahead. You will find a welcoming community
and a helpful crowd, but be aware that you will probably be in for a hard time at
first. If the computer you plan to use for your learning experience also serves your
productivity, make sure you know what you are doing. For your experiments, it
might be wise to invest a small amount of money in another machine, networked
to your main machine. Hardware is cheap, and your main computer will almost
certainly be capable of sharing Internet access with the hosts on your local net-
work. This allows you to restrict use of your production machine to important
work. And should a problem on the Debian machine prevent network access, you
can still use your main machine to seek help from the community.

1.3 How to use this book

The amount of information and knowledge you can extract from this book largely
depends on how you use it. To harvest its full power, you will need access to a
machine on which you can install Debian and ideally experiment to your heart's
content without fearing the obliteration of your data or the loss of your computer
system. Declining computer prices and Linux" minimal system requirements make
this all the easier; you can install Debian on a Pentium Il with 64 Mb RAM for this

1.3 How to use this book |

purpose, or even a much less powerful machine. If this is not possible, then you
can do with any Linux-based machine, but you need root access. You can use the
installation walkthrough in chapter 8.3.1 to set up a working sandbox in which to
experiment.

Besides reading this book, try out everything you see and read on your lab ma-
chine. Add your own experiments to the ones in this book. Try out everything that
comes to your mind. If you hose the machine, just install it again, or set up an
installation in a subdirectory of your local hard disk (chroot). If the worst comes to
the worst, you can restore your lab machine by copying the untouched snapshot
over the hosed version from the host system. | will explain how to do that in chap-
ter 8.3.1. Also, there is pbuilder to automatically manage an environment in which
you basically cannot break anything (see chapter 9.6).

In addition to playing around and experimenting away, you should try to read
as much as you can about the concepts introduced. Every Debian system comes
with a plethora of documentation and information about the available utilities (see
chapter 10). In addition, the Internet is full of useful tidbits (chapter 10.2 lists some
starting points), and one of Debian's core strengths is its mailing lists. It is highly
advisable to join debian-user and to start reading random posts as well as posts
of interest even before you get started with this book. The best advice is not to
hesitate to write back to the list if you know (or think you know) the answer, or if
you can offer valuable input. Chapter 10.4.1 will pick up this topic in greater detail.

If you use Debian partly for the fun (i.e.if you like playing around with your system
rather than doing actual work®), then you may want to stop by the next flea-
market or check your neighborhood for old machines and save them from hitting
the junk yard. Sun Microsystem's slogan “the network is the computer" holds for
Unix in general, and thus for Debian as well. You can have a lot of fun with a single
machine; you can have exponentially more fun with a home network, and you do
not need fancy equipment for that.

Finally, it is a good idea to take notes during your experimentation. First, it is a
good practice to get into, as a meticulously kept log book can be the difference
between data loss and data rescue. Second, it will be almost impossible to remem-
ber everything you learn during the first few months of your Debian experience.
Instead of having to research the same topics time and time again, it is useful to
be able to refer to your own notes. | found Wikis® to be incredibly helpful for this
sort of note taking.

5Those of you who believe in telekinesis, raise my hand!

A Wiki is a colaborative web page that can be edited by everyone, even though access controls
can be put in place to allow for closed-group use. Please refer to http://en.wikipedia.org/wiki/Wiki for
more information.

o

1 Introduction

1.4 Final notes

1.4.1 Conventions

Source code and shell interactions quoted in this book follow a standard conven-
tion and should be easy to understand. At times, screen output has been simplified
for brevity and clarity, so please do not try to match it character by character.

Shell scripts use [bin/bash for interpretation, rather than [bin/sh (which is only
used in a few simple cases). The main reasons for this choice are clarity and conve-
nience, as bash supports some useful constructs that standard POSIX shells do not,
and thus removes the need for complex workarounds. As bash is installed on every
Debian system, it seems sensible to make use of it.

| assume a fresh directory for each example, which is denoted with the tilde (). In
between approaches and topics, | assume the directory to automagically’ empty
itself.

File contents are usually shown as part of the corresponding cat or grep (or similar)
invocation. This establishes the context and allows you to understand and use the
examples without having to parse the text for the file data.

1.4.2 Keeping up to date

Debian's open development cycle puts the system into a state of continuous flux.
While most tools covered in this book have been around for quite some while and
are unlikely to change (with the exception of minor details), there is no guarantee.
Software problems are reported and fixed every day, and while | have taken care to
introduce the latest Debian developments, by the time this book is printed, some
of the concepts may not be entirely state of the art. This said, the usage paradigms
of almost all the tools mentioned in this book were established a while back and
are unlikely to change. As Debian fixes bugs and adds new features, this book will
continue to hold true.

In a fast-paced project such as Debian changes will happen, in fact they are a good
thing, and of course | cannot predict the future. | will keep a list of changes at
http://debiansystem.info/

changes to complement the book and keep you up to pace with the Debian system.
| also do not anticipate this book to be error-free. Whenever | find mistakes, | will
publish them at http://debiansystem.info/errata. If you find an error or an unclar-
ity, | would really appreciate your feedback via email to errata@debianbook.info.

7"Automatically, with a touch of magic!

1.5 About the author |

1.4.3 An urgent plea for feedback

The book you are holding in your hands has completely occupied my life for almost
a year. As a result, it is one of the most comprehensive references for the Debian
system and the community surrounding it. It would not have been possible to
put together all the facts, data, and tidbits you find here without the active help
of many members of the community, answering my questions, providing valuable
additional information, and letting me know about changes | had not immediately
noticed.

It is my goal to keep this book as up to date as possible for future editions. |
therefore rely on your help. In addition to spotting errors, | ask you to drop me a line
whenever you note a development that you deem relevant to the contents of this
book. | have reserved the feedback@debianbook.info address for this purpose.
Thank you very much in advance!

1.5 About the author

| promise to keep this short, but let me introduce myself. | am a PhD student at
the Artificial Intelligence Laboratory of the University of Zurich, Switzerland, re-
searching neurobiologically inspired models of learning in robots. | am also actively
involved with RobotCub®, an international endeavour to develop an open source
robotics research platform. To earn my living, | work for the Munich-based AERAsec
GmbH?, teaching network security and privacy protection to professional system
administrators.

Linux has been an integral part of my life ever since 1995, and | had my first en-
counter with Debian in 1997, albeit rather passively. Ever since then, my interest
in the project and its operating system has grown exponentially. | became a devel-
oper in 2002, after spending at least three years fielding support questions on the
debian-user mailing list, representing Debian at fairs, and fixing bugs.

My role within Debian is that of a simple developer with special interest in security,
support, quality assurance, and public representation of Debian. | have tried hard
to concentrate on my real life and reduce the time | spend on Debian, but have
always found something to do for the project to keep me from working on my
thesis. This book is perfect proof of my lack of discipline. | hope you will enjoy it.

| offer professional consultancy services for Debian and open source deployment
with a strong focus on security and integration. | am based in Zurich, Switzerland
but would travel within Europe and Asia. My rates depend on the project and
its duration. | will donate up to a fifth of all profits to the Debian project and

8http://www.robotcub.org
http://www.aerasec.de

o

1 Introduction

other related open source projects. If you are interested, please write to me at
madduck@debian.org.

1.6 Acknowledgements

First and foremost, | would like to thank all supporters of the Debian project. The
beauty of the operating system as well as the spirit of the community made writing
this book a marvelous experience! | am proud to be a member of the Debian team
and wish all the members of the projects all the best for the future. Hopefully this
book will help to improve Debian and its acceptance even further.

The book in your hands is the work of many people. | would not have been able
to write it without the regulars of the #debian-devel IRC channels, who have put
up with my daily presence for months and tried to be helpful all along. In partic-
ular, I would like to thank Goswin von Brederlow, Jeroen van Wolffelaar, Thomas
Hood, Marco d'ltri, Joey Hess, Roland Mas, Frans Pop, Christian Perrier, Andres Sa-
lomon, Martin Michlmayr, Joshua M. Kwan, Colin Watson, Adeodato Simo, Manoj
Srivastava, Branden Robinson, Steve Langasek, Andreas Barth, Peter Palfrader, Jald-
har Harshad Vyas, Wouter Verhelst, Thiemo Seufert, Matt Taggart, Junichi Uekawa,
Thomas Lange, Peter Grandi, Matthias Klose, Norbert Tretkowski, Piotr Roszatycki,
Gerfried Fuchs, Karsten M. Self, Lars Wirzenius, Helen Faulkner, Benjamin Mako Hill,
Klaus Knopper, Pierre Morel, Warren Woodford, David Kammerer, Dirk Eddenbuet-
tel, and many others for their cooperation and their help in making sure that |
correctly documented their respective domains.

Most of my gratitude goes to the two people who spent countless hours with
the manuscript, poked holes at it, and provided me with invaluable feedback:
Hanspeter Kunz and Davor Oceli¢. In addition, Don Armstrong, Lorrin Nelson, Mar-
tin Michlmayr, Sean Finney, and Stephan Beal inspected individual sections and
made helpful suggestions; thank you too!

| want to thank the NetBSD team for their operating system, and the various dis-
cussions | witnessed on the #netbsd/freenode.org IRC channel. The Wikipedia
encyclopedia has been most helpful (despite its restrictive licence); thanks to all
those people who make it possible.

Outside of the free software community, many people have been instrumental in
making this book happen. First of all, | want to thank my girlfriend Aline for her
patience and loving support. | am greatly indebted to my parents, and my family
and friends for putting up with my endless retreats to the computer screen. The
same applies to Professor Rolf Pfeifer and the members of his Artificial Intelligence
Laboratory at the University of Zurich: thanks for your understanding! Last but not
least, | want to express my gratitude towards my publisher, Markus Wirtz for giving

o

1.6 Acknowledgements |

me the opportunity to write this book, and for his patience and advice'®, and lan
Travis for carefully reading over the final version and working with me through
errors in my spelling and grammar.

10Talking to other authors, | seem to have been given a chance to work with one of the best pub-
lishers of the field... thanks for spoiling me on my first book, Markus.

The Debian project in a nutshell

If you want to build a ship, do not drum up the men to gather
wood, divide the work and give orders. Instead,

teach them to yearn for the vast and endless sea.

— Antoine de Saint-Exupéry

In this chapter, | introduce the Debian project and everything related to Debian that
is not part of the operating system. If you are anxious to get down to the bones of
the Debian system, skip this chapter. However, the Debian system and the Debian
project are inseparable; this will become more and more obvious as you learn more
about the Debian system. If you decide to skip this chapter for now, please make
sure you read it some time later. It contains many pieces of important information
for the serious Debian administrator.

2 The Debian project in a nutshell

2.1 A history lesson

When the Debian project was born, the Linux kernel was still in its infancy, but
growing at a quick rate. Linus Torvalds, the founder of Linux, was inspired in part
by the GNU project when he adopted an open community approach for the de-
velopment of the Linux kernel. From the very beginning, enthusiastic and capable
developers contributed to the kernel code and pushed improvements where they
were most needed. The kernel became more and more usable, and the combina-
tion with the GNU user-space utilities allowed it to mature at an unforeseen pace,
with updates published on a daily, if not hourly basis. Staying up to date became
impossible for those interested in working with the system rather than on or for
it. Administrators especially, whose task was to provide higher-level services to a
group of users, were unable to track important updates (if for no other reason, then
because the code was being released faster than it took to compile it on contem-
porary processors.

With computers becoming more and more integral in academic as well as com-
mercial environments, it became increasingly important to be able to install them
in larger numbers without continuously bootstrapping from scratch and compiling
the required software by hand. As a result of these developments, several groups of
developers teamed up to package precompiled software in a way that would allow
for simple installation on end-user systems'. Despite the first business models cre-
ated around the distribution of assorted free software, many of these distributions
quickly fell prey to their own cause: with quality control and interoperability, main-
taining a distribution was even more time-consuming and harder to handle than
expected. As the count of external sources and updates grew, most groups threw
in the towel and left buggy collections of aging software behind. In this situation,
where bootstrapping and manually compiling a usable system was too daunting a
task for the inexperienced, these distributions remained the primary entry point for
new users — it is not difficult to imagine the grief that ensued.

In 1993, lan Murdock, an undergraduate student at Purdue University and an avid
user of the SLS distribution, which was similarly struggling at the time, found an
answer to the dilemma: if the Linux kernel was developed decentrally by hun-
dreds of people in parallel, then a distribution should be maintained decentrally
by hundreds of people in parallel. Following lan's first announcement?, dozens of
interested users joined forces and set the grounds for the Debian Linux project. In
an article for Linux Journal®, he brought forth a number of ideas, which were later
formalised in the Debian Linux Manifesto (see appendix D). A new distribution with
the ambitious goal of being carefully maintained and high quality had been born.
In January 1994, the public was given a first glimpse at the release of Debian 0.91.

TInterestingly, recent developments on the distribution market are trying to revive the nostalgia.

Zhttp://lists.debian.org/debian-devel-announce/2003/08/msg00008.htm|

3http://www.linuxjournal.com/node/2841; at this point | would like to thank the Linux Journal
for deciding to open older articles to the general public without requiring a subscription (confirmed by
the editor in chief, 27 January 2005)!

2.1 A history lesson |

The approach to system administration taken by the Debian project could be poeti-
cally described as "academically-inspired applied functionalism." Debian developers
approach problems patiently and academically in search of solid, long-term solu-
tions. Consequentially, in the Debian system you will often find tools and concepts
that are far more powerful and robust than needed for most situations; at the
same time, however, these tools can be put to use in standard and complex sce-
narios alike, allowing administrators to stay on familiar ground while growing with
their tasks.

Despite its academic spirit, Debian is everything but theoretical and inapplicable
in the real world. "Applied functionalism” primarily refers to the system develop-
ment process: the tools and concepts that make up the Debian system were not
conceived ad hoc and put to use. Instead, they have emerged out of the practical
needs of Debian's users. Administrators often struggle to keep their custom solu-
tions synchronised with the rest of the Debian system. To attack this problem at the
root, experienced administrators stepped forward and made clever approaches to
common challenges available as part of the Debian system. In addition to the usual
benefits of being freely available, the software also became an official part of the
Debian system and improved the overall integration of its numerous components
by enabling the reuse of standard solutions for common tasks.

Half of what makes a good system administrator is the ability to automate repeti-
tive tasks before they become repetitive. The other half is to turn challenges around
and reuse simple solutions rather than developing individual solutions for every
problem*. The Debian system gives you everything you need to work by these prin-
ciples. Repetitive tasks can be automated in a flexible way. And the universality
and simplicity of the existing tools invites you to make use of them, rather than to
expend extraneous effort implementing custom solutions that might break.

The project name "Debian” is a conglomeration of the names of lan Murdock's wife
Debra and lan himself. It is officially pronounced "deb-ee-an” (/'debian/), yet other
pronunciations are common in other parts of the world. Chances are that people
will recognise the name.

In the following, you will find a brief account of the history of Debian. The debian-
history package, which resides in the official archive, also contains some informa-
tion about the evolution of the project and its operating system. The document is
available online®, too. Note that it makes no attempt to be complete.

The early days

lan Murdock steered the project from its inception to 1996. By that time, thanks to
the invaluable work of lan Jackson, dpkg, the Debian package management tool,

4Actually, the real trait that identifies the ingenius system administrator is laziness, and the tools
to make sure others do not find out.
Shttp://www.debian.org/doc/manuals/project-history

o

2 The Debian project in a nutshell

Figure 2.1:

The Debian release

timeline

had become an indispensable part of the distribution, and first ports of the Debian
operating system to other processor architectures began to surface. lan Murdock
withdrew from the project in favour of his family as well as future plans, and Bruce
Perens was invited to be the next leader.

Under Bruce's guidance, about 60 developers migrated all of Debian from the pre-
vious a.out to the ELF executable format and in June 1996, Debian 1.1 was released
as Debian buzz® for the i386 architecture.

Debian 1.0 was never officially released because a CD-ROM manufacturer had mis-
takenly labelled an unreleased version of Debian as 1.0 in December 1995, so this
version was skipped to avoid confusion.

The next version, Debian 1.2, codenamed rex, followed in December 1996. By that
time, 120 developers were maintaining a total of 848 packages; the project had
doubled in size since the release of buzz. Eight months later, in July 1997, 200
developers released Debian 1.3 bo with just under 1000 packages.

$ 5
> & '
> K3 S & &
& & o N i & & £ S @
§ S E A G § & < $ s
9 § o § & < $ < 2 o & E
N S S N F T S N o >
& s & Fo N F 2 v o § = g
S s & FE § 9O & § & S s &
$ & 9 T § ¢ & $ 5l & s §
N ¥ Y& $ 5 $ $ $ $
& s & ESSIR IS) N $ & ol
$ KN PSS s $ & P & $
s POBFN s S & $ $ K N S P
s s & gF P& < $ & N
& § & f& & o 5 & $ S &
N4 < 5 g 5§ F § N N S & Sxpected 200506
& o 2 Ny & > K 2 « Debian "etch"

1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006

Formalising the endeavour

Bruce Perens, who led Debian through three releases in less than two years, also
formalised and published two documents that became substantial to the Debian
project: the Social Contract established the priorities and ideals of the project (see
appendix E), and the Debian Free Software Guidelines (DFSG) defined the criteria
a software’s licence must meet in order for the product to qualify for inclusion in
the official Debian archive (see appendix F). In addition, Bruce spearheaded the
founding of Software in the Public Interest (SPI) as a legal entity to manage the
parts of the project which can only be managed by a legal entity (such as trademark
applications, as well as monetary funds).

6At that time, Bruce was an employee of Pixar, the company behind the famous computer-
animation movie series Toy Story. Starting with Debian 1.1, every Debian release received a code name
based on characters from the movie series: Debian 1.1: buzz; 1.2: rex; 1.3: bo; 2.0: hamm; 2.1: slink;
2.2: potato; 3.0: woody; 3.1: sarge; The next release following sarge will be named etch, based on
the Etch-A-Sketch character of Toy Story. sid, the name of the malicious kid from the movie, is used
as the code name for the Debian unstable repository, since the name is also an acronym for "still in
development;' or rather, "still in development” is a "backronym"” for the code name, as it was coined only
after the code name had been used in Debian.

2.1 A history lesson |

Over the following years, the project grew in number of developers and available
packages. By 1997, 400 developers were working together under the leadership of
lan Jackson culminating in the first multi-architecture release, Debian 2.0 hamm,
in July. This release was fully based on libc6, consisted of 1500 packages, and
officially supported the m68k series architectures in addition to the i386 platform.

Wichert Akkerman took over in the beginning of 1999 and, under his guidance,
Debian 2.1 slink added support for the Alpha and SPARC architectures. 2250
packages required the expansion of the official distribution set to a second CD.
Debian 2.1 was released in March and included Advanced Package Tool (APT). To
date, APT maintains its highly innovative position as Debian's package manage-
ment interface, providing a means to install software with unheard of simplicity
and robustness.

Into the next millenium

One and a half years later, in August 2000, Debian released version 2.2, code-
named potato, which featured almost 4 000 packages and additionally supported
the PowerPC and ARM architectures.

The interval to the next official release, Debian 3.0 woody was two years, which
explains Debian's reputation of being outdated. By the time of the release, the
project had grown to 900 developers managing just under 9 000 software packages
(7 CDs) that ran equally well on a total of 11 architectures (IA-64, HP PA-RISC,
MIPS (big and little endian), and S/390 were added in these two years). Over this
timespan, the project was restructured to accommodate its massive growth, adding
the testing repository to facilitate the release cycle.

In April 2002, Bdale Garbee was elected project leader and in July 2002, woody
was the first Debian release to feature internationalisation, and include crypto-
graphic software as well as the popular Desktop environment KDE. KDE could not
be distributed in Debian due to the non-free Q Public Licence of the underlying
Qt library. It was a major accomplishment for the Debian project when Qt's pub-
lisher, Trolltech, agreed to licence the library under the GNU Public Licence (GPL)
for non-commercial use.

In 2003, Martin Michlmayr won the Debian project leader election and held the
position for two years.

Debian today

At the time of writing, the next official release, Debian 3.1 sarge is expected in the
first half of 2005. However, as before, this will only happen if the next release is
ready by that time (see chapter 2.2.3). Despite great efforts to shorten the release

o

2 The Debian project in a nutshell

cycle, the high goals for the next release’ required more work than initially planned.
sarge will provide a powerful new installation system and feature new versions
of core software, e.g. GCC 3.3, Perl 5.8, XFree86 4.3, KDE 3.3, Ghome 2.8, and
glibc 2.3.

The release following sarge will be named etch. Several of the developers want
to move towards a time-based release cycle for etch and its successors. The size
and complexity of the Debian project makes this an extraordinary challenge. A
time-based release cycle can only be instituted when the entire project reaches a
consensus and agrees to work towards a common goal. At this time of writing,
such a goal has not been formulated, but a proposal to relax the support of some
of the less popular architectures is under discusion®. An online brainstorming page
about possible future release strategies has been launched on the Debian Wiki®.

In April 2005, the Debian developers elected Branden Robinson as project leader. In
his platform'®, Branden identified the lack of visibility of some of Debian's internal
processes as a major source friction within the project, and pledged to increase
the level of transparency. He is also a member of the newly-founded "“Project
Scud;, a team of developers who joined forces to support the Debian project leader
with his work!!. This form of group leadership was heavily debated during the
time leading up to the project leader election. Some developers feared Debian
could split into a two-class society, and lead to the further exclusion of the general
public from important processes (such as the release cycle). It remains to be seen
whether Branden will succeed in dispelling these fears by establishing a working
group leadership model for Debian while making the administrative internals of
the Debian project more accessible to all developers.

2.2 The Debian philosophy

During the development cycle that followed lan Murdock's initial formalisation of
the goals, a number of priorities began to crystalise and form the basis for the
philosophy by which the project abides. In its foundation documents — the So-
cial Contract (see appendix E) as well as the DFSG (see appendix F) — the project
formalises major parts of its philosophy, including the priorities governing the de-
velopment of the Debian GNU/Linux operating system.

At first encounter, many of the priorities Debian chooses to follow seem purely
idealistic and somewhat counter-productive. In fact, when analysing Debian's per-
formance in competing for acceptance among home users, it seems like Debian is

"http://release.debian.org/sarge.html
8http://lists.debian.org/debian-devel-announce/2005/03/msg00012.htm|
9http://wiki.debian.net/index.cgi?ReleaseProposals
Ohttp://www.debian.org/vote/2005/platforms/branden
http://lists.debian.org/debian-project/2005/03/msg00035.html

2.2 The Debian philosophy |

tied to a stone and refusing to leave the stone behind. The prime example here
would have to be the long periods of time between stable releases.

However, it is important to understand the philosophy behind the operating sys-
tem to be able to understand the choice of priorities. When it is referred to as “the
universal operating system" (which is Debian's slogan), this universality is avail-
able to those who use it, not to those better served by other operating systems.
In particular, "the universal operating system" allows an administrator to maintain
equivalent systems across a great variety of architectures and kernels (see chap-
ter 4.5 and chapter 5.12.1). Debian does not try to be the best operating system for
everyone.

Moreover, Debian does not try to follow or compete with the market leaders in the
operating system sector. On the contrary, it often takes the lead by implementing
robust, generic solutions and paving the way for standards to be formulated. On
the momentous occasion of the tenth anniversary of the Debian project'?, lan
Murdock illustrated his vision of Debian's focus nicely:

The focus shouldn't be on following the commercial distributions
where they want to lead us, but rather on taking the lead — for ex-
ample, by working with and strengthening existing vendor-neutral,
community-owned standards efforts such as the Linux Standard Base
(LSB).

Debian supports and participates in the Free Standards Group (FSG), LSB, and File-
system Hierarchy Standard (FHS) efforts. In fact, because of its many innovative
approaches, Debian is crucial to the development and acceptance of these stan-
dards. The Debian developers work very closely with upstream authors who need to
ensure compliance with these standards in such a way as to minimise differences
between a software and its Debian version. Thus, Debian works actively towards
making upstream software LSB-compliant before accepting it, which is the main
reason for the delay in LSB certification.

While woody came close to LSB 1.3, it did not pass the certification due to a small
number of bugs. sarge is expected to be fully LSB 1.3 and nearly 2.0 compliant
(a few bugs that need to be fixed still remain). Debian achieves LSB compliance
through the installation of the Isb package. An LSB-compliant development en-
vironment is created by installing the Isbdev package. More information may be
found on the Debian LSB status page'®, and there is also a mailing list for LSB
issues: debian-Isb'.

Instead of following commercial distributors who have the resources to influence
the market, Debian steers clear of market dependence and focuses on the needs

2The Debian project turned ten on 16 August 2003, an event which was celebrated all over the
globe (http://www.debconf.org/10years).

3http://people.debian.org/ taggart/Isb

"*http://lists.debian.org/debian-Isb

o

2 The Debian project in a nutshell

of its users and the improvement of free software products, while meticulously
upholding its quality standards. Before you start thinking that you have heard this
said many times before: it actually works in practice. Strict adherence to quality
standards has been an integral part of the Debian project since the early days and
govern major aspects of the project and the development of the Debian GNU/Linux
operating system up until the present day. Debian users have come to rely on
the system's robustness and stability, and it is top priority for the project to walk
the thin line between providing upgrades while keeping the operating system rock
solid.

Perhaps one of the most distinguishing factors of the Debian project is that it tries
to minimise the differences between the software in its archive and the original
versions released by the respective upstream authors. Not having to maintain a
patch set for every upstream release certainly eases the maintainer's job, which
is one of the main reasons why Debian maintainers like to work closely with the
upstream authors; when an improvement is made to a software as a result of its
use as part of the Debian system, this improvement is pushed upstream, and the
maintainer of the package does not have to worry about it anymore. Staying as
close as possible to the upstream version also allows Debian users to find support in
the upstream forums. While certain distributions provide heavily modified versions
of software in their archives, which are subsequently unsupportable by the original
authors, Debian users can profit from resources not specific for Debian.

At the same time, however, Debian developers are not afraid to go their own ways
to address the users' needs better than the upstream authors do. At times, the
Debian developers develop alternate configuration paradigms to work around lim-
itations of the original configuration mechanisms. If these changes turn out to be
improvements, they often flow back into the upstream software and thus become
standards.

A great deal of the Debian system is based on the works of other, non-Debian de-
velopers. In fact, the Debian system would be nowhere if not for the innumerable
achievements in the free software community upon which the Debian developers
have always built their system. It is therefore only natural that the Debian develop-
ers hand any improvements and derived or original works back to the community
to let others profit in similar ways. After all, the Social Contract (see appendix E)
places the free software community on the same priority level as all Debian users.

Giving back to the community is thus respresentative of the Debian philosophy.
However, it is also the basis for the continued growth of the free software com-
munity, for the standardisation of its products, and ultimately for the competitive
challenges that Linux and other free software projects have become for commercial
vendors. Competition helps to ensure quality; by giving back to the community, the
Debian project ensures that users have a choice.

2.2 The Debian philosophy |

2.2.1 Debian and its users

Debian wants to be the best operating system in the eyes of its users. Nobody is
forced to use Debian, but those who choose to use the operating system can do
more than install and operate a machine: they can also voice their opinions and
initiate change. It is users that steer the project, and they are free of external
influences and pressure. The Social Contract carves this mantra in stone: "We will
place [our users' and the free software community's] interests first in our priorities”
(see appendix E).

Users steer the project

Contrary to popular belief — especially among people with experience mainly in
commercial environments — software is not developed by a few pizza-eating ge-
niuses who are unapproachable by mere mortals. In the free software community
especially, software is developed by users of the software (who still eat pizza), and
the development process encompasses far more than writing code in cryptic lan-
guages. Software development also relies on people coming up with ideas, testers,
individuals who write documentation, and people playing along with others nicely.

It is here where Debian profits greatly from the close tie-in between users and de-
velopers (who are also users). On the one hand, Debian developers are present on
the community forums day and night, and users and developers alike work hand
in hand to solve problems and clarify misunderstandings. On the other hand, every
package has a dedicated developer, or an email address to reach a team of develop-
ers for more complicated packages (see chapter 10.5). While package maintainers
generally do not have abundant resources to field support requests, they will be
happy to listen to your suggestions and consider proposed improvements.

The Debian developers make these kinds of improvements available to the upstream
authors to allow the entire free software community to benefit. Similarly, all tools
developed specifically for Debian are available to everyone, whether you use Debian
or not. For example, APT, which was developed for the Debian operating system
and is now optionally available in other distributions, such as Fedora and Mac 0S X
(Fink).

As stated before, improvements do not necessarily have to involve programming.
To give another example, | am notoriously bad at documentating the code | write
and cling to the principle that “code is its own best documentation,” which is not
how most users would see it. In several cases, users of my libraries stepped in to fill
the gap and asked for permission to author documentation for my work. At other
times, users have contributed valuable comments and suggestions to improve the
packaging of some software | maintain. Often, | thought my software was doing
everything | needed until a user requested a feature that revolutionised the way |
employed the programme.

o

2 The Debian project in a nutshell

This exchange of ideas and thoughts is not specific to Debian, it was made pos-
sible by the growth of the Internet. What Debian fostered, however, was a large
base of people interested in accepting this invaluable feedback and acting upon
it. Debian's priorities (users and free software, see appendix E) give the project the
ability to listen and incorporate the ideas that are generated, rather than having to
follow a strategy or plan. The Debian project actively furthers the evolution of free
software by effectively and efficiently closing the gap between the user and the
large number of authors responsible for the pieces of software which run on that
user's machine.

Open to the public

As part of its commitment to its users, Debian makes operating system develop-
ment completely transparent to the public. Discussions related to design choices
in packaging and other issues are held publicly on the debian-devel mailing list'®,
and contributions are not restricted to developers. In fact, it is quite common for
interested users to join these discussions and contribute their thoughts and sug-
gestions. It cannot be stressed enough that Debian would be nowhere if it were
not for the massive input the project has received from its user base. Rather than
developing for their users, the Debian developers lay open their cards and work on
the Debian system together with their users. Of course, participation in the project
is not required to use the Debian system.

As an integral part of Debian's development, the Bug Tracking System (BTS) also re-
sides publicly on the Internet (see chapter 10.6). In the Social Contract, the project
promises to “"keep our entire bug-report database open for public view at all times.
Reports that users file on-line will immediately become visible to others" (see ap-
pendix E). Along the same lines, Debian does not attempt to hide security problems
from its users but works closely with upstream authors and other distributors to
protect its users in an optimal fashion (see chapter 7 for the juicy details).

With all the openness, it must be noted that two communication forums remain
exclusive to developers: the debian-private mailing list as well as the Internet Re-
lay Chat (IRC) channel with the same name, #debian-private on irc.debian.org.
The main purpose of these forums is for developers to announce leaves of absence,
which could be harmful if publicly available (advertising to the world when you
are away from your home is inviting intruders to exploit the situation). Other uses
include the discussion of problems related to individuals, or financial and organi-
sational issues, where it is deemed that disclosure would not be in the interest of
the parties involved. Issues related to the operating system, or otherwise relevant
to the user base, are highly discouraged and pushed to open forums immediately.

150r a more specific list for a certain topic. For instance, development of packages related to the X
server system are commonly found on the debian-x mailinglist.

2.2 The Debian philosophy |

2.2.2 Free beer and free speech

One of the continuously recurring themes in Debian is the topic of free software.
Efforts to ensure the freedom of software distributed with Debian enjoy a simi-
larly high priority as users of the operating system. The Free Software Foundation
identifies four kinds of freedom'®, namely the freedom to

= run the program, for any purpose.
= study how the program works, and adapt it to your needs.
= redistribute copies so you can help your neighbour.

= to improve the program, and release your improvements to the public, so that
the whole community benefits.

For the purpose of the following discussion, these types of freedom can be con-
densed to produce two categories of software:

= The first category includes software which may be copied and used without
payment. The distinction is between commercial and non-commercial providers,
that is, between those looking to make money off the software and those who
make it available to people without requiring a mite in return. Software must
be "free as in free beer" to satisfy this requirement of freeness. Note that it is
acceptable to charge for the distribution of free software, but paid copies are
governed by the same rules as their free counterparts and may be redistributed
for free.

= that can be freely used, copied, studied, modified, and redistributed by the user.
This applies to the freedom the user obtains along with the software. Here,
the distinction is between proprietary and non-proprietary software, that is be-
tween software whose internal workings are protected as intellectual property,
and software available to everyone without restrictions. Such software is com-
monly referred to as “libre" (which is the French adjective alongside the noun
"freedom"). To comply with this definition, software must be “free as in free
speech”

These two definitions may well collide. Many programmes are available at no
charge, but the software may only be used, not reverse engineered or distributed in
modified form. On the other hand, some companies licence software source code
to paying users, but forbid redistribution in non-binary form.

Despite popular belief, free software is not the same as software developed un-
der the open source model. When the term "open source” was coined, it applied

6http://www.fsf.org/philosophy/free-sw.html

o

2 The Debian project in a nutshell

to the same software as the term "free software! A difference started to evolve
between the two classes when the supporters of free software increasingly began
to emphasise the philosophy behind the freedom of software, while the followers
of open source software pragmatically harped on the improved development cycle
and cheaper costs.

While open source software is generally available at no cost, it is not always free. A
prominent example is gmail, a mail transfer agent. While the source code of gmail
is readily available, the author chose to restrict the distribution of modifications
in binary form, a restriction that contravenes the principles of free software and
violates the Debian Free Software Guidelines (DFSG)". Free software is a subset of
open source software. More specifically, free software is always open source, but
open source software may well be non-free.

Free software is, however, not totally free of constraints - it is governed by the
licence and copyright statement. The software licence aims to give users the flex-
ibility to put the software to productive use, while protecting the rights of the
authors, who can carefully but freely choose the licences to govern the release of
their works. The copyright statement serves to protect the rights of the author,
who chooses the licence and is free to modify it (within the terms of the licence)'®.

Debian and free software

Debian takes an extraordinary and somewhat radical approach to free software.
One of the fundamental documents of the Debian project is the DFSG; it requlates
the availability of software in Debian according to its licence.

The Debian software pool is separated into three sections, sorted in decreasing
order of the freedom of the software they contain'®:

main
The main archive contains software in full compliance with the DFSG. Fur-
thermore, any package in main may only depend on other packages also
available in main.

7Since gmail is in violation with the FHS in many ways, it needed to be amended to comply with
the FHS for installaton on the Debian system. The licence forbids distribution of a modified version in
binary form, so Debian cannot provide the package in its archive. Instead, the maintainer had to create
the gmail-src package, which can compile and build the gmail package on the user's system.

18Obviously, if an author releases a piece of software under a free licence and then later chooses to
commercialise the product, any code previously available continues to remain available under the free
licence. Only software in the public domain is completely unrestricted and does not have an owner.

9The gory details of rules governing the Debian archive are available as part of the policy manual:
http://www.debian.org/doc/debian-policy/ch-archive.html

2.2 The Debian philosophy |

contrib
Packages in contrib are free themselves, but depend?® on software available
in contrib or non-free. In addition, packages in contrib might also depend
on software that has not or cannot be packaged. Please note that packages
in contrib are not actively supported. A maintainer may well support the
software, but you should not rely on it. Also, the security team does not
tend to the contrib archive.

non-free
Finally, software in non-free is not in accordance with the DFSG. As regards
support, non-free is the same as contrib: the archive is not officially sup-
ported, and security updates are not provided by the security team.

The non-US is a relic of the times of US American export laws, mainly related to
cryptographic software. After the export restrictions were relaxed, Debian moved
the software from non-US to the three official archives (see above), according to
their freeness. At this time of writing, only a single package remains in non-US,
and the archive is likely to be removed in the near future.

Every Debian package installs the licence(s) and copyright statement(s) governing
the software it contains in [usr/share/doc/<packagename>/copyright. In addi-
tion, you can find discussions of the DFSG-freeness of common licences online?'.
Software that meets the requirements of the DFSG is commonly referred to as
DFSG-free. Software which does not qualify for inclusion in the main archive is
called non-free.

The importance of free beer

| hardly need to argue the importance of free beer. Beer is an essential nutrient??,
and if it is available for free, then all the better.

Believe it or not, the same holds for software. While in most industrialised parts
of the globe, new computer hardware comes with an operating system and pro-
grammes for basic needs, this is not the case in a large number of less developed
countries. Furthermore, the software accompanying new hardware frequently only
covers the bare essentials and additional software must be purchased to accomo-
date the needs of users or corporations. Standard software prices are typically
astronomical in these areas. Unless users have no issue with unauthorised copying
of software, they depend on operating systems like Debian, which provide a com-
plete environment at no charge, and will continue to be available in the future.
Even if the members of the Debian project officially started to charge money for

20 dependency here is defined as the union of the relations Depends, Recommends, and Build-
Depends, and thus includes dependencies for both running and building the software.

2Thttp://wiki.debian.net/index.cgi?DFSGLicences

22| was born in Munich and baptised in the brew (no, my parents did not actually dump me in beer)

o

2 The Debian project in a nutshell

their work, the terms of the DFSG ensure that anyone else can continue distributing
(and developing) Debian for free.

Debian is committed to servicing every single user independent of background or
financial status. The Social Contract promises that the entire collection of software
available in the Debian (main) archive will be usable without a charge. Furthermore,
Debian tries to maintain every software with respect to security problems.

The importance of free speech

The Debian archive has been partitioned into the aforementioned sections for the
benefit of the Debian users. The main section comprises about 97% of the Debian
archive and provides everything needed to run a production system. Therefore, for
most users, it is quite sufficient to use only the main section of the APT sources to
install and maintain their systems. On such systems, the user is free to use, study,
copy, modify, and redistribute the software without restrictions?3.

By using only software from the main archive, the user can stay on the safe side
legally, to the best of Debian's knowledge and efforts, no matter where the soft-
ware is used. Debian sarge installs only components from main, if packages from
contrib or non-free are needed, the user has to modify [etc/apt/sources.list ac-
cordingly and explicitly request their installation.

The additional ability to use Debian for whatever purpose a user thinks fit is equally
important. Debian does not allow any discrimination of persons, groups, or fields
of endeavour. Debian may be put to use by anyone for anything, even in morally
debateable domains, such as genetic research or warfare. Debian does not attempt
to define what is acceptable and what is not because it would put a limit on the
freedom of its users.

The importance of free software

Free software also prevents the so-called vendor lock-in, a situation in which the
user is dependent on a vendor or manufacturer for certain parts of a product and
a switch to a different product would encompass unbearable costs. Since Debian's
main archive is not specific to Debian, anything you use on a Debian system can
also be used on other systems with similar capabilities. Using Debian therefore
does not mean being dependent on Debian?*. The DFSG states that any software in
mainiis licenced for free use, and that this licence is not specific to Debian. In short,
any package within Debian's main archive is also freely usable outside of Debian

ZThis does not always hold. For example, some software requires modifications to be distributed
alongside the original source, rather than properly integrated with the source code. While Debian
does not advocate such restrictions, it tolerates them, as stated in the fourth clause of the DFSG (see
appendix F). Therefore, before applying modifications to software with the intent to redistribute the
modified version, it is a good idea to check [usr/share/doc/<packagename>/copyright, which every
package must provide.

24Unless, of course, you start to appreciate the "Debian Way" and become addicted.

2.2 The Debian philosophy |

under identical terms. However, it is important to keep in mind that Debian is not
a legal office, nor does it have professional legal advocates. The above is therefore
not a guarantee. Nevertheless, violations are not ignored and the developers will
take appropriate action to maintain the freedom of the main archive to the best
of their abilities.

Free software (and therefore the entire main archive) also provides for indepen-
dence from the respective authors. If a project is moving in a direction unfavourable
to you, you are free to team up with others and create a forked edition. As an ob-
vious example, all of Debian's own administrative utilities, such as the package
management system, are available for use outside of Debian?®. Thus, if you ever
get sick and tired of Debian but cannot imagine life without APT, you are free to
go and take it with you.

Free software will not die. This means that everything you apt-get install will
persist. You can spend time learning every detail of a software, and you have
access to the same means as everybody else to keep it working or even improve it.
When building systems, you know that you can always reinstall, that the software
itself will always be available. Its development may stop (forcing you to possibly fix
bugs yourself), but it will always be free software.

Finally, free software packages constitute a software ecosystem. The Debian main
archive boosts the potential of the Unix principle of modularised toolkits. Small (or
not so small) pieces of software serve to provide services which are directly or indi-
rectly usable by other software, without imposing licence restrictions thanks to the
DFSG. This can lead to phenomena such as co-evolution and shortened maturation
cycles, generally yielding flexible and modular solutions with a comparatively short
amount of development.

2.2.3 Debian and the market

Possibly the most frequently asked question related to Debian is when the next
version will be released. The answer has always been the same: "when it is ready:
While this has driven some users up the wall, others have come to rely on it. As part
of the Social Contract (see appendix E), Debian promises to treat its users with the
highest priority. Therefore, Debian does not and will not make compromises when
it comes to the quality of the distribution. Users who wish to remain on the cutting
edge can run testing or unstable (see chapter 8.2). Those who need a rock-solid
system have Debian stable.

The Debian system is driven purely by quality, not by the market. A Debian release
is made when the goals for the release have been met, all release-critical bugs
(see chapter 10.6.3) have been fixed, and the developers can call it stable with a
clear conscience. No previous Debian release has taken as long as Sarge to be-

25APT has been ported to RedHat Package Manager (RPM)-based distributions, for example.

o

2 The Debian project in a nutshell

come stable. One of the biggest reasons for the delay was due to designing and
implementing the new installation system from scratch (see chapter 3). Building
an installation system for eleven architectures is a task second to none. However,
it seems as if the debian-installer team has succeeded in providing a flexible and
extensible base for future enhancements and improvements. Thus, the installer will
probably not hold up future release cycles and can still be extended to allow for
new architectures and features.

2.3 Licencing issues

Over the years, the Debian project has often been in the news, and some of the
time, the news has not necessarily been pleasant. Especially in the period leading
up the release of Debian sarge, one recurring topic has been Debian's strict ad-
herence to the DFSG and the ensuing problems with licenses that do not meet the
requirements put forth in the DFSG. Debian has in the past been forced to remove
software that does not meet the requirements of the DFSG from its archive, an
action that has had serious ramifications for its users at times.

In fact, to the casual observer it may seem that the Social Contract (see appendix E)
contradicts itself. While it promises that Debian will remain free forever, it also
establishes the interests of its users as top priority of the project. When software
is removed from the archive in an effort to conform to the first promise of the
Social Contract, it undoubtedly inconveniences a number of users who rely on the
removed software. On the other hand, other users rely on the freeness of Debian's
archive and are in favour of the strict enforcing of the DFSG.

Obviously, when any project makes decisions in the interest of its users, it can only
make decisions in the interest of the majority of its users. However, Debian has
no official way to determine the preferences of its users, or put numbers to them
(c.f. chapter 5.11.10). The Social Contract promises the freedom of the archive.
In order to avoid inconveniencing users of a package that has to be removed due
to licencing issues, the package is moved to non-free as long as it can be legally
distributed and a developer agrees to maintain it there. As a result, the main
archive gets rid of licence problems; its users can again enjoy freedom without
worrying about legal risks. At the same time, those in need of non-free software
can install programmes from non-free.

Leading up to the release of Debian sarge, the project almost shot itself in the
foot. As part of an editorial amendment of the Social Contract in April 20046, the
Debian project reached a general resolution and extended its promise from 100%
free software to 100% freeness of all its components. While only few realised the
consequences of this change at time of vote, the project was hit all the harder
when it became apparent that this change requires the removal of many system

Z8http://www.debian.org/vote/2004/vote_003

2.3 Licencing issues |

components that do not meet the requirements put forth in the DFSG. While some
purists argue that the change will not affect Debian, it seems obvious that the
removal of large numbers of device drivers as well as software documentation could
easily inconvenience the majority of users.

Three types of components in the Debian archive seem to be affected by the
change: firmware, binary data, and documentation. Firmware refers to the code
a driver loads onto an extension card for processing by the card's processor for
special features (or full operation). Binary data refers mainly to media files such
as images and sounds. Documentation includes manuals and reference documents
licenced under the GNU Free Documentation Licence (GFDL), which is non-free?’.

Fortunately, many Debian developers recognised the negative implications of such
a move and feared that the removal would unnecessarily delay the release of sarge
even more. In addition, no other free software project had previously questioned
freedom in such a broad sense. Thus, before taking premature actions, the extents
of a rigorous approach to freedom such as advocated by the editorial amendment
must first be determined. In another vote, it was thus decided to delay the changes
to the Social Contract until after the release of sarge?®.

Debian is venturing into unknown terrain and it is currently uncertain what will
happen with respect to the promise of freeness of all its components. Supporters
of the absolute approach of removing everything that is not DFSG-free from Debian
can use the Social Contract itself as best argument for the move. Nevertheless, the
arguments put forward by their opponents are not to be underrated.

= Firmware does not run on the computer processor but is evaluated on a separate
device, which does not run Debian. Thus, does the Social Contract apply? Also,
what exactly is firmware? In its broadest definition, firmware does not have to
be executable but could consist of data to be processed. In this light, would
constants and magic numbers not also be considered firmware? If so, what is
the source code of a constant or a magic number?

= The DFSG requires the source code to be available for modification and redistri-
bution. What exactly is the source code of an image, or of a sound file? A free
licence such as the GPL requires source code to be available in “the preferred
format for modification” Of course, you can load a Portable Network Graph-
ics (PNG) file into The Gimp and modify it, but due to the lossy compression
algorithms, it will be almost impossible to undo that modification in another
editing session. The same applies, e.g., to Ogg Vorbis sound files. Would Debian
thus have to ship the X Bitmap (XBM) and Wavetable file format (WAV) counter-
parts for binary data files to be DFSG-free? Is the availability of source code not
supposed to enable the recreation of the “final product?” Would the source code

2’The Debian project is working with the GNU project to resolve these problems. Please refer to
http://people.debian.org/ srivasta/Position_Statement.html for more information.
Zhttp://www.debian.org/vote/2004/vote_004

o

2 The Debian project in a nutshell

of an image not rather consist of all the brush strokes and edits to an image?
What if a programme was used to generate the image, which in itself is not free
or not part of Debian? What if the image was created in Adobe Photoshop?

= Among other things, the GFDL forbids the omission or change of “invariant sec-
tions!" Such sections can only exist as part of "secondary sections,’ whose con-
tents must not be concerned with the matter documented in the text. Thus,
secondary sections hold copyright and acknowledgements, which are arguably
to be propagated to derived works. Is the GFDL then really non-free? Still, in-
variant sections allow for nasty acts?®, so it limits the freedom. On an unrelated
note, removing documentation from the system certainly inconveniences many
users and makes Debian unusable (or mostly so) to those without permanent
or reasonable Internet access. If the Social Contract promises that Debian will
honour the desires of its users, how can this dilemma be resolved?

As you can see, a great number of questions remain unansweredC. While Debian
hopes to exercise its influence and to cause change, e.g. a revised GFDL, or vendors
releasing their driver firmware under a free and open licence, it is impossible at this
moment to forecast the future of such licence issues. The Debian project promises
etch to be fully conformant to the Social Contract in any case.

The debian-legal mailing list as well as the #debian-legal IRC channel irc.debian.org
are the forums dedicated to discussions that focus on freedom and licencing issues.
Please make sure you search the list archives®' before posting. Also, the Debian Wiki
has a page on common licences and their DFSG status®2.

2.4 The Debian community

2.4.1 Organisation of the project

The Debian project is organised according to the structure described in its constitu-
tion33, which establishes the decision-making bodies and the processes for making
decisions within the project. Figure 2.2 is a rough approximation of the structure
of the Debian project. Many groups, subprojects, and individuals cannot be clearly
classified or outlined in a meaningful way. However, the image gives an overview
of the most important bodies and their relationships. The list of current occupants
of the official positions is available on the Web34.

29Read http://slashdot.org/articles/03/04/20/1357236.shtml for a few examples.

30At http://lists.debian.org/debian-vote/2005/03/msg00152.html, you can find a number of chal-
lenging licence considerations for different data types.

3Thttp://lists.debian.org/debian-legal

32http://wiki.debian.net/index.cgi?DFSGLicences

3http://www.debian.org/devel/constitution

34http://www.debian.org/introforganization

2.4 The Debian community |

As shown, the all-encompassing group is the set of users. Within the Debian
project, everybody is also a user of the system, which makes for the close rela-
tionship between users and developers and also provides most of the motivation
for the volunteers running the project. Users can apply to join the project (see
chapter 2.5.2), and if approved, they join the developer body. Alternatively, numer-
ous areas exist in which users can contribute to the project without having to go
through the application process (see chapter 2.5.1).

The set of developers makes up the major organisational body of Debian. At the
time of writing, the Debian project consisted of about 950 developers, each of
whom was taking care of one or more parts of the project, be it package manage-
ment, documentation, internationalisation, organisation, or infrastructure main-
tenance, to name but a few. Participation in any of these projects is voluntary,
generally without an ironclad commitment, which allows people to dedicate their
available time to any project they wish.

Possibly one the most important aspects of the Debian community is its inter-
national orientation. Even though the project was founded in the United States,
Debian developers live all over the world>®, allowing for diversity and political inde-
pendence, among other traits. As many aspects of the project are security-sensitive,
trust among the developers plays an important part (see chapter 2.4.3).

Users
elecrt/ [------ Developers
4 Officers
- Project leader -
,/”’\\\appoints,r‘ - \\appoints/,—”“‘\
// N / N\ o X
s Technical committee /) Project secretary -7
,/ appoints/approves
#
Delegates aPPzive
T
‘ FTP masters ‘ ‘ DAM ‘ NM team / advocates < - - - - - - apply _____ applicants
T T
‘ Security team ‘ ‘ Policy group ‘ Documentation /i18n teams ‘
T T
‘ Press contacts ‘ ‘ Webl/list/...masters ‘ ‘ Quality assurance ‘
T
‘ Administrators ‘ ‘ CD team ‘ ‘ etc. ‘
| |
etc. etfc. ‘ S
‘ ‘ ‘ \10\ ““\ee‘
J Software in the
Public Interest

(SPI)

35http://www.linuks.mine.nu/debian-worldmap

Figure 2.2:
A rough sketch of
Debian’s organisation

o

2 The Debian project in a nutshell

The project officers

The developer body itself is organised in a flat hierarchy. At the top of the hierarchy
sits the project leader, who is elected annually by the developers. Every developer
has a vote, and every developer can become a candidate. The project leader guides
the project and and is responsible for its coordination. The project leader should
be a driving force for new directions and can focus developer attention on specific
areas of problems. The leader has various special powers which are rarely used.
However, the developer collective may cast a majority vote to overrule the project
leader's decision, which has never happened.

Upon being elected, the project leader appoints the officers (together with the pre-
vious occupants of these positions) and delegates a number of tasks to chosen
individuals and teams. Subsequently, the project leader is free to replace officers
and delegates as appropriate. The project leader may be replaced by the chair-
man of the technical committee together with the project secretary, should it be
necessary (e.g. in case of death or absence without leave).

Assisting the project leader are the members of the technical committee, fronted by
the chairman. The technical committee's task is to monitor the technical aspects of
the distribution. In exceptional cases, it may require a developer to take a certain
course of action over another, if it is deemed to be in the better interest of the
project and its users. The project secretary mainly coordinates elections and other
votes. Furthermore, the secretary's job is to resolve disputes on the interpretation
of the constitution.

The delegates

The delegates receive deputations from the project leader and are given special
powers in specific task domains. For instance, the project leader delegates the task
of Debian account maintenance to the Debian Account Manager (DAM), and the
job of interacting with the media to the press contact. Within their domain, the
delegates have the freedom to act according as they judge best. In addition, to
prevent concentration of power, the delegates can make certain decisions which
the project leader may not make directly. Such decisions are mainly concerned
with project membership.

Delegation is not an official or necessarily visible process. In addition, it need not
be an explicit process. Many delegate positions are held by people for years, and
the project leader simply accepts their status by not choosing replacements. The
delegate must have all the necessary competence in the delegated domain to make
decisions (or else should not be chosen as a delegate). The project leader cannot
override a delegate's decision once it is spoken. Therefore, it is in the leader's best
interest to choose someone trustworthy and capable. The project leader may re-
place delegates given sufficient reasons. However, a single decision made, possibly
in disfavour of the leader, is not a sufficient reason.

2.4 The Debian community |

Notable delegate positions include the release managers, the security team, and
the FTP masters. The release managers set the goals for the next stable release,
and coordinate and supervise the release process. This involves scheduling freezes
and carving the final release date in stone. A separate stable release manager then
takes over. The security team's job is to cooperate with security teams from other
projects to provide security-related fixes to software in the stable archive as soon
as possible. Finally, the FTP masters are in charge of the Debian archive, deciding
what software is allowed into the archive and what must be removed.

The developer collective

At the bottom, albeit all-encompassing, resides the remainder of developers, each
acting within their own self-assigned niche of the project. Although it is preferred
for a developer to maintain a package (a common but not absolutely necessary
requirement for becoming a Debian developer; see chapter 2.5.2), many other tasks
call for volunteers. Be it documentation and internationalisation endeavours, user
support on mailing lists and on IRC channels (see chapter 10.4.1 and chapter 10.4.3
respectively), or simply fixing bugs and providing ideas on how to improve the
distribution, a single developer can take on as many responsibilities as desired. It is
important to realise that these responsibilities are by choice as nobody within the
project is in a position to order a developer to do something; not even the project
leader.

While the individual developer may be perceived to be at the very bottom of De-
bian's organisational structure, the developer majority can overrule any organi-
sational body within Debian's structure, including the project leader, by way of
general resolution. General resolutions are Debian's primary means of reaching a
consensus on non-trivial decisions. A general resolution may be proposed by any-
one and will be opened for vote when enough seconders back up the proposer's
call. Every developer may participate in the vote, and if a majority is reached®®, the
resolution takes effect immediately and cannot be overruled (except by means of
another general resolution).

The Debian users

The Debian users and the community they form are unquestionably the most im-
portant entity for the project. The Social Contract defines its users as the project's
top priority (see appendix E). Debian's main purpose is thus to meet the require-
ments of its user base. Without its users, the project would not have a purpose.
Every developer is also a user, but a critical mass of "normal users" is paramount
for the Debian system to stay universal and competitive (see chapter 2.2.1).

36Debian uses the Condorcet method to allow its developers to voice preferences rather than simple
votes; see http://en.wikipedia.org/wiki/Condorcet_method

o

2 The Debian project in a nutshell

Even though normal users cannot cast votes, they can influence the direction of
the project in a plethora of ways, for instance by participating in discussions on
mailing lists (see chapter 10.4.1), filing bug reports (see chapter 10.6), or stepping
forward in a proactive fashion to fix problems the way they would like them fixed,
before someone else gets around to it.

Ultimately, every Debian user may become a Debian developer after establishing
trust and demonstrating familiarity with the rules and proceedings of the projects,
as well as skills pertaining to Debian's package management system and tools (see
chapter 2.5.2).

SP1 — Software in the Public Interest

Without being a part of the Debian project, SPI*’ is part of its organisation. SPI
was founded by Bruce Perens to act as a legal entity of the Debian project. In
as such, it holds all trademarks for Debian, owns all of its monetary and material
assets, and represents the project in legal matters. In addition, SPI embodies an
economic entity and can accept tax-deductible donations for the project, at least
within the United States of America. SPI has no authority over decisions cast within
the Debian project. Along the same lines, Debian claims no authority over SPI other
than over the use of Debian property held and managed by the SPI.

2.4.2 Social aspects of the community

The community behind the Debian project is similar to the communities of other
comparable projects. Nevertheless, the Debian community has a very strong repu-
tation, which makes it stand out at times. Debian has the largest developer base of
all free software distributions, and it constitutes more of a meta project than a sim-
ple project, as it consists of a plethora of subprojects whose only common ground
in many cases is that they are part of the Debian system. While other projects of
comparable size or of comparable diversity exist, Debian is unique in the combina-
tion of the two and in the way it organises the production of the Debian system.
Those who support the community commonly describe it as unparalleled in terms
of it dynamics and competence, and many rank the level of support available from
the community as the most important factor in choosing Debian. At the same time,
the Debian community is often badmouthed as arrogant and too idealistic for the
real world.

It is not the purpose of this book to argue either position. The only way to decide
is to get involved with the community and see for yourself. If you are new to the
project, it is probably a good idea to get to know the community before it gets

37http://www.spi-inc.org

2.4 The Debian community |

to know you. In the following, | put together some useful facts about the Debian
community38.

First of all, it is important to realise that the community is made up of volunteers.
Developers typically work for the project because they use the Debian operating
system, believe in its philosophy, and/or otherwise enjoy contributing to a coop-
erative effort without commercial strings attached, and without anyone ordering
them around®®. The same applies to regular users who contribute to the commu-
nity. The community welcomes anyone who keeps that in mind, and abides by
the usual rules of decency and etiquette expected from people sharing common
grounds (even if those grounds are virtual).

Another important point to consider is that members of the community (or "users”,
for short) try to be helpful whenever possible. Nevertheless, nobody likes to do
someone else's work. Thus, you are unlikely to find answers without doing your part
first, which means using the available resources before approaching other people
for help (see chapter 10). If it is clear from the details you provide that you have
thought about the problem, tried to contain it, and gone to search in other places
before asking for support, people will gladly offer assistance. Maybe the best way
to find answers is by asking the right questions in the right way, and of the right
people. Eric S. Raymond has put together a delightful piece on how to ask smart
questions*®, which | suggest you read. Having read and understood the text, you
need not be afraid of asking stupid questions in a Debian forum.

A nice trait of the Debian community is the equality with which everyone is treated.
For new users and veterans alike, the primary focus of attention is the problem at
hand*'. This also means that the Debian community does not consist of a crowd
of needy users and a bunch of gurus that answer questions. Instead, everyone
is encouraged to partake and provide helpful advice, and people do. On the one
hand, people like to show off their knowledge, and if it is helpful to others, all the
better. On the other hand, following the community discussions and pitching in
advice here and there has proven to be an excellent way to learn more about the
operating system, and is advocated as such by many users*.

38Please keep in mind that | am not claiming that the Debian community is unique. Much of what
follows is equally applicable to other projects. | am just introducing the Debian community and laying
out the facts.

3t is not that being told what to do is inherently bad, but it often causes quality to give way to
market or time pressure, and working on products without the ability to maintain a quality level can be
painful.

“Ohttp://www.catb.org/ esr/fags/smart-questions.html

“1Debian would not be Debian if long-standing users did not continuously pull each other's legs
and exchange witty and sarcastic comments. However, the problem at hand maintains top priority and
after bashing one another for a bit, Debian folks are usually quick to come up with helpful advice.

“These two patterns of behaviour are quite common in the open source world. For a com-
plete analysis of their evolution and motivations, | refer you to Eric S. Raymond's book The cathe-
dral and the bazaar (http://www.catb.org/ esr/writings/cathedral-bazaar). Another good read for
those truly interested is Understanding Open Source Software Development by Feller and Fitzgerald
(http://opensource.ucc.ie/uossd).

o

2 The Debian project in a nutshell

In the community forums (see chapter 10.4), you will find a healthy balance of
technical discussion (most), humour (some), unrelated topics (few), and flamewars
(rare)*3. Overall, interactions within the community generally have a high level of
productivity, and interesting discussions sometimes ensue once a solution has been
found. Frequently, these discussions culminate in improvements made to the sys-
tem, either on the technical or usability side, or in the documentation. The Debian
policy, which will be discussed in great depth in chapter 5.7, plays an important role
in the community. The policy standardises the organisation of files and the logic
of administrative processes to allow the large developer collective to provide an
integrated system rather than an aggregation of different packages. At the same
time, the policy also makes sure that the Debian system stays the same across all
installations, independent of architecture and minor version. Everyone works with
the same tools on the same ground, and solutions can be found rapidly.

To sum this up, the community is made up mostly of users who are members by
choice and contributors by conviction. Newcomers are often very eager to help
others in an attempt to give back to the community. Others acknowledge their
lack of experience with software development and contribute towards the docu-
mentation or the maintenance of web pages. The cooperative development found
in and around the Debian operating system provides a prolific basis for hobbyists,
enthusiasts, and professionals alike to work towards a common goal.

2.4.3 Social aspects of the group of developers

The Debian organisation is very open and flat. Apart from the officers, delegates,
and a few other privileged positions, everybody in the developer team has equal
rights. The prime example is the openness of the BTS and the Debian archive
under equal terms to every single developer. Should one developer neglect a
certain package, then another can simply take over and provide a fixed version
for official inclusion in the archive without the need to acquire special privileges.
When a maintainer is temporarily unavailable, other developers can provide Non-
Maintainer Upload (NMU)s to be acknowledged upon return by the maintainer.
Note that NMUs are constrained to single, small fixes and cannot be used to push a
new upstream release, for example. In any case, when an NMU is made, the pack-
age's official maintainer is still in control, and may opt to reverse a fix. Unless such
an issue causes harm to the project and thus needs to be resolved by the technical
committee, a maintainer's decision is final and irrefutable.

Should a package maintainer's unavailability extend beyond an acceptable period, a
developer can announce an intent to take over a package, and claim responsibility
for the package if nobody objects. This developer then becomes the new main-
tainer and custody of the package is fully transferred. The previous maintainer has

B<humoursIf you want flamewars, come to live forums, such as the #debian IRC channel on
irc.debian.org! People seem to love flamewars there.</humour>

2.4 The Debian community |

then lost privileged influence over the package's maintenance, but frequently the
involved parties coordinate upon return of the absentee to keep everybody happy.

In any case, it remains the maintainer's responsibility to see to a package's well-
being, and to decide on its fate. Within a community of about a thousand de-
velopers, many different interpretations of responsibility are inevitable. The core
of the project is carried by a smallish number of developers that take Debian very
seriously and perform their duties with the same amount of care and devotion (or
even greater) as their regular jobs, or true hobbies. The majority of Debian project
members treat Debian as secondary to their main life but do their best to properly
attend to the responsibilities they have chosen. A number of people have taken
on too many responsibilities to be able to properly address them individually, and a
few seem to interpret Debian developer status merely as the right to own a Debian
email address and otherwise neglect their responsibilities.

Such variety exists in every volunteer organisation of reasonable size. Debian's
approach to the coordination of the developers on the path that the project has
chosen is to decentralize privileges, as mentioned previously. The openness and
focus of self-organisation prevents deadlocks and guards against stalls induced
through negligence by single developers.

Debian — a bazaar of cathedrals

Most packages are still maintained by individuals rather than a group of people.
In as such, the Debian project can be described as “a bazaar of cathedrals*! Al-
though Debian's openness prevents many of the problems described by the cathe-
dral model, not all the issues are properly addressed. When package maintenance
is handled by an individual who also maintains the jurisdiction over the package, a
situation not too different from the dreaded vendor lock-in surfaces. Even though
it is always possible to make suggestions or provide patches via the BTS (see chap-
ter 10.6), the package's maintenance depends on the single maintainer, which is
never a good thing.

A number maintainers have taken the lead and moved the maintenance of their
packages to public, collaborative platforms, such as Alioth* to reduce such de-
pendencies. Whether developed entirely collaboratively or not, many packages list
co-maintainers: developers allowed to provide new versions of a package without
having file them as NMUs.

44| read this description on IRC, but did not note its author at the time. It references Eric S. Ray-
mond's definitive account of the dynamics of open source projects*?.

4SAlioth is Debian's open source development coordination forum, based on GForge: http://
alioth.debian.org

o

2 The Debian project in a nutshell

Debian — a meritocracy

A few task domains within the Debian project, including the responsibilities of the
delegates and officers, remain restricted to a small set of people. Examples are
the maintenance of the Debian archive, the management of Debian user accounts,
write access to the security archive, and the administration of Debian's infrastruc-
ture. Even though every developer can theoretically take part in these tasks and
request the necessary privileges, in practice, such positions undergo very few fluc-
tuations.

While the Debian project tries to prevent these jobs from being the domain of
single persons by encouraging teams, the effectiveness of such teams depends on
the skill levels of its members. Certain tasks, such as the administration of Debian
machines, require much experience from their caretakers, and individuals lots of
enthusiasm but little experience would do more harm than good.

Within the project, the occupants of positions with greater privileges are chosen
on the basis of their abilities and their achievements. Therefore, the form of gov-
ernment that comes closest to the organisation of the Debian project is a meritoc-
racy*®. To be able to rise in the Debian hierarchy, an individual must have displayed
competence and contributed significantly to a domain before being chosen to oc-
cupy a position within this domain.

Among the most prominent examples here is membership of the security team.
As the security team's work definitely constitutes a core component of the Debian
project and the stability of the Debian system, some individuals consider it pres-
tigious to be part of the security team. In lengthy emails they explain their great
ideas and elaborate their promises of how they would be an asset to the team. Even
though the security team is rather understaffed, such requests are not honoured.
Instead, those promoted to the security team have made valuable contributions,
helping the team without actually being part of it. Such achievements then serve
as the basis for the team to evaluate the individual's ability and decide on possible
membership of the team.

In discussions among Debian developers, the term “cabal” may come up from time
to time. While more fictitious than a real, the term cabal refers to a group of devel-
opers with elevated priviliges or senior status within the project where nobody has
the membership details. The term is used mostly jokingly, but may occasionally pop
up in criticisms, usually hand in hand with an expressed desire for more openness
with some of the project's internal processes. It is a contagious term which is best
avoided to prevent insulting people. Cabal members are often said to be unap-
proachable by others; in most cases this is simply a function of being approached
by too many people at once, or of being overloaded with work. The best recipe
to deal with alleged cabal members is to be proactive: make sure you have read

46The Merriam-Webster dictionary defines a meritocracy as “a system in which the talented are
chosen and moved ahead on the basis of their achievement”

2.4 The Debian community |

the available documentation and prepare concrete questions or proposals which to
present to the developers.

Trust among developers

Until recently, Debian was the only operating system that was purely community-
driven. While some people like to see Debian as an instance of socialism in action*’,
several parts of the project and its infrastructure require legal owners, responsible
persons, and proper accountability. SPI shields the project from much of the ad-
ministrative burdens surrounding an institution of the size as Debian, but many
aspects remain that require developers to step in to take responsibilities. Because
most of the developers have never met each other, except on mailing lists or IRC*,
it seems surprising that vital parts of the project are laid in the hands of volunteers
without much ado.

For instance, the responsibility of managing the Debian infrastructure, and espe-
cially the build daemons lies solely in the hands of individuals. Effectively, these
individuals ensure the integrity of the Debian archive. The Debian project exists to
maintain the Debian archive, and thus the project rises and falls with the propriety
of its developers. Here, too, the social dynamics of open source projects, which Eric
S. Raymond describes in his book, play an important role. When it comes down to
it, people have little incentive to be trustworthy (in general), and there is no profit
motive in contributing to Debian. However, people do work for more than im-
mediate gain, and praise and respect amongst peers seem to be the major driving
forces behind open source projects, in this case keeping the responsible developers
on track.

Similarly, the Debian project does not have a structured funding infrastructure,
yet a plethora of users donate money to the project. In some cases, registered
organisations have volunteered to shoulder the financial administration and to
accept donations for Debian for a specific part of the globe. For most countries,
however, Debian does not have such dedicated legal bodies and banking fees for
international money transfers are exorbitant. In these cases, developers step in to
fill the gap. The sums of money which these people handle for Debian are relatively
small, but there are no constraints or contracts. If a trustee decides to abandon ship
and throw a party with Debian's funds, the Debian project will have little on its side
to prosecute the offender*.

47"Everyone bakes a cake and everyone gets a piece..." Davor Oceli¢ comments: “The point actually
gets deeper to a technical side too, as | see it. Current computing power is too great (and develops
too fast), and lifetime is too important to any of us to waste time reinventing stuff and making the
same mistakes again. Writing software today only pays off with a free software license, because you
are giving it a potential to last. This is simply the professionalism of the 'new age”

48|RC is the Internet Relay Chat, a worldwide chat system where users can meet in pertinent chan-
nels for discussion. See chapter 10.4.3

#INo case of such thievery has come to my attention since | joined the Debian community.

o

2 The Debian project in a nutshell

Large parts of the Debian project work on the basis of trust alone. At times, the lack
of professional management has caused serious grief (not because of misappropri-
ation, but rather accountability), but most of the time, the trust model has served
Debian well. A serious offence or abuse of the rights results in the immediate and
typically irrevocable expulsion from the developer team. Apparently, Debian devel-
oper status is enough of a reason to do no harm to the project. In addition, Debian
developers are non-anonymous; harming the project would seriously tarnish their
reputation throughout the open source community. Moreover, given the visibility
of open source software development through popular search engines, it is likely
that any mischief makes the rounds even beyond the community: a previous em-
ployer once confronted me with instances of good and bad conduct | had exhibited
on mailing lists and expected me to justify my behaviour or commended me on my
actions.

1dentification

Anonymity does not exist within the Debian developer team. Identification of de-
velopers in cyberspace is handled with GNU Privacy Guard (GPG) keys. Debian
developers are free to sign their Debian-related email with a strong, cryptographic
signature (and users are encouraged to do the same) for important matters. Up-
loads to the Debian archive must be authenticated with a signature by a current
developer, and signatures are required for other organisational processes, such as
voting.

GPG keys are created using software such as GnuPG, which is freely available. It is
important to realise that the identity information, such as name and email address,
are provided to GnuPG by the user. As a result, everyone can create keys under
any name. To ensure the identity of a prospective developer, it is thus required to
have a key approved by an existing developer of the Debian project. This verifi-
cation requires personal contact and the consideration of an official document of
identification. In chapter 2.5.2 you can find more information on the process of
becoming a developer.

When developers sign each other's keys, they create a relational network known as
the "Web of Trust" As one of the largest groups using digital signatures consistently,
Debian forms a large portion of the global Web of Trust. A complete analysis of the
trust between Debian developers is available online®.

Thus, within Debian, every developer's real-world identity is known. While the de-
velopers (and parts of the remaining user community) usually refer to each other by
their nicknames (especially on IRC), the developer's full name is publicly accessible
in the developer database®'. The developer's address and contact information are
not required but are generally available, albeit only to other developers for privacy

0http://people.debian.org/ weasel/weboftrust/index.php
5Thttp://db.debian.org

2.5 Helping the Debian project |

reasons. Experience has shown that real names are perceived of as being consid-
erably more trustworthy than pseudonyms®?, and it is trust upon which the entire
project is built.

Social gatherings

Social gatherings among Debian developers are quite common. With the help of
online resources® and mailing lists, users travelling to an area frequently reach out
to local Debian users and set up meetings. Usually, the "excuse” is to sign GPG
keys, and then to spend many hours getting to know each other. Furthermore, at
any Linux-related conference, Debian folks will get together to strengthen their
personal relations. Just like the Debian project, these meetings are generally open
to the public, and users (as well as other people) are welcome to join.

Debian maintains a rudimentary GPG keysigning coordination page®. A better
coordination platform, which also supports the coordination of keysigning events
and expands beyond Debian's border is Biglumber®*. The procedure of keysigning is
detailed on Debian's web site®. For bigger events, fully-fledged protocols exist as
well°6. Debian's signing-party package provides gpg-key2ps, which conventiently
converts the key information to Postscript for printing.

2.5 Helping the Debian project

Users of the Debian system often look for ways to give back to the Debian commu-
nity. The Debian project is open to everyone and people willing to help will be able
to do so. In many cases, it does not matter whether a contributor is a developer or
not. Accounts on colaborative platforms, such as Alioth®” or the Debian Concur-
rent Version System (CVS) repository®®, can be obtained without developer status.
Often, the only difference between developers and non-developers is who has the
final burden of making the upload, in addition to other responsibilities that take
away time.

52A reader of the de.newusers.questions newsgroup once remarked that the use of real names is
favourable over pseudonyms as it allows people to concentrate on the post rather than to have to get
engaged in a discussion over the sense or nonsense of these names.

53http://nm.debian.org/gpg.php

#http://www.biglumber.com

S5http://www.debian.org/events/keysigning

56 http://www.cryptnet.net/fdp/crypto/gpg-party.html

5http://alioth.debian.org

8http://cvs.debian.org

o

2 The Debian project in a nutshell

Nevertheless, for an enthusiastic and active contributor, good reasons exist to apply
for Debian developer status. Before describing the application process, the follow-
ing sections lay out some (few) possible ways to contribute to the Debian project.
An online document is also available on the Debian web site®.

2.5.1 Contributing to the project

If you would like to contribute to the Debian project, you will not have a difficult
time finding areas in need of help. Since the Debian system is continuously work
in progress, it is almost impossible to identify the areas in most need of help. In
general, the rule applies that if something is broken, you can contribute by fixing
it, and if something is not perfect, you can contribute by improving it.

Always keep in mind that Debian is a meritocracy (see chapter 2.4.3): you step up
the ladder and gain authority through work and reputation. Therefore, the road
ahead may be a little rough. It is probably a good idea to start small and to make
sure that people know you as someone who does what they promise to do and in a
timely manner, and as someone skillful enough to produce quality work. With that
said, do not forget that Debian is about volunteer work, and that whatever you do
should be done because you enjoy it. Nobody will tell you what to do, so you are
completely on your own as to how spend your time.

Feedback

Probably the most significant form of contributing to the project is through con-
structive feedback. If you run into a problem and you have the time and means
to investigate further, please do. If you think you have found a problem, do not
hesitate to put your findings into a bug report (see chapter 10.6.5). You may be
the first to stumble across a problem; by helping to fix it, you are helping others to
avoid the pitfalls. Alerting the maintainer to a problem and offering to help with
narrowing it down goes a long way towards fixing it. The free software community
depends on the continuous flow of feedback to maintain its progressive bearing.
Alternatively, do not hesitate to participate in discussions on mailing lists and in
discussion forums (see chapter 10.4). When developers need to make decisions,
your input can help to improve a product.

User support

On the topic of mailing lists, an equally important domain for contribution to the
project is the support of users in these forums. If you can spare the time, listen
in to the problems of other users and provide advice if you can. Any constructive

59http://www.debian.org/develfjoin

2.5 Helping the Debian project |

help on mailing lists such as debian-user will be greatly appreciated. Moreover,
fielding questions on such a list can produce incredible learning effects: while you
will have little to contribute in the beginning, your expertise will grow as you read
what other people have to say. Over time, you will be able to provide valuable
information on an ever increasing number of problems. At the same time, you are
becoming more and more a master of your own system.

Quality assurance

A large part of Debian's reputation is quality. Maintaining the high quality of the
operating system is a never-ending task. The quality assurance team is therefore
grateful for any help it receives. Quality assurance mainly entails working on exist-
ing bugs, but extends to package adoptions and testing of software and filing bugs
accordingly.

If you choose to contribute in this field, you choose to improve free software as a
whole. Perhaps the best way to start is to pick a few packages of software that you
use often and which you know fairly well. For each of these packages, pull up the
corresponding page on the Package Tracking System (PTS)® (see chapter 10.6.9)
and check the to-do and bug lists. You may want to let the maintainer know what
you are doing, but otherwise there is nothing to keep you from taking a stab at
addressing to-do items and producing patches for the open bugs. Please make sure
you read chapter 10.6 and in particular chapter 10.6.10. If a package's maintainer
appreciates your work and you manage to build up trust, this is your chance to
become a co-maintainer of a package that you use often.

Rather than concentrating on single packages, you may also wish to simply attack
the show-stoppers of the next stable release: the release-critical (Release-Critical
(RC)) bugs. The coordination page for release-critical bugs is available online®', as
is a general overview of the current situation®?.

Another way to help out is by selecting older bugs and reproducing them; maybe
certain problems do not exist anymore in current versions; maybe you can analyse
other problems. In all cases, make sure you send your findings to the BTS. If a
bug exists in a package's version in stable but not in its testing version, set the
appropriate tag. And if a bug has disappeared from stable, you can close it (see
chapter 10.6.7).

As an alternative, you may want to help with maintenance of a package. On its
web page, Debian maintains a list of packages in need of help®. Packages that
are in need of a new maintainer (up for adoption, or orphaned) may be worth the
effort. On the other hand, if you prefer the challenge of a new package, you could

80http://pts.qa.debian.org
6Thttp:/[bts.turmzimmer.net
62http:/[/bugs.debian.org/release-critical
83 http://www.debian.org/devel/wnpp

o

2 The Debian project in a nutshell

consider attacking one of the requested packages, or prepare a software that you
would like to see in the Debian archive for its inclusion (see chapter 9). Another
kind of challenge are packages marked as needing help. In these cases, the current
maintainer intends to continue as maintainer but seeks additional people to assist.

Documentation and localisation

If you are less technically versed but enjoy writing, then maybe you can help to im-
prove documentation, both of packages as well as the documents available as part
of the Debian Documentation Project (DDP) (see chapter 10.2.1). While changes
to the documentation of single packages are best coordinated with the individual
maintainers, the DDP documents are available via CVS®*.

Another domain in continuous need for help is localisation®®; in the interest of
non-English-speaking users, software, documentation, and web pages should be
available in as many other languages as possible, and each localisation should be
of acceptable quality and up-to-date. Translations are coordinated via the Debian
international pages®. The procedures (which should be followed) are specific to
each language group. Interesting references related to localisation include chapter
8 of the Developer's Reference® and the "Mini survey of localization in Debian"®,

Testing

By running the Debian system, you are also testing it to make sure that it works
and meets up to its quality standards. However, chances are that normal use will
not find obscure bugs or uncover problems that taint the quality of the operating
system. Thus, if you have some time to spare and ideally possess a system to
experiment, you could try hard to break things on the Debian system which should
normally stand up to the stress testing. In addition, if you have special hardware
(such as a system with a less-common architecture) or infrastructure, concentrate
on related areas. Ideally, you should be running testing or unstable systems for
the experiments. If you find a problem, make sure to check the BTS for whether a
corresponding bug has already been filed. If not, read chapter 10.6.5 and submit a
problem report.

84http://cvs.debian.org/?cvsroot=debian-doc

65| gcalisation is often abbreviated 110n as there are 10 letters between the | and the n (a convention
started in the mid-eighties at DEC). Internationalisation (i18n) is a related term, and often the two are
confused. Internationalisation involves enabling a software to deal with different regional settings
("locales") and provides hooks for translations. Localisation is then the actual process of adding support
for a specific region and/or language to the software.

86 http://www.debian.org/international

67http://www.debian.org/doc/manuals/developers-reference/ch-110n.en.html

8 http://graal.ens-lyon.fr/"mquinson/debian/|10n-survey

2.5 Helping the Debian project |

Some of the most important areas in need of testing are the Debian installer and
the upgrade process. While problems with the former may put off new (or exist-
ing) users, failures during the upgrade process can be fatal on production systems.
Therefore it is of utmost significance to walk through the processes multiple times,
ideally not following the paved path at all times; experiment, try something new,
try to make it fail. And if you succeed, analyse the problem and write a bug report
(see chapter 10.6.5).

Security updates

When a security problem is found, it is in the interest of the user base at large to
have the problem fixed as soon as possible. While the Debian security team works
hard to make this possible, it needs help at times to manage the load of work that
comes with the task of security support. Principally, you can help in two ways:

First, you can keep your eyes open and make sure that the security team is aware of
new problems as they appear. The team reads the common security announcement
forums, so it is not necessary to forward every announcement immediately. How-
ever, if you are aware of an outstanding issue and waiting for the security team
to take action, it does not hurt to inquire about the status. Please make sure you
follow the advice given in chapter 7.1 pertaining to the choice of medium for such
inquiries as some security issues may need to be handled non-publicly.

The second way to help the security team is by offering your help in finding solu-
tions to problems, and backporting fixes to the version currently provided in stable.
If you are serious about helping out in this area, please let the team know and make
sure you let actions follow.

Development and improvement

Several components of the Debian system are aged, and while they still do their
job just fine today, they need to be improved to be able to meet up to tomor-
row's increased requirements. The main examples here are dpkg and APT, which
are both rather slow and lack consistent support for important extensions, such
as cryptographic signatures for dpkg (see chapter 7.5.3). Other fields in need of
improvement that come to mind include optimisation of the boot initialisation se-
quence (by introducing policies and dependencies; see chapter 6.3.1), and a mod-
ular rewrite of the ifupdown system (see chapter 6.8.1; the netconf project has
been started on alioth.debian.org with this goal.). Plenty other possibilities exist,
and Debian maintains a list of to-do items online®®; find your own niche and start
working!

8http://www.debian.org/devel/todo

o

2 The Debian project in a nutshell

Infrastructure

Several core components of the Debian project are the work of single developers;
the BTS (see chapter 10.6), the PTS (see chapter 10.6.9), and the developer packages
overview’® are just a few examples. These components exist because their authors
lacked their functionality at one point in time and decided to change that. If you
are looking to provide similar tools but do not know where to start or what to
implement, maybe tuning in to the debian-devel mailinglist and reading along for
a while will spill a hint.

2.5.2 Becoming a Debian developer

A Debian developer enjoys several privileges not available to the regular user:

= Debian uses democratic votes to gain consensus on open issues. Only developers
may cast votes to influence decisions on such issues.

= Debian developers have write access to the Debian archive and can upload pack-
ages at will. Without developer status, it is still possible to get your own pack-
ages into the archive, but you need to have them sponsored by an existing de-
veloper who does the actual upload.

= Debian developers have access to the debian-private mailing list and #debian-
private IRC channels. These forums are only used to discuss internal or personal
issues and are thus only of importance to developers. Or, put differently: as De-
bian does not hide problems from its users (see appendix E), you are not deprived
of any information by not being able to access these forums’".

For an enthusiastic contributor, who has been active in the Debian community for
a while and managed to build up a reputation, it may be worth to consider apply-
ing for Debian developer status. Among the chief reasons that speak for such an
application would be a desire to influence the project by participating in the (infre-
quent) votes. Having write access to the archive is only significant when previous
contributions were continuously delayed as they had to wait for sponsors (active
developers) to proxy the upload. Remember that plenty of ways exist in which
contributions can be made without being a developer: accounts on collaborative
platforms do not require developer status, and in many areas, contributions can be
made without having to submit anything on a regular basis (such as user support
and quality assurance). Access to the private discussion forums should probably
not be counted as a reason to become a developer simply because these forums do
not produce information relevant to the Debian system.

Ohttp://ga.debian.org/developer.php
"Tput you are guarded from endless flamewars about irrelevant topics and inter-developer frictions.

2.5 Helping the Debian project |

Preparing the application

To become a Debian developer, you have to go through a lengthy and elaborate
process, and it is not possible to become a Debian developer “just like that, for
reasons related to prestige, or because you want a @debian.org email address.
Instead, you should be enthusiastic about the project, and be able to dedicate some
of your time to it, now as well as in the future. An online article’? explains the
process, in addition to the following pages.

The process of becoming a Debian developer consists roughly of the following steps
and requirements, which are described in detail online’*:

Identification
To become a developer, you must possess (and know how to use) a GPG key,
which has to be signed by at least one existing Debian developer. Anonymity
is not tolerated among Debian developers. This step ensures that you are
joining the project under your official identity.

Advocation

Before you will be considered as an applicant, an existing Debian developer
has to advocate you and give elaborate reasons why you would be a worthy
addition to the Debian developer team. The best way to find an advocate is
by contributing to Debian and building up a good reputation. If the advocate
is the same developer that signed your key, you will need another person's
signature before you can apply. This person need not be a developer but must
be strongly connected to the Web of Trust. This is to avoid fake applicants
that exist only in the imagination of the advocate.

Philosophy and procedures
You must have a thorough understanding of the philosophy of the Debian
project, as outlined by the Social Contract (see appendix E) and the DFSG (see
appendix F). It is also of utmost importance to understand and be familiar
with the community. An applicant must have been actively immersed in
the project before being considered. The Developer Reference’ is a crucial
document in understanding the responsibilities and procedures of Debian
project membership.

Tasks and skills
You must be familiar with Debian packages, and the Debian system as a
whole. You must know the Debian policy (see chapter 5.7), understand its
principles and reasons, and be able to apply it to situations and tasks. You
should be familiar with the Debian infrastructure, the BTS, and the various

Zhttp://programming.newsforge.com/article.pl?sid=05/01/28/1618201
3http://www.debian.org/devel/join/nm-checklist
4http://www.debian.org/doc/developers-reference

o

2 The Debian project in a nutshell

skills of software development. It is not necessarily required to know how
to write programmes in languages such as C, but it is almost certainly an
advantage to be able to do so.

Leading up to your application, the debian-mentors mailing list will be one of the
primary resources in learning about the development of the Debian system. Please
make sure you read and act according to the debian-mentors Frequently Asked
Questions (FAQ)’®, which also contains valuable information about the application
process. In particular, it details the process of finding a sponsor for your package.
Obviously, you are also welcome to participate in discussions on other mailing lists
(see chapter 10.4.1).

The Debian Women project hosts a mentoring programme designed to help inter-
ested people learn more about developing for Debian in an applicatory and ex-
ploratory way way. Active mentors are listed on the Web’é.

The application process

When you meet the criteria of a Debian developer, you can apply for developer
status and become a New Maintainer (NM) (technically, you become an applicant,
but these are commonly referred to as NMs).

Once you have applied, you can keep track of your application online”’. At some
point, you will be contacted by an application manager, who will test your knowl-
edge of the Debian project, its philosophies, and assess your skills related to Debian
packages and the system as a whole. Make sure you are prepared and do not
underestimate this assessment. You should also be able to provide a list of your
contributions to Debian for reference. Note that this list does not have to be ex-
tensive, but it should make it evident that you are interested in continuing to help
the project, not just reaching developer status and then fading away. Also, it is of
utmost importance to keep in mind that you want to join the project. You should
therefore try hard to minimise the application manager's workload by providing
well formulated and complete answers.

Waiting for DAM approval

If you manage to complete the assessment and have all other requirements in
place, it is your turn to wait for approval by the DAM. Applications must be carefully
verified before you are given developer status. This can take a long time, especially
during times leading up to a release, when the developers are generally overloaded.
The Debian NM team is working hard to accomodate the increasing number of

Shttp://people.debian.org/"mpalmer/debian-mentors_FAQ.html
78http://women.alioth.debian.org/mentoring
7http://nm.debian.org

2.6 The Debian swirl |

applicants, while maintaining the level of standards and quality required so as not
to jeopardise the project and its operating system. The best advice to give is to apply
only when you are ready, and to be patient. It will not help if you continuously
ask people about your application status, and if you disappoint your application
manager with lack of preparation, you are likely to be deprioritised.

Even though this may all sound painful and unnecessary, | do not want to discour-
age you from applying. The NM process ensures that Debian developers are fully
aware of their responsibilities, are capable of handling them, and are dedicated
enough to not become a burden to the project. Only with rigorous procedures is
the project capable of upholding the quality of its operating system, and the dy-
namics of the community surrounding it. If you are sure that you want to become
a Debian developer, then, by all means, apply. You are in for a rough ride, but the
well-prepared, skillful, and patient applicants are the ones to harvest the ripe fruits.

The length of the NM process also ensures that only dedicated developers join the
project as impatient or itinerant folks are weeded out by natural selection. If you
contribute to the project while waiting for your developer account, you are making
a strong point. If you are impatient, you are suggesting that maybe all you really
want is a debian.org email address.

2.6 The Debian swirl

The official Debian logo is the red swirl hovering above a genie's bottle (see fig-
ure 2.3(a)) and may only be used for official parts of the Debian project, or by
Debian developers in their official function. Unofficially, the project or operating
system may be referred to using just the swirl (see figure 2.3(b)), which is known as
the "Open Use Logo:" The printed "Debian” is optional for both and shown only as
part of the second logo. The logos exist to protect Debian's property from any use
which could hurt its reputation.

(@)

Figure 2.3:

The Debian logos: (a)
the swirl from the
genie's bottle (official
logo); (b) the swirl by
itself (public use)

o

2 The Debian project in a nutshell

Both logos were designed by Raul M. Silva as part of a logo contest held in 199978
The official source for the logos is on the Debian web site”®. Note that figure 2.3(b)
is actually an unofficial version® which more closely resembles the original design
published by Raul.

Raul never made an official statement about the meaning or symbolism of the
logo (at least | could not find a record of such), so several theories have developed,
ranging from the brisk to the esoteric:

= The bottle represents the developer collective, and the result is the magic swirl,
symbolising the Debian operating system.

= The swirl has both the containment of a circle, and the flexibility of a spiral, just
like the operating system is contained and flexible.

= The swirl symbolises how Debian sucks everything in to be packaged, and the
bottle belongs to the Helpful Debian Genie.

= Bruce Perens offers the following description:

It's "magic smoke" Electrical engineer lore is that when you burn out
an electronic component, you cause the "magic smoke” that makes it
work to be released. Once the magic smoke is gone, the component
doesn't work any longer. Debian is supposed to be the magic smoke
that makes your computer work.

= |n Pixar's 1995 animation masterpiece Toy Story, a red swirl decorates the chin
of Buzz Lightyear, the space ranger®’. The movie predates Debian's choice of
logo and could have been a source of inspiration.

= The swirl stems from the bass clef used in music scores. The traditional bass key
is the 'F, which stands for "Free”, "Functional”, "Fantastic”, "Fun”, and "Fine"

8http://www.debian.org/News/1999/19990826

"Ihttp://www.debian.org/logos

80http://www.hands.com/"phil/debian/logo

81For example: http://allearsnet.com/tp/mk/buzz7.jpg; the swirl is also visible on the cover of the
French DVD of the sequel: http://aram.free.fr/covers/images/toy_story2.jpg

Installing Debian the right way

*joeyh installs debian using only his big toe, for a change of pace.
— Joey Hess, in #debian-boot

Installation mechanisms of common end-user systems try to combine two ex-
tremes: while trying to ask as little as possible from the user and automate ev-
erything else, they aim at installing all possible features to satisfy the broadest
possible user base and leave no desires unmet. These two goals require installation
systems to make many decisions based on assumptions, which come in the form of
hard-coded defaults, heuristics', or expert systems at runtime. Some operating sys-
tems do not install everything, but provide a healthy cross-section of programmes
instead. The user is left with a usable system and a few extra goodies. Yet another
class of operating systems provides basically no installation method and the user is
expected to bootstrap the system from scratch.

A heuristic can be described as a simplification or an educated guess, whose goal is to find a less
than perfect solution in shorter time than it would take to find a perfect solution.

3 Installing Debian the right way

Debian takes a conceptually different approach to installation than most other op-
erating systems. The Debian installer provides the basics needed to pull up a min-
imal system, queries for the essential configuration data of the base system, and
then leaves the user to the graces of the package management system. The whole
process installs a minimal set of packages to enable the use of APT in various en-
vironments?. Depending on the network connection and purpose of the machine,
a number of packages may still be removed from the few that Debian actually
installs® (see appendix C.3 for a list of packages which can be safely removed).

Thatis actually Debian's secret: where others try to do a lot and automate whatever
needs to be done in between, Debian does very little and leaves only the bare
essentials to automation algorithms. At the same time, it provides powerful tools
which the administrator may put to use where desired. The result is exactly what
Debian aims to be: a strong foundation with robust tools that let the administrator
keep control over the system.

3.1 The Debian installer

The Debian installer provided with sarge is a new software, developed from scratch
to address the shortcomings of the previous Debian installer (boot-floppies, also
known by the short name "bf"), and to pave the way for easier maintenance and
future extensibility. Over the period of four years, the developers have worked their
experience from the boot-floppies project into a new, unified architecture for the
installation of Debian, independent of the source medium. If you're familiar with
other install programs, the new Debian installer may surprise you. It introduces
Debian's strengths right at the start, and goes a long way towards burying Debian's
reputation for being difficult to install.

One of the biggest points of criticism of Debian has always been the awkwardness
and complexity of its installation system. While those experienced with Debian
could install a complete system within minutes, the uninitiated haplessly tried to
follow the path of least resistance, often failing miserably as the system did not
provide a straight line through the process. As a result, numerous Debian-based
distributions (see appendix A.2) have clustered like pilot fish around a shark, with
their main claim to attention being the easy installation that leaves users with a
Debian-compatible system. However, these providers only support a subset of the
architectures Debian supports (see chapter 4.5), and thus, the Debian system could
never integrate the improvements into the main line*. Furthermore, language sup-

’The default minimal installation consists of 123 packages, which take up 97 Mb. This also includes
the accompanying documentation, log files, and temporary data.

3The smallest Debian system that can still be called a Unix system consists of 89 packages and
consumes 84 Mb of space.

4For what it is worth, some effort went into using Progeny's installer for the Debian system, but
the installation system was not modular and flexible enough to be extended to all eleven architectures.

3.1 The Debian installer |

port has always been a problem. While the Debian system supports almost 40 lan-
guages, most Debian installation systems provided English, or a handful different
languages at most.

The problems with the previous installation system had far-reaching effects. On the
one hand, Debian slowly but strongly gained the reputation of being a distribution
for cracks and hackers, and anyone not glued to the keyboard would be unable to
use it. On the other hand, those who did succeed at installing the system joined
what was perceived to be an elitarian crowd around the Debian project, which
apparently did not care enough to make a move and improve their users' experience
(and widen their user base).

As it turns out, the Debian project has been aware of the problems and has been
working actively to solve them. However, as good things take time, it took four
years until all the requirements of a new installer had been met, which has also
been among the primary factors of the delay of sarge.

3.1.1 Features of the new installer

The new installer continues to be unglamourously text-based, but work on graph-
ical front-ends has begun®. The installer does provide many enhancements which
should improve users' experience while not limiting the expert — an approach
found throughout the Debian system.

The installer is fully documented online® for all architectures and the most popular
languages. A list of frequently asked questions is also available”.

The features of the new installer include the following:

Modular architecture
The installer is built out of a multitude of modules working hand-in-hand.
This allows for easy customisation of the installer (see chapter 8.3.3) and
provides for ease of maintenance.

Hardware detection
The new installation system uses hw-detect and the discover hardware de-
tection utility to determine the hardware present in a system. The set of
hardware these two can detect is limited to the devices supported by the
kernel. While it is likely that a recent 2.4 series kernel will power the sarge
installer by default, a 2.6 kernel can be used instead to allow detection of
newer devices.

Expert mode
While the installer allows access to a plethora of parameters to those who
Shttp://www.debian.org/devel/debian-installer/gtk-frontend

Ghttp://d-i.alioth.debian.org/manual
"http://wiki.debian.net/?DebianinstallerFAQ

o

3 Installing Debian the right way

want it, the number of questions thrown at the average user is kept to a
minimum.

Improved partitioning
A new partitioning system combines support for all major filesystems with
the ability to move, copy, and resize partitions. Furthermore, Redundant Ar-
ray of Independent Disks (RAID) and Logical Volume Manager (LVM) volumes
can be configured prior to the creation of the filesystems.

Wireless LAN (WLAN) configuration
What worked sporadically in the old woody is now an integrated feature:
Debian-supported WLAN drivers can be used throughout and for the instal-
lation®.

Architecture support
Support for all architectures has been improved. For instance, installations
on powerpc run much smoother than before, and x86 now uses Grub as the
bootloader.

Easy customisation
The installer has been designed with maintainability in mind. In addition to
its modular design, this provides an easy way to create customised installers
for specific requirements.

Boot media
Also thanks to the modular design, Debian now has ability to support a wider
range of boot media. The more advanced include: Pre-boot Execution En-
vironment (PXE) (which is not strictly new, boot-floppies already supported
it), and Universal Serial Bus (USB) sticks.

Internationalisation
The installer has been translated into 40 languages at the time of writing
(and 10 more are under active development). In addition to the language,
it also supports the associated character sets. Thus, more than two thirds of
the world population can use the installer in their native language.

3.1.2 System requirements

Debian GNU/Linux does not ask much. Nevertheless, some minimum requirements
must be met for the system to run. Not essential but very useful is a CD-ROM

8The set of drivers provided by Debian's kernel includes popular products, featuring chips by Wave-
lan and Prism, among others. Unfortunately, the Intel PRO Wireless cards, used in many Centrino
laptops, are currently not supported for the installation due to licencing problems (see chapter 2.3). The
drivers can be easily built for Debian (from ipw2100-source and ipw2200-source, see chapter 8.1.3)
and integrated in a customised version of the installer (see chapter 8.3.3).

3.2 The minimalistic approach to installation |

or DVD-ROM drive, and a Basic Input/Output System (BIOS) capable of booting
from these drives®. Debian can be installed using only a network connection, or
bootstrapped onto a hard disk temporarily connected to a second computer (both
of which will be discussed in this chapter), but the preferred and most popular
method is the bootable CD.

To run the Debian installer, you need at least 24 Mb of Random Access Mem-
ory (RAM) (and even less on some other architectures). If you are interested in
bootstrapping an embedded system with less memory available, it is probably best
to use the method laid out in chapter 8.3.1.

For sensible operation of a minimal system, 256 Mb of hard disk space is required
for a new partition . It is possible to squeeze the system into a smaller space, but
log files and APT and dpkg caches like to have more space available. A system
spanning 256 Mb will not provide more than the mere essentials, and a graphical
user interface will not fit. A common workspace installation will consume around
2 Gb, excluding data, and leaving little room for additional programmes. For servers,
it is advisable to provide more space for [var andfor [srv. Generally, the more the
merrier, which should not pose a problem with the storage capacities available
these days.

Lastly, the system should have a means to connect to the network. Installing over
the network is the smoothest way, and Unix was made for the Net after all. Debian
supports Peer-to-Peer Protocol (PPP) and PPP-over-Ethernet (PPPoE), but so-called
"WinModems"'® are not natively supported. Most Ethernet and WLAN adapters
are supported, including those found integrated in consumer motherboards. In
general, the Debian installer does not provide drivers beyond those available in the
kernel. Thus, if it works with Linux, it works with Debian, and vice versa.

3.2 The minimalistic approach to installation

If you are used to installation systems commonly found on other platforms and the
installation of Debian is your first exposure to the operating system, you are in for
an interesting ride. The Debian installer very much embodies the overall philosophy
of the operating system, which is to aid but not to impose. It is task-oriented
rather than process-oriented: the user does not navigate from one screen to the
next with Next and Previous buttons (or the equivalent), but rather selects from
tools to accomplish various tasks during the installation. The installer suggests an

91f your system lacks the ability to boot from CD-ROM, an interesting solution is the Smart Boot
Manager, which can boot from floppy and hand over control to a CD-ROM drive to allow booting from
CD even if the BIOS does not support this: http://btmgr.webframe.org

"Many internal modems are WinModems, which rely on drivers to provide the functionality tra-
ditionally found in hardware. The manufacturers generally do not provide specifications to the open
source community. http://www.linmodems.org is the one-stop resource for support of these devices.
Generally, the acquisition of an external modem will be less problematic and save time and thus money.

o

3 Installing Debian the right way

order, but the user is completely free to go back and forth between the tools'".
Furthermore, the installer focuses on function rather than looks and is unlikely to
win a beauty contest any time soon. However, it is a powerful tool in the hands of
those who know what they want or need.

This chapter is for those who are unacquainted with the installation process, or
not familiar with Debian as a whole. It also exists to demonstrate how Debian is
meant to be installed. Towards the end of the process, the installer will ask you
for a method to install packages. New users commonly spend a significant amount
of time browsing the available packages, trying to install every package that they
will need, think they will need, or imagine that they could need in the future. This
unnecessarily lengthens the installation procedure, can be thoroughly confusing,
and will result in a system full of cruft right from the start.

Instead, an install-on-demand strategy is often preferred, largely thanks to APT.
During the installation, no extra packages are installed, leaving the user with a
system comprised of only a few packages in addition to the essential ones. When
the base system is in place, the various package installation methods can be used
to obtain the packages needed to address the system requirements.

3.2.1 Installing the base system
Booting the installer
This section will illustrate a typical Debian installation process. The new system is

booted with a Debian CD, which is among the most popular means to install the
operating system. Debian provides various different types of installation images:

full
The official CD image includes everything needed for a standard installation
of Debian, and furthermore provides some of the most popular packages.
Therefore, network access is not strictly needed for the installation. This
would be the preferred and most popular means to install Debian.

netinst

The netinst image is optimised for installations with (fast) network access. It
provides everything needed to run the installer and setup a standard Debian
system. Any additional packages must be fetched from a Debian mirror via a
network connection (which can be any type supported by Debian, including
PPP and Digital Subscriber Line (DSL)).

11Obviously, some restrictions exist. For instance, after installing the core packages, it makes little
sense to repartition. The installer will let you do so, but you will not be able to reinstall the basesystem
without recreating the root and [usr filesystems.

3.2 The minimalistic approach to installation |

businesscard
Optimised for size to be able to fit on the small business card CDs, the busi-
nesscard image provides the installer but requires network access to down-
load the packages needed for the base system. At time of writing, only
Ethernet connections are supported. If you are using a modem or DSL, or a
specialised network type, you will not be able to use this image.

netboot
This image allows a machine to boot and pull the installation over the net-
work, using PXE and Boot Protocol (BOOTP). See chapter 8.3.2 for more in-
formation.

hd-media
The hd-media image allows for the booting off a USB stick, or similar. In-
structions are available in sections 4.4 and 5.1.3 of the Debian installer man-
ual'. Your BIOS must support booting off USB media for this to work.

floppy
The floppy images allow a machine to boot from floppies before using a

network connection to obtain the base system.

access-floppy
The access-floppy image allows the use of a Braille terminal during the in-
stallation, to support visually impaired Debian users. Unfortunately, the in-
stallation process currently does not configure the system for later use with
the Braille terminal. Installing the brltty package during the installation and
should solve this.

No matter what installation medium is used, the installation process is more or less
the same. For some media, the network has to be configured to access the mirror
during the installation. However, the major steps are the same, independent of
the medium used to boot. In the following, | assume the use of the businesscard
image.

Your system may require some BIOS tweaks to allow your machine to boot from
CD-ROM. If successful, the Debian CD will greet you with the boot screen, and a
boot: prompt (see figure 3.1). Here, you can select from four different methods by
typing the method's name and pressing [enter]:

linux
Starts the installer in standard mode atop a recent 2.4 kernel. If you do not
specify a boot image (but just hit [enter]), this one is selected by default.

Zhttp://d-i.alioth.debian.org/manual/en.i386/ch05s01.html#usb-boot

o

3 Installing Debian the right way

Figure 3.1:
The boot screen

linux26
Also running the installer in standard mode, this option will cause a recent
2.6 kernel to be used.

expert
This executes the installer in expert mode, using the same 2.4 kernel as linux.

expert26
Expert mode, with the same 2.6 kernel as linux26.

debian

GNU / Linux

[Press F1 for help, or ENTER to boot: _

The installation modes — standard and expert — actually map to debconf priorities
(see chapter 5.8.2). Expert mode configures debconf to use low while standard
mode causes the priority to be set to high. Using a boot parameter, it is possible
to use other priorities as well. For instance, by passing debconf/priority=critical
at the boot prompt line, you can effectively reduce the number of questions the
installer asks to nine. When inside the installer, the "Change debconf priority” item
at the bottom of the menu allows for the priority to be changed at any time during
the installation. Chapter 8.3.4 goes into greater depth on what can be specified on
the boot prompt.

The 2.6 kernel works fine and should probably be used for support of newer hard-
ware (like Serial ATA or newer Gigabit Ethernet adapters). The 2.6 kernel series also
improves on many shortcomings of the 2.4 series, such as virtual memory man-
agement and the kernel scheduler, making it more powerful than its predecessor.
Nevertheless, Debian will continue to default to the 2.4 kernel series, which has
been thoroughly tested over the past three years (see chapter 4 and chapter 7 for
a discussion of this decision). Only the powerpc and (yet unofficial) amd64 archi-
tectures will use 2.6 by default. Finally, the new installer does not support the 2.6
kernel on the alpha, arm, m68k, mips, mipsel, and s390 architectures.

3.2 The minimalistic approach to installation |

The installer boots a universal kernel which tries to support a large set of different
hardware. Unfortunately, many manufacturers ship their systems with broken im-
plementations of standards, which may work fine during day-to-day use, but could
wreak havoc in the presence of other drivers or features supported by the installer.
Laptops in particular often contain buggy components. If the installer crashes, or
the machine hangs, it may be necessary to disable certain parts of the installer's
kernel. This can be accomplished through the use of boot parameters, which need
to be passed after the kernel command:

boot: linux noacpi noapic nolapic

Some of the kernel's boot options are listed in the pages accessible by pressing
[F5], [F6], or [F7] at the boot prompt. The following are some of the most common
options:

Option Effect

noacpi Disables Advanced Configuration and
Power Interface (ACPI) (which is seldom
correctly implemented). Effects of an
erroneous ACPl implementation usually
result in random reboots or system lock-
ups.

noapic nolapic May allow machines with broken Ad-
vanced Programmable Interrupt Con-
troller (APIC)s to work. APIC prob-
lems usually translate to spurious and
repetitive messages about IRQ prob-
lems, and/or simply freeze the machine.

hw-detect/start_pcmcia=false Disables Personal Computer Memory
Card International Association (PCM-
CIA) support during installation. If your
machine hangs after choosing to en-
able PCMCIA support, this option en-
sures proper operation.

debian-installer/probe/usb=false Disables USB probing at boot time (for
legacy devices). You may need this op-
tion if your machine freezes during the
boot phase (i.e. before the blue back-
ground appears).

Table 3.1:
Common boot

options for the

Debian installer to

work around buggy

hardware

o

3 Installing Debian the right way

continued

Option Effect

debian-installer/framebuffer=false Causes the installer not to use a frame-
buffer. Multi-language support will
not be available without a framebuffer.
However, if your screen flickers or dis-
plays weird patterns when running the
installer, this option may help.

In addition, the standard Linux kernel boot parameters'® can be used. Also, it is
possible to initialise the debconf database (see chapter 5.8) used for user interac-
tion throughout the installation. More information on this possibility is available
in chapter 8.3.4.

If the installer boots up and you manage to get to the language selection screen
(or the menu in expert) mode, you will probably have an easy time with the rest of
the installation (with the exception of PCMCIA problems). It may happen, however,
that you cannot navigate the menus as the keyboard seems to be inoperable. This
symptom relates to a problem with the kernel 2.6 USB drivers, which interfere with
the keyboard subsystem. Using a USB keyboard, or disabling BIOS USB support
("USB Legacy support") work at times. Another workaround is to generate enough
interrupts to keep the keyboard driver active and prevent the takeover: after hitting
[enter] at the boot prompt, press the [caps lock] key repeatedly at high frequency
until you see the blue background.

Meeting the installer

After the kernel does its thing, the installer presents itself in the gray-on-blue look
you will see all over Debian (unless you reconfigure it'*). The "graphical” installer
front-end uses a framebuffer to enable non-American Standard Code for Infor-
mation Interchange (ASCII) characters used in many languages. In case of prob-
lems with the framebuffer, the debian-installer/framebuffer=false option may be
passed at boot-time to work without it.

In expert mode, the installer presents you with the menu shown in figure 3.2.
Despite being task-oriented, the installer proposes the next step in the process by
selecting it in the menu. The order of proposed steps is the same as the steps
taken automatically in standard mode. However, the selection is not binding, and
the installer will automatically complete prerequisite steps if one jumps ahead in

13See Documentation/kernel-parameters.txt in the kernel source tree.

14Setting debconf/frontend to text would run the installer in text-mode, although the text front-
end is not included in the default image. You will need to provide a custom image if you are a text freak
like me (see chapter 8.3.3).

3.2 The minimalistic approach to installation |

the sequence. In the following, only the differences between standard and expert
mode are highlighted, and it is assumed that expert mode users follow the proposed
sequence of steps. Users of standard mode should theoretically not be exposed to
the menu at all. Nevertheless, in case of an error, the installer will jump to the
menu to allow for greatest control of the situation. By default, you just have to
press [enter] to repeat the last step, or you can choose other functions from the
menu that may clear up the problem.

Navigating the installer

The normal installer display is character-based, using newt for the user interface.
All'interaction is done via the keyboard, the mouse is not operational in this envi-
ronment. The graphical installer frontend® will allow the mouse to be used instead.
Navigation of the dialogs is straight forward, if you are used to keyboard-driven
applications. Each dialog usually consists of one or more groups of controls. For
instance, figure 3.3 shows a typical dialog with two groups: the country list in
one, and the "Go Back" button in the other. With [tab] and [Shift-tab], you can
cycle between the groups, while the [left] and [right] arrow keys select the group
(logically) to the respective side of the current group.

Within a group of controls, the [up] and [down] arrow keys navigate to the previous
or next item (scrolling as necessary), and [Pg-up] and [Pg-down] work as expected.
In addition, you can also press a letter key to jump to the first item that starts with
this letter.

Hitting [enter] selects an item, and [esc] takes you one step back, the same as
hitting the "Go Back" button. Checkboxes can be toggled with the [space] bar.

The user interface of the installation system resides on tty1. The key combination
[Alt-F2] gives you access to a shell on tty2. It should be noted that this is a “conve-

Figure 3.2:
The initial installer

menu in expert mode

o

3 Installing Debian the right way

Figure 3.3:

A typical dialog with

two groups of
controls

nience shell" used primarily for special purposes, and only if you know what you are
doing. You can severely affect and/or disable the installer by doing too much. On
tty3 (key combination [Alt-F3]), you can see the contents of /var/log/messages,
which contains the output of external programs invoked by the installer. If you
want to know what is going on behind the progress indicators, this is the place to
look. Finally, on tty4, the system scrolls [var/log/syslog, which mostly consists of
debugging information. You will want to inspect it in case of problems (in addition
to tty3). With [Alt-F1], you can return to the installer's user interface.

Beginning the installation

The installer will first ask you to select your country andfor region, your desired
language, and the keyboard type and layout corresponding to your hardware!®.
These parameters determine the default language and regional settings (locale)
used in the installation process as well as the resultant system. At a later point,
your choice here determines the selection of the timezone, and it is also used to
suggest a Debian mirror.

15/f you are installing a system with a keyboard layout too far removed from the US standard
(which is the default until you configure it), you can use the bootkbd boot parameter to initialise it to
the correct one at boot-time.

3.2 The minimalistic approach to installation |

Accessing the installation medium

The next step consists of the detection of the hardware necessary to access the in-
stallation medium. In the case of a CD-ROM installation, 1/0 controllers are probed.
In the case of a network-based installation, this involves detection of the network
hardware. In standard mode, the installer will try all available modules in sequence
(you may use the boot parameters to disable single modules if there are problems).
The expert mode allows you to specify which modules to load, selecting all by de-
fault. If the debconf priority is set to low (which is the case in expert mode), the
installer allows you to specify options to be passed to each module, which should
not be necessary except for special hardware.

In expert mode, you will also be asked if you want to load the Card Services to
enable accessing of CD/DVD drives attached via PCMCIA. This decision can be made
at boot-time with the hw-detect/start_pcmcia=false parameter. At time of load-
ing, the installer gives the user a chance to specify resource parameters. Certain
machines — laptops especially — require port or Interrupt Request (IRQ) exclusions
to prevent the host machine from freezing'®. At the end of this initial hardware
detection process, the installer will have detected the media and installation can
proceed.

Installer components

The installer is based on a modular architecture, as previously mentioned. As such,
it is a big advance from the previous, monolithic boot-floppies installer. Modules
are simple Debian packages, called udeb files. The packages use debconf (see chap-
ter 5.8) to interface with the user, and simple hooks to register with the installer,
which then allows access to their functionality from within the installer menu.

The power of this approach is two-fold. First, as the different components of the in-
staller are packages themselves, the installer has (finally) become maintainable. The
components integrate with the existing infrastructure, and proven management
mechanisms, such as the bug tracking system (see chapter 10.6), allow for greatly
simplified development and maintainance. Even though advancement serves to
directly improve the user experience in forth-coming versions of debian-installer,
you are probably more interested in the second advantage of the component sys-
tem: it makes the installer extensible. Developers, organisations, and adminis-
trators may integrate custom modules into the installer and take care of specific
aspects of the target system conveniently during the installation. While additional
modules may be loaded from floppies, CDs, or local International Standards Or-
ganization (ISO) images, the open architecture of the installer also make it easy

16A full list of recommended parameters for freezing machines may be found on the pemcia-cs
homepage: http://pcmcia-cs.sourceforge.net/ftp/doc/PCMCIA-HOWTO-2.html#ss2.5

o

3 Installing Debian the right way

Figure 3.4:

The installer lets you
choose the
components to load
(in expert mode)

Figure 3.5:

The full menu of the
installer after loading
additional
components

to integrate such components into a customised installation medium, such as a
CD-ROM for local use.

While the installer specifically asks expert mode users to choose the additional
components to use, users of the standard installation mode can load additional
components after the installer loaded a default selection. Figure 3.4 depicts the
dialog for component selection. The modules are usually loaded from the instal-
lation medium. In addition, the load-floppy, load-cdrom, and load-iso/scan-iso
components allow for modules to be loaded off floppies, CD-ROMs, or installer
ISO images. Downloading components off the Debian mirrors is not supported by
the CD-ROM installation media. Network-bootable or floppy installations allow it
through the net-retriever component.

3.2 The minimalistic approach to installation |

Much in the spirit of Debian, installer components may be loaded at any point dur-
ing the installation process. Thus, you should probably resist loading most of them
right at the start to guard against confusion. Each loaded component expands the
main menu (figure 3.2) with items contributed by the module. Figure 3.5 shows a
menu after most components have been loaded.

Configuring network access

If it did not do so in the previous step, the installer will now attempt to detect
the network hardware'. If the system does not have network hardware installed,
you can leave the network configuration component with [escape]. If network
hardware is installed in the system, but the installer fails to discover the interface(s)
(which may happen in the case of ISA cards, or with newer "EI-Cheapo” chipsetsw),
a list of available modules is presented, which can be manually loaded. Figure 3.6
shows the dialog. If none of the available modules is appropriate but you have the
correct kernel modules on a floppy, you can include them now by opting for “none
of the above” in the manual selection list. | usually have a known-to-be-supported
network interface (e.g. with an RTL8139 or EtherExpress Pro chipset) with me and
use that in case of problems.

The installer can detect any Peripheral Component Interconnect (PCI) hardware also supported by
the kernel. If you have newer hardware, you may have to opt for the 2.6 kernel (see further up for the
respective boot options). Most Industry Standard Architecture (ISA) hardware can be autodetected, but
some hardware may require manual intervention. More specialised hardware, such as AX.25, Fiber Dis-
tributed Data Interface (FDDI), and Micro Channel Architecture (MCA) network cards, are not supported.
Integrated Services Digital Network (ISDN) cards are supported, but the (obsolete) 1TR6 protocol cannot
be used.

18"E|_Cheapo" is colloquial for "cheap”, used frequently in the domain of computer hardware. Usu-
ally, El-Cheapo hardware is somewhat limited, either in features, standards-compliance, warranty, sup-
port, or quality.

Figure 3.6:

Manual selection of

network drivers

o

3 Installing Debian the right way

Figure 3.7:
Selection of the
desired Debian
release

At time of writing, the installer does not support the use of modems or DSL dur-
ing the installation. If you are connected to the Internet by one of these means,
you should opt not to configure the network during the installation (by selecting
"no Ethernet card" from the list of supported cards), and to set up the connection
manually using the appropriate tools from tty2 (see chapter 6.8.4 and chapter 2
respectively). After installing the system, the configuration unfortunately has to be
redone. The next stable release of the installer will allow for the proper configura-
tion of PPP and PPPoE through the user interface.

Once the drivers for the network hardware have been loaded, you can select the
primary interface. The system will attempt to use Dynamic Host Configuration Pro-
tocol (DHCP) to configure the card. If you have multiple interfaces, be careful not to
trip over the Linux kernel's interface naming strategy: there is no reliable method
of determining which interface name corresponds to which interface. Therefore,
a trial and error strategy may be the least painful. After installing the system,
you can use ifrename or udev to assign static names to network interfaces (see
chapter 6.8.1 and chapter 6.5.1 respectively). The installer uses DHCP by default to
configure network interface parameters. In expert mode, static network addresses
may be specified instead. It is even possible to disable the use of DHCP in standard
mode, by specifying the netcfg/use_dhcp=~false option at the boot prompt. Lastly,
the netcfg-static installer module provides a means to configure static network
parameters instead of using the automated DHCP method.

Selection of package source

By default, the installer will pull the packages required for the base system from the
installation medium, if it contains the necessary packages. The official Debian CD-
ROM as well as the netinst image contain these, the businesscard image requires
network access to obtain the base system.

The choose-mirror component allows for an online Debian mirror to be used, even
if the base system is available on the installation medium. The installer will try
to choose the correct country and present you with a list of known mirrors, of
which you will want to choose one at random within your region. At this moment,

3.2 The minimalistic approach to installation |

however, packages are not going to be installed. Instead, the installer asks you in
expert mode, which release you would like to install (see figure 3.7). Unless you
know what you are doing (and have read chapter 4), the release suggested by the
installer will serve you well. When run in standard mode, you are not given a choice
and the installer will install the current stable (but at least sarge). When using a
physical installation medium, this question might be skipped, since the medium
usually contains only one release.

In the next step, the installer goes out a third time to detect hardware, this time
loading every driver corresponding to a device in the local system. You may see
some error messages at this point (figure 3.8 shows an example). Unless you are
running some kind of special controller hardware, these warnings can simply be
ignored, as installing the base system files will cure the reported problems most
of the time. That said, it is never a bad idea to note down the problems for later
reference.

The partition manager

Drivers for all critical hardware have now been loaded. Before the actual installa-
tion of packages can take place, the hard disk must be prepared. Much to every-
one's surprise, the new installer does not rely on the handy cfdisk partitioning tool,
but instead provides a newly developed manager application, partman. This tool is
written in the same spirit as debian-installer, providing only a structural founda-
tion for modules to extend the functionality. Various additional modules serve to
make partman more than a partitioning tool. Its functionality includes:

Automatic partitioning
partman can automatically partition a single drive, or the largest continuous
block of free space on a hard drive. Rather than assuming a default, it lets
the user choose a scheme and then uses smart heuristics' to decide the
partition sizes.

Partition table types
partman can create partition table types appropriate for all supported ar-
chitectures.

Figure 3.8:

Unless affecting

critical components,

warnings from the

hardware

autodetection can be

safely ignored.

o

3 Installing Debian the right way

Partitioning
partman can do everything that cfdisk can; in particular, it has the ability
to create a partition at the end of free space. In addition, partman can
resize existing partitions to create room for a Debian installation. Some
aspects directly accessible in cfdisk, such as the hexadecimal partition type,
are handled more abstractly by partman.

Filesystems
partman can initialise partitions with all common filesystems'®. Additional
filesystems can easily be added qwith components. Mount points and file-
system flags are also configured within partman.

Multi-device support
partman can configure Linux Multi-Device (MD) support, including RAID
levels 0, 1, and 5.

Logical volume manager
partman can create volume groups and logical volumes for use by the Linux
LVM.

Undo support
As partman does not write anything to disk until you tell it to, you can have
it restore the state of the partition table and undo any changes you have
made.

As a separate component, autopartkit provides another automatic partitioner,
which preceded partman, but with several shortcomings that partman set out
to address. Its functionality has largely been superceded by partman; it is now
obsolete and only sparsely supported, if at all. My advice is not to use it.

Guided partitioning

A new system rises and falls with the design of its partition table. Many users
do not know the principles of partitioning and thus should not be expected to
come up with a table just like that. The partman partitioner provides an automatic
partitioner, which is referred to as "Guided partitioning”, automatic partitioner,
or by the name of the partman component: partman-auto. In simplified mode,
partman-auto is automatically invoked whereas in expert mode, you are given the
choice. It is always possible to enter "Guided partitioning” from the partman main
menu, and when the automatic partitioner has finished its job, it is still possible to
manually edit the partition table as it drops you into partman's user interface.

19See appendix C.2.2

o

3.2 The minimalistic approach to installation |

The automatic partitioner queries the user for the space it should partition (see fig-
ure 3.9). Usually, this will be an entire volume (thereby erasing all data on the disk),
but partman-auto also allows free space to be used, leaving existing partitions
untouched.

Figure 3.9:
partman-auto can
automatically
partition whole
volumes, or just use
existing free space.

At this point, it is possible to skip automatic partitioning and enter partman di-
rectly, even in simplified mode. From within partman, it is furthermore possible to
resize and move partitions to make space for the Debian installation.

Instead of imposing a typical partition table on the user, partman-auto provides a
selection of schemes, as depicted in figure 3.10. Here, the user may choose between
different high-level descriptions, such as "Separate partition for home directories,’
or "Multi user system” The resulting set of partitions includes one or more filesys-
tem partitions in addition to a partition for swap space?. The filesystem sizes are
calculated from the disk size, minimum and maximum sizes, and a priority relative
to the other partitions. This algorithm produces very nice results. The syntax used
for the scheme definition files is rather straightforward, allowing for easy addition
of schemes in a custom installation.

Figure 3.10:
Partitioning schemes
available for
automatic
partitioning

When the automatic partitioner finished its job, it displays the result, as shown in
figure 3.12 in the main partman screen. The automatic partitioner leaves you with
a pre-configured manual partitioner, so there are no limits on the changes you
want or need to make.

20See http://sourcefrog.net/weblog/software/linux-kernel/swap.html and http://sourcefrog.net/
weblog/software/linux-kernel/free-mem.html for interesting discussions of swap space on Linux sys-
tems.

3 Installing Debian the right way

Figure 3.11:
The new and powerful
partition manager

If the result is acceptable, the user may select "Finish partitioning and write changes
to disk" to move onwards in the installation process. Otherwise, you will need to
use partman.

partman, the partition manager

Your first encounter with partman can be somewhat awkward, especially if you
have only used the *fdisk up to this point (like me). However, three or four in-
stallations should have your skill level back up to par, and you will soon begin to
appreciate the new partition manager?'. In figure 3.11, you can see the partitioner
in its new outfit. Note the four items tagged "FREE SPACE", where partitions will
be created.

The partitioner consists of three sections. The top is devoted to configuration util-
ities and hosts tools like the RAID and LVM configurators as well as the auto-
partitioner. In the middle are the disks available on the local system, as well as any
logical volumes and RAID devices that have been defined. These are referred to as
“volumes, a common term for entities holding partitions in the Unix domain.

If your desired destination volume does not show up, make sure the appropriate
driver for your controller is loaded. Finally, there are the "discard" and "save" op-
tions at the bottom. The partitioner interface uses debconf and thus feels similar
to the rest of debian-installer. This includes the ability to use the various keys for
quick keyboard navigation.

Compared to the previous boot-floppies, partman is task- rather than process-
oriented. With boot-floppies, admins first had to create the partitions, before

21At time of writing, a major shortcoming of the partitioner is its slow speed. However, this limita-
tion is being worked on. The partitioner is currently written in shellcode, and a rewrite in a compiled
language should fix this.

3.2 The minimalistic approach to installation |

going on to initialise and mount them one by one. If you need to resize a partition
later, the whole process had to be redone. With partman, everything is configured
step by step without an imposed order of steps. The user can go back and change
previously configured parameters at any time. When everything is set up and the
user chooses to finish the partitioning process, the partition table is written, filesys-
tems are created, and the partitions mounted accordingly. At the same time, the
user may opt to undo all changes and restore the partition table to its previous
state (by rereading it from the volume).

Below each volume, the partitioner lists the defined partitions as well as any free
space still available. A new partition table can be created by selecting the desired
volume and hitting [enter]. Unless you know what you are doing, the type of the
new partition table should be msdos, which is standard on the x86 architecture.
You may be able to use other partition table types, but depending on your BIOS
and hardware, you might have to jump through hoops. When a new partition table
has been created, a new item, "FREE SPACE" should appear.

Existing partitions can be edited, and new partitions created in areas of free space,
simply by selecting the partition or chunk of space and hitting [enter]. For existing
partitions, this will bring up the partition configuration dialog shown in figure 3.13.

Figure 3.12:

A partition table
produced by the
“Multi-user
workstation” scheme
of the automatic
partitioner

Figure 3.13:
The dialog used to
configure partitions

o

3 Installing Debian the right way

Figure 3.14:

The new installer can

resize existing
partitions.

If you are faced with an existing partition table, and need to free up some space
for your Debian installation, the partitioner allows you to resize swap partitions,
as well as partitions using one of the following filesystems: FAT, NTFS, ext2/3. If
the filesystem is supported, its size will be editable in the partition's configuration
dialog. Entering a new size into the dialog depicted in figure 3.14 (which also
specifies the limits) will cause partman to resize the partition and the filesystem
accordingly. Take note that resizing a filesystem requires the partition table to be
written and all changes made in partman so far to be permanently written to disk.
Thus it is probably best to first resize all partitions as desired before making other
changes in the partition manager.

If you are instead creating a new partition, you are first asked to give some more
information about the partition you would like to create: what the purpose of
the partition will be (e.g. swap space, or a regular filesystem), the desired size, the
location within the free space, and other parameters relevant to the partition table
type you created. In the case of the msdos partition table type, it wants to know
whether to create a primary or a logical partition (if there are not four primary
partitions already). After answering these few questions, the partitioner leaves you
with the partition's configuration dialog (see figure 3.13), where you can fine-tune
the new partition.

The partition configuration dialog is the heart of the partition manager. From
here, you can initialise filesystems, instruct the installer to leave existing partitions
untouched, or dedicate partitions to the LVM or MD (RAID) drivers. A partition's
destiny is set by its "Usage method" Depending on the selected usage, the list
of available options changes accordingly. Common to all usages is the control of
the partition's size as well as the state of the "bootable" flag (if applicable to the
partition table type). We will return to the bootable flag when we talk about boot
managers in a little while.

If you are creating a normal data partition to hold a filesystem, you will need to
specify a mount point for the filesystem, and you are given the chance to define a
number of boot flags to be used for the filesystem, which the installer automati-

3.2 The minimalistic approach to installation |

cally writes to [etc/fstab for you. It is also possible to copy data from an existing
filesystem to the new space??.

The item "Done setting up the partition” will take you back to the partitioner menu.
Remember that all changes you make here are not commited until you tell partman
to do so. You may come back to the partition configuration dialog of each partition
and tweak and polish your partition scheme as many times as you wish.

When the table and partitions have been configured to your liking, you can tell
partman to “Finish partitioning and write changes to disk” from the main menu.
Alternatively, you can tell it to "Undo changes to partitions” and re-read the parti-
tion table, reverting all changes.

Configuring RAID

The Debian installer allows for the configuration of RAID volumes prior to the in-
stallation, eliminating the need to bootstrap a RAID system from a temporary in-
stallation (or live boot medium). Three RAID levels are currently supported:

Level O
Also known as striping, this is actually a pseudo-RAID in which the data
are spread across different partitions to give the impression of one large
partition. If this is what you need, | encourage you to look at LVM (see
chapter 17) instead.

Level 1
What is known as mirroring involves the maintenance of two (or more) par-
titions with exactly the same data in sync. All writes go to all involved par-
titions, and reads can be served from any single partition. This level provides
highest redundancy, slow write speed, but a high read rate.

Level 5
In this level, which requires three disks at least, each block of data is spread
across all but one disk, and the last disk stores checksumming data that can
be used to restore the data on the other disks, if one of them fails. This level
can handle the failure of one disk, provides the slowest write speed, and
adequate read access.

A RAID volume needs at least two partitions (expediently on two separate physi-
cal media, RAID 5 needs three disks), which must be marked for use by the RAID
volume. To create such a partition, you follow the usual steps, and select “physical
volume for RAID" as the partition's usage method, as shown in figure 3.15.

2This is accomplished with libparted's function ped_file_system_copy. The target partition must
therefore be at least as big as the source partition. At the moment, libparted only supports partitions
with ext2, ext3, or FAT16/FAT32.

o

3 Installing Debian the right way

Figure 3.15:
Configuring a
partition for RAID

Figure 3.16:
The RAID
configuration tool

Figure 3.17:

A RAID volume
appears in the
partitioning tool like
a normal partition.

All the partitions used in a RAID volume should be of the same size. The RAID

volume will be of the same size as the smallest available partition, thus potentially
wasting disk space.

When all partitions that are to partake in the RAID configuration have been pre-
pared, you can start the RAID configuration tool from the partman main screen
(provided that the mdcfg installer component has been loaded). Using the tool
(depicted in figure 3.16), you can assemble RAID devices interactively.

3.2 The minimalistic approach to installation |

When done, each defined RAID volume shows up as a separate device in partman,
as shown in figure 3.17. The new device may be used like any other partition to
hold a filesystem, or even incorporated as a logical volume into a LVM volume

group.

Configuring LVM

The LVM is a device mapper, which logically separates filesystems from the physical
disks or their partitions. Without going into too much detail, the gist is that a Vol-
ume Group (VG) spans one or more physical partitions. A VG may hold one or more
Logical Volume (LV)s. A LV holds a filesystem. The main advantage of a LV is that
it can be resized. Furthermore, VGs can be extended with additional Physical Vol-
ume (PV)s to accommodate growing LVs. Figure 3.18 shows the schematic relation
of the concepts underlying the LVM.

(S gy [] Disks with partitions

Volume group "VG1"
VG1 I:I ‘ g ‘ = ‘ with logical volumes
7 v 4
"Home" "Data" "Programmes" Logical volumes
A A ¥
XFS ext3 JFS Filesystems

To configure the LVM from the installer, the lvmcfg component has to be loaded.
Furthermore, at least one partition must be designated for use as a PV by the LVM.
Therefore, the first step in setting up LVM is usually to create a partition and choose
“physical volume for LVM" as its usage method. This partition will serve in a VG.
Keeping in mind that it is possible to add and remove PVs from the VG at a later
point in time, you probably do not want to spend too much time trying to figure
out the layout at this time, unless you already know what you want.

When at least one partition has been configured for the LVM, the VGs can be set up
with the item "Configure the LVM" off the partitioner's main menu (or the installer's
main menu). This step requires the partition table to be written to disk and will
thus permanently write any changes you made so far. A later undo will not be
possible. The LVM menu allows you to create VGs and LVs in a straightforward way.
Obviously, you must create at least one VG before any LVs can be made. Volume
groups are identified by a name of your choice. The name could describe the source
of the VGs, such as "IDE_disks"

Figure 3.18:

A schematic overview

of LVM

o

3 Installing Debian the right way

Figure 3.19:

The partitioner treats

a LV like a normal

partition.

The creation of logical volumes is equally straightforward. Their names should
be chosen to reflect their purpose (such as "Mail spool”). After creating the desired
logical volumes, the installer lists the LVs as additional volumes in the main window,
as shown in figure 3.19. When creating logical volumes, it is useful to keep in mind
that it is typically quite easy to attach additional space to an existing volume, and
to grow the filesystem to use it. However, not all filesystems support shrinking, and
if a filesystem is full, shrinking it will cause data loss.

Using the conventional partitioning tools

If you prefer to stick to fdisk, cfdisk & co. — you will find them installed and usable
in tty2. Be advised that the installer uses devfs, thus you will not be able to locate
/dev/hda or [dev/sdb. Instead, the local hard drives are available under /dev/discs,
numbered in BIOS order (on Intel/AMD architectures). The entries in that directory
are symbolic links, thus you can easily distinguish between them?3. The actual disc
is found as disc in the directory the symlink references. Thus, to partition with
cfdisk:

“# cfdisk /dev/discs/disc0/disc

Once the partitions are created, you have to return to partman. Unfortunately,
the installer cannot deal with filesystems that you create and mount externally; it
expects you to designate desired filesystems and mount points in the configuration
dialog shown in figure 3.13.

ZSince devfs is deprecated, Debian might release a new installer without devfs soon after sarge's
release

3.2 The minimalistic approach to installation |

Installing the base system

When the partitions have been set up, the installer proceeds to install the base
system. Again, the default is to pull the required packages from the installation
medium. With physical installation media, using the choose-mirror component
and selecting a mirror causes the installer to automatically use the chosen mirror
to obtain the base system. On the other hand, if the cdrom-detect package is used
to detect local CD-ROM drives during a network installation (netboot), and an in-
stallation medium is found, this medium will be used. In general, an APT repository
available on a locally mounted CD-ROM is preferred over a remote repository.

Now is the right time to take the dog for a walk, or run an errand (or sit and stare
at tty3) — the base system installation takes a little time to fetch, unpack, install,
and configure the packages needed for the base system.

Following the installation of the base packages, the installer configures the kernel
of the target system. By default, it installs the same kernel as used during the
installation, which ensures maximum compatibility. In expert mode, the user is
given a choice of kernels to install. Care should be taken when selecting a different
kernel for installation as it may result in an unbootable system. While stepping up
a kernel version should generally work, installing an older kernel than used for the
installation process is almost always a bad idea.

Installing a bootloader

The final step in the first stage of the installation process is the configuration of
a bootloader. In standard mode, the installer automatically selects the preferred
bootloader and attempts its installation. For Intel and AMD-based architectures,
the preferred bootloader is Grub. In expert mode, the user can choose not to
install a bootloader (which will leave the system unbootablel), or select a different
bootloader (such as Lilo for x86, which has a better grasp of RAID volumes than
Grub at time of writing).

In addition, if the /boot directory is on an XFS filesystem, you must use a different
bootloader than Grub due to a bug in grub-install, which could cause the install
process to hang indefinitely. You can convert to using Grub once the system is up
and running. The problem has been identified and a solution is being worked on,
although it appears to be a serious bug and may take some time to fix. The installer
will warn you about this inconvenience. If you insist on using Grub, you may be
able to install it manually through the Grub shell on tty2 (see chapter 8.3.1).

Before writing itself to disk, the bootloaders for the i386 architecture ask for the
destination of the boot block. Usually, this will be the Master Boot Record (MBR),
but the presence of another operating system may affect this choice. It is probably
a good idea to create a backup of the MBR before overwriting it. The following
command, executed in the shell on tty2 will write the MBR to a file in the /boot
directory of the new system:

o

3 Installing Debian the right way

Figure 3.20:

The dialog indicating
the installer's
completion — unless
you did not install
Grub into the MBR.

“# dd if=/dev/hda of=/target/boot/mbr.backup bs=512 count=1

Grub is capable of incorporating and booting other operating systems, so the MBR
should generally be the right choice. With a backup of the boot block, one should
be on the safe side. If the desired scenario is a dual-boot with Microsoft Windows,
then letting Grub or Lilo boot Windows instead of letting ntldr load Linux allows
for greater flexibility.

If a partition is chosen instead of the MBR, the partition must be marked bootable
(or active). While Lilo can do this automatically, Grub and other bootloaders still
require user intervention at present time. Thus, following the installation of the
bootloader into a partition, you must not forget to return to partman and set the
destination partition bootable. In standard mode, this requires you to "Go back”
when the installer displays the dialog shown in figure 3.20, to navigate to partman
and make the required change. Alternatively, you can enlist sfdisk. Assuming you
installed the bootloader to the third partition on the first disk:

“# echo ’;;;*’ | sfdisk --force /dev/discs/disc0/disc -N3

The -force argument is necessary because the partitions are already mounted,
and sfdisk would refuse to change the partition table otherwise. Flipping of the
bootable flag is a safe modification.

Telling the installer to finish the installation completes its first stage (which takes
most of the time). In stage two, we need to configure the base system.

3.2.2 Configuring the base system

When the installer has finished, the new system needs to be rebooted. There are
still a few system parameters that need to be set, a task picked up after the first
boot by the base-config programme. This is commonly referred to as the second
installation stage. Using the baseconfig-udeb installer component, base-config
can be run from within the installer during the first stage. The following assumes
that the conventional two-stage path is followed.

The base-config programme presents itself as shown in figure 3.21. It follows the
same usage paradigms as the installer, since it also uses debconf (see chapter 5.8).

3.2 The minimalistic approach to installation |

During its execution, you are free to use consoles tty2 through tty6, which are
accessible with the usual [Alt-F2] through [Alt-F6] key combinations. Until you
have configured the root password and/or added other users, you can log in as root
without a password.

= iailam aeee st con laurEien =7
Thiz iz the hase system configuration menu,

Chooze the next step in the install process:

Set up users and passwords

3et the hostname

Conf igure apt

Select and install packages

Exit the base system configuration
Execute a shell

Ok <Cancel>

The individual steps are straightforward and well documented. Therefore we can
skip ahead to the item "Configure apt" To use APT, it needs to know where to
obtain any packages you ask it to install. Additionally, if you use a modem or DSL
connection, you must configure these first. At present, the Debian installer only
offers to set up a PPP connection if it was unable to configure an Ethernet device
previously. Thus, if you opted not to configure the network before the reboot,
base-config should bring up pppconfig and walk you through the configuration
of a PPP connection, as used by most modems. DSL (unless it uses DHCP), or other
PPPoE connections are not currently configured by base-config and must be setup
manually: before configuring APT, change to tty2 with [Alt-F2], log in, and use
pppoeconf to configure your setup. Once you have verified that a connection exists
(e.g. you can ping debian.org), the rest of base-config (on tty1) should complete
without any fuss.

While base-config could certainly just reuse the repositories specified during the
installation, you are given another chance to select them. We will call it a feature,
not a bug. The packages can reside on a Debian CD, somewhere on the Internet
and accessible via HyperText Transfer Protocol (HTTP) or File Transfer Protocol (FTP).
base-config walks you through the mirror selection process, using your regional
settings to make suggestions. In standard mode, you can only select a single mirror,
and security updates are automatically included. Expert mode allows you to add as
many APT sources as you want, and choose whether to include security updates,
or packages from the contrib and non-free repositories.

When APT is configured, the most definitive step of the Debian installation is
ahead: software installation. After choosing “select and install packages" from
the base-config menu, you are presented with a screen allowing for the selection
of tasks (see chapter 5.5), or given the option to manually select the packages you

Figure 3.21:

Almost done... the

menu used to

configure to base

system.

o

3 Installing Debian the right way

Figure 3.22:
During the

installation, you may

opt to install
collections of

software, or manually

select packages to be

installed.

want installed from the start. The task selection is depicted in figure 3.22 (see also
chapter 5.5). If you pick the option to manually select the packages to install, the
installer invokes aptitude (see chapter 5.4.11), and packages corresponding to the
other tasks you selected will be marked for installation. For a minimal installation,
you will want to select no tasks and quit aptitude without making any selections
at this point.

————— Debian software selection
You can choose to install one or wore of the following predefined
collections of softuare,

Choose softuare to installs

ronment

Debian uses exim4 as its default mail transport agent, and base-config allows you
to configure it before starting to use the system. You can always modify the chosen
configuration with dpkg-reconfigure exim4-config.

When done configuring the mail transfer agent, the new Debian system is com-
pletely installed, fully configured, and ready for use. base-config can be invoked
again from the command line, and if not needed, the package can be safely purged.
For a suggestion of the first package to install, and to help improve the Debian sys-
tem, please refer to chapter 5.11.10.

3.3 Configuring the X server

Since the task of configuring an X server is not necessarily specific to the Debian
system, Debian provides a set of tools and approaches which an administrator is
invited to use. Unfortunately, the rapid developments in the domain of graphics
adapters do not correlate well with Debian's idea of stability. As a result, it is often
not trivially possible to configure the correct driver to make use of all the features
of modern graphics cards.

That said, Debian has come a long way in terms of making the configuration of X as
easy as possible. Nevertheless, since one of the most common problems with new
Debian installations is the inability to configure the X server; the following section
attempts to shed some light on the philosophy, and expose some tricks.

3.3 Configuring the X server |

3.3.1 An overview of X in Debian

Assuming a minimal installation (see chapter 3.2), the easiest way to install the X
server along with core components is through the installation of the x-window-
system-core meta package (dummy package), which depends on the bare essen-
tials of the X server system and thus causes them to be installed as well: that is,
the server itself, a basic selection of fonts, fundamental graphics libraries, and the
standard set of X utilities. The package does not depend on display or window
managers, or even a terminal emulator, which need to be installed in addition. An
alternative is the x-window-system meta package, which additionally pulls in a
number of useful but mostly optional components (such as a font server, the X
print server, proxy services, the twm window manager, and the xterm terminal
emulator).

Both of the x-window-system-* meta packages cause the xserver-xfree86 pack-
age to be installed, which in turn depends on the xserver-common package. These
two packages provide the core of the XFree86 system and use debconf to query the
user for configuration data (see chapter 5.8). While the configuration data is lim-
ited to parameters governing the invocation of the X server (and only shown if de-
beonf is configured with a priority of low; see chapter 5.8.2), the xserver-xfree86
package's debconf questions concentrate on the hardware and driver configura-
tion.

A typical set of debconf parameters for a Swiss Debian installation with a Matrox
graphics card, and a USB mouse might be the following:

Parameter Value

X server driver 14 (mga)

X Keyboard (XKB) rules xfree86

XKB keyboard model pc105

XKB keyboard layout de_CH

XKB keyboard variant nodeadkeys
XKB keyboard options ctrl:nocaps
Mouse port [dev/input/mice
Mouse type ImPS/2

LCD device yes

Monitor configuration method medium

Best video mode 1280x1024 @ 60Hz
Video modes to use 5678910
Default colour depth 6 (24 bits)

Table 3.2:
A typical set of

debconf parameters

for the
xserver-xfree86

package for a Swiss

machine

o

3 Installing Debian the right way

Once configured, you should be able to start X using the startx command (avoid
running it as root). Alternatively, install the xdm package for a basic graphical login
(which should be preferred over startx?*.

3.3.2 Integrating automatic hardware detection

Answering these questions obviously requires knowledge about the available hard-
ware. As such, it may be asking too much of the administrator who concentrates
on software and does not particularily care about what powers the machine on the
inside. Two methods exist to aid the installing user with answering the questions
pertaining to devices and drivers. The first should be enough for most cases and
involves the xserver-xfree86 package to use a few other packages for hardware
auto-detection. The second method uses a separate package and a larger set of
helpers to seed the debconf database.

xserver-xfree86 auto-configuration

The xserver-xfree86 package suggests (see chapter 5.7.3) three utilities to deter-
mine the hardware of the local system: mdetect detects where the mouse device
is and what protocol it uses, read-edid scans the attached monitor for supported
modes, and discover allows for the automatic discovery of the graphics adapter
and its parameters.

If these three packages are installed prior to the configuration of xserver-xfree86,
the package will use them to aid the user in determining the correct values to use.
Any parameter which can be unambigiously determined by these tools will be set
accordingly, while debconf will skip the associated question. If the tools fail to
determine the hardware, the user has to provide the parameter. If a number of
possible values exist for a parameter, the user is given the choice; the xserver-
xfree86 configuration script is good at suggestion reasonable defaults.

To make use of the automatic hardware detection, you should install X in the fol-
lowing way (assuming that you will use x-window-system-core to pull in the core
components):

“# apt-get install discover mdetect read-edid
[...]
“# apt-get install x-window-system-core

[...1]

24A problem with startx is that it is called from a console login session. A malevolent hacker could
circumvent an X screen locker by killing the X server, or by switching to a virtual console and temporarily
suspending it. In both cases, the attacker would gain access to the account despite the screen locker.
Solutions include running exec startx instead (to replace the login shell with the X server, or using a
display manager such as xdm.

3.3 Configuring the X server |

When debconf asks you to configure the xserver-xfree86 package, you can choose
toletitattemptautomatic configuration of the mouse, screen, and graphics adapter
devices and drivers.

xdebconfigurator

The xdebconfigurator package provides a tool which ties together a number of
hardware detection methods, runs these in turn, and uses the findings to seed
the debconf database for the xserver-xfree86 package. It also provides sensible
defaults for all other parameters, allowing for automated installs.

To make use of the tool, install and run it prior to the X server:

“# apt-get install xdebconfigurator hwinfo mdetect read-edid
[...]

“# xdebconfigurator

[...]

“# apt-get install x-window-system-core

[...1

3.3.3 Dealing with unsupported hardware

The most common inconvenience experienced by users is the lack of support for
their display adapter. Debian continues to provide a very mature but also outdated
version of XFree86 (due to licencing issues), and the new X server produced by
the X.0rg Foundation will not become an official part of Debian until Debian etch
(although it will become available in testing/unstable soon after sarge's release).
Therefore, many recent developments in the X drivers sector are not available from
the Debian X server at time of writing, even though some drivers have been back-
ported by the Debian X maintainers. In addition, an increasing number of ven-
dors are providing non-free, binary drivers to draw the last bits of performance
from their devices (which is what competition forces them to do). Due to Debian's
commitment to free software, it cannot provide these drivers in its archive (see
chapter 2.3).

Still, it is often possible to make X work with a particular graphics adapter. This said,
a user installing a new Debian system does not necessarily want to spend hours
on the virtual console, trying to find a solution. Fortunately, the standard vesa
driver supports all modern graphics adapters, and can be used to get X running
with minimal effort and delay (albeit without hardware acceleration or OpenGL
support).

With a graphical user interface, the familiar browser, and other commonplace tools,
it is more convenient to research the challenge of how to make X support the

o

3 Installing Debian the right way

installed graphics adapter. In the mean time, the Debian installation can be used
for all tasks without complex graphical requirements.

If you prefer to use the modern X.Org server, you can also use the packages pre-
pared by Ubuntu. To prevent other Ubuntu packages from being pulled in, you
should probably pin the Ubuntu repository source to a low priority, and select the
hoary target release explicitly for the installation of the X server:

“# cat <<EOF >> /etc/apt/sources.list

deb http://archive.ubuntu.com/ubuntu/ hoary main
EOF

“# cat <<EOF >> /etc/apt/preferences

Package: *

Pin: origin archive.ubuntu.com

Pin-Priority: 50

EOF

“# apt-get update

[...]

“# apt-get install -t hoary x-window-system-core

[...1]

3.3.4 Customising the X session

The X server is usually invoked in one of two ways: a single, local session can be
started with startx from a virtual console. Alternatively, a display manager such as
xdm can be used to control the server display and manage login sessions, locally or
remotely.

Multiple display managers can be installed; the debconf-managed [etc/X11/de-
fault-display-manager file contains the path to the display manager executable
to be used by default. Debian starts its display managers with init.d scripts, rather
than by using a special runlevel (see chapter 6.3.1). These scripts only start the
corresponding display manager if it is the default.

Following the execution of startx, or a successful authentication with the display
manager, an X session is created. Traditionally, single sessions started from the con-
sole read initialisation commands from the [ete/X11/xinit/xinitrc file, while display
managers would use [etc/X11/Xsession. Debian takes a unified approach and uses
the latter for both. [etc/X11/Xsession eventually uses run-parts (see chapter 6.1.1)
to iterate and source all files under [etc/X11/Xsession.d. At various times during
the process, [etc/X11/Xsession.options is checked for configuration options, which
are detailed in the Xsession.options (5) manpage. By default, the following intiali-
sation steps configure a X session on the Debian system:

1. If startx was called with the failsafe argument and the allow-failsafe is set
in Xsession.options, the initialisation sequence merely spawns a terminal

| 100

3.3 Configuring the X server |

emulator and exits?®. If startx is given the path to an executable, the ex-
ecutable is invoked instead of the usual X session. Client arguments which
are not path specifications are passed as arguments to a terminal emulator,
which is started instead of the default session.

2. All resources from files in [etc/X11/Xresources are merged with xrdb. If
Xsession.options specifies allow-user-resources, “/.Xresources is also
merged.

3. If the allow-user-xsession is set, and ~/.xsession exists, it is executed or
sourced, depending on whether the executable bit is set. If the file is not
present, "/ Xsession is tried. If neither of these two files exists, the process
starts the default session manager, or, if absent, the default window man-
ager. If neither is available, a terminal emulator is started.

4. If ssh is installed and the use-ssh-agent option set in Xsession.options, the
X session is started as a child of ssh-agent.

The Debian archive contains a number of session and window managers, as well asa
selection of terminal emulators. In all cases, the default to use is determined with
the alternatives system (see chapter 6.1.4). The corresponding canonical service
names are x-session-manager, x-window-manager, and x-terminal-emulator,
respectively. Thus, to use fluxbox as the default window manager, you can issue
the following command:

“# update-alternatives --set x-window-manager /usr/bin/fluxbox
Using ' /usr/bin/fluxbox’ to provide ’'x-window-manager’.

When the allow-user-xsession is set, users can override the default by providing
a session initialisation script in "/.xsession. A simple example follows, which starts
xscreensaver, prompts for the Secure SHell (SSH) passphrase to register a key with
the SSH agent, and executes fluxbox:

~“$ cat <<EOF > ~/.xsession

nice -20 /usr/bin/xscreensaver &

if [-f $HOME/.ssh/id_dsa -o -f $HOME/.ssh/identity]; then
export SSH _ASKPASS=/usr/bin/ssh-askpass
/usr/bin/ssh-add < /dev/null || exit 1

f£i

exec /usr/bin/fluxbox
EOF

Z5At time of writing, failsafe support was broken (see http://bugs.debian.org/297002). Please exe-
cute startx [usr/bin/x-terminal-emulator to get the same effect.

o

Debian releases and archives

Look, this is Debian. They don't release things until you have to
fire rockets at the thing to stop it from working.
— MrNemesis on Slashdot

Probably the two most common facts to hear about Debian is that it is hopelessly
outdated and stable as a rock. In the Debian world, these two traits are actually
one and the same, and it would be difficult to argue against either one. Already at
the time of release of a new Debian version, the software it contains is usually not
current. In the world of free software, where improvements, fixes, and new fea-
tures are added to projects on a daily basis, this may have negative consequences.
However, in productive environments, new features and improvements can often
backfire. Thus, the Debian stable release focuses on software stability, rather than
trying to surf the cutting edge with possibly buggy and untested software. Only
security-related bug fixes are allowed in.

103 |

4 Debian releases and archives

Debian stable is not the only Debian release. In addition, the archive provides two
other ones: testing and unstable. While these are not really released in the way
that stable is frozen and termed official, they are publicly available and in use by
many people'. Before inspecting each of the Debian releases in turn, it is important
to define what stability means with respect to Debian, or what instability the name
unstable is trying to coin.

In the context of a software and distribution archives, stability can refer to one of
three aspects:

Software runtime stability
Most commonly, the term stability is used to refer to the reliability and ro-
bustness of software contained in the archive. Stable software is mature
software with an extremely low number of bugs (there is no such thing as
bug-free software). Runtime stability is what keeps users happy.

Software feature stability
Stability may also refer to the feature set provided by a software. In this
definition, stable software does not introduce drastic changes or radical new
features from one release to the next. Administrators appreciate feature
stability because it allows them to fix bugs with newer versions without
risking unwanted changes to the behaviour.

Archive stability
A software distribution archive can be termed stable if the set of packages
or pieces of software it provides does not fluctuate. Furthermore, archive
stability also includes the relationships among the contained packages. A
stable software distribution archive does not grow or shrink in size, and up-
dates only affect individual packages, not larger parts of the archive. Archive
stability allows for official releases to happen.

The canonical Debian release names “stable” and "unstable" refer to the second
and third definition of stability, although the first sense of stability is implicit to
a certain extent. While Debian developers upload new packages to unstable on a
daily basis, and drastic changes to the packages and pieces of software they provide
are possible (albeit rare), once a Debian release becomes stable, no packages will
be added or removed to or from the set. Furthermore, as a function of Debian's
security update policy (see chapter 7), updates to individual packages are limited
to security-grade bug fixes and must not affect the feature set (or fix non-security)
bugs. Fixes to inconvenience bugs, new versions, and new software as a whole are
held back until the next Debian release is promoted to Debian stable.

The first of the above three aspects of stability results from the Debian release
cycle, which we shall unfold in an instant. For a package to be included in stable,

The term "release” is frequently used to refer to self-contained archives in the domain of software
development.

| 104

4.1 Structure of the Debian archive |

it must be free of critical bugs and have received several months worth of testing.
While the runtime stability of a software is purely in the hands of the upstream
author, the rigorous testing and quality control applied throughout the Debian
release cycle ensures an acceptable level of runtime stability across all programmes
included in Debian stable.

The three archives, stable, testing, and unstable are naturally related. A normal
package traverses all three (in reverse order). To help understand the process, it is
useful to look at a package life cycle, from the moment the maintainer finishes and
uploads it until it is immortalised on the media of an official Debian release.

4.1 Structure of the Debian archive

First, let us identify the different directory hierarchies and their purpose in the
Debian archive. The archive is split into two main hierarchies, rooted at /pool and
[dists. All the packages and source files reside under /pool, whereas the index files
are located in [dists. This separation was instituted when testing was introduced
(which happened between the release of potato and woody). Some packages
have equivalent versions in multiple releases and it is less of a waste of space to
store packages in a common pool and reference them individually from the release
indices.

An excerpt of the structure of a Debian mirror is shown in the tree diagram in
figure 4.1.

/debian ‘

apache2-common_2.0.49-1_1386.deb .

binary-i386 ‘

. Packages
. Release

apache2_2.0.49-1_i386.deb [)

apache2_2.0.49.orig.tar.gz .
apache2_2.0.49-1.diff.gz

apache2_2.0.49-1.dsc .

D —
- “ . Packages

\ --p3
[...] . ! unstable ‘ . Release

Figure 4.1:

A tree diagram
showing excerpts of
the Debian archive

105 |

o

4 Debian releases and archives

4.1.1 The package pool

The [pool hierarchy is divided up into three sections: main, contrib, and non-free.
The hierarchy is further subdivided at the next level into subtrees according to the
first letter of the contained packages. Within each single-letter directory there are
directories for each Debian source package. For instance, files related to apache2
are located in [pool/main/afapache2. An exception is made for libraries, which
sort into different subtrees, rooted at lib? (where the question mark is a wildcard).
For example, binary packages generated from the libxml source package are found
below [/pool/main/libx/libxml.

At this point it is useful to identify the two different types of package found in
Debian: source and binary packages. At the same time, there are native and non-
native or external packages. It will all become clear in an instant! The maintainer
transforms a software into a source package. Source packages are not The Debian
package format (DEB) files but rather the combination of their source files. In the
case of an external (non-native) package, a source package is made up of:

*.orig.tar.gz
The .orig file is a tarball containing the software in the way its (upstream)
author released it.

*diff.gz
The diff file encapsulates the changes needed to debianise a software. After
applying the patch (a diff file is a patch), the software can be packaged for
Debian with standard Debian tools.

*.dsc
The dsc file provides the essential information to describe a source pack-
age, including the MD5 sums of the orig and diff files. It is signed by the
maintainer and authenticates an upload?.

Software that was specifically written for Debian does not need to be debianised.
Therefore, the diff file does not exist and the orig file is replaced by a tarball, which,
when unpacked, can be used directly to produce a Debian binary package.

With the information stored in the ./debian subdirectory of a debianised source
package, the Debian maintainer tools can produce a DEB file containing the soft-
ware installable on and tailored for a Debian system. A DEB file is always a single
binary package. A Debian source package can produce more than (but at least) one
binary package. For instance, many libraries are split across three binary packages
all generated from the same source package: libfoo1, libfoo-dev, and libfoo-doc.

2In combination with the buildd's, the dsc file serves to identify an upload entity. For architectures
other than the maintainer's native one, the dsc file is signed by the administrator of the buildd (see
chapter 4.2).

| 106

4.1 Structure of the Debian archive |

The Debian archive currently contains about 15000 binary packages generated
from about 10000 source packages.

4.1.2 Package indices

The [dists hierarchy provides the index files needed for APT to work and find DEB
files to download®. A separate index is provided for each combination of the fol-
lowing four parameters:

= the release name, such as stable or sarge.
= the section, such as main.
= the target architecture.

= package type: source or binary.

The archive uses subdirectories to map these parameters to files, so finding the
appropriate index file is a matter of climbing down the directory tree rooted at
[dists based on these parameters.

On the first level there are the different releases with symlinks for the canonical
names. For instance, when sarge is released, stable will be a symlink to sarge. Addi-
tional directories at that level include experimental and stable-proposed-updates.
We will return to these in chapter 4.4.1 and chapter 4.4.4 respectively.

Below each release directory there are subtrees for the three sections which resem-
ble the [pool hierarchy. The separation of all files within each release according
to their degree of freedom is an important prerequisite to being able to produce
or deploy archive snapshots with specific licence requirements. Also in the release
directories are the Contents files, which map the files installed on the filesystem
to the providing package. Tools such as apt-file (see chapter 5.4.4) use this in-
formation, and grep can usually extract all necessary information from this file as
well.

In each section's directory, there are several subdirectories for the indices of binary
packages as well as the directory for the source index. The index file is called
Packages in all cases and contains the information of all available packages in the
part of the archive identified by the four parameters.

For instance, [dists/stable/main/binary-i386/Packages contains the package de-
scriptions for all binary packages in main, which can be installed as part of the sta-
ble distribution on the i386 architecture. Similarly, /dists/sid/contrib/source/Pack-
ages references all source packages in contrib which are contained in sid. The
architecture does not matter for source files.

3The package indices are not to be confused with the findices directory found on the mirror; the
latter indexes file in the mirror filesystem, while package indices index Debian packages stored therein.

107 |

o

4 Debian releases and archives

4.1.3 The Release files

The [dists directory of a Debian mirror is home to the index files for the various
releases provided by the mirror. Each such release is additionally described by a
Release file, which contains important data about the release. The Release file of
the woody's third release looks like this:

“# cat Release

Origin: Debian

Label: Debian

Suite: stable

Version: 3.0r3

Codename: woody

Date: Mon, 25 Oct 2004 17:56:29 UTC

Architectures: alpha arm hppa 1386 ia64 m68k mips mipsel powerpc s390 sp
arc

Components: main contrib non-free

Description: Debian 3.0r3 Released 25th October 2004
MD5Sum:

[...]

The Release file is used mainly by APT, which determines the architectures and
components available from the mirrors specified in [etc/apt/sources.list using these
files. Also, when mixing releases (see chapter 8.2), the various data can be used to
specify criteria for pins. Finally, the file contains the checksums of all index files
associated with the release. As shown in chapter 7.5, these checksums can be used
to verify the integrity of packages downloaded from a Debian mirror.

4.2 The package upload

A Debian package has a life cycle, and a long way to go before it is distributed as
part of the Debian stable release. Figure 4.2 illustrates how the different archives
and components of the Debian infrastructure work together. You need not under-
stand it all, but it may come in as a handy reference.

Following the debianisation process, a maintainer transfers the source files (along
with the DEB file for the build architecture*) to one of the available upload queues.
On the side of the accepting server, the Debian queue daemon moves the files to
the unchecked directory at regular intervals. This directory is the domain of katie
and friends®, which verify that the uploaded package is signed with a trusted signa-
ture, and run a number of sanity checks on the package. On successful verification,

4This is required to make sure that no maintainer uploads without building the package locally first.
At time of writing, the binary packages created by the maintainer directly propagated into the unstable
archive. For all other (applicable) architectures, the build daemons are expected to generate the binary
package(s) from the source package. Please see chapter 7.5 for security implications.

Skatie and friends are a set of scripts named after female celebrities which work hand

| 108

o

4.2 The package upload |

the upload is moved to the incoming directory, which is accessible over the Web®,
but which should not be used as a package source except in special circumstances.

) ~ legend Figure 4.2:
i ——— standard process —>»@ package installation
security upstream R - .
patches - - - - special / optional process ——< maintenance, responsibility The life Cyc/e of a
—> (manual) package upload exchange, help, discussion .
A —P automatic processing submission, notification Deb/an PGCkage
= - (based on the work of

developer /
maintainer

Kevin Mark)
“t

v

security \O Lzl -2
incoming

unstable

unstable

testing unofficial archives

testing ~__| testing

security

-
user /
- peekeers

When an upload hits incoming, the build daemons (referred to as buildd) are noti-
fied”. There is at least one build daemon for each architecture that Debian supports
(see chapter 4.5), and its job is to compile the software and produce a DEB file spe-
cific to the respective architecture. The resulting DEB is accompanied by a file
describing it (the .changes file?, which has to be signed by the administrator of the
buildd). Finally, the package file is submitted to the upload queue and trickles into
unstable as previously noted.

stable

security updates

On a daily basis, dinstall moves available package files from incoming to the ap-
propriate locations of the Debian pool (the /pool directory of every Debian mirror).
It then updates the index files of the archive. Subsequently, the new packages are
available from the unstable archive via APT.

in hand on the various tasks surrounding the management of the Debian archive. See
http://cvs.debian.org/dak/?cvsroot=dak.

Ghttp://incoming.debian.org

"The status of the individual buildds is available at http://www.buildd.net.

8The .changes file is generated as part of the build process for each architecture and identifies a
(set of) binary package(s). It must be cryptographically signed by a Debian developer for the package(s)
to be considered for inclusion in the Debian archive. See chapter 9.2.12.

109 |

4 Debian releases and archives

4.3 The official releases

Each of the three official Debian releases — stable, testing, and unstable — has
specific traits related to the role the release plays during the package life cycle and
the overall project. As a package usually enters the stable release by way of the
unstable and testing archives, the following sections provide an overview of the
three official releases in the same order that a new package encounters them on
its way into the Debian system.

A Debian system can be installed and maintained using any of the three releases
as package sources. In chapter 5.4.1 you see how a single release is selected, and
chapter 8.2.1 describes how they can be combined. Note that all three of the
official releases give you archive signatures for the index files of the corresponding
archive (see chapter 7.5). In appendix C.1.1 you can find information to help you
verify the keys used for the signatures.

4.3.1 The unstable release

As previously mentioned, the unstable release is in a state of continuous change.
unstable, which is also called sid®, is the workspace of Debian development. New
packages percolate into the archive and become part of sid in a somewhat chaotic
fashion. As a result, dependencies between packages break, only to be resolved
later, conflicts appear and disappear, and packages possibly do not meet the quality
standards of the rest of the archive. Furthermore, while maintainers take care not
to inconvenience users tracking the unstable release, sometimes drastic changes
in the packaged software hit the archive and can cause serious breakage on the
target system.

The term “unstable” also applies to the packaging of software. Occasionally, a main-
tainer uploads a package in a rush, overlooks a detail or makes a mistake in the
packaging. The resulting package — if it makes it past the sanity checks — usually
does not play ball with the local system, or installs horribly dysfunctional software.
Even policy violations are possible. It is important to note that such policy viola-
tions are mostly restricted to misplaced files, but it should go without saying that
unstable is not suitable for production environments. Having said that, most De-
bian developers run unstable on their primary machines. If the occasional failed
dependency resolution is not fatal, unstable is quite a nice way to experience De-
bian — especially when there is a desire to contribute back to Debian with bug
reports or interesting arguments on mailing lists.

In fact, it is unlikely for unstable to be more fragile than other operating systems,
which are based on young software and whose developers try hard to publish the

9Sid is the name of the evil boy in Pixar's Toy Story who continuously breaks toys. It is thus an
appropriate name for a release that can break a system. Conveniently, sid is also an acronym for "Still
in development”

4.3 The official releases |

system as soon as possible. It goes without saying that short development cycles
(such as Debian unstable) do not leave much room for testing, and therefore often
result in a plethora of bugs.

Note that "unstable" refers primarily to the archive and the packages, and only
indirectly to the software itself: software provided as part of Debian unstable may
in fact be quite stable since packages in unstable usually correspond to official
releases of the software. Thus it depends on the software author's quality standards
how much runtime stability a programme needs to be part of an official upstream
release. Often, a software will be available in two versions: an official release (which
is often called “stable”), and a development release. If the latter is of any interest (or
if the upstream authors are overly conservative with version numbering), chances
are that a maintainer will provide pre-release packages for inclusion in Debian in
addition to the official version. While not a rule, the development version usually
comes in *-snapshot packages directly from the version control system to allow
Debian users to be truly on the bleeding edge. For example, gcc-snapshot provides
a bleeding edge version of the GNU compiler, while gce provides a version deemed
stable by the gcc developers.

As regards security updates, unstable enjoys a similar kind of attention as the
stable release. While the security updates published by the security team might be
restricted to the version in the stable release, a new and fixed version will usually
become available in short time, and the maintainer will attribute special priority to
uploading a fixed package to unstable.

Dealing with an unstable system is not very different from dealing with an in-
stallation of Debian stable. Upgrades for unstable are available through APT, but
it is important to keep in mind that package upgrades in unstable have received
considerably less testing than packages distributed as part of an official upgrade to
Debian stable.

As the dependency information of packages in unstable can change, systems based
on packages from the unstable archive should be upgraded with apt-get --show-
upgraded dist-upgrade rather than with the plain APT upgrade mechanism. The
--show-upgraded option is not needed but advisable to be able to inspect the
changes proposed by APT before enacting them. In addition, tools such as apt-
listchanges and apt-listbugs (see chapter 5.11.2 and chapter 5.11.3 respectively)
are invaluable in assessing whether an upgrade is worth the trouble or involves
unnecessary dangers.

4.3.2 The testing release

An upload to the Debian archive is accompanied with an urgency specification,
coded into debian/changelog within the package. Normal uploads are of low ur-
gency, while security updates enjoy prioritised treatment due to their high (or even

o

4 Debian releases and archives

emergency) urgency. The urgency of an upload also determines when the uploaded
version of a particular package moves from unstable to testing.

Depending on the urgency, a given version of a package must have been in unsta-
ble 10 (low), 5 (medium), 2 (high), or 0 (emergency'®) days before being considered
for testing. When a package is considered for promotion to testing, a number
of other criteria have to be met before it is moved. If a previous version of the
same package already exists in testing, the new version must have been built on
at least all architectures supported by the previous package, and it must not have
more release-critical bugs (see chapter 10.6.3) filed against it than the package in
testing. Furthermore, all of the package's dependencies must be satisfiable within
testing, and its declared relations cannot break another package already in testing.

When all these criteria have been met, the archive scripts move the package to
testing, replacing any previous version''. testing is therefore generally not affected
by the childhood diseases of packages as they hit unstable, but it is also not as
current as unstable.

testing seems like the ideal release for all but the most critical applications. It is not
on the bleeding but on the leading edge, and yet its contents has been scrutinised
more carefully than the software from unstable. 1t also fluctuates less than unsta-
ble, which provides for easier maintenance. In the past, the major disadvantage of
testing was the lack of security support. Security updates may already be delayed
when they percolate to the unstable archive, and at least another two day delay is
imposed before they are accepted into testing — provided all other requirements
are met. Therefore, security updates in testing are sometimes delayed by several
days, which is an important point to consider. Obviously, a home computer with
a dial-up line to the Internet still qualified for a testing installation, but machines
with a permanent Internet connection that offer services to the world, or machines
that host multiple untrusted users are probably better off using stable, or unstable
if that is an option.

Leading up to the release of sarge, the Debian testing security team has formed
to address this shortcoming. At time of writing, the team is still operating unoffi-
cially, mainly coordinating through the secure-testing-team mailinglist hosted on
lists.alioth.debian.org. An online record' with daily updates keeps track of out-
standing security issues that persist in the testing archive. Depending on progress,
etch could be supported with security updates while it is the testing release.

Similarly to unstable, it is advisable to use apt-get --show-upgraded dist-upgrade
in place of apt-get upgrade because of the fluctuation in the set of packages pro-
vided in testing.

9Dye to a limitation in the archive management script britney, it actually takes a day for emergency
uploads to trickle into testing.

Previous releases are available in the daily snapshots of the archive: http://snapshot.debian.net

Zhttp://merkel.debian.org/"joeyh/testing-security.html

4.3 The official releases |

4.3.3 The stable release

Whenever the goals for the next release have been met'?, testing is frozen. During
the ensuing freeze cycle, no new features are allowed to enter testing, and the
developers concentrate on fixing bugs and providing additional translations. Espe-
cially bugs with severity above and including serious have to be fixed. These bugs
are labelled RC and must be solved before a release can be made. Packages with
outstanding RC bugs may be removed from the testing release during the freeze
cycle.

Once testing is ready for release, the previous stable release is obsoleted (but
archived', and the stable and testing symlinks changed to point to the next re-
lease generation. For this reason, it is advisable to hardcode the release codename
in [etc/apt/sources.list, rather than its canonical name. Specifically, for a sarge
system, | recommend changing all occurrences of “stable” with "sarge!” While De-
bian release is unlikely to catch you off-guard, using the code names for the APT
archive allows an upgrade to the next official release on your own schedule, and
not when the symlinks in the archive change. When the next release follows, all
you need to do is replace “sarge” with “etch” and then dist-upgrade as usual (see
chapter 5.4.7).

As soon as a release has become the new stable, it becomes immutable. Security
updates are kept in a separate repository (see chapter 7.2), and neither the set of
packages nor the packages themselves are subject to change until the next offi-
cial release comes around. It may seem a little peculiar to have security updates
kept separate, but as with everything else, there is a reason for this procedure. Not
every administrator wants security updates. Larger corporations frequently main-
tain their own internal release and have policies in place that require the ability to
precisely identify the state of their machines. In such a case, fixes first need to be
scrutinised before being provided internally. If the underlying archive (stable) were
to change every other day, it would be impossible to maintain a consistent instal-
lation across hundreds of machines and simultaneously provide custom extensions
and updates.

At semi-regular intervals, security and other proposed updates (such as trivial bug-
fixes) are merged with the last official release to create the next revision of the
official release. These revisions (“stable dot releases” or simply “r-releases,) are
identified by a specific suffix to the version number of the current stable release.
For instance, when this book was written, the official Debian release was Debian
3.0r3, which is the third revision of the release after woody became stable. When
a new dot release is published, it replaces the previous stable archive.

3http://release.debian.org

14htt|o://archive.debian.org is the official archive address, and many mirrors feature [debian-
archive as a sibling of /debian, which holds /dists and /pool. At time of writing, the primary site has
not been reachable for a long time, and inquiries about its status have remained unanswered. Available
mirrors are listed on the distribution archives web page: http://www.debian.org/distrib/archive

113 |

o

4 Debian releases and archives

4.4 Unofficial APT archives

In addition to the three archives corresponding to the three official releases stable,
testing, and unstable, a number of other APT repositories exist, and can be easily
integrated with APT on systems that need them. The following sections introduce
the most important of these. While it is certainly possible to run Debian systems
for all purposes without these archives, the packages they contain may be needed
at times. In any case, it is good to know about their existence and purpose.

4.4.1 The experimental archive

The Debian archive also hosts the experimental release, which contains packages
that are not ready for public use, not even as part of unstable. Developers use this
space to share packages as part of the development cycle. Unless you want to take
part in this development (e.g. as a tester, or more actively), you can safely ignore
the experimental archive.

The following lines in [etc/apt/sources.list enable APT to install software from ex-
perimental (see chapter 5.4.1). As always, please make sure you use your closest
mirror instead (see chapter 5.4.1).

“# cat <<EOF >> /etc/apt/sources.list

deb http://ftp.debian.org/debian experimental main
deb-src http://ftp.debian.org/debian experimental main
EOF

“# apt-get update

The experimental archive contains new major versions for some of the software
found regularly in the Debian archive. For instance, APT 0.6 (see chapter 7.5.2) re-
sides in experimental, while version 0.5 is available from the three release archives.
The experimental archive is automatically deprioritised by APT so there is no need
to worry about upgrading all your packages to the available experimental versions.
This is accomplished with a special directive in the archive's Release file. See chap-
ter 8.2.1 for more information:

“$ getfile /dists/experimental/main/binary-i386/Release
“$ grep NotAutomatic Release
NotAutomatic: yes
“$ apt-cache policy apt
apt:

Installed: 0.5.27

Candidate: 0.5.27

Version Table:

0.6.25 0
1 http://ftp.debian.org experimental/main Packages
**x (0.5.27 0

4.4 Unofficial APT archives |

500 http://ftp.debian.org sid/main Packages
100 /var/lib/dpkg/status

To install software from the experimental archive, pass the --target-release ex-
perimental option to APT:

“# apt-get install --target-release experimental apt
[...1]
Setting up apt (0.6.25) ...

4.4.2 The volatile archive

Debian's stable archive does not change beyond security updates, and these do not
add new features (see chapter 4.3.3 and chapter 7). While administrators generally
value this stability highly, certain types of software must change over time, even on
the most stable systems. Prime candidates of such software include virus scanners,
spam filters, and other tools which operate on data that is expected to change
(such as whois).

While | was working on this book, a number of Debian developers started to con-
ceive a strategy of how to deal with software that needs to change to remain
usable. Such software was termed to be “volatile’ A draft of the strategy is avail-
able at http://volatile.debian.net, which also hosts an APT-accessible archive for
volatile software.

The goal of the volatile archive is to become a parallel to the security archive, and
allow administrators to pull in updates with the same confidence with which they
use the security archive. Changes will be limited to essential features and will only
happen in close cooperation with the respective maintainers. Furthermore, security
support for the packages in the volatile archive will be available.

To use software from the volatile archive, tell APT to use one of the mirrors found
in the official mirror list™, and update APT

“# cat <<EOF >> /etc/apt/sources.list

deb http://volatile.debian.net/debian-volatile sarge/volatile main
deb-src http://volatile.debian.net/debian-volatile sarge/volatile main
EOF

“# apt-get update

[...]

The volatile archive uses a custom version scheme designed to integrate and not

conflict with the official packages from the main Debian archives (see chapter 5.7.5).

All index files in the archive are signed with cryptographic signatures (see chap-
ter 7.5), and information to validate the key used may be found in appendix C.1.2.

Shttp://volatile.debian.net/mirrors.html

115 |

o

4 Debian releases and archives

4.4.3 The amd64 archive

Even though the amd64 architecture is not yet officially supported by the Debian
project, the port is ready to be used (see chapter 4.5.2). You can find installation
and maintenance instructions at the port's web page'®.

Until it can be integrated with the main Debian archive, the amd64 architecture is
available from a separate APT repository. You can find details, as well as a list of
mirrors online'”. The archive's index files are signed with a separate key to ensure
package integrity (see chapter 7.5). Information about the key may be found in
appendix C.1.2.

4.4.4 The *-proposed-updates archives

The two directories stable-proposed-updates and testing-proposed-updates pro-
vide a way for developers to circumvent the normal package cycle via unstable
and testing into stable. Packages uploaded to these directories are considered for
manual inclusion by the respective release manager. Specifically, stable-proposed-
updates serves as the basis for the next dot release of Debian (see chapter 4.3.3).

Even though both directories host proper APT repositories, you are herewith dis-
couraged from using them directly. Software in either of these bypasses the requ-
lar Debian quality assurance surveillance and does not receive the same amount of
testing as software that progresses via unstable.

4.4.5 The backports.org archive

Compared to testing and unstable, the Debian stable release often contains out-
dated software. Furthermore, many packages are not available at all because they
have only been packaged recently. Even though single DEB files can be manually
downloaded from newer releases, versioned dependencies make this impossible. For
instance, upgrading postfix to version 2 (e.g. for policy server support) is not pos-
sible on a woody system without pulling in other packages from the next Debian
version (sarge):

“# getfile pool/main/p/postfix/postfix 2.1.5-5_1386.deb

“# dpkg --install postfix 2.1.5-5_1i386.deb

[...]

dpkg: dependency problems prevent configuration of postfix:
postfix depends on libc6 (>= 2.3.2.dsl-4); however:
Version of libc6 on system is 2.2.5-11.5

[...1]

6http://www.debian.org/portsfamd64
http://amd64.debian.net/README.mirrors.html

4.4 Unofficial APT archives |

Undoubtedly, users of Debian stable are not going to be in favour of upgrading
libco; it would be a major change to a system, puting its stability at risk. An
alternative would be to download the source and recompile the package against
the libraries available in stable. If you have to do this more than once, the process
becomes tedious and error-prone.

The backports.org archive'® attempts to close this hole and distributes packages
that have been recompiled in exactly this way. To get postfix version 2 installed on
a woody system, the following line in [etc/apt/sources.list is needed. Please use
the mirrors page'® to find the mirror closest to you, and use that mirror instead of
the main distribution server.

“# cat <<EOF >> /etc/apt/sources.list

deb http://www.backports.org/debian woody postfix
EOF

“# apt-get update

“# apt-get install postfix

[...1

Setting up postfix (2.1.4-2.backports.org.l) ...
[...1

As you may note, the required package is listed as part of the repository spec-
ification. The backports.org archive contains more than 450 packages, and you
probably do not want all your installed packages to be upgraded to the latest back-
port?°. Thus, backports.org allows you to specify precisely the set of packages you
want to include. You can also specify multiple packages on a single line:

“# cat <<EOF >> /etc/apt/sources.list
deb http://www.backports.org/debian woody postfix subversion
EOF

As we will be discussing the APT sources syntax in chapter 5.4.1, you can take the
above line as a way of making the woody backports for postfix and subversion
available for direct installation with APT from the backports.org archive. Moreover,
the line also ensures that backports of all dependencies can be installed with similar
ease, if necessary.

Please note that the packages provided in the backports.org archive are not offi-
cially endorsed and come without any warranty. backports.org is not an official
part of the Debian project, even though it is maintained and supported exclu-
sively by official Debian developers. In particular, its packages have not undergone
standard Debian quality assurance verifications, and have not received the same
amount of testing as official Debian packages.

8http://www.backports.org
9http://www.backports.org/mirrors.html
20)f you do, you can use the pseudo package name all in [etc/apt/sources.list instead.

117 |

o

4 Debian releases and archives

That said, the source used to produce the packages in the backports.org archive
comes directly from the official Debian archive and should therefore be as secure
as the original version in the respective archive. Still, it is important to keep in
mind that an extra delay exists for security fixes to percolate to the backports.org
archive.

As a last note, if you are using a backported package from this archive, please re-
frain from reporting bugs against the Debian BTS. Instead, use the changelog.Deb-
ian.gz file to figure out the backporter's address to which to submit any bug reports,
or send them to the backports.org mailing list?'. The list is also the primary source
of support for packages from the backports.org archive.

4.4.6 The apt-get.org directory

Setting up an APT repository is quite simple (as shown in chapter 9.3). Over the
years, unofficial repositories have sprung up all over the place, providing useful
Debian packages that are not included in Debian, or which are modified for specific
purposes. The web site at http://apt-get.org serves as a directory for these sites.

The database can be searched by architecture and package name (or even a reg-
ular expression). The result encompasses all matching and registered repositories.
For each entry, a short description, the matching package(s) (along with version
information), and the necessary lines for [etc/apt/sources.list are provided. It is
impossible to make an authoritative statement on the security, integrity, or sta-
bility of packages in the archives referenced from apt-get.org archive directory. If
you use packages from sources listed here, you should be aware that they are pack-
aged by people not necessarily connected to or supported by the Debian project.
In particular, it would not be difficult to register an APT archive containing tro-
janed software. The directory has no guidelines, restrictions, or quality verification
procedures governing the archives it lists. You have to decide for yourself which
repositories you want to trust.

4.4.7 Christian Marillat’s multimedia archive

Due to the freedom requirements on Debian packages, which the Debian project set
in stone in the DFSG, many useful multimedia programmes cannot be distributed
with the official Debian archive. Even though Debian is working hard with the
respective authors to release the software under a free licence, progress is slow at
times.

Christian Marillat, a Debian developer, maintains an unofficial Debian archive with
prominent multimedia content. His archive, which is described on his web page??,

2Thttp://lists.backports.org
22http://debian.video.free.fr

4.5 Architecture support |

is host to popular software, such as Mplayer, lame, transcode, and various video
codecs. Christian maintains packages for this software unofficially, which is more
of an indication of the level of support he can provide, than the quality of the
packages themselves. Christian is an official Debian developer, and his archive is
signed to allow for integrity verification (see chapter 7.5).

As a side note, Mplayer is actually available under a DFSG-compatible license and
official packages have been prepared at time of writing of this book. Unfortunately,
sarge will not include these packages.

4.5 Architecture support

Although the consumer market is full of computers powered (and heated) by deriva-
tives of Intel's x86 architecture, PowerPC machines, and the latest generation of
64 bit processors by AMD and Intel, a significant number of other architectures
also profit from the support by the Linux kernel. Linux is gaining popularity as
operating system for embedded devices (e.g. with arm or mips processors), profes-
sional servers (e.g. using sparc, alpha, and hppa chips), and entire mainframes (e.g.
S/390-based). All of these architectures are supported by Debian, as well as some
others.

Nevertheless, the Linux kernel does not make up an operating system by itself.
The kernel is merely the interface between hardware and the user-space soft-
ware. As large parts of the common user-space software (as well as the kernel
itself) are written in medium-level languages (which require a compiler to gener-
ate processor-specific assembly code), sensible support for a processor architecture
requires the support by the kernel as well as by the entire user-space software col-
lection that makes up a Unix system. As the "universal operating system," Debian
GNU/Linux extends the architectural support of the Linux kernel with the GNU
user-space utilities on eleven different processor architectures. More supported
architectures are in preparation.

To support an architecture means that all of Debian has been enabled to work on
that specific architecture. Moreover, it also means that the installation feels like
any other Debian system, independently of the processor architecture powering
it. Therefore, the Debian operating system can be seen as a layer of abstraction,
allowing unified system administration across different types of machines. With
the exception of packages not applicable to all architectures (such as memtest86,
a memory tester for the x86 architecture), all packages available in the archive
have been built for every one of the eleven supported architectures.

The combination of Debian, the underlying kernel, the user-space collection, and a
processor architecture is called a "port” of Debian. The official Debian GNU/Linux
ports (the architectures on which Debian GNU/Linux runs)?® are:

Zhttp://www.debian.org/ports

119 |

o

4 Debian releases and archives

i386
Being the first architecture supported by Linux, the IA-32 architecture found
on x86-compatible chips by AMD, Cyrix, Intel, and others, is also Debian's
most popular architecture.

iab4
Together with HP, Intel finally abandoned full x86-(backward-)compatibility
with the 64-bit IA-64 architecture. Debian started supporting ia64 with the
woody release. The ia64 port allows the use of 32 bit code through software
emulation.

powerpc
Out of the cooperation between Apple, IBM, and Motorola grew the PowerPC
chip, which powers IBM's RS/6000 line as well as Apple's PowerMac series.
Support for the powerpc architecture was added in potato.

m68k
The Motorola 68000 series of processors powers a wide variety of computer
systems, most notably the sun3 workstation series, as well as the personal
computers by Amiga, Apple Macintosh, and Atari. Debian added support for
the m68k architecture with the hamm release.

sparc
The Sun SPARC architecture powers the Sun SPARCstation workstation series
as well as some models of the sun4 family. Similar to the powerpc port, the
sparc architecture sports a 64 bit kernel but comes with a 32 bit userland. As
an add-on to the sparc port, the sparc64 sub-architectures aims to enable
64 bit user-space applications. Debian features support for sparc since the
release of slink.

alpha
Also with slink came support for the 64-bit Reduced Instruction Set Com-
puter (RISC) architecture Alpha, developed by Digital (Digital Equipment Cor-
poration, DEC).

arm
The ARM processor is a low-power RISC chip by Acorn and Apple. Later, Dig-
ital and Intel joined to produce the improved StrongARM chips based on the
arm architecture. First supported in potato, ARM processors are commonly
found in mobile and embedded devices.

mips
Used primarily in SGI machines, Cisco routers and gaming devices by Sony
and Nintendo, this RISC chip has been supported since woody.

| 120

4.5 Architecture support |

mipsel
The "little-endian” brother of the mips architecture, found primarily in DEC-
stations, also joined the Debian architectures family with woody's release.

hppa
Hewlett-Packard's PA-RISC architecture found support from Debian with the
woody release. The hppa architecture is mainly found in HP machines run-
ning HP/UX (or Debian).

s390
The IBM S/390 mainframe (reborn as eserver zSeries in 2001) was officially
adopted by Debian a short time later with the woody release. The 64-bit
architecture power highly powerful chips optimised for parallel computing.

The advantages of supporting multiple processor architectures are self-evident.
First, Debian gives a larger user base the ability to run Linux, as little to none vi-
able user-space collections exist for users of non-Intel processor machines. Second,
corporations and institutions, whose IT infrastructure has grown over years with a
museum-like diversity of server architectures, are able to deploy Debian as a single
operating system across all existing hardware. Thus, the costs of unifying system
administration are kept as low as possible with Debian.

4.5.1 80386 — the processor

With gee-3.3 1:3.3ds6-0pre6 (and also in some versions of gee-3.2), the compiler
started using the bswap, xadd, and cmpxchg instructions for code optimisation.
These instructions are not available on real 80386 processors, but were added to the
Intel instruction set with the 80486 processor series. With the packages for kernel
versions 2.4.24 and 2.6.0, Debian added a patch to its Linux kernels to simulate
these instructions in software on true 80386 processors. Unfortunately, the patch
is known to be buggy and somewhat unmaintained.

The 80386 is an incredibly old and slow processor, but Debian would like to con-
tinue its support (it actively supports other architectures that are even less power-
ful than the 80386, too). However, the upgrade from woody to sarge puts systems
with true 80386 processors into an unfortunate catch-22 situation?*: sarge's libcé
and libstdc++5 both use the aforementioned instructions. Updating either of these
libraries will hose the system until a new kernel is installed, but a new kernel cannot
be installed due to a dependency on modutils (2.4 kernels) or module-init-tools
(2.6 kernels), which in turn depend on a version of libc6 not available in woody.

24Derived from the (excellent) book "Catch-22" by Joseph Heller, such a situation is an impossible
situation where you are prevented from doing one thing until you have done another thing, but you
cannot do the other thing until you have done the first.

121 |

o

4 Debian releases and archives

At time of writing, the project is still discussing the possible steps to take. The
suggestion for a special upgrade kernel was dismissed because of complexity and
distribution issues. The preferred method to solve this would be the development
of some user-space solution to emulate the missing instructions. If such a solution
cannot be found, Debian will probably drop 80386 support altogether?®. Debian
sarge does not really run properly on one of these chips, largley due to memory
requirements that cannot be fulfilled. Users of embedded 80386 machines typically
have their own kernels to minimise memory usage.

Should 80386 processor support be dropped, the Debian project will look into to
renaming its i386 architecture to i486 to indicate the change. However, the change
might break existing scripts, as “i386" has been around forever. Further investiga-
tion will show. In any case, sarge supports the 80386 processor.

4.5.2 The amd64 architecture

While | was writing this book, Debian was ported to the amd64 architecture. Being
a very young port still, it is not distributed as an official port with Debian sarge nor
contained in the official archive. Still, it is mostly complete and available for instal-
lation from its own archive (see chapter 4.4.3). At time of writing, four different
ports exist for the amd64 architecture:

sarge
the 64 bit port of Debian sarge. The Debian amd64 team is planning to
provide security updates until the amd64 architecture is part of the official
archive.

purec4
the 64 bit port of Debian etch and sid. This port will be integrated with the
main Debian archive in the near future, and the 64 bit port of sarge will be
merged in.

gce3.4
this port is identical to the pure64 port, rebuilt with version 3.4 of the gcc
compiler.

multi-arch
an effort to integrate the multi-arch concept (see below) with amd64. Plans
are to merge this port with pure64 once it becomes part of Debian unstable.

Currently, the pure64 port is the recommended port for amd64 systems. At time
of writing, it was not possible to upgrade an i386 installation on an AMD 64 bit
processor to any of the amd64 ports. However, work is in progress to allow for this.

Z5http://lists.debian.org/debian-release/2004/10/msg00027.html

| 122

4.5 Architecture support |

4.5.3 Multi-arch

With the advent of affordable 64 bit processors like the AMD Athlon 64, Debian
has intensified its efforts to address the challenge of integrating 32 bit and 64 bit
applications on the same system. Most 64 bit architectures support native or em-
ulated 32 bit code execution, but the applications and libraries are incompatible
across the two register sizes. Instead of implementing quick hacks or duplicating
packages, Debian is trying to work with the LSB to come up with a method of inte-
grating multiple architectures on a single machine in a scalable and well-designed
way. Under the working title "multi-arch support”, work has begun to address
the challenge, and small test environments have already been put in place to help
develop a policy?®.

The existing 64 bit architectures (ia64 and sparc64) use separate directories to hold
the 32 bit and 64 bit versions of the installed libraries. The approach is commonly
referred to as "biarch” and is not free of problems. Apart from breaking the rules of
the FHS (see chapter 5.7.4), the approaches differ and do not scale to other archi-
tectures, or similar changes in the future. As multi-arch reaches production status,
current 64 bit architectures are expected to switch to using it. In addition, with
multi-arch, Debian will be able to add full support for other 64 bit architectures,
including powerpc64, mips64/mipsel64, hppa64, sparc64, and s390x, within a
short time?’.

Until multi-arch is ready for production use, special arrangements have to be made
to run 32 bit applications on 64 bit installations. One good technique is to use of a
chroot managed by dchroot (see chapter 8.3.1).

26You can find more information about multi-arch at http://people.debian.org/ taggart/multiarch
27Some of these architectures (such as sparc64) are already supported, but use the deprecated
biarch approach.

123 |

o

The Debian package
management system

| was attacked by dselect as a small child and
have since avoided Debian.
— Andrew Morton

5.1 Requirements

Package management is among the most important features of an operating sys-
tem. Most users want their machines to Just Work™ and are not particularly keen
on spending hours a week keeping them up to date, or jumping through hundreds
of hoops when they need a new software installed. Similarly, system administra-
tors tending to a larger number of machines have better things to do than to spend
hours on end for each workstation in their care.

125 |

5 The Debian package management system

Installation footprints

The most basic features of a good package management system are easy installa-
tion and removal of packages. The system should keep track of the files it drops
onto the filesystem and be able to remove them later without leaving a trace.

For instance, when a bug is found with a programme, the package management
system should be able to tell which package provided the programme so that the
bug can be filed appropriately. In addition to the files installed as part of the
software, the package management system should allow proper handling of files
created by the software at runtime. For instance, a database server may drop a
bunch of cache files next to its data files. Upon removal, it may be desirable to
clean the system of the temporary files but to preserve the data files. After all, we
are deinstalling the software, not the data.

Installation and deinstallation hooks

Often, software cannot be simply dropped onto the filesystem, but requires further
configuration to work. Similarly, a programme may need to clean up when the
user requests its deinstallation. A package management system should allow for
custom actions to be taken at various points during the installation and deinstal-
lation processes, allowing the maintainer to harness the full power and flexibility
of regular Unix scripts.

Configuration file management

Another crucial factor that separates good from bad package management systems
is the handling of configuration files. No matter how the package management
system approaches configuration files, it must never overwrite the administrator's
changes or the system will not have any friends. At the same time as it preserves
modifications it should also allow for unmodified parts of the configuration to be
merged with the newer version. However, configuration file management should
not impose any limitations on the syntax of the configuration file, or the software
configuration options.

Dependencies

Based on the Unix philosophy’, a typical programme uses a number of libraries and
possibly other programmes to accomplish its tasks. A good package management

"The Unix philosophy is to provide numerous small tools, each of which does no more than its own
task and strives to do that in the best possible way. With standard usage paradigms and communication
protocols, these tools can be arbitrarily combined.

| 126

5.1 Requirements |

system should have a full grasp of these relationships, including the automatic
resolution of dependencies when a software is to be installed.

Software upgrades

As software evolves and new versions are published, a good package management
system should be able to keep a system up to date without too much fuss. New
dependencies should be properly resolved (and old ones obsoleted), and upgrade
paths paved to provide for smooth transitions to newer releases.

Package format capabilities and package quality

Since a programme’s upgrade path is typically very specific to that programme, it
is important to realise that even the best package management system will per-
form really badly if the packages are incompatible across different versions, or if
there is simply no upgrade path from one version to the next. Thus, when assessing
the quality of a package management system, it is important to realise it needs to
take the packages it is supposed to handle into consideration. The role played by
the capabilities of the package is just as important as the quality of the packaging
itself. If these two are not powerful and flexible enough to encapsulate the flexi-
bility of Unix software, the capabilities of the package management system will be
squashed to the largest common denominator.

The Debian package management system

If you have been around fellow geeks or spent enough time on forums and amidst
the Linux community, you will have certainly been alerted to the powers of the De-
bian package management system. In fact, ask anyone for Debian's most important
feature and most will respond with some reference to this package management
system. They are both right and wrong. They are right, because the package man-
agement system is the main interface between an administrator and the Debian
system. But they are also wrong because the package management system itself is
not what puts the fun back into software installation and system maintenance for
many Debian users.

In a nutshell, what makes the Debian system so powerful is the combination of its
robust package management system, the Debian policy, which gives the developers
the rules needed to produce an integrated system rather than just a set of packages,
and the flexible system administration tools which evolved out of the needs of its
users. In the following chapters, | will introduce these pieces and help you assemble
the big picture of the Debian system. First, you will meet the package management
system and its three key components: the Debian package format, the Debian
package manager dpkg, and APT, the Advanced Package Tool.

127 |

o

5 The Debian package management system

5.2 Introducing Debian packages

Most of the Debian system is based on packages: regular software comes in pack-
age form just like low-level components, such as the kernel, and device drivers.
The files governing the boot initialisation sequence are also managed through the
package management system, and the same applies to other administrative aspects
of the system which are not really software in the typical sense of the word (i.e.
executable programmes). Two types of package exist in the Debian world:

Binary packages

A binary package comes in the form of a file with the .deb extension. These
files are commonly called DEB files, and usually contain exectuables, doc-
umentation, configuration files, and copyright information, or any subset
thereof. However, apart from the copyright information (and the change-
log.Debian file), binary packages can also be empty and serve as transitional
or meta packages (also known as dummy packages), whose sole purpose is
the satisfaction of dependencies.

Source packages
Even though the word "package” has the connotation of a single file "pack-
aging" the content, a source package actually consists of two or three files.
Together, these files provide everything needed for the package maintainer
scripts to create the binary packages generated by the source package. A
source package therefore provides the source code of the software as well
as the "source code" needed to generate the binary package(s).

A source package is used to create one or more binary packages. In most cases,
only a single binary package is generated. However, in some cases, it makes sense
to modularise the software at the package level. The binary packages generated
from the xscreensaver source package include xscreensaver and xscreensaver-gl.
While the first provides the xscreensaver application with some savers, the latter
contains savers written with OpenGL; users without graphics acceleration can thus
save space and only install the standard savers.

At present, the Debian archive provides almost 10 000 source packages, which gen-
erate about 15000 binary packages. Debian users generally deal with binary pack-
ages, although source packages provide for interesting possibilities even to normal
users, as we shall see shortly (see chapter 5.9.1).

5.2.1 Package categories

Every Debian package, binary or source, belongs to a category containing other
packages with related functionality. These are not reflected in the directory struc-

| 128

5.2 Introducing Debian packages |

ture of the Debian archive? but governed by the package control files (see chap-
ter 5.2.4). These categories make it easier to find packages for certain applications

and provide a logical compartmentalisation of the package pool.

The following categories are defined by the policy:

Section name

Description

admin
base
comm

devel
doc

editors
electronics
embedded
games
gnome
graphics
hamradio
interpreters
kde
libdevel
libs

mail

math

misc

net

news
oldlibs
otherosfs
perl
python
science

2Up until the potato release, each category did have a subdirectory in the archive; since woody's

Administrative utilities (install software, manage users, etc)
The Debian base system

Programs for faxmodems and other communications de-
vices

Utilities and programs for software development

Documentation and specialized programs for viewing doc-
umentation

Text editors and word processors

Programs for working with circuits and electronics
Programs for embedded systems

Games, toys, and fun programs

The GNOME Desktop System

Utilities to create, view, and edit graphics files
Software for ham radio operators

Interpreters for interpreted languages

The KDE Desktop System

Development files for libraries

Collections of software routines

Programs to write, send, and route email messages
Numeric analysis and other mathematics-related software
Miscellaneous software

Programs to connect to and provide various services
Usenet clients and servers

Obsolete libraries

Emulators and software to read foreign filesystems
Perl interpreter and libraries

Python interpreter and libraries

Software for scientific work

release, this has been discontinued.

Table 5.1:

Debian package
categories defined by
the policy (thanks to
aptitude)

129 |

o

5 The Debian package management system

continued

Section name Description

shells Command shells and alternative console environments
sound Utilities to play and record sound

tex The TeX typesetting system

text Text processing utilities

utils Various system utilities

web Web browsers, servers, proxies, and other tools

x11 The X window system and related software

5.2.2 Package priorities

The importance of the 15000 binary packages available in the Debian archive to an
average Debian system varies greatly. While a number of packages are absolutely
indispensable to even the most basic systems, most packages are optional, or a
luxury. Similar to the package categories from chapter 5.2.1, each Debian package
— source or binary — specifies a priority, which serves as a measure of the package's
importance. The policy defines five priorities:

required
Packages which are necessary for the system to work properly. These pack-
ages may not be removed, or the system's integrity is at serious risk. Sys-
tems with only the required packages are probably unusable, but they do
have enough functionality to allow the sysadmin to boot and install more
software.

important
Important programs, including those which one would expect to find on any
Unix-like system, are filed under this priority. The important packages are a
bare minimum of commonly-expected and necessary tools.

standard
These packages provide a reasonably small but not too limited character-
mode system. A minimal Debian install (see chapter 3.2) consists only of
packages from this section (and the two previous ones). Most larger appli-
cations are not in this section.

optional
Software with this priority is what you might reasonably want to install if
you did not know what it was and did not have special requirements. This in-
cludes the X Window System, a full TeX distribution, and many applications.
Note that optional packages should not conflict with each other.

| 130

5.2 Introducing Debian packages |

extra
This priority contains all packages that conflict with others in the required,
important, standard or optional priority groups, or are only likely to be
useful if you already know what they are or have special requirements.

Unfortunately, the distinction between the optional and extra priorities is not very
clear — not even to Debian developers. The default priority for new packages is (and
always has been) optional, which has led to an overpopulation of the group. Many
packages are optional but should be extra, a situation which undoubtedly has to
be rectified somewhere along the line. As a consequence, the optional priority
does not identify a set of packages which anyone may want to install as a whole.
In fact, neither optional nor extra are priorities of real concern to the user.

The different priorities take effect in two ways within Debian. First, the policy
dictates that no package may depend on another package of a lower priority. This
implies that you can cap a system at e.g. the optional priority and be sure that no
extra packages are installed.

Possibly more important is the significance of priorities during the release prepa-
ration phase. The base system consists of required and important packages, and
packages of these priorities are frozen first. Since these packages are the ones on
which most other packages depend, this procedure allows the archive to stabilise,
which is necessary to release a new version of Debian. Next, standard packages are
frozen, followed by optional and extra packages just before the release.

5.2.3 Anatomy of binary packages

A Debian binary package resides in a single DEB file, and vice versa: a DEB file
can only ever contain a single binary package. While the name of this file gives
you various information about the package, the package management tools do
not actually care about it. Despite this, the files contained in the Debian archive
are named according to the following scheme, shown with the postfix package as
an example3.

postfix 2.1.5-1_i386.deb

/ \ \
postfix 2.1.5-1 1386

As you can see, the package name consists of three fields, separated by under-
scores. The policy forbids the use of underscores in package name, version, and
architecture, thereby assuring the non-ambiguity of these fields. The fields en-
code the package name, version number and Debian revision, and architecture, for

3You will see postfix pop up quite often throughout this book. You are to read it as an expression
of my gratitude to Wietse Venema, the author of Postfix, a secure, extensible, and performant mail
transport agent: http://www.postfix.org

131 |

o

5 The Debian package management system

which the binary package has been compiled, respectively. The architecture may be
all, which suggests a package containing architecture-independent data files, or
programmes written in interpreted script languages which need not be compiled.
Nevertheless, the DEB file may also be named foo.deb and still install Postfix 2.1.5-
1. The control data used by the package management tools are contained within
the package. Nevertheless, having the most important data be part of the file name
facilitates identification. The dpkg-name utility from the dpkg-dev package can
be used to rename DEB files according to the standard naming scheme:

“$ dpkg-name foo.deb
moved ’'foo.deb’ to ’./postfix 2.1.5-1_i386.deb’

Dissecting a binary package

The DEB package format was designed from the start to be open and compatible
with standard utilities. On the one hand, this means that the Debian package
management tools did not have to reinvent the wheel but were able to build on
existing functionality (much in the Unix spirit). On the other hand, with standard
utilities, anyone could inspect and manipulate DEB files without needing a working
Debian system. Granted, it is rare that someone will want to manipulate DEB files
on a different Unix system, and its even rarer to have a non-functional Debian
system, but extra flexibility is never wrong and comes in handy when you need
it. We will use standard Unix utilities in the following to learn about the DEB file
format.

There is no magic in a DEB file. In fact, it is nothing more than a BSD ar archive*:

“$ ar t postfix 2.1.5-1_1386.deb
debian-binary

control.tar.gz

data.tar.gz

These three files encapsulate the functionality of the package and are neatly split
according to their content:

debian-binary
This file simply serves as a "magic” to identify the archive as a Debian pack-
age. It contains the version number of the package format used (currently
2.0).

4This may come as a surprise, considering that the ar programme provided in the Debian archive
is a GNU programme. The two differ subtly in the way they represent file names internally. GNU ar can
be used to extract BSD ar files, and DEB files created with GNU ar work fine with dpkg. However, GNU
ar is not (yet) supported. Please see http://bugs.debian.org/161593.

| 132

5.2 Introducing Debian packages |

control.tar.gz
This is a tarball of the control information needed by the package manage-
ment tools.

data.tar.gz
The data.tar.gz tarball contains the footprint of the Debian package, as
placed on the root filesystem. Unpacking this tarball into [is thus almost
equivalent to telling dpkg to unpack but not configure a package.

Using ar and tar, it is possible to get at all the files and data stored in a DEB
package. If you are curious about the choice of ar and tar rather than just tar, the
DEB file is packaged with ar to conserve space since tar stores more information
per file (e.g. permissions, owner, date, ...), which is just unnecessary in the case of
the three files.

~“$ cp /var/spool/apt/archives/postfix 2.1.5-1_1386.deb .
“$ ar x postfix 2.1.5-1_1386.deb

“$ cat debian-binary

2.0

“$ tar tzf control.tar.gz

config templates shlibs postinst preinst
prerm postrm conffiles md5sums control
“$ tar tzf data.tar.gz

[...]

./usr/sbin/postfix

[...]

./var/spool/postfix/

[...]

Inspecting a binary package

The less preprocessor lesspipe knows about DEB files and can extract the most
important data about the file. With the environment variable $LESSOPEN, less can
be told how to handle DEB files, when asked to view them directly. It probably
makes sense to set the variable startup scripts according to your shell.

“$ export LESSOPEN="|lesspipe %s"
“$ less postfix 2.1.5-1_1386.deb
[...]

lesspipe is particularly useful in combination with file viewers and other pro-
grammes that display information about DEB files. In chapter 5.3.1 we see that
dpkg provides the same functionality as well; since less is integrated into many
other programmes, especially viewers and file navigators, the above can come in
quite handy.

133 |

o

5 The Debian package management system

The mc file navigator, available in the me package in the Debian archive, provides a
virtual filesystem handler to access DEB files and inspect their contents. In me, you
can simply locate the DEB file you wish to inspect, select it, and press enter. The
control files will be available in ./DEBIAN and the contents under ./JCONTENTS.

Lastly, users of Emacs may appreciate the debian-el package, which allows them
to open DEB files in their beloved editor to browse the contents and inspect the
control information.

5.2.4 The control files

A Debian binary package consists of payload data (the software and all associated
files) as well as control information (see chapter 5.2.3 for the details). The control
information is spread across a set of files, known as the control files. The contents
of these files are used to control the package management tools, store meta data,
such as dependencies (see chapter 5.7.3), and provide general information about
the package, such as a description of the included software. The Debian package
format specifies the following set of control files, all but one of which are optional:

control
The file contains the meta information for a package and is used by the pack-
age management tools to display information about the package and verify
dependencies prior to its installation. This is the only mandatory control file.

conffiles
All files listed (with their full paths) in conffiles will be treated specially by
the package management tools so as to preserve user modifications to these
files for package upgrades or if the files already exist (e.g. from a previous
tarball, non-package installation).

preinst
The preinst script is run prior to the installation or upgrade of a package.
If an upgrade fails, the old version's preinst is given a chance to redo any
configuration which was previously removed as part of the upgrade®.

postinst
The postinst script is run as part of the configuration process, following the
unpacking of a package. Also, if the upgrade, deconfiguration, or removal of
a package fails or is aborted, dpkg lets postinst set things straight®.

prerm
The prerm script is run prior to removal of a package. If a package is up-
graded, the old package's prerm script is also given a chance to run. Finally, if

5The details of when and how dpkg invokes the four maintainer scripts are described in sections
6.4 and 6.5 of the Debian policy (http://www.debian.org/doc/debian-policy).

| 134

5.3 Dealing with packages: dpkg |

a package upgrade or configuration fails, the package is left unpacked, but it
is deconfigured. dpkg allows the maintainer to take specific error unwinding
steps with prerm during the deconfiguration or upgrade process®.

postrm
The postrm script is run after a package has been removed from the sys-
tem. dpkg lets the script know whether the package has been deinstalled
or purged (see chapter 5.3.5). The script also gets called after a package has
been removed in favour of another package, due to a conflict or an upgrade.
Finally, dpkg invokes postrm when an upgrade or installation is aborted®.

md5sums
This file contains MD5 sums of all files installed by the package, which can
be used for verification of the installed files. Please see chapter 5.11.1 for
more information.

shlibs
To support the maintainer utilities, the shlibs file lists the libraries and their
SONAMEs® provided by the package, alongside the package name. During
automatic dependency determination, the maintainer scripts use these files
installed by all packages to determine which package provides which ver-
sion of a library. More information about the shlibs system is available in
chapter 9.4.3.

config
The config script's job is to obtain information from the user with respect to
the configuration parameters of the package. Responses given by the user
are cached in debconf's database for later processing by, e.g. the postinst
script.

templates
Decoupling the configuration parameter descriptions from the logic, the
templates file defines the questions and notices that debconf displays.

The dpkg-deb tool can extract all the important information needed for a pack-
age from the DEB file prior to installation. Please refer to chapter 5.3.1 for more
information.

5.3 Dealing with packages: dpkg

On its manpage, dpkg is described as “a medium-level package manager”. dpkg is
the workhorse of the Debian package management system, responsible for instal-

6A library's SONAME is the name by which the dynamic linker identifies the library and its binary
interface version.

135 |

o

5 The Debian package management system

lation and removal of packages, for their configuration, and for managing installed
packages. In addition, it provides a plethora of toolkits to gather information from,
interact with, and manipulate Debian package files. On the dpkg web page’, addi-
tional information is available.

The dpkg programme keeps an inventory of installed packages in a database. Prob-
ably the most important feature of dpkg is that it is meticulously careful with the
database and guarantees never to leave it in an inconsistent state. As a result, dpkg
is robust and remarkably graceful in the face of a problem.

dpkg deals with single packages, and the meta data they define. When it executes
an action, it ensures that the action does not put the system into a state incon-
sistent with the inventory that dpkg keeps in its status database. In the face of a
problem, dpkg prevents an action rather than taking additional action required to
solve the problem. On the other hand, APT (the topic of chapter 5.4) tries to honour
any request, if necessary by taking additional steps to ensure the consistency of the
system. While on the topic, another difference between APT and dpkg is that dpkg
does not deal with package acquisition but rather expects packages to be available
in the form of a DEB file, or be installed on the local system, whereas APT provides
the means to obtain missing packages from external sources.

The dpkg family

dpkg has two siblings, dpkg-deb and dpkg-query. While dpkg's purpose is the
installation and removal of packages, dpkg-deb excels at manipulating DEB files,
and dpkg-query gives you read access to the status database used by dpkg. For
simplicity, dpkg wraps the functionality of its two siblings and thus can be used as

an all-in-one programme to harness the full power of the dpkg family. Therefore,
dpkg's functionality can be divided into four parts:

® inspecting and manipulating DEB files (the domain of dpkg-deb)
= installing packages
= querying the package management database (the domain of dpkg-query)

= removing packages

In the following, | will use dpkg-deb and dpkg-query instead of the wrapper in-
terface provided by dpkg.

"http://www.dpkg.org

| 136

5.3 Dealing with packages: dpkg |

5.3.1 Handling binary packages

With dpkg-deb, it is possible to extract information and data from DEB files (as
opposed to using tools like ar, see chapter 5.2.3). To print a package's control
information, use the tool as follows:

~“$ dpkg-deb --info postfix 2.1.5-1_1i386.deb
new debian package, version 2.0.
size 798936 bytes: control archive= 42708 bytes.

191 bytes, 7 lines conffiles
10997 bytes, 355 lines * config #!/usr/bin/perl
1076 bytes, 22 lines control
7613 bytes, 119 lines md5sums
12842 bytes, 465 lines * postinst #!/bin/sh
914 bytes, 41 lines * postrm #!/bin/sh
6702 bytes, 251 lines * preinst #!/bin/sh
960 bytes, 43 lines * prerm #!/bin/sh
109 bytes, 4 lines shlibs
76002 bytes, 1505 lines templates

Package: postfix

Version: 2.1.5-1

Section: mail

Priority: extra

Architecture: 1386

Depends: libc6 (>= 2.3.2.dsl-4), 1libdb4.2, libgdbm3,
debconf (>= 0.5) | debconf-2.0, netbase, adduser (>= 3.48),
dpkg (>= 1.8.3), debconf

Recommends: mail-reader, resolvconf

Suggests: procmail, postfix-mysqgl, postfix-pgsqgl, postfix-ldap,
postfix-pcre

Conflicts: mail-transport-agent, smail, libnss-db (<< 2.2-3),
postfix-tls (<< 2.0-0)

Replaces: postfix-doc (<< 1.1.7-0), postfix-tls

Provides: mail-transport-agent

Installed-Size: 1900

Maintainer: LaMont Jones <lamont@debian.org>

Description: A high-performance mail transport agent
Postfix is Wietse Venema’s mail transport agent that started life as an

[...1

If you need single fields from a package's control information rather than the whole
load, use the -field option®.

“$ dpkg-deb --field postfix 2.1.5-1_1i386.deb Version

2.1.5-1

“$ dpkg-deb --field postfix 2.1.5-1_1386.deb Recommends Suggests
Recommends: mail-reader, resolvconf

8Note that Debian distinguishes between dependency recommendations and suggestions, as
shown in the example. More details may be found in chapter 5.7.3.

137 |

o

5 The Debian package management system

Suggests: procmail, postfix-mysql, postfix-pgsql,
postfix-ldap, postfix-pcre

If your attention is more towards the set of files a package installs, dpkg-deb can
extract this information from the DEB file as well:

“$ dpkg-deb --contents postfix_2.1.5-1_1386.deb

[...]

-rwxr-xr-x root/root 6804 2004-06-22 23:06:27 ./usr/sbin/postfix
[...]

drwxr-Xr-x root/root 0 2004-06-22 23:06:08 ./var/spool/postfix/
[...]

In addition to extracting information, dpkg-deb can unpack and create DEB files.
For the unpacking, it is necessary to distinguish between control and data payload:

“$ dpkg-deb --control postfix 2.1.5-1_1i386.deb
~“$ dpkg-deb --extract postfix_2.1.5-1_1i386.deb .
“$ 1s -F *

postfix_2.1.5-1_1386.deb

DEBIAN/:

conffiles control postinst* preinst* shlibs
config* md5sums postrm* prerm* templates
etc/:

init.d/ postfix/ ppp/ resolvconf/

usr/:
bin/ 1lib/ sbin/ share/

var/:
log/ spool/

The DEBIAN directory contains the extracted control files. The package's contents
have been placed directly in the current directory. Like you would expect, the direc-
tory layout of the contents reflects the footprint occupied by the postfix package
when it is installed.

Apart from extracting information, dpkg-deb is also the tool used to create binary
packages. A directory with the layout such as the one we just created by extracting
the DEB file can be trivially converted (back) into a binary package:

“$ mkdir pfpkg

“$ mv --target-directory=pfpkg DEBIAN etc usr var

~“$ dpkg-deb --build pfpkg

dpkg-deb: building package ‘postfix’ in ‘pfpkg.deb’.

“$ file pfpkg.deb

pfpkg.deb: Debian binary package (format 2.0), uses gzip compression

| 138

5.3 Dealing with packages: dpkg |

"8
~“$ dpkg-deb --field pfpkg.deb Version
2.1.5-1

It is thus possible to build DEB files with very simple means. Even though, essen-
tially, every package is created with this method, the package maintainer scripts
provide several layers around the programme to facilitate and automate the cre-
ation of the above layout from a source directory. We will see how this can be
done in chapter 9, which also shows how the package maintainer scripts mostly
automate the generation of the control files.

5.3.2 Installing packages

When dpkg installs a package, it does so in two phases: first, it unpacks the pay-
load, and then it runs the postinst control script (if present). This is known as the
configuration step. These steps can be executed separately (see below). Alterna-
tively, dpkg's --install option automatically invokes the configuration phase when
the software has been unpacked. Note that dpkg expects the actual path to the
DEB file containing the package as its argument; it does not have the ability to
acquire the required package file when given only the names of packages.

“# dpkg --install ./postfix_2.1.5-1_1386.deb

Selecting previously deselected package postfix.

(Reading database ... 10088 files and directories currently installed.)
Unpacking postfix (from ./postfix 2.1.5-1_1386.deb) ...

Setting up postfix (2.1.5-1)

[...]

Unpacking packages

Unpacking is largely accomplished by dpkg-deb, dpkg merely conducts the process:

“# dpkg --unpack postfix 2.1.5-1_1i386.deb

Selecting previously deselected package postfix.

(Reading database ... 10088 files and directories currently installed.)
Unpacking postfix (from postfix_2.1.5-1_1386.deb) ...

This causes dpkg to take the following steps:

1. After verifying that the package is in fact a Debian package (using debian-
binary), the control information is extracted to a temporary location®.

9/var/lib/dpkg/tmp.ci

139 |

o

5 The Debian package management system

2. The preinst script is run (if it exists) to configure relevant bits before installa-
tion. Many preinst scripts stop relevant services to prevent problems during
the installation.

3. dpkg now extracts all files listed in the conffiles file to a temporary directory
and moves them to the appropriate location under [etc. At the same time, it
appends the .dpkg-new extension so that existing files are not overwritten.

4. dpkg then unpacks the rest of the data.tar.gz tarball in the root directory
of the local system (which can be overridden with the --root=dir option of
dpkg).

5. Now, the control files are placed in [var/lib/dpkg/info, each file prepended
with the package name and a full stop: e.g. postfix.conffiles. The control
file is not installed but used to update the package database.

6. Finally, dpkg marks the package as "unpacked” in the package database (see
chapter 5.3.4).

A package cannot fulfill a dependency when it is merely unpacked (see chap-
ter 5.7.3). While all files (except for those marked as conffiles) are installed in
their appropriate places, the software is not guaranteed to work yet.

Configuring packages

After unpacking, the package is given a chance to make modifications that could
not be hard-coded into the package's payload. This may be the case when data
specific to the local system is needed, or if the user can influence the way the soft-
ware works at installation time. When dpkg installs packages, this step is usually
executed automatically. It can also be explicitly requested by telling dpkg to con-
figure a single package. Unlike the unpack phase, dpkg wants to know the package
name (not the name of the DEB file).

“# dpkg --configure postfix
Setting up postfix (2.1.5-1) ...
[...1

Configuration consists of the following steps:

1. dpkg consults the administrator for every configuration file with local mod-
ifications. Depending on the administrator's decision, the configuration file
is then either overwritten with the version provided in the package, or left
untouched (see chapter 5.3.3).

| 140

5.3 Dealing with packages: dpkg |

2. With all configuration files in place, the postinst script is run (if it exists).
If the package uses debconf, this causes the config script to be run. The
config script uses debconf to obtain parameter values from the user, should
these not be already cached by the debconf database.

3. The postinst file then takes care of changes to the system that cannot be in-
cluded in the package directly. This includes enacting the configuration pa-
rameter choices made by the user through debconf, as well as tasks like cre-
ating device nodes and users. Also, services are usually started by postinst.

4. Finally, dpkg marks the package as “installed" in the package database (see
chapter 5.3.4).

After completing the configuration phase, the package is installed and the software
fully operational. If dpkg is asked to configure a previously configured package, the
above command will exit immediately, but not report an error.

It is also possible to instruct dpkg to configure all unconfigured (unpacked) pack-
ages in one go. If no packages remain to be configured, the command does not
report an error and exits immediately.

“# dpkg --configure -a
[...1

5.3.3 Configuration file handling

As | mentioned earlier, the package may contain two types of files: those installed
and subsequently managed by dpkg, and so-called conffiles — configuration files
which are expected to be modified by the user. When unpacking, dpkg happily
overwrites existing files of the first type. Configuration files, however, are handled
specially:

1. During the package's unpack phase, dpkg installs all files marked as conffile
to their target locations, but gives each a .dpkg-new extension to prevent
clashes with any existing files.

2. When configuring the package, dpkg checks each existing configuration file
for modifications (using a set of MD5 checksums; see below). If modifica-
tions are found, the administrator must choose whether to overwrite or keep
the local file.

3. If the local file is kept, the new configuration file (installed with the .dpkg-
new extension) is renamed with the .dpkg-dist extension.

4. If the local file is to be replaced by the configuration file from the package,
it is given the .dpkg-old extension and left in place as a backup.

141 |

o

5 The Debian package management system

For example, the abede package provides [ete/abede.conf, which is flagged as a
configuration file. Thus, dpkg handles it appropriately:

“# dpkg --unpack abcde_2.0.3-1_all.deb

(Reading database ... 59575 files and directories currently installed.)
Preparing to replace abcde 2.0.2-1 (using abcde.2.0.3-1_all.deb)
Unpacking replacement abcde ...

“# 1ls -F /etc/abcde.conf*

/etc/abcde.conf /etc/abcde.conf.dpkg-new

“# dpkg --configure abcde

Setting up abcde (2.0.3-1)

Installing new version of config file /etc/abcde.conf

If the administrator had made changes to the file, dpkg would have asked before
taking any action (the first command simply appends a line to the file, thereby
simulating a modification):

“# echo >> /etc/abcde.conf

“# dpkg --unpack abcde_2.0.3-1_all.deb

(Reading database ... 59575 files and directories currently installed.)
Preparing to replace abcde 2.0.2-1 (using abcde 2.0.3-1_all.deb)
Unpacking replacement abcde ...

“# dpkg --configure abcde

Setting up abcde (2.0.3-1)

Configuration file ‘/etc/abcde.conf’

==> Modified (by you or by a script) since installation.

==> Package distributor has shipped an updated version.
What would you like to do about it ? Your options are:

Y or I : install the package maintainer’s version
N or O : keep your currently-installed version
D : show the differences between the versions
Z : background this process to examine the situation

The default action is to keep your current version.
*xx gbcde.conf (Y/I/N/0/D/Z) [default=N] ? y
Installing new version of config file /etc/abcde.conf

Identifying change

dpkg only prompts on changed configuration files if it is about to install a config-
uration file that has changed from the previous version it installed. If the adminis-
trator removes a configuration file from the system, dpkg also prevents trouble: if
a previous configuration file is not present, it will not reinstall it. If, however, dpkg
upgrades a package and installs a configuration file that differs from the previous
one, it will prompt. If the user opts to replace the file, everything continues as
before. If, however, the user chooses to preserve the local modifications, dpkg will
continue to prompt the administrator whenever the package is upgraded, whether
the maintainer-provided configuration file changed or not.

| 142

5.3 Dealing with packages: dpkg |

In pseudo code:

Mp <= stored MD5 sum of configuration file
from package of previous version
Mn <= MD5 sum of new configuration file,
extracted from the package
M1l <= MD5 sum of locally installed configuration file

if Mn != Mp
then: # the maintainer provides a new file

if M1 != Mp:
then: # the administrator made local changes
A <= action desired by administrator
if A == install
then: # admin chose to replace file
install new version of configuration file
end if
else: # the local file was not changed
install new version of configuration file
end if

let Mp = Mn # make the new version the next previous

else: # the new package does not update the file
do nothing
end if

It is entirely up to the you as the administrator to decide what dpkg should do
when a new version of a package provides updated configuration files which con-
flict with the locally modified ones. If you choose to keep your locally edited copy
of the conffile, dpkg will install the new version next to the one you decided to
keep, using the .dpkg-dist extension to the filename. You may return at a later
time to inspect the new configuration file and merge your old configuration into
it. If, however, you choose to replace your local file with the new version from the
package being installed, dpkg saves the file with your changes with the .dpkg-old
extension, allowing you to refer to the locally modified file later.

The Debian utilities know about the possible existence of these files and ignore
them. Therefore, there is no danger in leaving stray .dpkg-dist or .dpkg-old files
around. Nevertheless, when another package upgrade comes around, it will over-
write existing .dpkg-dist and .dpkg-old (if you've edited the configuration since
the last update), so it is always a good idea to tend to configuration files and re-
move the ones with a .dpkg-* extension if you will not need them again. A simple
command can then help you identify configuration files that need manual migra-
tion:

“# find /etc -name ’*.dpkg-*’

143 |

o

5 The Debian package management system

Merging configuration files (or not)

Often, users complain that even though dpkg preserves changes made to files, it
provides no way to merge new configuration directives from updated configuration
files provided by newer versions of a package. For instance, take the following
configuration file, in which the administrator replaced the previous nickname with
“madduck”:

“$ cat /etc/foo.conf
NICKNAME=madduck

In a newer version of the foo programme, the configuration file also specifies the
server to which to connect. The package includes the following file:

“$ cat /etc/foo.conf
NICKNAME=gort
SERVER=barada.nikto.org

In an ideal world, dpkg would offer to merge the files to produce a version with
the (unchanged) server directive, but with “madduck” as the nickname.

Unfortunately, the variety of configuration paradigms found across a Unix system
make this virtually impossible; one would have to give dpkg knowledge of every
configuration file that it should ever merge, including (but not limited to) its struc-
ture and its syntax. Then, when a configuration paradigm changes, dpkg would
need to be updated.

Beyond standardisation of configuration files across all of Unix (which is not going
to happen), the only sensible approach to this task is the automatic generation
of configuration files from values stored and maintained in a database or registry.
Debian purposely does not go down that road because it aims to bring the software
to the user with minimal modifications. If you install the postfix package, you get
the postfix mail transport agent in much the same way as if you were to build and
install it yourself. A seasoned postfix administrator would never consider running a
mail server with Debian GNU/Linux if it required configuration through a database,
possibly imposing limitations on the configuration syntax.

5.3.4 Interacting with the package database

dpkg meticulously keeps track of all the packages it installs, and even remembers
packages that were once installed but previously removed.

In the current incarnation of dpkg, the package database is spread across a number
of flat files. These are found in fvar/lib/dpkg, which | will call the dpkg database
directory. Unless stated otherwise, all files and directories in the following reside
below this directory.

| 144

5.3 Dealing with packages: dpkg |

The package database stores the following data for packages:

= The state of the package (see below). These data are stored in the status file.

= |f the package is installed (or removed, but not purged), the database contains
the package's full control information (following the state information in the
status file).

= The alternatives database (see chapter 6.1.4) in alternatives.
= The permission override database (see chapter 6.1.2) in statoverride.

= Below info/, it keeps a record of each package's installed files in *.list as well as
its conffiles (in *.conffiles). Also, it stores the four hook control script (**inst
and **rm).

= QOptionally, dpkg stores MD5 sums of all files a package provides in info/*.md5-
sums. See chapter 5.11.1 for more information.

= debconf data is also kept in info/: *.config and *.templates. See chapter 5.8 for
more information.

= |n available, dpkg stores the list of available packages, which is used only by
dselect (see chapter 5.3.9).

= cmethopt and the methods directory are throwbacks from the days when dpkg
integrated various acquisition means (e.g. FTP, HTTP). This is now handled by APT,
which is the only default acquisition method of dpkg.

One of dpkg's main problems is performance, and the main culprit is the package
database. Flat files scale linearly (at best) with the number of installed packages.
Among the to-do list entries for dpkg is the replacement of the database with a
more powerful database format (which would scale logarithmically).

Now let us use the package database. A list of the installed packages can be ob-
tained with the command dpkg --list:

“$ dpkg --list

Desired=Unknown/Install/Remove/Purge/Hold

| Status=Not/Installed/Config-files/Unpacked/Failed-config/Half-installed

|/ Err?=(none) /Hold/Reinst-required/X=both-problems (Status,Err: uppercase=bad)
||/ Name Version Description

+4+-

ii adduser 3.57 Add and remove users and groups

ii apt 0.6.25 Advanced front-end for dpkg

ii apt-doc 0.6.25 Documentation for APT

ii apt-utils 0.6.25 APT utility programs

ii at 3.1.8-11 Delayed job execution and batch processing

[...]

145 |

o

5 The Debian package management system

Each line corresponding to a package starts with three columns showing the status
of the package. The first column identifies the status desired by the user and is
limited to the following five states:

u The desired state is unknown, meaning that the package is not installed (and
has never been) and the user did not request its installation.

[The user requested the installation of the package.
r The user requested the removal of the package.
p The user requested the purging of the package.

h The user requested that this package should be held at its current version
and no automatic upgrades should be attempted.

In the second column, the current state of the package is encoded. The column
may list any of the six states. If there is a serious problem (see below), dpkg-query
uses an upper-case letter to indicate it.

n The package is not installed.
i The package is installed and fully configured.

C The package was previously installed and has since been removed, but its
configuration files remain on the system.

u The package has been unpacked but not yet configured.
f The configuration of the package has been attempted but failed.

h The package was installed but the installation failed to complete.

Finally, the third column indicates error conditions and can assume one of four
states. The first state indicates no problems and is not marked with a symbol. The
other three symbols indicate problems.

h The package is on enforced hold because another package required in a ver-
sioned dependency cannot be upgraded due to a hold.

r The package is broken and requires reinstallation before normal interaction
is possible (including removal).

X The package is both broken and on enforced hold.

| 146

5.3 Dealing with packages: dpkg |

Inspecting single packages

The dpkg --list command also accepts standard filename patterns (see your shell
manual) to limit the output to matching packages. The filename patterns may need
to be escaped or enclosed in quotes to prevent the shell from interfering:

“$ dpkg --list ssh

[...1

ii ssh 3.8.1pl-8.sarg Secure rlogin/rsh/rcp replacement (OpenSSH)
“$ dpkg --list *finger*

[...]

un cfingerd <none> (no description available)
ii efingerd 1.6.2 Another finger daemon for unix
un ffingerd <none> (no description available)
un finger <none> (no description available)
un fingerd <none> (no description available)
un xfingerd <none> (no description available)

“$ dpkg --list \?fingerd
[...]

un cfingerd <none> (no description available)
ii efingerd 1.6.2 Another finger daemon for unix
un ffingerd <none> (no description available)
un xfingerd <none> (no description available)

“$ dpkg --list ' [ec]fingerd’

[...]

un cfingerd <none> (no description available)

ii efingerd 1.6.2 Another finger daemon for unix

Many people use the output of dpkg --list in scripts. For instance, the following
command should purge all packages that have been previously removed (rc: the
package should be removed but still has configuration files on the system).

“# dpkg --list | grep “rc | awk ‘{print $2}’ | xargs dpkg -P
[...]

If you try the above, you are likely to see an error. The output of dpkg --list is
squeezed into the width available on the calling terminal, even if a pipe is attached.
Therefore, some package names will not be complete causing the above command
to fail. To illustrate this, in the following, a field parser will only be able to obtain
"module-init-to" rather than the complete package name module-init-tools:

“$ dpkg --list | grep module-init 1>&2 | awk ’{print $2}"
ii module-init-to 3.1-pre2-2 tools for managing ...
module-init-to

The solution is to override the column width using the $COLUMNS variable. Each
line can then be forced to a certain length. Squeezing whitespace characters in the
output with tr produces usable output since the first three fields are guaranteed
not to contain whitespace:

147 |

o

5 The Debian package management system

Table 5.2:

Package states and
their mappings to
single letters. The
dots identify the
column in which the
letter may be seen in
the dpkg --list
output. States
prepended with an
asterisk are not
states defined by the
package management
system but rather
emerge out of other
states.

“$ COLUMNS=1000 dpkg --list | grep module-init \
' 1>&2 | awk ‘{print $2}’
ii module-init-tools 3.1-pre2-2 tools for managing ...

| tr -s

module-init-tools

Especially for scripts, a query interface provided only by dpkg-query is more useful
as the displayed fields can be selected individually. If no format is specified, the
package name is printed by default:

~“$ dpkg-query --show postfix
postfix

“$ dpkg-query --show --showformat='g${Package}\t${Status}\n’ mc

postfix install ok installed

In the last example, the status corresponds to the first three columns in the dpkg
--list output, though the second and third column are reversed: ii_ (with an
empty third column to indicate "ok").

Letter State

u.. *unknown

i install

r deinstall

p-. purge

h hold
not-installed
installed
config-files
unpacked
half-configured
half-installed
*hold

.T reinst-required

2R oA BB

reinst-required & *hold
ok (empty third column)

Thus, a better way to purge all previously removed packages is:

“# dpkg-query --show --showformat=’${Status} ${Package}\n’ \

| grep "deinstall | cut -f4 | xargs dpkg -P

| 148

5.3 Dealing with packages: dpkg |

Speaking of fields, there is an easier way to access the information for an installed
package. As you may guess, the field names in front of the colon on (almost)
every line in the output of the following command are the same as you can use in
--showformat.

~“$ dpkg --status postfix
Package: postfix
Status: install ok installed
Priority: extra
Section: mail
[...]
Conffiles:
/etc/init.d/postfix 5fe44b0a0£f8e51041041633d96b251b4
[...]

Essentially, the output of dpkg --show postfix corresponds to the output of dpkg
--info postfix.deb. The first includes some information relevant to the installed
package (such as the status), while the second shows some data that only make
sense in the context of a DEB file (such as the control files the package file provides).

Along similar lines, the functionality of dpkg --contents postfix.deb is also avail-
able for the installed postfix package:

“$ dpkg --listfiles postfix
[...]

/usr/sbin/postfix

[...]

/var/spool/postfix

[...]

Another useful tool is dpkg-awk, available in the package by the same name. It
supports searching for packages which meet certain criteria, and optionally sorts
the results. For instance, to print out the package name and status of packages
with version numbers 0.01, 0.1, 0.02, or 0.2, sorted by section:

“$ dpkg-awk --sort Section Version:"0.0?[12]- -- Package Status
Package: ed

Status: install ok installed

Package: libtextwrapl
Status: install ok installed

[...1

Searching the list of installed files

Since the package management tools track each file they install, you can query
the database of installed files to figure out which package owns which file. This

149 |

o

5 The Debian package management system

comes in handy when you need to figure out why a file is on one but not another
system, or to find the package and thus e.g. its documentation from a single file.
The command to search the database also accepts patterns to identify multiple
files:

~“$ dpkg --search /usr/lib/postfix/*d
postfix: /usr/lib/postfix/gmgpd
postfix: /usr/lib/postfix/smtpd

~$ dpkg --search bin/gawk

gawk: /usr/bin/gawk

Hence, dpkg --search * will list all files installed and managed by the Debian
package management tools.

Even though its development stopped years ago, dlocate remains to be useful. It
claims to be a fast alternative to dpkg --list and dpkg --search, and provides a set
of useful additional functionalities.

dpkg's options --list, --search, and --listfiles are directly available as -1, -S, and -L
respectively, which happen to be the same as the short options to dpkg. The main
advantage of dlocate is its ability to feed sets of filenames (all the files in a package,
just the conffiles, or all the manpages) to tools such as Is, du, and md5sum. For
instance, the long listing of all conffiles is easily obtained:

“# dlocate -lsconf postfix

-rwxr-xr-x 1 root root 2347 Oct 31 04:37 /etc/init.d/postfix*
-rwxr-xr-x 1 root root 21207 Oct 31 04:37 /etc/postfix/post-install*
-rw-r--r-- 1 root root 16114 Oct 31 04:37 /etc/postfix/postfix-files
[...1]

Furthermore, dlocate allows you to display and verify the MD5 sums of installed
packages. The following indicates that [etc/init.d/postfix differs from the version
installed by the package (which is to be not an anomaly since the file is a conffile).

“# dlocate -md5sum postfix

79ac63lecbbe3cbbld8684aabdelllfc etc/init.d/postfix
0£6412880a5£95b96037£15d658cecb0 etc/ppp/ip-up.d/postfix
0758469f9f1c073a53df50d9dc43c8eb etc/ppp/ip-down.d/postfix
[...1]

“# dlocate -md5check postfix

/etc/init.d/postfix FAILED

/etc/ppp/ip-up.d/postfix OK

/etc/ppp/ip-down.d/postfix OK

Putting a hold on packages

Packages can be put on hold to prevent their automatic upgrade. In addition, the
package management tools may enforce a package hold because the dependencies

| 150

5.3 Dealing with packages: dpkg |

of an updated version cannot (yet) be satisfied. Manually putting packages on hold
requires a little more than a single command, we will get to know higher-level
tools to automate this process soon (see chapter 5.3.9 and chapter 5.4.11), as well
as other methods better suited to the task (see chapter 8.2.1). Please note that a
hold only affects automatic upgrades. If you explicitly request a held package to
be upgraded, dpkg will happily comply.

Recall the purpose of the first column in the dpkg --list output: to denote the de-
sired (or requested) state of a package. A hold on a package is one of these desired
states, and it is possible to manipulate the requested state of each package with
dpkg, without dpkg immediately jumping to meet the request. The tuple linking
the package to a desired state is referred to as a “selection” in dpkg-parlance. We
can use dpkg to get the table of selections corresponding to the current status
of the packages. Without arguments, dpkg --get-selections returns all packages
which it knows about (i.e. all packages that are currently installed, or were installed
at one point and removed later):

“$ dpkg --get-selections apt-doc apt-utils at

apt-doc deinstall
apt-utils install
at hold

Manipulating the desired states of packages thus simply requires the appropri-
ate modification to the second column for the line corresponding to the package
whose status is to be changed. You can either export the list to a text file with
dpkg --get-selections, modify the file as you wish, and then feed that modified
version into dpkg --set-selections, or you can simply echo the requests into dpkg
--set-selections:

“# dpkg --list postfix

[...]

ii postfix 2.1.5-1 A high-performance
“# echo postfix hold | dpkg --set-selections

“# dpkg --list postfix

[...]

hi postfix 2.1.5-1 A high-performance

5.3.5 Deinstalling packages

Debian distinguishes between packages that are deinstalled and packages which
have been purged from the system. The difference between the two is that conf-
files of a removed (deinstalled) package remain on the system and only purging
removes them. By default, Debian will never automatically purge a package. Thus,
to remove configuration files from the system, the user has to manually tell dpkg
to do so. A package can be removed and later purged. If the purging is requested

151 |

o

5 The Debian package management system

for a currently installed package, the removal will be done implicitly prior to the
purge.

To remove a package, dpkg is invoked with the --remove option and the package
to be deinstalled. Other than during installation, removal only needs the package
name, not the actual DEB file.

“# dpkg --remove postfix
(Reading database ... 10228 files and directories currently installed.)
Removing postfix ...

[...]
During removal, dpkg

1. first runs the prerm script (if it exists), which can e.g. stop processes belong-
ing to the package.

2. Next, all installed files except conffiles are unlinked (removed from the sys-
tem).

3. All the control files of the package are removed from [var/lib/dpkg/info,
with the exception of two: postfix.postrm and postfix.files remain. post-
fix.files is truncated to the set of conffiles.

4. Finally, dpkg changes the package state to conf-files with a desired state of
remove (see chapter 5.3.4).

The conf-files state is a well-defined state, which means that the package manage-
ment tools can be used as shown previously to query the database for information
about packages in that state:

~“$ dpkg-query --list postfix

[...]

rc postfix 2.1.5-1 A high-performancel...]
~“$ dpkg-query --listfiles postfix
/etc/init.d/postfix

[...]

/etc/postfix/postfix-script
/etc/postfix/post-install
/etc/postfix/postfix-files

[...]

“$ dpkg --search /etc/init.d/postfix
postfix: /etc/init.d/postfix

“$ dpkg --search /usr/bin/mailqg
dpkg: /usr/bin/mailg not found.

The package contents vanish from the package database when the package is
purged.

| 152

5.3 Dealing with packages: dpkg |

“# dpkg --purge postfix

[...]

Purging configuration files for postfix ...
“$ dpkg --list postfix

[...]

pn postfix <none> (no description available)

Note the state of the package: pn, which indicates that the package is actually
purged, but also that the package database has an entry for the package. Therefore,
pn specifies that postfix was previously installed and the package management
database has seen it and

1. All remaining files are unlinked (removed from the system).
2. If it exists, the postrm script is run.

3. The two remaining files, postfix.postrm and postfix.files are unlinked from
[var/lib/dpkg/info.

4. dpkg marks the packages as non-installed in the package management data-
base (see chapter 5.3.4).

For mass removals, an administrator may also resort to the selection interface of
dpkg and register deinstallation and purge requests before telling dpkg to enact
them:

“# echo postfix deinstall | dpkg --set-selections
“# dpkg --remove --pending

[...]

Removing postfix ...

“# echo postfix purge | dpkg --set-selections

“# dpkg --purge --pending

[...]

Removing postfix ...

Purging configuration files for postfix ...

5.3.6 Overriding dpkg’s sanity and policy checks

dpkg enforces the Debian policy (see chapter 5.7) wherever and whenever it can.
It refuses to overwrite files belonging to other packages, it preserves configuration
files, it prevents the removal of essential packages which are needed to provide core
functionality of the system, it refuses to install packages when the dependency
relations are not satisfied, ... The list goes on and on, and dpkg would not be
a versatile tool if these checks could not be individually overridden. Overriding
dpkg's rules is called "forcing" in Debian speak.

153 |

o

5 The Debian package management system

It goes without saying that forcing is to be used with care. Lowrey's Law (a subsec-
tion of Murphy's Law?) states "if it jams, force it; if it breaks, it needed replacement
anyway. Fortunately, the Debian package management tools do not abide by this
law. The Debian package database is designed to be robust, and the tools have
been carefully crafted to leave the database in a consistent state no matter how
they are called, or do whatever they do, or fail. When a user employs forcing, that
user is explicitly telling the package management tools to put the system into an
inconsistent state. dpkg's forcing method is an acknowledgement that at times,
the system must be rendered (temporarily) inconsistent. For instance, third party
software may be uninstallable otherwise, or the current state of Debian unsta-
ble may be inconsistent internally, and thus unusable in the wake of dpkg's strict
rules. Nevertheless, the best recipe to destroy a Debian system is to employ forcing
without care. Use forcing only when you have no alternative, and try to keep an
overview (or better yet, a written account) of what you have forced.

The dpkg (8) manpage lists all the available forcing methods. The following are the
most commonly used ones:

--force-depends
This switch causes dpkg to ignore all dependency declarations during the
execution of the requested action. The removal or the installation of a pack-
age with this option has grave implications for future interactions with the
package database. For instance, forcing the removal of vim-common (de-
spite the dependency of the vim package) prevents further installations of
unrelated packages, in this case mc:

“# dpkg --remove --force-depends vim-common

dpkg: vim-common: dependency problems, but removing anyway as you
request:

vim depends on vim-common (>> 1:6.2).

[...]

Removing vim-common ...

“# apt-get install mc

[...]

You might want to run >»apt-get --fix-broken install< to correct
these:

The following packages have unmet dependencies:
vim: Depends: vim-common (> 1:6.2) but it is not going to be
installed

E: Unmet dependencies. Try >apt-get --fix-broken install< with
no packages (or specify a solution).

The package database is now in an inconsistent state and even though it
knows about the source of the problem, dpkg cannot continue to service the
user's request until the problem is fixed. In chapter 5.3.7, | will be introducing
methods to handle situations like this more gracefully.

Ohttp://www.murphys-laws.com

| 154

o

5.3 Dealing with packages: dpkg |

It may be better to ignore the dependencies only for a single package. For
this purpose, dpkg provides the --ignore-depends=<package> option
(which may be given multiple times). With the option, it is possible to
forcecfully override the dependencies of the specified package. However,
dependency relationships of other packages continue to be protected by
dpkg during the same operation. Thus, the following allows dpkg to re-
move netkit-inetd but prevents the removal of adduser (do not try this at
home):

“# dpkg --purge --ignore-depends=netkit-inetd netkit-inetd adduser
[...]
Purging configuration files for netkit-inetd ...
dpkg: dependency problems prevent removal of adduser:
ssh depends on adduser (>= 3.9).

[...]

Furthermore, if only the version of a versioned dependency must be overrid-
den, --force-depends-version is a better choice.

--force-overwrite
With this switch, dpkg is allowed to overwrite files belonging to another
package. This may be necessary with incompatible packages that have no
conflict declared between them. This can easily happen when the DEB files
are obtained from unofficial sources. In addition, fluctuations in unstable
may sometimes call for this switch:

“# dpkg --install coreutils_5.0.91-2_1i386.deb

[...]

Unpacking replacement coreutils ...

dpkg: error processing coreutils_5.0.91-2_i386.deb (--install):

trying to overwrite ‘/bin/chgrp’, which is also in package
fileutils

dpkg-deb: subprocess paste killed by signal (Broken pipe)

Errors were encountered while processing:
coreutils_5.0.91-2_1386.deb

“# dpkg --install --force-overwrite coreutils_5.0.91-2_1386.deb

[...]

Unpacking replacement coreutils ...

dpkg - warning, overriding problem because --force enabled:
trying to overwrite ‘/bin/chgrp’, which is also in package
fileutils

Setting up coreutils (5.0.91-2)

From the viewpoint of the package management tools, [bin/chgrp is now
owned by coreutils, nor by fileutils. Thus ownership has changed. In cer-
tain situations, this can have severe consequences. coreutils is an essential
package and therefore its removal is highly unlikely. But assuming we were
talking about another package and removed coreutils, dpkg would unlink

155 |

5 The Debian package management system

[bin/chgrp. fileutils is still installed, but its footprint is now incomplete —
and the package management tools have no way to know that. If the func-
tionality of fileutils depended on [bin/chgrp, the package would be ren-
dered unusable by removing a different package. Obviously, such situations
are extremely rare, but it is important to understand the implications of the
--force-overwrite switch.

Please refer to chapter 5.3.7 for information on how to handle this kind of
scenario.

--force-hold
If this option is given, dpkg will override the request to hold a package and
process it anyhow.

--force-conflicts
This option allows dpkg to ignore Conflicts declarations and install con-
flicting packages anyhow. This usually requires --force-overwrite and is
generally a good way to shoot yourself in the foot.

5.3.7 Dealing with errors in packages

At times, packages may fail to install due to unsatisfied dependencies or existing
conflicts, files that would be overwritten, or erroneous control scripts. Problems like
this should never occur in the stable release (and will be treated as grave bugs).
However, on a system running unstable, this kind of problem can happen.

Depending on the source of the problem, different techniques must be employed
to restore proper operations. In all cases, it is important to remember that dpkg
notes any problems and remains robust in the face of inconsistencies. Moreover,
dpkg remembers the desired action and attempts to enact it over and over again,
until it finally succeeds. At the same time, actions unrelated to the problematic
packages are not affected.

Correcting dependency problems

In the following example, the administrator attempts the installation of postfix,
but the dependent package netbase is not installed. dpkg registers the desire to
install postfix but cannot fulfill it until netbase is installed.

“# dpkg --install /var/cache/apt/archives/postfix 2.1.5-1_1386.deb
dpkg: dependency problems prevent configuration of postfix:
postfix depends on netbase; however:
Package netbase is not installed.
“# dpkg --info postfix
iU postfix 2.1.5-1 A high-performance mail transport agent

| 156

5.3 Dealing with packages: dpkg |

While the netbase is in a broken state, dpkg lets the administrator work on other
packages. For instance, apache2 can be installed and purged without problems:

“# dpkg --install /var/cache/apt/archives/apache2_2.0.52-3_i386.deb
[...]

Unpacking apache2 (from .../apache2_2.0.52-3_1386.deb) ...

Setting up apache2 (2.0.52-3) ...

“# dpkg --purge apache?

Removing apache2 ...

The dependency problem relating to postfix can be resolved at any point in time,
either by installing the dependent netbase package and asking dpkg to configure
postfix, or by removing postfix.

Since dpkg remembers the administrator's request to install postfix, it will retry and
automatically complete the installation as soon as the dependencies are fulfilled:

“# dpkg --install /var/cache/apt/archives/netbase_4.19_all.deb
[...1

“# dpkg --configure postfix

[...1

At times, you may want to use software installed e.g. below [usr/local to satisfy
dependencies in existing software. For instance, you may need a special version of
libsas|2 for use with postfix. Rather than forcing dpkg to ignore the dependen-
cies, it is better to employ special tools that are designed to convince the package
management system to regard a specific dependency as fulfilled (e.g. using the
equivs or checkinstall packages, introduced in chapter 5.10.3 and chapter 5.10.2
respectively).

Dealing with file conflicts

dpkg will not let a package overwrite files that belong to another package. As
we saw in chapter 5.3.6, it is possible to force dpkg to overwrite files in another
package, but the use of this feature is highly discouraged. If the problem seems
to be of a temporary nature (as is frequently the case with unstable), overwriting
may be fine. Please consider filing a bug against both packages to make sure that
the maintainers know about the problem (see chapter 10.6).

However, if the problem is persistent because you need to install DEB files from
external sources, or DEB files build with alien (see chapter 5.10.1), then a bug report
will not help. Of course, the packager of the external DEB file should be informed,
but a fixed version may take forever to appear. In such a case, it is possible to tell
dpkg to use a different name for the file in one package in favour of the file in
another. For instance, if foo tries to install /ust/bin/foobar, which is also in bar,
and you want to use foo's version of the file, you can tell dpkg to divert all other
versions to a different filename:

157 |

o

5 The Debian package management system

“# dpkg-divert --package foo --rename \
--divert /usr/bin/foobar.bar /usr/bin/foobar
Adding ’diversion of /usr/bin/foobar to /usr/bin/foobar.bar by foo’

Now, foo and bar can coexist, but [usr/bin/foobar is foo's version. If bar is updated,
dpkg automatically installs the new [usr/bin/foobar file to fusr/bin/foobar.bar in-
stead. The --rename option causes dpkg not only to register the diversion, but also
to immediately rename the file on the filesystem.

For more information on diversions, please refer to chapter 6.1.3.

Dealing with broken control scripts during installation

Broken maintainer scripts are another cause of problems. If e.g. a package's postinst
control file contains an error, the package cannot be configured completely by
dpkg. For instance, in the following (simulated) case, the netbase postinst script
fails and prevents the installation of the package:

“# dpkg --install /var/cache/apt/archives/netbase_4.19_all.deb
[...]

Setting up netbase (4.19)

[...]
dpkg: error processing netbase (--configure):

subprocess post-installation script returned error exit status 1
Errors were encountered while processing:

netbase
E: Sub-process /usr/bin/dpkg returned an error code (1)

..

Such an error should definitely be reported to the bug tracking system with a grave
severity (see chapter 10.6). To help diagnose the problem, it may be useful to trace
the execution of the offending script. In the case of a shell script, you can simply
insert set -x right after the first line (1a tells sed to append a line to the first line
of the file):

“# sed -1 -e ’'laset -x’ /var/lib/dpkg/info/netbase.postinst

postinst scripts may also be written in Perl. Unfortunately, Perl does not provide
a similar means to trace the execution of the script. Instead, you can use the in-
teractive debugger by appending the -d option to the first line of the script (in
which the Perl interpreter is identified). This will invoke the Perl debugger when
the postinst script is run the next time. The debugger is documented in the perlde-
bug (1) manpage. In perldebtut (1), a beginner's tutorial is available.

You are free to modify the postinst script in an attempt to correct any errors, but
please exercise care when doing so; the script is executed as root! If you do find the

| 158

5.3 Dealing with packages: dpkg |

problem and possibly even fix it, please provide all necessary information (or even
a patch) in the bug report. Alternatively, you may opt to force the script to exit
successfully by letting it execute exit 0 in the right place, and then try to configure
the package manually. The same holds for the preinstallation script.

Unless you need the package, maybe the best idea is to purge or remove the pack-
age and wait for an updated version to be provided in response to your bug report.
You can remove packages with broken installation scripts as you would remove any
other package.

Dealing with broken control scripts during deinstallation

The option to deinstall a package with broken control scripts does not really exist
when a package's removal scripts are the ones causing problems. Even though you
could force the removal by causing the offending control script to exit cleanly, this
would prevent dpkg from cleaning up your system properly, potentially leaving or-
phaned files behind. Short of fixing the problem (and submitting a patch to the bug
tracking system), it is probably best to report the problem (see chapter 10.6) and
wait for an updated, fixed version to percolate into the archive. Then, the package
may be removed as it should. This only holds for the postrm script, however. If the
prerm script is broken, you will have to simulate its successful completion to make
the upgrade to the next package version work.

5.3.8 dpkg configuration

dpkg reads its default options from [etc/dpkg/dpkg.cfg, as well as "[.dpkg.cfg,
which takes precedence. The contents of the file are trivial and consist merely of
the literal command line options you need as defaults for every invocation of dpkg,
without the leading dashes. Thus, the following is a good way to ensure your sanity,
should it ever come down to it:

“# echo refuse-downgrade >> /etc/dpkg/dpkg.cfg
“# dpkg --install /var/cache/apt/archives/bash_2.05b-24_1386.deb
Will not downgrade bash from version 3.0-10 to 2.05b-24, skipping.

5.3.9 dselect

If you have some previous experience of Debian, you will probably know dselect.
To quote its maintainer: "dselect is the venerable user interface to the Debian
package management system and archive. It's certainly one of the most uniquely
identifiable components of a Debian system"

dselect is a user interface to dpkg that supports interactive package selection, and
automatic acquisition of packages from various sources, such as CD-ROMs, FTP

159 |

o

5 The Debian package management system

The six steps of

Figure 5.1:

dselect

sites. dselect can also use APT (see chapter 5.4) to acquire and install packages, and
can thus also fetch DEB files from any source supported by APT (see chapter 5.4.1).
The programme does not, however, make any other use of APT's functionality.

dselect sports its own dependency resolution mechanism. When a package is se-
lected for installation, dselect automatically adds its dependencies to the set of
packages to install. In the case of ambiguity (if two or more packages can satisfy a
single dependency, for example), dselect presents the user with a resolution screen
in which a choice can be made among the possibilities.

Independently of APT, dselect keeps its own list of available software in [var/lib/
available. For dselect to be useful, this list has to be regularly updated, which
can also be done at the command line, where Packages is the package index file
downloaded from a Debian mirror or another source of Debian packages.

“$ dpkg --merge-avail Packages
Updating available packages info, using Packages.
Information about 17877 package(s) was updated.

Debian “dzelect' package handling frontend,

0, [Alocess Choose the access method to use.
date llst 0? available 7
F.) |

and unga 1=} wanted packages‘

4 [C]onfig Configure any packages that are unconfigured,
5, [Rlemove Remove unwanted software,
6, [Bluit Quit dselect,

Move around with P and "N, cursor keys, initial letters, or digits;
Press <enter» to confirm selection, "L redraws screen,

Version 1,10,22 (i386),

Copyright (C) 1994-1996 Ian Jackson,

Copyright (C) 2000,2001 Wichert Akkermnan,

This iz free software; see the GNU Gerneral Public Licence version 2
or later for copying conditions, There iz ND warranty, See
dzelect --licence for details,

On launching, dselect presents the user with a menu comprising six steps (or seven,
depending on whether quitting is a step), depicted in figure 5.1. These steps are
designed to be executed in succession and mostly relate to the individual calls to

dpkg:

0. Access
In addition to APT, which has become the dselect standard access method
since its inception, dselect can also fetch packages from CD-ROM, via Net-
work File System (NFS), from an unmounted or mounted filesystem, or from

a floppy.

1. Update
The option causes dselect to retrieve the list of packages provided by the

| 160

o

5.3 Dealing with packages: dpkg |

access media chosen in step 0 and merges them into a single listing with
dpkg --merge-avail.

2. Select
Behind this item hides the interface shown in figure 5.2. dselect presents
the packages it knows about according to various sort criteria and allows for
the modification of the requested status of the packages (e.g. installing, or
putting a package on hold).

Figure 5.2:

The package selection
screen provided by
dselect

3. Install
This step causes dselect to fetch all DEB files whose installation the user
requested in the selection phase from the respective source media, and con-
sequently to unpack all packages. It also automatically configures newly
installed packages and removes those marked for deinstallation.

4. Config
Packages can be explicitly configured with this option, which the install calls
automatically. It is therefore seldom used. The command executed for the
configuration is dpkg --configure --pending.

5. Remove
If a user only wants to remove packages marked for deinstallation but post-
pone any pending installations, this menu option should be chosen rather
than Install. It is, however, executed automatically as part of an installa-
tion. The command executed when selecting this option is dpkg --remove
--pending.

161 |

5 The Debian package management system

The main interaction with the programme happens through the selection interface.
Here, you can scroll the list of packages and select packages for installation, dein-
stallation, and purging, by pressing the [+] (plus), [-] (minus), and [_] (underscore)
keys respectively. A regular expression search over the package names is accessible
with the [/] key. The package selection can be confirmed by hitting [enter], and
changes can always be reverted with the [R] key.

When you change a package's requested state (e.g. select it for installation), dselect
checks whether the request can be honoured without rendering the system incon-
sistent. If the request would introduce an inconsistency, dselect presents you with
a dependency resolution screen, and a suggestion on how to restore consistency.
You are free to accept the suggestion with the [enter] key, or to first make any
changes, such as using a different package to satisfy a dependency than suggested.
If the selection you make in the resolution screen does not correspond to a consis-
tent state (e.g. a conflict exists, or a dependency is not met), dselect opens a new
resolution screen to resolve the new conflict.

The resolution screen can be quite a daunting experience to the new user, who
may have a hard time returning to the package selection screen as dselect keeps
displaying one resolution screen after another. Keep in mind that the selection of
packages you make must be internally consistent. Here, dselect's dependency on
dpkg clearly shows: unless you propose a selection that satisfies all dependencies
and introduces no conflicts, dselect will not accept it just like dpkg would prevent
the installation of an offending package. In particular, if you select an alternative
package to satisfy a dependency, you must undo dselect's suggestion or the two
packages may conflict. The [D] key can be used to erase all suggestions made by
the user. The [U] key tells dselect to revert all changes since the last suggestion
(effectively making the suggestion again). Finally, it is always possible to restore
the selection state before the unresolved dependencies or conflicts appeared by
pressing the [R] key.

After making any changes (or not, if you are happy with the suggested solution),
the [enter] key will take you back to the package selection window, or take you
right back into the dependency resolution screen if inconsistencies persist. Re-
member that dselect is not capable of resolving these inconsistencies automati-
cally, it can only make suggestions. It is possible to return to the main package
selection without resolving dependencies and conflicts by using the [Q] key. When
another inconsistency is found, the resolution screen will simply merge suggestions
and alternatives for both inconsistencies into one list, which may be somewhat
confusing.

If dselect is told to enact a selection that contains inconsistencies, it will skip over
any packages with unresolved dependencies or conflicts and put these packages
on hold. It is not possible to introduce inconsistencies into the system with dselect
thanks to the underlying dpkg.

| 162

5.4 Managing packages: APT |

While many users swear by dselect, my suggestion is to replace it in favour of
aptitude or another interface to APT (see chapter 5.4.11, chapter 5.4.12, and chap-
ter 6.10). Being based on APT, aptitude can resolve conflicts automatically to hon-
our the user's request; it does not impose a sequence of steps on the user: you can
mark packages for installation and deinstallation as required and deal with broken
packages individually, and whenever you desire. On the other hand, if this is too
much trouble, aptitude will find a solution for you.

5.4 Managing packages: APT

dpkg is a powerful tool. Its robustness ensures the consistency of a Debian system.
Nevertheless, it is far from today's standards in package management, as it lacks
automatic dependency resolution, to name just one shortcoming. APT, which is
an acronym for "Advanced Package Tool", has been written to fill this gap. Itis a
high-level tool that deals primarily with the abstract concept of a package, which
consists of the following data:

= An identifying name
= The version number
= The Uniform Resource Locator (URL) of the DEB file providing the package

= Dependency information, including conflict declarations (see chapter 5.7.3).

Using this information, APT determines the set of packages needed to fulfill a re-
quest, downloads them from a repository (such as the Debian archive), and installs
and removes packages from the local system as needed.

Where dpkg conservatively prevents an action from taking place, rather than
putting system consistency at risk, APT will figure out the additional steps to re-
store the consistency, and perform those steps. For instance, if a package depends
on another, dpkg will not install the former without the latter. In contrast to this,
APT would automatically install the latter first so that the original request could be
carried out.

APT does not install or remove packages itself, but uses dpkg for package handling
at the system level. APT's job is the acquisition of dependencies as well as the or-
chestration of calls to dpkg in the right order to achieve the desired result without
giving dpkg a chance to complain.

To accomplish its task, APT maintains a list of available packages, which the admin-
istrator regularly updates with the list of packages provided on the Debian servers
as well as repositories residing on other media, such as DVDs, the download servers
of independent software projects, and local collections. After each update, APT

163 |

o

5 The Debian package management system

Figure 5.3:

Selected parts of the

dependency tree
rooted at the abcde

package'?

parses the dependency information for each package and calculates a dependency
tree using standard graph theory'", with a specific edge type for each different de-
pendency relation. Figure 5.3 shows selected parts of the dependency tree rooted
at the abede package.

cd-discid

cdparanoia | | cdda2way | | vorbis-tools

p

—)

@ libssl0.9.7 xedroast libe6 libncursess libspeex libogg0

The different symbols and line colours reflect the types of relationships: normal
packages are rectangular boxes, virtual packages provided by others are trian-
gles, diamonds denote normal packages also provided by others (wget-ssl provides
wget), and non-existing packages are displayed as hexagons. Boxes with light lines
denote leaf packages where the recursion stopped because we told apt-cache to
only graph the packages explicitly named (-oAPT::Cache::GivenOnly=true). Finally,
the light lines identify conflicts while the black ones represent normal dependen-
cies (including suggestions and recommendations).

APT is actually a library that provides package handling facilities. An administrator
may use this library from the command-line through two front-end programmes,
apt-get and apt-cache.

5.4.1 Specifying repositories

APT sits higher up in the package management hierarchy and does not interact
with DEB files directly. In the APT domain, packages are referred to by their package
name and optionally the version number. APT can handle any number of reposito-
ries and merge the list of available packages. Duplicates are resolved in favour of
the first encounter. The repositories are identified by lines of the following form in
[etc/apt/sources.list™:

deb ftp://ftp.debian.org/debian sarge main

deb http://nonus.debian.org/debian-non-US sarge main
deb copy:/srv/mirror/debian/debian sarge main

deb cdrom: [title]/ sarge main

"The underlying algorithm is a topological sort. See: http://www.cs.sunysb.edu/ algorith/files/
topological-sorting.shtml

2The graph was made with the output of apt-cache dotty --option APT::Cache::GivenOnly=true
abede wget speex speex lame cdda2wav fed through dot of the graphviz package

13please make sure to use a closer mirror instead of ftp.debian.org (see chapter 5.4.1). The full list
of mirrors is available online: http://www.debian.org/mirror/list.

| 164

5.4 Managing packages: APT |

Each line encodes the location of the Packages on the given medium. The exact
syntax definition of a valid line may be found in the sources.list (5) manpage. A
line has at least three fields which together provide the information necessary to
piece together the paths in the archive. The fields are:

package type
deb references binary packages. To access source packages, deb-src must be
used instead.

source URI

The Universal Resource Identifier (URI) identifies the source medium and can
use any of the following access methods:

cdrom

file

copy

http

ftp

ssh

distribution

With

allows access to local CD-ROM drives and supports media swapping
as well as prompting for new media, identified by the title speci-
fied between brackets. Use apt-cdrom to add CD-ROM entries to
[etc/apt/sources.list.

allows selection of an arbitrary file system location to be used as a
repository, such as an NFS mount or a local mirror.

similar to the file access method, copy uses APT's cache directory'* to
store the files after the download.

the fastest and preferred package source using a network connection,
honouring the $http_proxy variable.

slightly slower than http, the ftp method is highly configurable via
[etc/apt/apt.conf. It may use an optional proxy defined in $ftp_proxy.

given an SSH connection which does not require password entry, APT
can use a remote mirror via a secure tunnel. rsh is also provided but
should not be used or enabled for security reasons. For example:

deb ssh://usere@intranet.company.com/srv/debian/ ./

standard mirrors, the distribution field identifies the Debian release

by canonical name (e.g. stable) or codename (e.g. sarge). It can also be a
complete path, in which case it must end with a slash. For instance, lines
similar to the following (my staging repository) are frequently found for
project or private repositories:

14|var/cache/apt/archives

165 |

o

5 The Debian package management system

deb http://people.debian.org/ madduck/stage ./

[stage is a simple directory exported to the web server, which contains the
Packages file and only provides a single collection of packages. When the
distribution path is not a complete path, it identifies part of the path to the
Packages file for the desired distribution, as shown later.

components

The remainder of each line serves to identify the component collections con-
tained in a distribution. For the official mirrors, these correspond to the
archives (e.g. main and non-free) and also specify when non-US software
is to be used. For unofficial repositories, these can be used to identify com-
ponents freely defined by the repository administrator (see chapter 4.4.5 for
a smart example). APT will create a separate URI for each component. Thus,
reqular distribution entries require at least one component. Conversely, lines
with complete paths do not specify components.

When APT is told to update its understanding of available packages with apt-get
update, it goes out to fetch the various Packages files, whose locations are en-
coded in the lines of [etc/apt/sources.list. Each component mentioned in the line
corresponds to one Packages file, while lines with distribution set to a complete
path only identify a single Packages file and have no components.

An entry in [etc/apt/sources.list of the following form:

deb ftp://ftp.debian.org/debian sarge main contrib non-free

causes apt-get update to retrieve the following Packages files'®, assuming an i386
architecture:

ftp://ftp.debian.org/debian/dists/sarge/main/binary-i386/Packages
ftp://ftp.debian.org/debian/dists/sarge/contrib/binary-i386/Packages
ftp://ftp.debian.org/debian/dists/sarge/non-free/binary-i386/Packages

A line can also specify a complete path within a repository. Note the final slash,
which is mandatory. By using a variable for the architecture, the repositories can
be specified in a portable way:

deb http://people.debian.org "“madduck/packages/stage/
deb http://intranet.company.com/srv/debian/ $ (ARCH)/

maps to the following URI:

http://people.debian.org/ madduck/packages/stage/Packages
http://intranet.company.com/srv/debian/i386/Packages

15/f available, APT prefers Packages.gz files in the same location as the Packages files.

| 166

5.4 Managing packages: APT |

Binary packages usually depend on the architectures for which they were compiled.
When a package provides architecture-independent data (such as documentation),
it is labelled with the special architecture all and made available in the Packages
files for all architectures.

The tools apt-cdrom and apt-setup (from the base-config package) can be used
to easily add sources to the sources.list file:

“# apt-cdrom --cdrom /media/cdrom

Using CD-ROM mount point /media/cdrom/

Unmounting CD-ROM

Please insert a Disc in the drive and press enter
Mounting CD-ROM

Identifying.. [1319efblale8df6caed2bddel0b507933-2]
[...]

Writing new source list

[...]

Repeat this process for the rest of the CDs in your set.

apt-setup uses debconf and is essentially the same too which base-config invokes:

“# apt-setup
Apt configuration

Please choose the method apt (the Debian package management tool)
should use to access the Debian archive.

For example if you have a Debian cd, select "cdrom", while if
you plan to install via a Debian mirror, choose "ftp" or "http".

1. cdrom 2. http 3. ftp 4. filesystem 5. edit sources list by hand

Archive access method for apt:

[...1

Finding the closest mirror: apt-spy

The Debian mirror infrastructure is gigantic with over 100 mirrors officially pro-
viding the entire Debian archive. In addition, many universities and institutions
provide unofficial mirrors, so it is usually a good idea to listen around. While the
majority of mirrors are available for worldwide access, it makes sense to use the
mirrors closest to your location. This spreads mirror load and bandwidth evenly
and ensures fastest download times.

Afull list of all mirrors is available online®. For most countries, HTTP and FTP access
is available from ftp.xx.debian.org, where “xx" is the standardised two-letter coun-

6http://www.debian.org/mirror/list

167 |

o

5 The Debian package management system

try code'”. These mirrors can become very overloaded and choosing a different one
generally results in improved access to the archive.

The apt-spy tool is designed to find the best mirror by trying out a set and picking
the fastest one, automatically writing the result to [etc/apt/sources.list. It can
restrict its test to servers within a specific country or area (set of countries), can
optionally only test a limited number of servers, or run for a specific maximum time.
Furthermore, the areas are easily customised in [etc/apt-spy.conf. Thus, to find
the fastest servers in the region around Lake Constance, and write an appropriate
sources.list file for sarge, the following would do the trick:

“# cat <<EOF >> /etc/apt-spy.conf
Bodensee:

AT

CH

DE

EOF

“# apt-spy update

Updating...

Grabbing file http://http.us.debian.org/debian/README.mirrors.txt...
Update complete. Exiting.

“# apt-spy -d sarge -a Bodensee

[...1

The above will take about one minute per server, which can be controlled with the
-t option. Make sure to read the apt-spy (8) manpage for further information on
this option.

As mirrors can only be selected per country, users in countries with a large number
of mirrors (such as the United States) will not find apt-spy very useful. It is, how-
ever, possible to cap the number of servers to be tested, using the -e option. By
restricting it to check only a small number of servers, apt-spy regains some of its
value in large countries.

5.4.2 APT configuration

Most aspects of APT can be customised. In fact, in the [etc/apt/apt.conf file, you
can change the defaults for almost all command line switches. Instead of the
default file, the $APT_CONFIG environment variable can be pointed to a different
configuration file that will be used instead when set.

Configuration parameters are name-value pairs, split into groups according to their
application. The name of the group is prepended to the parameter with a "::"
separator. The apt.conf (5) manpage describes the syntax. Available items are
listed in the manpages of the corresponding commands (e.g. apt-get (1) and apt-
cache (1)).

7http://en.wikipedia.org/wiki/ISO_3166-1_alpha-2

| 168

5.4 Managing packages: APT |

APT::Cache-Limit 16777216;

APT: :Get::Show-Upgraded true;

APT: :Get::Default-Release "sarge";
APT: :Get::Purge false;

Acquire: :Queue-Mode host;

Acquire: :Retries 0;

Alternatively, group prefixes can be scoped with curly braces. All in all, the syntax
is reminiscent of C++ namespaces:

APT {
Cache-Limit 16777216;

Get {
Default-Release "sarge";
Show-Upgraded true;
Purge false;

}i
}i

Acquire {
Queue-Mode host;
Retries 0;

}i

[etc/apt/apt.conf allows you to control the way in which APT invokes dpkg to
handle the package files it downloads, or to interact with the package database.
For instance, you may let APT instruct dpkg never to downgrade a package and
never to reinstall a package of the same version with the following snippet in
[etc/apt/apt.conf:

DPkg {
Options { "--refuse-downgrade"; "--skip-same-version"; }

}i

If switches like this are part of your system administration policy, it is better to set
them in dpkg's configuration to prevent them being ignored when dpkg is invoked
directly rather than via APT (see chapter 5.3.8).

In addition to [etc/apt/apt.conf, the [etc/apt/apt.conf.d directory may contain
files with APT configuration snippets, which will be sourced in lexicographical or-
der (see chapter 6.1.1). It might not be a bad idea to drop local configuration into
different files below this directory to logically separate it into chunks at filesystem
level.

Furthermore, every APT programme accepts additional settings with the --option
command line flag. Thus, the following two commands are equivalent:

“# apt-get install --download-only postfix
“# apt-get install --option APT::Get::Download-Only=true postfix

169 |

o

5 The Debian package management system

Using the APT configuration directives, you can also fine-tune the acquisition of
DEB files from the various media. The top-level Acquire group of configuration
directives allows you to set parameters relevant to the HTTP, FTP, and CD-ROM
media. For instance, default proxies for the two network protocols can be speci-
fied, including user and password information. The user can override the proxies
with the standard $http_proxy and $ftp_proxy environment variables, which take
precedence over the APT settings.

APT hooks

APT provides three hooks for the user to run custom commands at various stages
of interaction with dpkg. Two of these hooks are of particular interest to admin-
istrators of specialised systems. For instance, on systems where [usr is generally
mounted read-only, the following settings cause APT to enable writing to the [usr
filesystem for installations or upgrades:

DPkg {
Pre-Invoke { "mount -o remount,rw /usr"; };
Post-Invoke { "mount -o remount,ro /usr"; };

}i

An additional hook, Pre-Install-Pkgs works in a similar way. APT invokes com-
mands specified for this hook even before Pre-Invoke, feeding it the names of the
DEB files to be installed on stdin. This hook is most commonly used by extensions,
such as apt-listchanges (see chapter 5.11.2).

5.4.3 Installing packages

When the user requests a certain software to be installed, APT uses its dependency
graph to find best the way of satisfying the user's request. From dpkg, it knows
about the set of installed packages and can thus figure out which additional pack-
ages must be downloaded and handed to dpkg for installation. Similarly, APT iden-
tifies conflicts. Where dpkg (rightfully) fails in the face of a conflicts, APT suggests
the removal of any conflicting packages, giving priority to the user's request (as
opposed to refusing the installation due to the conflicts). It is therefore always a
good idea to inspect the changes by a utility based on APT before telling it to do
its thing (see chapter 5.4.2 about the APT::Get::Show-Upgraded option).

For each package that APT needs to install, it enables an appropriate download
method to retrieve the DEB file from a repository into its cache directory'®. If mul-
tiple repositories provide the same file, the repository mentioned first in [etc/apt/
sources.list will be used.

'8 |var/cache/apt/archives

| 170

5.4 Managing packages

: APT |

Finally, APT enlists dpkg to remove any conflicting packages and subsequently in-
stall the new packages from the DEB files it downloaded to the cache directory. In
the following example, the postfix DEB file is already in APT's cache directory. The
other package files needed to fulfill postfix's dependencies have not been cached,
however, and APT thus fetches them from the location associated with the package.

“# apt-get install postfix

Reading Package Lists... Done

Building Dependency Tree... Done

The following NEW packages will be installed:
adduser debconf debconf-i18n ifupdown iputils-ping
liblocale-gettext-perl libtext-charwidth-perl libtext-iconv-perl
libtext-wrapil8n-perl libwrap0O net-tools netbase netkit-inetd postfix
tepd

0 upgraded, 15 newly installed, 0 to remove and 0 not upgraded.

Need to get 857kB/1636kB of archives.

After unpacking 6550kB of additional disk space will be used.

Do you want to continue? [Y/n] y

[...]

Get:13 http://debian sarge/main tcpd 7.6.dbs-6 [72.6kB]

Get:14 http://debian sarge/main netbase 4.19 [40.2kB]

[...]

Selecting previously deselected package netbase.

Unpacking netbase (from .../archives/netbase 4.19_all.deb)

Selecting previously deselected package postfix.

Unpacking postfix (from .../postfix 2.1.5-1_1i386.deb)

[...]

Setting up netbase (4.19)

Setting up postfix (2.1.5-1)

[...]

As opposed to dpkg, APT does not use a database but computes package download
locations and dependencies on every invocation (which makes it somewhat slow).
Similar to dpkg, an optimised rewrite is on the to-do list. To do this, APT uses the
files in [var/lib/apt/lists, which apt-get update had downloaded previously. Thus,
to service a request for a binary package, APT reads the Packages files in the order
of their repositories, as declared in [etc/apt/sources.list and computes the URI to be
used in each case. It also reads the MD5 sum for each DEB file from the Packages
files for later verification of the downloaded data. You can make APT output this
information instead of carrying through with the request using the --print-uris
switch:

“# apt-get install --print-uris postfix

[...]

’.../pool/main/t/tcp-wrappers/tcpd_7.6.dbs-6_1386.deb’

tepd _7.6.dbs-6_1386.deb 72614 08523a7ed8671461cd35c5e02ealdfc9
’.../pool/main/n/netbase/netbase_4.19_all.deb’
netbase_4.19_all.deb 40182 1203c825810b1262ce74c4d9d7676671

171 |

5 The Debian package management system

'.../pool/main/p/postfix/postfix 2.1.5-1_1i386.deb’
postfix 2.1.5-1_1i386.deb 798936 e4062f342b5d77416aedef28dfedlefs

You can also tell APT to merely simulate and not actually install:

“# apt-get install --simulate

[...]

Inst postfix [2.1.5-1] (2.1.5-1 Debian:sarge)
Conf postfix (2.1.5-1 Debian:sarge)

apt-get also accepts POSIX-style regular expressions in place of package names:

“# apt-get install libusb-\(0\.1-4\]|-dev\)
[...]
Note, selecting libusb-0.1-4 for regex ’libusb-(0.1-4|dev)"’
Note, selecting libusb-dev for regex ’‘libusb-(0.1-4|dev)’
[...]
The following NEW packages will be installed:
libusb-0.1-4 libusb-dev
[...]

APT automatically checks the hash sum of each file it processes against its entry
in the corresponding Packages file. Only when the MD5 sums match will the in-
stallation proceed. In case of a discrepancy, APT will report an MD5 mismatch and
refuse to install or upgrade a package. In chapter 7.5 we will revisit package hash
sums and introduce a means to verify downloads.

Updating the APT database

The Packages files, which are integral to APT's operation, must be updated regularly.
Even though the stable release does not change (other than when a new "r-release”
is made), the only way for APT for find out about newly available security updates
(or newly available packages, if you are running something other than stable), is by
checking the registered repositories for updated Packages index files. It is probably
a good idea to update these files once a day, or at least once in a while, prior to use.
The cron-apt package provides a flexible framework that allows you to automate
this (and other) APT processes (see chapter 5.11.4). Outdated Packages files can
cause APT to fail when its indices point to files which have been removed in favour
of newer versions.

To update the database, you simply run one command:

“# apt-get update

Get:1 http://debian sarge/main Packages [3331kB]
[...]

Fetched 3331kB in 0Os (24328kB/s)

Reading Package Lists... Done

| 172

5.4 Managing packages: APT |

During the update, APT cleans [var/lib/apt/lists of any files belonging to repos-
itories which are not referenced by [etc/apt/sources.list. If you pass the --no-
list-cleanup option (APT::Get::List-Cleanup), APT refrains from erasing obsoleted
files, which may be handy if you are only temporarily disabling a repository in the
sources.list file; you will not have to download it again when you put the reposi-
tories back in APT's package sources.

Dependency resolution in action

When resolving dependencies, APT tries to make sane choices. Apart from auto-
matically pulling in packages on which a requested package depends, APT removes
conflicting packages that are already installed in an effort to honour any request
the user makes. Whenever a request does anything in addition to what the user
wanted, apt-get will ask for confirmation after displaying the proposed changes
to the package selection. This is to prevent inadvertently deinstalling conflicting
packages or pulling in hundreds of dependencies. If no extra actions are required,
APT will not prompt.

As shown in chapter 5.4.2, APT can be made to always prompt for confirmation by
setting APT::Get::Show-Upgraded true. Similarly, setting APT::Get::Assume-Yes
true or specifying --yes in the APT command line causes APT to always bypass
confirmation and continue. Avoid this option; confirmations are a good thing in
the productivity domain'®,

At times, a package may depend on any one of a set of packages. For instance,
apache2 depends on "apache2-mpm-worker | apache2-mpm-prefork | apache2-
mpm-perchild®, and thus requires any one of these three to be installed. By default,
APT will install the first package, unless another one is explicitly requested:

“# apt-get install apache2

[...]

The following NEW packages will be installed:
apache2 apache2-common apache2-mpm-worker libapr0 libexpatl
libmagicl mime-support openssl ssl-cert

[...]

“# apt-get install apache2 apache2-mpm-perchild

[...]

The following NEW packages will be installed:

apache2 apache2-common apache2-mpm-perchild libapr0 libexpatl
libmagicl mime-support openssl ssl-cert

[...1]

If the preference is not to install one package but pick any other, APT can be told
to choose the next one in the row by instructing it not to use the first choice to
satisfy the dependency:

9You do use the -i flag with rm and mv when working as root, right?

o

5 The Debian package management system

“# apt-get install apache2 apache2-mpm-worker-

[...]

The following NEW packages will be installed:
apache2 apache2-common apache2-mpm-prefork libapr0 libexpatl
libmagicl mime-support openssl ssl-cert

[...1]

You can use plus and minus signs to influence APT's decision; appending a minus
to a package explicitly removes it (and appending a plus to a package in an apt-get
remove invocation installs the package, as one might expect).

Debian also knows about the concept of virtual packages (see chapter 5.7.3). You
cannot install virtual packages directly, but packages may depend on them.

“# apt-get install mail-transport-agent

Reading Package Lists... Done

Building Dependency Tree... Done

Package mail-transport-agent is a virtual package provided by:
zmailer 2.99.56-2

[...]
postfix 2.1.5-1

[...]
courier-mta 0.47-3

You should explicitly select one to install.

E: Package mail-transport-agent has no installation candidate

For instance, at depends on mail-transport-agent. Since every package providing
a Mail Transfer Agent (MTA) in Debian includes this virtual package, new MTAs can
be used to satisfy at's dependency without requiring a change to at. If a package
depends on a virtual package, APT chooses a package with the virtual package for
installation. To override the choice, you can do the same as above:

“# apt-get install at

[...]

The following NEW packages will be installed:
at courier-authdaemon courier-base courier-mta

[...]

Do you want to continue? [Y/n] n

“# apt-get install postfix at

[...]

The following NEW packages will be installed:
adduser at debconf [...] postfix

[...1

Note that order matters on the apt-get install command line?. If you were to
install at and then postfix, APT would also pull in courier-mta's dependencies even
though it will not install courier-mta in the end. Thus, APT scans the command

2http://ougs.debian.org/122304

| 174

5.4 Managing packages: APT |

line and appends all dependencies, resolving conflicts by giving priority to packages
pulled in later.

Reinstalling packages

It may be necessary at times to ask for a package to be reinstalled. Maybe the root
user deleted a file by accident, or a modification to the configuration files went
out of control. When APT is told to install an already installed package, it will not
comply with the request:

“# apt-get install postfix

[...1]

postfix is already the newest version.

0 upgraded, 0 newly installed, 0 to remove and 31 not upgraded.

The --reinstall switch forces APT to perform the installation again, regardless:

“# apt-get install --reinstall postfix

[...]

0 upgraded, 0 newly installed, 1 reinstalled, 0 to remove and 0 not
upgraded.

Need to get 0B/795kB of archives.

After unpacking 0B of additional disk space will be used.

Do you want to continue? [Y/n] y

[...1

As long as the required DEB file is still cached (above), you can also use dpkg directly
for the reinstallation. Thus, the following is equivalent to telling APT to reinstall a
package:

“# apt-get --download-only install postfix
“# dpkg --install /var/cache/apt/archives/postfix 2.1.5-1_1i386.deb

5.4.4 Searching the APT database

So far so good, installing packages with APT is a piece of cake once you know the
package name. APT provides comprehensive tools to query the package database to
obtain the desired package name(s), in addition to various resources online, which
will be reviewed in the following sections.

The Debian web page features a section exclusively dedicated to its package pool?'.
The site provides three means to browse the collection of available packages. The
"package lists" provide short blurbs for each package, while packages are sorted

21 http://packages.debian.org

175 |

o

5 The Debian package management system

into categories according to their function. By choosing a category, a user can
quickly find a set of packages relevant to a certain requirement.

It is also possible to search the package database for package names, package de-
scriptions, or even the contents of all packages to see which package provides a
specific file. Further search criteria allow you to filter the set of results, making it
easy to retrieve the necessary information for the command-line APT tools.

Finally, each package has a dedicated information page on the Debian web site.
These pages are accessible through a canonical URL using the binary?? or source
package name?3. Some more information is available through the package tracking
system (see chapter 10.6.9).

Instead of requiring a web browser, all this functionality is also available from the
command line, in case you prefer not to go via the web interface. Most work is done
by the apt-cache interface, which can be used to search the package database,
including the package descriptions like so:

“$ apt-cache search palm sync command line

autopilot - Monitor the DTR line of /dev/palm and run a command to start
sync

malsync - Allows a PalmOS PDA to synchronize to a MAL server

pilot-1link - Tools to communicate with a PalmOS PDA

The arguments to apt-cache search are regular expressions themselves, and if more
than one argument is specified, all of them have to match for a package to be
included in the output. It is also possible to search only the package names with the
--names-only option (APT::Cache::NamesOnly true). When specifying the --full
switch (APT::Cache::ShowFull true), the full package information is displayed. This
information is also accessible for each package directly and is essentially the same
as available via dpkg --info and dpkg --show:

“# apt-cache show postfix

Package: postfix

Priority: extra

Section: mail

[...]

Provides: mail-transport-agent

[...]

Description: A high-performance mail transport agent

[...1]

Searching the Debian archive for single files

Further search capabilities are available through the apt-file tool, available in the
package with the same name. apt-file is essentially an interface to the Contents

22nttp://packages.debian.org/<package>
Zhttp://packages.debian.org/src:<package>

| 176

5.4 Managing packages: APT |

file found in APT repositories. This file is available for each distribution and contains
a list of all files installed by the packages in the specific distribution. Before apt-
file can be of any use, it has to have access to the Contents files the user wants to
search. Running apt-file update will take care of that and place the downloaded
files under [var/cachefapt. Now, apt-file can be used to search these lists.

The main use of apt-file is to determine which package provides a certain file.
For instance, if someone told you to use the [usr/bin/convert tool to reformat a
picture file, you could use apt-file to figure out that the imagemagick package is
what you need to install:

“$ apt-file search /usr/bin/convert
imagemagick: /usr/bin/convert

Furthermore, apt-file is capable of displaying the files associated with a package.
This is similar to dpkg --listfiles but does not require the package to be installed:

“$ apt-file list postfix
postfix: etc/init.d/postfix
postfix: etc/postfix/access
[...]

postfix: usr/lib/sendmail
postfix: usr/sbin/postalias

[...1]

5.4.5 Inquiring about package dependencies

Returning to apt-cache, the programme also provides access to various additional
information about packages and the package database. Apart from a package's
control data, which can be accessed with apt-cache show, apt-cache has two
methods of displaying the dependency information of a package as well as the list
of packages which declare dependency relations for a specific package:

~“$ apt-cache depends apt-file
apt-file

Depends: perl

Depends: gzip

Depends: libconfigfile-perl

Depends: libapt-pkg-perl

Suggests: ssh

ssh-krb5
Recommends: wget

wget-cvs

“$ apt-cache rdepends apt-file
apt-file
Reverse Depends:

dh-make-perl

177 |

o

5 The Debian package management system

representations of

Table 5.3:
The numeric

versioned dependency

relations in the

apt-cache showpkg

output

Alternatively, the two can be combined with general information about a package:

~“$ apt-cache showpkg apt-file
Versions:
2.0.3-7(/var/lib/apt/lists/...Packages) (/var/lib/dpkg/status)
Reverse Depends:
packagesearch,apt-file
dh-make-perl,apt-file
Dependencies:
2.0.3-7 - perl (0 (null)) gzip (2 1.2.4) libconfigfile-perl (0 (null)
libapt-pkg-perl (0 (null)) ssh (0 (null)) wget (0 (null)
Provides:
2.0.3-7 -

Reverse Provides:

For the (forward) dependencies, the values in parentheses following the depen-
dent packages encode the version requirements and directly map to their symbolic
counterparts as shown in table 5.3. (null) is a special value to indicate a lack of
version dependency. Each reverse dependency lists pairs of depending and depen-
dent binary packages. If the reverse dependency is versioned, the version number
is also included.

Number Symbol Description

0 = equal to

1 <= less than or equal to

2 >= greater than or equal to
3 << strictly less than

4 >> strictly greater than

For further investigation of package dependencies, apt-rdepends in the package
of the same name can perform recursive dependency listings according to specific
criteria. For instance, to show the installed packages suggested by postfix:

“$ apt-rdepends --state-show=Installed --state-follow=Installed \
- -show=Suggests --follow=Suggests postfix

Reading Package Lists... Done
Building Dependency Tree... Done
postfix

Suggests: procmail

| 178

5.4 Managing packages: APT |

Dependency graphs

There are at least two methods of visualising the dependency graphs used inter-
nally by APT. The older of the two uses apt-cache, which can be rather inflexible
in its use, because it only allows you to specify the nodes to be included and ex-
cluded on the basis of the package name. apt-rdepends also provides the "dotty"
functionality and allows for the same criteria to be used as shown above.

The tools do not output graphs but rather information needed to create graphs.
There are a number of tools capable of the latter transformation. The classic tools
are dot and neato from the graphviz package. neato places nodes all over two-
dimensional space while dot attempts to create hierarchies. Both can generate an
Encapsulated PostScript (EPS) file and dot's result is especially suited for printing
(see figure 5.3 on page 164).

“$ apt-cache dotty postfix > /tmp/postfix.dot
“$ dot -Tps -o /tmp/postfix.eps /tmp/postfix.dot

The resulting graph can become huge quite quickly. It is possible to constrain the
set of nodes to include only the packages listed on the command line and their
immediate dependencies, and not to recurse further down the resulting tree:

“$ apt-cache dotty --option APT::Cache::GivenOnly=true postfix netbase

An alternative to graphviz is springgraph from the package of the same name. It
uses a different algorithm to layout the graphs and is specifically useful for larger
data sets due to its better use of space. It cannot output hierarchies like dot, but
it does produce better results in two-dimensional space than neato. springgraph
produces PNG files and is thus less suited for printing:

“$ apt-rdepends --dotty postfix > /tmp/postfix.dot
[...]
“$ springgraph < /tmp/postfix.dot > /tmp/postfix.png

Both, apt-cache and apt-rdepends produce the same dotty output and thus either
one can be used with any compatible spring graph creator.

5.4.6 Deinstalling and purging packages

Removal (or purging) of packages happens analogously. If the user requests the de-
installation of a package on which others depend, these will also be removed. APT
always tries to fulfill the user's request while keeping the number of changes to a
minimum. A system may have postfix installed to meet the requirement of cer-
tain packages for a mail-transport-agent. When postfix is removed, APT will take
those with it, so as to not leave behind packages with unsatisfied dependencies.

179 |

o

5 The Debian package management system

“# apt-get remove postfix
Reading Package Lists... Done
Building Dependency Tree... Done
The following packages will be REMOVED:
at mailx mutt popularity-contest postfix
[...]
Removing popularity-contest ...
Removing postfix ...

To prevent the deinstallation, the user can specify another package to replace the
mail-transport-agent functionality on the same command line by appending a
plus sign.

“# apt-get remove postfix zmailer+

[...]

The following packages will be REMOVED:
postfix

The following NEW packages will be installed:
zmailer

[...1

Obviously, this has the same effect as simply installing zmailer, as its installation
will cause APT to remove the conflicting postfix package implicitly:

To remove a package's configuration files as well, specify the --purge option. On
certain systems, it may make sense to always purge by setting APT::Get::Purge
true.

“# apt-get remove --purge mc

[...]

The following packages will be REMOVED:
mc*

[...]

Removing mc ...

Purging configuration files for mc ...

Note the asterisk following the mc package, which indicates the impending purge
as opposed to a simple remove.

Instead of apt-get remove --purge, it is also possible to just use dpkg -P, which
has the same effect and requires far fewer keystrokes. However, dpkg cannot be
used to remove a package on which others depend. While APT would offer to
remove the depending packages as well, dpkg will simply prevent the action and
report an error.

Note that APT only removes packages that need to be removed to satisfy a dein-
stallation request. In particular, if APT installs bar to meet the dependency of foo
during the installation of the latter, it will not remove bar automatically when foo
is removed, even though bar may not be needed anymore. If you want automatic

| 180

5.4 Managing packages: APT |

deinstallation of unneeded packages, please consider consistent use of aptitude
(see chapter 5.4.11) instead of APT, or run deborphan (see chapter 5.11.5) to iden-
tify and remove unneeded packages.

5.4.7 Seamless upgrades

One of the core strengths of Debian is its the seamless package upgrades. Whether
APT is asked to upgrade a long-running woody server to sarge, or an upgrade of
the current stable release encompasses a number of upgraded packages, APT will
not break a sweat.

An upgraded package is defined as a package with a higher version number than
the currently installed package (see chapter 5.7.5). From one Debian release to the
next, a package's version number can increase deliberately, while upgrades within
stable are confined to security and non-trivial bug fixes, but may not provide ad-
ditional functionality. If a security problem is fixed in a newer upstream version of
the packaged software, the security fix itself is backported to the software version
in stable so as to not introduce any further changes. Debian stable is guaranteed
to be stable.

While the set of packages contained in stable may never change, a new Debian
release usually contains many additional packages. As a consequence, dependen-
cies within stable never change, but a new release could contain renamed or split
packages, requiring modifications to the dependency relations of packages. For in-
stance, the debconf package in sarge introduces a dependency on debconf-i18n,
which was not needed for debconf in woody. More precisely, debconf-i18n does
not exist in woody and will never become part of it.

APT provides a powerful dependency resolution algorithm which can handle up-
grades from one Debian release to the next. The algorithm involves complex
searches of the APT dependency graph and thus is not very powerful. Given that
the set of packages within stable is immutable, using this algorithm is overkill for
keeping a stable release up to date. Hence, a simplified version catering specifically
for the requirements of Debian stable updates is also available.

Upgrading a stable system

Let us inspect the simplified version first, but not before updating the APT package
database (see chapter 5.4.3).

“# apt-get update

Get:1 http://security.debian.org woody/updates/main Packages [189kB]
[...]

Reading Package Lists... Done

“# apt-get --show-ugraded upgrade

181 |

o

5 The Debian package management system

Reading Package Lists...
Building Dependency Tree...
The following packages will be upgraded
exim perl-base
2 packages upgraded, 0 newly installed, 0 to remove and 0 not upgraded.
Need to get 1256kB of archives. After unpacking 98.3kB will be freed.
Do you want to continue? [Y/n] y
Get:1 http://security.debian.org woody/updates/main perl-base 5.6.1-8.7
[497kB]
Get:2 http://security.debian.org woody/updates/main exim 3.35-1woody3 [7
59kB]
[...]
Setting up perl-base (5.6.1-8.7)
Setting up exim (3.35-1woody3)
[...]

The simplified algorithm uses package indices downloaded from the APT sources
registered in [etc/apt/sources.list and compares the version numbers for each pack-
age that is installed on the local version. In the above example, perl-base was
installed with version 5.6.1-8.6 prior to the update. When APT encountered perl-
base while scanning the locally installed packages, it found that a newer version
(5.6.1-8.7) was available on security.debian.org and thus downloaded the corre-
sponding DEB file and called dpkg to install it.

Executing this update/upgrade sequence on a regular basis will keep the system
running smoothly and securely. It is even possible to have cron do this for you
automatically (see chapter 5.11.4), although | suggest that only on the rarest oc-
casions.

Upgrading to a new Debian release

When a new stable release comes around, this procedure will not produce the
desired effect. Even though it will update a number of packages, APT will also hold
back numerous packages, due to unsatisfiable dependencies. Remember: an APT
upgrade will not install packages previously not present on the system; it only ever
updates already installed packages.

“# sed -i -e s,woody,sarge, /etc/apt/sources.list
“# apt-get update
[...]
“# apt-get --show-upgraded upgrade
Reading Package Lists...
Building Dependency Tree...
The following packages have been kept back:
debconf [...]
The following packages will be upgraded
adduser apt apt-utils base-config base-files base-passwd

[...1

| 182

5.4 Managing packages: APT |

APT does not upgrade debconf as it would require the installation of debconf-
i18n. Thus, the debconf package is "kept back” The upgrade algorithm thus enacts
the requirements and guarantees of Debian stable.

When it is time to upgrade the entire system to sarge (to stick with the above
example), you have to use APT's sophisticated (and slower) upgrade mechanism:
apt-get dist-upgrade.

“# apt-get --show-upgraded dist-upgrade
Reading Package Lists...
Building Dependency Tree...
The following packages will be REMOVED:
console-tools-1libs libdigest-md5-perl libmime-base64-perl
[...]
The following NEW packages will be installed:
aptitude coreutils debconf-i18n dselect e2fslibs
[...]
The following packages will be upgraded
adduser apt apt-utils base-config base-files base-passwd
[...]
[...]
351 packages upgraded, 100 newly installed, 6 to remove and 0 not upgrad
ed.
Need to get 200MB of archives. After unpacking 231MB will be used.
Do you want to continue? [Y/n] y
Get:1 http://debian sarge/main libdbl-compat 2.1.3-7 [30.8kB]
Get:2 http://debian sarge/main libc6 2.3.2.dsl1-13 [4929kB]
[...]
Setting up libc6 (2.3.2.dsl1-13)
Setting up libdbl-compat (2.1.3-7)
[...]

With apt-get dist-upgrade, APT can pull in new packages (like debconf-i18n) and
even remove packages that have been obsoleted. The actual installation of new
packages, or the removal of old ones is again handled by dpkg.

A couple of minutes?* later, APT will have upgraded the system from woody to
sarge. Since dpkg is still responsible for the actual installation, your carefully
crafted configuration files will not have been modified (unless you chose to in-
stall the new versions). When a newer version of a software requires changes to
the configuration files, the Debian maintainers will provide a different package so
that you do not have to spend the entire afternoon getting your software to do
what it should. For instance, bind9 uses a slightly different configuration paradigm
than bind 8, and hence a new package is provided?®. On the other hand, postfix

Z4This could also be hours and depends on the speed of the source medium. If you are upgrading
Debian over a dialup line, it is probably best to leave it running over night. Of course, you can instead
use a CD of the latest release and use that as your APT repository instead.

25|n addition, some administrators may prefer to continue using bind and are thus not forced by
APT to switch to a radically new software, but can plan for the migration themselves.

183 |

o

5 The Debian package management system

version 2.x works happily and identically with the configuration of a previous 1.x
installation. Thus, the postfix maintainer deemed it appropriate not to produce a
second package.

It should also be noted that an upgrade to the next Debian release does not require
a reboot, and can easily be performed over an SSH connection on a remote server?,

Note the use of the code names woody and sarge rather than stable in the above
examples. By sticking to named versions, the administrator can decide precisely
when a system should be updated, rather than having to follow Debian's schedule.
The previous stable release continues to enjoy support by the security team for
months (or even years) after the release of a new stable version. Please refer to
chapter 4.3.3 for more information.

Hamessing the ease of upgrades

Debian is not the only system capable of seamless upgrading. However, it seems
to be the only one that combines seamless upgrades with the concept of a stable
archive. We return to this point in chapter 4 so for the time being let us just
note that the Debian stable release gives you the best of both worlds: on the
one hand, you get a rock-solid system with components that have been through
months of intensive scrutiny; on the other, you will be able to upgrade to the next
stable release without much effort. For those willing to trade off some stability
against currentness, the testing and unstable releases are available via the package
management system in the same way. With the great number of fluctuations in
these archives (especially in unstable), the robustness of the package management
system becomes more and more important — APT will not break a sweat.

Debian users with permanent (or at least moderately speedy) Internet connections
are notoriously known to make use of the power of seamless upgrades when in-
stalling new systems. No matter how old an installation medium is available, if it
can install a base system and establish a network connection, it is all downhill from
there and APT can take over to update the system to the latest stable release, or
the current unstable version.

5.4.8 Enacting requests with APT

As we saw earlier, deinstallation and purge requests can be registered with dpkg
and later enacted. You may wonder if this is also possible for installations. The
answer is "yes,' but it requires APT to do so. After all, dpkg can only install DEB files,

%6t is always a good idea to open a few extra SSH sessions as root when upgrading SSH itself. If the
server does not come back up and due to an unfortunate circumstance, the current terminal is killed,
you will not be able to get back into the machine through SSH, which can be fatal in the case of a
remotely hosted server. It goes without saying that critical servers should never be upgraded remotely.

| 184

5.4 Managing packages: APT |

and requesting the installation of a package by its name only means that dpkg will
not have access to the corresponding DEB file — which is no problem since this is
APT's domain. Without further ado, here is how to register installation requests
with dpkg and let APT enact them. Conveniently, APT also covers deinstallation
and purging, thus replacing the dpkg --pending ... invocations:

“# echo mc install | dpkg --set-selections
“# echo apache2 deinstall | dpkg --set-selections
“# apt-get dselect-upgrade
[...]
The following packages will be REMOVED:
apache2
The following NEW packages will be installed:
mc

[...1

One interesting use of the above is to back up the package selection of a system to
a file in case of a reinstallation?’, or to configure a similar system with it. Saving
the output of dpkg --get-selections to a file is all that is needed. Assuming the
file is called selections.txt, the following will configure the package selection on
another system accordingly:

“# dpkg --set-selections < selections.txt
“# apt-get dselect-upgrade
[...]

A twist of this method relies on the fact that the selection list does not need to
be complete. Just like we echo requests into dpkg --set-selections one by one, it
is possible to create a file containing a number of such requests and then simply
feed it to dpkg --get-selections on the target system as a whole. dpkg will only
modify the requests for the packages included in the file, which allows for inter-
esting applications in computer clusters (which should be using Fully Automatic
Installation (FAI) instead, see chapter 8.3.5) and other areas.

There is one caveat with this method though. dpkg --get-selections only outputs
information about packages it knows about. For a package to be known to dpkg,
it must either be installed, or have been installed (or simply unpacked) previously.
Otherwise, the package does not have an entry in [var/lib/dpkg/status and there-
fore will not be reported. This means that cloning the package selection to another
system may leave the other system with more packages installed, if it already has
some packages installed that are not known to dpkg on the source system.

One way to work around this problem is to run dpkg-query afterwards to list the
installed packages on both systems, then use diff to find the additional ones and
deinstall them manually:

27Which, of course, is totally superfluous with Debian...

185 |

o

5 The Debian package management system

“# 1s -F
selections.source
“# dpkg-query --show --showformat='g$Package\n’ > selections.local
“# diff selections.source selections.local \
| grep ">’ | cut -c3- | xargs dpkg --purge
[...]

5.4.9 APT housekeeping

APT keeps its packages in a local cache (unless the file or cdrom acquisition method
is used). Over time, the cache directory can fill up and consume vast amounts of
space, especially on systems tracking testing or unstable. APT does not manage
the contents of its cache directory [var/cache/apt/archives automatically. Instead,
apt-get provides two methods to erase files in the cache.

The first cleanup method checks each file in the cache and erases it only if it is not
available on the mirrors anymore. This may seem somewhat backward at first, but
if you consider that disappearance of a file from the mirror generally happens only
when a newer version comes around, it makes sense?®:

“# apt-get --simulate autoclean
Reading Package Lists... Done
Building Dependency Tree... Done
Del vim-common 1:6.2-532+4 [3091kB]
[...]

APT can also be told to leave DEB files of installed packages in the cache:

“# apt-get --option APT::Clean-Installed=false autoclean

An alternate method provided by APT is the complete cleaning of the cache direc-
tory, which may be necessary on small or embedded systems, or if the [var partition
unexpectedly fills up and more space needs to be made available. apt-get clean
removes all DEB files regardless of their availability on the mirror or not.

5.4.10 Resolving problems with APT

APT itself takes great care not to leave behind broken dependencies. However, an
administrator can put the APT database into an inconsistent state by using dpkg
parallel to APT. While APT should make direct use of dpkg obsolete, it is still needed

28Another possibility is the removal of a package from the archive. In such case, it would
be a loss to erase the DEB file until an alternative to the software it provides has been found.
http://snapshot.debian.net can help in such a situation as it mirrors the archive on a daily basis and
stores the packages for later retrieval.

| 186

5.4 Managing packages: APT |
in some circumstances. Fortunately, the inconsistencies in the APT database are not
fatal and can easily be resolved manually, or handled automatically by APT itself.
Recall that dpkg will refuse to install packages whose dependencies cannot be
satisfied. Thus, if a package is to be installed, and its dependencies are not available
locally, dpkg exits with an error. However, dpkg does not simply forget that the
administrator wanted to install a certain package. The inconsistency in the APT
database thus derives from the fact that the package's desired status cannot be
enacted by the package management system.

“# apt-get install --download-only postfix
[...]
“# dpkg --install /var/cache/apt/archives/postfix_2.1.5-1_1i386.deb
dpkg: dependency problems prevent configuration of postfix:
postfix depends on netbase; however:
Package netbase is not installed.
“# dpkg --info postfix
iU postfix 2.1.5-1 A high-performance mail transport agent
“# apt-get install postfix
Reading Package Lists... Done
Building Dependency Tree... Done
You might want to run >apt-get --fix-broken install< correct these:
The following packages have unmet dependencies:
postfix: Depends: netbase but it is not going to be installed
postfix-tls: Depends: postfix (= 2.1.5-1)
E: Unmet dependencies. Try >apt-get --fix-broken install< with
no packages (or specify a solution).
[...]
A similar situation arises if the administrator chooses to pass one of the --force-
depends or --force-conflicts options to dpkg. To correct the problem, you can
manually install the netbase package (using either dpkg or APT), or let APT handle
the inconsistency automatically:
“# apt-get --fix-broken install
[...]
Correcting dependencies... Done
The following extra packages will be installed:
netbase
[...]
The following NEW packages will be installed:
netbase
0 upgraded, 1 newly installed, 0 to remove and 224 not upgraded.
[...]
Setting up netbase (4.19)
APT will first try to satisfy outstanding dependencies by downloading and installing
the needed packages from the known APT repositories. If it succeeds, the database
187 |

o

5 The Debian package management system

will be brought to a consistent state again. If it cannot download all the dependen-
cies, because of inavailability or conflicts, APT instead removes the broken package.
In all cases, APT asks for confirmation before proceeding. If the proposed solution
is unsatisfactory, you can provide a better solution manually.

5.4.11 aptitude

aptitude is to APT, what dselect is to dpkg, a user interface allowing manipu-
lation of the package selection. However, aptitude adds all the bonuses of APT,
specifically dependency handling. This chapter introduces the main features of ap-
titude. You probably also want to read the extensive documentation the author
made available in fusr/share/doc/aptitude/README.gz.

As shown in figure 5.4, aptitude presents itself in a very organised and clearly
arranged layout. The top pane lists the available packages sorted by category and
according to their state with respect to the local system. It is the interface used to
steer aptitude. The bottom pane shows context information for to the main frame.
Figure 5.4 shows aptitude’s main view.

Figure 5.4:
The main view of
aptitude.

You will find up to eight sections in the main aptitude menu, depending on the
state of the package selection on your system:

Security updates
When new packages become available in the security archive, aptitude lists
them in a special category for increased visibility. Similar to the other up-
dated packages, aptitude automatically selects any security updates for in-
stallation.

| 188

5.4 Managing packages: APT |

New Packages
Following an update of the available package list (aptitude update, or [u] in
aptitude), packages which were previously unknown to aptitude are shown
under this section to allow the user to inspect recent additions to the Debian
archives. With every update, new packages will accumulate here until you
tell aptitude to forget and integrate the new packages into the main pool
by pressing [f].

Updated Packages
Packages with newer versions in the archive are listed in this section. Gener-
ally, these will be upgraded when the user finishes the selection process and
lets aptitude download and install desired software.

Installed Packages
A package which is already installed and which has no upgrade available is
listed here.

Not Installed Packages
As the name indicates, this section contains all packages which are currently
not installed. When you "forget" new packages without installing them, they
end up in this section.

Obsolete or Locally Created Packages
Packages which are installed locally but not available from the APT reposi-
tories configured in [etc/apt/sources.list are contained in this section.

Virtual Packages
Virtual packages are abstract concepts provided by a set of packages. For
instance, mail-transport-agent is provided by postfix and sendmail, among
others. Within this section, it is possible to browse the set of virtual packages
directly and see which packages provide the concepts.

Tasks
Tasks are collections of packages deemed relevant to specific applications.
Chapter 5.5 goes into greater detail on these. aptitude allows tasks to be
browsed and installed.

aptitude is organised in a tree structure with lines corresponding to nodes. Nav-
igation is possible with the arrow keys, [PageUp] and [PageDown]. [Return] or
[Enter] expand or collapse a node. Figure 5.5 shows an expanded view. The listing
is split into four columns: the package status and requested action, the package
name, the currently installed version (or <none>), and the available version.

189 |

o

5 The Debian package management system

Figure 5.5:

An expanded view of
aptitude's package
listing.

or interpreted

2 |INT

Valid package states in aptitude's package list:

v virtual

B broken

u unpacked

C half-configured

H half-installed

c removed but not purged

p the package has been purged
[installed

E internal error

Requested actions in aptitude's package list:

h hold

p purge

d deinstall
B broken

[install

| 190

5.4 Managing packages: APT

r reinstall

u upgrade

The bottom pane lists various different data relevant to the current selection in
the top frame. Scrolling is accomplished with [a] and [z], and [i] cycles between
different information views. Finally, [D] can show and hide the information area.

Searching and filtering

Using the [f] key, you can search the package names, and a number of search
predicates are available. [\] finds the next match of a search. The beginning and
end of a name may be anchored with “and $ to match the beginning and end of
a name, just like in regular expressions. With [l], the user can limit the displayed
package set to certain criteria, using the same predicates available for search?.
Some of the most important predicates are:

Predicate Effect

“ahold held packages

b broken packages

“d<text> packages with <text> in the description

g unused packages

“m<maint> packages maintained by <maint>

“n<text> packages with <text> in the name
“V<version> packages with <version> in the version number

These predicates can be combined. For instance, “ahold "dmail selects held pack-
ages with "mail" in their description. Using a pipe symbol (|) between the predi-
cates causes the expressions to be logically OR'ed: "v|"b selects all broken or virtual
packages. Whitespace between the predicate and the search term is not ignored!
Therefore, "V.0 and "V .0 are different, with the latter returning no results. An excla-
mation mark negates the expression: !I"b finds packages that are not broken. Paren-
theses group expressions to allow for complex boolean logic: “b(*mmadduck| snet)
finds broken packages either maintained by me, or in the net section.

Furthermore, reqular expressions may be used at your discretion, but certain char-
acters, like the parentheses “()", the tilde (), and the exclamation mark must be

escaped with the tilde: "n™(lib”)?gtk.* finds packages whose name begins with
"gtk" or "libgtk"

2 mutt users will quickly find themselves in familiar domains...

Table 5.4:

A selection of
aptitude’s search
predicates.

191

5 The Debian package management system

Manipulating the package selection

The package selection can be manipulated by browsing to a package and then
pressing the key corresponding to the desired action:

[+] Selects the package for installation.

[-] Selects the package for removal.

[L] Selects the package for purge.

[=] Putsa hold on the package.

[] Puts a hold on the package for the duration of the aptitude session only.
[L] Requests the reinstallation of a package.

[Rl Requests the reconfiguration of a package.

[Requests the immediate installation of the package (and its dependencies)
while putting all other upgrades or installations on a temporary hold. This
has the same effect as apt-get install <package>.

[F] Forbids the installation of a certain version of a package. Future versions
will, however, be used regularly.

[B] Calls on reportbug (see chapter 10.6.5) to file a bug against the package.
[C] Downloads and displays a package's changelog.

[g] Enters the preview screen of all requested changes. If pressed within the
preview screen, it causes the changes to be enacted.

Expanding a package node yields the package detail screen shown in figure 5.6.
Besides useful information about a package, this screen also allows for convenient
browsing of the relation declarations and interactive dependency resolution wher-
ever aptitude's automatic resolution suggestion is not desirable. Here too, [Return]
expands nodes, and the keys used to manipulate the package selection in the main
list also apply to the packages listed under the relation declarations. Hitting [q]
takes you up one level and closes the package detail screen to return to the pack-
age listing.

| 192

o

5.4 Managing packages: APT |

Figure 5.6:
The package detail
screen of aptitude.

Returning to the example of the apache2 multithreading model, here is how you
would install apache2 with a different threading model:

= After starting aptitude, search for the apache2 package: [“apache2$[enter].

= Select apache2 for installation: [+]. The status line at the top will now indicate
something along the lines of:

Will use 6644kB of disk space...

and a new column after the package name appears showing the size difference
the package selection will cause to the system.

= Expand the package node, browse to the Depends line and expand the line stat-
ing the dependency on one of the available multithreading models (actually
called "mpm,” multi-processing module). You will see apache2-mpm-worker se-
lected to meet apache2's dependency. Browse down to apache2-mpm-perchild
and select it for installation: [+]. This causes apache2-mpm-worker to be des-
elected and the installation of apache2-mpm-perchild to be requested.

= Hit [g] to view the summary of actions to be performed, as depcited in figure 5.7.

193 |

5 The Debian package management system

Figure 5.7:

The summary of
actions aptitude is
about to take.

Figure 5.8:

aptitude with
unsatisfied
dependencies. Note
the #Broken: 1 count
in the title pane.

'ackages b

apache? -conmon
apache? -mpn-uorker
Lihapr0

Libexpatl

openssl

szl-cert

fu}
o satisfy dependencies
+3273kB <none>
1520kE <hone>
+319kE <none>
+184kE <none
+2179kB <none>
+94,2kB <{none>

+73,7kB <hone>

e will :

= Hit [g] again to let aptitude do its thing and install the requested software. [q]
will take you back to the selection list in case you need to make more changes

Broken packages

When aptitude encounters a selection with unresolved dependencies, it highlights
problematic packages with a solid red background and displays the total number
of errors in the title pane, as illustrated in figure 5.8.

| 194

5.4 Managing packages: APT |

Broken packages are those with unsatisfied dependencies, or conflicting packages
(in which case both packages are broken). aptitude obviously will not allow the
user to commit a package selection with broken packages. Therefore, the breakage
has to be fixed first, which can be done in one of two ways.

First, when the count of broken packages is non-zero and aptitude is told to per-
form the pending actions (the user hit the [g] key), aptitude will try to solve all
problems before displaying the summary of pending actions. Generally, it takes a
conservative approach to automatic fixing, so that the previous selection is favoured
over other possibilities. Always check the count of broken packages before hitting
[g], or else an elaborate set of changes resulting in one or more broken packages
may be discarded in favour of the state before the changes. Fortunately, aptitude
allows to undo the last action with [C-_] or [C-u] and resort to manual resolution.

When fixing broken packages in aptitude, the filter (or limit) functionality comes in
incredibly handy. Hitting [I] and entering "b as filter specification causes aptitude
to limit the list to only broken packages. Using the package detail listing (accessible
by expanding a package node), it should usually require little effort to fix problems
by selecting missing dependencies for installation and manually resolving conflicts.
Alternatively, you can simply advance to the next broken package by hitting [b].

As the count of broken packages decreases, it may be necessary to filter the list of
displayed packages. Hitting [I] followed by [enter] reapplies the previous filter and
should shrink the listing to a (hopefully smaller) number of packages that are still
broken. Use iteratively, this procedure allows all broken packages to be fixed in a
short time.

Tracking unused packages

When aptitude selects a package to satisfy another's dependency as part of its
automatic dependency resolution, it marks the package as automatically installed.
Consequently, these packages will automatically be selected for removal when the
depending package is removed, helping to keep the system clean.

It is also possible to manually modify the "automatically installed” flag with [M]
and [m]: the first adds the mark, the latter removes it. The “g predicate can be used
to search and limit according to this flag.

While this feature of aptitude is nice, deborphan provides similar functionality
with greater flexibility. We will be returning to this topic in chapter 5.11.5.
Command line interaction

aptitude provides an interesting set of operations from the command line and can
basically be used as a drop-in replacement for apt-get with the search capability

195 |

o

5 The Debian package management system

of apt-cache, and adding with the search predicates available within aptitude's
interactive interface. The following should illustrate some of the possibilities.

“# aptitude search ’~“dsync “dpalm !“slibs’
[...1

~“$ aptitude moo

[...1

“# aptitude update && aptitude dist-upgrade
[...1

“# aptitude install pilot-link "n”~ (lib~)?gtk.*
[...1

“# aptitude purge mc

[...1

“$ aptitude moo -v

[...1

Just as with apt-get, multiple requests for different actions can be placed in a
single command by appending the characters used to take the respective action in
the interactive interface. In the following case, A would be installed, B removed, C
purged, and D put on hold. The '+" is superfluous because the install action makes
installation the default:

“# aptitude install A+ B- C_ D=
[...]

The advantage of aptitude's command line interface is the integration of vari-
ous programmes and their functionality behind a consistent interface. In addition,
dependencies installed automatically by aptitude in response to an installation
request at the command line are tracked accordingly, and aptitude will sched-
ule these packages for automatic removal as soon as they are not needed any-
more. This may also be explicitly requested. The following mimics deborphan's (see
chapter 5.11.5) default behaviour removing all unused packages from the libs and
oldlibs categories:

“# aptitude markauto ’“slibs| soldlibs’

Reading Package Lists... Done

Building Dependency Tree

Reading extended state information

Initializing package states... Done

The following packages are unused and will be REMOVED:
1ibdb2 1libdb3-util 1libdb4.0 libgcl libgdbmgl libglib2.0-0
libidentlibmagicl libpcap0.7 libpcre3 libperl5.6 libpngl0-0
libpng2 libsasl7 libsigc++0 1ibssl10.9.6 libstdc++2.10-glibc2.2
libtextwrapl libxmltokl

0 packages upgraded, 0 newly installed, 19 to remove and 0 not upgraded.

Need to get 0B of archives. After unpacking 10.6MB will be freed.

Do you want to continue? [Y/n/?] vy

[...]

“# aptitude moo -vv

[...1

| 196

5.4 Managing packages: APT |

Keeping a log

aptitude writes all actions you request to /var/log/aptitude. The file can come
in handy to keep track of software installations and removals. However, it goes
without saying that its helpfulness depends on the exclusive use of aptitude. If
you install packages with apt-get and remove them with dpkg, aptitude’s log will
quickly grow out of sync. In addition, aptitude only logs requests. If an action fails,
this is not recorded in the protocol.

5.4.12 synaptic

synaptic is a GTK-based graphical management tool, based on APT. It adequately
captures the base power of APT into a front-end which is easily usable by novices.
As it relies on APT for the actual package operations, it can be used in parallel to
the other tools available on a Debian system. Figure 5.9 shows a screenshot of the
graphical front-end featured by synaptic.

Figure 5.9:
Hle Edt Package Settings Help 3
v | The Synaptic Package
Reload Mark All Upgrades App Properties | Search
= S Manager

Sections 2|[s]rackage [installed version | Latest version _[size |Descrigtion

] [/ |0 mucite 8.1+0.20020225. Message LTles for Emacsen

Amateur Radio O muttimail Offine reader for Biue Wave, GWK, OMEN and SOUP

Base System 7 Text-based maireader pporting MIME. GPG, PGP and threading
Commurication L Prey printng of mails

Cross Platform 1012 a utiity to chaose profies in Mutt

Development 111141 Feature-rich 85D mall1)

Documentation L1l-release-3 A set of electronic mail handling programs

Ediors LAO0RCT-22 simple relay-only mall transport agent J
Elecronics] ofineimep 407
] op-mai2-b 10,1 1snapshot2t

Embedaea Device | || P35<E 2102 comman | Dependencies | nstaled Files | versions | Description|

GNOME Desktop E| | |2 perditon] Package:

Games and amuse| | [T perdition-dew 1182 mutt

P PR Text-based mallreader supporting MIME, GPG, PGP =

Graphics Text-based mailreader supporting MIME, GPG, PGP and threading | and threading

Interpreted Comps pporting 4 and threading .

\DE Desktop Envi Mutt is @ sophisticated text-based Mal User Agent. Some highlights: Status: [Not Instaled

L brates © MIME suppoart (inchuding RFC1522 enceding/decoding of 8-bk message Maintainer: Marco ditr <md@irusit=

Lbvaries - Develop| [| NSa%er and UTF-8 supportl. Priority: standard

Lbrarles - Oid 0 PGR/MIME support (RFC 2015). Section: Email

Mathematics Z -:g\/:::zpl‘::l’ chient supporting SSL encryption and SASL authentication. R

Miscellaneaus - G | o threading (bath strict and non-strict] o G

Miscellaneous - Te dry o

tiscellaneoue Ta | || © DE/UIt keybingings are much ke ELM,

Multimedia @ Keybindings are configurable: Mush and PINE-like ones are provided as Latest Available Version

networking Samples. » version: 15.6-20040907+ 1

Networking (nonfr| || © FEdIEs MMDF. 1 and Maidir in addon ta reguiar mbox farmat. Size: e

Jewsaroun o Messages may be (indefinitely) postponed Downioad: 1416 k3

per Programming | || © CO0Ur Suppor

oyt Sragrammi | || © FiE corfigurable trough easy bu powertul fle. e I
Sclence
Shells
System Administra
Tex Authoring
Unikniown
Liiities
| e fnen frae) L2l

|F7 packages Vsted, 135 nstalled, 0 broken, 0 10 Insaluparads, 0 to remove

synaptic does not provide all the features of aptitude, but it sports a more intu-
itive and accessible interface. Nevertheless, it can perform all standard package
tasks. In addition, it features a flexible search function and can lock packages to

197 |

o

5 The Debian package management system

Figure 5.10:
aptitude’s task
selection interface.

single versions, using APT pinning internally (see chapter 8.2.1). The pins do not
propagate to the regular APT tools, which means that synaptic keeps its own pin
configuration and does not touch the one in [etc/apt/preferences.

5.5 Debian tasks

A Debian system is usually installed to serve a certain task. For instance, you may
be installing a new machine to serve as a database server, or bootstrapping a power
horse to become your new desktop computer. Debian provides the concept of tasks
to identify typical sets of packages for certain requirements; for the two tasks
just identified, you can install a typical selection of software by installing the SQL
database or Desktop environment respectively.

Traditionally, the tasksel programme provided an interface for the selection of
these software collections, but its functionality has been integrated and extended
by aptitude, which should thus be favoured.

The idea of a task is to select an abstract concept such as a “Structured Query Lan-
guage (SQL) database” and end up with a set of installable packages which provide
everything necessary to turn the local system into a typical SQL database server. In
essence, tasks are similar to meta packages (or dummy packages) depending on the
required packages with the sole difference that a task is actually purely virtual and
does not have an associated DEB file. Furthermore, tasks are merely suggestions
and the user is free to unselect some of the packages proposed as part of the task.

--- Print
--% SOl database

| 198

5.6 Package management compared |

You will find the preferred interface for tasks at the very bottom of aptitude’s main
selection screen. Similar to handling packages, tasks may be treated as singular
entities, or unfolded to reveal the packages they suggest. If the local system is to
become a SQL server, you can simply navigate to the "SQL server” task in aptitude
as shown in figure 5.10 and hit [+]. Subsequently, the selection can be modified.
For instance, even though libecpg4 is considered part of a typical SQL server, it may
be deselected like any other package through aptitude’s interface. Alternatively, a
user may choose to unfold a certain task and inspect the suggested set of packages.
Instead of installing the task as a whole, the user may then decide to simply install
only a few of the packages the task contains. You will see that tasks in aptitude
react just like regular packages.

It is also possible to define custom tasks by dropping task description files into
Jusr/share[tasksel*°. Documentation on how to compose tasks is available in the
README file installed with the tasksel package®'.

5.6 Package management compared

It is not the intention of this book to compare. Nevertheless, as the Debian pack-
age management system seems to be misconceived too often, it is important to
establish the position of dpkg, APT, & co. within the field of automatic pack-
age management. The days have passed in which Debian's package management
wiped the table clean. Today, various approaches exist, each with their own special
features and annoying caveats. When people tout their favourite package man-
agement system and diss on the other available solutions, they effectively admit
their own ignorance of the matter. In fact, it seems as if package management
systems are more a question of faith.

Package management seems to encompass three aspects: the package format
specification, the package handler, and the actual package manager. Many a De-
bian supporter will claim that Debian excels in all three of them. While the Debian
package management tools have undeniable strengths, they are not perfect. The
same can be said for the package management systems of other distributions. Thus,
it is time for a quick comparison (without going into too much detail).

The basis for package management is the format of the package files themselves,
which provides for a lot of the functionality. Flamewars rage with DEB supporters
slashing RPM fans, and vice versa. A common belief among Debian supporters
seems to be that the DEB format is largely superior to RPM, which is simply false
(and certainly one of the reasons why Debian's reputation is not always positive).
In fact, the RPM format is actually more feature-rich than DEB, but the additional

30Additional locations may be supported in the future, see http://bugs.debian.org/286170.
31 usr/share/doc/tasksel/README

199 |

o

5 The Debian package management system

Table 5.5:

Package handling
commands available
by dpkg and rpm.

features are not commonly put to use32. Nevertheless, in terms of the capabilities
actually put to use, the two formats are just too similar to compare. The same also
holds true for comparisons with other major package formats, including pkgsrc,
ports, and even .ebuilds. Each format has its own advantages and limitations,
but when it comes to package management, the administrative possibilities they
support are all more or less equivalent33.

The situation with tools handling the package files is no different. dpkg and the
rpm binary are package processors (as well as other managers for other formats),
provide largely the same functionality (see table 5.5): installation and removal,
querying a status database, and displaying information extracted from package
files; they can be told to override dependencies or disregard other rules, and they
can list package contents and associate installed files with the source package. In
short, what can be done with one is also possible with the other. Within each of
the different implementations of package management, the boundaries between
the components may shift. What counts, however, is the net result and the admin-
istrative approaches the respective toolsets enable. While dpkg and rpm and their
respective package formats are fundamentally different from e.g. a ports-based
system, the capabilities are more or less the same.

dpkg rpm

dpkg --info rpm -qpi

dpkg --contents rpm -qpl

dpkg --install rpm -i

dpkg --list rpm -qa

dpkg --listfiles rpm -ql

dpkg --search rpm -qf

dpkg --status rpm -qi

dpkg --remove nfa

dpkg --purge rpm -E

dpkg --install --force-depends rpm -i --nodeps
dpkg --install --force-overwrite rpm -i --replacefiles

32A good example of such functionality is the concept of RPM package triggers, which allow a
package to register actions to be taken when another package is manipulated and thus go beyond
the standard installation scripts. Another example is that RPM allows dependencies to be met by files
installed on the local filesystem. While this practice is somewhat reminiscent of the dynamic library
handling which gave "dependency hell" its name, it can be useful at times.

33A qualitative comparison is available online: http://www.kitenet.net/ joey/pkg-comp

| 200

5.6 Package management compared |

The third component of a package management system is the package manager
itself, which builds upon the package manager and the format specification. For a
long time, APT enjoyed unrivaled precedence in this field, but the other distribu-
tions have been busy. Nowadays, tools like up2date, yum, urpmi, and emerge are
hardly behind in the amount of functionality they provide (see table 5.6), and even
though APT does seem to stand out in terms of maturity and robustness, it will not
be long until the others are viable alternatives.

The following table attempts to list corresponding commands of the four major
automatic package managers. Please note that the comparison is APT-centric, and
intended to serve more as a reference than as an argument to bash the other
commands, which can each do things that APT cannot. It thus primarily serves as
a map to help you distinguish between the different APT commands. | purposely
do not provide a map of other managers' commands to APT because APT has all
the features you need for the Debian Way of package management. Concepts and
approaches available with other managers but not supported by APT are unlikely
to be useful on a Debian system.

Table 5.6: Package management commands of major package management systems compared.

APT yum up2date urpmi
apt-cache search yum search http://rpmfind.net urpmgq
apt-cache show yum info http://rpmfind.net urpmq -i
apt-cache showpkg nfa http://rpmfind.net n/a
apt-cache depends nfa n/a n/a
apt-cache rdepends nfa n/a n/a
apt-get install yum install up2date -i urpmi
apt-get install yum up2date -d nfa%*
--download-only --download-only
apt-get remove nfa n/a n/a
apt-get remove --purge yum remove rpm -e urpme
apt-get update nfa nfa urpmi.update -a
apt-get upgrade yum update nfa nfa

apt-get dist-upgrade

yum --obsoletes

up2date --update

urpmi --auto-select

update
apt-get source nfa up2date --src nfa
apt-get build-dep nla n/a nla
apt-file search yum provides http://rpmfind.net urpmf

34urpmq --sources [...] |xargs wget

201 |

o

5 The Debian package management system

Lastly, APT is not specific to Debian. As part of Debian's commitment to the free
software community, APT is publicly available and has been ported to various pack-
age formats (most notably RPM). It is already actively being used by other distribu-
tions, including Mac OS X (Fink) and Fedora.

Comparing package management systems across Linux distributions, we reach the
conclusion that all major players in the field are mere mortals. But there is more to
the Debian system than the aforementioned package management utilities. Those
who rank APT as the true strength of the Debian operating system are wrong. The
real reason is well removed from the user interfaces, deep inside the Debian system,
omnipresent, but hardly noticeable.

5.7 Power from within: the Debian policy

A group of musicians does not make an orchestra. If the goal is a symphony, it does
not help if each does their own thing, or small groups form to play different pieces.
If the artists are willing, a little patience can lead to acceptable results, but a true
symphony requires order. For an orchestra to successfully convey the energy of a
musical masterpiece, it requires individual skill, a score, a conductor, and endless
hours of practice.

Introducing the Debian Symphonic Orchestra

The Debian system is not unlike a symphony: the musicians are the developers who
prepare numerous packages for installation on the system. If developers simply
create packages to their own liking, synergy cannot emerge. Therefore, the devel-
opers have agreed on a set of rules by which to abide, just like the members of
an orchestra agree on a score to follow. Within the Debian system, the role of the
conductor is taken by the package management tools, which, as shown in chap-
ter 5.3 and chapter 5.4, observe certain rules and ensure that packages harmonise.
The rules as well as the tools have been around for years, and developers have had
ample time to practise their use, and to correct problems.

To continue the example, the score played by the Debian developers and observed
by the package management tools is the Debian policy®®; without the policy, the
Debian distribution would be Just Another Linux. But it is not. The policy is the
soul of the Debian system, it is its throbbing heart, it is the reason why Debian can
put the same tools to better use than others. The policy is Debian's cookbook, with
years of scrutiny perfecting each single recipe.

35http://www.debian.org/doc/debian-policy

| 202

5.7 Power from within: the Debian policy |

Restrictions for package maintainers

It is possible to administer a Debian system without knowing about the Debian
policy. In fact, the guidelines put forth in the document do not impose restrictions
on the users of the system. Instead, it defines what a Debian package may and
must not do. Thus, it commits the Debian developers, to ensuring that all pack-
ages behave properly and that their installation or removal will leave the system
in a consistent and clean state. Put differently, it helps to lessen the number of
decisions a package maintainer has to make. If, in creating a package for Debian, a
developer follows the rules of the policy, the package is guaranteed to be compat-
ible with the Debian system and the tools used for its management. Furthermore,
a compliant package can coexist with thousands of other packages on the same
system.

All of Debian's administrative utilities obey the policy; when you tell dpkg to install
a package, you are telling it to enact the policy. Familiarity with the policy is
required of each Debian developer, and policy compliance is an important priority
during the preparation of a package. However, developers do err at times, and the
tools provide a safety net for such cases: rather than putting a system at risk, the
package management tools will not allow an action which is in violation of the

policy.

Hard rules

In general, operating systems are hardly ever policy-less. For instance, within the
NetBSD project®®, rules exist to coordinate the work of the numerous coders. But
upon deeper inspection, these rules do not provide the same safety as the Debian
policy. Before moving on, we have to distinguish between two sources of NetBSD
software. On the one hand there is the stand-alone core operating system, and on
the other the NetBSD Package Collection (pkgsrc), containing third party software
tweaked to install in a NetBSD environment without a hassle.

As the core is developed by a small and coordinated team, conflicts such as the
aforementioned are extremely unlikely to happen. However, software in the pkgsrc
archive is maintained by independent individuals, who are encouraged to follow
a common set of rules. These rules, however, are "soft" rules as they are neither
enforced on submission of the package to the archive, nor on installation on a
NetBSD machine. If a third party package overwrites files of another software be-
low [usr[pkg, it effectively renders the other software inoperable until the problem
is fixed and the package is reinstalled. The NetBSD rules state that such a situation
must be prevented with a conflict parameter, but if this parameter is wrong or has
been left out (usually by human error), the conflict will not be handled gracefully.

36The NetBSD project makes a great operating system, in many ways technically superior to Linux.
Thus, | feel no shame in using it as an example to illustrate the strength of the Debian policy; also, see
chapter 5.12.1.

203 |

o

5 The Debian package management system

Obviously, when different pieces of software are developed specifically for a system
(as in the case of the NetBSD core), it is most likely that the different pieces coexist
peacefully. The majority of Debian packages, on the other hand, are pulled from
external sources and possibly restructured by the maintainers to fit in with the De-
bian system. If you've been around the Unix world long enough, you will have seen
all kinds of schemes of where to put files: the GNU Autotools take a standardised
approach, but software such as gmail, Check Point Firewall-1, or Sun's JDK seems
to have unusual ideas of filesystem space their component files should occupy.

The job of a Debian developer is thus that of transforming a software's intended in-
stallation footprint to one compatible with all other packages in the Debian archive.
The policy serves to help the maintainer in this task by limiting the number of
choices that have to be made during packaging. It also specifies clear requirements
so that the developer does not have to try to cater for everything that could go
wrong. This saves a lot of time and gives packages increased robustness right from
the start. Similarly, the commonly used package maintainer tool enact the policy
and make package creation mostly routine (see chapter 9).

A Debian maintainer cannot do much more than someone packaging third party
software for NetBSD when two packages provide a file with the same name and
target location on the filesystem: if the two files provide the same functionality,
the meta information of the package will contain this relation (see chapter 5.7.3);
if the files are functionally different, then one (or both) must be renamed. The
difference is that a package that does not follow these rules will not be available
from the Debian stable archive. In addition, to guard against the unforeseen, dpkg
will perform meticulous bookkeeping to ensure that a maintainer error cannot in-
advertently render unrelated components of your system unusable by overwriting
essential parts.

The quintessence of Debian

The crucial point is that failure to abide by the policy is reason enough for a serious
bug to be filed against the offending package (by whomever notices the violation;
see chapter 10.6). As a serious bug prevents a package from entering Debian stable,
a package violating the Debian policy cannot become part of an official Debian
release. This is the quintessence of the Debian system: all packages available in
the Debian stable release follow the same set of rules and constitute a system
that is consistent as well as uniform throughout. In the rare case that a policy
violation is discovered within the stable release, a new version will likely be made
available with the next upgrade (even before the next official release). Nevertheless,
as illustrated in chapter 4, such an upgrade must not affect the stability of the
installed system.

As stated before, the policy does not impose restrictions on the administrator. How-
ever, it certainly plays an important role and accounts for some of the most im-

| 204

5.7 Power from within: the Debian policy |

portant aspects of Debian system administration. In the following, the pertinent
effects of the Debian policy are illustrated.

5.7.1 The sacred configuration files

We saw in chapter 5.3.3 that dpkg handles configuration files with special care, as
it assumes local modifications are to be preserved across package upgrades. This
feature is not a simple add-on, but rather a requirement imposed on the Debian
package handler by the policy. In section 10.7.3, the Debian policy states that
“local changes [to configuration files] must be preserved during a package upgrade!
For dpkg to be the Debian package handler, it must ensure that the policy is not
violated.

dpkg goes one step further and implements proper handling of the configuration
files, placing the decision whether to overwrite local modification upon the shoul-
ders of the administrator, not the package maintainer. By defaulting to preserve
local changes, it adequatly enacts the policy, while giving a user of the system more
flexibility. In addition to preventing policy violations, dpkg provides useful func-
tionality and hence takes the burden of implementing similar solutions repeatedly
for each package off the developers.

Identifying configuration files

It could be said that the most advanced statistical methods are only as good as the
data they analyse. Along similar lines, dpkg's flawless handling of configuration
files is only useful if it knows which files to treat as conffiles. Here, too, the policy
provides the rules to facilitate the maintainer's job (and responsibility): section
10.7.2 states that "Any configuration files created or used by [a] package must
reside in [etc! The set of configuration files installed by a package is determined at
package creation time, and dpkg does not enforce this rule itself (for reasons which
will become obvious in an instant). However, the package creation tools used by
most maintainers are aware of this clause in the policy and automatically mark
every file installed to [etc as a conffile.

When configuration files are generated dynamically (e.g. through the use of de-
beonf; see chapter 5.8), dpkg's conffile handling methods may be undesirable, or
even get in the way. For this reason, dpkg does not automatically treat all files
under [etc as configuration files. In such a situation, it is the maintainer's job to
provide an adequate and policy-compliant solution. The ucf (Update Configuration
File) tool is available for such purposes and provides much the same functionality
with respect to configuration files as dpkg itself.

A package's set of conffiles, which are managed by dpkg, is available in the section
labelled "Conffiles" in the output of dpkg --status:

205 |

o

5 The Debian package management system

“# dpkg --status postfix
[...]
Conffiles:
/etc/init.d/postfix 79ac63lecb6e3cbbld8684aabdelllfc
/etc/ppp/ip-up.d/postfix 0£6d412880a5£95b96037£15d658cechb0
/etc/ppp/ip-down.d/postfix 0758469f9f1c073a53d£f50d9dc43c8eb
/etc/postfix/postfix-script 43d47ae8924b92d8£929d0ffa363c84a
/etc/postfix/post-install 9¢26982c75a0500578c73a796£35¢c0f5
/etc/postfix/postfix-files 4b8051f5c6101ad744f5bfbd772a29db
/etc/resolvconf/update-libc.d/postfix 3c921al0c2447ae3el66a624115684048
[...]

This list does not include configuration files managed by other tools, such as ucf.
However, you can take it for granted that every file installed below [etc is handled
correctly.

Wherever you may roam

The Debian policy protects your files by separating the areas of a system, in which
the administrator may modify files at will from the areas managed entirely by the
distribution. Any modifications you make under the [etc hierarchy are guaranteed
to be left alone across package upgrades.

At the same time as the policy gives you full permission to roam about [etc to
your heart's content, it asks you to keep your hands off the files and directories
in fusr and other parts of the filesystem hierarchy. With the notable exception of
fusr/local, the policy allows a package to replace any files of previous or newer ver-
sions with files from the current release. Therefore, an administrator who directly
modifies e.g. [usr/bin/debconf is violating the policy and nobody will hear the cries
when an upgrade of the debconf package silently overwrites all changes. Please
refrain from modifying files installed by Debian packages which are not flagged as
configuration files, unless you know what you are doing.

If a software actually needs modification to files in fusr (in which case the software
could be said to be broken in the context of the Unix paradigm), the package main-
tainer should provide some way of working around the problem. Possible solutions
include exporting configuration variables to files in [etc by direct modification of
the software, or the use of symbolic links from the location in the fusr hierarchy to
an appropriate file in [etc.

The separation of the filesystem into two partitions, one for the system and one
for the user is further specified in another section of the Debian policy, to which
we shall return in chapter 5.7.4.

| 206

5.7 Power from within: the Debian policy |

Workarounds, cheats, and lazy maintainers

Unfortunately, some maintainers have been lazy in the past and have chosen work-
arounds for the strict requirements. On your system, you may find files in fetc
which warn the administrator not to make local modifications. e.g.:

“$ head /etc/fonts/fonts.conf

[...]
DO NOT EDIT THIS FILE.
IT WILL BE REPLACED WHEN FONTCONFIG IS UPDATED.
LOCAL CHANGES BELONG IN ‘local.conf’.

[...]

It is arguable whether packages owning these files are in violation of the policy. In
all cases, however, it is a good idea to notify the maintainer and suggest a proper
approach to handling these files. Either of the following solutions is satisfactory
(and other solutions may exist):

1. As these files are usually generated automatically, the tool used to generate
them should be extended to properly honour modifications. This is trivially
done with files specifying variable-value pairs (such as commonly created
by debconf-driven postinst scripts). More complex formats require more
intelligent handling, if at all possible.

2. When modifications cannot be identified and/or honoured by the generating
tool, the file itself must be moved to an appropriate location under fvar and
references with a symbolic link from its previous location under [etc.

5.7.2 Mediating between packages

The policy also lays down rules for coordinating the coexistence of packages on
a system. Specifically, it prevents interference between packages by forbidding a
package to touch the set of files installed by another package. In section 7.5.1 is
is defined to be “an error for a package to contain files which are on the system
in another package” If a package must install a file which is also contained in
another package, the maintainer has to explicitly declare that it conflicts with the
other package, or use diversions to move the file to be replaced out of the way (see
chapter 6.1.3). As we will see chapter 5.7.3, Debian allows maintainers to replace
files in other packages under special circumstances, if this intention is explicitly
specified at package creation time.

Again, dpkg strictly enforces this rule, as we saw in chapter 5.3.6. For the curi-
ous, the following problem actually surfaced on a machine running Debian unsta-
ble. The developers had decided to move [bin/chgrp from fileutils to the coreutils
package, but coreutils hit the unstable archive a day before fileutils — essentially a

207 |

o

5 The Debian package management system

simple timing problem that can only affect unstable (see chapter 4). Noticing the
availability of a new coreutils package, APT correctly tries to upgrade but fails be-
cause the currently installed fileutils package still claims ownership of [bin/chgrp:

“# apt-get upgrade

[...]

The following packages will be upgraded
coreutils

[...]

Unpacking replacement coreutils ...

dpkg: error processing coreutils_5.0.91-2_i386.deb (--install):

trying to overwrite ‘/bin/chgrp’, which is also in package
fileutils

dpkg-deb: subprocess paste killed by signal (Broken pipe)

Errors were encountered while processing:
coreutils_5.0.91-2_1386.deb

Declared conflicts

If two packages try to install a file to the same location, the packages are said to
be in conflict. Such a conflict only constitutes a policy violation when it is not
specified in the control information of all involved packages. The DEB file format
allows for a conflict to be expressed as a package relation (see chapter 5.7.3).

dpkg will not allow two conflicting packages to be installed on the same system,
as the following example shows. Here, postfix and exim4-config both provide
[usr/sbin/sendmail. Thus, both maintainers registered the conflict in the package's
control information:

“# dpkg --install eximé-config_4.32-2_all.deb

[...]

dpkg: regarding eximé-config_4.32-2_all.deb containing exim4-config:
eximd-config conflicts with postfix
postfix (version 2.1.5-1) is installed.

dpkg: error processing eximé4-config_4.32-2_all.deb (--install):
conflicting packages - not installing eximéd-config

Diverting files

Several of the packages in Debian's archive extend the functionality provided by
other packages. Often, such extensions are only possible by replacing an exe-
cutable (which e.g. could be linked with additional libraries). For example, the
postfix package installs the mail transport agent without support for Transport
Layer Security (TLS). For installations requiring cryptography, the postfix-tls pack-
age should be used instead; it contains the executables and libraries linked against
libssl. Rather than duplicating the work and contents of the postfix package, the

| 208

5.7 Power from within: the Debian policy |

maintainer chose to make postfix-tls depend on postfix to reuse its functionality
(such as init.d scripts and manpages), but divert the functionality of the relevant
programmes to the ones provided in the depending package. More information on
diversions is available in chapter 6.1.3.

“# dpkg --install postfix-tls_2.1.5-1_1i386.deb
[...1
Unpacking postfix-tls (from postfix-tls_2.1.5-1_1i386.deb)

[...]
Adding ‘diversion of /usr/lib/postfix/smtpd
to /usr/lib/postfix/smtpd.postfix by postfix-tls’
[...]
Setting up postfix-tls (2.1.5-1)
“$ 1dd /usr/lib/postfix/smtpd*
/usr/lib/postfix/smtpd:
[...]
libssl.s0.0.9.7 => /usr/1lib/i686/cmov/libssl.s0.0.9.7 (0xb7£5e000)
[...]
/usr/lib/postfix/smtpd.postfix:
[...]

If postfix-tls is ever deinstalled, dpkg reverts the diversion to restore the normal
operation of postfix without TLS support:

“# dpkg --remove postfix-tls
[...1
Removing postfix-tls ...
Removing ‘diversion of /usr/lib/postfix/smtpd
to /usr/lib/postfix/smtpd.postfix by postfix-tls’

Resolving conflicts

If two packages provide the same file, but the packages' functionalities are dis-
junctive, a conflict between the two packages is undesirable as it would limit the
administrator to using either one or the other package, but never both. In such a
situation, the respective maintainers usually find an agreement and the conflicting
file is renamed in one of the packages. Usually, this will be the less popular or newer
package to minimise the impact on existing users. However, if such a consensus
canot be reached, then section 10.1 of the policy calls for a Solomonic resolution
and requires for both packages to change the file name.

5.7.3 Package relations

It would be a major accomplishment in artificial intelligence if package managers
could deduce from a package's payload whether the contained software provides a

209 |

o

5 The Debian package management system

specific feature, collides with other packages, or needs software from other pack-
ages to work properly. Unfortunately, the state-of-the-art tools are not capable of
such conclusions (yet). Therefore, for dpkg to be able to prevent file collisions even
before they occur, or for APT to be able to fulfill dependencies automatically, the
maintainers must augment the package files with data specifying such relations. As
we have seen in chapter 5.2.3, DEB files can store such information in the control
file.

For (inherently stupid) computer programmes to make sense of the information
provided in this file, a consistent syntax definition must dictate the structure of
the data. In addition to the package names that make up dependency and conflict
declarations, further information may be necessary to encode complex relations, or
even exceptions. For instance, a certain programme may require a specific version
of a library and will not work with earlier incarnations due to lack of functionality.
Conversely, a maintainer may have agreed to rename a file to resolve a conflict
among unrelated packages, so the second package only needs to conflict with ver-
sions of the offending package prior to renaming.

At other times, a package may require a concept provided by various different
packages, of which one must be chosen. A classic example of such a requirement
can be found in the meta data of the at package. The design of at requires the
programme to be able to send electronic mail. In Debian, at least ten different mail
transport agents exists, but instead of hard-coding the set into the dependency
information of at, the package simply depends on the concept of a mail-transport-
agent. In turn, all packages which provide the needed functionality declare that
they provide the concept, which is realised by means of what is known as a "virtual
package" in Debian. If any of the packages providing the virtual mail-transport-
agent package is installed on the local system, the Debian package tools regard the
dependency as fulfilled.

The Debian policy specifies a number of different types of relations, as well as the
syntax required for each relation, so that specific requirements can be meaningfully
represented. In addition to simple dependencies and conflicts, packages can also
suggest, recommend, provide, replace, or extend other packages. Each of these
relations uses a separate field in the control file:

Depends

According to the policy, entries in the Depends field are absolute dependen-
cies. If some of the packages listed here are not installed (and configured)
on the system, a depending package may be unpacked, but it cannot be
configured. Hence, it will not be usable (and not be able to satisfy other
dependencies), until all the dependent packages are fully configured. Names
listed in the Depends field of a package reference other packages that are
essential to the operation of the software. Another relation, Pre-Depends,
provides a somewhat more relaxed dependency relation and is only used
in very special cases; packages listed here need only be unpacked (but not
necessarily configured) to satisfy the dependency.

| 210

5.7 Power from within: the Debian policy |

Recommends
At times, a package may require another, but the requirement need not be
strict; the software to be installed could work acceptably, but not without
a serious limitation in its functionality. For example, the xmms multimedia
player runs without access to the sound system, but it will only be of lim-
ited use. Therefore, xmms recommends the installation of a sound system
interface.

Suggests
Frequently, software is enhanced by other software. For instance, the X
server runs without font files, but users who do not enjoy pixelated art will
have their aesthetic experience greatly improved by the presence of high-
resolution fonts. Therefore the xserver-common base package suggests the
installation of font packages.

Enhances
This is the exact counterpart to Suggests, but they are independent of each
other. The field is supposed to communicate suggestions to the package

manager, without requiring the enhanced package's meta data to be touched.

Support for the Enhances field is still rather sparse, and APT does not support
it at present.

Provides
One package may provide the functionality of another, or that of a virtual
package. The dependency of the aforementioned at package may be met by
installing postfix, since postfix provides mail-transport-agent on which at
depends.

Conflicts
Packages listed in the Conflicts field cannot coexist with the package declar-
ing the conflict, either because of file collisions or other reasons.

Replaces

In certain cases, a package may supercede parts of another package, involv-
ing the replacement of files from the other package. dpkg will not allow
one package to overwrite the files installed by another package, unless the
new package explicitly states this intent in the Replaces field. Such is the
situation when, for example, packages are renamed, or splitting a package
into components renders the previous monolithic package obsolete. Most of
the time, Replaces will be used together with Conflicts (and, in the case of
a virtual package, Provides as well) to cause the removal of the package to
be replaced.

The standard format for all the available relation fields is a comma-separated list of
package names. With the exception of Provides, an package name may be further

o

5 The Debian package management system

restricted based on the version number®”. A package may declare a relation on one
specific version number, which is usually how libraries and associated development
files relate (=). Alternatively, a relation may apply to versions of a package strictly
earlier (<<), earlier-or-equal (<=), later-or-equal (>=), or strictly later (>>). The
following line specifies the dependency on foo version 2.0-1 or later as well as the
requirement of bar prior to release 3.0:

Depends: foo (>= 2.0-1), bar (<< 3.0)

In addition, the fields can specify a set of packages, of which only one must be
installed. The following encodes a preference on any version of apache2 later than
2.0.50, or any other package providing the virtual package httpd:

Depends: apache2 (>= 2.0.50) | httpd

Specifying an actual package in addition to a virtual package (apache2 actually
provides httpd) allows a maintainer to suggest a default, rather than relying on
APT to select any of the providing packages.

Gathering package meta data

We need not look very far to find other package management systems with similar
capabilities. Relationship graphs are basic computer science material, and any sen-
sibly designed package system can compute or even assemble acceptable package
combinations from its database and package meta data. The fact that Debian was
the first to have a consistent and robust system is not worth a pence these days.

Nevertheless, the usefulness of a relationship graph mainly relies on the data used
to create the graph, just like dpkg's configuration file handling relies on knowing
which files to treat specially. Therefore, one of the most crucial factors of a package
management system is the package maintainers' ability to specify the relations as
accurately as possible. A package relation scheme as diverse as Debian's is helpful
and indispensable, but providing the correct information is not always an easy task.

The policy states in section 3.5 that "every package must specify the dependency
information about other packages that are required for the first to work correctly!
It also calls for the use of conflict declarations, but it does not (and cannot) make a
universal statement about what is to be considered a dependency, or which pack-
ages satisfy a given relation.

Debian approaches this problem from two angles. First, extensions to the policy
have developed over time to coordinate practices with respect to software written
in specific languages. For instance, the Perl policy®® regulates aspects idiosyncratic

37Virtual packages are not versioned.
38http://www.debian.org/doc/packaging-manuals/perl-policy

| 212

5.7 Power from within: the Debian policy |

to Perl scripts and programmes. While the Perl policy's guidelines are not as binding
as the rules of the Debian policy, the document does serve as a basis for maintainers
to make decisions and enable coexistence among (the much smaller set of) Perl-
related packages. In the future, such sub-policies may well be integrated with the
main Debian policy.

Simultaneously, the Debian maintainer utilities provide numerous helpers to encap-
sulate the policy and take the burden off the maintainer's shoulders. For instance,
the shlibs system (see chapter 9.4.3) is a sophisticated mechanism to allow the
maintainer scripts to automatically determine the set of packages required to ful-
fill the library dependencies of a programme. Shlibs uses automatically managed
(but locally overrideable®®) maps to help translate the output of Idd to the mini-
mum set of Debian packages to satisfy the requirements. Rather than expecting a
package maintainer to figure out which packages provide the appropriate libraries,
the burden is shifted to the maintainers of packages providing shared libraries (who
presumably know better which functionality and files the contained libraries pro-
vide). Furthermore, changes to a library only require modifications in one place
rather than expecting the maintainers of all depending packages to amend the
control data.

Along the same lines, tools exist to determine dependencies not listed by Idd, as
is the case with scripts written in Perl or Python. These tools are able to har-
ness peculiarities of the particular policy*® and of language features that allow for
automatic determination of required modules.

Beyond resolving the dependencies on dynamically linked libraries, Debian does
not provide an automated means to determine dependencies, and probably never
will, because no feasible approach exists that can simultaneously obey all require-
ments of the Debian policy. Obviously, you could scan a programme for all external
command invocations and references to data files, and subsequently use a map
structure to find associated packages. However, Debian makes it difficult not to
make the set of dependencies equal to the set of resources used across all permu-
tations of configuration options and input data of a programme. In other words,
Debian packages depend on those other packages that are essential for their oper-
ation. A software that can enable additional features in the presence of a library
merely suggests or recommends the package containing the library. This could be
taken one step further by allowing the automatic dependency scanner to deter-
mine the context of a dependency and thus decide whether it is a hard or a soft
dependency. However, this approach soon leads the infamous Halting Problem*'.
Debian maintainers therefore need not worry about being replaced by small shell
scripts.

31n fetc/dpkg/shlibs.override, see chapter 9.4.3

40Debian's Python policy resides in [usr/share/doc/python/python-policy.txt.gz

#1Deciding whether a software requires a certain library by parsing the code and determin-
ing whether execution will reach the places where the library is used is similar to the impossi-
ble task of determining whether a given programme will ever terminate: http://en.wikipedia.org/
wiki/Halting_problem

213 |

o

5 The Debian package management system

Sane dependencies

On a tangent, it is worth mentioning that Debian takes a sane approach to indirect
dependencies as well. Classic examples are programmes which come with graphical
user interfaces, but which can also be used from the command line and thus do not
require a graphical environment such as X. If the functionality of such a programme
is useful in headless*? or embedded setups, then it would be silly and a major
inconvenience for these packages to depend on a graphical environment. In such
a case maintainers will typically chose to split the package in two (if possible),
separating the graphical components into an extension package. This approach
allows the core components to be installed without the graphical environment,
but also caters for users of the graphical components. For instance, the isdnutils
package, which is essential on ISDN routers (which are frequently headless), can
be installed without a graphical environment. Its graphical tools are contained in
isdnutils-xtools, which uses isdnutils for the core functionality and depends on
the X server, rather than isdnutils itself.

In addition, a similar logic is applied to dependent packages. With X Window
System, programmes may rely on its resources without actually requiring a graph-
ical display. For example, the giftrans package needs the RGB colour names from
[ete/X11/rgb.txt, a file provided (indirectly) by xserver-common. While all X servers
in Debian depend on xserver-common, that package may also be installed by it-
self. giftrans requires its installation but consequently does not require an X server.
It is standard Debian practice to factor common parts from multiple packages
into *-common packages, thereby simplifying dependency management. Similarly,
most Debian maintainers split a software's documentation into a separate *-doc
package, if it exceeds a (non-specified) limit. Especially for embedded and other
low-resource systems, this modularity is a necessity.

5.7.4 The Filesystem Hierarchy Standard (FHS)

With 15000 binary packages in the Debian pool at the time of writing, you may
wonder how many conflicts had to be resolved between two packages each trying
to install a file of the same name. Well, the answer is "very few, which may be
surprising were it not again for the policy to confine packages to use very specific
locations for their files, rather than installing all over the place.

Section 9.1.1 of the Debian policy specifies that “all installed files and directories
must comply with the Filesystem Hierarchy Standard (FHS)" The FHS* is a set of
guidelines drafted in the early days of Linux in an attempt to redesign the antique
directory structure of Unix systems. More specifically, it provides system integra-
tors, package developers, and system administrators with a consistent and logical

*2Headless setups do not have monitors but are used exclusively through the network.
“http://www.pathname.com/fhs

| 214

5.7 Power from within: the Debian policy |

layout of files across a Unix filesystem to improve portability and compatibility
across distributions and operating systems by different vendors. While today, most
Unix-like operating systems follow the suggestions the document puts forth (to
varying degrees), Debian woody was one of the first distributions (if not the first)
to almost reach full FHS compliance**.

According to the FHS, the files installed on a system have to be placed in specific
locations on the filesystem, according to their function and traits. In chapter 5.7.1,
we saw that Debian requires configuration files to reside under [etc, while dpkg
usually installs static files in the fusr hierarchy. This separation is a direct conse-
quence of FHS compliance. The notable hierarchies relevant to Debian are listed in
the following, along with additional restrictions imposed by the Debian policy:

[— The root directory
No additional files or directories than those already present may be placed
in its top level. The root directory may, however, contain links to kernel files
required for booting.

[etc — Host-specific system configuration
Any file expected to be changed by the administrator of a system must reside
under [etc®.

Jboot — Static bootloader files
Files related to the bootloader are placed here. /fooot must be able to sit on
a read-only volume.

usr — Shareable, read-only data
Files under fusr must not require write permissions and be of static nature.
Other than during software upgrades, the system must work regularly if fusr
resides on a read-only volume. No files or directories may be placed in its
top level.

Jusr/[lib — Architecture-specific resources
Files needed by local software which are dependent on the system architec-
ture (mostly binary files) must be placed here.

[usr/share — Architecture-independent resources
Files needed by local software which are usable on any architecture must be
located below [usr/share.

4| know of no Linux system that is fully FHS compliant, largely due to archaic kernel and boot-time
requirements which have not been resolved in an FHS-compliant way. The classic example is [etc/mtab,
which is a dynamic file required by mount, but which cannot reside underneath /var as it has to be
available right after mounting the root filesystem.

4SExceptions exist. For instance, Grub requires its configuration to be located on the same partition
as the [boot hierarchy.

215 |

o

5 The Debian package management system

Jusr/local — Custom software and resources
Software and resources independent of the Debian distribution may be put
into fusr/local and will never be touched by Debian.

[tmp — Temporary data
As a scratch space, /[tmp may hold any type of data. Its persistence, however,
is not guaranteed across different processes.

[var — Transient data
The [var hierarchy is the system's workspace. Files here are used for control,
logging, caching and other administrative functions. No additional files or
directories may be placed in the top level.

[var/log — Log files
All programmes providing logging information in Debian log to files under-
neath this directory.

[var[tmp — Persistent temporary data
As opposed to [tmp, data under [var/tmp is never deleted automatically by
the system, but should have a temporary nature.

Jvar[mail — User mailbox files
If the local mail delivery agent uses the mailbox format, the user mailbox
files reside underneath [var/mail.

[home — User data
User home directories generally reside in /fhome, but the layout of this hier-
archy is up to the administrator. No program must rely on data contained
herein.

/mnt — Temporarily mounted filesystems
This directory is provided so that the system administrator may temporarily
mount a filesystem as needed. It is not a directory holding mount points for
media.

With the release of sarge, Debian followed recent changes in the FHS and added
the following root-level hierarchies:

/media — Removable media mount points
Mount points for removable media, such as CD-ROM drives or USB sticks are
located under /media.

[srv — Served data
Data made available by services of the system (such as web sites) find their
place within the [srv hierarchy.

| 216

5.7 Power from within: the Debian policy |

The FHS furthermore recommends that software uses subdirectories of [usr/share
and [usr/lib to guard against name clashes. These subdirectories are referred to as
“compartments” in some places. For instance, architecture-independent files of the
OpenOffice.org suite reside under [usr/sharefopenoffice while the Gimp graphics
programme may store such files under fusr/share/gimp. Even if both programmes
provide a file named tree.png, the packages can happily coexist.

5.7.5 Version numbers

A Debian package is identified by its name and its version number. For the pack-
age relations to allow for versioned dependencies, and for APT to be able to decide
whether a package is newer or older than an installed version, the version number
must follow the rules which are established by the policy. Every Debian version
number takes the following format (the brackets denote optional parts of the ver-
sion number):

[epoch:]software_version[-debian_revision]

When APT decides whether to upgrade a package, it compares the two strings
of the previously installed version and the version of the installation candidate.
Normally, the software version, which is the only mandatory component of the
version number, should be enough to identify relative age of a package. When a
package provides the same software version as another and the two only differ in
packaging aspects, the difference must be reflected in the debian revision, which
is appended to the software version following a hyphen. Packages of software
written specifically for Debian generally do not have a Debian revision field.

Comparing two version numbers is done lexicographically, sorting letters before
numbers. Therefore, package version 1.0.1-2 would sort before version 1.1.0-1,
and APT would consider the package with the larger version number 1.1.0-1 as
an upgrade candidate. At times, however, an upstream author employs a non-
standard versioning scheme (e.g. 1.1, 1.11, 1.2, ...), which would utterly confuse
APT's sorting algorithm. Debian works around such problems with the epoch field,
which is prepended to the software version, and followed by a colon. To cater
for non-standard versioning schemes, the Debian maintainer would use epochs
to restore the lexicographical ordering of the version numbers (e.g. 1:1.1, 1:1.11,
2:1.2). An empty epoch is equivalent to an epoch of 0.

Epochs: normalising version numbers

The epoch field can also be used to correct errors in the versioning. For APT to
consider an upgrade the newly available version must be strictly larger than the al-
ready installed version. An upstream software may decide to change its versioning

217 |

o

5 The Debian package management system

scheme at some point in time: after releasing version 1 and version 2, the devel-
oper team may want to adopt a proper versioning scheme and release version 3 as
1.0 instead. Since 1.0 is smaller than 2, APT would not update the software pack-
ages on any Debian system until the developers released 2.0, which could be years
later. Here, too, the Debian maintainer would opt to fix the situation by setting the
version number of the package following the scheme change to 1:1.0.

A number of special cases exist with respect to version numbers. Frequently, up-
stream software is released versioned with date strings. For instance, the postfix
mail transfer agent was versioned according to its release date until 2002. It is good
practice to insert a 0.0 dummy version, such as 0.0.20011217.SNAPSHOT-1 before
the date string, in the case of postfix. When the postfix developers chose to adopt
a regular versioning scheme and released 1.0, the postfix package maintainer did
not need to use an epoch in this situation.

Similar suggestions exist to deal with version extensions indicating pre-release
states, such as alpha and beta releases, or release candidates. Consider the case of a
software release candidate with upstream version 1.0-rc1. Such version strings are
commonly found, but when the release candidate matures and the actual release
is made, APT will find that 1.0 is smaller than 1.0-rc1 and thus not upgrade the
package. Fortunately, "alpha,’ "beta, and “rc" compare appropriately with respect
to each other, so a special scheme must be used to allow the pre-releases to sort
before the final release. Within the Debian archive, it is customary to encode the
real upstream version in the Debian revision. According to that scheme, a pack-
age of 1.0rc1 could be versionsed at 1.0-0+1.0rc1+1, followed by 1.0-0+1.0rc1+2,
and then 1.0-1 when the final gets released. Another scheme is to use an obvi-
ously false upstream version that sorts before the final release: 0.999-1+1.0rc1,
0.999-2+1.0rc1, and finally, 1.0-1. With that in mind, it should be easy to infer the
upstream version number from the Debian version, even in complex cases.

Starting with etch, a new character will be introduced into version strings to handle
situations similar to the one mentioned earlier. As of now, the empty string is
regarded as smaller than any character, and thus, 1.0-1 follows 1.0, to give a very
basic example. The tilde character is defined to be even smaller than an empty
string. Thus, 1.0"1 will precede 1.0, and 1.0rc1-1 can be used prior to the release
of 1.0-1. The woody package management tools do not support this new character
in version strings.

The dpkg tool provides an interface to compare versions according to the afore-
mentioned rules. Using literal versions of arithmetic comparison operands (It, le,
eq, ne, ge, gt), you can use it resolve any issues with Debian version numbers.
Mathematical symbols may also be used, in a similar approach to the way ver-
sioned dependencies are specified (though they have to be quoted in most cases).
The result of the comparison is communicated with the exit status, which will be
false if the comparison is false:

| 218

5.7 Power from within: the Debian policy |

“$ dpkg --compare-versions 1.0-0+1.0rcl+2 1t 1.0-1 && echo yes
yes

“$ dpkg --compare-versions 3:1.0-2 ‘<=’ 1.99-15 && echo yes

“$ dpkg --compare-versions 1.0-1 ’'>>’ 1.07rcl-1 && echo yes

yes

5.7.6 Upgrading packages

Surveying the field of automatic package management, one gets the impression
that automatic upgrading has lost its touch of magic and the previously prominent
feature of few distributions has become a standard across all major operating sys-
tems. We have already compared the technical aspects of package management
systems and found those to be roughly equal to each other. Now it is time for
the Debian policy (see chapter 5.7) to enter the picture. As you may have guessed,
Debian's package management differs from the other systems in that it is based on
the Debian policy and works hand in hand with it.

In chapter 5.4.7, we saw that APT can upgrade a Debian system to the latest release
with only two commands. Thanks to the Debian policy, it can do more. No matter
which release you install or even which releases you mix (see chapter 8.2), the De-
bian policy lays down the necessary foundation upon which the Debian developers
can produce and improve packages, which are guaranteed to be compatible with
previous and future versions. It is the policy which allows you to upgrade single
packages or the whole system with two commands, provided that APT can meet
the dependencies for you (or you can do it manually).

The Debian policy has been in effect for almost as long as Debian exists, and it
has never been subject to a major rollover. Changes have been made with great
care and only after long periods of scrutiny. As a consequence, all Debian releases
since hamm can be upgraded to the current stable release. It would be a lie to
say that all such upgrades are painless as the main focus of the Debian developers
is the smooth upgrade from one stable release to the next. Therefore, if you skip
a couple of releases and e.g. attempt to upgrade a hamm system to sarge, you
may need to lift a finger here or there. However, beyond some minor problems,
the upgrade should complete successfully, and probably in less time and with less
effort than a new installation and subsequent migration would consume.

At this time of writing, the policy has been in effect and thus tested over the period
of four releases. It has reached massive inertia as one of the integral parts of the
Debian system. Changes to the policy require very good reasons and large amounts
of testing, to ensure that the foundation given by the policy is not put at risk.
When a change is made, it usually standardises established procedures to allow
future releases to build on what is being widely used now. This update strategy,
bundled with the strict adherence of all parts of the Debian system to the policy,
allows you to be certain that the system you are installing today can be upgraded

219 |

o

5 The Debian package management system

with the same ease when the next stable release comes out. In management terms,
this is considered a “future-proof investment;" with Debian, it's a feature.

5.8 debconf: configuration of Debian packages

One of Debian's strongest features is its configuration file management. In this
domain, the system closely reflects the overall philosophy of Debian system man-
agement, which is to aid but not impose. On the one hand, the Debian system
guarantees not to mess with your configuration files, keeping your modifications
across upgrades and preserving the files on package deletion (but not purging).
On the other hand, Debian does not provide or rely on a configuration dashboard,
control panel, or other centralised form of system management. While integrated
system configuration utilities, such as linuxconf, are usable on a Debian system (it
is Linux after all), Debian does not let such a tool mess with the configuration files
by default.

The complexity and flexibility of a Unix configuration file by far exceeds what can
be meaningfully represented in a user interface. Therefore, configuration utili-
ties have to make compromises, but compromises limit the ability to harness a
software's full feature set. Debian's role in system management is to give the ad-
ministrator full control and provide helpful back-ends facilitate ease many of the
administrative tasks at the same time. While the package management tools aim to
make software installation management a delightful endeavour, the software con-
tained in a package is generally the same as if installed directly from the upstream
sources. Debian does not attempt to integrate software or put configuration and/or
abstraction layers between the software and the user. Thus, e.g., Debian's postfix
installs the same mail transport agent with the same configuration paradigm as
the upstream tarball. In case of problems, other postfix users can easily help, even
without knowing about Debian.

In a world of integrated products and advertised ease of management, it may seem
a little backward to expect an administrator to master the software in addition
to the underlying operating system. However, this precisely reflects the Debian
philosophy. Rather than attempting to make administration easy for everyone, it
provides shortcuts for those who already know what they want and how to achieve
it. When it comes to problem solving, it pays to understand the problem rather than
to be left at the mercy of a management interface.

Nevertheless, the Debian package maintainers try hard to make a software installed
by a package usable once the installation has finished. Installing a software from
an an upstream tarball may leave behind a software that requires substantial mod-
ifications to the default (example) configuration prior to doing anything useful. A
Debian package, on the other hand, generally installs a software with sane and se-
cure defaults, so that the administrator needs only to adapt the software to local
needs rather than to understand the whole suite before getting any results.

| 220

5.8 debconf: configuration of Debian packages |

This said, sane defaults often do not exist. Assuming a user is aiming for a func-
tional installation, that user must be consulted to provide settings the maintainer
could not foresee, or which cannot be determined automatically. For instance,
when postfix installs, it wants to know whether to send outgoing email directly or
via an Simple Mail Transfer Protocol (SMTP) relay. Similarly, a database-driven web
front-end will not be much use without being told the connection details for the
database to use.

In such cases, the information has to be obtained from the user installing the soft-
ware. Rather than expecting every maintainer to be creative at user interaction,
Debian provides debconf, a system intended to communicate with the user and
cache the responses to package-specific questions for later retrieval by the pack-
age's own configuration scripts.

5.8.1 An overview of debconf

debconfis more than what most people think. At the same time, it is less than what
is commonly believed. To deal with some of the myths up front, debconf is neither
a system that configures packages, nor is it a central repository of configuration
parameters (such as a registry).

The main purpose of debconf is to separate user interaction from the configuration
process of a package. To use debconf, a package provides two files for processing
by debconf. In the templates file, the package lists the questions it needs to ask
the user, along with acceptable values, and longer descriptions. With the config
script, the package instructs debconf when and under what conditions to ask these
questions.

Contrary to popular misconceptions, debconf does not make any changes and does
not configure any software. Its sole purpose is user interaction and the caching
of a user's responses. The actual configuration and enacting of users' choices is
commonly handled by a package's postinst script, and not by debconf. The postinst
script first invokes the config script to make sure that all user responses are cached
in the debconf database. Then it proceeds to query the database through debconf's
programming interface and process the values corresponding to the user choices
accordingly.

While the postinst script always runs the config script on configuration, the con-
fig script may also be run at various other times during a package's life cycle. For
instance, APT uses hooks (see chapter 5.4.2) to call dpkg-preconfigure before un-
packing a package to be installed or upgraded. This comes in handy when a greater
number of packages is being processed by APT. The administrator can first an-
swer all debconf questions of the requested packages, and then go for a coffee or
turn towards other tasks while APT zips through the unpacking and configuration
phases without interrupting to wait for user input.

221 |

o

5 The Debian package management system

debconf makes sure that, unless specifically requested, questions that have already
been seen and answered by the user are not presented on subsequent runs. Thus,
when the config script is invoked by the postinst script after successful precon-
figuration, it does not bother the user again as all responses have been cached by
debconf.

5.8.2 Priority levels

Given that not all questions a package may ask are weighted equally, debconf
provides four priority levels for its questions. For every Debian system, you can
choose the level at which you want to influence a package's configuration, and
debconf will not bother you with questions of lower levels than your preference.
In decreasing order of importance, the available priority levels are:

critical
Questions of critical priority have to be asked (and answered) by all users as
they correspond to crucial choices that nobody but the system administrator
can answer.

high
Questions in the high priority class should be answered by the system ad-
ministrator, since there are no sensible default answers.

medium
Medium questions are standard questions with reasonable defaults. Thus,
they only need to be answered in non-standard cases.

low
Questions of low priority are generally trivial questions with defaults ex-
pected to work in all but a few cases.

The priority of each question is encoded within the config file as a parameter to
the debconf Application Programming Interface (API) call to display a question.
The standard priority of a new Debian system is high, meaning that debconf only
asks high and critical questions while using the defaults configured in the tem-
plates file for questions of priorities medium and low. The environment variable
$DEBIAN_PRIORITY may be used to change the system's default priority temporar-
ily*. For instance, the following causes debconf to present all questions of the
postfix package:

“# DEBIAN_PRIORITY=low apt-get install postfix
[...1

46Note that the variable is not named $DEBCONF_PRIORITY, but $DEBIAN_PRIORITY!

| 222

5.8 debconf: configuration of Debian packages |

5.8.3 debconf front-ends

A major strength of the separation of user interaction from the configuration of a
package's software is the ability to use different front-ends to ask the questions.
The decision which front-end to use is that of the system administrator. To the
package maintainer, the choice of front-end makes no difference; the postinst file
queries the debconf database for cached information, regardless of the front-end
used to gather the data from the user.

In addition to the standard gray-on-blue text-mode dialogs, debconf can also in-
quire for information with KDE or Gnome windows, console text mode, using text
editors, or a web browser. In addition, debconf can also inhibit all forms of inter-
action for fully-automated installations.

The information presented, as well as the set of choices, is identical across all front-
ends (well, with exception of the non-interactive anti-front-end). The dialog fron-
tend in figure 5.11 asks the same debconf question as the readline front-end in
the following:

| Configuring debcont | Figure 5.11:
Packages that use debconf for configuration share a common look and .
feel, You can select the tupe of user interface they use, The dialog front-end
The dialog frontend is a full-screen, character based interface, while to debconf.

the readline frontend uses a more traditional plain tewxt interface, and
both the gnome and kde frontends are modern X interfaces, fitting the
respective desktops (but may be used in any X environment). The editor
frontend lets you configure things using your favorite text editor, The
noninteractive frontend never asks you any guestions,

What interface should be used for configuring packages?

Readline
Gnome

kde

Editor
Honinteractive

<Ok <Cancel>

Configuring debconf

Packages that use debconf for configuration share a common look
and feel. You can select the type of user interface they use.

The dialog front-end is a full-screen, character based interface,
while the readline front-end uses a more traditional plain text
interface, and both the gnome and kde front-ends are modern

X interfaces, fitting the respective desktops (but may be used in
any X environment). The editor front-end lets you configure things
using your favorite text editor. The noninteractive front-end

never asks you any questions.

223 |

o

5 The Debian package management system

1. Dialog 2. Readline 3. Gnome
4. Kde 5. Editor 6. Noninteractive

What interface should be used for configuring packages? 2

Therefore, it is really a matter of preference, which front-end to use. During the
configuration of the debconf package, you can select a default front-end, which
may subsequently be overridden by setting the $DEBIAN_FRONTEND environment
variable appropriately’.

For unattended installations, the noninteractive front-end ensures that the pro-
cess does not pause and wait for user input. Instead, defaults are used for all
questions which have not been previously answered. Ideally, the database should
be populated in advance with answers to questions with high or critical priorities,
as these have no sensible defaults. Alternatively, a remote database may be used
(see chapter 5.8.6).

In addition to asking questions, debconf can simply display messages to the user.
If the ttermnoninteractive front-end is used, these messages will be sent via email
to the root user.

5.8.4 Reconfiguring packages

Choices and settings given in response to debconf queries are not final. In fact,
it is trivial to rerun debconf and provide different answers to the various ques-
tions. Previously, the standard means to reconfigure a package was its reinstalla-
tion. However, because debconf remembers which questions it presented and does
not display them again (unless specifically requested), a reinstallation will end up
using the same debconf parameters. Obviously, purging the debconf database, or
at least the relevant records does the trick, but so does dpkg-reconfigure, a tool
made specifically for this purpose.

dpkg-reconfigure takes the name of a package and tells debconf to ask all ques-
tions again, whether they have been previously answered or not; the --unseen
option causes already seen questions to be skipped. As an example, the following
instructs dpkg-reconfigure to change the default question priority and the main
front-end.

“# dpkg-reconfigure --frontend=readline debconf
Configuring debconf

[...]

What interface should be used for configuring packages? 2
[...]

See only questions that are of what priority and higher? 4

[...1
#'That is $DEBIAN_FRONTEND, and not $DEBCONF_FRONTEND (just like $DEBIAN_PRIORITY)!

| 224

5.8 debconf: configuration of Debian packages |

Reconfiguration causes a package's hook scripts (e.g. postinst) to be run. These
scripts must do everything required for the software to use the new configuration,
while taking care not to overwrite any changes made by the administrator outside
of debconf. The best way to accomplish this is to seed the default answers sug-
gested by debconf with existing configuration files and subsequently write new
files with the data held in the debconf cache.

5.8.5 debconf in action

Let us pause for a second and inspect an example. The hinfo package uses debconf
to determine at what intervals to update its databases from the Web, and if these
intervals are periodic, whether it should be verbose about the update. The package
registers two parameters with debconf, which are available in [var/lib/dpkg/info/
hinfo.templates:

Template: hinfo/autoupdate

Type: select

Choices: never, now, weekly, monthly

Default: never

Description: When would you like hinfo to download new databases?
[...]

Template: hinfo/autoupdateverbose

Type: select

Choices: quiet, nonverbose, verbose

Default: quiet

Description: How verbose should the periodic update be?

[...1

As you can see, the parameters are organised in a hierarchical structure, similar
to a registry. With the templates file in place, debconf now knows about the
parameters of hinfo. The display of the questions is controlled by the package's
config script, which is stored in fvar/lib/dpkg/info/hinfo.config. The script has
been simplified for your viewing pleasure.

#!/bin/sh -e
config script for hinfo

. /usr/share/debconf/confmodule
[...]

db_input medium hinfo/autoupdate
db_go
if db_get hinfo/autoupdate; then
case "$RET" in
daily|weekly|monthly)
db_input medium hinfo/autoupdateverbose

225 |

o

5 The Debian package management system

added for demonstration purposes:
db_set hinfo/autoupdateverbose false
esac
fi

db_input accumulates parameter questions and attributes one of the four prior-
ities to the question. By not hardcoding a priority with a parameter, it is possible
to vary the priority programmatically, for instance in response to a previous user
choice. The question will only be registered if the priority specified as the first
argument is higher than or equal to the currently configured or requested deb-
conf priority. A user who configured debconf to priority high would never have to
bother with hinfo's parameters and hinfo would use the defaults instead.

The db_go command displays all accumulated questions, using the configured or
requested front-end. This allows multiple questions to be displayed at once, should
the front-end support that.

With db_get, the database may be queried. The command puts the parameter
value into the environment variable $RET. As you can see, this variable can then
be used to conditionally display the second question — which only makes sense
when a periodic selection has been made in response to the first question. In case
of a non-periodic selection, the config file uses db_set to write to the debconf
database*®.

The combination of templates and config files integrates a package's parameters
and their query logic with debconf, but none of the above accounts for the ac-
tual configuration of hinfo according to the user's choices. This is done in hinfo's
postinst file, which similarly queries the database and takes appropriate steps to
configure cron:

#! /bin/bash
[...]
db_get hinfo/autoupdate
au=$RET
case "$au" in
[...]
never)
[...]
now)

[...]
daily|weekly|monthly)

48The call to db_set is not present in hinfo and has been added for demonstration purposes only.

| 226

5.8 debconf: configuration of Debian packages |

db_get hinfo/autoupdateverbose
verb=¢$RET
temp='tempfile -p hinfo -m 0755
cat <<EOF >$temp
#!/bin/sh -e
if [-x /usr/sbin/hinfo-update] ; then
su hinfo -s /bin/sh -c ’/usr/sbin/hinfo-update -$verb’
fi
EOF
ucf -s /usr/share/hinfo $temp /etc/cron.$au/hinfo
chmod u+x /etc/cron.$au/hinfo
rm $temp

In a nutshell, this postinst script reads the period of the automatic update and
uses a case statement to take the steps appropriate to the user's selection. If the
choice is for daily, weekly, or monthly periodic updates, it creates the upgrade
script in a temporary file, and uses ucf to put it into place, thereby ensuring that
the administrator's changes are not overwritten without consent.

By localising all configuration actions within the package scripts, all knowledge
about how to turn the user's choices into a working configuration is contained
within the hinfo package, and debconf does not need to know anything about
hinfo, cron, or even that the former uses the latter. As opposed to configuration
dashboards and control panels, the debconf approach can handle an unlimited
number of different configuration schemata without modifications to the debconf
core.

5.8.6 Using a remote database back-end

The debconf database is a flat file caching database (which resides under [var/
cache/debconf). Despite all the disadvantages (such as performance and size) of
this kind of database back-end, it is perfectly suitable as a user interface and re-
sponse cache for a single machine. Nevertheless, debconf would not be debconf if
it did not allow different back-ends for different requirements; at time of writing,
debconf can use one of three local database methods in addition to an Lightweight
Directory Access Protocol (LDAP) back-end: a single file (File, the default), a direc-
tory hierarchy (DirTree), or on a file-per-package basis (PackageDir). The LDAP
back-end, while still experimental, allows the use of Secure Socket Layer (SSL) as
well as the setting of a read-only attribute.

There are multiple reasons why you would want to use a remote debconf database.
Probably the most common is because you want to use the settings of an existing
Debian system during the installation of a new system. The easiest way to do so

227 |

o

5 The Debian package management system

is with the Pipe driver and SSH to tunnel the contents of the flat file database
config.dat from another machine (or copy it beforehand and use the local version
for the pipe, rather than an SSH tunnel). | will show you how to accomplish this in
an instant.

debconf provides means to combine multiple databases for this purpose. debconf
can be told ad hoc to pull in parameters from another source using two envi-
ronment variables: $DEBCONF_DB_OVERRIDE and $DEBCONF_DB_FALLBACK. If
the first variable is set, debconf consults the referenced database before the lo-
cal cache. Similarly, $DEBCONF_DB_FALLBACK can be used to specify a source to
query in case a variable is not stored in the local cache.

Sources are specified in the form of drivers and any parameters needed by the
specific driver. A driver is simply a method of accessing a database, and debconf
comes with a number of drivers, which are described in debconf.conf(5). The
following drivers are among the available ones:

File
makes debconf use a flat file as the database. For instance: File{/tmp/my-
debconf-db}.

Pipe
configures debconf to read (and write) from the standard file descriptors
stdin (and stdout). These can be pointed elsewhere with arguments.

Stack
can stack different sources, which are then consulted in order of specifica-
tion. The manpage (debconf.conf (5)) gives a useful example of this driver.

LDAP
tells debconf to obtain values via LDAP. For example:
LDAP{server:localhost,basedn:dc=debconf}

To let APT perform an upgrade to the next release, while obtaining all unknown
settings from a remote machine rather than the user, you could use a Pipe transport
like this:

“# export DEBCONF_DB_FALLBACK=Pipe

“# export DEBIAN_FRONTEND=noninteractive

“# ssh remote cat /var/cache/debconf/config.dat \
apt-get dist-upgrade

[...]

APT will proceed to download all new packages and register the parameter tem-
plates with debconf as part of the preconfiguration. All parameters which are not
yet stored in the local debconf database are read from stdin, which is assumed to

| 228

5.8 debconf: configuration of Debian packages |

be a debconf database in flat file format. The non-interactive front-end ensures
no interruption during the upgrade process.

Alternatively, you may want to change the configuration of a number of packages
on various machines. A simple way to accomplish the task is to prepare one ma-
chine with the desired configuration and then to override the debconf settings on
the remaining systems. For instance, to enforce the same configuration for postfix
and apache as on the machine remote (but using the File driver instead of Pipe for
demonstration purposes), the following would have to be executed on each target:

“# scp rempte:/var/cache/debconf/config.dat /tmp/remote-config.dat
“# export DEBCONF_DB_OVERRIDE=File/tmp/remote-config.dat
“# dpkg-reconfigure --frontend=noninteractive postfix apache

On reconfiguration, debconf will use the parameters available in the file and only
access the main debconf database when a certain parameter is not found. Since we
just configured the two packages as desired on the remote machine, all parameters
needed by dpkg-reconfigure will be available in the flat file we copied just before
the reconfiguration.

Apart from temporary combination of database back-ends through the use of en-
vironment variables, debconf can also be statically configured through the fetc/
debconf.conf file. Its manpage (debconf.conf (5)) provides extensive information
on the configuration parameters involved.

Thanks to the read-only attribute that can be set for every database type in [etc/
debconf.conf, it is also possible to use another machine's debconf database as
reference source for a number of machines. Using the Stack driver to combine
a local cache with a remote database containing a common set of parameters, it
is possible to set up a cluster of machines all with a common set of parameters
available to debconf, but each allowing for local modifications®.

As the number of machines in such an arrangement increases, the flat file data
structure quickly reaches its limits due to its serial nature. A hierarchical database,
such as accessed over LDAP, is much better suited to serve as debconf back-end for
a cluster or a larger set of workstations. Properly configured, LDAP allows a number
of machines to pull debconf parameters from a shared, read-only LDAP tree while
each machine has write access to an individual tree for local modifications.

The configuration of an LDAP back-end to debconf is straight-forward (and beyond
the scope of this book). The debconf-doc package provides the necessary schema
(for use with OpenLDAP) in debconf.schema within its documentation directory
(Jusr/share/doc/debconf-doc).

“9This is similar to overriding variables in the local scope in programming languages (such as C), or
the concept of acquisition in hierarchical databases.

229 |

o

5 The Debian package management system

5.8.7 Problems and shortcomings

Being a system that obtains and seemingly stores configuration data, debconf is
often thought of as a configuration respository or a registry system. It does not
help that its author calls it a "configuration system," when in fact it is really a user
interaction framework and response caching system. Used correctly, debconf is
a powerful and yet unobtrusive system to enable packages to install operational
software without forcing the package maintainer to opt for insane defaults that
could potentially result in security or integrity problems. Moreover, since packages
handle their own configuration, relying on debconf only as a unified means to
interact with the administrator, debconf can be used by an unlimited number of
packages without requiring knowledge of these packages on the side of debconf.
Lastly, its ability to use flexible and potentially complicated database back-ends
and their combinations, allows it to scale to arbitrary complexity and even serve a
cluster of Debian machines.

Nevertheless, debconf and its current state within Debian is less than perfect. The
use of debconf is encouraged but not required, and no guidelines exist for when it
should be used. A good rule of thumb is to use debconf to inquire about parameter
values that are not expected to be the same across all but the most specialised
installations. However, identifying parameters of this class is anything but simple
and every maintainer has a different interpretation of this rule. Thus, the debconf
experience is not consistent across the Debian package pool.

Configuration file handling is a much greater source of friction. A package whose
postinst file merges a user's responses into the software's configuration files below
[etc makes programmatic changes to the files. By the policy, files that are auto-
matically modified in such a way must not be flagged as conffiles and therefore
do not profit from dpkg's configuration handling mechanism. They are still con-
figuration files (since they reside underneath [etc), but not automatically handled
by dpkg, which only treats files flagges as conffiles specially. This is an important
distinction! Please refer to chapter 5.7.1 for more information. Also, chapter 9.4.2
provides an example of how to deal with debconf-managed configuration files.

Being configuration files, any manual changes by the administrator to these files
must be preserved under all circumstances according to the policy. Therefore, any
postinst script must only consider the debconf cache when the parameter value
is not available from the software configuration under [etc. To extract the pa-
rameter value from under [etc, the configuration file must be parsed, which can
be non-trivial with some configuration paradigms. Different pieces of software
use different configuration file formats, and the sheer abundance of these formats
makes it impossible for debconf to provide a common interface to the task. It re-
mains the maintainer's job — and thus a potential source of error — to implement
functionality to put local changes back into the debconf database so as to comply
with the policy.

| 230

5.8 debconf: configuration of Debian packages |

The hinfo package installed an update script under one of the cron directories,
depending on the user's choice of interval. If the administrator selected 'daily’ in
response to the question, but then decides to move to a weekly schedule by mov-
ing the update script from [etc/cron.daily to [etc/cron.weekly, the postinst script
must react appropriately. One way to achieve this is to use db_set to manipu-
late the debconf database to reflect the current state of the system. For instance,
the following code in the beginning of hinfo's postinst script would do the trick
(although it does not cater for all possibilities, but you should get the idea):

#!/bin/bash -e

[...]

if [[-f /etc/cron.daily/hinfo]1]; then
db_set hinfo/autoupdate daily

elif [[-f /etc/cron.weekly/hinfo]]1; then
db_set hinfo/autoupdate weekly

elif [[-f /etc/cron.monthly/hinfo 1]; then
db_set hinfo/autoupdate monthly

else
db_set hinfo/autoupdate never

[...1

While it is definitely possible to honour manual changes to [etc and update deb-
conf's database to reflect the changes, the main weakness of this approach is the
extra logic required. After all, it is one of debconf's main purposes to reduce the
necessary logic to the bare essentials of configuration. Adding complexity to the
maintainer scripts to handle manipulations gracefully introduces new potential for
bugs, and the whole approach may fail horribly if the administrator's modification
is not representable in the debconf database.

Other common problems mainly stem from the misinterpretation of debconf's pur-
pose. To reiterate, debconf is not a configuration storage system. All configuration
resides under [etc and debconf's sole purpose is to query the user if [etc does not
contain enough information to piece together a usable configuration. In particu-
lar, there seems to be a common misconception about the purpose of the debconf
database. The data stored in the debconf database must be treated as volatile
and its presence must never be taken for granted. The database merely serves as
a cache, and its complete disappearance must not have any effect on the running
system other than causing debconf to ask the same questions the next time the
config script is invoked.

While the problems discussed in the previous paragraphs are of particular relevance
to Debian package maintainers, it is important to keep a clear view of debconf's
purpose and capabilities when working with a Debian system. You should know
the extents of automatic configuration management within the Debian system
and know what you can expect and what is unacceptable. Despite being less than
perfect, debconf does its job, and does so quite nicely. However, when problems
arise, potentially reverting manual changes to files under [etc, it is important to

231 |

o

5 The Debian package management system

consider that it is probably not debconf's fault, but rather the result of a bug in the
offending package's postinst script.

5.9 Modifying packages

The Debian maintainers try to configure the software they package with the broad-
est target user base in mind. Usually, established and stable features are enabled
rather than disabled, and in the face of demand, even experimental options are
provided, if these can be turned off in configuration.

However, at times, an administrator may need to use different compile-time op-
tions, or make changes to the actual files installed. Of course, it is possible to
simply compile the software and install it to fusr/local, or even to change the files
installed to fusr by the package. However, these are not really solutions as they
circumvent the package management system. For software in fust/local, you will
have to track updates, and changes to files [usr are a really bad idea anyway as
these changes may be overwritten by updates (see chapter 5.7.1).

Fortunately, Debian makes it easy to modify existing packages. By intelligently
setting the version number of a modified package, it is trivial to talk the package
management system into integratng custom editions of packages.

In the sections to come, you will learn about two methods to modify existing De-
bian packages, obtaining separate packages that can be installed, tracked, and dis-
tributed. Next to the clean approach of recompilation from scratch, | will also
introduce you to a tool that allows you to modify files installed by a package and
to subsequently repack these files into a new DEB file.

5.9.1 Recompiling packages

The idea behind a package recompilation is to obtain the source packages, make the
necessary changes, and build a new package (with a new version number) without
having to understand much of what is going on. The process can be split into four
steps, which will be discussed in turn.

The result of the process is a DEB file with the modified software, which installs
the same package with a version number just higher than the official package, but
lower than an officially upgraded package. This provides for optimal integration
with the package management system without conflicting with other packages.
The custom version number can be used to pin the package and thus prevent
upgrades (which would not come with the appropriate modifications; see chap-
ter 8.2.1).

| 232

5.9 Modifying packages |

Obtaining source packages

As shown in chapter 5.2, Debian distinguishes between source and binary packages.
So far, we have mainly dealt with binary packages, which live in DEB files, one
package per file. A source package is comprised of two or three files. Debian also
distinguishes between packages needing modifications for inclusion in Debian, and
packages that can be included directly. The former are known as native packages,
while the latter do not have an official name and will henceforth be termed normal
packages.

Native source packages consist of two files. Normal source packages provide an
additional file to encapsulate the changes required between the externally available
(upstream) source, and the source package. This will all become clear in a moment.
The following are the constituent files of source packages:

= The Debian Source Control (DSC) file describes the package to the management
tools and gives information on which files are part of the source package. It is
generally clear-signed with the GPG key of a Debian developer.

= A native source package lives in a tarball, such as apt_0.6.25.tar.gz. Normal
source packages include the original tarball of the upstream software (where
possible), and include the infix .orig in their name: postfix_2.1.5.orig.tar.gz.

= The diff.gz file provides the information needed to turn the tree in the orig.tar.gz
file into a Debian package tree (e.g. postfix_2.1.5-1.diff.gz). Applying this patch
turns an upstream source tree into a source tree that can be easily turned into a
Debian package.

Short of downloading these files from the Debian mirrors, APT provides a handy
means to obtain all needed files and prepare the source tree as needed. To be able
to do its job, it needs to be able to read the source package indices, which are
stored separately from the Packages files we have met before. The Debian mirror
structure makes it trivial to deduce the locations, and to give APT access to all
source packages from a given mirror, you simply duplicate the appropriate line(s)
in [etc/apt/sources.list as shown below:

standard mirror for debian binary packages

deb ftp://ftp.debian.org/debian sarge main

same mirror, this time for debian source packages
deb-src ftp://ftp.debian.org/debian sarge main

The last line identifies the source package index for sarge's main section. The line
translates to the following URI:

ftp://ftp.debian.org/debian/dists/sarge/main/source/Sources.gz

233 |

o

5 The Debian package management system

Sources files are essentially the same as Packages files and identify the source
packages found in the repository along with the MD5 sums of the constituent files.
You will note (and not be surprised by) the absence of an architecture reference in
the URI; source packages are architecture-independent.

Following an update of the indices (apt-get update), the source packages are avail-
able with a few keystrokes. Note that root rights are only needed for the update.
It is good practice to rebuild Debian packages with a normal user account!

“# apt-get update

“$ apt-get moo

[...]

“$ apt-get source --download-only postfix

Reading Package Lists... Done

Building Dependency Tree... Done

Need to get 2399kB of source archives.

Get:1 http://ftp.debian.org sarge/main postfix 2.1.5-1 (dsc) [844B]

Get:2 http://ftp.debian.org sarge/main postfix 2.1.5-1 (tar) [1972kB]
5-1

Get:3 http://ftp.debian.org sarge/main postfix 2.1. (diff) [426kB]

Fetched 2399kB in 0s (6501kB/s)

Download complete and in download only mode

~“$ dpkg-source -x postfix_2.1.5-1.dsc
dpkg-source: extracting postfix in postfix-2.1.5

APT automatically downloads the files belonging to the source package you re-
quested. dpkg-source is then called automatically to extract the package. The
--download-only switch prevents automatic extraction. Also, APT does not care
whether you give it the name of a source or of a binary package. In the latter case,
it will automatically determine the corresponding source package and work from
there. If a source package generates multiple binary packages, any of the binary
packages can be given to apt-get source, as exemplified in the following:

“$ apt-get source --download-only postfix-tls
[...1]

Download complete and in download only mode

“$ dpkg-source -x postfix 2.1.5-1.dsc
dpkg-source: extracting postfix in postfix-2.1.5

dpkg-source knows how to handle native and normal source packages, and will
automatically take all necessary steps to leave a debianised source tree in the ap-
propriate directory (./[postfix-2.1.5 in our case). With all build dependencies sat-
isfied, it is trivial to build the corresponding DEB file(s) from the unpacked source
package. However, first, we will attempt some modifications.

Modifying the source tree

A modification to a package either affects the contents, the compilation, or the
packaging. The first two of these cover most needs and shall be briefly touched

| 234

5.9 Modifying packages |

upon. Any deeper changes, including changes to the packaging, are best postponed
until after you read chapter 9.

Changes to the contents of a package usually involve modifications to the source
code. If these modifications go beyond changing simple constants or other trivial
alterations, you will possibly want to attempt the compilation at various points,
before finally building the package.

Most aspects of the package building process, including the compilation, are con-
trolled by the debian/rules script. In most cases, the file is a Makefile, whose build
target is responsible to take all steps required to build the software. To change
configuration or compilation flags, this target (and any dependent targets) need
to be modified. The Unix-typical .[configure; make sequence is frequently used by
these targets. For instance:

~“$ cat wuzzah-0.53/debian/rules
[...]
config.status: configure
dh_testdir
./configure --host=$ (DEB_HOST GNU_TYPE)
--build=$ (DEB_BUILD_GNU_TYPE) \
--prefix=/usr --mandir=$prefix/share/man \
--infodir=¢${prefix}/share/info

build: build-stamp
build-stamp: config.status
dh_testdir
$ (MAKE)
touch build-stamp
[...]

From this snippet, it should be easy to see how the configuration or compilation
process can be influenced. For instance, to enable the (hypothetical) "magic” fea-
ture, you could append --enable-magic to the ./configure line (which should not
be changed otherwise), or if you wanted to force the use of GCC 4.0, you could
modify the make invocation by appending CC=gcc-4.0.

It is possible to invoke any of the targets from debian/rules directly at any point
in time. To ensure that the software can be built, you need to have its build de-
pendencies installed. Debian distinguishes between standard build tools and tools
required to build specific software; you will need to make sure you have every-
thing installed. Fortunately, Debian provides automated methods for the task. In
addition, the build process requires root rights at various points, but the rights are
actually not used. You simply need to fake the root rights, which should be pre-
ferred in all cases. The fakeroot exists for precisely this purpose (see chapter 9.2.8):

“# apt-get install build-essential fakeroot
“# apt-get build-dep postfix

235 |

o

5 The Debian package management system

Following these two commands, everything you need to build postfix will be in-
stalled. If you now want to attempt the compilation of the software from the
unpacked source tree, you can call the clean and build targets through fakeroot:

~“$ fakeroot debian/rules clean
[...]
~“$ fakeroot debian/rules build
[...]

If you end up building multiple packages, installing all the build dependencies will
slowly fill up your system. If you prefer to keep a clean system, please consider
using debfoster (see chapter 5.11.6), or set up pbuilder (see chapter 9.6) to manage
isolated build environments.

Logging the changes

At this stage in the process, you could just build the binary packages from the
modified source tree and be done with it. However, would then have a DEB file for
postfix 2.1.5-1 floating around, which is not the same as the official 2.1.5-1 pack-
age. To take this to an extreme, imagine that you get hit by a bug induced by your
modifications, and you faithfully report the bug to the BTS, failing to identify the
changes (because you forgot). The postfix maintainer will be driven to distraction
trying to find a bug that does not exist in 2.1.5-1.

To guard against confusion and help you identify installed software, it is highly
advisable to add a record of your changes to the changelog. At the same time, you
should augment the version number with an identifier in such a way that APT and
dpkg treat the custom version as newer than the current official one, but as older
than the next official release. A simple recipe is to append the string +0.local.1 to
the version number. You can even replace “local” with an identifier of your choice.
Also, the final digit is entirely under your control and may be used to distinguish
between different local versions. For instance, 1.2-3 would become 1.2-3+0.local.1.
If the package is a native package and therefore the version number does not have
a Debian revision, you should append one: 1.2 becomes 1.2-0+0.local.1. Please see
chapter 5.7.5 for more information.

A useful tool to edit changelog files is debchange from the devscripts package.
Invoking it with the --increment option automatically creates a new changelog
stanza with an incremented Debian revision. You will need to revert the increment
and append the custom version string manually. Alternatively, the --version option
allows the specification of the full version number to use®. The command dch is
provided as an alias for debchange.

0http:/[bugs.debian.org/284658 proposes an option -| to automate this process, allowing e.g. dch
-lcustom to automatically select the next local version number.

| 236

5.9 Modifying packages |

As every changelog entry has an associated responsible person, you may want to
be explicit about the name and email address to be used, rather than relying on the
script to discover the data from your login account automatically. This can be done
by setting $DEBEMAIL. For more information, please consult the dech (1) manpage.

“$ export DEBEMAIL="martin f. krafft <madduck@debian.org>"

“$ VERSION=$ (dpkg-parsechangelog | sed -ne ’s, "Version: ,,p’)
“$ dch --version=$VERSION+0.local.l -- Made some local changes
~“$ dpkg-parsechangelog

[...]

Version: 2.1.5-1+0.local.l

[...]

* Made some local changes.

If you do not specify text describing the changes, debchange will invoke your editor
and let you edit the changelog by hand. Please be more descriptive about your
changes than the above example.

Building the modified package

After the desired changes have been made, it is time to produce the customised
binary package(s) from the source package. The process requires the set of build
dependencies to be installed, a process automated by apt-get build-dep. We also
need fakeroot (see chapter 9.2.8). The dpkg-dev package provides the dpkg-
buildpackage tool, which automates building source and binary packages from
debianised source trees. We will call it with the -uc and -us options to avoid sign-
ing the source package and the package upload. If you own a GPG key, you may
want to use it; you may have to specify the key ID to be used with the -k switch.
We can avoid building the source package by passing the -b switch:

“# apt-get install fakeroot dpkg-dev build-essential
“# apt-get build-dep postfix
~“$ dpkg-buildpackage -rfakeroot -uc -us
dpkg-buildpackage: source package is postfix
dpkg-buildpackage: source version is 2.1.5-1+0.local.l
dpkg-buildpackage: source maintainer is
martin f. krafft <madducke@debian.org>
[...]
dpkg-source -b postfix-2.1.5
dpkg-source: building postfix using existing
postfix 2.1.5.0orig.tar.gz
dpkg-source: building postfix
in postfix 2.1.5-1+0.local.l.diff.gz
dpkg-source: building postfix
in postfix 2.1.5-1+0.local.l.dsc
[...]
dpkg-deb: building package ’'postfix’

237 |

o

5 The Debian package management system

in ’../postfix_2.1.5-1+0.local.l_i386.deb’.
[...]
dpkg-buildpackage: binary and diff upload (original source NOT included)

That is all. Now the parent directory contains all the DEB files generated by the
postfix source package, and all of them use the custom version number through-
out. The packages can be installed on any Debian system with the usual tools, or
made available in an APT repository. If a new official release comes around, it will
replace the local version. If this is not desired, configure APT to pin the package to
the custom version (see chapter 8.2.1).

Building optimised packages

If you prefer to run software optimised for your local system, apt-build is for you.
Provided in apt-build, the tool inquires about your architecture and desired op-
timisation settings and then builds packages optimised for the local architecture.
To do so, it downloads the source, configures the compiler appropriately (using
wrappers to guard against packages that do not allow compiler flags to be overrid-
den), and proceeds to build the package. In addition, it can maintain a custom APT
repository, containing the optimised files, and keep it up to date.

Optimisation of software is only required in very few cases, because programmes
nowadays spend most time waiting for user input, network, or hard drive data. The
small number of programmes which can seriously benefit from processor optimisa-
tion (such as encoders and graphics software) usually already contain code to load
subsystems specific to the local architecture. In other cases, optimisations for the
most common architectures are available as separate packages from the Debian
archive (such as the kernels).

As apt-build is trivial to use, we will just mention it here instead of discussing it in
depth. An article explaining its motivation and use is available online®'.

5.9.2 Repacking packages

An alternative approach is to change the files actually installed by a DEB file to your
liking, and then create a new DEB file with the modified contents. This approach
is fine if the desired changes do not have to be made before or during compilation
(e.g. if they are confined to data, configuration, or script files).

The Debian archive contains a tool that can facilitate the process: dpkg-repack.
It was designed to simplify copying of packages from one system to another, and
to restore DEB files that are not available anymore, but with a little care, it can
be used to create customised versions too. For instance, the following changes

5Thttp://julien.danjou.info/article-apt-build.html

| 238

5.10 Integrating non-Debian software |

the colour used for the binary representations used by ipcalc and creates a new
package to encapsulate the change. Here, too, we need fakeroot, this time with
the --unknown-is-real option to properly package files in ipcalc owned by a non-
root user.

“# sed -1 -e 's/37m/32m/’ /usr/bin/ipcalc
~“$ fakeroot --unknown-is-real dpkg-repack ipcalc

dpkg-deb: building package ‘ipcalc’ in ‘./ipcalc_0.37-1_1i386.deb’.

As we are dealing with binary packages only, no source package is created by this
method.

You may notice a problem with the resulting DEB file: it has the same version num-
ber as the official ipcalc package, opening doors for confusion and other problems.
Unfortunately, dpkg-repack does not provide a means to modify the version num-
ber. For this purpose, debedit has been created®, which can transform the gener-
ated DEB file appropriately. debedit uses debchange internally, so it is a good idea
to explicitly configure your full name:

“$ export DEBEMAIL="martin f. krafft <madduck@debian.org>"

“$ debedit ipcalc_0.37-1_1i386.deb Changed colour to green.

version 0.37-1+0.local.l of ipcalc is now available in
./ipcalc_0.37-1+0.1local.1_1i386.deb

Please take note that debedit has a few issues. While it works fine in most cases,
it may just not in yours. More specifically, note that it changes binary packages
(only!) and hence can break strictly versioned dependencies between binary pack-
ages generated from the same source.

5.10 Integrating non-Debian software

Despite the voluminous selection of software in the Debian archive, it is necessary
at times to integrate third-party software with the Debian system. While tools
like stow provide scalable management of software installed to fusr/local, keeping
multiple machines in sync, or integrating the external software with the rest of the
system can be a nightmare.

Three tools exist to help you integrate third party software with a Debian system.
alien converts packages from other distributions to Debian, checkinstall monitors
an installation process and produces a DEB file to encapsulate the installed files.
Both these methods create actual Debian packages that allow the package man-
agement tools to be used as before. For the few cases where neither is applicable,

52debedit is not yet available in the Debian archive but should be added to the devscripts package
some time in the future; see http://bugs.debian.org/284642.

239 |

o

5 The Debian package management system

the equivs tool can create dummy packages just for the sake of satisfying depen-
dencies. Let us look at each of the tools in turn.

5.10.1 alien

alien can convert packages between several different package formats: Debian
DEB, RedHat and LSB RPM, Stampede The Slackware package format (SLP), Slack-
ware's GZIP Compressed Tarball (tar.gz) (TGZ), and Solaris A Unix package format
(used e.g.by Solaris and NetBSD) (PKG). Thus, it is possible to convert, e.g., RPM files
to DEB files for later installation on a Debian system. Alternatively, it can simply
install software provided in these package formats without explicitly converting
them. Obviously, alien has its shortcomings and probably does not even cover the
common ground of all the different formats completely and flawlessly. Neverthe-
less, it does a splendid job most of the time, and generally succeeds in mapping the
dependencies perfectly (if dependencies are supported by the source format).

“$ alien nethack-3.4.3-1.i386.rpm
nethack_3.4.3-2_1i386.deb generated

~“$ dpkg --info nethack 3.4.3-2_1i386.deb

new debian package, version 2.0.

size 1250590 bytes: control archive= 1501 bytes.

67 bytes, 2 lines conffiles
1237 bytes, 26 lines control
1498 bytes, 22 lines md5sums

Package: nethack

Version: 3.4.3-2

Section: alien

Priority: extra

Architecture: 1386

Depends: libc6 (>= 2.3.2.dsl-4), 1libx11l-6 | xlibs (>> 4.1.0),
[...]

The resulting DEB file can now be installed on a Debian system using dpkg and is
treated just like a normal package.

Note, however, that alien does not guarantee that a package will work properly,
nor does it attempt to integrate it into the Debian system with the same care with
which Debian packages are tailored. A large part of the reason why Debian pack-
ages can coexist and generally work out of the box stems from the tight guidelines
specified in the Debian policy (see chapter 5.7). Packages for other distributions do
not have to abide by this policy, and alien can not do anything about it. alien-
generated packages are thus likely to contravene the Debian policy and may cause
problems and incompatibilities with other packages. As we have seen, dpkg will
prevent damage, but if problems do appear, blame alien packages before you blame
anything else.

| 240

5.10 Integrating non-Debian software |

5.10.2 checkinstall

checkinstall uses installwatch to determine the set of files installed and changed
by an installation process (such as make install). To be able to monitor the process,
it must be started as a child to checkinstall:

/tmp/hello-2.1.1% ./configure --prefix=/usr && make
[...]

/tmp/hello-2.1.1# checkinstall make install

[...]

Done. The new package has been installed and saved to
/tmp/hello-2.1.1/hello-2.1.1_2.1.1-1_1i386.deb

installwatch works on the level of the dynamic linker, which allows it to be used
with almost any installation programme. Even the following is possible:

“# checkinstall /bin/sh

[...]

“# echo Welcome, stranger... > /etc/motd

“# exit

[...]

“# dpkg --info motd_1_all.deb

new debian package, version 2.0.

size 712 bytes: control archive= 269 bytes.

168 bytes, 8 lines control

Package: motd

Priority: extra

Section: checkinstall

Installed-Size: 8

Maintainer: martin f. krafft <madduckedebian.org>
Architecture: all

Version: 1

Description: Message of the day
“# dpkg --contents motd_1_all.deb

drwxr-xr-x root/root 0 2004-12-08 17:18:49 ./
drwxr-xr-x root/root 0 2004-12-08 17:18:15 ./etc/
-rw-r--r-- root/root 21 2004-12-08 17:18:13 ./etc/motd

checkinstall is limited in what it can do. To be precise, the packages it creates
can only install files, and checkinstall does not care where it installs them. You
can overwrite files in home directories with checkinstall, among other things. The
generated packages cannot modify files. If the installation routine modifies existing
files, they will be part of the generated package in their entirety. A horror scenario
occurs when an installation routine adds a user by modification of [etc/passwd,
which is subsequently included in the package. Installation of the package causes
[etc/passwd to be completely replaced, and the deinstallation of the package re-
moves the file, breaking the system in half. The generated packages also fail to reg-

241 |

o

5 The Debian package management system

ister their configuration files with dpkg®?, therefore paving the way for upgrades
that overwrite local configuration file changes.

In the light of these problems, it is probably a good idea to avoid checkinstall but
for the rarest cases. If you end up using it, please make sure you scrutinise the
packages it creates before installing them on a production system.

5.10.3 equivs

The equivs programme is a tool to create empty packages whose sole purpose is
the satisfaction of dependencies. For instance, you may have installed your own
super-duper mail transport agent under fusr/local and now want to get rid of the
stuff Debian installed. However, since quite a number of packages depend on mail-
transport-agent, dpkg will stand in your way.

The solution is to use equivs to create a dummy package which provides mail-
transport-agent. The equivs package provides two utilities for this purpose. One
creates a Debian package control file for use by the second, which then builds the
package:

“$ equivs-control postbote.control

At this point, it is necessary to amend the postbote.control file as desired. We will
delete all fields that we do not need to let equivs use defaults. The final version of
the file looks like this:

Section: misc
Priority: optional
Standards-Version: 3.5.10

Package: postbote

Version: 1.0

Maintainer: martin f. krafft <madduckedebian.org>

Provides: mail-transport-agent

Architecture: all

Copyright: /usr/share/common-licenses/Artistic

Description: dummy package for the locally installed postbote MTA
postbote is a full-featured MTA and has been installed to
/usr/local on the local system. This package only serves to
make other packages depending on the mail-transport-agent
virtual package happy.

This package has been created with equivs. It is empty.

53But see http://bugs.debian.org/284786!

| 242

5.11 Miscellaneous package tools |

Now equivs can build the package:

“$ equivs-build postbote.control

[...]

dpkg-deb: building package ’'postbote’ in ’../postbote_1.0_all.deb’.
“# dpkg --install postbote_1.0_all.deb

[...]

“# apt-get remove exim4

[...1

With postbote installed, dpkg and APT are happy because mail-transport-agent
is provided. It is now your responsibility to provide [usr/sbin/sendmail, which is
often hardcoded.

Let it be said that equivs should be a tool of last resort. It is always preferable to
turn a software into a Debian package, even if the Debian package is only to be
used locally. You may want to use checkinstall, or read up on package creation in
chapter 9 and give it a shot. A true Debian package will give you less grief in the
long run, but as always: your mileage may vary.

5.11 Miscellaneous package tools

5.11.1 debsums

A large number of packages register the files they install in the dpkg database
together with their MD5 sums. These data can be used to verify the integrity of
the installed files at a later point in time. The debsums tool is made for exactly this
purpose, and can optionally augment the database with hashes for packages that
did not install them. An APT hook (see chapter 5.4.2) is provided in the package to
generate missing hash sums following the installation.

It should go without saying that this is not an alternative for a host-based intrusion
detection system or file integrity checker. The data in the dpkg database can be
trivially changed. In fact, debsums even provides the functionality. Thus, debsums
is a useful administrative tool, for instance if you make changes to files in [usr
and forget to keep track. Even though configuration files are normally ignored,
--all includes them and can thus help to identify files that have been changed (for
backup or reconstruction purposes). debsums should never be used for security
purposes.

By default, debsums checks all files from all installed packages, which are outside
of [etc. The --all option includes [etc, and package names may be given on the
command line to restrict the checks to those specified. With the --changed option,
the tool identifies the locally changed files to stdout.

243 |

o

5 The Debian package management system

As mentioned, debsums can create the MD5 sums for packages that do not provide
them, and enter them into dpkg's database®*. To be able to do so, debsums needs
the DEB file that installed the package. Thus, to catch up and complete the MD5
sums for all installed packages, the following two commands can be used:

“# PKGS=$ (debsums --list-missing)

“# apt-get install --reinstall --download-only $PKGS

[...1

“# debsums --generate=keep --deb-path=/var/cache/apt/archives $PKGS
[...1

The --generate=missing causes debsums to read the MD5 sums from the *.md5-
sums files where available, and to extract any missing sums from the appropriate
DEB file in the directory specified by --deb-path. If you want to keep the extracted
sums and merge them into the *.md5sums files, use --generate=keep. On the
other hand, if you want to ignore the checksums in the *.md5sums files, specify
--generate=all. For instance, if you want to verify the integrity of the postfix
package without trusting the locally stored MD5 sums, you can obtain the postfix
DEB file from a trusted source, store it in [tmp/verify.postfix and invoke debsums
as follows:

“# debsums --generate=all --deb-path=/tmp/verify.postfix postfix

Please note that this approach is not a failproof verification. If the system has been
compromised, debsums and the tools it uses could have been modified to conceal
any changes. Reliable verification is only possible when debsums is invoked from a
trusted installation, where it can be used to verify packages in a mounted Debian
installation against DEB files residing on the trusted system. The following verifies
the files installed by the postfix package on the Debian installation mounted at
[mnt against the DEB file available in [tmp/verify.postfix:

“# debsums --generate=all --deb-path=/tmp/verify.postfix \
--root=/mnt postfix

5.11.2 apt-listchanges

A package upgrade necessarily drags changes to the software onto the system. A
bump in the version number of a package indicates upstream changes, possibly ac-
companied with changes to the packaging. An increase in the Debian revision field
of the version number suggests that the packaging has changed, or that some bugs
filed against the package have been fixed by the maintainer. These changes are

54The hash sums will go to *.md5sums files under [var/lib/dpkg/info. Since dpkg did not put them
there, they will persist when the associated package is purged.

| 244

5.11 Miscellaneous package tools |

always documented in files under fusr/share/doc/<package>: changelog is pro-
vided as part of the upstream software (in most cases) and contains the changes
from one version to another; changelog.Debian, on the other hand, only describes
changes done for the Debian package, such as packaging techniques, added fea-
tures and patches, or modifications to the source (e.g. for FHS compliance). The
Debian change logs generally denote a set of changes in the upstream software
with a simple note such as “New upstream release, and thereby refer the reader to
the other change log file.

The more productive a system, the more important it is for its administrator to
know the changes caused by an upgrade. apt-listchanges aims to provide a con-
venient mechanism for an administrator to stay up to date, providing two modes
of operation. First, it can read the change logs out of a DEB file and thus give
the user an idea of what has changed between the previous and the current ver-
sion. The second and probably more useful mode is the automatic integration with
APT. When spawned by APT, apt-listchanges displays the change log entries cor-
responding to an installation or an upgrade, sorted by urgency (see chapter 9.2.7).
Thus, important changes are likely to be at the top, and less important ones follow
towards the end. How convenient.

Unfortunately, apt-listchanges only works with the Debian change logs (which ev-
ery package must provide), because there is no standardised format for upstream
change log files across the software packaged in Debian; the variety of formats
used by the respective authors to document the changes to their code spans mul-
tiple styles. Debian change logs, on the other hand, always have the same format,
which is enforced by the package maintainer tools.

Due to this limitation, Debian developers are encouraged to provide news tidbits
in the NEWS.Debian file, which uses a format similar to the Debian change logs.
apt-listchanges can parse these files and display news items alongside change log
entries. In fact, at the time of writing, it is likely for apt-listchanges to be installed
by default on a Debian system to display these news files for package installation
and upgrades.

In any case, a simple installation of the package integrates it with APT through the
following entry in file [etc/apt/apt.conf.d/20listchanges.

DPkg::Pre-Install-Pkgs {
"/usr/bin/apt-listchanges --apt || test $? -ne 10";

}i

apt-listchanges can be configured to display only unseen news and changelog
entries, which is a necessity for productive use. Furthermore, it can use a number
of different front-ends to display the items, and optionally email the entries to a
specifiable address. Last but not least, when invoked by APT, the user can tell apt-
listchanges to ask for confirmation after displaying the changes. This allows for
easy abortion of an upgrade progress if the administrator is not yet prepared to deal

245 |

o

5 The Debian package management system

with the set of changes about to be made. All these configuration parameters may
be set at installation time and later changed with dpkg-reconfigure, as detailed in
chapter 5.8.4.

5.11.3 apt-listbugs

apt-listbugs is to bug reports what apt-listchanges is to change logs. The script
hooks into APT just like apt-listchanges and retrieves reports of open bugs of pack-
ages about to be installed from the Debian bug tracking system (see chapter 10.6).
After filtering all but the grave and critical bugs out of the listing, apt-listbugs
displays the bugs and asks whether the user would like to continue the process or
abort.

apt-listbugs tries hard to limit the display of bugs to the ones applicable to the
version currently being installed. Nevertheless, this is obviously not always possi-
ble. Even though Debian bug reports usually contain the version number of the
affected package®®, the nature of a bug makes it difficult to determine other af-
fected versions. It is thus the administrator's job to scrutinise the bug reports.
Nevertheless, grave and critical bugs are fortunately not too common.

If you find a bug which you cannot tolerate, you can prevent the installation by
choosing [n] at the apt-listougs prompt. In addition, the tool can also add an APT
pin to the previous version to prevent future updates as well (see chapter 8.2.1).
Unfortunately, pinnings are initialised during APT startup and will thus not be in
effect in the same session. It makes sense to restart the APT operation after setting
the pins®®

The script currently uses the HTTP interface to the BTS®. The author has announced
work on an LDAP interface which is likely to export additional features.

5.11.4 cron-apt

The cron-apt tool is designed to be invoked by cron to perform routine APT op-
erations. It uses several directories below [etc/cron-apt for its configuration. Out
of the box, the tool comes to life at a random moment between 4 and 5 o'clock
to update its cache and download all upgraded packages without installing them
(using the --download-only option to apt-get). This behaviour is controlled by
the files in /etc/cron-apt/action.d. The files are executed in lexicographical order

550nly usually, since bug submitters do not always follow guidelines or are not always capable of
providing the necessary information. The reportbug tool (see chapter 10.6.5) facilitates the process and
its use should thus be popularised.

56At time of writing, the tool had a bug which would prevent it from adding the pin. In addition, it
could cause an empty /etc/apt/preferences file to be produced, which prevents further APT operations
(see Bug #276602). If you get caught by this, simply move [etc/apt/preferences out of the way.

57http:/[bugs.debian.org

| 246

5.11 Miscellaneous package tools |

and specify a single command to apt-get per line. Here, the call to autoclean min-
imises the space used on the partition holding /var/cachefapt. We can insert more
commands by creating the appropriate files.

“$ head /etc/cron-apt/action.d/*
==> /etc/cron-apt/action.d/0-update <==
update -qgq

==> /etc/cron-apt/action.d/3-download <==
autoclean -y

dist-upgrade -d -u -y

“$ echo check -y > /etc/cron-apt/action.d/99-check

cron-apt sends informational mail about its actions to a preconfigured address
(or root@localhost). Most aspects of this email, including its contents, special
hooks to trigger in certain situations, and logging options can be configured in the
[etc/cron-apt directory.

The cron-apt tool is handy for performing downloads at times when the system is
not used, making the upgraded packages available locally, and allowing the admin-
istrator to supervise the upgrade. For personal machines, it can also be used to keep
up to date on security upgrades. One way to do so is to create a special sources.list
file for the security archive and use only this during cron-apt invocation.

“# cat <<EOF > /etc/apt/sources.list.security
http://security.debian.org/debian-security sarge/updates main
EOF

“# cat <<EOF >> /etc/cron-apt/config

OPTIONS=’-o0 Dir::Etc::SourceList=/etc/apt/sources.list.security’
EOF

“# echo upgrade -y > /etc/cron-apt/action.d/10-upgrade

| highly discourage the use of cron-apt to update packages from the main Debian
archive, or its use on mission-critical servers. Even though Debian is known for its
robustness and package quality, software should be upgraded under supervision to
be able to take appropriate action if something unexpected happens.

5.11.5 deborphan

Especially on personal systems, the number of installed packages just keeps on
growing with every month. As some packages are removed, their dependencies may
remain on the system (aptitude can track and identify superfluous dependencies,
see chapter 8). An important aspect of a secure and stable system is that the
set of packages should be kept to a minimum to reduce the effects of bugs (see
chapter 7).

247 |

o

5 The Debian package management system

deborphan makes use of the tight dependencies between Debian packages (dic-
tated in part by the policy, see chapter 5.7) to identify packages that are no longer
used by other packages. It does not actually check for packages not being used by
users of the system.

The tool has a plethora of configuration options to allow for granular searching.
By default, it only scans the libs and oldlibs categories (see chapter 5.2.1). This is
similar to the approach presented in chapter 8:

“# deborphan

libpcre3

libgnutlsll

“# deborphan | xargs dpkg --purge
[...1

deborphan can also scan other categories (see chapter 5.2.1), and use heuristics
on filenames and package descriptions to decide on the set of packages to check
for orphan status (the --guess-* options). For instance, to remove all dummy and
transitional packages, as well as all pike modules (in addition to the libs and oldlibs
categories), you would use:

“# deborphan --guess-dummy --guess-pike

deborphan'’s ability to purge removed packages and clean up their configuration
files is also helpful. Obviously, the configuration files persist for a reason, so you
should be careful with this command. But if you find yourself grepping through
dpkg-query output and piping to xargs too often, this one is for you:

“# deborphan --all-packages --find-config --no-show-section
exim4d -base

[...1

orphaner works in an interative way, supporting the removal of packages that have
been made redundant by the previous removal step (deborphan merely lists them).
Furthermore, editkeep is a graphical front-end to [var/lib/deborphan/keep, which
keeps a list of packages which must never be suggested for removal by deborphan.

5.11.6 Keeping a clean system: debfoster

debfoster attempts to help you maintain a Debian system with a small footprint.
It identifies packages that exist solely to satisfy dependencies and interactively
assembles a list of packages to keep installed. All packages that are not essential
and not explicitly wanted are then removed. The following is a simple example:

| 248

5.11 Miscellaneous package tools |

“# apt-get install vim emacs2l
[...]
“# debfoster

vim is keeping the following 2 packages installed:
libgpmgl vim-common
Keep vim? [Ynpsiugx?], [H]lelp: Y

emacs2l is keeping the following 17 packages installed:
emacs2]l-bin-common emacs2l-common emacsen-common libice6 libjpeg62
1libpngl2-0 libsmé6 libtiff4 libungifdg libx11-6 libxext6 libxmu6 1libxpm4d
libxt6 xaw3dg xfree86-common xlibs-data

Keep emacs21? [Ynpsiugx?], [H]elp: N

[...]

The following packages will be REMOVED:
emacs2l* emacs2l-bin-common* emacs2l-common* emacsen-common*

[...1

Here, debfoster identified vim and emacs21 as new packages and prompted the
user what to do with them. | chose to keep vim around, and to purge emacs21.
Subsequent invocations of debfoster know that | want to keep vim installed and
will not bother me again.

5.11.7 Caching APT archives

APT caches its downloads for the local machine. However, if you operate multiple
machines, this cache is useless as you may have to download a package multiple
times, once for each machine being upgraded. Depending on the upstream link,
this may be time-consuming, and system administrators generally do not like to
wait for progress bars to complete.

While it is possible to share APT's cache among a bunch of machines, only one
machine may access it at any time. The locking required to enforce this access
policy becomes unnecessarily complicated if NFS or the like is used for sharing.

To address this shortcoming, several tools have sprung up, ranging in functionality
from making a local cache properly accessible to the network, through acting as a
proxy cache for Debian packages, to mirroring the entire archive.

apt-proxy

apt-proxy comes as a stand-alone HTTP server (using the Python twisted server
framework) and proxies access to several APT archives, as defined in its configura-
tion file. Packages and index files are only retrieved if not already present in the
cache, otherwise, the cached version is delivered instead. apt-proxy is not a proxy
to be used via $http_proxy or in the APT configuration, it is a genuine APT source.

249 |

o

5 The Debian package management system

A typical (minimal) apt-proxy configuration might looks like this:

“$ cat /etc/apt-proxy/apt-proxy-v2.conf

[...]

[debian]

backends = http://ftp.de.debian.org/debian
http://ftp2.de.debian.org/debian

[security]
backends = http://security.debian.org/debian-security

[pdo]
backends = http://people.debian.org
[...]

A client can access the proxy by using the following lines in the sources.list file,
assuming that the address of the machine running apt-proxy is resolvable from
the machine arakis, and apt-proxy listens on its default port:

“$ cat <<EOF > /etc/apt/sources.list
http://arakis/debian sarge main
http://arakis/security sarge/updates main
http://arakis/pdo/ “madduck/packages/stage ./

All parts of the URL beyond the first are appended directly to the back-end which
apt-proxy uses. Multiple back-ends can be defined and serve as fail-overs if the
first is unreachable. The back-ends can also use FTP or rsync (which makes little
sense) instead of HTTP. Lastly, it is possible to import local APT caches into the
Proxy.

Other than APT and its local cache, apt-proxy automatically takes care of house-
cleaning. Its cache cleaning policy makes its tight coupling with Debian archives
apparent: cleanup is attempted once a day, as the Debian mirrors only change once
a day. Packages are kept until a maximum age has been reached, but apt-proxy
also looks at the versions and purges packages as newer versions become available.

apt-proxy has a history of being buggy and causing headaches. With version 2, a
complete rewrite addressed many problems, but a large number still persist. Thus,
the most sensible advice is: see if it works for you. If not, then please help fixing it,
or go elsewhere. In any case, you should take proper care to ensure that access to
the cache is only possibly by authorised clients.

apt-cacher

With the same goal as apt-proxy, apt-cacher takes a different approach and pro-
vides a caching proxy in the form of a CGl. It uses a separate web server, such as
apache, and can cache any APT archive without requiring a configuration entry for
it. The following example sources.list file will make this clear:

| 250

5.11 Miscellaneous package tools |

~“$ cat <<EOF >> /etc/apt/sources.list
http://apache/apt-cacher/ftp.debian.org/debian sarge main

apt-cacher's configuration only specifies the cache cleaning (and access) policy,
which is also tailored to APT archives. All the information pertaining to cached
archives is contained in the URL used by APT. Whether this is a bug or a feature is
left to you to decide. apt-cacher can limit the bandwidth used for downloads, but
it does not support anything but HTTP for external archive access.

Similar to apt-proxy, apt-cacher has its share of problems. Some people cannot
get it working properly, others swear by it. Try it and find out. Be aware that
a simple apt-get install apt-cacher pulls in a full apache2 web server. Debian's
apache2 installs a sane default configuration, but you may want to further lock it
down.

squid

Quite possibly, squid is to caching proxies what apache is to web servers. Therefore,
the desire may arise to use it to cache requests to Debian archives. This desire can be
easily satisfied, but note that squid does not have an understanding of the policy-
driven Debian archive structure (unlike apt-proxy and apt-cacher). Therefore, for
optimal performance, it requires some changes to its configuration. Moreover, it
is advisable to run separate instances of squid for APT and general web access
caching.

Without going too much into detail, the following settings in [etc/squid/squid.conf
work nicely with Debian archives. You should obviously adjust the size of the cache
to your needs and capacities (all changes from the Debian defaults are highlighted):

“# cat /etc/squid/squid.conf

[...]

maximum object_size 150 Mb

cache_dir aufs /var/spool/squid-apt 2048 16 256

refresh pattern (u?deb|dsc|changes| (origtar|diff)gz)$ 14400 20% 2592000
refresh_pattern (Packages(.(gz|bz2))?|Release(.gpg)?|Sources (. (gz|bz2))?
)$ 14300 20% 14400

redirect_program /etc/squid/redirector.pl

cache_replacement_policy heap LFUDA

[...]

The configuration adjusts the cache size as well as the maximum object size to be
stored to a value appropriate for the contents of the Debian archives. If you can,
increase the cache size for longer caching. The refresh_pattern is mostly needed
for tracking testing and unstable, which change very often, but the Debian mirrors
do not use a consistent cache expiry policy. The file names of Debian packages do
not change and are not reused, which gives us the ability to tweak the storage

251 |

o

5 The Debian package management system

policy of the files. Package files are now kept at least one day, but at most 30.
The index files are expected to change daily and get appropriate values. One fifth
of the age is used to indicate freshness, which works nicely with the advanced
cache_replacement_policy chosen.

The last addition is the use of a rewriter, which prevents squid from caching pack-
ages twice, should they be accessed by code- and release name interchangeably.
Obviously, when the next Debian release comes around, the mapping has to be
amended.

“# cat /etc/squid/redirector.pl
#!/usr/bin/perl -w

use strict; # (somewhat) enforce good coding style
$1=1; # unbuffer stdout

while (<>) {
s@sid/ (main|contrib|non-free|Release.*|Contents. *)@unstable/$l@;
s@etch/ (main|contrib|non-free|Release.*|Contents.*)@testing/$l@;
s@sarge/ (main|contrib|non-free|Release.*|Contents. *)@stable/$l@;
print;

apt-move

apt-move takes the local APT cache and transforms it into a Debian archive. In
fact, it works for any flat collection of DEB files, and can retrieve files by itself,
effectively allowing it to be used to selectively mirror entire Debian archives. In
its simplest form, apt-move makes the local APT cache available in a directory
exportable through any of the means APT understands. The target directory is
controlled by $LOCALDIR in [etc/apt-move.conf. For instance:

“# apt-move local

[...]

“# 1ls -Fl1 /mirrors/debian

drwxr-xr-x 3 root root 21 Aug 19 20:36 dists/
drwxr-xr-x 3 root root 17 Aug 19 20:27 pool/

The contents of these directories are what you can expect. apt-move uses the files
in [var/lib/apt/lists to map versions to releases to index the packages contained
in the pool structure accordingly. You can automate the moving of packages to
the apt-move repository with an APT hook. Since that moves the files before dpkg
would get a chance to install them, the apt-move has to be changed to copy rather
than move the package files:

| 252

5.11 Miscellaneous package tools |

“# sed -i -e ’'s, COPYONLY=.*,COPYONLY=yes,’ /etc/apt-move.conf
“# cat <<EOF > /etc/apt/apt.conf.d/50apt-move
DPkg::Pre-Install-Pkgs "/usr/bin/apt-move update"; ;

EOF

Now the files are made available in the local archive just before APT calls dpkg to
install the packages. If you use --download-only, you will have to resort to a shell
script two-liner.

Another mode of operation of apt-move is designed to allow for partial mirroring
of the official Debian archive. This method can also be combined with the first.
Two variables influence the way apt-move mirrors:

$APTSITES
This variable lists the hostnames of the mirrors from [etc/apt/sources.list
you want to mirror, or just “/ALL/" to mirror them all.

$PKGTYPE
Here, you can specify whether to mirror just binary packages, just the sources,
or both

With the right settings in place, calling apt-move mirror will retrieve whatever
is not yet stored locally to create a mirror according to the configuration. Only
packages for the local architecture will be fetched. With apt-move sync, the tool
only mirrors the set of packages installed locally. Both commands honour the file
.exclude in the mirror's root directory ($LOCALDIR), which can contain file name
patterns identifying parts of the archive that should not be mirrored. The syntax is
that of standard shell pathname expansion (wildcards).

5.11.8 Mirroring the Debian archive: debmirror

The debmirror package provides a script that allows complete mirroring of the
Debian archive, or just parts of it. The tool has a plethora of options to allow for
the exact specification of the mirror extent. It supports various download methods,
including rsync, which is not very useful with Debian since archive changes mainly
come in the form of file name changes and new files, which rsync cannot deal with.

The features are best demonstrated with an example:

“$ debmirror --arch=i386,powerpc --section=main \
--host=debian.ethz.ch --dist=sarge --method=rsync \
--root=:debian /srv/mirrors/debian

[...1

When this call completes, you will have a genuine sarge mirror in [src/mirrors/
debian, encompassing source packages and binaries for i386 and powerpc. The

253 |

o

5 The Debian package management system

script only mirrors main and uses rsync to access the repository at debian.ethz.ch::
debian.

The debmirror (1) manpage goes into great detail about the usage of this com-
mand. Among all the information, it contains a warning that cannot be stressed
enough. If you specify your home directory as the target of the mirror operation,
debmirror will do just that: it will replace your entire home directory with a
shiny Debian mirror, which is probably not what you want. Please be careful with
the command, as it can be very destructive.

5.11.9 Enhanced queries of the package database

Two tools have survived from the days of dselect (see chapter 5.3.9); both focus on
supporting flexible searching in the dpkg available database, which is more or less a
relic from the old days and not used, other than by these tools. Fortunately, neither
of the tools you are about to meet needs the database as both can also work with
the dpkg status database, or the APT cache of Packages files in [var/lib/apt/lists.

grep-dctrl

The grep-dctrl package provides a bunch of interesting tools to filter information
out of any file that has the general format of the Debian package control file%®,
thus including fvar/lib/dpkg/status, [var/lib/dpkg/available and the Packages and
Sources files found in APT repositories.

grep-dctrl acts and feels like grep, except it is more versatile and treats stanzas as
units, not just lines. Moreover, it can limit the search scope to a number of fields
and select the fields shown for matching records in the result. For instance, to
scan a local Packages file and print out the name and version of every package
maintained by my humble self, you would use the following command:

“$ grep-dctrl --field=Maintainer madduck \
--show-field=Package,Version Packages

[...1

A number of aliases exist to allow for simpler use of the command. grep-status
searches [var/lib/dpkg/status, if no other files are given on the command line.
Similarly, grep-available searches [var/lib/dpkg/available, which must be updated
when the list of available packages changes (which is most easily done with dse-
lect):

“# dselect update

8which is similar (but not identical) to Request For Comments (RFC) 822: http://www.rfc-
editor.org/rfc/rfc822.txt

| 254

5.11 Miscellaneous package tools |

The tools also accept regular expressions across multiple fields and thus allow for
flexible searches. To give two trivial examples, the first of the following commands
returns all maintainers of packages with "alpha" or "beta” in the version number,
and the second returns all packages with the word "duck” in the maintainer field:

“$ grep-available --no-field-names --eregex \
--field=Version ’ (alpha|beta)’ --show-field=Maintainer

“$ grep-available --no-field-names \
--field=Maintainer,Description duck --show-field=Package

ara

The ara tool from the package with the same name specialises on boolean queries
of the database, and features a more powerful syntax than dpkg-dctrl. For a de-
tailed description of the available syntax, please consult the ara (1) manpage.

As the tool is way too complex for a short description, sit back and relax while
the following example shows you some of the possible queries (without results).
ara merges the two dpkg databases with the APT cache of available packages in
memory and then runs queries on it. While the query itself is fast, the compilation
takes a while. For single commands, that is as good as it will get. If you plan to run
multiple commands in a row, consider using the interactive mode by passing the
-interactive option:

“$ ara -interactive

Loaded 11519 packages (processing

‘’debian.ethz.ch _debian_dists_unstabl...’”’)

Total 15754 packages...

Welcome to ara version 1.0.7 released on 2004-12-07.
Type ? for help and Ctrl-D or #quit to exit.

& Section:net

[...1

& Section:utils and !Depends: (gnome|kde|gtk)

[...]

& Maintainer:duck and (Priority:extra or Section:net)
[...1

& /boolean.*queries/ and Priority:optional

ara ara-byte bool xara-gtk xara-gtk-byte

The last query shows that a graphical version of ara is also available. The -byte
packages install the Ocaml bytecode versions of the tool instead of the compiled
binaries (mainly for platforms for which Ocaml cannot generate binary code).

At http://ara.zapto.org, the ara database can be queries and browsed.

255 |

o

5 The Debian package management system

5.11.10 Package popularity contest

The Debian system is available from numerous places and does not require any form
of registration. Therefore, once you have obtained access to a source medium, you
are as independent of the Debian project as you would like to be, bound only by the
licence restrictions of the individual software you install. While this independence
is a great advantage over some commercial operating systems, some of which only
distribute security patches in exchange for information about the installed soft-
ware, it also makes it difficult for the Debian developers to adjust their priorities to
meet the needs of the users in an optimal way.

To give a trivial example, it may be that almost every user chooses to install the
foo package, so it would be of maximum benefit to the user community if the
developers spent more time improving foo. However, the developers might not
know about the popularity of foo and will not place its improvement high up on
their priority list.

To address this problem, the popularity-contest package exists. It installs a cron
job, which will submit the list of installed packages on the local system to a ded-
icated server (popcon.debian.org) by email once a week. On the server, the sub-
missions are processed to compute an estimated ranking of packages by their pop-
ularity. All submissions are made anonymously, but the set of installed packages is
tracked for each machine set up to submit®. In addition, popularity-contest tries
to include the access times of the programmes installed by packages to allow for
the generation of separate installation and usage statistics.

Officially, the Debian project uses this information mainly to select the packages
to be distributed on the first Debian installation CD, which is frequently the only
CD distributed at fairs or with magazines. Individually, developers are free to in-
spect the statistics (which are available on the Web at http://popcon.debian.org)
to help them make decisions. In addition, the statistics have been used to settle
disputes between developers that would otherwise have had to be solved by other
comparisons of size.

Unfortunately, popularity-contest had to be omitted from the set of packages
installed by default because of a change to the package selection mechanism at an
unfortunate point in time during the release preparation. As popularity-contest
is an invaluable tool to help the Debian project improve its system, | urge you to
install it and allow it to participate in the official survey; you will help improve
Debian this way.

59This is accomplished by including a unique identification number for each machine in the sub-
mission. The number is generated randomly when popularity-contest is installed (and stored in
$MY_HOSTID in [etc/popularity-contest.conf). Note that it is impossible to completely anonymise
Internet email because servers in transit add headers to messages they process, thus allowing messages
to be traced to the originating machines, albeit not trivially. Nevertheless, the information contained in
these headers is not used by Debian.

| 256

5.12 Debian kernels |

Using the popularity contest data

The data collected by popularity-contest may also be used locally. Among the
primary uses is the identification of packages with software that has not been used
for more than a month and could thus be considered for deinstallation if space is
tight:

“# popularity-contest | grep ’<OLD>$’
1102503722 1102503725 tnef /usr/bin/tnef <OLD>
[...]

Furthermore, it is trivial to use popularity-contest for internal census: the ad-
dress to which the data are sent can be controlled with the $MAILTO variable in
[etc/popularity-contest.conf. Also, $MAILFROM can be set. In [usr/share/doc/
popularity-contest/examples you will find a number of scripts to process the sub-
missions.

5.11.11 Purposely omitted tools

Of the immense amount of available tools, a number stuck out in a particularly
negative way. Thus, they are not covered in this chapter. Instead, | list them here:

auto-apt
This tool hooks in with e.g. a shell and intercepts errors resulting from un-
known commands. It then checks to see if any package in the Debian
archive provides the command, and if so, employs sudo to install the pack-
age to honour the request. Unfortunately, three attempts to make use of this
install-on-demand feature resulted in shells that would only understand the
KILL signal. Your mileage may vary.

cruft
The programme is designed to identify files that do not belong on a Debian
system, using exclusion lists to allow a system administrator (and package
maintainers) to specify additional files that are expected to be on the system.
Unfortunately, cruft has been actively neglected since 1999 and is unlikely
to see a revival. Integrity checkers, such as aide or tripwire serve the same
purpose more proactively.

5.12 Debian kernels

Many aspects of the Debian system are managed with packages; the kernel, which
interfaces between a machine's hardware and the operating system and software

257 |

o

5 The Debian package management system

running on it, is no exception. With support for eleven different architectures (see
chapter 4.5) and multiple kernels for each architecture, the kernel package main-
tainers have to walk the thin line between keeping down the load on the mirrors
(kernel packages are big) and providing the user with all the needed flexibility.

In the following, you will be introduced to the philosophy behind the various pack-
ages that constitute the kernel and its periphery. While we first inspect Debian's
support for Linux and non-Linux kernels, the remainder of the chapter is limited to
the Linux packages and identifies the different packages that exist for each kernel
version. Finally, the concept of extension modules and kernel patches is brushed,
and Debian's approach to using packages is briefly introduced. Chapter 8.1 aug-
ments this chapter with the juicy details of building your own kernel and module
packages.

5.12.1 Kernel support

When people speak of Debian, they refer to either the Debian project or its main
product, the Debian GNU/Linux operating system. Thus, the name “"Debian” has
been established as referring to a Linux distribution. However, Debian is more than
a Linux distribution, because Debian is an operating system independent of the
kernel. While Debian GNU/Linux — which identifies the Debian operating system,
using GNU user-space utilities and a Linux kernel — is undoubtedly the most pop-
ular and most advanced Debian operating system available, efforts are on the way
to fuse the administrative paradigms of Debian with other combinations of user-
space collections and kernels. The following ports to non-Linux kernels® are on
the way:

Debian GNU/NetBSD

For administrators in favour of the NetBSD kernel, but who are used to De-
bian administration, or prefer Debian administration to the pkgsrc system,
the Debian GNU/NetBSD project is porting Debian and the GNU userland
to the NetBSD kernel. While support for the i386 architecture is already
well on its way, the alpha architecture is in its initial stages of development.
With the NetBSD kernel already at production level, Debian GNU/NetBSD is
expected to be a serious alternative in productive environments.

Debian GNU/kFreeBSD
The Debian port to the FreeBSD kernel uses a complete GNU userland, a GNU
C library, and a FreeBSD kernel. Debian GNU/kFreeBSD currently only sup-
ports the i386 architecture. With the FreeBSD kernel already at production
level, Debian GNU/(k)FreeBSD is expected to be a serious alternative in pro-
ductive environments. Another group was previously working on a FreeBSD
port with a BSD userland, but the project died due to lost interest.

8 http://www.debian.org/ports

| 258

5.12 Debian kernels |

Debian GNU/Hurd
Efforts to use Debian with the Hurd (the GNU operating systems, which
provides most its functionality via user-space processes instead of kernel-
space drivers) are in progress. Unfortunately, Hurd is still immature and
development is only creeping along slowly. Debian therefore serves as the
Hurd reference implementation, inviting more developers to join the Hurd
project. Its productive usability is questionable at the moment.

Debian GNU/Darwin
While non-official and hosted at SourceForge®!, the Debian GNU/Darwin
port is an effort to enable the Debian way on Mac OS X "Darwin." Currently,
the project is inactive; | have received no response to my inquiry, and the
Sourceforge usage statistics seem to suggest that the project is dead.

While the Linux kernel is a powerful kernel which sports a healthy mixture of exper-
imental code and proven features, it is far from perfect. For normal use, the kernel
performs nicely and provides the stability typically found in a Unix system. How-
ever, in advanced scenarios, mysterious kernel bugs frequently drive users up the
wall. While the Linux kernel definitely enjoys a number of advantages, in certain
situations, other kernels provide more robust hardware support or have technically
advanced approaches to common operating system tasks, such as memory man-
agement®?,

Debian's support for kernels other than Linux means that Debian users in need of
other kernels for technical or other reasons do not have to leave familiar terrain.
At the same time, and as with the supported hardware architectures, Debian's ker-
nel independence allows for unified system administration across different kernels.
Especially when dealing with embedded devices and eclectic hardware, the ability
to employ e.g. the NetBSD kernel and stay with Debian's administrative paradigms
comes as a big plus.

5.12.2 Anatomy of the kernel packages

In addition to supporting different kernels, the Debian archives also contain pack-
ages encapsulating the various kernels in different versions and optimised for dif-
ferent architectures. The Debian kernel packages install kernels which strive to
support the widest possible range of hardware, making extensive use of a ker-
nel's module support, if applicable. Nevertheless, Debian tries to limit the mod-
ifications to the kernels it distributes to a minimum. While the Debian kernels

6 http://sourceforge.net/projects/debian-darwin

62An interesting technical comparison of Linux and the NetBSD kernel, which is interesting es-
pecially because of its portability, may be found here: http://www.wasabisystems.com/gpl/linux.htm.
Also, http://www.instinct.org/"pgl/bsd-comparison-humour.txt may contain the answers you were al-
ways searching.

259 |

o

5 The Debian package management system

differ from the vanilla kernels downloadable from the official kernel distribution
point®, included kernel patches are limited to security updates and few care-
fully scrutinised features have been added to allow certain packages in the De-
bian pool to be independent of the kernel running the system®. Information rel-
evant to these Debian-specific changes can be found in [usr/share/doc/kernel-
doc-<version>/README.Debian.gz, after installing the corresponding kernel-doc
package (<version> refers to the kernel version followed by architecture and
flavour, e.g. 2.6.8-1-k7).

In the Debian archive, kernel versions are part of the package name. Therefore,
each kernel version is to be treated as a separate package, and different versions
can coexist. For instance, the 2.6.8 Linux kernel for modern AMD processors comes
in kernel-image-2.6.8-1-k7. There are four important points to note about the
naming of kernel packages:

= Package naming is very Linux-centric and assumes that "kernel-image" refers to
the Linux kernel. As soon as other kernels gain popularity, the naming scheme is
likely to change®.

= The version number is constrained to three components. The Linux kernel team
only recently started using a fourth component with the release of the Linux
kernel version 2.6.8.1. Since 2.6.8.1 obsoletes 2.6.8 and the extra digit looked like
a one-time deal, the Debian kernel maintainers chose to drop the final .1. With
2.6.11, the upstream kernel developers used four component version numbers
again. Debian will adapt to the new scheme as soon as the practice is well
established.

= Following the version number is a number encoding the kernel image's Appli-
cation Binary Interface (ABI) version. A number of compile-time options and
kernel configuration parameters change the kernel's ABI and render modules
incompatible. Thus, the ABI version is encoded in the package name to force
modules to be recompiled.

= The last part of the name identifies the sub-architecture for which the kernel was
configured and optimised. It is essential for the architecture of a kernel package
to be compatible to the architecture of the target system, or else the system will
be unbootable. For Linux on the i386 architecture, the available kernel package
architectures are:

8 http://kernel.org

8470 give an example, the Debian 2.4 kernel series started to include IPsec support, backported from
2.5 from 2.4.20 onwards. This was done to enable users building on the stability of the 2.4 kernel series
to use the range of IPsec utilities provided in the package archive.

http://debian.linuxwiki.de/DebianKernel/Plan

| 260

5.12 Debian kernels |

386
Compatibility kernels, which can run on any x86-compatible architecture
(including AMD, Intel, Transmeta, Cyrix, and others). Given the problems
with the 80386 processor series (see chapter 4.5.1), this kernel may drop
support for 80386 and require 80486 compatibility. It will then be re-
named accordingly. In sarge, the 80386 processor is supported.

586-tsc
Only with the 2.4 kernel series, 586-tsc identify packages configured for
the Intel Pentium Classic, which was the first to feature the TimeStamp
Counter (TSC) register.

686
These kernels are designed to be run on all 32 bit Intel processors following
the Pentium. For the 2.6 kernel series, this includes the Pentium Classic.
With 2.4 kernels, the 586-tsc package must be used instead.
k6
AMD's older K6 processor series is supported by these kernel packages.
k7

All newer AMD 32 bit processors are handled by the kernels provided in
these packages.

In addition, several kernels come in different flavours. For instance, the 686 and
k7 kernels do not support Symmetric Multi-Processing (SMP). Instead, the 686-
smp and k7-smp flavours provide this functionality and should be used when
multiple processors are installed.

The upstream kernel version is part of the kernel package name. Thus, upgrading
a kernel to the next upstream version requires the installation of a new package,
since APT cannot infer the upgrade automatically. For simplicity, a number of
meta packages (also known as dummy packages) allow APT to upgrade a kernel
image when a new kernel enters the Debian archive simply by depending on the
appropriate packages:

~“$ dpkg-query --print-avail kernel-image-2.6-k7
Package: kernel-image-2.6-k7

[...]

Version: 2.6.8-1

Depends: kernel-image-2.6.8-1-k7

[...1]

Thus, when a new upstream kernel is published and the corresponding meta pack-
age installed, APT will upgrade the meta package to the next version and thereby
pull in the new kernel package to satisfy the dependency. These meta packages are
available for every plausible combination of kernel series, architecture optimisation,
and flavour:

261 |

o

5 The Debian package management system

kernel-image-2.4-386
The latest 2.4 kernel for the x86 architecture, without particular optimisa-
tions.

kernel-image-2.4-586tsc
The latest 2.4 kernel, optimised for Pentium Classic (which was the first to
feature the TSC register).

kernel-image-2.4-686
The latest 2.4 kernel, optimised for all Pentium processors after the first gen-
eration.

kernel-image-2.4-686-smp
Ditto, with multiprocessor support.

kernel-image-2.4-k6
The latest 2.4 kernel, optimised for AMD's K6 processors.

kernel-image-2.4-k7
The latest 2.4 kernel, optimised for AMD's Athlon and Duron processor series.

kernel-image-2.4-k7-smp
Ditto, with multiprocessor support.

kernel-image-2.6-386
The latest 2.6 kernel for the x86 architecture, without particular optimisa-
tions.

kernel-image-2.6-686
The latest 2.6 kernel, optimised for all Pentium processors after the first gen-
eration.

kernel-image-2.6-686-smp
Ditto, with multiprocessor support.

kernel-image-2.6-k7
The latest 2.6 kernel, optimised for AMD's Athlon and Duron processor series.

kernel-image-2.6-k7-smp
Ditto, with multiprocessor support.

Each of these packages simply depends on the corresponding kernel package in its
highest version. When a new kernel is uploaded to the archive, a new meta package
is uploaded as well, with a modified Depends field. Therefore, an APT upgrade
will pull in the new kernel package to fulfill the meta package's dependency. The
old kernel image is left in place and can be manually deleted as soon as the new
kernel's operation is verified. Please note that the meta packages have only been

| 262

5.12 Debian kernels |

available since sarge. Furthermore, these packages do not exist for all hardware
architectures. Therefore, users of woody or an earlier release, or users of a hardware
architecture still without these meta packages will have to manually obtain the
latest kernel image, should it be desirable. Alternatively, you could build your own
kernel, as Debian makes building kernels very easy (see chapter 8.1).

In contrast to other Linux distributions, Debian kernels do not include every possible
patch in an attempt to support the newest hardware. While this approach has
the advantage of keeping the kernel clean and stable, and facilitates locating the
source of a problem should one occur, it obviously drags along the disadvantage
that the Debian kernels do not support as wide a variety of hardware as other
(mostly commercial) Linux flavours. Fortunately, new hardware device drivers make
it into the kernel, usually within a relatively short time period, so that support for
new hardware will generally exist in the latest Debian kernel a couple of weeks
later.

The Debian kernels places four files into the [boot directory:

vmlinuz-<version>
The binary kernel.

initrd.img-<version>
The ramdisk to be loaded during the initial boot phase to make drivers avail-
able needed to access the local installation.

System.map-<version>
The translation map between memory addresses and the corresponding ker-
nel functions, to allow debug messages to be more verbose.

config-<version>
The kernel configuration file, included for reference purposes.

Debian's kernels aim to be as broad as possible. For workstation machines, they are
usually more than adequate and deal appropriately with changing hardware and
varying requirements of the box. Since most kernel features are enabled as mod-
ules rather than compiled into the box, various utilities (e.g. hotplug and discover)
can load necessary components on demand. The kernel images are also widely used
in server systems, although it may be worth considering compiling custom kernels
based on the requirements. | usually compile my own kernels for server systems
to be able to disable kernel modules (which are a security hazard). This approach
automatically gets rid of the initial ramdisk used by the Debian kernels and thereby
eliminates one point of frequent failure. In addition, third-party modules are no-
toriously difficult to integrate with initial ramdisks, or the integration can be easily
forgotten.

263 |

o

5 The Debian package management system

Kernel modules and initial ramdisks

Almost every kernel feature and device driver is built as a module, if appropriate for
the host architecture. These modules are installed under [lib/modules/<version>
with the same layout as the upstream kernel. Modules which are required to boot
and mount the root filesystem are also written into a compressed filesystem image
(cramfs) at installation time: [boot/initrd.img-<version>. The administrator can
freely influence the building of this ramdisk image with the configuration files in
[etc/mkinitrd, provided by the initrd-tools package. This package is pulled in when
a Debian kernel package is installed. Since the initial ramdisk is created during
the kernel image's configuration phase, it will be necessary to install initrd-tools
separately and in advance to be able to change its settings. Alternatively, you can
reconfigure the kernel image after making the desired changes:

“# editor /etc/mkinitrd/mkinitrd.conf

[...]

“# dpkg-reconfigure kernel-image-2.6.8-1-k7
[...]

Configuration specific to mkinitrd, the programme which creates the filesystem
image, may be set in [etc/mkinitrd/mkinitrd.conf. For instance, when space is
tight, it may be worthwhile setting $MODULES to "dep” in the configuration file,
which will cause mkinitrd consult modprobe to figure out the minimum set of
modules to include. If you are using non-standard filesystems or disk controllers, it
is usually a good idea to specify these in [ete/mkinitrd/modules see modules (5))
just to be sure. The manual pages mkinitrd.conf (5) and mkinitrd (8) give more
information, and chapter 8.1.1 shows how initial ramdisks can be created and in-
spected for Debian kernels.

The initial ramdisk generated by the above procedure is a filesystem contained in
a single file. With proper support from the kernel (all Debian stock kernels provide
cramfs support), it can be mounted and inspected locally. If mkinitrd has been told
not to include all modules, this is a handy way to ensure that all modules necessary
to bring up the root filesystem are included. For instance, the following allows to
check the modules included on the initial ramdisk of the custom kernel package
kernel-image-2.6.8-arakis:

“# dpkg --install kernel-image-2.6.8-arakis
[...1]

“# mount -o ro,loop /boot/initrd.img-2.6.8-arakis /mnt

“# cd /mnt

/mnt# 1s -F

bin/ dev2/ 1lib/ loadmodules sbin/ sys/ var/
bin2/ devfs/ linuxrcx* mnt/ script tmp/

dev/ etc/ linuxrc.conf proc/ scripts/ usr/

/mnt# ls -F lib/modules/2.6.8-arakis

| 264

5.12 Debian kernels |

initrd/ modules.dep modules.pcimap
kernel/ modules.ieeel39%4map modules.symbols
modules.alias modules. inputmap modules.usbmap

modules.ccwmap modules.isapnpmap
/mnt# 1s -F lib/modules/2.6.8-arakis/kernel/security
capability.ko commoncap.ko root_plug.ko seclvl.ko

Integration with bootloaders

After unpacking the kernel image package, dpkg integrates the kernel into the
local system based on the settings in [etc/kernel-img.conf. Settings in that file
include where the kernel images are installed, whether the system should maintain
canonical links to the current and previous kernel binary, and how the bootloader
is told of the new kernel.

By default, the kernel packages maintain a pair of symlinks to the current and
previous kernel binary. The exact location of these symlinks can be controlled via
[etc/kernel-img.conf, the default is the root directory [on most systems. fvmlinuz
points to the current kernel binary in /boot. When a newer kernel image is installed,
the link is renamed to /vmlinuz.old and [vmlinuz is created to point to the newly
installed kernel binary.

Whether these links are necessary or useful depends largely on the bootloader em-
ployed. Debian provides no automatic management utility for the Lilo configura-
tion file /etc/lilo.conf. Therefore, it is convenient to tell Lilo about /vmlinuz and
[vmlinuz.old and let the kernel packages maintain the links. This is the default in
Debian. The following shows the suggested contents of fete/kernel-img.conf for a
Lilo-based system. The second option, links_in_boot causes the kernel packages to
place these links into [boot, which | recommend in order to keep the root directory
tidy. If you choose to use this option, please make sure you update [ete/lilo.conf
appropriately, followed by an invocation of lilo, or to run update-grub once man-
ually. You may also want to delete the symlinks in the root directory afterwards.

do_symlinks = yes
links_in boot = yes
do_bootloader = yes

Debian's Grub package provides update-grub, which can take over management
of the Grub configuration file [boot/grub/menu.Ist®. Therefore, the symlinks are
not really necessary. The following configuration options are sensible for a system
using Grub:

do_symlinks = no
do_bootloader = no

8This file may actually be in /boot/boot/grub/menu.lst. If you are a purist like me, you may want to
move [boot/boot/grub to /boot/grub and create a symlink from /boot to /boot/boot: In -s . [boot/boot

265 |

o

5 The Debian package management system

do_initrd = yes
postinst_hook = /sbin/update-grub
postrm_hook = /sbin/update-grub

When installing the kernel image, you will be instructed to tell your bootloader
about the initial ramdisk (“initrd"), which the Debian kernel uses. The grub-update
script automatically takes care of the initrd option, therefore the above configura-
tion includes the do_initrd = yes instruction to prevent the warning.

5.12.3 Sources, headers, and documentation

Conscious of systems with tight space requirements, Debian separates the files re-
lated to the operating system kernel into several packages. Besides the kernel image
packages, there are also separate packages for the kernel sources, the headers, and
the documentation. The Debian Wiki contains valuable resources about Debian's
kernel packaging®’.

For each kernel version, there is a kernel-source-<version> package. Kernel images
are packaged for each combination of kernel version, architecture, and flavour,
but all use the same kernel source package, of which only one exists for each
upstream kernel version. Each kernel source package installs the appropriate bzip2-
compressed tarballs into fusr/src. The tarball contains the exact source code used to
compile the Debian kernels, including the modifications that distinguish the Debian
kernel from the upstream version. Having a tarball instead of an unpacked source
tree fulfills two functions: first, the tarball greatly reduces the size requirement
on the [usr partition, and second, it suggests to users, who need to use the kernel
source, to unpack it to their own home directory. The kernel source tree is not very
usable without write access to the directories (e.g. for object files), and therefore
there is little point in providing an unpacked source tree in [usr/src.

Next to the kernel-source-<version> packages, you may find kernel-tree-<ver-
sion> packages. These packages exist to prevent version discrepancies between
kernel images and corresponding kernel sources packages in the fast-moving un-
stable archive. They serve no purpose outside of the Debian build and archive
infrastructure (unless you want to build kernels with older Debian revisions, in
which case you could also obtain the appropriate kernel source package from snap-
shot.debian.org). More information about the purpose and functioning of kernel
tree packages is available online®®.

Before a kernel source tree can be compiled, it has to be configured. As part of
the configuration, the user can choose features to enable and select the target
processor type to allow for processor-specific optimisations to be put in place.

67http://wiki.debian.net/?Kernel
8 http://wiki.debian.net/?DebianKernelTree

| 266

5.12 Debian kernels |

After the configuration, the header files found in the tree encapsulate all choices
made; the source files are not modified.

As we shall see in chapter 8.1.3, additional kernel modules can be easily built for any
Debian package outside of the actual kernel source tree, needing only the headers
that correspond to the running kernel. To make this possible, the Debian archive
provides a separate kernel-headers-<version> package for each kernel image it
contains, to encapsulate the kernel configuration specific to the architecture and
processor type used. When unpacked, the headers are installed in [usr/src/kernel-
headers-<version>. It is the administrator's job to provide the [usr/sre/linux sym-
link to one of these kernel-headers-* directories, if desired.

Using the appropriate kernel headers package, it is possible to build kernel modules
to work with the corresponding kernel image without having to compile the kernel
itself. The kernel source packages cannot be used for this purpose as the kernel
trees they contain have not been configured. If you are building your own kernel
from the kernel sources (see chapter 8.1), you can build any additional modules
as part of the process (see chapter 8.1.3); if you are using a pre-packaged kernel
image, you need the according kernel headers package to be able to build modules
(see chapter 8.1.3).

Note that the kernel header files from the kernel-header-<version> packages are
not supposed to be used when developing user-space software using kernel inter-
faces. For user space software, it is of utmost importance to use the same kernel
headers which were used to compile the C library libc6®®. These headers, which
populate fusrfinclude, are provided in the linux-kernel-headers package.

The kernel documentation (everything under the Documentation directory of the
kernel source) is available from the kernel-doc-<version> packages, which installs
the files to the appropriate subdirectory of fusr/share/doc. The documentation has
consequently been removed from the kernel source packages to conserve space on
systems that only need the sources installed.

5.12.4 Kernel modules and patches

The Debian kernel packages provide the upstream kernel with a small number of
Debian-specific modifications and bug fixes. Additional functionality is contained
in separate packages and comes in one of three forms: precompiled kernel mod-
ules, source code for kernel modules, and kernel patches. Only the most pop-
ular kernel module extensions, such as the PCMCIA modules’® or the Advanced

89nformation on this topic may be obtained from the elaborate thread summarised here:
http://www.kerneltraffic.org/kernel-traffic/kt20000814_80.html#4, and from [usr/share/doc/libc6/
README.Debian.gz

ODebian provides two separate module package families for PCMCIA on the 2.4 kernel se-
ries: pcmcia-modules-<version> provide the mature drivers by the Linux Card Services project
(http://pemcia-cs.sourceforge.net); in kernel-pemcia-modules-<version> are the kernel's own drivers.

267 |

o

5 The Debian package management system

Linux Sound Architecture (ALSA) drivers, are provided as pre-compiled modules for
the available kernel images. For instance, alsa-modules-2.4.27-2-k7 contains the
ALSA drivers for the 2.4.27-2-k7 kernel, which it installs in the a directory below
[lib/modules/2.4.27-2-k7 for direct integration with the running kernel. At time
of writing, no precompiled modules existed for the 2.6 kernel series in the official
archive as most modules are available in the kernel (including PCMCIA and ALSA
drivers).

Drivers developed separately from the kernel are usually provided in module source
packages. These modules are provided by separate projects and are not found in
the vanilla kernel sources available at kernel.org. For instance, openafs-modules-
source contains the source code to build the modules needed to provide the AFS
filesystem for a specific kernel version. Chapter 8.1 uncovers the details and shows
how to create module packages from such sources. Generally, only the kernel head-
ers should be needed to compile kernel modules. If a kernel module source package
insists on the kernel sources, it is almost certainly a bug.

Debian distributes a number of kernel patches to allow a user to individually con-
figure a kernel to meet certain needs. These patches come as regular Debian pack-
ages and are designed to integrate with make-kpkg to make building of modified
kernels accessible via a single command. Crefmake-kpkg will explain how to do
that. Kernel patch packages allow for a multitude of kernel customisations. For
instance, with kernel-patch-openmosix, the Debian kernel can be easily turned
into an OpenMosix-compatible kernel, and kernel-patch-redhat turns a Debian
kernel into the RedHat kernel of the same version, including all patches that Red-
Hat chose to apply to their kernel. The differences between the Debian kernel and
its vanilla counterpart are also encapsulated for each version. In addition, Debian
kernel patches have the ability to "unpatch” themselves. Therefore, with the help
of kernel-patch-debian-2.6.8, a kernel source package can be used to obtain the
pristine upstream kernel source code (by example of the 2.6.8 kernel). The presence
and absence of the Debian revision in the output indicates whether the source tree
corresponds to the Debian or the upstream kernel.

“# apt-get install kernel-source-2.6.8

“# apt-get install kernel-patch-debian-2.6.8

“$ tar xjf /usr/src/kernel-source-2.6.8.tar.bz2

“$ cd kernel-source-2.6.8

~/kernel-source-2.6.8$ cat version.Debian

2.6.8-1

“/kernel-source-2.6.8% /usr/src/kernel-patches/all/2.6.8/unpatch/debian
“/kernel-source-2.6.8$ cat version.Debian

2.6.8

~/kernel-source-2.6.8% /usr/src/kernel-patches/all/2.6.8/apply/debian

Having two separate packages allows the administrator to choose either one. More information is
available here: http://[pcmcia-cs.sourceforge.net/ftp/README-2.4 . In the 2.6 kernel series, the Card
Services drivers have been obsoleted by the kernel drivers.

| 268

5.12 Debian kernels |

“/kernel-source-2.6.8% cat version.Debian
2.6.8-1

Obviously, the application of a kernel patch requires the compilation of the entire
kernel”!, which is conveniently handled by make-kpkg (see chapter 8.1). make-
kpkg can be told to automatically patch and unpatch a kernel source tree, so that
a single tree can be used to create packages for different variations of the kernel.

"1The 2.6 kernel series actually allows the compilation of modules independently of the rest of the
kernel. Thus, if a patch provides a new device driver, that driver can be compiled as a module without
recompiling the rest of the kernel. As of today, no Debian methods exist to encapsulate this functionality
beyond the recompilation of the entire tree.

269 |

o

Debian system administration

rm -rf has Super Cow powers too.
— Barry deFreese

Beyond software installation management, which is the domain of the Debian
package management system (see chapter 5), a Debian system can be used just
like any other Linux system. Nevertheless, over the years, many useful system ad-
ministration tools have been developed specifically for, and in the spirit of Debian.
These tools are available under the terms of the DFSG (see appendix F) and consti-
tute the topics of this chapter.

First, we will inspect a number of utilities that are primarily used by other tools,
but which come in handy by themselves to those that know how they work. Apart
from putting these utilities to work, it is a good idea to understand their concepts
as they influence the way Debian systems are managed.

271 |

6 Debian system administration

Following the fundamentals, we will learn Debian's approach to common system
administration tasks: user management, system initialisation, automation, device
management, log files, network configuration. The chapter ends with a short de-
scription of a couple of one-stop integrated management tools, and a number of
pointers to invaluable resources.

6.1 Fundamentals

True to the Unix philosophy, Debian makes use of the little tools and concepts avail-
able on a Unix system, rather than providing its own approaches and reinventing
the wheel. At certain times in the project's past, however, some of those wheels
had not been invented, and Debian provided the reference implementations, or in-
vented concepts to provide flexible and robust solutions to common challenges in
system administration.

The concepts and tools are integral to the Debian system, and a prerequisite for
anyone seriously considering managing a Debian system. They are the essential
building blocks of the Debian operating system, just like the standard Unix tools
are the building blocks of any Unix-based operating system.

6.1.1 Using directories instead of configuration files

One of the qualities of a Unix system is its clear-text configuration files. Often, a
single file controls most aspects of a programme or a server. While this approach is
favoured by many administrators, it is a nightmare when software needs to modify
these files automatically. Debian does not provide a central configuration system
(see chapter 5.8), any configuration changes put in place during package installa-
tion are carried out by the packages themselves; this is deemed acceptable, since
the maintainer controls both the configuration file as installed by the package, as
well as the script making any modifications.

Problems start arising when one package needs to make changes in the configura-
tion domain of another package. This situation arises, e.g. when a package registers
the software it provides with a daemon process that comes from another package.
cron is a typical example. Numerous packages provide jobs to be run regularly for
cleanup or maintenance purposes, and use cron to schedule them. If these pack-
ages were to just write their jobs to cron's main configuration file (/etc/crontab),
imagine all the things that could go wrong as multiple packages edited the same
file, or if you opened the file in an editor, edited it, installed a new package in
another window, and only then saved and closed the editor.

To provide increased manageability for both the administrator and the package
maintainers, the Debian system uses directories to augment configuration files

| 272

6.1 Fundamentals |

where appropriate. For instance, it does not matter whether you register a job
with cron by appending a line to [etc/crontab, or by dropping a file containing the
line into [etc/cron.d, cron will just augment [etc/crontab with all the files in the
directory and use the result. On a Debian system, the same goes for other tools, like
APT, apache, and many others. The advantage here is that a package can drop a file
into these directories and let dpkg handle overwrite protection and configuration
file handling. While the use of this kind of directory is no longer specific to Debian,
the Debian system was the first to introduce the technique and make it popular.

To accomodate the special files needed for configuration handling, as well as backup
and temporary files used (and often left) by editors, only files with names made
up of alphanumeric characters, the dash ('-') and the underscore('.') are consid-
ered (e.g. foo.dpkg-old and foo™ are ignored). Furthermore, the convention is that
packages install files named after themselves, and that the administrator should
use a local- prefix for locally provided files.

So much for pure configuration files. Staying with cron, you may have noticed
directories such as [etc/cron.daily on your system. It contains standard executables
which are installed by packages based on the aforementioned rules. The idea here is
that by installing a script to this directory, a package simply registers its request to
have the script run once a day, rather than having to write the script somewhere
else and worry about, or be limited to, the configuration syntax of cron. cron
replacements can thus honour these directories as well.

The same goes for the network configuration system, which provides similar direc-
tories for scripts to be run after a connection has been established. This is discussed
at length in chapter 6.8.1.

Directories like cron.daily are not magical in any way. In fact, if you look into
[etc/crontab, a single line is responsible for this behaviour (slightly abbreviated):

“$ grep ' " [[:digit:]]’ /etc/crontab

17 * * *x *x root run-parts --report /etc/cron.hourly
25 6 * * * root run-parts --report /etc/cron.daily

47 6 * * 7 root run-parts --report /etc/cron.weekly
52 6 1 * * root run-parts --report /etc/cron.monthly

The core of this approach, and one of the most useful inventions of the Debian
system, is run-parts. The programme simply reads a directory and executes all the
executable scripts in the directory that abide by the naming scheme mentioned
earlier (ignoring temporary files). With the --test option, it can be told to merely
print the files it would execute, and by specifying --list, you can list any files, not
just executables. This list can then be used for anything apart from execution:

“$ touch /etc/cron.daily/foo /etc/cron.daily/bar.dpkg-old
“$ chmod a+x /etc/cron.daily/bar.dpkg-old
“$ run-parts --list /etc/cron.daily | xargs wc -c

273 |

o

6 Debian system administration

[...]

0 /etc/cron.daily/foo

[...]

2571 /etc/cron.daily/standard
1307 /etc/cron.daily/sysklogd

Even though not all tools actually use run-parts to scan directories, it is commonly
accepted that they should implement the same behaviour. Thus, run-parts' be-
haviour is a major part of Debian's configuration file handling strategies, and one
of the most important aspects of system administration. To work with Debian's
configuration paradigms effectively, you will need to internalise run-parts' func-
tionality.

6.1.2 Overriding permissions

The Debian developers, assisted by the policy (see chapter 5.7) ensure that files
distributed in packages from the Debian archive install with sane ownerships and
permissions. At times, however, a local policy may require some files to have dif-
ferent owners or permissions. A somewhat antiquated but still pertinent example
is the [binfsu group, which can be set to wheel along with 4754 permissions on
the binary' to allow only members of the wheel group to use that file. However,
whenever login, the package containing /bin/su is updated, the changes are lost:

“# chgrp wheel /bin/su

“# chmod o= /bin/su

“# apt-get install --reinstall login

[...]

“# 1ls -F1 /bin/su

-rwsr-xr-x 1 root root 23416 Sep 8 05:13 /bin/su*

Debian provides the dpkg-statoverride programme to allow the administrator to
tell dpkg about special ownership and permission requirements for files under dpkg
control. On upgrading, dpkg will honour any requests made via dpkg-statoverride
appropriately. To tell dpkg-statoverride to immediately implement the proper per-
mission settings, use the --update flag:

“# addgroup wheel

“# dpkg-statoverride --update --add root wheel 4754 /bin/su
“# 1s -F1 /bin/su

-rwsr-xr-- 1 root wheel 23416 Sep 8 05:13 /bin/su*

“# apt-get install --reinstall login

[...1]

“# 1s -F1 /bin/su

-rwsr-xr-- 1 root wheel 23416 Sep 8 05:13 /bin/su*

There is no point in making it unreadable by others as the binary is freely available in the Debian
package anyway. Please see section 10.9 of the Debian policy.

| 274

6.1 Fundamentals |

6.1.3 Overriding files

dpkg-divert is a tool that can transparently rename files installed by dpkg so that
dpkg subsequently uses the new location. It is used by packages which are de-
signed to override each other's functionality but can also be used by the system
administrator. For instance, the postfix package installs the postfix mail transport
agent without support for TLS. If TLS support is desirable, the postfix-tls package
can be installed. The package provides a number of alternate files but reuses most
of the contents of the postfix package. In the following, note the existence of two
smtp files (one with an extension) and the package association of the listed files:

“$ 1s -F /usr/lib/postfix/smtpd

/usr/lib/postfix/smtpd* /usr/lib/postfix/smtpd.postfix*

“$ dpkg --search /usr/lib/postfix/smtpd

diversion by postfix-tls from: /usr/lib/postfix/smtpd
diversion by postfix-tls to: /usr/lib/postfix/smtpd.postfix
postfix, postfix-tls: /usr/lib/postfix/smtpd

For dpkg's purposes, both packages own the smtpd file, but it also knows that the
postfix-tls package has diverted the version installed by postfix. The important
point is that when dpkg installs an upgraded postfix package, it knows that the
new smtpd file should be written to smtpd.postfix; it does not overwrite the actual
smtpd file, which belongs to the postfix-tls package?.

The system administrator can make use of diversions to replace files installed by
dpkg with custom versions, without running the risk of having these custom ver-
sions overwritten on an upgrade. Let us assume you want to provide a customised
version of [usr/share/misc/file/magic, a database used for file type identification
by libmagic1. The following call to dpkg-divert will do the trick; the --rename
switch causes the file to be renamed automatically.

“# 1s -F /usr/share/misc/file

magic magic.mgc magic.mime magic.mime.mgc

“# dpkg-divert --add --rename /usr/share/misc/file/magic

Adding ’‘local diversion of /usr/share/misc/file/magic to
/usr/share/misc/file/magic.distrib’

“# 1n -s /etc/file/magic /usr/share/misc/file

“# 1s -F /usr/share/misc/file

magic@ magic.distrib magic.mgc magic.mime magic.mime.mgc

When dpkg is about to write a file that is diverted locally, it uses the file's “true
name” instead: the name used for the diverted file. If libmagic1 is upgraded (or any
other package) wants to write the magic file, dpkg makes sure that magic.distrib is
used instead. It is possible to override the file name used in the diversion with the

2The exact behaviour is that if a package foo diverts a file bar, dpkg will only allow foo to write to
the location of the original bar file. If any other package writes to the file, the access is diverted.

275 |

o

6 Debian system administration

--divert option. In the following | use the echo commands to simulate changes to
the files.

“# dpkg-divert --truename /usr/share/misc/file/magic
/usr/share/misc/file/magic.distrib

“# echo >> /usr/share/misc/file/magic

“# echo >> /usr/share/misc/file/magic.distrib
“# md5sum magic magic.distrib
68b329da9893e34099¢c7d8ad5¢cb9c940 magic
dd00e70107¢c9dc17e7£d97083b3a8c4f magic.distrib
“# apt-get install --reinstall file

[...1

“# md5sum magic magic.distrib
68b329da9893e34099¢c7d8ad5¢cb9c940 magic
4daeclaa76b728a09b47c7ddaabb5a69 magic.distrib

dpkg keeps a record of the diversions registered through dpkg-divert. As shown
above, it also intersperses this information with the output of commands like dpkg
--listfiles and dpkg --search:

“# dpkg-divert --list *
local diversion of /usr/share/misc/file/magic to
/usr/share/misc/file/magic.distrib

[...1]

It is a good idea to keep track of which files have been diverted for what reasons.
When the diversion is no longer needed, it should be removed. dpkg-divert can be
told to restore the original file name with the --rename switch.

“# dpkg-divert --remove --rename /usr/share/misc/file/magic

Removing ’local diversion of /usr/share/misc/file/magic to
/usr/share/misc/file/magic.distrib’

“# 1s -F /usr/share/misc/file

magic magic.mgc magic.mime magic.mime.mgc

As a final note, be aware that diversion of configuration files can lead to subtle
problems. Even though a configuration file can be diverted in theory, the diversions
might bite with dpkg's configuration file handling. Of course, your mileage may
vary.

6.1.4 The alternatives system

One of the beauties of a Unix system is the tremendous amount of choices for each
kind of application. You can take your pick between about a forty mail user agents
and maybe a hundred text editors, and all these programmes will happily coexist
to give each user the possibility to run their preferred application. The flexibility

| 276

6.1 Fundamentals |

functionality that the huge selection of interchangeable software provides makes it
extraordinarily difficult for programmes to decide which other programmes to use.
For example, if a software needs a text editor for its operations, it could just force
emacs onto the system via a dependency, but the administrator or the system's
users may not want emacs or may not know how to use it.

Similar to virtual packages (see chapter 5.7.3), the Debian alternatives system al-
lows the administrator to select a default out of a set of programmes that pro-
vide the same functionality. To stay with the example of the text editor, Debian
systems provide [usr/bin/editor, and every package providing a text editor regis-
ters with the alternatives system as a provider of the functionality expected from
Jusr/binfeditor. Now, other software can rely on [usr/bin/editor to invoke a text
editor, but the decision which editor is to be used is placed in the hands of the
administrator. In addition, secondary files (such as the programme’s manpage) are
handled automatically.

Debian implements alternatives with double indirection via symlinks. [usr/bin/
editor is a symlink to [etc/alternatives/editor, which in turn is a symlink to the
editor executable the administrator chose as the default. Obviously, [usr/bin/editor
could point to that executable directly, but by Debian policy, aspects of the system
configurable by the administrator must reside under /[etc.

The programme to configure the alternatives system is update-alternatives, which
is also used by the package management tools for registration of alternatives. The
system administrator can register the choice for default interactively or at the com-
mand line with the --config and --set options. The --list option displays the pos-
sible choices, and --display prints the current settings:

“# update-alternatives --display editor
editor - status is auto.
link currently points to /usr/bin/vim
/usr/bin/vim - priority 120
slave editor.l.gz: /usr/share/man/manl/vim.1l.gz
/bin/ed - priority -100
slave editor.l.gz: /usr/share/man/manl/ed.l.gz
Current ‘best’ version is /usr/bin/vim.
“# readlink -f /usr/bin/editor
/usr/bin/vim
“# update-alternatives --set editor /bin/ed
Using ‘/bin/ed’ to provide ‘editor’.
“# update-alternatives --display editor
editor - status is manual.
link currently points to /bin/ed
[...]
“# readlink -f /usr/bin/editor
/bin/ed

The alternative system supports two modes of operation for each link: links that
were explicitly configured by the administrator are in the manual state, while those

277 |

o

6 Debian system administration

that have not been changed are in the automatic state. In the automatic state, the
alternatives system uses priorities to determine the best candidate for any given
purpose. Where necessary, the priority value is governed by the policy. To restore
a manually configured link to its automatic state, you can again invoke update-
alternatives:

“# update-alternatives --auto editor

“# update-alternatives --display editor
editor - status is auto.

link currently points to /usr/bin/vim
update-alternatives --auto editor

“# update-alternatives --display editor
editor - status is auto.

link currently points to /usr/bin/vim
update-alternatives --auto editor

“# update-alternatives --display editor
editor - status is auto.

link currently points to /usr/bin/vim

[...1

Finally, it is possible to add your own entries to the alternatives link. For in-
stance, assuming you compiled your own X terminal emulator and installed it to
Jusr/local, the following will make sure that [usr/bin/x-terminal-emulator invokes
it. Note how the command also slaves the manpage so that a user may call man
x-terminal-emulator and be presented with the manpage corresponding to the
terminal x-terminal-emulator invokes.

“# update-alternatives --install /usr/bin/x-terminal-emulator \
x-terminal-emulator /usr/local/bin/myterm 1000 \
--slave /usr/share/man/manl/x-terminal-emulator.l.gz \
x-terminal-emulator.l.gz /usr/local/man/manl/myterm.l.gz

“# update-alternatives --auto x-terminal-emulator

“# readlink -f /usr/bin/x-terminal-emulator

/usr/local/bin/myterm

6.1.5 The Debian menu system

A Unix system is not bound to a single graphical frontend. In fact, the Debian
archive holds more than 30 window and desktop managers, giving the user ample
choice as to how the desktop should look. Most of these provide a menu for easier
access to the installed applications. While integrated desktop environments such as
KDE and GNOME provide standardised hooks used by many programmes to register
executables with the menus, there is no standard across all window managers®. If

3The Debian menu system is not limited to window managers. While KDE and GNOME actually
render their menus independently of the window manager used, even terminal emulators such as rxvt
can use the Debian menu system. For simplicity, we will discuss window managers here, arguably the
most common field of use for menus.

| 278

6.1 Fundamentals |

the administrator needs to provide a common menu structure and still allow users
the choice between multiple front-ends, a great amount of time must be devoted
to managing the menu configurations. Most probably, the different frontends em-
ploy vastly different syntactic rules and paradigms, all of which have to be learnt
to prevent confusion.

The Debian menu system aims to lighten the load by providing a standardised
method for applications to register their user-executable binaries*. In turn, ev-
ery Debian window manager provides a conversion specification which produces
the applicable menu configuration from the Debian menu configuration. Finally,
each application providing a menu entry instructs the menu system to update the
menus of all menu providers during its configuration phase. For the Debian menu
system to work, the menu package must be installed. Its documentation can be
found online®.

With the menu package installed, the menu system requires no further interaction
to give all users of all window managers the Debian default menu. However, the
administrator may override virtually any aspect of the generated menu(s), and each
user can do so as well. The menu system has two configurable aspects: the first
is the method used to generate each window manager's menu configuration file,
and the second comprises the individual menu entries. | will limit the following
discussion to the second aspect.

Menu files

To register one or multiple menu entries, a package drops a menu file into fusr/lib/
menu, ideally named after the source package. A good example of such a menu
file is the one provided by the dia package:

?package (dia) :
needs="X11"
section="Apps/Graphics"
hints="Vector"
command="/usr/bin/dia-normal"
icon="/usr/share/pixmaps/dia_menu.xpm"
title="Dia"
longtitle="Draw diagrams"
description="Dia can be used to draw different kind of diagrams.
There is support for UML static structure diagrams

P g G

(class diagrams), Entity-Relationship diagrams and
Network diagrams. Diagrams can be exported to postscript."

4The Debian menu structure is governed by its own policy: http://www.debian.org/doc/
packaging-manuals/menu-policy
Shttp://www.debian.org/doc/packaging-manuals/menu.htm|

279 |

o

6 Debian system administration

The package defines a single entry under ownership of the dia package, which is
only made available when the X11 system is available. It resides in "Apps/Graphics”
and can optionally further subclassify into the "Vector" directory. The command is
specified as well as the icon to use, if the menu is capable of displaying icons. Fi-
nally, the title, long title, and description can help users to identify the application’s
purpose.

Assuming you would like to change the icon used for dia, you would drop a mod-
ified version into [etc/menu and run update-menus. This updates the global
menu configuration file for all menu providers by iterating through the meth-
ods in [etc/menu-methods. To disable a package's menu entries, simply create
an empty file under [etc/menu; the file have the same filename as the menu file in
Jusr/lib/menu.

Similarly, it is possible to provide custom menu entries. To avoid clashes with of-
ficial Debian software, it is preferable to use names prefixed with local. in the
?package clause of the menu file:

“# cat <<EOF > /etc/menu/local.consoles.webserver

?package (local.consoles.webserver) : \
needs="text" \
section="Local/Consoles" \
title="Webserver" \
command="ssh webserver"

EOF

After running update-menus, selecting this menu entry tells the menu provider to
do everything needed to bring up an SSH session on webserver.

User-specific configuration

Each user can do at the user level what an administrator can do at system level. The
"/.menu and “[.menu-methods directories completely override their counterparts
in [etc (meaning that the system-wide menu configuration will be ignored). By
dropping appropriate files into these directories and running update-menus, the
user can ditch the default configuration and instead use a custom one.

To undo user-specific configurations it is usually only necessary to remove the
file identified by $userprefix and $genmenu from the home directory, where the
values of these variables can be obtained from the corresponding menu-methods
file.

| 280

6.2 Users and authentication |

6.2 Users and authentication

6.2.1 System users and groups

The Debian system works with users and groups just like other Unix systems. By
default, user accounts are defined in [etc/passwd, while password and account
expiration data are protected in [etc/shadow. Similarly, groups are specified in
[etc/group and any group passwords are hidden in [etc/gshadow. Debian uses
shadow passwords exclusively, and the default password hash is MD5, rather than
the less secure crypt algorithm.

Unix accounts and groups are identified by an ID number and a unique name. To
be precise, an account or a group is identified by a unique ID number, which may
be referenced multiple times by different names, allowing for account and group
aliases (whose use is discouraged). The ID number is conventionally stored as a 16-
bit integer, allowing for 65536 different accounts and groups. Even though modern
kernels now use 32-bit integers and can thus accomodate more than four billion
accounts, Debian still uses the smaller version. The number space is partitioned
according to the following table, for both accounts and groups (see the Debian
policy, section 9.2.2 for details).

ID range Purpose

0-99 Globally allocated, static IDs. These are the same across all
Debian systems.

100 - 999 Dynamically created IDs for system accounts and group, cre-
ated and used by packages during installation

1000 - 29999 IDs for normal user accounts and local groups, used by add-
user or addgroup when creating new accounts or groups

30000 - 59999 Reserved for local use by the system administrator
60000 - 64999 Globally allocated, static IDs, which are only used on demand
65000 - 65533 Reserved for local use by the system administrator

65534 User nobody

65535 Must not be used®

The two blocks reserved for local use are actually only marked as reserved by the
policy. Since the policy governs what packages and maintainers may and must not
do, this guarantees that these UIDs will never be used by components of the Debian
system.

665535 is the same as unsigned(-1), which is often used as a sentinel value in programmes. To
guard against possible conflicts, this ID should not be used.

Table 6.1:

Partitions of the Unix

account and group ID

space on the Debian

system

281 |

o

6 Debian system administration

System accounts

Of the statically allocated IDs, a number have a special purpose on a Debian system,
while others exist merely for historical reasons. You can find a detailed description
of the special users (and groups) on your system’. Among the special user accounts
to be found on every Debian system, the following are of general relevance:

root
The superuser, which is a Unix standard.

sync
Logging in as sync causes the disk buffers to be flushed. This is a safe oper-
ation and subject only to denial of service attacks (if at all). Therefore, you
may consider using a simple password to allow synchronising of the disk
without logging in.

www-data
Web servers on Debian commonly run under the www-data account. The
web content should not be owned by www-data to prevent a compromise
of the web server from affecting the data. Dynamic applications, such as
Wikis and (badly designed) web applications, may still require ownership by
www-data to be able to store data persistently.

nobody

Daemons that do not own any files can be run as nobody, although a dedi-
cated account is usually a better choice.

System groups
The following are groups with special rights:

root
Accommodates the superuser and has no other real purpose.

adm
Membership in this group allows for certain monitoring tasks on the local
system. In particular, most log files under [/varflog are readable by adm.
Furthermore, [dev/xconsole, which receives most log messages (see [etc/
syslog.conf), is readable by the group members.

While primarily intended for the classic Unix print system Ipr, the Ip group
gives its members full access to a system's parallel ports.

7In [usr/share/doc/base-passwd/users-and-groups.html

| 282

6.2 Users and authentication |

www-data
Used by most web servers on the Debian system, status and log files gen-
erated while serving web content belong to this group. Web content itself
(and parent directories) should not be writeable by this group.

dialout
Members of this group have complete control over the system's serial ports.

dip
Members of this group can establish connections with dial-up providers.
fax
Membership in this group is mandatory to use fax applications.
voice
Voice applications are usable by members of this group only.
cdrom
Users who need direct access to CD-ROM devices must be members of this
group. Note that this is not required to mount CD-ROM drives and access
their 1IS09660 data tracks. Members of this group can read 1SO images and
issue control commands to, e.g., eject media in the drive.
floppy
For direct access to the floppy drive, a user must be a member of the floppy
group. As with CD-ROM drives, this is not requires to simply mount and ac-
cess a filesystem stored on the floppy disk. However, direct access is required
to create a filesystem on the floppy disk and to read and write floppy images.
tape
Access to tape drives is exclusive to members of this group.
sudo
sudo does not ask members of this group for a password.
audio
Membership in this group is required to use audio devices.
video
Special video hardware (beyond the basic functionality of the graphics card)
is only accessible to users who belong to this group.
staff

This group is for junior system administrators and users who can install soft-
ware locally without requiring root rights. Users in this group can manip-
ulate [ust/local, /var/local, and [home without needing root rights. This
facilitates custom software management, as well as management of data
stored below /home.

283 |

o

6 Debian system administration

users
This is a default group for plain users of a system without any special rights.

nogroup
Accompanying the nobody account, this group mainly serves to accomodate
daemons that do not own any files. A dedicated group is usually a better
choice.

It is unlikely that you will need to add users to system groups (i.e. with ID numbers
less than 1000) not mentioned above. If you think you do, please make sure you
know what you are doing. Practically speaking, there is no difference between
low and high IDs, the distinction mainly helps to make classification easier for the
administrator.

6.2.2 User and group management

User management on a Debian system is handled by a family of four tools, ad-
duser, addgroup, deluser, delgroup, which are commonly referred to as the ad-
duser suite, and installed with adduser package. These cover the most important
tasks, including group membership management. All other operations, such as the
modification of account data or the setting of passwords, are handled by the ap-
propriate standard Unix tools (e.g. chfn, chsh, usermod, or passwd). As with most
Debian approaches, you can continue to use existing tools (such as groupadd and
its siblings).

The adduser suite has some advantages over tools like useradd as it enforces the
Debian policy and provides hooks to allow e.g. quota to be configured for new
accounts, or a custom script to be run to adjust accounts to local requirements
automatically during their creation. Along similar lines, it can (optionally) back up
user data when an account is purged. Moreover, the adduser tools meticulously
log the actions they take (to /varflog/auth.log) to improve auditing of the system.

For the adduser suite members to enforce policy basically means that they know
about the partitioning of the ID number space, and honour it. Both addgroup and
adduser take the --system option to create groups and accounts with IDs between
100 and 999, but will default to choosing IDs between 1000 and 29000 in the
absence of the option. These bounds are configurable (in [etc/adduser.conf) if
required.

Adding and removing groups

Adding a group to a Debian system is a trivial operation. The --system option is
usually only needed by packages, so it will not be included. The tools will use the
next available 1D, which can be overridden with the --gid option.

| 284

6.2 Users and authentication |

“# addgroup debianbook
Adding group ‘debianbook’ (1002)...
Done.

Deletion of a group follows a similar pattern and irrevocably eradicates all mem-
bership data for the group (unless it is available in a backup, see chapter 6.4). It is
therefore probably a good idea to get into the habit of using the --only-if-empty
option, which prevents the removal of groups that are not empty:

“# delgroup --only-if-empty debianbook
Removing group ‘debianbook’...
done.

gpasswd is used to manipulate group passwords and administrators.

Adding users

The creation of new user accounts is a little more involved as the following steps
are taken. adduser reads [etc/adduser.conf and uses the values defined in this file
at various points to allow for greatest flexibility.

= |f SUSERGROUPS is enabled, adduser first creates a new group with the same
name as the user. If this group already exists, an error occurs. The --ingroup
option can be used to specify an existing group to use instead. System accounts
are not treated in this way.

= Next, the Unix account is created, using $DSHELL as its shell. The --shell option
can be used to override this. By default, system accounts are assigned [bin/false
as a shell.

= |f SUSERGROUPS is enabled, the user's primary group is set to the new group
with the same name as the account. Otherwise, the group identified by the ID
in $USERS_GID is used, unless the --ingroup parameter is given to override this
setting. Using the --gid option, the new account can be added to additional
groups. System accounts are added to nogroup by default.

= The home directory location is determined by $DHOME and the login name.
If $GROUPHOMES is enabled, the home directory will reside in a subdirectory
for the group ($DHOME/$GROUP). If SLETTERHOME is set, another subdirec-
tory, named after the first letter of the account name, is created. For instance,
with both variables set and $USERGROUPS disabled, a new account for martin
would be assigned the following home directory: [home/users/m/martin. With
the --home option, the administrator can instead specify the home directory
location manually.

285 |

o

6 Debian system administration

= The home directory is created with the permissions specified by $DIR_MODE,
unless the --no-create-home option is passed to adduser. If the directory ref-
erenced by $SKEL exists, its contents are copied to the new home directory. The
home directory is not created for system users. Additionally, an existing home
directory is left untouched. If $SETGID_HOME is enabled, the home directories
setgid bit is turned on.

= Assuming that neither of the options --disabled-login or --disabled-password
has been set, adduser now requests the user's new password, which is set us-
ing Pluggable Authentication Modules (PAM). If --disabled-login is specified,
the new account cannot be used until a password has been set manually us-
ing passwd. The --disabled-password option configures the new account to
be used with non-password authentication methods like the ones used by SSH.
System accounts have disabled passwords by default.

= Now, adduser prompts for the user contact data if not specified on the com-
mand line with the --gecos switch. The command line option does not honour
the commonly accepted GECOS® format, but expects a free-form comment in-
stead. Use commas to separate the GECOS fields, if specified on the command
line. These data are not queried for system accounts.

= |f defined, adduser clones the quota information from the template user identi-
fied by $QUOTAUSER, unless the new account is a system account.

= When creating a user account, adduser invokes [usr/local/sbinfadduser.local
(if present), passing it the account name, user ID, primary group ID, and home
directory path as arguments. If the script does not exit successfully, the user
account is removed.

The whole process looks like this (using a little debug script for the hook, to visualise
what is going on):

“# cat /usr/local/sbin/adduser.local
#!/bin/sh -e

exec echo -e "I: $0 called with arguments:\nI: $@\n"
“# adduser martin

Adding user ‘martin’...

Adding new group ’‘martin’ (1003).

Adding new user ’‘martin’ (1003) with group ’‘martin’.
Creating home directory ’/home/martin’.

Copying files from ’/etc/skel’

Enter new Unix password:

8GECOS s a relic from the "General Electric Comprehensive Operating System" and remains on
today's Unix systems as a format specification for contact data associated with login accounts. The fifth
colon-separated field of the [etc/passwd file holds a user's GECOS data in comma-separated fields: full
name, room number, work phone, and home phone. The last field can be used for other free-form data.

| 286

6.2 Users and authentication |

Retype new Unix password:

passwd: password updated successfully

Changing the user information for martin

Enter the new value, or press ENTER for the default
Full Name []: Martin F. Krafft
[...]

Is the information correct? [y/N] y

Setting quota from ’template’.

I: /usr/local/sbin/adduser.local called with arguments:

I: martin 1003 1003 /home/martin

Removing users

The removal of users is governed by the settings in [etc/deluser.conf. The process

consists of the following steps:

= deluser removes the Unix account, without touching any of the user's data (such

as home directory, or mail spool).

= |f SREMOVE_HOME is set or the command line option --remove-home is given,
the user's home directory (and the data in it) is then purged. The same happens

for system user accounts.

= |f SREMOVE_ALL_FILES is enabled, or the option --remove-all-files is used, the
entire system is scanned for files belonging to the user, which are then purged.
This option takes precedence over (and includes) the --remove-home option.

Again, a system user's account is treated in the same way.

= Enabling $BACKUP, or passing the --backup option to the deluser invocation
causes the tool to archive files that would be erased by the user removal process
to a tarball instead. The tarball's location can be set with $BACKUP_TO, or the

--backup-to command line switch, and defaults the current directory.

= Finally, deluser executes [usr/local/sbin/deluser.local (if present), passing it the
account name, user ID, parimary group ID, and home directory path as argu-

ments. An unsuccessful exit code is echoed to the user, but otherwise ignored.

The sequence looks like this, with removal of all files and backup abilities added for
extra show. Also, the same hook script as used earlier in the adduser example does

its thing here again:

“# deluser --remove-all-files --backup martin
Looking for files to backup/remove...

Backing up files to be removed to .

/bin/tar: Removing leading '/’ from member names
Removing files...

287 |

o

6 Debian system administration

Removing user ’‘martin’...

I: /usr/local/sbin/deluser.local called with arguments:
I: martin 1003 1003 /home/martin

done.

“# 1s -F

martin.tar.bz2

Group membership management

Essentially, group membership management on a Unix system can be performed in
two ways: as root, or as a normal user with management rights for the particular
group. Debian has no special provisions for the latter, so the following is all you
are going to see about membership management by a user. For instance, assume a
group of coders, led by Alice. The system administrator has created the group and
made Alice an administrator:

“# gpasswd -A alice coders

When Bob joins the group, Alice does not need to consult the system administrator,
but can add Bob herself:

“$ gpasswd -a bob coders
Adding user bob to group coders

[...1

Swapping -a with -r allows Alice to remove Bob at the end of his trainee pro-
gramme.

The latter command works equally well for the system administrator. However,
another approach may also be used, which requires root access. Exploiting the
mnemonic of the adduser tool's name, it can also be used to add a user to a group:

“# adduser bob coders
Adding user ’‘bob’ to group ‘coders’...
Done.

The command addgroup bob coders has the same effect; | find the first form easier
to read: "add user bob [to group] coders”

Similarly, deluser can be used to delete a user from a group ("delete user bob [from
group] coders"):

“# deluser bob coders
Removing user ’‘bob’ from group ‘coders’...
Done.

| 288

6.2 Users and authentication |

Users and their own primary groups

For new user accounts, adduser creates a group with the same name and uses that
group as the user's primary group. Even though it is certainly a possibility to make
each user a group administrator of the corresponding group, having an explicit
group for each user account may seem a waste and unnecessary.

However, consider the case of a collaborative environment, in which different sets
of users cooperate on different projects. A common method to handle such situ-
ations is through the use of shared project spaces in directories belonging to the
project's group, and having their setgid bit set. The latter causes new files to auto-
matically assume the group of the project's directory (which is the project's group),
assuming it was created by a proper member of the group.

The missing link now is the umask, which determines the mode of new files created
by a user. To allow new files to be usable by the other members of the project group,
the group permissions presumably need to be read-write on all shared files. This
can be achieved by setting the umask of all users involved to 0007 (for instance,
in [etc/profile, or the user-specific initialisation scripts). As the following example
shows, members of the coders group can freely cooperate on the files in “/coders:

“$ install --directory --mode=2770 --group=coders coders
“$ cd coders

~/coders$ umask 0007

“/coders$ touch hello.c

“$ 1s -Fla

drwxrws--- 2 alice coders 4096 Dec 21 20:40 ./
drwx--x--x 3 alice alice 4096 Dec 21 20:39 ../
-rw-rw---- 1 alice coders 0 Dec 21 20:40 hello.c

A problem arises when, as in the classical Unix case, all users belong to e.g. the
users group by default. Since the umask is set for the entire shell session (and if
set in the initialisation script, then for every shell session), when Alice subsequently
writes a private letter to a friend, all other members of users can read and even
edit the leter, since it will be created with read-write permissions for the group,
and the group will be users by default. To guard against this situation, every user
gets an explicit group by default.

LDAP user management

Unfortunately, the adduser suite does not currently honour other user databases
than [etc/passwd. If your users are stored in (and authenticated against) an LDAP-
accessible directory, you will need to resort to other methods. The cpu package
provides a promising framework which can perform most user management oper-
ations via LDAP. In addition, the Idapvi package provides Idapvi, which is suitable
for mass-editing of user data via LDAP.

289 |

o

6 Debian system administration

6.2.3 PAM — Pluggable Authentication Modules

Itis not necessarily a Debian feature for most packages to install pieces of software
that place authentication, account and session initialisation, and password chang-
ing in the hands of the PAM libraries. PAM is a flexible plugin architecture, which
allows for free-form combinations of authentication methods to be used for single
programmes or whole groups of programmes. It probably ranks among the most
significant inventions of the last decade.

Debian's PAM does not significantly differ from the upstream libraries. It does,
however, allow for an include directive. As a consequence, Debian introduced a set
of common files below [ete/pam.d for each of the four PAM facilities: common-
account for account management, common-auth for authentication, common-
password for password management, and common-session for session manage-
ment. The individual services then usually only add facilities specific to the service,
while all services together use (and enforce) the facilities defined in the common
files.

Depending on the nature of a PAM configuration change, the modification will
thus be done in the common files. Two standard examples are the consistent use
of LDAP (from package libpam-Idap) for authentication, or password checkers like
libpam-passwdqc to force the users to choose strong passwords. As both of these
modules (should) apply to every service offered by a machine, they are best added
to the appropriate common-* files instead of the individual service control files.
When a new service is installed, the specific configuration will then be automati-
cally available, which is convenient in some cases and critical in others.

Restricting devices to local users

One special PAM module deserves special mention, even though it is not part of the
official PAM distribution: pam_console. Its purpose is to change device permis-
sions (and the like), depending on which user logs on locally. As this approach fails
with multiple local users, and is known to expose security holes and inconsistency
problems, it is not available on the Debian system. Instead, Debian makes use of
groups for specific device classes. Using pam_group, it is possible to restrict use of
e.g. the audio devices to users logged on locally:

“# echo auth optional pam group.so >> /etc/pam.d/common-auth
“# echo ’"*;tty*|:*;!root;Al0000-2400;audio’ >> /etc/security/group.conf

The same concept can be applied to protect e.g. CD-ROM devices. In chapter 6.2.1,
the commonly defined groups on a Debian system are described. Note that the
method does not protect against malicious users. To subvert the rule, the user can
make a duplicate shell and use setgid to make it run as the audio group, making
case the selective addition of the audio group with pam_group.so useless.

| 290

6.3 System initialisation and automatic processes |

Preseeding environment variables

In many situations, the system administrator will prefer to set environment vari-
ables to some default value for all users (and possibly processes) on a system. One
way to achieve the result is by modifying the global initialisation files of the re-
spective shell. For instance, to ensure that your users all have “/bin in their search
path, you could change [etc/bash.bashrc:

“# echo ’'PATH="/bin:$PATH’ >> /etc/bash.bashrc

The problem with this approach is that it only works for bash and to make things
worse, standardised files like fetc/profile are not supported by all shells. Thus, if
your users collectively use more than one shell (I have seven shells installed on my
largest systems), you potentially have to maintain variable default values in seven
different places.

An alternative approach comes as a consequence of Debian's consistent use of
PAM. The pam_env module reads variable-value pairs from [etc/environment. Un-
fortunately, the file is not interpolated, so that it is not possible to use other vari-
ables for the values. Instead, we have to hard-code the path, which is not really a
problem because this happens so early in the sequence that $PATH is probably not
set yet (which is why the extended configuration file [etc/security/pam_env.conf
is no help either).

“# cat <<EOF >> /etc/environment
PATH="/bin:/usr/local/bin: [...]:/usr/games
EOF

Unfortunately, the [etc/profile file installed by base-files, which is honoured by
most shells, just overwrites the variable again®, so you will have to disable the
assignment, for instance by changing the lines to

“# grep PATH= /etc/profile
[[-n $PATH]] || PATH="/usr/local/sbin:[...]:/usr/bin/X11"
[[-n $PATH]] || PATH="/usr/local/bin:[...]:/usr/games"

This has the effect of setting $PATH only if it has not been set previously.

6.3 System initialisation and automatic processes

One the most important traits of a Debian system is its transparency. A transparent
system allows for efficient and secure system administration. Knowing where to

9http://bugs.debian.org/286254

o

6 Debian system administration

look for something, or knowing what to find in a certain place is a necessity if
this is your goal; the Debian policy dictates FHS-compliance to simplify that (see
chapter 5.7.4). Knowing what happens on your system, whether by request or
automatically, is essential to maintaining control.

On a Debian system, comparatively little happens automatically, unless explicitly
requested. Few maintenance tasks are run in the background if their operation is
not essential to the system's health, and their function well-contained. In addition,
the system provides a large amount of power tools for use by the administrator.
These tools themselves are automation tools as they perform many actions as part
of fulfilling the administrator's job. However, their implementation and consistency
makes them easy to understand; even though they may be next to trivial (such as
run-parts), or as complex as various of the network configuration management
tools, they do no more than they should. Most of the complexity is needed to
ensure robustness, and for reasons of flexibility.

Enough of the marketing talk. Having enjoyed writing these paragraphs, | should
not pass up this opportunity to say that the management tools of a Debian system
could gain a lot through better integration here and there. Without the market-
ing connotation: improvements are being worked on in various areas. Debian has
a tight set of rules to follow (see chapter 5.7), and robustness and interoperabil-
ity continue to be major concerns. Therefore, progress is slow, if not pioneering.
Apart from run-parts and APT, a couple Debian implementations of concepts and
ideas have become important contributions to the broader domain of Unix system
administration.

6.3.1 The system initialisation process

Let us start where the Debian system starts: at the boot prompt. After it finishes
loading, the kernel executes the system's master process, [sbinfinit. init then pro-
ceeds to start tasks and processes to get the system into a fully operational state.
The entire process is documented in detail in the "From PowerUp to Bash Prompt
HOWTQ'™O"

The init.d scripts

System initialisation consists of little tasks that configure the system, as well as
the launching of processes to be run in the background as part of normal system
operations (such as a mail server). These tasks and the control of the background
processes are encapsulated in scripts found below [etefinit.d (which is not specific
to Debian). Each of these scripts is required to support at least the following five
methods, which are passed to the script as arguments:

%http://tldp.org/HOWTO/From-PowerUp-To-Bash-Prompt-HOWTO.html|

| 292

6.3 System initialisation and automatic processes |

start
starts the service.

stop
terminates the service.

restart
effectively just stops and starts the service.

reload
instructs the service to reload its configuration without restarting.

force-reload
ensures the configuration to be reloaded. That is, if the service does not
support reloading, it is restarted.

For example, the following command reloads the postfix configuration:

“# /etc/init.d/postfix reload

For background processes, all five methods make sense. For one-off configuration
tasks, only start and maybe stop make sense. It is up to the maintainer to decide
what to do with the other methods.

Debian also provides a policy layer for init.d scripts, which requires a command
to be run instead of calling the scripts directly. We will return to this issue in
chapter 6.3.1.

The [etc/default directory

Some daemons require their configuration to be passed on the command line dur-
ing initial configuration. At other times, a configuration task might depend on
a system-specific configuration parameter. To be able to influence the tasks and
processes started by the init.d scripts, it is sometimes necessary to edit the corre-
sponding file. Even though the policy requires init.d scripts to be treated as config-
uration files (thus allowing you to modify them to your heart's content), they are
primarily control scripts rather than configuration files.

To make it easier for the administrator to modify parameters, package maintain-
ers often export the configurable aspects of the init.d script to a file (with the
same name) under [etc/default. These files are actually shell script snippets to
be sourced by the init.d script and usually simply define variables. For instance,
[etc/default/reS defines a number of variables that influence the system initialisa-
tion process:

293 |

o

6 Debian system administration

“$ grep " ["#] /etc/default/rcS
TMPTIME=0

SULOGIN=no

DELAYLOGIN=yes

UTC=yes

VERBOSE=yes

EDITMOTD=yes

FSCKFIX=no

Similarly, fete/default/ssh provides $SSHD_OPTS, which can be used to pass com-
mand line flags to the sshd process on invocation:

“$ grep "SSHD_OPTS /etc/default/ssh
SSHD_OPTS='-6"

Now, [etc/init.d/ssh starts sshd with the -6 option:

“# grep SSHD_OPTS /etc/init.d/ssh
start-stop-daemon --start [...] -- $SSHD_OPTS
[...]

The [etc/default directory is gaining popularity and it is being used in similar situ-
ations for other scripts (such as scripts in /ete/cron.*) as well.

Starting and stopping daemons

When starting a process in the background, it is not trivial to stay in control. The
issue is especially difficult because there is no standard approach for background
process management. Some daemons write their process IDs to temporary files,
others do not. Some daemons instead spawn others, and some service programmes
are not even capable of properly backgrounding themselves.

To address the problem, the Debian developers created start-stop-daemon, a flex-
ible utility that can control the creation and termination of background processes.
It allows programmes to be put in the background, and can identify running pro-
cesses using a variety of parameters, making it easy to stop a running process
properly without leaving orphans behind.

The start-stop-daemon (8) manpage goes into detail on usage of the command,
which may also come in handy for regular users looking to run background pro-
cesses (although screen is often a better alternative, but too clumsy for use at
system level). For instance, the following has the same effect as [usr/bin/nohup
without dropping the nohup.out file into the working directory:

“$ /sbin/start-stop-daemon --start --exec buffy --background

For the moment, all we need to know is that start-stop-daemon just does what its
name suggests: it starts and stops daemon (background) processes.

| 294

6.3 System initialisation and automatic processes |

System initialisation

When init is invoked by the kernel, it reads [etc/inittab and processes the file top
to bottom, according to the rules described in inittab (5). Before anything else, init
calls fetefinit.d/rcS™!, which in turn executes the scripts under fetc/rcS.d whose
name begins with the letter S; S-scripts start processes upon entering a runlevel.
Similarly, K scripts terminate (kill), also upon entering a runlevel. Scripts whose
names have the .sh extension are sourced for speed reasons, and to be able to
modify the execution environment of the initialisation sequence.

Before iterating through the files, the [etc/default/rcS file is sourced; the file
parametrises some aspects of the boot process. The files in [etc/rcS.d are actu-
ally just symlinks to corresponding files in [etcfinit.d. In the following, we inspect
the symlinks to preserve the order of the boot sequence (which is sorted by file
name):

S02mountvirtfs
Mounts essential kernel file systems (such as [proc).

S05bootlogd
Starts bootlogd to log the boot process.

S05initrd-tools.sh
Cleans up the initial ramdisk used during boot.

S05keymap.sh
Load the console keymaps.

S10checkroot.sh
Checks the root filesystem, if appropriate. If a [fastboot file exists, the check
will be skipped. The presence of [forcefsck forces the check even if not
necessary. This script also activates any swap devices.

S18hweclockfirst.sh
Initialises the system clock from the hardware clock. The initialisation will be
redone at a later point to allow for time zones, at this point it is important
to establish a reference time. If the system is configured for a time zone
other than Universal Time Coordinated (UTC), please make sure you read the
comments in the file.

S20module-init-tools
Recomputes module dependencies and loads all modules listed in [etc/
modules.

MUnless the emergency boot option is given, in which case a simple shell is spawned before system
initialisation proceeds.

295 |

o

6 Debian system administration

S20modutils
dto., for 2.4 kernels.

S30checkfs.sh Checks all remaining filesystems, if appropriate. [fastboot and
[forcefsck are honoured as with S10checkroot.sh.

S30etc-setserial
Configures the serial devices, if you configured them manually before (see
[ete/serial.conf). Automatic configuration happens later.

S30procps.sh
Sets kernel variables from [etc/sysctl.conf.

S35mountall.sh
Mounts all filesystems.

S36discover
Detects and configures available hardware.

S36mountvirtfs
Mounts remaining kernel file systems.

S39dns-clean
Restores [etc/resolv.conf if it was left in an inconsistent state.

S39ifupdown
Ensures a clean state for the Debian network configuration system.

S40hostname.sh
Sets the machine's host name from [etc/hostname.

S40hotplug
Starts hotplug subsystems (and thus initialises and configures attached de-
vices).

S40networking
Configure network devices and options.

S43portmap
Start the port mapping daemon.

S45mountnfs.sh
Mounts all NFS filesystems.

S46setserial
Automatically configures serial ports on the system (if they have not been
manually configured in [etc/serial.conf).

| 296

6.3 System initialisation and automatic processes |

S48console-screen.sh
Loads fonts and character set maps, and finishes the configuration of the
console.

S50hwclock.sh
With fusr mounted, the system clock can now be initialised properly from
the hardware clock (time zone information is in fust/share/zoneinfo).

S55bootmisc.sh
According to the settings in [etc/default/rcS, this script disables login at
boot time, writes fetc/motd, saves [var/log/dmesg, and performs other mis-
cellaneous tasks.

S55urandom
The Linux random number generator is always initialised with the same seed
during the kernel initialisation process. To increase its strength, the Debian
system generates a new (pseudo-random) seed at shutdown, which is used
to initialise the random number generator in this script.

S70nviboot
Recovers nvi editor sessions.

Runlevels

Beyond basic system initialisation, init uses the concept of runlevels to determine
what processes to start on the local system. Debian's mapping of runlevels dif-
fers somewhat from the standard configuration found on other distributions. The
following table compares Debian use of each of the runlevels with the popular
standard employed e.g. by Red Hat:

Runlevel Debian Other

0 halt halt

1/S single user mode single user mode

2 standard (all services) multiuser without network services

3 unused standard multiuser mode

4 unused unused

5 unused standard multiuser mode with an X dis-

play manager
6 reboot reboot

Table 6.2:

Runlevel usages on
Debian and other
common distributions

297 |

o

6 Debian system administration

As the system initialises, runlevel S is active. When the initialisation scripts finish,
init switches to the default runlevel (which is 2 on a Debian system, as specified
at the top of [etc/inittab). The runlevel to use after S can also be specified at the
boot prompt. For instance, to boot into runlevel 3 with Grub, you would edit the
kernel line as follows (by pressing [e] in the menu):

grub edit> kernel [...] root=/dev/sdal ro 3

The single option is the same as specifying S or 1 at the boot prompt'?. None of
the runlevels are in any way magical, not even runlevels 0 and 6 — halting and
rebooting are in essence just processes that are started. For each of the numbered
runlevels'3, init invokes [etc/init.d/rc with the runlevel as the first argument. The
rc script identifies the corresponding directory (fete/reX.d, where X is the runlevel)
and proceeds in three steps:

1. It runs all scripts with names beginning with K in the directory, passing stop
as the argument. This stops any service that is not supposed to be running
in the selected runlevel.

2. For each script whose name begins with S, it checks whether the previously
active runlevel (which is S if the system has just booted) started the script.
If it did, the script in the current runlevel is ignored.

3. If the previous runlevel did not start the script, it is invoked with the start
argument to start the respective service in the current runlevel.

If you scan the [ete/rc?.d contents on a Debian system, you will notice only a few
scripts whose names start with K, even though corresponding S scripts exist. This
means that the associated processes are started but possibly not killed. If a service
is not terminated upon entering a runlevel, it continues to run if that is what it did
in the previous runlevel. Such processes are considered to be in a floating state,
in which it is entirely up to the administrator to manually start and stop them'*.
In case of absence of an S script, the corresponding software remains dormant in
Tumbolia®.

The current runlevel can be ascertained by running the who utility, which also
prints the runlevel preceeding the current one. With the default configuration, the
following shows the output after a successful boot:

2However, runlevels S and 1 are not the same. Runlevel 1 switches to runlevel S, but only after
gracefully stopping (and then killing) all user-space processes.

3Runlevels 7 through 9 are also valid, but are not supported by Debian out of the box; if you need
them, you will have to edit [etc/inittab accordingly.

4FYI: http://bugs.debian.org/243159

Shttp://en.wikipedia.org/wiki/Tumbolia

| 298

6.3 System initialisation and automatic processes |

“$ who --runlevel
run-level 2 Oct 26 01:15 last=8

It is possible to switch to a new runlevel by executing telinit, with the new runlevel
as the argument. In fact, the shutdown, reboot, and halt commands essentially do
not do anything else but change the runlevel to 0 or 6 (which in turn call halt and
reboot with an option to circumvent init).

Thus, to switch the local system to single user mode (for maintenance), simply run
the following command:

“# telinit 1
INIT: Switching to runlevel: 1
[...]

As this will kill all processes running on the system, you are should never execute
this command without great care. On network-connected systems you may like to
ensure that sshd continues to allow root logins, even in single user mode:

“# sed -i -e "/"""/ish:S:respawn:sshd -Do ’‘AllowUsers=root’" /etc/inittab

The command adds a line to start sshd in single user mode, restricted to root, just
before the line providing the single user console. Provided that root can actually
log in via SSH'®, the above allows you to switch a system to single user mode
remotely. Even though all current SSH sessions will be killed, sshd will wait for new
connections when the switch is complete.

To return a system to normal operation, use telinit again (with the desired runlevel):

“# telinit 2
[...]

BSD-style system initialisation: file-rc

Debian uses the System V method for its initialisation scripts by default. An alter-
native scheme, similar to the one used by

acsBSD systems use, is provided by the file-rc package, which uses a single file
to control runlevel initialisation. Installing the package automatically converts
an existing [etc/rc?.d hierarchy to provide the same information in a single file,
[etc/runlevel.conf (and installing sysv-rc causes file-rc's removal, which recreates
the symlink tree from the information in the file. Therefore, changes are preserved.).
Note that APT will complain if you try to replace sysv-rc with file-rc:

18]t is advisable to restrict root login to certificate-based authentication by setting PermitRootLogin
without-password in fetc/ssh/sshd_config for better security (and accountability).

299 |

o

6 Debian system administration

“# debian:"# apt-get install file-rc
[...]
The following packages will be REMOVED:
sysv-rc
The following NEW packages will be installed:
file-rc
WARNING: The following essential packages will be removed
This should NOT be done unless you know exactly what you are doing!
sysv-rc (due to sysvinit)
[...]
You are about to do something potentially harmful
To continue type in the phrase ’‘Yes, do as I say!’
?] Yes, do as I say!

[...1]

This warning cannot be easily prevented, and while it is usually indicative of poten-
tially harmful action, it is perfectly okay to do as instructed in this situation. When
the installation finishes, file-rc gives you everything you need to handle system
and service initialisation.

“# cat /etc/runlevel.conf

(...

]
19 0,6 - /etc/init.d/setserial
20 0,1,6 2,3,4,5 /etc/init.d/exim4é
20 0,1,6 2,3,4,5 /etc/init.d/inetd
20 0,1,6 2,3,4,5 /etc/init.d/1pd
20 0,1,6 2,3,4,5 /etc/init.d/makedev
20 0,1,6 2,3,4,5 /etc/init.d/rsync
20 0,1,6 2,3,4,5 /etc/init.d/ssh
20 0,6 /etc/init.d/sendsigs
20 S /etc/init.d/module-init-tools
20 S /etc/init.d/modutils
21 2,3,4,5 /etc/init.d/nfs-common

[...]
“# 1s -F /etc/rc?.d
1ls: /etc/rc?.d: No such file or directory

As you can see, the link hierarchies under [ete/rc?.d have been replaced with a
single file, [etc/runlevel.conf. Similarly, the files rc and rcS in [etc/init.d come
from the file-rc package. While exporting the same interface, the two files are
tailored to read [etc/runlevel.conf instead of the symlink hierarchy.

Controlling runlevel initialisation: update-rc.d

Debian does not (yet) specify whether a package providing a daemon can or should
start this daemon automatically after installation, during the next boot, or not until
the administrator enables it. A number of init.d scripts require you to edit a file in
[etc/default before allowing the encapsulated process to be started, but this is not

| 300

6.3 System initialisation and automatic processes |

the norm. With the policy layer (see chapter 6.3.1) still in development, the way
to influence which process starts when is to manipulate the fete/rc?.d symlink tree
(or [etc/runlevel.conf) directly.

Debian provides three utilities to facilitate the process. Two only work with the
System V symlink tree (and conflict with file-rc), while the most flexible (and com-
mand line only) tool works with any initialisation process configuration scheme'’.

If you are not using file-rc, you can install rcconf and sysv-rc-conf. The first
allows you to enable and disable services altogether on the system. If you disable a
service in rcconf, the tool replaces all its links with K-links, which keeps the service
stopped unless manually started without switching runlevels. rcconf remembers
the previous runlevel configuration and can restore it when the service is enabled
again. rcconf affects all runlevels and can only disable and enable services.

The second tool, sysv-rc-conf allows granular control over which services to start
when. It features two modes: invoked without an argument, it allows individual
services to be enabled and disabled for each runlevel. If you pass the --priority
option at invocation, you can edit the priorities as well. Please note that the simple
mode (without --priority) can only switch a service on or off, but does not honour
the floating status. Additionally, simply toggling a check box makes the change
persistent on the local system. Therefore, it is possible to irreversibly mess up the
configuration if you are not careful'®

If you are fond of text editors, file-rc is for you. Editing [etc/runlevels.conf is
almost certainly going to be easier, safer, and more intuitive.

For package maintainers to be able to register and configure their services with
the runlevel configuration, a common interface was required: update-rc.d. Even
though its syntax is somewhat archaic, it makes sense to learn it if you will be
configuring the initialisation process on a regular basis. Note that the .d exten-
sion refers to the rc.d directory which update-rc.d updates; update-rc.d is not a
directory.

Normally, update-rc.d is invoked with the defaults, which configures the daemon
to be started at position 20 in runlevels 2 through 5, and killed at position 20 in
runlevels 0, 1, and 6. The positions can also be overridden, and it is even possible
to control which runlevels start and stop a script. The four possible configurations
are:

= yse the defaults:

“# update-rc.d apache2 defaults
[...]

7Plans for a third package, dependency-rc have commenced to streamline and parallelise the boot
process.
18See http://bugs.debian.org/285850.

o

6 Debian system administration

= yse the default runlevels, but with position 30 instead of 20:

“# update-rc.d apache2 defaults 30
[...]

= yse the default runlevels, but start the daemon at position 9 and stop it at
position 91:

“# update-rc.d apache2 defaults 9 91
[...]

= start the daemon at position 15 in runlevels 2 and 3, at position 45 in runlevels
4 and 5, and kil it at position 85 in the other runlevels (do not forget the final
dot, it is part of the syntax):

“# update-rc.d apache2 start 15 2 3 . start 45 4 5 . stop 85 0 1 6 .
[...]

Thus, the default settings are equivalent to

“# update-rc.d apache2 start 20 2 3 4 5 . stop 20 0 1 6 .
[...]

All Debian packages that install init.d scripts use update-rc.d to do so. Thus, the
package does not have to worry about which of the *-rc packages is in effect,
or how the init.d scripts are managed under each. What is more important is
that update-rc.d only installs the scripts if no previous init.d scripts for the same
daemon exist. For instance, trying to install links for the cron daemon fails:

“# update-rc.d cron defaults
System startup links for /etc/init.d/cron already exist.

No package upgrade will ever overwrite a previous configuration. This allows the
administrator to prevent daemons from launching and ensure persistent changes.
For instance, to prevent apache2 from starting, you would first remove the existing
symlinks before installing new ones. Note the use of the -f flag, which is needed
because update-rc.d otherwise refuses to remove the symlinks if the corresponding
init.d script still exists. The following is essentially what rcconf does to disable a
service.

“# update-rc.d -f apache2 remove
“# udpate-rc.d apache2 stop 0 0 1 2 3 4 5 6 .

Another useful change may be to move the invocation of the X display manager to
the front to allow you to log in while the rest of the system is configured and the
processes started. In the following, replace xdm with the display manager of your
choice (e.g. kdm):

| 302

6.3 System initialisation and automatic processes |

“# update-rc.d -f xdm remove
“# update-rc.d xdm defaults 01

Note that this approach may fail if X needs other daemons running, such as xfs or
gpm. You may have to experiment moving the display manager around within the
initialisation sequence.

Policing init.d scripts

Disabling services with rcconf or update-rc.d is a good way to enact a system
policy with respect to which daemons should be running. However, these tools do
not prevent a daemon's init.d script from being called directly.

Debian packages usually try to start any daemons they provide. While this may
be a questionable policy (OpenBSD, for instance, would never start anything un-
less requested), Debian counters this choice for usability with carefully crafted de-
faults, so that a daemon that starts before the administrator has had a chance to
configure it to reflect to local requirements does not cause a security issue. The
maintainer might only enable the bare essentials of a daemon, or bind the daemon
to the loopback interface and thus not expose it to the public. Some maintainers
choose to disable their daemons until the administrator has flipped the appropriate
variable in the package's configuration file below [etc/default.

A problem arises when the administrator of a system purposely uses e.g. rcconf
to disable a service, and a security update comes along. The package is upgraded
and its postinst hook calls the init.d script to launch the daemon; update-rc.d and
rcconf only affect the system initialisation process but do not guard against direct
invocation of the init.d script.

invoke-rc.d addresses this long-standing problem in Debian by introducing a policy
layer to decide what actions can be performed given a certain service and the
current runlevel (here too, the .d extension comes from the [etce/rc.d directory). For
a service to be started (or restarted), the following conditions must be satisfied:

1. The corresponding init.d script exists and is executable.

2. The daemon is configured to be started in the current runlevel, that is, there
exists an S link in the current runlevel's startup directory (/ete/reX.d).

3. The policy layer approves the start of the daemon in the current runlevel.

The stopping of a daemon only requires the first and third condition to hold.

Currently, support for this policy is very rudimentary and basically consists of the
Jusr/sbin/policy-re.d file (which is not yet officially provided), but following the

303 |

o

6 Debian system administration

release of sarge, possible implementations will be discussed. Similar to update-
rc.d and invoke-rc.d, the trailing .d refers to the directory upon which the tool
acts: [etefre.d.

The operation of policy-rc.d is based on a simple idea. Whenever invoke-re.d is told
to take a certain action, it first runs policy-re.d and checks its exit status. policy-
rc.d receives the name of the script under consideration, the desired action, and the
current runlevel and simply condenses these data into a standardised return code.
The invoke-rc.d (8) manpage and [usr/share/doc/sysv-rc/README.* give you the
details. The following example shows a possible implementation of the policy script
which prevents apache2 and postfix from being started automatically in run level
2. use a symlink to prevent having to write to a file in fusr, and dpkg-divert (see
chapter 6.1.3) to guard against accidental overwrites, in case a package provides
the file some day.

“# cat <<"EOF" > /etc/policy-rc.d
#!/bin/bash -e

script=$1
action=$2
runlevel=$3

[[$action != start]] && exit 0 # we only care for action start
[[$runlevel != 2]] && exit 0 # we only care for RL 2

case $script in
apache2 |postfix) exit 101;;
*) exit 0;;
esac
EOF
“# dpkg-divert --add /usr/sbin/policy-rc.d
[...]
“# 1In -s /etc/policy-rc.d /usr/sbin

invoke-rc.d: not for use

The invoke-re.d script is Debian's way of interacting with the scripts in [etc/init.d.
However, it was not designed to be used by the system administrator, as it does not
provide the necessary flexibility. For instance, a certain daemon may be stopped,
but in a floating state, suggesting that it is perfectly okay for the daemon to be
running in the current runlevel, it just has not been started. If the administrator
were to use invoke-rc.d, it would fail to start the daemon because of the lack of
the corresponding S link in runlevel's reX.d directory.

As soon as the policy layer is properly implemented in Debian, and other initiali-
sation strategies (such as dependency-rc) enter the picture, it is likely that Debian
will provide a similar tool for use by the administrator.

| 304

6.3 System initialisation and automatic processes |

Lastly, it should be noted that the policy layer can only prevent an action if it
has a chance to do so. With the current design, the init.d policy can be easily
circumvented by executing the init.d scripts directly. Initial plans have been made
to integrate the policy layer into the init.d scripts to prevent this, but do not expect
this kind of solution to be integrated any time in the near future.

6.3.2 Regular maintenance processes

To complete the picture for regular processes that happen automatically behind
the scenes, everything pertaining to the system as a whole is scheduled by cron.
Daemons installed by packages may (and probably will) do things without waiting
for the administrator, but these are specific to the functionality of the package and
thus not part of the system itself. In addition, the system inititalisation process
counts as an automatic process, though it is not really regular (at least | do not
reboot regularly).

Let us look at the standard Debian cron configuration which comprises the [ete/
cron* directories and files. Our standard system will uses packages of the first three
priorities (required to standard; see chapter 5.2.2) as installed by Debian by default.
Chapter 3.2 shows you how to prevent the installer from pulling standard packages
onto the new system, in which case you will have to add cron by yourself.

Hourly tasks

The cron directory for hourly tasks, /etc/cron.hourly is a fairly recent addition and
currently not used by the Debian system. Only a single package (changetrack)
currently uses it.

Daily tasks

In the early morning hours (at 06:25 local time), the Debian system wakes up to do
its daily tasks. If you operate a system that is not booted 86 400 ticks of the clock
per day, you can install the anacron package to catch up with any missed jobs at
boot time.

A standard installation adds the following files to [etc/cron.daily:

bsdmainutils
triggers the calendar utility, which will mail out reminders to all users based
on the configuration in [etc/calendar and each user's home directory.

exim4-base
cleans the exim4 mail spool database and removes stray locks.

305 |

o

6 Debian system administration

find
updates the filesystem database used by locate to find files by pattern on
the local system.

logrotate
triggers logrotate, which rotates and compresses log files according to the
configuration in [etc/logrotate.conf and [etc/logrotate.d. Note that logro-
tate only rotates log files not written by sysklogd (see below). It is possible
that this will change in the future, given that logrotate is the canonical tool
for the job.

man-db
removes cached manual pages which have not been read for a week and
regenerates the manual page index database by appending new entries.

modutils
for debugging, reference, and logging purposes, this script saves the list of
kernel symbols (/proc/ksysms) and the list of modules (/proc/modules) to
[var/log/ksymoops and weeds old files. This functionality has been obsoleted
and is not needed on 2.6 kernels, where modutils can be safely purged.

netkit-inetd
keeps the last seven versions of [etc/inetd.conf below [var/backups for back-
up and later reference (see chapter 6.4).

standard
performs standard daily maintenance tasks. These include backing up [etc/
passwd and related files (see the script) to /var/backup, and keeping the
last seven versions of the dpkg status database in the same directory (see
chapter 6.4). The script also scans the lost+found directories of ext2 and
ext3 filesystems and alerts the administrator by email if lost blocks are found
in this directory.

sysklogd
identifies large log files (mainly [varflog/syslog) written by syslogd, com-
presses and rotates them. The number of previous log files to keep can be
specified in the script'®. See chapter 6.7 for more information. The script
also ensures tight permissions on [varflog/auth.log. Note that permissions
of other log files are not corrected if the administrator altered them.

Weekly tasks

Every Sunday morning at 06:47 local time, the Debian system runs weekly mainte-
nance jobs. Again, the anacron package can be installed to catch up with these jobs

19A patch exists to export the parameter to [etc/default/sysklogd: http://ougs.debian.org/285087.

| 306

6.4 Backups |

should the machine not be running at this time. The following tasks are executed
weekly by a standard installation:

Ipr
rotates and compresses the accounting and error log files used by the Ipr
printing tool.

man-db
recreates the manual page index database, thereby weeding out non-existent

pages.

sysklogd
rotates all log files which are not under daily rotation. As with the cor-
responding daily cron script, the number of previous files to keep can be
configured in the script.

Monthly tasks

Finally, on the first of each month, at 06:52 local time, cron starts to run the
monthly jobs. A standard system does not install any monthly jobs, although a
single file is left in the directory: standard, which is empty and only exists to refer
to the new approach taken to its previous purpose.

6.4 Backups

While the backup of data and configuration is left to specialised tools (such as
amanda or afbackup), the Debian system does make automatic backups of the
most essential data. In particular, as part of the automatic daily system main-
tenance tasks identified in chapter 6.3.2, the following data are maintained in
[var[backups:

= The last seven snapshots of the dpkg database (see chapter 5.3.4). A new snap-
shot is made if the dpkg status database has changed since the last backup. The
oldest snapshot is then discarded.

= The user, group, and password database, stored in the four files passwd, shadow,
group, and gshadown in fetc.

In addition, packages may use [var/backup to dump snapshots of their own data
as required. For instance, the netkit-inetd package maintains the previous version
of [etefinetd.conf in the backup directory.

307 |

o

6 Debian system administration

What to backup

Every system should have a backup strategy. A backup strategy may range from
complete filesystem dumps over selective data backups to no backup at all. The
latter may not seem like a backup strategy at all, but it is, because an explicit "no"
suggests that thought has been given to the question of backups, whereas the "no"
implicit in the simple lack of backups does not.

It is often not clear what needs to be backed up, and what can be safely ignored.
A mantra of computer science is never to store anything that can be computed,
unless it is for efficiency purposes. This mantra holds just as well when it comes to
backing up a Debian system: you should do your best to back up the data that you
or your users create, but you should not waste space on the backup medium with
bytes that can easily be restored.

In particular, there is probably very little point in backing up fusr or [lib. Both of
these hierarchies are guaranteed by the FHS (see chapter 5.7.4) to be managed by
dpkg only, so dpkg should be able to restore them to their current state. Note,
however, that this is not guaranteed for very old systems, or systems that run
something else that pure Debian stable, because installed versions may no longer
be available when the restoration takes place.

The hierarchies of [var, [etc, and [home are valuable and cannot be restored with-
out a backup. Therefore, these are primary candidates for backups. Similarly, you
are likely to want to backup fusr/local, fopt, and [srv, but leave [bin and [sbin well
alone, along with the various mount points, /dev, and [tmp. If you keep data in
[root, back it up as well.

I will not attempt to present you with a failproof recipe for backing up your Debian
systems. These recipes are best found in literature specific to the topic of backups
and require much thought on the side of the administrator. That said, | have never
backed up more than [etc, [var, [ust/local, [home, and [srv and have always been
able to restore a broken system or a deleted file when the need arose.

If the system is hosed and has to be reinstalled, the generic idea behind restoring
a backup is to bring up a minimal system (see chapter 3.2) and proceed to restore
the old system on top of that. With a backup of /var/lib/dpkg, you can access the
list of installed packages and use e.g. dpkg --set-selections to have these installed
first. With the same packages installed, [etc can be restored, and finally, all data
can be written back to the local hard disk. With a little luck, the system should be
restored within a short time.

Care has to be taken when using tools such as dpkg-divert or dpkg-statoverride
(see chapter 6.1.3 and chapter 6.1.2 respectively) to manipulate file nodes in system
hierarchies. These modifications are recorded in the dpkg status library, and should
be in effect following the restoration of the status database from backup. However,
diversions and overrides cannot (easily) be enforced other than at installation time,
so the status database should be restored at an early stage.

| 308

6.5 Device management |

6.5 Device management

On a Debian GNU/Linux system, device drivers are provided by kernel modules.
To support a device, the appropriate kernel module(s) must be loaded before the
device can be used. These modules can be loaded in four different ways:

= by discover during the boot initialisation phase.

= by hotplug during the boot initialisation phase, and when the device is attached
to a running system.

= by the kernel autoloader (kmod), when a certain feature is requested of the
kernel and the kernel knows which module provides the feature.

= 3s a static list of modules to be loaded at startup; this is maintained by the
administrator.

6.5.1 discover and hotplug

During the installation of the Debian system (see chapter 3.2), the discover tool
is used to identify the available hardware and load the appropriate modules to
enable them. The installation also leaves discover1 installed on the new system to
continue automatic hardware detection in day-to-day usage.

The discover tool maps hardware devices to the names of supporting modules;
the list is compiled and administered by the discover maintainers (installed in
Jusr/share/discover by discover1-data, and /lib/discover if discover-data is in-
stalled for version 2). Thus, during installation, and when the system boots, the
tool probes the available buses for devices and uses the maps to figure out which
modules to load.

On new systems, hotplug is also installed by default, and for modern buses, it
works in tandem with the kernel to determine modules to be loaded to support the
available devices. Other than discover, hotplug does not use mapping but instead
relies on the modules and the kernel itself to advertise which devices they support.

With the 2.6 kernel device driver model and modern hardware, hotplug supersedes
discover. However, they do not always cover common ground, which is why the
installer tries to stay on the safe side and leaves both installed on a new system.
By the time hotplug executes, discover will already have completed and loaded
a number of modules. hotplug tolerates these and simply loads any additional
modules it decides are needed.

hotplug can do more than boot-time hardware detection. In particular, the tool
can execute scripts when certain devices become available (or are removed), and it
continues its service throughout the system's uptime, watching for new devices to
appear, loading their drivers, and integrating them appropriately.

309 |

o

6 Debian system administration

When a hardware state change occurs, the kernel notifies the hotplugging han-
dler (specified in [proc/sys/kernel/hotplug). This handler is set to [sbin/hotplug
by default. If udev is installed (see chapter 6.5.1), it registers the more powerful
[sbinfudevsend handler instead.

During the boot process, the kernel initialises builtin drivers before the hotplug
system is ready. To allow for the delayed configuration of the devices controlled by
these drivers, the initialisation script of the hotplug package scans the local system
buses upon first invocation and regenerates the notifications, a process known as
“coldplugging”’ The files responsible for the coldplugging are the [etc/hotplug/*.rc
files.

When hotplug receives a notification, it invokes an agent to handle the configu-
ration of the device, which may include the loading of a device driver, or several
other steps taken to ensure the device's proper integration into the local system.
Different agents handle different classes of devices according to the scripts and
configuration files under fetc/hotplug®. These agents are then responsible for
loading the device drivers and initialising the device, or integrating it with the sys-
tem.

For example, upon connection of a USB stick, the following sequence of actions
takes place:

1. The kernel notifies hotplug (by calling [sbin/hotplug) and passes it all the
information it has about the device.

2. hotplug determines the device class to be usb and passes control to any
scripts found in fetc/hotplug.d/usb.

3. In the default configuration, no specific usb handlers exist, and hotplug thus
delegates to [ete/hotplug.d/default/default.hotplug.

4. The default handler in turn invokes [etc/hotplug/usb.agent.

5. usb.agent then figures out the driver needed to support the new device and
loads it. It gets almost all of the information it needs from the environment
(where the kernel puts it). The driver (usb-storage in this case) actually
proxies the device to the Small Computer System Interface (SCSI) layer to
profit from the storage logic the layer implements.

6. The kernel now generates another (but separate) hotplug event for the new
SCSI device.

7. The sequence repeats until fetc/hotplug/scsi.agent is executed, and can call
further hook scripts to configure the device, assign permissions, or otherwise
integrate it with the local system.

2Dhotplug does not call these scripts directly; hotplug invokes the handlers in [etc/hotplug.d, ac-

cording to the device class. Unless a specific handler takes over, [etc/hotplug.d/default/default.hotplug
is then responsible for invoking the appropriate agent.

| 310

6.5 Device management |

The procedure is similar for network devices, which may first cause a pci event to
be triggered because all the kernel sees at this pointis a PCl card. Once hotplug has
loaded the PCl card driver, the card will appear to the kernel as a network interface
and trigger another hotplug event of the net class. A video adapter card, on the
other hand, would cause only one notification to be sent, as the device itself does
not contain another device corresponding to a different hotplug event class.

Hook scripts and custom handlers

As stated before, hotplug can do more than just load modules. In addition, it also
has the ability to execute scripts for specific device classes, drivers, or devices, on
registration and deregistration. In fact, when hotplug loads a kernel module in
response to a new device appearing on one of the buses, it does not do anything
apart from execute scripts, which are commonly called hooks.

The Debian base system does not install any hook scripts by default beyond those
that handle the loading of kernel modules. Inidividual packages, however, com-
monly register hook scripts to allow for better integration with the system. For
instance, packages providing kernel drivers often install hooks to load firmware, or
to set permissions on device files according to the system configuration.

A new device causes [etc/hotplug.d/default/default.hotplug to execute the agent
script from [ete/hotplug corresponding to the device class. As shown above, a new
SCSI device causes [ete/hotplug/scsi.agent to be executed.

If you want hotplug to perform an automatic action upon connection of a new
device, it is important to decide when the action should be executed. If the action
is supposed to take place when a certain driver is loaded, you can get away with
placing an executable script named after the driver into the appropriate subdirec-
tory of [etc/hotplug. For instance, the following lines log the device IDs of USB
storage devices:

“# cat <<EOF > /etc/hotplug/usb/usb-storage
#!/bin/sh -e

exec logger -t $0 -- usb-storage device $PRODUCT
EOF
“# chmod a+rx /etc/hotplug/usb/usb-storage

When an agent loads a device driver, it looks in the appropriate directory for scripts
with the same name as the driver, and executes them.

If you need more granular control, you might prefer to provide your own handler
script. For instance, to call auto-sync whenever your handheld is connected, a
script such as the following (the name must end in .hotplug) would be needed:

“# cat <<EOF > /etc/hotplug.d/usb/auto-sync.hotplug
#!/bin/bash -e

o

6 Debian system administration

case $PRODUCT in
830/60/%) :;;
*) exit 0; # unknown device

esac
[[$ACTION != add]] && exit 0 # we only care about new devices

modprobe visor
exec /usr/local/bin/auto-sync $DEVICE

In this case, it is important not to forget that this script will be called long before
the corresponding agent gets a chance to load any supporting kernel modules. If
the device you are trying to configure needs kernel support, you need to load the
appropriate module from the hook script. When the corresponding agent is run, it
will fail to load the module gracefully and not report an error.

Blacklisting kernel modules

hotplug automatically loads those kernel modules which claim to support the new
device. This works most of the time, but in specific situations it may be necessary
to prevent the automatic loading of a kernel module by the subsystem's hotplug
agent. All agents installed by Debian honour a common blacklist, which can be
trivially extended by the administrator. For instance, to prevent the foobar kernel
module from being automatically loaded by any hotplug agent, you can add it to
the blacklist as illustrated in the following. Note the choice of file name, which is
in accordance with the file name scheme for locally created files used throughout
Debian (see chapter 6.1.1).

“# echo foobar > /etc/hotplug/blacklist.d/local-foobar

If you now connect a device that previously caused hotplug to load the foobar
kernel module, it will now instead log something along the lines of:

“$ tail /var/log/user.log

[...]

[...] usb.agent[20659]: foobar: blacklisted
[...]

If discover detects a device, it needs to be told to ignore it. With discover 1, you
can add a file to [etc/discover.d. To only disable the module for 2.6 kernels, add
the file to the 2.6 subdirectory.

“# echo skip foobar >> /etc/discover.d/local-foobar

| 312

6.5 Device management |

At time of writing, blacklisting a module with discover 2 required modification of
[etc/discover-modprobe.conf. The file is a shell script snippet, and blacklisted mod-
ules are stored as a whitespace-separated list in the $skip variable. If you prefer
to administer blacklisted modules in run-parts style (see chapter 6.1.1) instead of
modifying a single file, you can insert the following line right after the assignment
to the $skip variable:

“# mkdir -p /etc/discover.blacklist.d

“# cat /etc/discover-modprobe.conf

[...]

Don’t ever load the foo, bar, or baz modules.

#skip='‘'foo bar baz’’

skip="¢skip $(grep -v "# $(run-parts --list /etc/discover.blacklist.d))"
[...]

#

Now you can drop files into [etc/discover.blacklist.d; the files should be named
in run-parts fashion and allow blacklisted modules to be specified, separated by
whitespace. Also, comments may be used, making the syntax very similar to the
[ete/modules file (see the modules (5)), except for the arguments. For instance, the
following would cause discover 2 never to load the eepro100 module:

“# echo eeprol00 > /etc/discover.blacklist.d/local-eeprol00

Device node management: udev

On a Unix system, [dev contains device nodes which are used to communicate with
parts of the kernel. For instance, reading from [dev/urandom actually sucks bytes
from the (pseudo-)random number generator available in the kernel, and writing
to [dev/fdO causes the kernel to channel the data through to the floppy device.
Each such node is identified with a pair of numbers, the “major” and “minor" device
node numbers.

With an increasing number of hotpluggable devices (e.g. USB, Firewire, etc.), device
node numbers are becoming a scarce. Moreover, if you inspect a standard [dev
directory on a Debian system, you will wonder about the purpose of the hundreds
of nodes present. The reason is historic: the installation creates all standard device
nodes, whether a certain device is available or not.

A new development in the 2.6 kernel series is the udev daemon, whose job is the
dynamic creation of device nodes when a device is initialised. This approach keeps
[dev clean. It also gives the administrator a lot of flexibility. Gnome already de-
pends on udev, and other packages are likely to follow, increasing the chances that
udev will become a standard on the Debian system.

For instance, to have a USB stick always be available as [dev/stick and accessible to
the group stick, you could configure udev as follows:

313 |

o

6 Debian system administration

“# cat <<EOF > /etc/udev/rules.d/local-stick.rules
'BUS="scsi", SYSFS{model}="FLASH" , KERNEL="sd?1",

NAME="%k" SYMLINK="stick", GROUP="stick", MODE="0660""
EOF

Note that the rule specification may have to appear on a single line. At time of
writing, the udev programme had a parser bug with entries spanning multiple
lines.

If you now insert the USB stick with model “FLASH", udev will create [dev/stick with
the requested permissions. BUS and KERNEL are two further match specifications.
A nice guide to writing udev rules can be found online?'; the guide also discusses
how to determine the best set of match specifications.

Unfortunately, the udev developers decided to drop support for permissions.d, a
way to separate permissions from naming policy, without a real reason?2.

Dealing with removable storage devices

Having the USB stick always be available as [dev/stick makes writing [etc/fstab
entries easy and allows for usage of the device without needing root rights (or
even sudo).

In addition, Debian provides pmount (in package pmount), a programme that al-
lows users to mount removable devices without requiring entries in [etc/
fstab, provided they meet a number of criteria so as to not jeopardise the system's
security.

For a user to be able to use pmount, that user's account must be a member of
the plugdev group. You can then simply call pmount with the device node as the
argument:

“# adduser martin plugdev
“$ pmount /dev/sdal

“$ 1ls -Fl1 /media/sdal
[...1

“$ pumount /dev/sdal

pmount follows symlinks and uses the device name for naming the mount point
(which it removes when the device is unmounted). Thus, users will certainly benefit
from the integration of udev and a canonical device naming scheme.

2Thttp://www.reactivated.net/udevrules.php
22See http://marc.theaimsgroup.com/?l=linux-hotplug-devel&tm=110327407228756&w=2

| 314

6.5 Device management |

6.5.2 kmod, the kernel autoloader

The Linux kernel can automatically load modules when they appear to be needed.
For this to happen, the kernel must receive a request for a device or feature name,
which it can map to the name of the module to load. More precisely, the kernel
does not do any mapping, but it invokes the tool referenced by /proc/sys/kernel/
modprobe with the name of the requested feature, and expects it to load the
module providing the feature.

The most common tool to satisfy these requests is modprobe, which loads kernel
modules and their dependencies according to information exported by the kernel,
and configuration performed by the administrator.

For the 2.4 kernel series, the modutils package installs the necessary file, and the
local settings are read from [ete/modules.conf, a single file. Because of the reasons
outlined in chapter 6.1.1, which make a single file difficult to maintain, Debian pro-
vides update-modules, a tool that concatenates files found below [etc/modutils
as well as files residing in the local architecture directory under [ete/modutils/arch.
update-modules also generates the current dependency and module map files for
use by modprobe (by executing depmod -a).

With the advent of the 2.6 kernel series, the upstream kernel departed from the
single-file-approach and added functionality similar to run-parts (see chapter 6.1.1)
to the module tools to honour files placed in the /etc/modprobe.d directory?®. On
pure 2.6 kernel systems, update-modules is no longer needed, but depmod -a
must still be called when new modules are added, or existing ones removed.

For both kernel versions, files in the respective directories can set options to be
used when loading modules with modprobe, defining aliases, or specifying com-
mands to run during the registration or deregistration of modules, as specified in
the corresponding manpages modules.conf (a)nd modprobe.conf(5). The syntax
of the latter is much simpler than the former, because it provides more powerful
directives, and because the kernel autoloader is losing importance, thanks to pro-
grammes like hotplug, which handle automatic module loading from user space in
a much more flexible way.

Nevertheless, you may still need to control the kernel autoloader, which is enabled
by default. In that case, you are advised to create files in the respective directories,
named after the run-parts scheme (see chapter 6.1.1). Even though the tools do
not use run-parts internally, it is a good convention to keep. Do not forget to run
update-modules after making changes to files on a 2.4 kernel machine.

ZNote that /etc/modprobe.conf is also honoured and overrides the directory. Even though the file
is not officially used, it may be good to check for its existence (and delete it after migrating its contents),
if things do not work as expected.

315 |

o

6 Debian system administration

6.5.3 Loading modules during startup

During the early initialisation phase, the [etc/modules file is read and all modules
listed in the file are loaded by modprobe, which automatically loads dependencies
as well. The syntax of the file is trivial. Each module to be loaded during the boot
sequence must be specified on a line of its own, followed by arguments, if it takes
any. For example:

“# grep -v '"# /etc/modules
3c59x
ne2k irg=9 i10=0x240

If you prefer not to edit the file directly, you may want to use modconf from the
modconf package. The tool presents the kernel modules tree and allows you to
select the desired directory by hitting [enter] to check which modules reside there.
modconf marks modules currently loaded with a plus sign next to the description.

When using a 2.6 kernel, it may seem a little strange that most modules have
their own categories. For instance, if you want Andrew File System (AFS) sup-
port, you can load the afs.ko module from within the category corresponding to
kernel/fs/afs. On the other hand, cryptographic kernel modules are all contained
in kernel/crypto. modconf simply uses the kernel tree hierarchy for its menus, and
the inconsistent use of categories stems from the kernel itself, not from modconf.

When you select a module (by hitting [enter]), modconf asks whether you want to
load the module into the running kernel, and also prompts for parameters to use. It
then uses modprobe to load the module (and its dependencies) and, upon success,
writes the module name and parameters to [etc/modules. When returning to the
modconf menu, the plus sign next to the module name should indicate that the
module has been loaded.

6.6 Configuring kernel parameters

The Linux kernel exports a large number of parameters to the filesystem rooted at
[proc/sys. These parameters come in the form of pseudo-files and can be manipu-
lated with standard tools. Thus, the following tells the kernel about the machine's
identify (useful for logs and debug output):

“# hostname --domain > /proc/sys/kernel/domainname
“# hostname > /proc/sys/kernel/hostname

Any settings written to [proc are discarded with a reboot. To ensure their per-
sistence, you can write them to [etc/sysctl.conf in sysctl syntax, which is quite
straightforward: drop [proc/sys from the file name and substitute dots for slashes.

| 316

6.7 Log file management |

Then append an equals sign followed by the desired value. Unfortunately, sysctl
expects static definitions and cannot interpret variables or run commands:

“# cat <<EOF >> /etc/sysctl.conf
kernel.domainname = debianbook.info
kernel.hostname = arakis

EOF

When the system boots, [etc/rcS.d/S30procps.sh reads the file and makes the ap-
propriate changes, using sysctl (see the sysctl (8) manpage).

6.7 Log file management

Debian uses syslogd as the logging daemon by default. In the standard config-
uration, all logs sent via syslogd end up in files below [var/log, as specified in
[ete/syslog.conf. In addition, klogd funnels kernel log messages to syslog, after
making them human readable. The klogd (8) manual page gives more information.

All logs generated by programmes on a Debian system are written to files below
[var[log. Furthermore, the standard log files are handled completely by syslogd.
Two log files are special as their union includes all log messages generated by sys-

log:

auth.log
receives log entries related to authentication, and other events that are crit-
ical to privacy or security issues.

syslog
everything not related to authentication ends up in this log file. syslog is
the catch-all log file on a Debian system.

All other files store subsets of the log messages, filtered according to the log-
ging facility and/or priority they use. For the precise configuration, please consult
[etc/syslog.conf. Please consider that syslogd can write a single log message to
multiple files. In the following, you will notice that some files relate to a syslog
facility, while others relate to a message's priority.

boot
After changing [etc/default/bootlogd appropriately, log messages produced
during the initialisation sequence will be logged to boot.

daemon.log
Every daemon without a separate facility logs to daemon.log. The priority
of log events is not relevant.

317 |

o

6 Debian system administration

debug
Messages useful for debugging, which are not related to authentication
daemon.log. The priority of log events is not relevant.

dmesg

After the kernel has booted, all kernel messages are written to dmesg for
later reference. This file is not rotated and only exists for a single boot cycle
before being overwritten. Note that the choice of name is a little unfortu-
nate, as the dmesg command prints the current kernel log ring buffer, which
is continuously updated as new kernel events are logged. These messages are
written to kern.log; The dmesg file is not modified until the next restart of
the system.

kern.log
Log messages with the kern facility end up in this file. The contents are
mostly what the kernel spits out, after being formatted by klogd.

Ipr.log
Log messages with the Ipr facility end up in this file.

mail.log
Log entries related to the mail system (using the mail facility) go into this file.
For easier parsing by scripts, mail log entries are also written to mail.info,
mail.warn, and mail.err, according to their priority. Unfortunately, Debian's
default MTA, exim4, does not use this file.

messages
Pretty much everything that is not an error or a trivial log entry, and not
related to authentication, daemons, cron (or other automatic schedulers),
mail, and news goes here.

user.log
Messages from user-space processes (but not daemonised; using the user
facility) are written to user.log.

uucp.log
Somewhat antiquated but still useful in certain situations, Unix-to-Unix
Copy (UUCP)-related messages (using the uucp facility) may be found in
this log file.

news/news.*
Log messages with the news facility are split into three files according to
their priority, and live in the news subdirectory.

Other programmes also drop logging information into /var/log. For instance, on
every Debian system, the directory will probably also contain:

| 318

6.7 Log file management |

aptitude
writes an entry to this log for every action the administrator requests.

base-config.”
The debugging information dumped into these files during the second phase
of the installation (see chapter 3.2.2) is of limited value.

debian-installer/*
The Debian installer dumps the log messages it colllected during the instal-
lation here.

exima4/*
As noted above, the exim4 authors thought it wise to circumvent standard
practice and use their own log files instead of the commonly accepted sys-
logd channel. For log entries related to exim4, look underneath exim4. Al-
ternatively, install postfix.

ksymoops
modutils, needed for 2.4 kernels, dumps kernel symbol information to this
directory, mainly for debugging purposes. You can basically ignore it, or even
delete the directory on 2.6 kernels.

In addition, the standard session log files btmp, lastlog, and wtmp exist to store
failed (local) login attempts, the users' last login times, and each user's login history
respectively.

Log file permissions

Debian tries to set the permissions of these log files in a secure and flexible way.
Files are generally readable by members of the adm group. At time of writing,
several log files with potentially sensitive information (most notably: mail.log) are
publicly readable?*. Unfortunately, the lack of a permissions policy can cause in-
consistencies in the log file access settings. Work on formalising a policy has begun,
nevertheless.

Once a log file is created, its permissions are usually kept. It is a good idea to check
the contents of [var/log after installing new packages to make sure that no infor-
mation can leak. syslog-ng can replace the syslogd log daemon, and it provides
facilities to automatically choose file permissions when it creates log files. It also
allows for the use of variables in log file names, paving the way for rotationless log
management.

If you can take away access to btmp, lastlog, and wtmp from your users, consider
changing the permissions on the log file directory itself to lock out non-adm-
members. Then, use Access Control List (ACL)s to grant permissions to the users of

24See http://bugs.debian.org/285500, hopefully this will be fixed soon.

319 |

o

6 Debian system administration

daemons that drop root privileges early during the startup phase. Obviously, you
need filesystem ACL support and the acl package installed.

“# chmod g+s,0= /var/log
“# chgrp adm /var/log
“# setfacl -m user:Debian-exim:x /var/log

[...1

Log file rotation

To prevent log files from growing too large and possibly filling up the [var filesys-
tem, the Debian system rotates log files on a regular basis. Debian uses two tools
for log rotation: packages that install pieces of software with their own log files
commonly use logrotate. The system itself uses the simple savelog tool in scripts
to allow for greater flexibility. Log file rotation can be illustrated with savelog,
which provides the -t option (among others) to create new empty log files after
the rotation.

“$ 1s -F

logfile

“$ savelog -t logfile && 1ls -F

Rotated ‘logfile’ at Fri Aug 12 17:39:24 CET 2004.
logfile 1logfile.O

“$ savelog -t logfile && 1ls -F

Rotated ‘logfile’ at Fri Aug 12 17:39:27 CET 2004.
logfile 1logfile.0 1logfile.l.gz

[...]

“$ 1s -F

logfile logfile.l.gz logfile.3.gz 1logfile.5.gz
logfile.0 logfile.2.gz 1logfile.4.gz 1logfile.6.gz
“$ savelog -t logfile && 1ls -F

logfile logfile.l.gz 1logfile.3.gz 1logfile.5.gz
logfile.0 1logfile.2.gz 1logfile.4.gz logfile.6.gz

By default, savelog keeps the last seven previously rotated files. If the log file is
then rotated again, the oldest file is deleted, and the second oldest takes its place.
Furthermore, the tool compresses the six oldest log files. You can adjust the number
of log files to keep with the -c option.

The two [ete/cron.*[sysklogd scripts use savelog to rotate all log files written by
syslogd. It employs [usr/sbin/syslogd-listfiles, which scans [ete/syslog.conf and
outputs a list of log file candidates for daily rotation. When the --weekly option
is set, it only outp